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Abstract
We prove the Sobolev-to-Lipschitz property for metric measure spaces satisfying the
quasi curvature-dimension condition recently introduced in Milman (Commun Pure
ApplMath, to appear).We provide several applications to properties of the correspond-
ing heat semigroup. In particular, under the additional assumption of infinitesimal
Hilbertianity, we show the Varadhan short-time asymptotics for the heat semigroup
with respect to the distance, and prove the irreducibility of the heat semigroup. These
results apply in particular to large classes of (ideal) sub-Riemannian manifolds.
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1 Introduction

In [20],Milman introduced the notion of quasi curvature-dimension conditionQCD for
a metric measure space (X ,d,m), simultaneously generalizing Lott–Villani–Sturm’s
curvature-dimension condition CD(K , N ) with finite N [19,28,29], and the measure
contraction property MCP [22,29]. As discussed in [20], the class of QCD spaces
notably includes large families of (ideal) sub-Riemann manifolds, thus aiming to
provide a unified perspective of (non-smooth) Riemannian, Finsler, and sub-Riemann-
ian geometry.

In this note, we collect some metric-measure properties of a metric measure
space (X ,d,m) satisfying the QCD condition. As a main result, Theorem 3.6, we
show the Sobolev-to-Lipschitz property, see (SL) below.

In light of recent developments in metric analysis, the property (SL) has turned out
to be significant in relating differentiable and metric measure structures. For instance,

• under (SL), the Bakry–Émery (synthetic Ricci) curvature (lower) bound BE is
equivalent to the Riemannian curvature-dimension condition RCD, Ambrosio–
Gigli–Savaré [3]. The statement is sharp, in the sense that BE without (SL) does
not imply RCD, Honda [15];
• together with (SL), the BE condition implies the L∞-to-Lipschitz regularization of
the heat semigroup, Ambrosio–Gigli–Savaré [2] (in the sub-Riemannian setting
see Stefani [26]);
• together with a Rademacher-type property for (X ,d,m), see (Rad) below, (SL)
implies the coincidence of the intrinsic distance and the given distance d, and
also implies the integral Varadhan short-time asymptotic for the heat semigroup
in a variety of settings (see [9, Thm. 4.25]), and furthermore, for the space of
configurations (i.e., locally finite integer-valued point measures) over X , see [8,
Thm. 6.10].

Apart from (SL), QCD spaces satisfy the local volume doubling, the Rademacher-
type property (Rad), and the local versions (Rad)loc and (SL)loc of (Rad) and (SL)
after [9], see Sect. 4. When (X ,d,m) is additionally infinitesimally Hilbertian, as an
application of the Sobolev-to-Lipschitz property, we obtain:

• the coincidence of the distance d with the intrinsic distance dCh of the Cheeger
energy Ch of (X ,d,m), Theorem 4.8;
• the integral Varadhan short-time asymptotic for the heat semigroup with respect
to the Hausdorff distance induced by d, Theorem 4.5;
• in the compact case, and assuming as well the measure contraction propertyMCP,
the pointwise Varadhan short-time asymptotic for the heat semigroup with respect
to the Hausdorff distance induced by d, Corollary 4.10;
• the irreducibility of the Dirichlet form Ch, Corollary 4.6.

For these results, we make full use of the fundamental relations between Dirichlet
forms and metric measure spaces developed in [9].

Regarding the irreducibility, we note that the same proof of Corollary 4.6 applies as
well to RCD(K ,∞) spaces with infinite volume measure, which seems not explicitly
proved in the existing literature; see Remark 4.7 for a more detailed discussion.
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Sobolev-to-Lipschitz property onQCD-spaces and applications

Our results on QCD spaces may be specialized to ideal sub-Riemannian manifolds
satisfying the quasi curvature-dimension condition, such as: (ideal generalized H -
type) Carnot groups, Heisenberg groups, corank-1 Carnot groups, the Grushin plane,
and several H -type foliations, Sasakian and 3-Sasakian manifolds.

2 Milman’s quasi curvature-dimension-condition

By a metric measure space (X ,d,m) we shall always mean a complete and separable
metric space (X ,d), endowed with a Borel measure m finite on d-bounded sets and
with full topological support. In order to rule out trivial cases, we assume that m is
atomless, which makes X uncountable. We say that (X ,d) is proper if all closed balls
are compact. We let Cc(X), resp. C0(X), Cb(X), be the space of continuous compactly
supported, resp. continuous vanishing at infinity, continuous bounded, functions on X .

We denote by P(X), resp. Pc(X), Pm(X), the space of all Borel probability
measures on (X ,d), resp. (additionally) compactly supported, (additionally) abso-
lutely continuous w.r.t.m, and by

P2(X) :=
⎧
⎨

⎩
μ ∈P(X) :

∫

X

d(x, x0)
2 dμ <∞

⎫
⎬

⎭

the L2-Wasserstein space over (X ,d), endowed with the L2-Wasserstein distance

W2(μ0, μ1) :=
⎡

⎢
⎣inf

π

∫

X×2

d(x, y)2 dπ(x, y)

⎤

⎥
⎦

1/2

, (2.1)

the infimum running over all couplings π ∈ P(X×2) of (μ0, μ1). We denote
by Opt(μ0, μ1) the set of minimizers in (2.1), always non-empty.

Set I := [0, 1]. We write Geo(X ,d) for the space of all constant-speed geodesics
in (X ,d) parametrized on I , itself a complete separable metric space when endowed
with the supremum distance d∞ induced by d. By Lisini’s superposition principle [18,
Thm. 4] (cf. [1, Thm. 2.10]), every W2-absolutely continuous curve (μt )t∈I may be
lifted to a dynamical plan π ∈P(C(I ; X)) satisfying (evt )�π = μt for every t ∈ I ,
where evt : γ �→ γt is the evaluation map at time t . Furthermore, a curve (μt )t is a
W2-geodesic if and only if π is concentrated on Geo(X ,d) and

W2(μ0, μ1)
2 =

∫

C(I ;X)

∫

I

|γ̇ |2t dt dπ(γ ), (2.2)

in which case we say that π is an optimal dynamical plan connecting μ0 and μ1. We
write OptGeo(μ0, μ1) for the set of all such plans.

Whenever (Y , τ ) is a Polish space, the narrow topology τn on the space P(Y )

of Borel probability measures on Y is defined as the topology induced by duality
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with continuous bounded functions on Y . Since (Y , τ ) is Polish, (P(Y ), τn) is Polish
as well, τn is characterized by the convergence of sequences, and a sequence (μn)n
converges narrowly if and only if

∫

X

f dμn
n→∞−−−−→

∫

X

f dμ, f ∈ Cb(X).

We collect here for further reference the following standard fact.

Proposition 2.1 (Stability of dynamical optimality). For i = 0, 1 let
(
μn
i

)

n ⊂P2(X)

and fix πn ∈ OptGeo(μn
0, μ

n
1). If π

n narrowly converges to π ∈P(C(I ; X)), then π

is concentrated on Geo(X ,d), and π ∈ OptGeo
(
(ev0)�π , (ev1)�π

)
.

Proof Consequence of the stability of W2-optimality [1, Prop. 2.5], the continuity
of (ev0, ev1) : Geo(X ,d)→ X×2, and the Continuous Mapping Theorem. ��
Definition 2.2 (Monge space, [20, Dfn. 3.1]). A metric measure space (X ,d,m) is a
Monge space if for every μ0, μ1 ∈P2(X) with μ0 	 m the following holds:

(a) there exists a unique optimal dynamical plan π ∈ OptGeo(μ0, μ1), hence
Opt(μ0, μ1) consists of the unique optimal plan (ev0, ev1)�π ;

(b) (X ,d,m) has good transport behavior (cf. [16, Dfn. 3.1]), i.e. π is induced by a
map, viz. π = T�μ0 for some T : X → Geo(X ,d);

(c) (X ,d,m)has the strong interpolation property [16, p. 523], i.e. the optimal dynam-
ical plan π in (b) satisfies μt := (evt )�π 	 m for all t ∈ [0, 1).
We write ρt for the Radon–Nikodým density of μt w.r.t.m.

Let us now collect some properties of Monge spaces.

Remark 2.3 Every geodesic Monge space is (2-)essentially non-branching [16,
Dfn. 2.10] by [16, Prop. 3.6].

Corollary 2.4 Let (X ,d,m) be a geodesic Monge space and fix Ki � X, i = 0, 1.
Then, the map

� : (μ0, μ1) �−→ π ∈ OptGeo(μ0, μ1) (2.3)

is a continuous mapPm(K0)×P(K1)→P(Geo(X ,d))whenPm(K0)×P(K1)

is endowed with the product of the narrow topologies, andP(Geo(X ,d)) is endowed
with the narrow topology.

Proof Firstly, note that � is well-defined by Definition 2.2(a). Secondly, recall that
the space of geodesics

Geo(K0, K1) := {γ ∈ Geo(X ,d) : eviγ ∈ Ki }

is a compact subset of Geo(X ,d). As a consequence, P(Geo(K0, K1)) is narrowly
compact metrizable, and it suffices to show the continuity of � along sequences.
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Sobolev-to-Lipschitz property onQCD-spaces and applications

To this end let
(
μn
0

)

n ⊂ Pm(K0), and
(
μn
1

)

n ⊂ P(K1), be narrowly convergent
to μ0 ∈ Pm(K0), resp. μ1 ∈ P(K1). Since

(
�(μn

0, μ
n
1)
)

n ⊂ P(Geo(K0, K1)),
it admits a non-relabeled narrowly convergent subsequence. Let π be its limit, and
note that π ∈ P(Geo(X ,d)) is an optimal dynamical plan by Proposition 2.1. By
continuity of (ev0, ev1) : Geo(X ,d)→ X×2, the narrow convergence of πn to π , and
the Continuous Mapping Theorem, we conclude that π ∈ OptGeo(μ0, μ1). Since the
latter is a singleton by Definition 2.2(a), we have therefore π = �(μ0, μ1). Since
the subsequence was arbitrary, we have concluded that limn �(μn

0, μ
n
1) = limn πn =

π = �(μ0, μ1), which proves the assertion. ��
The following is a consequence of the sole interpolation property [16, Dfn. 4.2].

Corollary 2.5 Let (X ,d,m) be a geodesic Monge space. Then, every ball B ⊂ X is a
continuity set for m, i.e. m ∂B = 0. In particular, the sphere

Sr (x) := {y ∈ X : d(x, y) = r}

ism-negligible for every x ∈ X and every r > 0.

Proof Since (X ,d,m) has the strong interpolation property (Dfn. 2.2(c)), it has in
particular the interpolation property, and is therefore strongly non-degenerate [16,
Dfn. 4.4] by [16, Lem. 4.5]. In particular, it is non-degenerate, i.e., for every Borel A ⊂
X withmA > 0 and every x ∈ X it holds that mAt,x > 0 for every t ∈ (0, 1), where

At,x := {γt : γ ∈ Geo(X ,d),γ0 ∈ A, γ1 = x} .

Now, argue by contradiction that there exist x0 ∈ X and r0 > 0 withmSr0(x0) > 0.
On the one hand, sincem is σ -finite we can find r ∈ (0, r0)withmSr (x0) = 0. On the
other hand, since Sr (x0) =

(
Sr0(x0)

)

t,x0
for t := r/r0 ∈ (0, 1), the non-degeneracy

implies mSr (x0) > 0, a contradiction.
Thus, every sphere Sr (x) ⊂ X is m-negligible. Since (X ,d) is geodesic, Sr (x) =

∂Br (x), and the first assertion follows. ��
The following generalization of Lott–Sturm–Villani curvature-dimension condition

was recently introduced by Milman [20]. For K ∈ R, N ∈ (1,∞) and t ∈ (0, 1),
denote by τ

(t)
K ,N the dynamical distortion coefficient of the model space of constant

sectional curvature K
N−1 and dimension 
N�, e.g. [20, Eq. (2.2)].

Definition 2.6 (Quasi Curvature-Dimension Condition, [20, Dfn.s 2.3,2.8]). For Q ≥
1, K ∈ R, and N ∈ (1,∞), a geodesic Monge space (X ,d,m) satisfies the quasi
curvature-dimension condition QCD(Q, K , N ) if, for every μ0, μ1 ∈Pm

c (X),

ρ
−1/N
t (γt ) ≥ Q−1/N

(
τ

(1−t)
K ,N

(
d(γ0, γ1)

)
ρ
−1/N
0 (γ0)+ τ

(t)
K ,N

(
d(γ0, γ1)

)
ρ
−1/N
1 (γ1)

)

(2.4)

for every t ∈ (0, 1) and π -a.e. γ ∈ Geo(X ,d).
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We further say that (X ,d,m) satisfies the regular quasi curvature-dimension con-
dition QCDreg(Q, K , N ) if it satisfies QCD(Q, K , N ) for some Q, K , N as above
and additionally the measure contraction property MCP(K ′, N ′) for some K ′ ∈ R

and N ′ ∈ (1,∞).

In the following, we omit the indices Q, K , and N whenever not relevant. We refer
to [20] for a thorough discussion of examples of spaces satisfying the QCD condition.
We stress that they include all CD spaces (for the choice Q = 1, see [20]), and various
classes of sub-Riemannian manifolds satisfying MCP (see [20, Prop. 2.4]).

Since the right-hand side of (2.4) depends on Q only by its linear dependence on
the constant Q−1/N , the proof of the following result is readily adapted from the one of
the analogous assertion under the curvature-dimension condition CD in [29, Thm. 2.3].

For fixed x0 ∈ X and for every r > 0, set Br (x0) := {x ∈ X : d(x, x0) ≤ r}, and

v(r) := mBr (x0) and s(r) := lim sup
δ↓0

1

δ
m
(
Br+δ(x0) \ Br (x0)

)
.

As customary, further define the model volume coefficient

sK ,N (r) :=

⎧
⎪⎪⎨

⎪⎪⎩

sin
(√

K
N−1 r

)
if K > 0

r if K = 0

sinh
(√ −K

N−1 r
)

if K < 0

.

Lemma 2.7 (Generalized Bishop–Gromov inequality). Let (X ,d,m) be ametric mea-
sure space satisfyingQCD(Q, K , N ) for some Q ≥ 1, K ∈ R, and N ∈ (1,∞). Then,
for every 0 < r ≤ R (with R ≤ π/

√
K/(N − 1) if K > 0),

s(r)

s(R)
≥ Q−N

(
sK ,N (r)

sK ,N (R)

)N−1
, (2.5)

v(r)

v(R)
≥ Q−N

∫ r
0 sK ,N (t)N−1 dt
∫ R
0 sK ,N (t)N−1 dt

. (2.6)

Remark If Q > 1, then (2.6) is not sufficient to conclude that v(r)/v(R) → 1
as r → R. In particular, this implies that the assertion of Corollary 2.5 does not follow
from (2.6) in the obvious way, which makes the Corollary non-void.

Proof of Lemma 2.7 Let A0, A1 be Borel subsets of X withmA0,mA1 > 0, and set

At := {γt : γ ∈ Geo(X ,d),γi ∈ Ai ,i = 0, 1} .

Following verbatim the proof of [29, Prop. 2.1] yields the following Q-weighted
version of the generalized Brunn–Minkowski inequality:

(mAt )
1/N ≥ Q−1

(
τ

(1−t)
K ,N (�) (mA0)

1/N + τ
(t)
K ,N (�) (mA1)

1/N
)

, (2.7)
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Sobolev-to-Lipschitz property onQCD-spaces and applications

where

� :=
{
infxi∈Ai d(x0, x1) if K ≥ 0

supxi∈Ai
d(x0, x1) if K < 0

.

We apply (2.7) to A0 := Bε(x0) and A1 := BR+δR(x0)\ BR(x0) for some ε, δ > 0,
fixed 0 < r < R, and with t := r/R. It is readily seen that

At ⊂ Br+δr+εr/R(x0) \ Br−εr/R(x0) and R − ε ≤ � ≤ R + δR + ε.

Thus, by (2.7),

m
(
Br+δr+εr/R(x0) \ Br−εr/R(x0)

)1/N

≥ Q−1τ (1−r/R)

K ,N (R ∓ δR ∓ ε)
(
mBε(x0)

)1/N

+ Q−1τ (r/R)

K ,N (R ∓ δR ∓ ε)m
(
BR+δR(x0) \ BR(x0)

)1/N

where ∓ is chosen to coincide with sgn(K ). Letting ε→ 0,

m
(
B(1+δ)r (x0) \ Br (x0)

)1/N ≥ Q−1τ (r/R)

K ,N

(
(1∓ δ)R

)
m
(
BR+δR(x0) \ BR(x0)

)1/N
.

Since m does not charge spheres by Corollary 2.5, we may rewrite the above
inequality as

v
(
(1+ δ)r

)− v(r) ≥ Q−N τ
(r/R)

K ,N

(
(1∓ δ)R

)N (
v
(
(1+ δ)R

)− v(R)
)
,

hence, making explicit the definition of the distortion coefficients,

v
(
(1+ δ)r

)− v(r)

δr
≥ Q−N

v
(
(1+ δ)R

)− v(R)

δR

(
sK ,N

(
(1∓ δ)r

)

sK ,N
(
(1∓ δ)R

)

)N−1
. (2.8)

Letting δ → 0 in (2.8) proves (2.5). The inequality (2.6) now follows from (2.5)
exactly as in the proof of [29, Thm. 2.3]. ��

Recall that a metric measure space (X ,d,m) is locally doubling if for every x ∈ X
there exists an open set U � x and constants C, R > 0 so that

mB2r (y) ≤ CmBr (y), r ∈ (0, R), y ∈ U .

Following [13, Dfn. 3.18], we further say that (X ,d,m) is a.e.-locally doubling if
there exists an m-negliglible set N ⊂ X so that X \ N is locally doubling when
endowed with the restriction of d and m.

As standard corollaries of Lemma 2.7, we further have the following properties:
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Corollary 2.8 Every QCD space is locally doubling.

Corollary 2.9 Every QCD space is proper.

3 The Sobolev-to-Lipschitz property on QCD-spaces

Let (X ,d,m) be a metric measure space. We denote by L( f ) the global Lipschitz
constant of a Lipschitz function f : X → R, and by Lip(d), resp. Lipbs(d), the
space of all Lipschitz functions, resp. (additionally) with bounded support, on (X ,d).
We briefly recall the definition of Cheeger energy of a metric measure space. For a
function f ∈ Lip(d), define the slope of f at x by

|D f | (x) := lim sup
y→x

| f (y)− f (x)|
d(x, y)

,

where, conventionally, |D f | (x) = 0 if x is isolated. The Cheeger energy [2, Eq.
(4.11)] on (X ,d,m) is the functional

Chd,m( f ) := inf

⎧
⎨

⎩
lim inf

n

∫

X

|D fn|2 dm : fn ∈ Lipbs(d),L2(m)- lim
n

fn = f

⎫
⎬

⎭
,

where, conventionally, inf ∅ := +∞. We denote the domain of Chd,m by

W 1,2 = W 1,2(X ,d.m) :=
{
f ∈ L2(X ,m) : Chd,m( f ) <∞

}
.

We recall that a metric measure space (X ,d,m) is called infinitesimally Hilbertian
if Chd,m is quadratic. Introduced by Gigli in [12, Dfn. 4.19], this notion has ever since
proven to be a key tool in the study of non-smooth metric measure spaces.

When (X ,d,m) is infinitesimally Hilbertian, Chd,m is a strongly local Dirichlet
form having square-field operator |D f |2w, where |D f |w is called the weak minimal
upper gradient, satisfying—by construction—the Rademacher-type property:

Lipbs(d) ⊂ W 1,2, |D f |w ≤ L( f ) m-a.e., (Rad)

where Lipbs denotes the space of Lipschitz functions with bounded support.
The following property has been considered in a variety of non-smooth set-

tings, including e.g. configuration spaces [25], or general metric measure spaces [11,
Dfn. 4.9].

Definition 3.1 (Sobolev-to-Lipschitz property). We say that a metric measure space
(X ,d,m) satisfies the Sobolev-to-Lipschitz property if

each f ∈ W 1,2 ∩ L∞(m) with |D f |w ≤ 1

has a Lipschitzm-modification f̂ with L( f̂ ) ≤ 1.
(SL)
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Remark 3.2 The Sobolev-to-Lipschitz property is more commonly phrased without
the requirement that f ∈ L∞(m). In fact, this is equivalent to (SL).

Proof Let f ∈ W 1,2 with |D f |w ≤ 1, and set fr := −r ∨ f ∧ r for each r > 0. By
locality of |D · |w we have that |D fr |w ≤ 1m-a.e. for every r , hence fr has a Lipschitz
m-modification f̂r with L( f̂r ) ≤ 1, by (SL). Since f̂r is continuous and m has full
support, we have that f̂r ≡ f̂s everywhere on

{
x ∈ X : | f̂s(x)| ≤ r

}
for every s ≥ r .

We conclude letting r →∞. ��
Remark 3.3 (On the Rademacher-type and Sobolev-to-Lipschitz properties). As antic-
ipated above, the Rademacher-type property for Chd,m holds by construction on every
metric measure space (even without the assumption of infinitesimal Hilbertianity).
However the Rademacher-type property becomes non-trivial in the general setting
of strongly local Dirichlet forms, i.e. when Chd,m is replaced by any such Dirichlet
form E on L2(m). In this case, the Sobolev-to-Lipschitz property and the Rademacher-
type property may be regarded as converse to each other. For many comments and
examples on both properties in this setting, see e.g. [9, Sects. 3–4].

Concerning our terminology, we ought to stress that the Rademacher-type prop-
erty (Rad)wedefinedhere does not entail any (strong) differentiability nor anyGâteaux
(i.e. directional) differentiability of the function involved. Indeed, even phrasing any
such concept of (Gâteaux) differentiability on general metric measure spaces would be
highly non-trivial. While immediate on metric measure spaces (as discussed above),
the property (Rad) is non-trivial on general Dirichlet spaces when |D · | is replaced by
the square field operator (or even by the energy measure) of a strongly local Dirichlet
form, see e.g. [9,17,27]. In this case, proofs of strong notions of differentiability of
Lipschitz functions are available in specific smooth and non-smooth settings, which
invariably rely on a combination of Gâteaux differentiability along ‘sufficiently many’
directions together with the uniform bound on such derivatives, provided by (Rad);
see e.g. [21] for Euclidean spaces, [6,10] for Wiener and Banach spaces, [25] for
configuration spaces, [7] for Wasserstein spaces, etc.

In order to discuss the Sobolev-to-Lipschitz property on QCD spaces, we recall the
following definition by Gigli and Han [13]. Firstly, recall from [2, Dfn. 5.1] that a
dynamical plan π ∈P(C(I ; X)) is a test plan if

• it is concentrated on the family AC2(I ; X) of 2-absolutely continuous curves;
• it has finite 2-energy, i.e. the right-hand side of (2.2) is finite;
• it has bounded compression, viz. (evt )�π ≤ Cm for some contant C > 0 inde-
pendent of t ∈ I .

Definition 3.4 (Measured-length space, [13, Dfn. 3.16]). A metric measure space
(X ,d,m) is ameasured-length space if there exists anm-co-negligible subset
 ⊂ X
with the following property. For i = 0, 1 and every xi ∈ 
 there exists ε :=
ε(x0, x1) > 0 such that for each εi ∈ (0, ε] there exists a test planπ ε0,ε1 ∈P(C(I , X))

such that:

(a) the map

(0, ε]×2 � (ε0, ε1) �−→ πε0,ε1 (3.1)
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is weakly Borel measurable, viz.

(ε0, ε1) �−→
∫

ϕ dπε0,ε1 is Borel measurable ϕ ∈ Cb(C(I , X));

(b) letting evt : C(I , M) � γ �→ γt ∈ M be the evaluation map on curves, it holds
that

(evi )�π
ε0,ε1 = 1Bεi (xi )

mBεi (xi )
, εi ∈ (0, ε];

(c) we have that

lim sup
ε0,ε1↓0

∫∫

I

|γ̇ |2 dt dπε0,ε1(γ ) ≤ d(x0, x1)
2.

Proposition 3.5 ([13, Prop. 3.19]). Every a.e.-locally doubling measured-length
space satisfies (SL).

Theorem 3.6 Every QCD space is a measured-length space.

Proof Let xi ∈ X , i = 0, 1, and assume x0 �= x1.
Definition of π Set ε := d(x0, x1)/4 > 0 and, for εi < ε, let

μεi := 1Bεi (xi )

mBεi (xi )
·m, (3.2)

and

Gε0,ε1 := {γ ∈ Geo(X ,d), γi ∈ Bεi (xi ), i = 0, 1
}
.

By definition of ε0, ε1, ε, the sets suppμε0 and suppμε1 are well-separated, and
compact since (X ,d) is proper. Therefore, by Definition 2.2(a), there exists an optimal
dynamical plan πε0,ε1 ∈ OptGeo(με0 , με1).
Properties of π Note thatπε0,ε1 is concentrated onGε0,ε1 . By [18, Thm. 5], every opti-
mal dynamical plan is concentrated on AC2(I ; X) and has finite 2-energy. Therefore,
an optimal dynamical plan is a test plan if andonly if it has bounded compression.Let us
show thatπε0,ε1 has bounded compression. For t ∈ I letμε0,ε1

t := (evt )�πε0,ε1 = ρtm
be the W2-geodesic connecting με0 to με1 . By the quasi curvature-dimension condi-
tion, (2.4) holds for some Q ≥ 1, K ∈ R, and N ∈ (1,∞). As a consequence,
for πε0,ε1 -a.e. γ ,

ρt (γt ) ≤ Q
(
τ

(1−t)
K ,N

(
d(γ0, γ1)

)
ρ
−1/N
0 (γ0)+ τ

(t)
K ,N

(
d(γ0, γ1)

)
ρ
−1/N
1 (γ1)

)−N

= Q
(
τ

(1−t)
K ,N

(
d(γ0, γ1)

)
mBε0(x0)

1/N + τ
(t)
K ,N

(
d(γ0, γ1)

)
mBε1(x1)

1/N
)−N
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≤ Q min
{
mBε0(x0),mBε1(x1)

}−1 (
τ

(1−t)
K ,N

(
d(γ0, γ1)

)+ τ
(t)
K ,N

(
d(γ0, γ1)

))−N

which is finite uniformly in t ∈ I since τ
(t)
K ,N (θ)+ τ

(1−t)
K ,N (θ) is bounded away from 0

uniformly in t ∈ I locally uniformly in θ ∈ [0,∞). Since ρt is concentrated
on evt (Gε0,ε1), the previous inequality concludes thatπ ε0,ε1 has bounded compression.

In order to show Definition 3.4(c), note that, since πε0,ε1 ∈ OptGeo(με0 , με1),
then, in the constant speed parametrization,

∫∫

I

|γ̇ |2t dt dπε0,ε1(γ ) ≤ (d(x0, x1)+ ε0 + ε1
)2 ε0,ε1↓0−−−−−→ d(x0, x1)

2,

which proves the assertion.
It remains to show the measurability assertion in Definition 3.4(a). To this end, it

suffices to note that, letting Ei : εi �→ μεi ,

� ◦ (E0, E1) : (ε0, ε1) �−→ πε0,ε1

with � as in (2.3). Since (X ,d) is proper by Corollary 2.9, choosing Ki := Bε(xi ) in
Corollary 2.4 shows that the map � is narrowly/narrowly continuous (hence Borel)
on the image of (E0, E1). Thus, it suffices to show that Ei is Borel for i = 0, 1. We
show that Ei , i = 0, 1, is Euclidean/narrowly continuous. Let f ∈ Cb(X) be fixed.
It suffices to show that r �→ Ei (r) f is continuous on [0, ε). The continuity at r = 0
holds since m has no atoms. For r , s > 0, we have that

|Ei (r) f − Ei (s) f | ≤
∣
∣
∣
∣

1

mBr (xi )
− 1

mBs(xi )

∣
∣
∣
∣

∫

Br (xi )

| f | dm

+ 1

mBs(xi )

∫

Br (xi )�Bs (xi )
| f | dm.

The second term vanishes as r → s by continuity of the measure m. As for the first
term, it suffices to show that r �→ mBr (xi ) is continuous for r ∈ [0, ε). This follows
from the Portmanteau Theorem, since all balls in X are continuity sets for m by the
first assertion in Corollary 2.5.

If x0 = x1, then the requirements in Definition 3.4(b)–(c) hold trivially, and Defi-
nition 3.4(a) holds as in the case x0 �= x1 discussed above. ��

Combining Corollary 2.8 with Proposition 3.5 and Theorem 3.6, we conclude the
Sobolev-to-Lipschitz property for QCD spaces.

Corollary 3.7 Every QCD space satisfies (SL).

Remark 3.8 It would not be difficult to show that the original proof of (SL)
for CD(K , N ) spaces [11, p. 48] can be adapted as well to the case of QCD(Q, K , N )
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spaces. The proof in [11] relies on an argument in [23] providing suitable test plans
connecting the approximating measures μεi in (3.2).

The proof we presented above makes instead use of the more refined notion of
measured-length space in [13]. Whereas slightly more involved, this proof makes
more explicit the relation between the inequality (2.4) defining the QCD, and the
upper bound on the compression for the aforementioned test plans.

4 Properties of RQCD spaces

In this section, we prove several applications of (SL) under the additional assumption
that the Cheeger energy is quadratic.

Definition 4.1 (cf. [20, Sect. 7.2]). Let (X ,d,m) be a metric measure space, Q ≥
1, K ∈ R, and N ∈ (1,∞). We say it satisfies the Riemannian quasi curvature-
dimension condition RQCD(Q, K , N ) if it satisfies QCD(Q, K , N ) and it is addition-
ally infinitesimally Hilbertian, i.e. Chd,m is a quadratic functional.

In the following, we omit the indices Q, K , and N whenever not relevant. Note
that, when (X ,d,m) is an RQCD space, the quadratic form induced by the Cheeger
energy of (X ,d,m) by polarization is a Dirichlet form, again denoted by Chd,m and
still called the Cheger energy of (X ,d,m).

Recall that a Dirichlet form (E,F) on a locally compact Polish space (X ,d,m)

is called regular if F ∩ C0(X) is both
(E( · )+ ‖ · ‖2L2

)1/2-dense in F and uniformly
dense in C0(X).

Proposition 4.2 Let (X ,d,m) be an RQCD space. Then (Chd,m,W 1,2) is a regular
strongly local Dirichlet form.

Proof The regularity follows directly from the uniform density of Lipbs(d) in C0(X)

and from the norm density of Lipbs in W 1,2. The strong locality is then a standard
consequence of the locality of the weak upper gradient |D · |w. ��
Example 4.3 (sub-Riemannian manifolds). Let (M,H) be a sub-Riemannianmanifold
with smooth non-holonomic distributionH on T M .

On the one hand, by the Chow–Rashevskii Theorem, endowing M with its Carnot–
Carathéodory distance dcc and with a smooth measurem turns it into a proper metric
measure space, thus admitting a Cheeger energy Chdcc,m. On the other hand, the sub-
Laplacian L induced by the distribution H generates a regular Dirichlet form (E,F)

on L2(m)with core C∞c (X), defined by E( f , g) = 〈 f | −Lg〉L2(m), see e.g. [5, p. 191].
In fact, for a sub-Riemannian manifold (M,dcc,m) as above, the Dirichlet form

(E,F) coincides with the Cheeger energy (Chdcc,m,W 1,2) of (M,dcc,m), viz.

(E,F) = (Chdcc,m,W 1,2), (4.1)

as we show below.
As a consequence, every sub-Riemannianmanifold (M,dcc,m) satisfying theQCD

condition satisfies as well the RQCD condition with same parameters. See [20] for rele-
vant families of examples of sub-Riemannian manifolds satisfying theQCD condition.
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Proof of (4.1) On the one hand, by [2, Thm. 6.2], the square field |D f |w of f ∈ W 1,2

coincides with the minimal 2-weak upper gradient of f . On the other hand, by [14,
Thm. 11.7], the square field �( f ) of f ∈ F ∩ C(X) coincides as well with the
minimal 2-weak upper gradient of f . As a consequence, E( f ) = Chdcc,m( f ) for
every f ∈ W 1,2 ∩ C(X) as well, and the conclusion follows since W 1,2 ∩ C0(X) is a
core for (Chdcc,m,W 1,2) by regularity of the latter (Prop. 4.2) and since F ∩ C0(X) is
a core for (E,F) by definition. ��

For a regular Dirichlet form (E,F) on L2(m), the local domainFloc of E is defined
as the space of all functions f ∈ L0(m) so that, for each relatively compact open G ⊂
X there exists fG ∈ F with f ≡ fG m-a.e. on G. When (E,F) admits square
field F � ( f , g) �→ �( f , g) ∈ L1(m), the quadratic form f �→ �( f ) := �( f , f )
naturally extends to the local domain Floc, e.g. [27, Sect. 4.1.i].

Let us define the following local versions of the Rademacher-type and Sobolev-to-
Lipschitz properties:

Lipb(d) ⊂ W 1,2
loc , |D f |w ≤ L( f ) m-a.e. (Rad)loc

each f ∈ W 1,2
loc ∩ L∞(m) with |D f |w ≤ 1m-a.e.

has a Lipschitz m-modification f̂ with L( f̂ ) ≤ 1.
(SL)loc

Again by construction, (Rad)loc holds on every metric measure space.

Proposition 4.4 Every RQCD space satisfies (SL)loc.

Proof Since we already have (Rad), by construction of Chd,m, and (SL), by Corol-
lary 3.7, in order to localize both properties it suffices to show the existence of good
Sobolev cut-off functions, similarly to the proof of Theorem 3.9 in [3].

For every n ∈ N and fixed x0 ∈ X set θn : x �→ n∧(2n − d(x, x0)
)

+. Since supp θn

is bounded for every n ∈ N, we conclude by (Rad) that θn ∈ W 1,2 ∩ C0(X)

and |Dθn|w ≤ 1m-a.e. for every n ∈ N.
Fix now f ∈ W 1,2

loc ∩ L∞(m) with |D f |w ≤ 1m-a.e. Without loss of generality, up
to an additive constant, we may assume that f ≥ 0. By the local property of |D · |w,
we have that

|D(θn ∧ f )|w =1{θn≤ f } |Dθn|w + 1{θn> f } |D f |w ≤ 1 m-a.e.

by assumption on f and properties of θn , whence θn ∧ fn ∈ W 1,2. From (SL)
we conclude that θn ∧ f has a non-relabeled d-Lipschitz m-representative. Analo-
gously, θn+1∧ f ∈ W 1,2 and, for all n ≥ ‖ f ‖L∞ , we have that θn+1∧ f ≡ θn∧ f ≡ f
m-a.e. on Bn(x0). Since m has full topological support, we conclude that the
respective d-Lipschitz m-representatives coincide everywhere on Bn(x0). As a con-
sequence, (θn ∧ f )n is a consistent family of d-Lipschitz functions coinciding with f
m-a.e. on Bn(x0) for all (sufficiently large) n ∈ N. The conclusion readily follows
letting n→∞. ��
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Denote by Pt : L2(m) → L2(m) the strongly continuous contraction semigroup
associated to (Chd,m,W 1,2), and, for open sets A, B ⊂ X , set

Pt (A, B) :=
∫

A

Pt 1B dm =
∫

B

Pt 1A dm.

For sets A1, A2 ⊂ X define

d(A1, A2) := inf
xi∈Ai

d(x1, x2).

We now give the first application of (SL).

Theorem 4.5 (Integral Varadhan short-time asymptotics). Every RQCD space satisfies
the integral Varadhan-type short-time asymptotic

lim
t↓0
(−2t log Pt (U1,U2)

) = d(U1,U2)
2, U1,U2 open.

Proof Let G• := (Gn)n be an increasing exhaustion of X consisting of relatively
compact open sets. Choosing such G• in [9, Prop. 2.26] shows that the broad local
space L

m
loc,b of bounded functions with bounded Chd,m-energy defined in [9, Sect.

2.6.1] coincideswith the local space of bounded functionswith boundedChd,m-energy
defined above, viz.

L
m
loc,b =

{
f ∈ W 1,2

loc ∩ L∞(m) : |D f |2w ≤ 1
}

. (4.2)

Equation (4.2) shows that—for the form (Chd,m,W 1,2)—the local Rademacher-
type and Sobolev-to-Lipschitz properties defined above respectively coincide with [9,
(Radd,μ) with μ := m in Dfn. 3.1] and [9, (SLμ,d) with μ := m in Dfn. 4.1]. As a
consequence, all the results established in [9] apply as well to present setting.

For a Borel A ⊂ X , let d̄m,A denote the maximal function [9, Prop. 4.14]. By [9,
Lem. 4.16] we have

d( · , A) ≤ d̄m,A m-a.e., A Borel.

By [9, Lem. 4.19, Rmk. 4.19(b)]

d( · ,U ) ≥ d̄m,U m-a.e., U open.

Combining the above inequalities thus yields

d( · ,U ) = d̄m,U m-a.e., U open,

and the conclusion follows as in the proof of [9, Cor. 4.26]. ��
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Denote again by Pt : L∞(m) → L∞(m) the extension of Pt : L2(m) → L2(m)

to L∞(m). Anm-measurable set A ⊂ X is called invariant if 1A Pt f ≡ Pt (1A f ) for
every f ∈ L∞(m). We say that the space (X ,d,m) is irreducible if every invariant
set is either m-negligible or m-conegligible.

As a corollary of Theorem 4.5, we obtain the irreducibility of (X ,d,m).

Corollary 4.6 (Irreducibility). Every RQCD space is irreducible.

Proof By [9, Thm. 4.21] for every Borel A ⊂ X with mA > 0 there exists a Borel
m-version Ã of A so that the maximal function d̄m,A defined in [9, Prop. 4.14] sat-
isfies d̄m,A = d( · , Ã) m-a.e. As a consequence, for every pair of Borel sets A1, A2
withmA1,mA2 > 0, we have that

d̄m(A1, A2) := m- essinf
y∈A2

d̄m,A1(y) ≤ d( Ã1, Ã2) <∞.

By [4, Prop. 5.1],

d̄m(A1, A2) <∞ ⇐⇒ Pt (A1, A2) > 0 for every t > 0,

whence

Pt (A1, A2) :=
∫

A1

Pt 1A2 dm > 0 (4.3)

for every pair of Borel sets A1, A2 withmA1,mA2 > 0. Now, argue by contradiction
that (X ,d,m) is not irreducible. Then, there exists a Borel set A withmA,mAc > 0
and so that Pt 1A = 1A Pt . Since (4.3) does not hold for the pair Ac, A, we obtain a
contradiction, and (X ,d,m) is therefore irreducible. ��
Remark 4.7 (About irreducibility on RCD(K ,∞) spaces) We stress that, in fact, the
same proof of irreducibility presented above for RQCD spaces holds as well on
all RCD(K ,∞) spaces, which seems not explicitly stated in the existing literature.
The result holds even in the case when mX = ∞, since we only rely on the local
Rademacher-type and Sobolev-to-Lipschitz properties (Rad)loc and (SL)loc, which can
be proved by the same localization argument as in Proposition 4.4. Note that these
arguments hold even if the space (X ,d,m) is not locally compact, in which case the
local domain W 1,2

loc may be replaced with the broad local domain, see, e.g., [9, Sect.
2.4]. Importantly, this proof does not rely on any heat-kernel estimate.

As the second application, we prove that d coincides with the intrinsic distance—in
the sense of e.g. [27, Eq. (1.3)]—associated with the Cheeger energy, viz.

dChd,m(x, y) := sup
{
f (x)− f (y) : f ∈ W 1,2

loc ∩ C(X), |D f |2w ≤ 1 m-a.e.
}

.
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Theorem 4.8 Let (X ,d,m) be an RQCD space. Then, (Chd,m,W 1,2) is a regular
strongly local Dirichlet form on L2(m), and

d(x, y) = dChd,m(x, y) (4.4)

= sup
{
f (x)− f (y) : f ∈ W 1,2 ∩ Cc(X), |D f |2w ≤ 1 m-a.e.

}
. (4.5)

Proof On the one hand, by (Rad)loc and by a straightforward adaptation of [9, Lemma
3.6], we have that d ≤ dChm,d . On the other hand, by (SL)loc (Proposition 4.4) and by
a straightforward adaptation of [9, Prop. 4.2], we have that dChm,d ≤ d. Combining
the two inequalities shows the equality in (4.4).

Since Chd,m is regular, and irreducible by Corollary 4.6, (X ,dChm,d) = (X ,d)

satisfies Assumption (A) in [27], and the equality in (4.5) follows by [27, Prop. 1.c,
p. 193]. ��
Remark 4.9 CombiningTheorem4.8with [9, Prop. 2.31] shows that several definitions
for the intrinsic distance dChm,d—and in particular the one of dm in [9, Dfn. 2.28]—
coincide.

In the next corollary, we denote by pt the density w.r.t.m of the heat-kernel measure
of the heat semigroup Pt .

Corollary 4.10 (Pointwise Varadhan short-time asymptotics).Every compact RQCDreg
space satisfies the pointwise Varadhan short-time asymptotics

lim
t↓0
(−2t log pt (x, y)

) = d(x, y)2. (4.6)

Proof As a consequence of the MCP condition implicit in the notation for RQCDreg,
we have the validity of the local weak 2-Poincaré inequality, see [29, Cor. 6.6(ii)], and
of the local doubling property, as noted in Corollary 2.8. Both properties are in fact
global, by compactness of X . By Proposition 4.2 and Theorem 4.8, the Dirichlet
form (Chd,m,W 1,2) is strongly regular, i.e. regular and so that the intrinsic dis-
tance dChd,m induces the original topology. By [24, Thm. 4.1] we conclude (4.6)
with dChd,m in place of d. The conclusion now follows since d = dChd,m by Theo-
rem 4.8. ��

Finally let us briefly discuss the Lipschitz regularization property of the semigroup
(Pt )t≥0. Let c : [0,+∞) → (0,+∞) be a measurable function so that locally uni-
formly bounded away from 0 and infinity. Following [26, Definition 3.4], we say that
an RQCD space satisfies BEw(c,∞) if for all f ∈ W 1,2 and t ≥ 0,

|DPt f |2w ≤ c(t)2 Pt |D f |2w . (BEw)
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Corollary 4.11 (L∞-to-Lipb-Feller). Assume that (X ,d,m) is an RQCD space satis-
fying (BEw). Then, Pt : L∞(X ,m)→ Lipb(X ,d) for any t > 0 and

√
2I−2(t)Ld(Pt f ) ≤ ‖ f ‖L∞ , I−2(t) :=

t∫

0

c−2(s) ds.

Proof By Theorem 3.6, the space satisfies (SL), i.e. [26, (P.5)], and the assertion holds
by [26, Cor. 3.21]. ��
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