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Introduction 

The concept of plant hormones as chemical messengers that control plant growth and 

development is not a new one. Already in 1758, Duhamel du Monceau's experiments suggested 

communication between plant organs and showed that sap moving from the leaves controls root 

growth (du Monceau, 1758). More than a century later Julius von Sachs proposed that plants 

produce “organ-forming substances” - molecules moving to different parts of the plant where 

they control initiation and development of specific plant organs (von Sachs, 1880). Finally, 

Charles and Francis Darwin, with their experiments on phototropism of coleoptiles (described in 

"The Power of Movement in Plants" (Darwin, 1880)) that later led to the discovery of auxin by 

Went (1928), fully launched the modern research in plant growth substances.  

The first note about cytokinin comes from 1913 when Gottlieb Haberlandt observed that 

compounds from phloem could stimulate cell division in potato parenchyma cells (Haberlandt, 

1913). In the 1950s, kinetin, an active compound stimulating cell division, was isolated from 

herring sperm (Miller et al., 1956). The first naturally occurring cytokinin in plants named zeatin 

was isolated from immature maize endosperm (Letham, 1973).  

Since these initial discoveries, a great number of studies have demonstrated an essential 

role of both auxin and cytokinin in the regulation of many aspects of plant growth and 

development including embryogenesis (Friml et al., 2003; Müller and Sheen, 2008), 

postembryonic organogenic processes such as  root (Fukaki et al., 2002; Benková et al., 2003; 

De Smet et al., 2007; Laplaze et al., 2007; Bielach et al., 2012), and shoot branching (Leyser, 

2009; Shimizu-Sato et al., 2009; Müller et al., 2015), root (Friml et al., 2002; Blilou et al., 2005; 

Dello Ioio et al., 2008; Růžička et al., 2009) and shoot apical meristem activity and phyllotaxis 

(Reinhardt et al., 2003; Zhao et al., 2010; Yoshida et al., 2011; Chickarmane et al., 2012) 

vasculature development (Mähönen et al., 2006a; Hejátko et al., 2009; Bishopp et al., 2011b) as 
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well as tropic responses (Rouse et al., 1998; Müller et al., 1998; Luschning et al., 1998). 

Importantly, a classic series of experiments by Skoog and Miller (1957) demonstrated that the 

ratio of cytokinin to auxin profoundly influences the morphogenesis of roots and shoots in plant 

tissue culture.  This was one of the first studies revealing auxin and cytokinin interaction in the 

differentiation of plant organs and pointed at hormonal cross-talk as an important aspect of auxin 

and cytokinin regulatory functions (reviewed in Moubayidin et al., 2009; Depuydt and Hardtke 

2011; Schaller et al., 2015). 

Nevertheless, it has been primarily the recent boom of modern technologies and 

approaches including analytical chemistry, biochemistry, molecular biology, genetics, cell and 

developmental biology that have enabled rapid progress in deciphering the auxin and cytokinin 

activities at the molecular level. Due to ongoing improvements and development of new 

methods, we are gaining deeper insights into mechanisms that control auxin and cytokinin 

biosynthesis, distribution, perception and signal transduction as well as insights into their 

functions in the regulation of plant growth and development.  In this review, we shall briefly 

discuss the major recent progress made in this area, and highlight the importance of continuous 

methodological improvements. 

 

1. Discovery of auxin and cytokinin  

Discovery of auxin is tightly linked with Darwin’s early studies on coleoptiles. Based on 

the bending of coleoptiles toward unilateral light, the existence of a messenger molecule named 

auxein (from the Greek “auxein” meaning ‘’to grow’’) was predicted, which was apparently 

transported from the site of light perception at the tip of coleoptile towards the site of response 

where bending occurs (Darwin 1880). Later, it was demonstrated that an asymmetric 

accumulation of auxin at the non-illuminated side compared to the illuminated side correlated 

with differential cell growth and organ bending (Boysen-Jensen, 1911). A model implementing a 

role for auxin and its asymmetric distribution in the regulation of plant tropic responses was 

proposed (Cholodny, 1927, 1928; Went, 1928). Although the existence of auxin as a molecule 

controlling plant growth had been predicted already by Darwin in 1880, its chemical identity 

remained unknown for a long time. In 1928 Went succeeded in capturing this growth substance 

from coleoptile tips into agar blocks and demonstrated its biological activity (Went, 1928). 
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However, due to insufficient analytical methods for detecting low amounts of the hormone, the 

first auxin (indole-3-acetic acid, IAA) was purified from human urine and culture filtrates of 

several fungi, both of which are rich sources of substances with auxin activity when tested in the 

bioassays (Kögl et al. 1934; Thimann and Koepfli 1935). A decade later IAA was eventually 

discovered in a plant (Zea mays) (Haagen-Smit et al. 1946). 

The first experimental indication of the existence of cytokinins was reported by Gottlieb 

Haberlandt (1913), who observed that phloem sap can stimulate division of potato parenchyma 

cells. Further studies showed that compounds which trigger cell division are present in various 

other plant species (van Overbeek, 1941; Jablonski and Skoog, 1954). The first molecule with 

the ability to promote cell division was purified from autoclaved herring sperm DNA. The 

compound 6-(furfurylamino) purine was named kinetin, and although it is one of the most 

biologically active cytokinins, it is formed as a DNA degradation product and is not detected in 

plant tissues (Miller et al., 1955; Hall and de Ropp, 1955). The first naturally occurring 

cytokinin, zeatin, was almost simultaneously isolated from Zea mays by Miller (1961) and 

Letham (1963). Since then, many naturally occurring cytokinins have been isolated and found to 

be ubiquitous to all plant species (Salisbury and Ross, 1992). 

The discovery and identification of auxin and cytokinins triggered the interest of 

researchers, who then diversified to explore pathways that underlie auxin and cytokinin 

biosynthesis and metabolism, their distribution, as well as perception and signal transduction of 

these two plant hormones. The establishment of Arabidopsis thaliana as a model organism for 

plant molecular biology was one of the important milestones in hormone molecular biology. The 

use of Arabidopsis for mutant screens based on sensitivities to auxin and cytokinin enabled the 

identification of genes and pathways controlling their metabolism, transport, perception and 

signaling. These in combination with novel technologies and approaches, such as large scale 

transcriptome profiling, proteomics, chemical genomics, and most recently mathematical 

modelling, resulted in major breakthroughs in our understanding of auxin and cytokinin biology.  

 

2. Auxin and cytokinin: insights into biosynthesis. 

Although IAA had been recognized as the main native auxin already in 1935 (Thimann, 

and Koepfli), the question as to how auxin is synthesized remained unanswered for more than 70 

years afterwards. Using genetic and biochemical tools, it has been found that IAA is mainly 
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synthesized from L-tryptophan (Trp) via indole-3-pyruvate (IPA) in a two-step reaction 

catalysed by TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and 

YUCCA (YUC) (Figure 1a). The TAA family of amino transferases which mediate the first step 

of the pathway was isolated from independent genetic screens for mutants affected in shade, 

ethylene, and responses to the auxin transport inhibitor NPA (Stepanova et al., 2008; Tao et al., 

2008; Yamada et al., 2009). Severe auxin deficient phenotypes (in developmental processes such 

as embryogenesis, seedling growth, flower development, vascular patterning, root branching, 

tropisms, and shade avoidance) as well as reduced endogenous auxin levels were observed in 

mutants lacking activity of TAA1 and the homologous TAR1 and TAR2, which indicated their 

function in auxin homeostasis maintenance (Stepanova et al., 2008). The phenotypic defects 

observed in TAA1/TAR deficient mutants were partially rescued by auxin, whereas induction of 

TAA1 led to the accumulation of endogenous IPA. Importantly, the recombinant TAA1 protein 

has been found to catalyse the conversion of Trp into IPA in vitro thus providing evidence for its 

direct involvement in auxin biosynthesis (Stepanova et al., 2008; Tao et al., 2008).  

Similarly to TAA1, YUC genes were originally identified by a genetic screen in 

Arabidopsis. Using an activation-tagged mutant library, a flavin-containing monooxygenase 

YUC1 was isolated. The YUC1 (yuc1D) gain-of-function mutant exhibits increase in endogenous 

IAA and phenotypic alterations mimicking high auxin activity. Disruption of several YUC genes 

in Arabidopsis leads to defects in embryogenesis, seedling growth, flower development, and 

vascular pattern formation (Cheng et al., 2006, 2007). The developmental defects of the loss-of-

function yuc mutants are rescued by the bacterial auxin biosynthesis gene iaaM, supporting YUC 

genes function in auxin biosynthesis (Cheng et al., 2006). 

Although previously proposed to act in two independent pathways, recent genetic and 

biochemical studies showed that the TAAs and YUCs catalyse two consecutive reactions in the 

same pathway that converts Trp to IAA. Multiple lines of evidence support this model including 

similarities of both taa and yuc mutants phenotypes (Won et al., 2011) and enhancement of the 

auxin related phenotypes when both YUC and TAA are overexpressed in the same plants 

(Mashiguchi et al., 2011). Additionally, the YUC auxin overproduction phenotypes are 

suppressed in the taa mutant backgrounds, indicating that TAA acts upstream of YUC-mediated 

auxin biosynthesis (Won et al., 2011). Direct measurement of IPA levels reveals that yuc mutants 

accumulate IPA whereas taa mutants are partially IPA deficient, suggesting thay  TAAs 
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catalyses synthesis of IPA which is converted by YUCs to IAA (Mashiguchi et al., 2011; Won et 

al., 2011). Finally, in vitro biochemical assays have demonstrated that TAA can convert Trp to 

IPA and that YUCs produce IAA using IPA as a substrate (Mashiguchi et al., 2011).  

Early physiological studies on auxin biosynthesis suggested that auxin is primarily 

synthesized in the young developing organs such as leaves, shoot apical meristems, and 

developing fruits and seeds (Bartel, 1997; Ljung et al., 2001). The expression pattern of TAA and 

YUC genes modifies this established view on auxin biosynthesis. Local auxin production seems 

to take place in very distinct cell types, including root and apical embryo meristems, the root cap, 

quiescent centre (QC), root proximal meristem, vasculature of hypocotyls, as well as apical 

hooks, thus hinting at the spatio-temporal control of the IAA biosynthesis throughout plant 

growth and development (Chent et al., 2006, 2007; Stepanova et al., 2008; Tao et al., 2008). 

Several transcription factors which control TAA and YUC genes expression have been identified 

and thus might determine spatio-temporal pattern of the IAA biosynthesis. LEAFY 

COTYLEDON2 (LEC2) (Stone et al., 2008) SHORT INTERNODES/ STYLISH (SHI/STY) 

(Eklund et al., 2010), PHYTOCHROME-INTERACTING FACTORs (PIFs) (Franklin et al., 2011; 

Sun et al., 2012), INDETERMINATE DOMAIN (IDD) (Cui et al., 2012) and PLETHORA family 

members (Pinon et al., 2013) have been reported as transcriptional activators of YUC and TAA1 

genes. In contrast, the SPOROCYTELESS/NOZZLE (SPL/NZZ) transcription factor, has been 

shown to negatively regulate some of YUC genes (Li et al., 2008).  

Chemical biology-based studies provided additional support for the central role of the 

IPA pathway in IAA production. Chemical screens for auxin inhibitors uncovered L-kynurenine 

and L-amino-oxyphenylpropionic acid (L-AOPP) as TAA inhibitors and yucasin as a YUC 

inhibitor. Application of these compounds reduces endogenous IAA levels and results in 

phenotype alterations mimicking mutants deficient in auxin biosynthesis (Soeno et al., 2010; He 

et al., 2011; Nishimura et al., 2014).  

Overall, genetic and biochemical analyses support the YUCs/TAAs mediated auxin 

biosynthesis as the major pathway used to produce auxin during plant development, whereas 

other pathways catalysed by CYP79B2/B3, nitrilases, aldehyde oxidases, and pyruvate 

decarboxylases might not be the main pathways in auxin biosynthesis (Zhao, 2012). 

The great progress in elucidation of the cytokinin biosynthesis pathway occurred almost 

20 years after identification of the chemical nature of cytokinins by Miller (1961) and Letham 
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(1963). In 1978 Taya and co-workers reported biosynthesis of free cytokinins in vitro and 

demonstrated that cell-free extracts of the slime mold Dictyostelium discoideum converts 

adenosine monophosphate (AMP) and dimethylallyl pyrophosphate (DMAPP) to the active 

cytokinin iPMP (N6-(D2-isopentenyl)adenosine-5’-monophosphate (Taya et al., 1978). 

Subsequently, the ISOPENTENYLTRANSFERASE (IPT) gene from Agrobacterium tumefaciens 

was shown to encode an enzyme with similar activity (Akiyoshi et al., 1984). Later, nine IPT-

homologues genes were identified by an in silico search in the A.thaliana genome. The 

expression of IPT genes (except AtIPT2 and AtIPT9) in E. coli resulted in the secretion of the 

cytokinins isopentenyladenine (iP) and zeatin, confirming their function as cytokinin 

biosynthetic enzymes (Takei et al., 2001). IPT genes display distinct, tissue-specific patterns of 

expression, indicative of cytokinin production sites (Miyawaki et al., 2004; Takei et al., 2004a).  

Free iP-riboside generated via the IPT pathway, as well as the corresponding base, are further 

stereospecifically hydroxylated to trans-zeatin forms. The CYP735A1 and CYP735A2 encoding 

cytochrome P450 monooxygenases with cytokinin trans-hydroxylase enzymatic activity were 

identified in A.thaliana by a screen employing an (AtIPT4)/P450 co-expression system in 

Saccharomyces cerevisiae (Takei et al., 2004b).  

The final step in cytokinin biosynthesis, conversion of the cytokinin ribotides to their active, free 

base forms is catalyzed by the cytokinin nucleoside 5´-monophosphate phosphoribohydrolase 

LONELY GUY (LOG). These were first identified in rice by a genetic screen for defects in the 

maintenance of shoot meristems (Kurakawa et al., 2007). In A.thaliana, seven homologous genes 

that encode active LOG enzymes were detected. The LOG genes are differentially expressed in 

various tissues during plant development. (Kuroha et al., 2009). In accordance with their 

predicted function the conditional overexpression of LOGs in Arabidopsis reduced the content of 

iP riboside 5´-phosphates and increased the levels of iP and the glucosides (Kuroha et al., 2009) 

Alternatively, the cytokinin ribotides are dephosphorylated to the ribosides and subsequently 

converted to free-base cytokinins (Chen and Kristopeit 1981a, 1981b), however the 

corresponding genes have not yet been identified (Figure 1b and c). 

Levels of active cytokinins in plant cells are tightly controlled. They might be either converted to 

storage forms through conjugation to glucose (Martine et al., 1998; Hou et al., 2004) or 

inactivated through irreversible cleavage by cytokinin oxidases (Werner et al., 2001; Werner et 

al., 2003), (Figure 1c). Development of highly sensitive analytical methods were instrumental in 
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the detection of numerous cytokinins metabolites and in deciphering complex cytokinin 

metabolism, followed by identification of the corresponding metabolic enzymes and genes 

(Letham and Palni 1983; Mok and Mok 2001; Tarkowski et al., 2009).  

 

3. Transport of auxin and cytokinin  

By definition, hormones are chemical messengers that are transported to distant tissues 

and organs to regulate their physiology and development. Darwin’s early experiments on 

coleoptiles had already indicated that controlled transport of auxin from the tip of coleoptile to 

the bending region might be an essential part of the mechanism through which auxin executes its 

regulatory function. Later, based on the transport studies, it was proposed that cytokinins and 

auxin are synthesized only in root tips and shoot apices, respectively, and translocated to target 

tissues. Although the recent detailed investigations of expression patterns of auxin and cytokinin 

biosynthesis genes questions this over-simplified model, the tight control of hormone distribution 

through organs and tissues is considered to be the crucial component of their regulatory 

mechanisms. Nowadays, the broadly accepted concept is that both hormones are synthesized and 

act at various sites in a plant body and that they have coordinated functions as long-distance 

messengers as well as local signals. 

The classical transport assays using radioactively labeled auxins outlined main routes of 

auxin movement in plants (Morris and Thomas, 1978).  To transport auxin, plants use two 

distinct pathways: a non-polar passive distribution through phloem and an active cell-to-cell 

polar auxin transport (PAT). In the first pathway, most of the auxin and auxin derivatives are 

rapidly transported via unregulated flow in the mature phloem over long distances in both 

basipetal and acropetal directions (Nowacki and Bandurski, 1980). The second pathway is slower 

and acts over shorter distances, transporting auxin in a cell-to-cell manner from the shoot 

towards the root. In contrast to phloem transport, PAT is specific for active free auxins, occurs in 

a cell-to-cell manner and is strictly unidirectional. The main PAT stream from the apex towards 

the root occurs in the cambium and the adjacent partially differentiated xylem elements (Morris 

and Thomas, 1978; Lomax et al., 1995). In roots, the auxin stream continues acropetally towards 

the root tip, where part of the auxin is redirected backwards and transported through the root 

epidermis to the elongation zone (Rashotte et al., 2000).  
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Based on the chemical nature of auxin and the physiology of PAT, the model of cell-to-

cell auxin of transport has been proposed, known as the chemiosmotic hypothesis (Rubery and 

Sheldrake, 1974; Raven, 1975). As a weak acid, a fraction of IAA exists in the acidic 

environment of the apoplast as the protonated, neutral form (IAAH), which may diffuse through 

the plasma membrane. In the more basic cytosol, auxin becomes deprotonated (IAA-) and is 

unable to pass passively through the plasma membrane. The chemiosmotic hypothesis predicted 

that the exit of auxin anions from the cell is mediated by active efflux carriers and that the 

passive diffusion of auxin can be further facilitated by influx carriers. The polar membrane 

localization of the auxin efflux carriers in a file of adjacent cells would determine directionality 

of the auxin flow (Figure 2a).  

It has been primarily genetic studies that led to discovery of genes required for auxin 

influx and efflux (Bennett et al., 1996; Gälweiler et al., 1998; Luschnig et al., 1998; Geisler et 

al., 2005; Cho et al., 2007). An auxin influx transporter AUXIN RESISTANT1 (AUX1),  encoding 

an amino acid permease-like protein, was found in a screen for auxin resistant plants (Pickett et 

al., 1990). Strong insensitivity to membrane-impermeable auxin (2,4-D) suggested that the aux1 

mutation interferes with auxin uptake (Bennett et al., 1996), which was confined by the transport 

assays using a Xenopus oocyte expression system (Yang et al., 2006). The A.thaliana genome 

encodes four auxin influx transporters:  AUXIN RESISTANT1 (AUX1) and three Like AUX1 

(LAX1, LAX2, LAX3) (Parry et al., 2001; Swarup et al., 2008; Péret et al., 2012). Thorough 

exploration of mutants lacking AUX1/LAX activity revealed the essential role of the auxin 

uptake in the regulation of gravitropism, phototropism, root branching, phyllotaxis, and root hair 

development (Bennett et al., 1996; Bainbridge et al., 2008; Stone et al., 2008; Swarup et al., 

2008; Jones et al., 2009; Péret et al, 2012).  

Genetic screens were also instrumental in identifying molecular components of auxin 

efflux. In the early nineties, the A.thaliana mutant, pin-formed1 (pin1) with needle-like 

inflorescence was described. The characteristic phenotype similar to wild type plants treated with 

chemical inhibitors of auxin efflux indicated defects in auxin transport. Auxin transport assays in 

pin1 stem segments confirmed severe reduction of the basipetal flow of auxin and pointed to a 

function for PIN1 in auxin efflux (Okada et al., 1991). Indeed, identification of the mutant locus 

revealed that PIN1 encodes a putative transmembrane protein with a predicted topology of 

transporter proteins (Gälweiler et al., 1998). Auxin transport assays in Arabidopsis and tobacco 
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cell suspension culture as well as in heterologous non-plant systems including  yeast, mammalian 

HeLa cells and Xenopus oocytes have provided evidence for an auxin efflux capacity of PIN 

proteins (Petrášek et al., 2006; Yang and Murphy, 2009; Barbez et al., 2013; Zourelidou et al., 

2014). The Arabidopsis PIN gene family consists of eight members (Zažímalová et al., 2007; 

Adamovski and Friml 2015). Based on the localization and domain organization, these were 

divided into two groups. The first group consists of PIN1, PIN2, PIN3, PIN4 and PIN7 and are 

located at the plasma membrane. The second group comprising PIN5, PIN6, and PIN8 have a 

reduced middle hydrophilic loop and are located at the endoplasmic reticulum (ER), where they 

presumably control auxin flow between the cytosol and ER lumen, thus possibly affecting 

subcellular auxin homeostasis (Mravec et al., 2009; Ding et al., 2012). Similarly, PIN-LIKES 

proteins (PILS) are located in the ER and might play a role in regulation of intracellular auxin 

homeostasis (Barbez et al., 2012) (Figure 2).                                                                                                                                

In addition to the PIN family of plant-specific auxin transporters, plant orthologs of the 

mammalian ATP-binding cassette subfamily B (ABCB)-type transporters of the multidrug 

resistance/phosphoglycoprotein (ABCB/MDR/PGP) protein family (Noh et al., 2001; Verrier et 

al., 2008) have been implicated in auxin transport. Biochemical evidence for the ABCB proteins 

auxin transport activity has been demonstrated both in plant and non-plant systems. In contrast to 

polar localization of PINs, which corresponds with known direction of auxin flow, the ABCBs 

presumably act in nondirectional long-distance auxin transport controlling amount of auxin in 

these streams (Noh et al., 2001; Verrier et al., 2008; Peer et al., 2011).  

The chemiosmotic hypothesis predicted that the polar membrane localization of auxin 

transporters determines the directionality of the auxin flow. This concept was supported by 

observations of a polar subcellular localization for PIN proteins (Gälweiler et al., 1998; Luschnig 

et al., 1998) and a tight correlation between PIN polarity and directions of auxin flow 

(Wisniewska et al., 2006). Phosphorylation of PINs controlled by a set of kinases and 

phosphatases (Benjamins et al., 2001; Friml et al., 2004; Michniewicz et al., 2007; Zhang et al., 

2010; Huang et al., 2010; Zourelidou et al., 2014), Ca2+ signaling (Zhang et al., 2011), cell wall 

(Feraru et al., 2011) or mechanical signals orienting the plant microtubule network (Heisler et al., 

2010) were found to determine PIN protein activity and polarity. Cell-biological studies revealed 

that PIN auxin efflux transporters may not solely reside at the plasma membrane since they 

undergo constitutive cycles of endocytosis and recycling back to the plasma membrane (Geldner 
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et al., 2001; Dhonukshe et al., 2007) (Figure 2c). The constitutive endocytosis and recycling of 

PIN proteins depends on complex subcellular trafficking machinery including the coat protein 

clathrin (Dhonukshe et al., 2007; Kitakura et al., 2011; Wang et al., 2013), ADP-ribosylation 

factor guanine-nucleotide exchange factors ARF - GEFs (Geldner et al., 2001, 2003; Kleine-

Vehn et al., 2008a,b; Naramoto et al., 2014); ARF-GTPase-activating protein VASCULAR 

NETWORK DEFECTIVE3 (Naramoto et al., 2010), the related ARF-GEF GNOM-LIKE1 (Teh 

and Moore, 2007) and small GTPase Rab1b (Feraru et al., 2012). Downstream of endocytosis, 

the early endosomal trafficking of PINs is controlled by another ARF-GEF, BFA-visualized 

endocytic trafficking defective1, and the Sec1/Munc18 family protein BEN2 (Tanaka et al., 

2009, 2013). The endocytosis and constitutive recycling of PIN proteins has been implicated in 

the maintenance of PIN polar localization and as a mechanism for rapid modifications of PIN 

polarity during various developmental processes including embryogenesis (Friml et al., 2003; 

Robert et al., 2013), lateral root organogenesis (Benkova et al., 2003; Dubrovsky et al., 2008) or 

tropic responses (Friml et al., 2002, Kleine Vehn et al., 2010; Ding et al., 2011; Rakusova et al., 

2011).  

Like auxin, cytokinins are highly mobile molecules. However, in contrast to the well 

characterized transport machinery of auxin, the nature of cytokinin transport is less clear. Long-

distance transport of cytokinin is supported by the discovery of cytokinins in xylem and phloem 

sap (Gillissen et al., 2000; Burkle et al., 2003; Bishopp et al., 2011a). In xylem sap, the major 

form of cytokinin is tZ-riboside (tZR) (Beveridge et al. 1997; Takei et al. 2001; Hirose et al. 

2008), while in phloem sap iP-type cytokinins, such as iP-ribosides and iP-ribotides are detected 

(Corbesier et al. 2003; Hirose et al. 2008). Accordingly, grafting experiments between wild-type 

plants and  cytokinin biosynthesis  mutants showed preferential transport of different cytokinins; 

trans-zeatin tZ-type cytokinins were transported from the root to the shoot, while iP-type 

cytokinins moved from the shoot to the root (Matsumoto-Kitano et al., 2008). Thus, plants might 

use tZ- type as an acropetal messenger and iP-type cytokinins as basipetal messengers (Kudo et 

al., 2010). Recently, transport assays using radiolabeled cytokinins confirmed basipetal 

movement of cytokinin through the phloem and revealed that basipetal transport of cytokinin 

occurs through symplastic connections in the phloem (Bishopp et al. 2011b). Reverse genetics 

approaches applied to systematically characterize the ATP-binding cassette transporter proteins 

in A. thaliana yielded the identification of ABCG14 as a transporter involved in the long-
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distance acropetal (root to shoot) translocation of the root-synthesized cytokinin. Plasma 

membrane-located ABCG14 is expressed primarily in the central cylinder of roots and loss of 

ABCG14 activity interferes with the translocation of tZ-type cytokinins from roots to shoots. In 

planta feeding of radiolabeled tZ suggests that ABCG14 acts as an efflux pump (Zhang et al., 

2014).  

Mechanisms of cytokinin uptake into cells have been studied using radiolabeled 

cytokinins in Arabidopsis cell cultures. Experiments predicted the presence of proton-coupled 

high-, medium-, and low affinity cytokinin transport systems (Burkle et al., 2003; Cedzich et al., 

2008). So far, the equilibrative nucleoside transporter (ENT) family and the purine permease 

(PUP) family have been found to facilitate cytokinin transport (Burkle et al. 2003, Li et al., 2003; 

Hirose et al. 2005). Among Arabidopsis PUP family proteins (Gillissen et al., 2000), active 

uptake of free cytokinin bases and several adenine derivatives by PUP1 and PUP2 was 

demonstrated using a yeast system (Burkle et al., 2003). Expression of PUP2 in the phloem of 

Arabidopsis leaves suggested a role for PUP2 in phloem loading and unloading for long-distance 

transport of adenine and possibly cytokinins (Burkle et al., 2003).  Among the plant ENT 

transporters, competitive uptake studies in yeast cells showed that Arabidopsis ENT3, ENT6, 

ENT7 and rice ENT2 can facilitate uptake of iP-riboside and tZ-riboside (Li et al., 2003; Hirose 

et al., 2005). Furthermore, mutants lacking either ENT3 or ENT8 exhibit reduced cytokinin 

uptake efficiency (Sun et al., 2005).  Distinct expression patterns of ENT genes detected in root, 

leaf, and flower vasculature suggest that they may act differently during plant growth and 

development (Li et al., 2003; Sun at al., 2005; Hirose et al., 2008), however their function as 

cytokinin transporters in planta needs to be experimentally supported. In summary, in contrast to 

high substrate specificity of the auxin transport system, translocation of cytokinins in planta 

seems to be mediated through transporters with affinities to a broader spectrum of molecules 

such as purine derivatives and nucleosides. 

 

 

4. Perception and signal transduction of auxin and cytokinin. 

Solving the puzzle of auxin and cytokinin perception mechanism has been undoubtedly 

one of the biggest challenges of the last years. Establishment of the Arabidopsis genetic model 

has provided excellent tools to address this long standing question and it has been forward 
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genetic screens in Arabidopsis that have led to the identification of backbone elements of both 

auxin and cytokinin signal transduction cascades. Genetics in combination with advanced 

molecular and biochemical approaches enabled the achievement of a comprehensive view on the 

molecular principles of auxin and cytokinin perception and signal transduction.  

Several independent forward genetic screens for mutants insensitive to auxin (Rouse et 

al., 1998; Ruegger et al., 1997, 1998) and expression profiling to isolate auxin inducible genes 

(Abel et al., 1995; Hagen and Guilfoyle 2002; Abel and Theologis 1996; Ulmasov et al., 1997) 

led to identification of all key molecular components required for auxin response such as TIR1 

(encoding for F-box component of the E3 ubiquitin ligase SCFTIR1/AFBs), the auxin early inducible 

Aux/IAA genes as well as the ARF transcription factors that recognise auxin response elements in 

the promoters of the Aux/IAAs (Gray et al., 1999; Abel and Theologis 2010). However, how 

these genes might constitute the pathway sensing and transducing hormonal signal was not 

obvious.  Using advanced genetic and biochemical approaches the auxin signalling circuit has 

been resolved and TIR1 identified as the auxin receptor. It has been shown that auxin mediates 

interaction between TIR1/AFBs and Aux/IAA proteins which stimulates Aux/IAAs 

ubiquitination by SCFTIR1/AFBs E3-ubiquitin ligases for subsequent degradation by the 

proteasome. This leads to de-repression of ARFs, and transcriptional regulation of downstream 

response genes. At low auxin concentration, Aux/IAAs form a complex with ARF transcription 

factors and the transcriptional corepressor TOPLESS (TPL), thus preventing the ARFs from 

regulating target genes (Gray et al., 2001; Dharmasiri et al., 2005a,b; Kepinski and Leyser 2005; 

Tan et al., 2007; Szemenyei et al., 2008) (Figue 2b).  

Although the framework which outlines the core molecular mechanism of auxin 

perception and signal transduction has been recognised, the question as to how TIR1/AFB, 

Aux/IAAs and ARF families, each comprising many homologous members, mediate specific 

developmental output remains to be answered. As indicated by recent studies, multiple levels of 

control appear to exist, including spatio-temporal specific expression of individual auxin 

signalling pathway components (Overvoorde et al., 2005; Okushima et al., 2005), as well as 

differences in affinities of the TIR1/AFB auxin receptors for the Aux/IAA repressors (Calderón-

Villalobos et al., 2012; Moss et al., 2015), of Aux/IAA repressors for the ARFs transcription 

factors (Vernoux et al., 2011; Lee et al., 2014; Korasick et al., 2014; Nanao et al., 2014; 
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Shimizu-Mitao and Kakimoto, 2014), and of ARFs for their binding motifs in promoters of the 

target genes (Boer et al., 2014), which may allow fine-tuning of auxin responses. 

After a period of biochemical attempts in the early 1970s to identify the cytokinin 

receptors, the forward genetic screens turned out to be successful strategies. In a screen of the 

activation tagged Arabidopsis mutants for cytokinin independent growth, the sensor histidine 

kinase CKI1 was recovered.  This finding suggested that the multi-step phosphorelay similar to 

bacterial two-component signalling system might underlie the cytokinin signal transduction 

(Kakimoto, 1996). Another screen for cytokinin insensitive mutants led to identification of the 

CRE1 (CYTOKININ RESISTANT 1) encoding a sensor histidine kinase related to CKI1 (Inoue et 

al., 2001).  At about the same time, the WOODEN LEG (WOL) mutant allele of the AHK4/CRE1 

gene (exhibiting severe defects in the vasculature differentiation; Mähönen et al., 2000) was 

identified, along with the AHK2 and AHK3 homologues required for cytokinin response (Hwang 

and Sheen et al., 2001; Ueguchi et al 2001; Higuchi et al., 2004; Nishimura et al., 2004). Elegant 

experiments in yeast and bacteria provided first evidence that CRE1/AHK4 functions as a 

cytokinin receptor (Inoue et al., 2001; Ueguchi et al., 2001, Suzuki et al., 2001); later 

corroborated by direct binding assays with radiolabeled cytokinins (Romanov et al., 2005, 2006; 

Stolz et al., 2011).  

Subsequent studies focusing on the downstream signaling cascade revealed that genes 

with high similarity to molecular elements of the multi-step phosphorelay pathway including 

sensor histidine kinases (AHKs), histidine phosphotransfer proteins (AHPs) and response 

regulators (ARRs) are present in the Arabidopsis genome (Mizuno, 2005; Schaller et al., 2008).  

Genetic and biochemical characterization of their functions in the cytokinin response yielded the 

current model of the cytokinin signalling pathway. In brief, a cascade of auto- and 

transphosphorylation events triggered by cytokinin leads to activation of AHK receptors and 

transduction of the signal to downstream components. Downstream of the AHK receptors, the 

AHPs continuously translocate between cytosol and nucleus to mediate signalling by activating 

type-B ARABIDOPSIS RESPONSE REGULATORS (ARRs), transcription factors which then 

trigger the transcription of specific genes. A negative feed-back loop is provided by type-A 

ARRs, which inhibit the activity of type-B ARRs by an unknown mechanism (Hwang and 

Sheen, 2001; Sakai et al., 2001; Mason et al., 2005; Hutchison et al., 2006; To et al., 2007, 

Argyros et al., 2008; Kieber and Schaller, 2014). Furthermore, a family of F-box proteins, called 
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the KISS ME DEADLY (KMD) family, targets type-B ARR proteins for degradation and 

attenuates cytokinin pathway activity (Kim et al., 2013) (Figure 3).  The large majority of 

cytokinin receptors localize to the ER, suggesting a central role of this compartment in cytokinin 

signaling (Caesar et al., 2011; Wulfetange et al., 2011); nevertheless, a small part of the 

cytokinin receptors might perceive a signal from the plasma membrane (Wulfetange et al., 2011).  

Recently, a set of cytokinin-regulated transcription factors named cytokinin response 

factors (CRFs) have been described as a potential branch emerging from the classical multi-step 

phosphorelay parallel to that of type-B ARRs (Rashotte et al., 2006). CRFs are members of the 

AP2/EREBP family of transcription factors, containing a single AP2–DNA binding domain, 

distinct from both DREB and AP2 proteins. There are eight members of CRF family in 

Arabidopsis (CRF1-CRF8) with CRF7 and CRF8 being atypical as they lack C-terminal 

extensions (Sakuma et al., 2002; Nakano et al., 2006; Rashotte and Goertzen, 2010). The 

transcript abundance of certain CRFs (CRF2, CRF5 and CRF6) is rapidly upregulated by 

cytokinin (Rashotte et al., 2006). Protein-protein interaction analysis indicated that CRFs are 

able to interact with each other to form homo- and/or heterodimers as well as with components 

of the classical cytokinin signaling pathway. Transcriptome analysis has revealed a large overlap 

in CRFs and type B ARR targets, pointing at a close link between both branches of the cytokinin 

signaling pathway.  

However, how the specificity of cytokinin response is achieved by the signalling cascade, where 

each step is supported by a gene family comprising several members, awaits further 

investigation.   

Importantly, elucidation of the molecular elements and mechanistic principles of auxin 

and cytokinin transduction pathways has enabled the development of specific sensors for 

monitoring auxin and cytokinin in planta. Nowadays, highly sensitive reporters such as DR5 

(Ulmasov et al., 1997); DII-VENUS (Band et al., 2012; Brunoud et al., 2012), and TCS (Müller 

and Sheen; 2008) are extensively used for mapping auxin and cytokinin activities, respectively, 

and demonstrate a great potential of these tools for better understanding of the roles of auxin and 

cytokinin in plant development.  

 

5. Auxin and cytokinin interaction in regulation of plant development. 
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Since the initial discovery of auxin and cytokinin, the number of reports supporting their 

regulatory role in various aspects of plant development has accumulated. Moreover, studies of 

auxin and cytokinin function in plant cell suspension growth provided the first evidence of 

hormonal interaction and its role in directing plant development. The experiments of Skoog and 

Miller (1957) demonstrated that both auxin and cytokinin are not only required to induce and 

maintain cell division and growth in plant tissue culture, but that the auxin:cytokinin ratio 

determines distinct organogenic pathways. A high ratio of cytokinin to auxin stimulated 

formation of shoots, whereas a low ratio induced root regeneration. Tight communication 

between auxin and cytokinin is crucial for proper establishment of meristems in early 

embryogenesis (Muller and Sheen, 2008; Su et al., 2011), ovule development (Bencivenga et al., 

2012), shoot apical meristem activity and phylotaxis ( Reinhardt et al., 2003; Werner et al., 2003; 

Leibfried et al., 2005; Zhao et al., 2010), shoot and root branching (Domagalska and Leyser, 

2011; Laskowski et al., 1995, 2008; Laplaze et al., 2007; Bielach, et al., 2012; Marhavý et al., 

2011; 2014), root growth and meristem maintenance (Dello Ioio et al., 2008). Hence the 

deciphering of molecular and mechanistic bases of auxin and cytokinin interaction became one 

of the major themes in plant biology. Over the years, research on developmental processes in 

plants has uncovered genes and networks, giving first insights into molecular mechanisms of 

auxin and cytokinin cross-talk in the context of these complex developmental programs. Here, a 

few examples of auxin-cytokinin crosstalk mechanisms and their relevance in coordination of 

specific developmental processes are discussed.    

It has been shown that specification of the root pole during the early phases of 

embryogenesis is dependent on the tightly balanced activity of auxin and cytokinin. Auxin was 

found to stimulate expression of the cytokinin signaling repressors ARR7 and ARR15 and thus to 

attenuate the output of the cytokinin pathway. Lack of this auxin-driven negative feedback loop 

resulted in the up-regulation of the cytokinin response and severe patterning defects at the 

embryonic root pole (Müller & Sheen, 2008). Interestingly, recent observations hint at another 

auxin-cytokinin regulatory module acting in the early embryogenesis. Among the transcriptional 

targets of AUXIN RESPONSE FACTOR (ARF5/MP), previously linked with embryonic root 

specification (Hardtke and Berleth, 1998; Hamann et al., 2002), TARGET OF MONOPTEROS 

(TMO3), coding for the CRF2 was identified (Schlereth et al., 2010). Expression of CRF2 and 

homologous genes is cytokinin responsive and interference with their functions leads to severe 
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embryonic defects (Rashotte et al., 2006). Furthermore, two auxin efflux transporters (PIN1 and 

PIN7), both shown to control distribution of auxin during early embryogenesis (Friml et al., 

2003), were identified as CRF2 transcriptional targets (Šimášková et al., 2015). However, how 

these two regulatory circuits jointly coordinate early embryogenesis requires further 

investigation.  

Auxin and cytokinin act in an antagonistic manner to define the root apical meristem size 

by promoting cell division and differentiation, respectively (Dello Ioio et al., 2007, Růžička et 

al., 2009). A complex network of auxin and cytokinin interactions has been implicated in the root 

meristem activity control. Cytokinin modulates the auxin pathway by affecting the expression of 

its signaling components. Cytokinin (through the AHK3 receptor and ARR1 and ARR12 

response regulators) was shown to directly activate transcription of the auxin repressor 

IAA3/SHORT HYPOCOTYL 2 (SHY2). This leads to the attenuation of auxin responses and 

reduced expression of PIN auxin efflux transporters (Vieten et al., 2005; Dello Ioio et al., 2008, 

Pernisová et al., 2009, Růžička et al., 2009). Consequently, a decreased abundance of PINs limits 

the auxin supply to the root apical meristem, thereby restricting its meristematic activity (Dello 

Ioio et al., 2008; Růžička et al., 2009).  Besides this transcription-based regulation of auxin 

activity and distribution, cytokinin was also found to modulate the endocytic trafficking of PIN1 

by redirecting this membrane protein for lytic degradation in the vacuoles. (Zhang et al., 2011; 

Marhavý et al., 2011). This alternative mode of cytokinin action provides a mechanism for rapid 

control of auxin fluxes; and as recently suggested, the enhanced depletion of PIN1 at specific 

polar domains by cytokinin might also modulate direction of the auxin flow (Marhavý et al., 

2014).    

Another mechanism through which auxin and cytokinin balance each other’s activities occurs by 

a crosstalk between their metabolic pathways. High cytokinin levels promote auxin biosynthesis 

(Jones et al., 2010) and auxin, in turn, gives feedback on the cytokinin metabolism by inducing 

CYTOKININ OXIDASE (CKX) thereby decreasing cytokinin levels (Eklöf et al., 1997, 

Nordström et al., 2004; Carabelli et al., 2007). On the other hand, in the root apical meristem, 

auxin enhances (in an IAA3/SHY2 dependent manner) the expression of ISOPENTENYL 

TRANSFERASE5 (IPT5), which encodes a rate limiting enzyme in the cytokinin biosynthesis, 

eventually resulting in the local up-regulation of cytokinin levels (Dello Ioio et al., 2008, 

Miyawaki et al., 2004).  
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Both auxin and cytokinin exhibit specific functions in the shoot apical meristem. High 

cytokinin promotes proliferation of undifferentiated cells, whereas auxin coordinates 

organogenesis in the peripheral zone (Schaller et al., 2015). Cytokinin participates in the 

WUSCHEL/WUS-CLAVATA/CLV, the core regulatory loop controlling shoot apical meristem 

activity, by stimulating WUS expression (Gordon et al., 2009). By direct repression of the ARR7 

and ARR15 cytokinin signaling repressors, WUS further reinforces the cytokinin promoting 

effect on the WUS-mediated pathway (Leibfried et al., 2005). An important additional input in 

this cytokinin-driven regulation is provided by auxin. In mutants defective in auxin biosynthesis, 

transport and signaling, expression of ARR7 and ARR15 was found to be enhanced, and the 

ARF5/MP transcription factor was identified as a direct repressor of their transcription (Zhao et 

al., 2010). This constitutes a regulatory circuit in which auxin enhances cytokinin response by 

attenuating the expression of the cytokinin signaling repressors, and consequently promoting 

WUS activity in the WUS-CLV loop.  

At the peripheral zone of the short apical meristem, new organ formation is triggered by auxin 

(Reinhardt et al., 2003). Studies following pathways regulated by auxin transport and response 

revealed that initiation of the lateral organs is accompanied by modulations in the polarity of 

PIN1 and redirection of the auxin towards incipient primordia (Heisler et al., 2005). The 

accumulation of auxin correlates with a decrease in SHOOT MERISTEMLESS (STM) expression, 

which eventually results in lower cytokinin at the peripheral zone (Hamant et al., 2002).  How 

PIN1 polarization throughout the shoot apical meristem is coordinated and whether cytokinin 

contributes to the regulation of polar auxin transport through mechanisms analogous to these 

detected in root is unknown. Nevertheless, a reduced level of PIN1 in the maize ARR repressor 

ortholog mutant abphyl 1 supports such a scenario (Lee et al., 2009).  Recently, Besnard et al. 

(2014) provide further evidence for cytokinin function in the peripheral zone and coordination of 

lateral organ initiation. Analysis of AHP6 expression patterns along with monitoring of auxin 

and cytokinin sensitive reporters indicates that AHP6, which acts as a repressor of cytokinin 

signalling (Mähönen et al., 2006), regulates the spatiotemporal pattern of cytokinin activity at the 

shoot apical meristem periphery. The cytokinin inhibitory fields generated downstream of auxin 

by AHP6 might stabilize auxin fields, thereby increasing robustness of the phyllotactic 

patterning (Besnard et al., 2014). 
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Studies of auxin-cytokinin cross-talk directing other developmental process (including 

initiation and organogenesis of ovules; vasculature differentiation, shoot and root meristem 

activity and lateral branching (reviewed in Moubayidin et al., 2009; Depuydt and Hardtke 2011; 

Schaller et al., 2015) point towards specific as well as common aspects of mechanisms mediating 

mutual communication between these two hormonal pathways.  

With increasing amounts of confirmed molecular interactions and circuits that determine 

hormone activity at the level of metabolism, transport, perception, and signaling, the prediction 

of hormone regulatory network behavior and output becomes unfeasible Modelling and 

mathematical simulations provide a novel means to address these issues and help to achieve 

better understanding of the complexity and dynamics of hormone action (Voß et al., 2014).  . 

For example, studies of the transcription factor PHABULOSA (PHB) and cytokinin in controlling 

the root meristem size showed that cytokinin regulates microRNA165/166 and that both 

cytokinin and microRNA165/166 jointly regulate PHB. In return, PHB promotes cytokinin 

biosynthesis by stimulation IPT7 expression (Dello Ioio et al., 2012). One-dimensional model 

and mathematical simulations provided insights into the functioning of such a complicated 

molecular network, showing that this regulatory loop restrains the reduction and accelerates the 

recovery of PHB levels thus providing robustness against cytokinin fluctuations (Dello Ioio et 

al., 2012). 

 A combination of experimental and modelling approaches has also been applied to integrate 

auxin and cytokinin pathways in the specification of vascular patterning. A two-dimensional 

multicellular model of Muraro et al., 2014 incorporated previous findings of a mutually 

inhibitory interaction between auxin and cytokinin, mediated through the auxin inducible 

repressor of the cytokinin signaling AHP6; cytokinin feedback on the PIN auxin efflux carriers  

and SHORT ROOT (SHR) promoted expression of the mobile microRNA165/166 which silences 

PHB to form a gradient of PHB mRNA that controls the specification of xylem and inhibits 

AHP6 expression (Bishopp et al., 2011b; Carlsbecker et al., 2010). Mathematical simulations 

revealed that this gene regulatory network is not sufficient to establish proper expression patterns 

of key marker genes as observed experimentally, and predicted additional negative regulators of 

cytokinin signaling and the mutual degradation of both microRNA165/6 and PHB mRNA 

(Muraro et al., 2014). 
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A genetic network tested in the model simulation of De Rybel et al., 2014 integrated two 

incoherent feed-forward loops and evaluated their impact on the patterning of vascular tissues. 

One of the feed-forward loops implements auxin-cytokinin antagonistic regulations of PIN 

mediated auxin efflux (Bishopp et al., 2011b; Mähönen et al., 2006). A second loop is based on 

the experimental identification of interaction between MONOPTEROS/ARF5 and TARGET OF 

MONOPTEROS5 /LONESOME HIGHWAY (TMO5)/LHW) and LONELY GUY4 (LOG4) 

which mediates auxin-dependent control of the cytokinin biosynthesis (De Rybel et al., 2013).  

The authors show that the individual subnetworks provide specific regulatory inputs, one 

generating a high-auxin domain whereas a second defines sharp boundaries between the high 

auxin domain and the neighboring cytokinin response domain. Integration of both regulatory 

circuits is sufficient to generate distinct hormonal zones and establishment of stable patterns 

within a vascular tissue (De Rybel et al., 2014).   

 

Conclusion 

History of auxin and cytokinin from the initial discoveries by brothers Darwin’s (1880) and 

Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research.  

Novel findings are integrated into existing hypotheses and models and deepen our understanding 

of biological principles. At the same time new questions are triggered and hand to hand with this 

new methodologies are developed to address these new challenges. 
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Figure 1. Biosynthesis of auxin and cytokinins. (A) Auxin (IAA) is synthesized from 

tryptophan (Trp) precursor in two step pathway catalyzed by TAA and YUCCA. (B) Common 

plant cytokinins trans-zeatin (tZ) and isopentenyl-adenine (iP). (C) Core steps of cytokinin 

metabolism. Biosynthesis of tZ cytokinin is initiated by adenosine phosphate-

isopentenyltransferase (IPT) using dimethylallyl diphosphate (DMAPP) and adenosine 5´-

diphosphate (ADP), or adenosine 5´-triphosphate (ATP) to form iP-ribotides which are converted 

to the corresponding tZ-ribotides by cytochrome P450 monooxygenases (CYP735As). tZ-

ribotides can be dephosphorylated to tZ-ribosides or directly converted to active free bases by 

cytokinin nucleoside 5’-monophosphate phosphoribohydrolase (LOG). 
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Figure 2. Model of auxin transport and signaling. (A) Chemiosmotic hypothesis for polar 

auxin transport. In the acidic apoplast auxin is protonated. The protonated auxin either passively 

diffuses through the plasma membrane or is actively transported by AUX1/LAX influx carriers 

into the cell. In the neutral cytosol auxin becomes deprotonated and can leave the cell only by 

auxin efflux carriers such as PIN proteins and PGP transporters. (B) Under low auxin conditions, 

Aux/IAAs form a complex with ARF transcription factors and the TPL corepressor, thus thereby 

inhibiting AuxRE-mediated gene transcription. At higher concentrations, auxin stimulates 

ubiquitin-mediated proteolysis of Aux/IAA catalysed by an SCFTIR1 E3 ubiquitin ligase. 

Degradation of Aux/IAAs relieves the ARF repression and allows transcription. (C) Outside the 

nucleus PIN auxin efflux transporters cycle between endosomes and the plasma membrane. The 

exocytosis requires the activity of GNOM, an ADP-ribosylation factor GTPase guanine 

nucleotide exchange factor (ARF-GEF), whereas endocytosis occurs in a clathrin-dependent 

manner. The PIN phosphorylation status, controlled by PINOID kinase (PID) and protein 

phosphatase 2A (PP2A), determines PINs recruitment to apical or basal targeting pathways. The 

short PIN proteins and PILS located in the ER might regulate of intracellular auxin homeostasis. 
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Figure 3. Model of cytokinin signaling pathway. Cytokinin binds to cytokinin receptor 

(AHKs) and initiates the phosphorelay signal transduction cascade. The phosphate is transferred 

from receptor to histidine phosphotransfer proteins (AHPs) followed by the phosphorylation and 

activation of the type B response regulator (ARR) proteins in the nucleus. A negative feed-back 

loop is provided by type-A ARRs, which inhibits the activity of type-B ARRs.  

 


