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Abstract
We investigate the BCS critical temperature Tc in the high-density limit and derive an
asymptotic formula, which strongly depends on the behavior of the interaction poten-
tialV on theFermi-surface.Our results include a rigorous confirmation for the behavior
of Tc at high densities proposed by Langmann et al. (Phys Rev Lett 122:157001, 2019)
and identify precise conditions under which superconducting domes arise in BCS the-
ory.

Keywords BCS theory · Critical temperature · Superconducting domes

Mathematics Subject Classification 81Q10 · 46N50 · 82D55

1 Introduction

The Bardeen–Cooper–Schrieffer (BCS) gap equation [2]

�(p) = − 1

(2π)3/2

∫
R3

V̂ (p − q)
�(q)

E�,μ(q)
tanh

(
E�,μ(q)

2T

)
dq , (1)

with dispersion relation E�,μ(p) = √
(p2 − μ)2 + |�(p)|2, has played an impor-

tant role in physics since its introduction. The function � is interpreted as the order
parameter describing paired fermions (Cooper pairs) interacting via the local pair
potential 2V , which we assume to be integrable, i.e. V ∈ L1(R3). In this case,
V̂ (p) = (2π)−3/2

∫
R3 V (x)e−ip·xdx denotes its Fourier transform. The positive

parameters T andμ are the temperature and the chemical potential, respectively, where
the latter controls the density of fermions. Whenever the temperature T is below a
certain critical temperature Tc (see Definition 1), the gap equation (1) admits non-
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trivial solutions, above it does not. Physically, this corresponds to the system being in
a superconducting state (T < Tc) or a normal state (T ≥ Tc).

BCS theory has previously been studied in the weak-coupling limit [6,9] and low-
density limit [10,18]. In the weak-coupling limit one considers a potential λV for a
fixed potential V for small coupling constant λ → 0. In this limit, it was shown by
Hainzl and Seiringer [9] that the critical temperature satisfies Tc ∼ A exp(−B/λ) for
explicit constants A, B > 0. In the low-density limit, μ → 0, it is shown, again by
Hainzl and Seiringer [10], that Tc ∼ μA exp(−B/

√
μ) for some (different) explicit

constants A, B > 0 (see Eq. (9)).
In this paper we are interested in the critical temperature for the existence of non-

trivial solutions of the BCS gap equation (1) in the high-density limit, i.e. μ → ∞.
Studying the high-density limit of the critical temperature is especially relevant for
explaining superconducting domes [3,5,14,20,21,24], i.e. a non-monotonic Tc(μ)

exhibiting a maximum value at finiteμ and going to zero for largeμ. In a recent paper
[16], the authors claim the ubiquity of superconducting domes in BCS theory, but only
for pure s-wave superconductivity (i.e. angular momentum � = 0, see Remark 3).
Their result disproves the conventional wisdom, that the presence of a superconduct-
ing dome necessarily indicates some kind of exotic superconductivity, e.g. resulting
from competing orders. BCS theory containing a non-monotonic behavior of Tc(μ) is
in particular relevant for understanding superconducting domes in doped band insu-
lators [24] and magic-angle graphene [3], where no competing orders occur, and thus
a more conventional explanation is desirable.

There is a simple physical picture arising from an interplay of length scales, that
explains the ubiquitous appearance of superconducting domes (see [16]). If the effec-
tive range ξ of the interaction is much smaller than the mean interparticle distance
μ−1/2, i.e. ξ � μ−1/2, the critical temperature Tc increases by increasing μ as pre-
dicted by standard BCS theory [2] and rigorously justified in [10]. At high densities,
i.e. if ξ 	 μ−1/2, the pairing of electrons near the Fermi surface (with approximately
opposite momenta), which is responsible for the superconducting behavior, becomes
weaker with increasing μ due to the decay of the interaction in Fourier space, sup-
pressing Tc towards zero. Therefore, at some intermediate density, where ξ ∼ μ−1/2,
a superconducting dome arises. This simple argument is reflected in our results by the
presence of the operator Vμ, defined in Eq. (2), acting on functions on the (rescaled)
Fermi surface.

Our results in Sect. 2 are threefold: first, we confirm a proposed asymptotic formula
from [16] for the critical temperature at high densities for s-wave superconductivity
(to leading order) by proving a more general result for radially symmetric interaction
potentials V (Theorem 2); second, we provide a counterexample, showing that the
assumptions on V from [16] are not quite sufficient to conclude a non-monotonic
behavior of Tc and need to be slightly strengthened (Proposition 4); third, we use
these strengthened assumptions to improve the asymptotics obtained in Theorem 2 to
second order with the aid of perturbation theory, and obtain an analogous formula to
the ones proven in the weak-coupling and low-density limit (Theorem 7). All proofs
are given in Sect. 3.
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2 Main Results

2.1 Preliminaries

It was proven in [8] (see also [12] for a more recent review) that the critical temper-
ature for the existence of non-trivial solutions of the BCS gap equation (1) can be
characterized as follows.

Definition 1 (Critical Temperature) Let μ > 0, V ∈ L3/2(R3) be real-valued and
KT ,μ denote the multiplication operator in momentum space

KT ,μ(p) = |p2 − μ|
tanh

( |p2−μ|
2T

) .

The critical temperature for the BCS gap equation (1) is given by

Tc = inf
{
T > 0 | KT ,μ(p) + V (x) ≥ 0

}
.

One might think of the operator KT ,μ(p)+V (x) as the Hessian in the BCS functional
of superconductivity at a normal state (see [12]), where the positivity corresponds
to the “stability" of this normal state, which is directly related to the existence of a
non-trivial solution of the BCS gap equation (1). Note that the continuous spectrum of
KT ,μ starts at 2T and thus Tc is well defined by Sobolev’s inequality [19, Thm. 8.3]
since KT ,μ ∼ p2 for large |p|.

Moreover, note that KT ,μ takes itsminimumvalue 2T on the codim−1 submanifold
{ p2 = μ }. Thus, similarly to the weak coupling situation [6] and as pointed out by
Laptev, Safronov and Weidl [17] (see also [11]), the spectrum of KT ,μ + V is mainly
determined by the behavior of V near { p2 = μ }, i.e. the Fermi sphere.More precisely,
as emphasized in the introduction, a crucial role for the investigation of Tc in the high-
density limit is played by the (rescaled) operator Vμ : L2(S2) → L2(S2) where

(Vμu
)
(p) = 1

(2π)3/2

∫
S2

V̂ (
√

μ(p − q))u(q) dω(q) . (2)

Here dω denotes the uniform (Lebesgue) measure on the unit sphere S2. The pointwise
evaluation of V̂ (and thus also on a codim − 1 submanifold) is well defined since V̂
is continuous for V ∈ L1(R3). See Remark 9 for a discussion of the assumption
V ∈ L1(R3) (cf. also [4]). The lowest eigenvalue of Vμ, which we denote by

eμ = inf specVμ

will be of particular importance. Note, that Vμ is a compact operator (so eμ ≤ 0),
which is in fact trace class (see the argument above Eq. (3.2) in [6]) with

tr(Vμ) = 1

2π2

∫
R3

V (x)dx .

123



    3 Page 4 of 27 J. Henheik

The case eμ < 0will be important for ourmain results as it corresponds to an attractive
interaction between (some) electrons on the Fermi sphere. Since Vμ is trace class, a
sufficient condition for eμ < 0 is that the trace of Vμ is negative, i.e.

∫
V < 0.

Moreover, by considering a trial function that is concentrated on two small sets on
the rescaled Fermi sphere S2 separated by a distance |p| < 2, one can easily see that
eμ < 0 if |V̂ (p)| > V̂ (0) for some |p| < 2

√
μ.

In thiswork,we restrict ourselves to the special case of radial potentialsV depending
only on |x |, where the spectrum of Vμ can be determined more explicitly (see, e.g.,
Sect. 2.1 in [6]). Indeed, if V is radially symmetric, the eigenfunctions of Vμ are
spherical harmonics and the corresponding eigenvalues are

1

2π2

∫
R3

V (x)
(
j�(

√
μ|x |))2 dx , (3)

with � ∈ N0 and where j� denotes the �th-order spherical Bessel function. A few
important properties of the spherical Bessel functions used in our proofs are collected
in Proposition 16. By Eq. (3), the lowest eigenvalue eμ is thus given by

eμ = 1

2π2 inf
�∈N0

∫
R3

V (x)
(
j�(

√
μ|x |))2 dx .

If additionally V̂ ≤ 0, theminimal eigenvalue is attained for the constant eigenfunction
(i.e. the spherical harmonic with � = 0) by the Perron–Frobenius Theorem and we
thus have the more concrete expression

eμ = 1

2π2

∫
R3

V (x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx . (4)

We refer to Remark 8 for a discussion of the radiality assumption on V .

2.2 Results

As desribed in the introduction, our results are threefold: First, we show an asymptotic
formula for radial potentials V (Theorem 2), including the rigorous confirmation
of the result from [16] to leading order. Afterwards, we provide a counterexample
showing that the assumptions made in [16] are not quite sufficient to conclude a non-
monotonic behavior of Tc, i.e. a superconducting dome (Proposition 4). Finally, by
slightly strengthening the assumptions on V , we provide an asymptotic formula for
the critical temperature valid to second order (Theorem 7). All proofs are given in
Sect. 3.

Theorem 2 Let V ∈ L1(R3) ∩ L3/2(R3) be real-valued and radially symmetric.
Assume that there exists μ0 > 0 such that for all μ ≥ μ0 we have eμ < 0. Then
Tc(μ) > 0 for all sufficiently large μ and

lim
μ→∞

√
μ eμ log

μ

Tc
= −1 . (5)
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Or in other words, we have the asymptotic behavior

Tc = μ e(1+o(1))/(
√

μeμ) (6)

in the limit of large μ. Note, that the right hand side is the same formula as in the
weak-coupling case [6,9] but we have coupling parameter λ = 1.

Remark 3 (Connection to the result from [16]) Assume that V ∈ L1(R3) ∩ L3/2(R3)

is real-valued, radially symmetric and additionally satisfies V̂ ≤ 0 and V̂ (0) < 0
(the latter implies that eμ < 0 for all μ > 0). Note that these conditions, which are
identical to the ones required in [16], are included in the more general conditions of
Theorem 2. Then we have, using the notation from [16], that

√
μeμ =

√
μ

2π2

∫
R3

V (x)
sin2(

√
μ|x |)

μ|x |2 dx = 1

4π2

f−2V (4μ)

4
√

μ
=: −λ ,

where the first equality follows by Eq. (4) and after inserting the definition of the
function f−2V from [16], the second equality is a simple computation using Fubini.
By means of Theorem 2, we thus confirmed the validity of Eq. (6) in [16] in the
high-density limit to leading order, i.e.

Tc = μ e−(1+o(1))/λ .

In full generality, the asymptotic formula proposed in Eq. (6) in [16] reads

Tc = 2eγ

π
μ exp

(
−1

λ
+

∞∑
n=0

anλ
n

)
,

where γ ≈ 0.577 denotes the Euler–Mascheroni constant and (an)n≥0 is a sequence of
explicit constants determined by an iterative procedure. The quantity λ is understood
as an intrinsic small parameter which encodes either a weak-coupling, low-density, or
high-density limit, or an appropriate combination.

In order to obtain a meaningful asymptotic formula of the critical temperature at high
densities in a rigorous way, the question to be addressed now is the behavior of

√
μeμ

in the limit μ → ∞. In the following Proposition we present a special family of
interaction potentials (Vα) showing that the conditions of Theorem 2 (which include
the more restricted conditions from [16]) not necessarily lead to a non-monotonic
behavior of Tc as claimed in [16], since |√μeμ| 	 log(μ)−1 in the limit of large μ

for this family of potentials.More precisely, the L3/2(R3)-condition, which essentially
concerns the behavior of the interaction potential near the origin, is not quite sufficient
to obtain a dome-shaped behavior of Tc(μ). Since the potentials (Vα) are perfectly
well behaved away from the origin and decay rapidly at infinity, they illustrate the
significance of the behavior of interaction potentials near the origin for the asymptotics
of the critical temperature. It is natural that the critical temperature is sensitive to the
short range behavior of the interaction potential, since the interparticle distance as the
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physically relevant length scale that depends on the particle density tends to zero in
the high-density limit.

Proposition 4 Let α ∈ (1/3, 1/2) and set

Vα(x) = − exp(−|x |)
|x |2 (log2(|x |) + 1

)α .

Then the critical temperature Tc associated with KT ,μ + Vα approaches infinity as
μ → ∞.

Our observations from Proposition 4 lead to the following definition of “admissible
potentials", that are slightly better behaved at the origin and, in particular, allow for an
analysis of eμ (and also all the other eigenvalues ofVμ) by requiring certain definiteness
conditions of V (cf. Lemmas 12 and 13).

Definition 5 (Admissible Potentials) Let V ∈ L1(R3) ∩ L3/2(R3) be a real-valued
radial function and define

s∗± := sup
{
s ≥ 0 : | · |−sV± ∈ L1(R3)

}
s∗ := min(s∗+, s∗−) , (7)

where V± = max{±V , 0} are the positive and negative parts of V . We call V an
admissible potential if the following is satisfied:

(a) There exists a > 0 such that

sup

{
r ≥ 0 : lim

ε→0

1

εr

∫
Bε

V±(x)dx = 0

}
= sup

{
r ≥ 0 : lim

ε→0

1

εr

∫
Bε

V±|∗Ba (x) dx = 0

}
,

where V±|∗Ba denotes the symmetric decreasing rearrangement of V±|Ba , the
restriction of V± to the ball of radius a around 0,

(b) if | · |−2V /∈ L1(R2), we have s∗ = s∗− < s∗+, if | · |−2V ∈ L1(R2), we have∫
R3

V (x)
|x |2 dx < 0,

(c) s∗ > 1, and
(d) if s∗ ≥ 53/27, we have V ∈ L p(R3) for some p > 5/3.

Condition (d) can be dropped, whenever we have control on the ground state space of
Vμ in the following sense: There exists μ0 > 0 and L ⊂ N0 with |L| < ∞, such that
for all μ ≥ μ0, the ground state space of Vμ is contained in the subspace of L2(S2)

spanned by the spherical harmonics with angular momentum � ∈ L.
In a nutshell, an admissible potential is a radial potential V ∈ L1(R3) ∩ L3/2(R3),
which satisfies the following:

(i) There exists some a > 0 such that both, positive and negative part, have their
strongest singularity in Ba at the origin.

(ii) It has a dominating attractive part (for short distances), i.e. s∗− < s∗+ resp.∫
R3

V (x)
|x |2 dx < 0.
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(iii) It is slightly less divergent at the origin than allowed by the L3/2(R3)-assumption,
i.e. s∗ > 1.

The most relevant examples for admissible potentials are the attractive Yukawa and
Gaussian potential, i.e.

VYukawa(x) = − 1

4π |x |e
−|x | and VGauss(x) = −(2π)−3/2e−|x |2/2 .

Remark 6 (On condition (d) for admissible potentials) The additional L p(R3)-
assumption with p > 5/3 for s∗ ≥ 53/27 in condition (d) is due to technical reasons
and will we be explained during the proof of Theorem 7, which is formulated below.
Note that, since s∗ ≥ 53/27 and V ∈ L1(R3), this condition is essentially about
regularity away from 0 and infinity. However, our proof would work without change
if we only had p > f (s∗), where f has some complicated (explicit) expression (see
Lemma 12 and Eq. (26)) and is strictly monotonically increasing between 53/27 and
2, and satisfies f (53/27) = 3/2 and f (s∗) = 5/3 for all s∗ ≥ 2. We do not state
Theorem 7 with this slight generalization for simplicity. Whenever we have some
control on the ground state space of Vμ, the L p(R3)-assumption is not necessary. For
example, in the special case V̂ ≤ 0, one can choose L = {0} by means of Eq. (4) and
completely drop condition (d).

We will show in Lemma 13 that for any admissible potential eμ < 0 for μ large
enough. Moreover, for any radial potential V ∈ L1(R3) ∩ L3/2(R3) with eμ < 0
and s∗ > 1 (in particular any admissible potential), by application of Theorem 2, the
critical temperature decays exponentially fast as μ → ∞ since

|√μeμ| ≤ 1

2π2

∥∥∥∥ V

| · |s
∥∥∥∥
L1

sup
�∈N0

∥∥∥| · |s/2 j�
∥∥∥2
L∞ μ

1−s
2 (8)

for s ∈ (1, s∗) and the term involving j� is finite as long as s ≤ 5/3 by uniform decay
of spherical Bessel functions (see Proposition 16 (iii)). A slightly different bound as
given in Lemma 12 allows to improve this threshold. Note that the class of interaction
potentials from Proposition 4 is not admissible since s∗ = 1 for these potentials.

The existence of a maximal critical temperature at some intermediate density
(superconducting dome), can now be obtained by combining the decay of Tc in the
high-density limit from Eqs. (6) and (8) for admissible potentials in the sense of
Definition 5 to the decay of Tc in the low-density limit, where

Tc = μ

(
8

π
eγ−2 + o(1)

)
eπ/(2

√
μa) (9)

as shown in [10]. This result was obtained for (not necessarily radially symmetric) real
valued interaction potentials V , with V (x)(1 + |x |) ∈ L1(R3) ∩ L3/2(R3), negative
scattering length a, and in the absence of bound states. Thus, we rigorously confirmed
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the ubiquity of superconducting domes in BCS theory for a general class of interaction
potentials, as claimed in [16].

As our next result, we shall derive the second order correction to Eq. (6), i.e. we
shall compute the constant in front of the exponential for admissible potentials. For
this purpose we define the operator W(κ)

μ on u ∈ L2(S2) via its quadratic form

〈
u
∣∣W(κ)

μ

∣∣u〉 = √
μ

∫ ∞

0
d|p|

( |p|2
||p|2 − 1|

[∫
S2
dω(p)

(
|ϕ̂(

√
μp)|2

+ −|ϕ̂(
√

μp/|p|)|2
)] |p|2

|p|2 + κ2

∫
S2
dω(p)|ϕ̂(

√
μp/|p|)|2

)
(10)

for fixed κ ≥ 0 (cf. Eq. (13) in [9] for an analogous definition in the weak coupling
case with κ = 0). Here, we denote ϕ̂(p) = (2π)−3/2

∫
S2

V̂ (p−√
μq)u(q)dω(q), and

(|p|, ω(p)) ∈ (0,∞) × S
2 are spherical coordinates for p ∈ R

3. Since V ∈ L1(R3),
the map |p| �→ ∫

S2
dω(p)|ϕ̂(p)|2 is Lipschitz continuous for any u ∈ L2(S2), such

that the radial integral in Eq. (10) is well defined even in the vicinity of |p| ∼ 1.
For large |p| the integral converges since V ∈ L3/2(R3). Although we formulate our
result in Theorem 7 only for κ = 0, the case of a positive parameter κ > 0 is crucial in
the proof of this statement, as it ensures, e.g., that the first term in the decomposition
of the Birman–Schwinger operator associated with KT ,μ + V is small (cf. Eq. (15)).
Whenever it does not lead to confusion, we refer to some κ-dependent quantity at
κ = 0 by simply dropping the (κ)-superscript.

Now, we define the operator

B(κ)
μ = π

2

(
Vμ − W(κ)

μ

)
, (11)

which measures the strength of the interaction potential near the Fermi surface up to
second order and let b(κ)

μ denote its lowest eigenvalue,

b(κ)
μ = inf specB(κ)

μ . (12)

We introduced the factor π/2 in Eq. (11) since bμ = b(0)
μ has the interpretation of

an effective scattering length, which is best illustrated in the case of small μ (see
Proposition 1 in [9]). Moreover, we will see in the proof of Theorem 7 that if eμ < 0

then also b(κ)
μ < 0 for large enoughμ. With the aid of b(κ)

μ we can now state our second
main result concerning the asymptotic formula for the critical temperature valid up to
second order.

Theorem 7 Let V be an admissible potential. Then the critical temperature Tc is
positive and satisfies

lim
μ→∞

(
log

μ

Tc
+ π

2
√

μbμ

)
= 2 − γ − log(8/π) .
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In other words,

Tc = μ

(
8

π
eγ−2 + o(1)

)
eπ/(2

√
μbμ)

in the limit μ → ∞. Similarly to Theorem 2, this formula is in complete analogy
to the weak-coupling case [9] (replace V → λV and take the limit λ → 0) but we
have coupling parameter λ = 1 here. As discussed in the introduction, this analogy
is not entirely surprising. In physical terms, only those fermions with momenta close
to the Fermi surface {p2 = μ} contribute to the superconductivity. Therefore, due to
the decay of the interaction V̂ in Fourier space, the high-density limit, μ → ∞, is
effectively a weak-coupling limit.

The constant in front of the exponential is in particular relevant for obtaining the
universality of the ratio of the critical temperature and the energygap,which is achieved
in [13], where a similar asymptotic formula for the energy gap is proven.

Remark 8 (Radiality) The assumption of the interaction potential being radially sym-
metric enters the proofs of our main theorems in a crucial way. On the one hand, the
radial symmetry allows an additional averaging over the sphere S2 in position space
in the proof of Theorem 2, which leads to a “decoupling” of the position variables x
and y (cf. Eq. (19)) as the arguments of integral kernels of operators that appear after
employing the Birman–Schwinger principle [6,8,12]. Without this averaging the sup-
posed error terms in Eq. (15) could not be concluded to be small. On the other hand, the
radial symmetry enables us to obtain useful bounds on the quantity eμ (cf. Lemma 11,
Lemma 12, and Lemma 13), which naturally appears in the obtained asymptotics in
Theorem 2 and Theorem 7. Although the assumption of a radial potential is a loss
of generality compared to the weak coupling [6,9] and low density [10] situation, the
case of an isotropic interactions seems physically the most relevant and natural.

Remark 9 (Potentials with slow decay at infinity) The recent work [4] by Cuenin
and Merz indicates how to generalize our results to interaction potentials with slow
decay at infinity, i.e. which fail to satisfy V ∈ L1(R3). The main idea is to employ
the Tomas–Stein Theorem to define the Fourier transform of the potential on the
codim−1 submanifold S2 ⊂ R

3 having non-vanishing curvature. Moreover, by using
the methods from [7], where Gontier, Hainzl, and Lewin originally studied a lower
bound on the Hartree–Fock energy of the electron gas, one can see that

Tc ≤ C1 μ exp
(
−C2 μ1/4

)
(13)

for any real-valued potential V satisfying | · |V ∈ L∞(R3). A detailed proof of this
estimate is given in Sect. 3. Note that for an admissible potential V that satisfies
| · |V ∈ L∞(R3), we have s∗ ≥ 2 and infer by Eq. (8) that the bound provided by Eq.
(13) is not optimal. Although these results indicate that it is mathematically possible
to deal with slow decay at infinity, it seems physically natural to assume fast decay at
infinity, at least in the high-density limit for an effective interaction potential, when
the phenomenon of screening plays an important role.
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3 Proofs

The most important tool for our proofs will be the Birman–Schwinger principle (see
[6,8,12]). According to this principle, Tc is determined by the fact that for T = Tc the
smallest eigenvalue of

BT ,μ = V 1/2 1

KT ,μ

|V |1/2

equals −1. Here, we used the notation V (x)1/2 = sgn(V (x))|V (x)|1/2. The main
simplification is that the study of the spectrum of the unbounded operator KT ,μ + V
reduces to identifying the singular part of the compact Birman–Schwinger operator.
With this in mind, our proofs will build on a convenient decomposition of BT ,μ in a
dominant singular term and other error terms.

Let Fμ : L1(R3) → L2(S2) denote the rescaled Fourier transform restricted to S
2

with

(
Fμψ

)
(p) = 1

(2π)3/2

∫
R3

e−i
√

μp·xψ(x)dx ,

which is well-defined by the Riemann–Lebesgue Lemma. Since V ∈ L1(R3), the
multiplication with |V |1/2 is a bounded operator from L2(R3) to L1(R3), and hence
Fμ|V |1/2 is a bounded operator from L2(R3) to L2(S2). A further important ingredient
in our proofs is to study the asymptotic behavior of

m(κ)
μ (T ) = 1

4π

∫
R3

(
1

KT ,μ(p)
− 1

p2 + κ2μ

)
dp

for fixedκ > 0,whichwasdone in a similarway for the low-density andweak-coupling
limit of the critical temperature and the energy gap (see [9,10,12,18]). Indeed, using
Lemma 1 from [9] one can easily see that

m(κ)
μ (T ) = √

μ

(
log

μ

T
+ γ − 2 + log

8

π
+ κ

π

2
+ o(1)

)
(14)

as long as T /μ → 0. Using the definitions above, we arrive at our convenient decom-
position, which we define as

BT ,μ = V 1/2 1

p2 + κ2μ
|V |1/2 + m(κ)

μ (T ) V 1/2Fμ
†Fμ|V |1/2 + A(κ)

T ,μ (15)

for κ > 0, where A(κ)
T ,μ is implicitly defined. For the first term to be small, we need

that κ > 0. For the second term, note that

V 1/2Fμ
†Fμ|V |1/2
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is isospectral to Vμ = FμVFμ
†. In fact, the spectra agree at first except possibly at 0,

but 0 is in both spectra as the operators are compact on an infinite dimensional space.
This second term will be the dominant term, which is how the quantity eμ appears

in the asymptotic formulas in our main theorems, whereas the first and third term are
negligible error terms in the limitμ → ∞. Showing this, is the objective of the proofs
of Theorems 2 and 7.

A priori, it is not clear, how Tc behaves at high densities. Therefore, before we go
to the proofs of Theorems 2 and 7, let us fix the following

Lemma 10 Tc ≤ O(μ) as μ → ∞.

Proof Since tanh(t) ≤ min(1, t) for t ≥ 0, we have

KT ,μ + V ≥ 1

2

(
|p2 − μ| + 2T

)
+ V

≥ 1

2

(
p2 + μ + 2V

)
+ (T − μ) .

The first term is non-negative for sufficiently large μ by application of Sobolev’s
inequality [19, Thm. 8.3] using V ∈ L3/2(R3). Thus, by Definition 1, we obtain
Tc ≤ μ.

In the proof of Theorem 2 below, we will in fact show that Tc = o(μ), so Eq. (14)
gives the correct asymptotic behavior.

3.1 Proof of Theorem 2

Proof of Theorem 2 Fix κ > 0. As outlined above, the strategy of the proof is to show
that the first and the third term in the decomposition (15) vanish in operator norm in
the high-density limit and thus the asymptotic behavior is entirely determined by the
spectrum of the operator in the second term. We discuss this in detail now.

For the first term, note that the Fourier transform of 1
p2+κ2μ

is given by e−κ
√

μ|x |
|x | ,

up to a constant. Thus the Hilbert–Schmidt norm ‖ · ‖HS, which is always an upper
bound for the operator norm ‖ · ‖op, is given by

∥∥∥∥V 1/2 1

p2 + κ2μ
|V |1/2

∥∥∥∥
2

HS
= C

∫
R3

dx
∫
R3

dy |V (x)|e
−2κ

√
μ|x−y|

|x − y|2 |V (y)| .

This vanishes as μ → ∞ by an application of the dominated convergence theorem
in combination with the Hardy–Littlewood–Sobolev inequality [19, Thm. 4.3]. Here
and in the following, we shall use the notation c and C for generic positive small
resp. large constants, possibly having a different value in each appearance. If we want
to emphasize the dependence on a certain parameter, we add a subscript, e.g. bywriting
cδ or Cp,a .

For the third term, we will heavily use the radiality of V . In fact, since V is radi-
ally symmetric, every eigenfunction of KT ,μ and thus BT will have definite angular
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momentum and we can focus on f , g ∈ L2(R3) of the form f (x) = f (|x |)Ym
� (x̂)

resp. g(x) = g(|x |)Ym′
�′ (x̂), with a slight abuse of notation, where x̂ = x/|x | denotes

the unit vector in direction x . Now we aim to bound 〈 f |A(κ)
T ,μ|g〉, uniformly in (�, �′)

(and (m,m′)). As A(κ)
T ,μ has integral kernel

A(κ)
T ,μ

(x, y) = CV 1/2(x)|V (y)|1/2
∫
R3

(
1

KT ,μ(p)
− 1

p2 + κ2μ

)(
eip·(x−y) − ei

√
μ p̂·(x−y)

)
dp ,

and using the radial symmetry of V we arrive at

〈
f
∣∣A(κ)

T ,μ

∣∣g〉 = C
∫ ∞

0
d|x | |x |2

∫ ∞

0
d|y| |y|2 f̄ (|x |)V 1/2(|x |)|V (|y|)|1/2g(|y|) (16)

×
∫
R3

dp

(
1

KT ,μ(p)
− 1

p2 + κ2μ

)
(17)

×
∫
S2
dω(x)

∫
S2
dω(y)Y

m
� (x̂)Ym′

�′ (ŷ)
(
eip·(x−y) − ei

√
μ p̂·(x−y)

)
.

(18)

Note that the angular integrals of x and y can be performed first only by the
radial symmetry of V . If V were not radially symmetric, we would have had
to compute the angular integral of p first and would have ended up with com-
pletely different integrals to estimate. Now, using the plane wave expansion eip·x =
4π
∑∞

�=0
∑�

m=−� i
� j�(|p||x |)Ym

� ( p̂)Y
m
� (x̂), the last line (18) evaluates to

16π2 (−i)�+�′ (
j�(|p||x |) j�′(|p||y|) − j�(

√
μ|x |) j�′(

√
μ|y|)) Ym

� ( p̂)Ym′
�′ ( p̂) . (19)

In order to get a non-zero angular p-integral from the second line (17), we need to
have � = �′ and m = m′, by orthogonality of spherical harmonics. We can hence
focus on that case and write x , y, and p instead of |x |, |y|, and |p|, respectively, such
that (17) and (18) combine to (a constant times)

∫ ∞
0

dp p2
(

1

KT ,μ(p)
− 1

p2 + κ2μ

) (
j�(px) j�(py) − j�(

√
μx) j�(

√
μy)
)

. (20)

After changing the integration variable p → p/
√

μ and inserting ± j�(p
√

μx)
j�(

√
μy), we use the uniform Lipschitz continuity and the uniform decay of spherical

Bessel functions (Proposition 16 (ii) and Proposition 16 (iii)) to obtain

|(20)| ≤ Cμ1/2
∫ ∞

0
dp p2

∣∣∣∣ 1

KT /μ,1(p)
− 1

p2 + κ2

∣∣∣∣ |p − 1|ε
(

1

pε
+ 1

)

×
(
| j�(p√μx)|1−11ε/5 + | j�(√μx)|1−11ε/5

) (
| j�(p√μy)|1−11ε/5

+| j�(√μy)|1−11ε/5
)

,
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for any ε ∈ (0, 2/11). Using that and by employing Hölder for the integrals over x
and y in Eq. (16), we get

∣∣〈 f ∣∣A(κ)
T ,μ

∣∣g〉∣∣ ≤ C ‖ f ‖L2 ‖g‖L2

∫ ∞
0

dp

∣∣∣∣ 1

KT /μ,1(p)
− 1

p2 + κ2

∣∣∣∣ |p − 1|ε
(

1

pε
+ 1

)
p2

(21)

× μ1/2
∫
R3

dx |V (x)|
(
| j�(p√μ|x |)|2−22ε/5 + | j�(√μ|x |)|2−22ε/5

)
.

(22)

In Lemma 11 below (as ε < 2/11 we have 2 − 22ε/5 > 6/5), we show that the last
line (22) can be estimated by

(22) ≤
(
1

p
+ 1

)
|o(1)| ,

where o(1) is some function of μ that vanishes as μ → ∞. Thus, we arrive at

∣∣〈 f ∣∣A(κ)
T ,μ

∣∣g〉∣∣ ≤ C |o(1)| ‖ f ‖L2 ‖g‖L2
∫ ∞
0

dp

∣∣∣∣∣
1

KT /μ,1(p)
− 1

p2 + κ2

∣∣∣∣∣ |p − 1|ε p1−ε(1 + p1+ε) ,

where the integral is uniformly bounded (since κ > 0) as long as T ≤ Cμ and we
conclude

lim sup
μ→∞

sup
0<T≤Cμ

∥∥∥A(κ)
T ,μ

∥∥∥
op

= 0 ,

since all bounds above are uniform in �. Therefore, as long as Tc = O(μ), the spectrum
of the Birman–Schwinger operator approaches the spectrum of the operator in the
second term in Eq. (15) as μ → ∞.

Summarizing our considerations above, we get that, since by assumption eμ < 0
for μ ≥ μ0, Tc > 0 for all sufficiently large μ. This is because the second term in the
decomposition (15) can be made arbitrarily negative by taking T → 0, whereas the
first and the third term are bounded uniformly in T ≤ Cμ. Thus we get with the aid
of Lemma 10 that

−1 = lim
μ→∞m(κ)

μ (Tc) eμ .

In order to obtain Eq. (5) by means of Eq. (14), it remains to show that Tc = o(μ).
Since it is already shown in Lemma 10 that Tc = O(μ), we assume that Tc = �(μ),
i.e. there exist 0 < c < C such that cμ ≤ Tc ≤ Cμ. This means that m(κ)

μ (Tc) is of
order

√
μ, which leads to a contradiction since

√
μeμ = o(1) by Lemma 11 below.

So, Eq. (14) implies Eq. (5) as desired.

Lemma 11 Let V ∈ L3/2(R3) and α > 6/5. Then

lim sup
μ→∞

√
μ sup

�∈N0

∫
R3

dx |V (x)| ∣∣ j�(√μ|x |)∣∣α = 0 .
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Proof We estimate

√
μ sup

�∈N0

∫
R3

dx |V (x)| ∣∣ j�(√μ|x |)∣∣α ≤ C
√

μ

∫
R3

dx |V (x)| 1(√
μ|x |)5α/6 + 1

,

(23)

where the inequality follows from the uniform decay of spherical Bessel functions
(see Proposition 16 (iii)). By using Hölder, we can further bound

(23) ≤ C‖V − φ‖L3/2

∥∥∥∥ 1

| · |5α/6 + 1

∥∥∥∥
L3

+ C
√

μ

∫
R3

dx |φ(x)| 1(√
μ|x |)5α/6 + 1

for any φ ∈ C∞
0 (R3). Since α > 6/5, the second term vanishes as μ → ∞ by

dominated convergence using φ ∈ C∞
0 (R3), and the first term can be made arbitrarily

small as C∞
0 (R3) is dense in L3/2(R3). Thus, we have proven the claim.

3.2 Proof of Proposition 4

Proof of Proposition 4 We check that Vα satisfies the assumptions of Theorem 2. First,
Vα is radial and clearly satisfies Vα ∈ L1(R3). Vα ∈ L3/2(R3) follows since α > 1/3.
Next, we calculate the derivative of |x ||Vα(x)| w.r.t. |x | as

(
(log(|x |) + α)2

|x |(log2(|x |) + 1)
+ 1 − α2

|x |(log2(|x |) + 1)
+ 1

)
exp(−|x |)

|x |(log2(|x |) + 1)

and conclude that |x |Vα(x) is monotonically increasing in |x |, since α < 1/2. There-
fore, by using the radiality of Vα and the argument from Eq. (4) in [23], we find that
V̂α ≤ 0 and infer

eμ = 1

2π2

∫
R3

Vα(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx < 0

by Eq. (4). Thus, Vα satisfies all conditions of Theorem 2. In order to obtain a lower
bound on Tc(μ) we estimate

|√μeμ| ≥ c
∫ √

μ/2

0

sin(x)2

x2| log(x/√μ)|2α dx ≥ c
1

| log(μ)|2α

for some c > 0 and μ large enough. Using Theorem 2, this yields

Tc � μ exp(− log(μ)2α/c) → ∞

as μ → ∞ since α < 1/2.
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3.3 Proof of Theorem 7

The proof of Theorem7 is based on the following twoLemmas providing the necessary
estimates for a perturbation theoretic argument yielding the next order correction to
the asymptotics obtained in Theorem 2. While Lemma 12 improves the upper bounds
on integrals of the interaction potential against spherical Bessel functions obtained in
Lemma 11 and Eq. (8), in particular for s∗ > 5/3, Lemma 13 provides a lower bound
on eμ for admissible potentials. We postpone the proofs of Lemmas 12 and 13 until
the end of this Section.

Lemma 12 Let V ∈ L1(R3) ∩ L p(R3) for some p ∈ [3/2, 9/4] with dual q = p
p−1 ∈

[9/5, 3]. Assume that s∗ > 1, with s∗ as in Definition 5 and set

β∗
p =

{
s∗
2 for s∗ ∈ (1, 5/3]
min

(
(q+1)s∗−4
3qs∗−7 + 1

2 ,
10q−11
12q−14

)
for s∗ > 5/3 .

(24)

Note that β∗
p depends continuously on s∗ and is (strictly) monotonically increasing

(between 1 and 2), and β∗
p ≤ min(s∗, 2)/2 for any s∗ > 1. Then for any δ > 0 there

exists an ε0 > 0 such that for all ε ∈ [0, ε0] we have

lim sup
μ→∞

μβ∗
p−δ sup

�∈N0

∫
R3

dx |V (x)| | j�(√μ|x |)|2−ε = 0 .

For admissible potentials that satisfy the L p(R3)-assumption in condition (d) from
Definition 5, we will use this Lemma with

β∗ =

⎧⎪⎪⎨
⎪⎪⎩

s∗
2 for s∗ ∈ (1, 5/3]
4s∗−4
9s∗−7 + 1

2 for s∗ ∈ (5/3, 53/27)

min
(

7s∗−8
15s∗−14 + 1

2 ,
7
8

)
+ δp for s∗ ≥ 53/27 ,

for some δp > 0 since p > 5/3. For our perturbation theoretic argument to work in
the general case, where we have no control on the ground state space of Vμ, it turns
out to be necessary that

4β∗ − 3min(s∗, 2)
2

− 1

2
> 0 , (25)

which is why we need the L p(R3)-assumption in Definition 5 for s∗ ≥ 53/27. The
function f (s∗) from Remark 6 can explicitly be determined by requiring that

4β∗
f (s∗) − 3min(s∗, 2)

2
− 1

2
= 0 . (26)
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Lemma 13 Let V be an admissible potential (cf. Definition 5, condition (d) can be
dropped). Then for any δ > 0 there exists cδ > 0 such that

lim inf
μ→∞ |μmin(s∗+δ,2)/2 eμ| ≥ cδ .

In particular, for admissible V , we have eμ < 0 for μ large enough.

The proof of Theorem 7 is divided in two parts. In the first part, Lemma 14, we provide
an asymptotic formula for Tc with parameter κ > 0. In the second part, Lemma 15, we
asymptotically compare 1/(

√
μb(κ)

μ ) with 1/(
√

μbμ). By combining these formulas,
we obtain Theorem 7.

Lemma 14 Let V be an admissible potential and fix κ > 0. Then the critical temper-
ature Tc is positive and satisfies

lim
μ→∞

(
log

μ

Tc
+ π

2
√

μb(κ)
μ

)
= 2 − γ − κ

π

2
− log(8/π) . (27)

Lemma 15 Let V be an admissible potential and κ > 0. Then

lim
μ→∞

(
π

2
√

μbμ

− π

2
√

μb(κ)
μ

)
= κ

π

2
. (28)

Proof of Theorem 7 By combining Lemma 14 with Lemma 15 we obtain

lim
μ→∞

(
log

μ

Tc
+ π

2
√

μbμ

)
= lim

μ→∞

(
log

μ

Tc
+ π

2
√

μb(κ)
μ

)

+ lim
μ→∞

(
π

2
√

μbμ

− π

2
√

μb(κ)
μ

)

= 2 − γ − κ
π

2
− log(8/π) + κ

π

2
= 2 − γ − log(8/π) .

The rest of this Section is devoted to the proofs of the four Lemmas above. We begin
with Lemmas 14 and 15.

Proof of Lemma 14 Fix κ > 0. We first assume condition (d) from Definition 5 and
discuss the changes for the special case afterwards. Similarly to the proof ofTheorem2,
we show that the first and the third term in the decomposition (15) vanish in operator
norm.

For the first term, we need to improve the estimate from Theorem 2, where we
employed the easily accessible Hilbert–Schmidt norm as an upper bound to the oper-
ator norm. Indeed, using the radial symmetry of V , similarly to the bound of A(κ)

T ,μ in

Eq. (22), the operator norm of the compact operator L(κ)
μ := V 1/2(p2+κ2μ)−1|V |1/2
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can be estimated as

∥∥∥L(κ)
μ

∥∥∥
op

≤ C μ1/2
∫ ∞

0
dp

p2

p2 + κ2 sup
�∈N0

∫
R3

dx |V (x)| | j�(√μp|x |)|2 , (29)

which is bounded by μ−β∗+1/2+δ for any δ > 0 by means of Lemma 12 (note that the
p-integral is finite since s∗ > 1). Recall from the prove of Theorem 2 (in particular
Eq. 22) that

∥∥∥A(κ)
T ,μ

∥∥∥
op

≤C
∫ ∞
0

dp

∣∣∣∣ 1

KT /μ,1(p)
− 1

p2 + κ2

∣∣∣∣ |p − 1|ε
(

1

pε
+ 1

)
p2

× μ1/2 sup
�∈N0

∫
R3

dx |V (x)|
(
| j�(p√μ|x |)|2−22ε/5 + | j�(√μ|x |)|2−22ε/5

)
.

(30)

for any ε ∈ (0, 5/11). Again by Lemma 12 we may bound the x-integral by
μ−β∗+δ(1+ p−β∗+δ) for any δ > 0 and the p-integral is finite as long as 0 < T ≤ Cμ.
We now define, analogously to Eq. (28) in [9],

V 1/2M (κ)
T ,μ|V |1/2 := V 1/2K−1

T ,μ|V |1/2 − m(κ)
μ (T )V 1/2F†

μFμ|V |1/2 = L(κ)
μ + A(κ)

T ,μ

and combine the bounds (29) and (30) from above to obtain

lim sup
μ→∞

μβ∗−1/2−δ sup
0<T≤Cμ

∥∥∥V 1/2M (κ)
T ,μ|V |1/2

∥∥∥
op

= 0 (31)

for any δ > 0. Also, since V 1/2F†
μFμ|V |1/2 is isospectral to Vμ, so its eigenvalues are

given by Eq. (3), one can easily see, using Lemma 12 again, that

lim sup
μ→∞

μβ∗−δ
∥∥∥V 1/2F†

μFμ|V |1/2
∥∥∥
op

= 0 (32)

for any δ > 0. In particular, since s∗ > 1, the bound (31) implies that 1 +
V 1/2M (κ)

T ,μ|V |1/2 is invertible for any 0 < T ≤ Cμ and μ large enough.
We can thus, following the argument around Eq. (30) in [9], conclude that the

Birman–Schwinger operator BT ,μ having an eigenvalue −1 is equivalent to the self-
adjoint operator

Fμ|V |1/2 m(κ)
μ (T )

1 + V 1/2M (κ)
T ,μ|V |1/2

V 1/2F†
μ . (33)

acting on L2(S2) having an eigenvalue −1. At T = Tc, −1 is the smallest eigenvalue
of BT ,μ, hence (33) has an eigenvalue −1 for this value of T . By continuity and

monotonicity of m(κ)
μ (T ) one can in fact show that −1 is the smallest eigenvalue of

(33) in this case (cf. the discussion below Eq. (31) in [9]).
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Since FμVF†
μ = Vμ (see Eq. (2)) and eμ = inf specVμ < 0 by Lemma 13, it

immediately follows that

−1 = lim
μ→∞ inf specVμ m(κ)

μ (Tc) = lim
μ→∞ eμm

(κ)
μ (Tc) ,

which, in combination with the asymptotics (14) and the argument for Tc = o(μ)

from the proof of Theorem 2, reproves (5) resp. (6), i.e. the asymptotic formula for Tc
to leading order. To obtain the next order, we employ first order perturbation theory
as in the proof of Theorem 1 in [9] (in particular, see Eq. (32)).

Indeed, using Eqs. (31) and (32), we can expand the geometric series in Eq. (33)
to first order and employ first order perturbation theory to arrive at

1√
μ
m(κ)

μ (Tc) = −1
√

μeμ − √
μ
〈
u
∣∣FμV M (κ)

Tc,μ
VF†

μ

∣∣u〉+ O(μ−4β∗+min(s∗,2)/2+3/2+δ)
,

(34)

for any δ > 0. Here, u is the normalized eigenfunction corresponding to the lowest
negative eigenvalue eμ of the compact operator Vμ = FμVF†

μ (see Lemma 13). In
case of (finite!) degeneracy, one has to choose the ground state u of Vμ that minimizes
the second term in the denominator of (34). The error term in Eq. (34) is twofold. The
first part comes from expanding the geometric series. The second part comes from
first order perturbation theory, where we made use of the fact that

|√μeμ| ≥ cδ μ−min(s∗+δ,2)/2+1/2 and

sup
0<T≤Cμ

√
μ
∥∥FμV M (κ)

T ,μVF†
μ

∥∥
op ≤ Cδμ

−2β∗+1+δ

(35)

for any δ > 0 by Lemma 13 resp. Eqs. (32) and (31) (recall Tc = o(μ) from above).
The error from the series expansion is of order O(μ−3β∗+3/2+δ) and the error from the
perturbation argument is of order O(μ−4β∗+min(s∗,2)/2+3/2+δ) and hence dominates,
since β∗ ≤ min(s∗, 2)/2.

Equation (34) is an implicit equation for Tc. By the second estimate in Eq. (35) and
since Tc → 0 as μ → ∞, we need to evaluate the limit of 〈u|FμV M (κ)

T ,μVF†
μ|u〉 as

T → 0. By the same arguments as used in Eq. (35) in [9] (dominated convergence
and Lipschitz continuity of the angular integrals), this yields

lim
T→0

〈
u
∣∣FμV M (κ)

T ,μVF†
μ

∣∣u〉 = 〈u∣∣W(κ)
μ

∣∣u〉 ,

uniformly in u ∈ L2(S2) with ‖u‖L2(S2) = 1, whereW(κ)
μ was defined in (10). Using

that Tc is exponentially small (in some positive power ofμ) asμ → ∞ by application
of Theorem 2 in combination with Eq. (8), we obtain

∣∣〈u∣∣FμV M (κ)
Tc,μ

VF†
μ

∣∣u〉− 〈u∣∣W(κ)
μ

∣∣u〉∣∣ ≤ CDμ−D (36)
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for any D > 0, uniformly in u ∈ L2(S2) with ‖u‖L2(S2) = 1. Combining the second
estimate in Eq. (35) with Eq. (36) we thus get

∥∥∥W(κ)
μ

∥∥∥
op

≤ Cδμ
−2β∗+1/2+δ (37)

for any δ > 0. Since |√μeμ| ≥ cδ μ−min(s∗+δ,2)+1/2, we have that whenever eμ < 0

also b(κ)
μ < 0 for large enough μ (recall Eqs. (11) and (12)). In particular, combining

Eqs. (34), (36) and (37), we have shown that

1√
μ
m(κ)

μ (Tc) + π

2
√

μb(κ)
μ

= O(μ−4β∗+3min(s∗,2)/2+1/2+δ) ,

for any δ > 0. Since 4β∗ − 3min(s∗, 2)/2− 1/2 > 0 (see Eq. (25)), we conclude Eq.
(27) by employing the asymptotics (14).

In case that there exists μ0 > 0 and L ⊂ N0 with |L| < ∞, such that for all
μ ≥ μ0, the ground state space of Vμ is contained in the finite-dimensional subspace

IL := span
{
Ym

� : � ∈ L, |m| ≤ �
}

of L2(S2), spanned by the spherical harmonics with angular momentum � ∈ L, we
can drop condition (d) from Definition 5. In order to see this, take Ym

� with � ∈ L and
|m| ≤ � and estimate

∥∥∥|V |1/2F†
μY

m
�

∥∥∥2
L2

= C
∫
R3

|V (x)|
∣∣∣∣
∫
S2
ei

√
μp·xYm

� (p)dω(p)

∣∣∣∣
2

dx

= C
∫
R3

|V (x)|( j�(√μ|x |))2dx ≤ C�,δ μ−min(s∗,2)+δ ,

for any δ > 0. The second equality follows by the radiality of V and the final estimate
by the decay of spherical Bessel functions (see the first bound in Proposition 16 (iii)).
Using Eq. (31) with β∗

3/2 instead of β∗ by means of Lemma 12, this implies that

sup
u∈IL , ‖u‖L2=1

∣∣√μ
〈
u
∣∣FμV M (κ)

T ,μVF†
μ

∣∣u〉∣∣ ≤ CL,δ μ
−β∗

3/2−min(s∗,2)/2+1+δ (38)

for any δ > 0 (and μ large enough). Therefore, since β∗
3/2 ≤ min(s∗, 2)/2, the error

from the geometric expansion dominates the error from the perturbation theory in Eq.
(34) and we get

1√
μ
m(κ)

μ (Tc) = −1
√

μeμ − √
μ
〈
u
∣∣FμV M (κ)

Tc,μ
VF†

μ

∣∣u〉+ O(μ
−3β∗

3/2+3/2+δ
)
, (39)
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for any δ > 0, instead. Moreover, using Eqs. (38) and (36), we get

∥∥∥W(κ)
μ

∣∣IL
∥∥∥
op

≤ CL,δμ
−β∗

3/2−min(s∗,2)/2+1/2+δ (40)

for any δ > 0. By combining Eqs. (39), (36) and (40) with |√μeμ| ≥
cδ μ−min(s∗+δ,2)+1/2, we find

1√
μ
m(κ)

μ (Tc) + π

2
√

μb(κ)
μ

= O(μ
−3β∗

3/2+min(s∗,2)+1/2+δ
)

for any δ > 0, and the proof comes to an end in the same way as above by realizing
that 3β∗

3/2 − min(s∗, 2) − 1/2 > 0.

Proof of Lemma 15 The proof follows a similar perturbation theoretic argument as in
the proof of Lemma 14.We first assume condition (d) fromDefinition 5 and discuss the
changes for the special case afterwards. To begin with, we derive a bound on ‖Wμ‖op.
For this purpose, we take a normalized u ∈ L2(S2) and estimate

∣∣〈u∣∣Wμ

∣∣u〉∣∣ ≤ ∣∣〈u∣∣Wμ

∣∣u〉− 〈u∣∣W(κ)
μ

∣∣u〉∣∣
+ ∣∣〈u∣∣FμV M (κ)

Tc,μ
VF†

μ

∣∣u〉− 〈u∣∣W(κ)
μ

∣∣u〉∣∣+ ∣∣〈u∣∣FμV M (κ)
Tc,μ

VF†
μ

∣∣u〉∣∣ .

The second term is smaller than any inverse power of μ by Eq. (36). Using Eqs. (31)
and (32), the third term is bounded by μ−2β∗+1/2+δ for any δ > 0, uniformly in
u ∈ L2(S2). Since

〈
u
∣∣Wμ

∣∣u〉− 〈u∣∣W(κ)
μ

∣∣u〉 = √
μ

∫ ∞
0

d|p|
(
1 − |p|2

|p|2 + κ2

)∥∥Vμu
∥∥2
L2 = κ

π

2
√

μ
∥∥Vμu

∥∥2
L2 ,

(41)

we infer by means of Eq. (31) that also the first term is bounded by μ−2β∗+1/2+δ ,
uniformly in u ∈ L2(S2), and we thus have

∥∥Wμ

∥∥
op ≤ Cδμ

−2β∗+1/2+δ (42)

for any δ > 0. In particular, since |√μeμ| ≥ cδ μ−min(s∗+δ,2)+1/2 for any δ >

0, this shows that, whenever eμ < 0 also bμ < 0 for large enough μ. Moreover,
using |√μeμ| ≥ cδ μ−min(s∗+δ,2)+1/2 together with Eqs. (37) and (42), first order
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perturbation theory implies

π

2
√

μbμ

− π

2
√

μb(κ)
μ

= π

2

b(κ)
μ − bμ√
μ b(κ)

μ bμ

=
(
eμ − 〈u∣∣W(κ)

μ

∣∣u〉)− (eμ − 〈u′∣∣Wμ

∣∣u′〉)+ O(μ−4β∗+min(s∗,2)/2+3/2+δ)√
μe2μ + O(μ−2β∗+1+δ)

= κ
π

2
+ O(μ−4β∗+3min(s∗,2)/2+1/2+δ) . (43)

As in the proof of Lemma14, u resp. u′ is a (the) normalized eigenfunction correspond-
ing to the lowest eigenvalue eμ of Vμ. In case of (finite!) degeneracy, one has to choose
the ground state u resp. u′ of Vμ that minimizes the second term in each bracket (· · · )
in Eq. (43). A priori, u and u′ could be different. But, by application of Eq. (41) we get
thatWμ andW(κ)

μ differ only by the constant (κπ
√

μe2μ)/2 on the ground state space
of Vμ. Therefore, u = u′ and the last equality in Eq. (43) follows by Eq. (41) in com-
bination with |√μeμ| ≥ cδ μ−min(s∗+δ,2)+1/2. Since 4β∗ −3min(s∗, 2)/2−1/2 > 0
(see Eqs. (25)), (43) implies Eq. (28).

In case that there exists μ0 > 0 and L ⊂ N0 with |L| < ∞, such that for all
μ ≥ μ0, the ground state space of Vμ is contained in the finite-dimensional subspace

IL := span
{
Ym

� : � ∈ L, |m| ≤ �
}

of L2(S2), spanned by the spherical harmonics with angular momentum � ∈ L, we can
drop condition (d) from Definition 5. In order to see this, we use Eq. (3) and estimate

∥∥∥Vμ

∣∣IL
∥∥∥
op

= sup
�∈L

∣∣∣∣ 1

2π2

∫
R3

V (x)
(
j�(

√
μ|x |))2 dx

∣∣∣∣ ≤ CL,δ μ−min(s∗,2)+δ

for any δ > 0 (and μ large enough) by means of Proposition 16 (iii). Combining this
with Eq. (38) and using β∗

3/2 ≤ min(s∗, 2)/2, we get by the same argument as above
that

∥∥∥Wμ

∣∣IL
∥∥∥
op

≤ CL,δμ
−β∗

3/2−min(s∗,2)/2+1/2+δ (44)

for any δ > 0. Using first order perturbation theory, Eqs. (44) and (41) together with
|√μeμ| ≥ cδ μ−min(s∗+δ,2)+1/2 imply

π

2
√

μbμ

− π

2
√

μb(κ)
μ

= κ
π

2
+ O(μ

−3β∗
3/2+min(s∗,2)+1/2+δ

)

for any δ > 0. Since 3β∗
3/2 − min(s∗, 2) − 1/2 > 0 we conclude the desired.

Finally, we give the proofs of Lemmas 12 and 13.
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Proof of Lemma 12 For s∗ ∈ (1, 5/3] the statement easily follows from the uniform
decay of spherical Bessel functions (see Proposition 16 (iii)). For s∗ > 5/3 choose

α = max

(
5q − 7

3qs∗ − 7
,
5q − 7

6q − 7

)
∈ (0, 1) (45)

and for (small) δ > 0 set s := min(s∗, 2) − δ/α. Recall that q = p/(p − 1) denotes
the dual of p ∈ [3/2, 9/4]. We now employ Hölder’s inequality to obtain

sup
�∈N0

∫
R3

dx |V (x)|| j�(√μ|x |)|2−ε

≤C

∥∥∥∥ V

| · |s
∥∥∥∥

α

L1
‖V ‖1−α

L p sup
�∈N0

(∫ ∞

0
dx x

qαs
1−α

+2 | j�(√μx)| q
1−α

(2−ε)

) 1−α
q

≤Cμ− αs+3(1−α)/q
2

∥∥∥∥ V

| · |s
∥∥∥∥

α

L1
‖V ‖1−α

L p sup
�∈N0

(∫ ∞

0
dx x

qαs
1−α

+2 | j�(x)|
q

1−α
(2−ε)

) 1−α
q

.

For ε(δ) > 0 small enough, the integral is finite by the uniform L p-integrability of
spherical Bessel functions (see Proposition 16 (iv)) since α < (5q −7)/(3qs−7) and
thus the claim follows since αs+3(1−α)/q

2 = β∗
p − δ/2 (cf. Eq. (24) for the definition

of β∗
p, and Eq. (45)).

Proof of Lemma 13 To begin with the proof, we have two important observations.
First, recall the definition of s∗± from Eq. (7). We aim to prove that r∗± = s∗±, where

r∗± := sup

{
r ≥ 0 : lim

ε→0

1

εr

∫
Bε

V±(x)dx = 0

}
.

For this purpose, we define

s∗±(a) := sup
{
s ≥ 0 : | · |−sV±|∗Ba ∈ L1(R3)

}

and

r∗±(a) := sup

{
r ≥ 0 : lim

ε→0

1

εr

∫
Bε

V±|∗Ba (x) dx = 0

}

for the same a > 0, for which we assumed that r∗± = r∗±(a) in Definition 5.
Note that r∗± ≥ s∗± by definition.Using that |·|−s is equal to its symmetric decreasing

rearrangement, we can employ the basic rearrangement inequality [19, Thm. 3.4] to
obtain s∗± ≥ s∗±(a). Therefore, since r∗± = r∗±(a) by assumption, we have

r∗±(a) = r∗± ≥ s∗± ≥ s∗±(a) .
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In order to see r∗± = s∗± it is sufficient to prove that s∗±(a) ≥ r∗±(a). Assume the
contrary, i.e. s∗±(a) < r∗±(a), and let r , r + δ ∈ (s∗±(a), r∗±(a)) for some δ > 0. We
denote V ∗±,a ≡ V±|∗Ba for short. By definition of s∗± and r∗±, we thus have

∫
Bε

V ∗±,a(x)

|x |r dx ≥ c and
∫
Bε

V ∗±,a(x)dx = o(εr+δ) . (46)

The first integral actually equals infinity, but we only need that it is uniformly bounded
from below by some c > 0. Since V ∗±,a is symmetric-decreasing and thus one-sided
limits exist, the auxiliary quantity

t∗±(a) := inf

{
t ≥ 0 : lim|x |→0

|x |t V ∗±,a(x) = 0

}

is well defined. By definition of t∗±(a) we thus get

cν

|x |t∗±(a)−ν
≤ V ∗±,a(x) ≤ Cν

|x |t∗±(a)+ν

for any ν > 0 and |x | small enough. Inserting this in Eq. (46) we arrive at

ε3−t∗±(a)−r−ν ≥ cν and ε3−t∗±(a)−r−δ+ν ≤ Cν

which yields a contradiction by choosing ν ∈ (0, δ/2). Therefore, r∗±(a) = s∗±(a),
which proves that r∗± = s∗±.

Second, note that for any f ∈ L1(R3) we have

∫
R3

f (x)(sin(n|x |))2dx = 1

2

∫
R3

f (x)(1 − cos(2n|x |))dx −→ 1

2

∫
R3

f (x)dx

as n → ∞ by the Riemann–Lebesgue Lemma.
In order to prove Lemma 13, we study the asymptotic behavior of the integral

vμ :=
∫
R3

V (x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx

in three different cases.
Case 1. If | · |−2V ∈ L1(R3), we get by our second observation that

vμ = μ−1
(
1

2

∫
R3

V (x)

|x |2 dx + o(1)

)
≤ −cμ−1 ,

which immediately proves the claim.
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Case 2. If | · |−2V /∈ L1(R3) and s∗ < 2 we take some r ∈ (0, 1/2) and estimate

∫
R3

V (x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx

=
∫
Br

V+(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx −
∫
Br

V−(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx

+ O(μ−1) .

The first term can be bounded by μ−s∗+/2+δ for any δ > 0. The second term can be
estimated from below as

∫
Br

V−(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx ≥
∫
B r√

μ

V−(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx

≥ cr

∫
B r√

μ

V−(x)dx ≥ cr ,δμ
−s∗−/2−δ

for any δ > 0. Since s∗ = s∗− < s∗+, we get that vμ ≤ −cδμ
−min(s∗+δ,2)/2 for any

δ > 0.
Case 3. If | · |−2V /∈ L1(R3) and s∗ = 2 we have that | · |−2V+ ∈ L1(R3) but

| · |−2V− /∈ L1(R3) since s∗ = s∗− < s∗+. On the one hand, this implies that

∫
R3

V+(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx ≤ Kμ−1

for some K > 0 by means of our second observation. On the other hand, let r > 0
and estimate

μ

∫
R3

V−(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx ≥ μ

∫
Bc
r

V−(x)

(
sin(

√
μ|x |)√

μ|x |
)2

dx
μ→∞−→ 1

2

∫
Bc
r

V−(x)

|x |2 dx .

By taking r → 0 the right hand side can be made arbitrarily large, in particular greater
than K . This implies that vμ ≤ −Cμ−1 for any C > 0.

3.4 Properties of Spherical Bessel Functions

Proposition 16 (Properties of spherical Bessel functions [1,15,22]) The spherical
Bessel functions ( j�)�∈N0 satisfy the following properties:

(i) uniform boundedness, i.e. sup�∈N0
supx≥0 | j�(x)| ≤ 1,

(ii) uniform Lipschitz continuity, i.e. sup�∈N0
supx≥0 | j ′�(x)| ≤ 1,

(iii) (uniform) decay, i.e. for every � ∈ N0, we have supx≥0 |x j�(x)| ≤ C� for some
C� > 0, and sup�∈N0

supx≥0 |x5/6 j�(x)| ≤ C for some universal C > 0,
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(iv) uniform L p-integrability, i.e. for p ∈ (0,∞) and a ∈ (−1, p − 1) if p ∈ (0, 4] or
a ∈ (−1, 5p/6 − 1/3) if p ∈ (4,∞), we have

sup
�∈N0

∫ ∞

0
| j�(x)|pxadx ≤ Cp,a

for some universal constant Cp,a > 0.

Proof The first statement (i) is an elementary property of the spherical Bessel func-
tions. The second statement (ii) follows from the uniform boundedness in (i) and the
recursion relation [1, Eq. 10.1.20]

j ′� = 1

2� + 1
(� j�−1 − (� + 1) j�+1) .

By noticing that j�(x) = √
π/(2x)J�+1/2(x), the third (iii) and the fourth statement

(iv) are easy consequence of [1, Eq. 9.2.1], [15, Eq. 1], and [22, Eq. 3], respectively,
where analogous estimates for the standard Bessel functions Jν with ν ≥ 0 are proven.

3.5 Proof of Equation (13)

Proof of Equation (13) Wenote that KT ,μ(p)+V (x) ≥ 0 is equivalent to KT /μ,1(p)+
1
μ
V (x/

√
μ) ≥ 0 and estimate

KT /μ,1(p) + 1

μ
V (x/

√
μ) ≥ 1

2

(
|p2 − 1| + 2T

μ

)
− 1

μ
V−(x/

√
μ)

≥ 1

2

(
|p2 − 1| + 2T

μ
− 2

μ
V−(x/

√
μ)
(
e−m|x | + m|x |

))

≥ 1

2

(
|p2 − 1| + 2T

μ
− 2√

μ
‖| · |V ‖L∞

(
e−m|x |

|x | + m

))

for any m > 0. By definition of Tc, we have the bound

Tc ≤ −μ

2
inf spec

(
|p2 − 1| − 2√

μ
‖| · |V ‖L∞

(
e−m|x |

|x | + m

))
.

After taking m = (const.)μ1/4e−√
π/(2‖|·|V ‖L∞ ) μ1/4

and using the estimate above Eq.
(15) in [7], we get

Tc � μ exp

(
−
√

π

2‖| · |V ‖L∞
μ1/4

)
.
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