
Liquid Time-Constant Networks

Ramin Hasani,1,3∗ Mathias Lechner,2∗ Alexander Amini,1 Daniela Rus,1 Radu Grosu3

1 Massachusetts Institute of Technology (MIT)
2 Institute of Science and Technology Austria (IST Austria)

3 Technische Universitaẗ Wien (TU Wien)
rhasani@mit.edu, mathias.lechner@ist.ac.at, amini@mit.edu, rus@csail.mit.edu, radu.grosu@tuwien.ac.at

Abstract

We introduce a new class of time-continuous recurrent neural
network models. Instead of declaring a learning system’s dy-
namics by implicit nonlinearities, we construct networks of
linear first-order dynamical systems modulated via nonlinear
interlinked gates. The resulting models represent dynamical
systems with varying (i.e., liquid) time-constants coupled to
their hidden state, with outputs being computed by numeri-
cal differential equation solvers. These neural networks ex-
hibit stable and bounded behavior, yield superior expressivity
within the family of neural ordinary differential equations,
and give rise to improved performance on time-series predic-
tion tasks. To demonstrate these properties, we first take a
theoretical approach to find bounds over their dynamics, and
compute their expressive power by the trajectory length mea-
sure in a latent trajectory space. We then conduct a series of
time-series prediction experiments to manifest the approxi-
mation capability of Liquid Time-Constant Networks (LTCs)
compared to classical and modern RNNs.

Introduction
Recurrent neural networks with continuous-time hidden
states determined by ordinary differential equations (ODEs),
are effective algorithms for modeling time series data that
are ubiquitously used in medical, industrial and business set-
tings. The state of a neural ODE, x(t) ∈ RD, is defined by
the solution of this equation (Chen et al. 2018): dx(t)/dt =
f(x(t), I(t), t, θ), with a neural network f parametrized by
θ. One can then compute the state using a numerical ODE
solver, and train the network by performing reverse-mode
automatic differentiation (Rumelhart, Hinton, and Williams
1986), either by gradient descent through the solver (Lech-
ner et al. 2019), or by considering the solver as a black-box
(Chen et al. 2018; Dupont, Doucet, and Teh 2019; Gholami,
Keutzer, and Biros 2019) and apply the adjoint method (Pon-
tryagin 2018). The open questions are: how expressive are
neural ODEs in their current formalism, and can we improve
their structure to enable better representation learning?

Rather than defining the derivatives of the hidden-state
directly by a neural network f , one can determine a more
stable continuous-time recurrent neural network (CT-RNN)

∗Authors with equal contributions
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by the following equation (Funahashi and Nakamura 1993):
dx(t)
dt = − x(t)

τ + f(x(t), I(t), t, θ), in which the term − x(t)
τ

assists the autonomous system to reach an equilibrium state
with a time-constant τ . x(t) is the hidden state, I(t) is the
input, t represents time, and f is parametrized by θ.

We propose an alternative formulation: let the hidden state
flow of a network be declared by a system of linear ODEs of
the form: dx(t)/dt = −x(t)/τ + S(t), and let S(t) ∈ RM
represent the following nonlinearity determined by S(t) =
f(x(t), I(t), t, θ)(A−x(t)), with parameters θ andA. Then,
by plugging in S into the hidden states equation, we get:

dx(t)

dt
=−

[1

τ
+ f(x(t), I(t), t, θ)

]
x(t)+

f(x(t), I(t), t, θ)A.
(1)

Eq. 1 manifests a novel time-continuous RNN instance
with several features and benefits:
Liquid Time-Constant. A neural network f not only de-
termines the derivative of the hidden state x(t), but also
serves as an input-dependent varying time-constant (τsys =

τ
1+τf(x(t),I(t),t,θ)) for the learning system (Time constant is
a parameter characterizing the speed and the coupling sensi-
tivity of an ODE).This property enables single elements of
the hidden state to identify specialized dynamical systems
for input features arriving at each time-point. We refer to
these models as liquid time-constant networks (LTCs). LTCs
can be implemented by an arbitrary choice of ODE solvers.
In Section 2, we introduce a practical fixed-step ODE solver
that simultaneously enjoys the stability of the implicit Euler
and the efficiency of the explicit Euler methods.
Reverse-Mode Automatic Differentiation of LTCs. LTCs
realize differentiable computational graphs. Similar to neu-
ral ODEs, they can be trained by variform of gradient-based
optimization algorithms. We settle to trade memory for nu-
merical precision during a backward-pass by using a vanilla
backpropagation through-time algorithm to optimize LTCs
instead of an adjoint-based optimization method (Pontrya-
gin 2018). In Section 3, we motivate this choice thoroughly.
Bounded Dynamics - Stability. In Section 4, we show that
the state and the time-constant of LTCs are bounded to a fi-
nite range. This property assures the stability of the output
dynamics and is desirable when inputs to the system relent-
lessly increase.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

7657

Superior Expressivity. In Section 5, we theoretically and
quantitatively analyze the approximation capability of LTCs.
We take a functional analysis approach to show the univer-
sality of LTCs. We then delve deeper into measuring their
expressivity compared to other time-continuous models. We
perform this by measuring the trajectory length of activa-
tions of networks in a latent trajectory representation. Tra-
jectory length was introduced as a measure of expressivity
of feed-forward deep neural networks (Raghu et al. 2017).
We extend these criteria to the CT family.
Time-Series Modeling. In Section 6, we conduct a series
of eleven time-series prediction experiments and compare
the performance of modern RNNs to the time-continuous
models. We observe improved performance on a majority of
cases achieved by LTCs.
Why This Specific Formulation? There are two primary
justifications for the choice of this particular representation:
I) LTC model is loosely related to the computational mod-
els of neural dynamics in small species, put together with
synaptic transmission mechanisms (Sarma et al. 2018; Glee-
son et al. 2018; Hasani et al. 2020). The dynamics of non-
spiking neurons’ potential, v(t), can be written as a system
of linear ODEs of the form (Lapicque 1907; Koch and Segev
1998): dv/dt = −glv(t) + S(t), where S is the sum of all
synaptic inputs to the cell from presynaptic sources, and gl
is a leakage conductance.

All synaptic currents to the cell can be approximated
in steady-state by the following nonlinearity (Koch and
Segev 1998; Wicks, Roehrig, and Rankin 1996): S(t) =
f(v(t), I(t)), (A − v(t)), where f(.) is a sigmoidal nonlin-
earity depending on the state of all neurons, v(t) which are
presynaptic to the current cell, and external inputs to the cell,
I(t). By plugging in these two equations, we obtain an equa-
tion similar to Eq. 1. LTCs are inspired by this foundation.
II) Eq. 1 might resemble that of the famous Dynamic Causal
Models (DCMs) (Friston, Harrison, and Penny 2003) with a
Bilinear dynamical system approximation (Penny, Ghahra-
mani, and Friston 2005). DCMs are formulated by tak-
ing a second-order approximation (Bilinear) of the dynam-
ical system dx/dt = F (x(t), I(t), θ), that would result in
the following format (Friston, Harrison, and Penny 2003):
dx/dt = (A + I(t)B)x(t) + CI(t) with A = dF

dx , B =
dF 2

dx(t)dI(t) , C = dF
dI(t) . DCM and bilinear dynamical sys-

tems have shown promise in learning to capture complex
fMRI time-series signals. LTCs are introduced as variants of
continuous-time (CT) models that show great expressivity,
stability, and performance in modeling time series.

LTCs Forward-Pass By A Fused ODE Solvers
Solving Eq. 1 analytically, is non-trivial due to the nonlinear-
ity of the LTC semantics. The state of the system of ODEs,
however, at any time point T , can be computed by a numeri-
cal ODE solver that simulates the system starting from a tra-
jectory x(0), to x(T). An ODE solver breaks down the con-
tinuous simulation interval [0, T] to a temporal discretiza-
tion, [t0, t1, . . . tn]. As a result, a solver’s step involves only
the update of the neuronal states from ti to ti+1.

LTCs’ ODE realizes a system of stiff equations (Press

Algorithm 1 LTC update by fused ODE Solver

Parameters: θ = {τ (N×1) = time-constant, γ(M×N) =
weights, γ(N×N)

r = recurrent weights, µ(N×1) = biases},
A(N×1) = bias vector, L = Number of unfolding steps,
∆t = step size, N = Number of neurons,
Inputs: M -dimensional Input I(t) of length T , x(0)
Output: Next LTC neural state xt+∆t

Function: FusedStep(x(t), I(t), ∆t, θ)
x(t+ ∆t)(N×T) = x(t) + ∆tf(x(t),I(t),t,θ)�A

1+∆t
(

1/τ+f(x(t),I(t),t,θ)
)

. f(.), and all divisions are applied element-wise.

. � is the Hadamard product.
end Function
xt+∆t = x(t)
for i = 1 . . . L do

xt+∆t = FusedStep(x(t), I(t), ∆t, θ)
end for
return xt+∆t

et al. 2007). This type of ODE requires an exponential num-
ber of discretization steps when simulated with a Runge-
Kutta (RK) based integrator. Consequently, ODE solvers
based on RK, such as Dormand–Prince (default in torchd-
iffeq (Chen et al. 2018)), are not suitable for LTCs. There-
fore, we design a new ODE solver that fuses the explicit and
implicit Euler methods. Our discretization method results in
greater stability, and numerically unrolls a given dynamical
system of the form dx/dt = f(x) by:

x(ti+1) = x(ti) + ∆tf(x(ti), x(ti+1)). (2)

In particular, we replace only the x(ti) that occur linearly
in f by x(ti+1). As a result, Eq 2 can be solved for x(ti+1),
symbolically. Applying the Fused solver to the LTC repre-
sentation, and solving it for x(t+ ∆t), we get:

x(t+ ∆t) =
x(t) + ∆tf(x(t), I(t), t, θ)A

1 + ∆t
(
1/τ + f(x(t), I(t), t, θ)

) . (3)

Eq. 3 computes one update state for an LTC network. Cor-
respondingly, Algorithm 1 shows how to implement an LTC
network, given a parameter space θ. f is assumed to have
an arbitrary activation function (e.q. for a tanh nonlinear-
ity f = tanh(γrx + γI + µ)). The computational com-
plexity of the algorithm for an input sequence of length
T is O(L × T), where L is the number of discretization
steps. Intuitively, a dense version of an LTC network with
N neurons, and a dense version of a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) network
with N cells, would be of the same complexity.

Training LTC Networks By BPTT
Neural ODEs were suggested to be trained by a constant
memory cost for each layer in a neural network f by apply-
ing the adjoint sensitivity method to perform reverse-mode
automatic differentiation (Chen et al. 2018). The adjoint
method, however, comes with numerical errors when run-
ning in reverse mode. This phenomenon happens because

7658

Algorithm 2 Training LTC by BPTT

Inputs: Dataset of traces [I(t), y(t)] of length T , RNN-
cell = f(I, x)
Parameter: Loss func L(θ), initial param θ0, learning
rate α, Output w = Wout, and bias = bout
for i = 1 . . . number of training steps do

(Ib,yb) = Sample training batch, x := xt0 ∼ p(xt0)
for j = 1 . . . T do
x = f(I(t), x), ŷ(t) = Wout.x + bout, Ltotal =∑T
j=1 L(yj(t), ŷj(t)), ∇L(θ) = ∂Ltot

∂θ

θ = θ − α∇L(θ)
end for

end for
return θ

the adjoint method forgets the forward-time computational
trajectories, which was repeatedly denoted by the commu-
nity (Gholami, Keutzer, and Biros 2019; Zhuang et al. 2020).

On the contrary, direct backpropagation through time
(BPTT) trades memory for accurate recovery of the forward-
pass during the reverse mode integration (Zhuang et al.
2020). Thus, we set out to design a vanilla BPTT algo-
rithm to maintain a highly accurate backward-pass inte-
gration through the solver. For this purpose, a given ODE
solver’s output (a vector of neural states), can be recursively
folded to build an RNN and then apply Algorithm 2 to train
the system. Algorithm 2 uses a vanilla stochastic gradient
descent (SGD). One can substitute this with a more perfor-
mant variant of the SGD, such as Adam (Kingma and Ba
2014), which we use in our experiments.
Complexity. Table 1 summarizes the complexity of our
vanilla BPTT algorithm compared to an adjoint method.
We achieve a high degree of accuracy on both forward
and backward integration trajectories, with similar compu-
tational complexity, at large memory costs.

Bounds on τ and Neural State of LTCs
LTCs are represented by an ODE which varies its time-
constant based on inputs. It is therefore important to see if
LTCs stay stable for unbounded arriving inputs (Hasani et al.
2019; Lechner et al. 2020b). In this section, we prove that the
time-constant and the state of LTC neurons are bounded to a
finite range, as described in Theorems 1 and 2, respectively.

Theorem 1. Let xi denote the state of a neuron i within an
LTC network identified by Eq. 1, and let neuron i receive M
incoming connections. Then, the time-constant of the neu-
ron, τsysi , is bounded to the following range:

τi/(1 + τiWi) ≤ τsysi ≤ τi, (4)

The proof is provided in Appendix. It is constructed based
on bounded, monotonically increasing sigmoidal nonlinear-
ity for neural network f and its replacement in the LTC net-
work dynamics. A stable varying time-constant significantly
enhances the expressivity of this form of time-continuous
RNNs, as we discover more formally in Section 5.

Vanilla BPTT Adjoint

Time O(L× T × 2) O((Lf + Lb)× T)
Memory O(L× T) O(1)

Depth O(L) O(Lb)
FWD acc High High
BWD acc High Low

Table 1: Complexity of the vanilla BPTT compared to the
adjoint method, for a single layer neural network f . Note:
L = number of discretization steps, Lf = L during forward-
pass. Lb = L during backward-pass. T = length of se-
quence, Depth = computational graph depth.

Theorem 2. Let xi denote the state of a neuron i within an
LTC, identified by Eq. 1, and let neuron i receive M incom-
ing connections. Then, the hidden state of any neuron i, on
a finite interval Int ∈ [0, T], is bounded as follows:

min(0, Amini) ≤ xi(t) ≤ max(0, Amaxi), (5)

The proof is given in Appendix. It is constructed based
on the sign of the LTC’s equation’s compartments, and
an approximation of the ODE model by an explicit Euler
discretization. Theorem 2 illustrates a desired property of
LTCs, namely state stability which guarantees that the out-
puts of LTCs never explode even if their inputs grow to infin-
ity. Next we discuss the expressive power of LTCs compared
to the family of time-continuous models, such as CT-RNNs
and neural ordinary differential equations (Chen et al. 2018;
Rubanova, Chen, and Duvenaud 2019).

On The Expressive Power of LTCs
Understanding the impact of a NN’s structural properties
on their computable functions is known as the expressivity
problem. The very early attempts on measuring expressivity
of NNs include theoretical studies based on functional anal-
ysis. They show that NNs with three-layers can approximate
any finite set of continuous mapping with any precision. This
is known as the universal approximation theorem (Hornik,
Stinchcombe, and White 1989; Funahashi 1989; Cybenko
1989). Universality was extended to standard RNNs (Fu-
nahashi 1989) and even continuous-time RNNs (Funahashi
and Nakamura 1993). By careful considerations, we can also
show that LTCs are also universal approximators.
Theorem 3. Let x ∈ Rn, S ⊂ Rn and ẋ = F (x) be
an autonomous ODE with F : S → Rn a C1-mapping

Computational Depth
Activations Neural ODE CT-RNN LTC

tanh 0.56 ± 0.016 4.13 ± 2.19 9.19 ± 2.92
sigmoid 0.56 ± 0.00 5.33 ± 3.76 7.00 ± 5.36
ReLU 1.29 ± 0.10 4.31 ± 2.05 56.9 ± 9.03
Hard-tanh 0.61 ± 0.02 4.05 ± 2.17 81.01 ± 10.05

Table 2: Computational depth of models. Note: # of tries =
100, input samples’ ∆t = 0.01, T = 100 sequence length.
of layers = 1, width = 100, σ2

w = 2, σ2
b = 1.

7659

Input
trajectory

6-layer, width 100, tanh activations

Projection to trajectory
latent 2-D space

PCA

L1 L2 L3 L4 L5 L6𝑥 𝑡 = sin 𝑡

𝑦
𝑡
=
co
s(
𝑡)

PCA PCA PCA PCA PCA

Figure 1: Trajectory’s latent space becomes more complex as the input passes through hidden layers.

on S. Let D denote a compact subset of S and assume
that the simulation of the system is bounded in the inter-
val I = [0, T]. Then, for a positive ε, there exist an LTC
network with N hidden units, n output units, and an out-
put internal state u(t), described by Eq. 1, such that for any
rollout {x(t)|t∈ I} of the system with initial value x(0)∈D,
and a proper network initialization,

maxt∈ I |x(t)− u(t)|<ε (6)

The proof defines an n-dimensional dynamical system
and place it into a higher dimensional system. The second
system is an LTC. The fundamental difference of the proof
of LTC’s universality to that of CT-RNNs (Funahashi and
Nakamura 1993) lies in the distinction of the semantics of
both systems where the LTC network contains a nonlin-
ear input-dependent term in its time-constant module which
makes parts of the proof non-trivial.

The universal approximation theorem broadly explores
the expressive power of a neural network. The theorem how-
ever, does not yield a concrete measure on where the sep-
aration is between different neural network architectures.
Therefore, a more rigorous measure of expressivity is de-
manded to compare models, specifically those networks spe-
cialized in spatiotemporal data processing, such as LTCs.
The advances made on defining measures for the expressiv-
ity of static deep learning models (Pascanu, Montufar, and
Bengio 2013; Montufar et al. 2014; Eldan and Shamir 2016;
Poole et al. 2016; Raghu et al. 2017) could help measure the
expressivity of time-continuous models, both theoretically
and quantitatively, which we explore in the next section.

Measuring Expressivity By Trajectory Length
A measure of expressivity has to take into account what de-
grees of complexity a learning system can compute, given

the network’s capacity (depth, width, type, and weights con-
figuration). A unifying expressivity measure of static deep
networks is the trajectory length introduced in (Raghu et al.
2017). In this context, one evaluates how a deep model trans-
forms a given input trajectory (e.g., a circular 2-dimensional
input) into a more complex pattern, progressively.

We can then perform principle component analysis (PCA)
over the obtained network’s activations. Subsequently,
we measure the length of the output trajectory in a 2-
dimensional latent space, to uncover its relative complexity
(see Fig. 1). The trajectory length is defined as the arc length
of a given trajectory I(t), (e.g. a circle in 2D space) (Raghu
et al. 2017): l(I(t)) =

∫
t
‖dI(t)/dt‖ dt. By establishing a

lower-bound for the growth of the trajectory length, one can
set a barrier between networks of shallow and deep architec-
tures, regardless of any assumptions on the network’s weight
configuration (Raghu et al. 2017), unlike many other mea-
sures of expressivity (Pascanu, Montufar, and Bengio 2013;
Montufar et al. 2014; Serra, Tjandraatmadja, and Rama-
lingam 2017; Gabrié et al. 2018; Hanin and Rolnick 2018,
2019; Lee, Alvarez-Melis, and Jaakkola 2019). We set out
to extend the trajectory-space analysis of static networks to
time-continuous (TC) models, and to lower-bound the tra-
jectory length to compare models’ expressivity. To this end,
we designed instances of Neural ODEs, CT-RNNs and LTCs
with shared f . The networks were initialized by weights
∼ N (0, σ2

w/k), and biases ∼ N (0, σ2
b). We then perform

forward-pass simulations by using different types of ODE
solvers, for arbitrary weight profiles, while exposing the
networks to a circular input trajectory I(t) = {I1(t) =
sin(t), I2(t) = cos(t)}, for t ∈ [0, 2π]. By looking at the
first two principle components (with an average variance-
explained of over 80%) of hidden layers’ activations, we
observed consistently more complex trajectories for LTCs.

7660

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 18.966
l(CT-RNN) = 13.5982

l(LTC) = 49.3219

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 50.1121
l(CT-RNN) = 25.3465

l(LTC) = 58.4468

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 60.3861
l(CT-RNN) = 33.5122

l(LTC) = 195.712

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 81.0841
l(CT-RNN) = 39.9081

l(LTC) = 266.2873

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 110.943
l(CT-RNN) = 54.5492

l(LTC) = 527.0816

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 18.966
l(CT-RNN) = 13.5982

l(LTC) = 49.3219

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 50.1121
l(CT-RNN) = 25.3465

l(LTC) = 58.4468

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 60.3861
l(CT-RNN) = 33.5122

l(LTC) = 195.712

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 81.0841
l(CT-RNN) = 39.9081

l(LTC) = 266.2873

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
sio

n

l(N-ODE) = 110.943
l(CT-RNN) = 54.5492

l(LTC) = 527.0816

Inputs
N-ODE
CT-RNN
LTC

Width = 100 Width = 200C

RK45 | ReLU | Depth = 1 | 𝜎𝑤2 = 2 | 𝜎𝑏2= 1

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension
2nd

 L
at

en
t D

im
en

si
on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on
l(N-ODE) = 56.8841

l(CT-RNN) = 25.1329
l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 37.1075
l(CT-RNN) = 29.4344

l(LTC) = 438.7242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.8477
l(CT-RNN) = 24.4596

l(LTC) = 366.6077

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 56.8841
l(CT-RNN) = 25.1329

l(LTC) = 406.2259

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.0224
l(CT-RNN) = 21.2794

l(LTC) = 357.9859

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 57.6322
l(CT-RNN) = 21.7574

l(LTC) = 329.3917

Inputs
N-ODE
CT-RNN
LTC

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5E

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 108.245
l(CT-RNN) = 90.5486
l(LTC) = 12481.0242

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 5407.3963
l(CT-RNN) = 1210.7898

l(LTC) = 15332.7607

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 255299.3159
l(CT-RNN) = 15949.0123

l(LTC) = 17707.2484

Inputs
N-ODE
CT-RNN
LTC

Layer1 Layer2 Layer3

RK45 | Hard tanh | Depth = 3
Width = 100 | 𝜎𝑤2 = 2 | 𝜎𝑏2 = 1

RK45
tanh

Depth = 5
Width = 100

𝜎𝑤2 = 2
𝜎𝑏2= 1

A 𝜎𝑤2 = 1 𝜎𝑤2 = 2 𝜎𝑤2 = 4 RK45
Hard tanh
Depth = 1

Width = 100
𝜎𝑏2= 1

B

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 35.5591
l(CT-RNN) = 25.3775

l(LTC) = 36.6337

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 55.2179
l(CT-RNN) = 31.0013
l(LTC) = 3097.6399

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension
2nd

 L
at

en
t D

im
en

si
on

l(N-ODE) = 72.1655
l(CT-RNN) = 63.7909
l(LTC) = 4826.3928

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 104.5981
l(CT-RNN) = 87.9204
l(LTC) = 18339.8985

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 138.4056
l(CT-RNN) = 120.58
l(LTC) = 53858.6441

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 35.5591
l(CT-RNN) = 25.3775

l(LTC) = 36.6337

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on
l(N-ODE) = 55.2179

l(CT-RNN) = 31.0013
l(LTC) = 3097.6399

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 72.1655
l(CT-RNN) = 63.7909
l(LTC) = 4826.3928

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 104.5981
l(CT-RNN) = 87.9204
l(LTC) = 18339.8985

Inputs
N-ODE
CT-RNN
LTC

1st Latent Dimension

2nd
 L

at
en

t D
im

en
si

on

l(N-ODE) = 138.4056
l(CT-RNN) = 120.58
l(LTC) = 53858.6441

Inputs
N-ODE
CT-RNN
LTC

Width = 100 Width = 200D

RK45 | Hard tanh | Depth = 1 | 𝜎𝑤2 = 2 | 𝜎𝑏2= 1

Figure 2: Trajectory length deformation A) in network layers with Hard-tanh activations, B) as a function of the weight distri-
bution scaling factor, C) as a function of network width (ReLU), D) as a function of width (Hard-tanh), and E)in network layers
with logistic-sigmoid activations.

Fig. 2 gives a glimpse of our empirical observations. All
networks are implemented by the Dormand-Prince explicit
Runge-Kutta(4,5) solver (Dormand and Prince 1980) with a
variable step size. We had the following observations:
I) Exponential growth of the trajectory length of Neural
ODEs and CT-RNNs with Hard-tanh and ReLU activations
(Fig. 2A) and unchanged shape of their latent space regard-
less of their weight profile.
II) LTCs show a slower growth-rate of the trajectory length
when designed by Hard-tanh and ReLU, with the compro-
mise of realizing great levels of complexity (Fig. 2A, 2C and
2D).
III) Apart from multi-layer time-continuous models built by
Hard-tanh and ReLU activations, in all cases, we observed
a longer and a more complex latent space behavior for the
LTC networks (Fig. 2B to 2D).
IV) Unlike static deep networks (Fig. 1), we witnessed that
the trajectory length does not grow by depth in multi-layer
continuous-time networks realized by tanh and sigmoid
(Fig. 2E).
V) conclusively, we observed that the trajectory length in
TC models varies by a model’s activations, weight and bias
distributions variance, width and depth. We presented this

more systematically in Fig. 3.
VI) Trajectory length grows linearly with a network’s width
(Fig. 3B - Notice the logarithmic growth of the curves in the
log-scale Y-axis).
VII) The growth is considerably faster as the variance grows
(Fig. 3C).
VIII) Trajectory length is reluctant to the choice of ODE
solver (Fig. 3A).
IX) Activation functions diversify the complex patterns ex-
plored by the TC system, where ReLU and Hard-tanh net-
works demonstrate higher degrees of complexity for LTCs.
A key reason is the presence of recurrent links between each
layer’s cells.
Definition of Computational Depth (L). For one hidden
layer of f in a CT network, L is the average number of inte-
gration steps by the solver for each incoming input sample.
Note that for an f with n layers we define the total depth
as n × L. These observations allow us to formulate lower
bounds on the trajectory length growth of CT networks.

Theorem 4. Trajectory Length growth Bounds for Neu-
ral ODEs and CT-RNNs. Let dx/dt = fn,k(x(t), I(t), θ)
with θ = {W, b}, represent a Neural ODE and dx(t)

dt =

7661

RK2(3) RK4(5) ABM1(13) TR-BDF2
ODE Solvers

0

200

400

600

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
activations = relu
depth = 1, width = 100

2
w = 2, 2

b = 1

10 25 50 100 150 200
Network Width (k)

100

101

102

103

104

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100, solver = RK45
activations = tanh
depth = 1, 2

w = 2, 2
b = 1

A B

1 2 3 4
PC

0

20

40

60

80

100
Va

rie
nc

e
Ex

pl
ai

ne
d

(%
)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

N-ODE CT-RNN LTC

1 2 4 8

w
2

101

102

103

104

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100, solver = RK45
activations = relu
depth = 1, 2

b = 1

C

N-ODE CT-RNN LTC

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

1 2 3 4
PC

0

20

40

60

80

100

Va
rie

nc
e

Ex
pl

ai
ne

d
(%

)

L1 L2 L3 L4 L5 L6
Network Layers

101

102

103

Tr
aj

ec
to

ry
 L

en
gt

h

LTC
N-ODE
CT-RNN

samples = 100
solver = RK45
activations = sigmoid
depth = 6, 2

w = 2, 2
b = 1

D

Figure 3: Dependencies of the trajectory length measure. A) trajectory length vs different solvers (variable-step solvers).
RK2(3): Bogacki-Shampine Runge-Kutta (2,3) (Bogacki and Shampine 1989). RK4(5): Dormand-Prince explicit RK (4,5)
(Dormand and Prince 1980). ABM1(13): Adams-Bashforth-Moulton (Shampine 1975). TR-BDF2: implicit RK solver with 1st
stage trapezoidal rule and a 2nd stage backward differentiation (Hosea and Shampine 1996). B) Top: trajectory length vs net-
work width. Bottom: Variance-explained of principle components (purple bars) and their cumulative values (solid black line).
C) Trajectory length vs weights distribution variance. D) trajectory length vs layers. (More results in the supplements)

− x(t)
τ + fn,k(x(t), I(t), θ) with θ = {W, b, τ} a CT-RNN.

f is randomly weighted withHard-tanh activations. Let I(t)
be a 2D input trajectory, with its progressive points (i.e.
I(t+ δt)) having a perpendicular component to I(t) for all
δt, with L = number of solver-steps. Then, by defining the
projection of the first two principle components’ scores of
the hidden states over each other, as the 2D latent trajectory
space of a layer d, z(d)(I(t)) = z(d)(t), for Neural ODE and
CT-RNNs respectively, we have:

E

[
l(z(d)(t))

]
≥ O

(
σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
l(I(t)),

(7)

E

[
l(z(d)(t))

]
≥ O

(
(σw − σb)

√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
l(I(t)).

(8)

The proof is provided in Appendix. It follows similar
steps as (Raghu et al. 2017) on the trajectory length bounds
established for deep networks with piecewise linear activa-
tions, with careful considerations due to the continuous-time
setup. The proof is constructed such that we formulate a re-
currence between the norm of the hidden state gradient in
layer d+1,

∥∥dz/dt(d+1)
∥∥, in principle components domain,

and the expectation of the norm of the right-hand-side of
the differential equations of neural ODEs and CT-RNNs. We
then roll back the recurrence to reach the inputs.

Note that to reduced the complexity of the problem, we
only bounded the orthogonal components of the hidden state

image
∥∥∥dz/dt(d+1)

⊥

∥∥∥, and therefore we have the assump-
tion on input I(t), in the Theorem’s statement (Raghu et al.
2017). Next, we find a lower-bound for the LTC networks.
Theorem 5. Growth Rate of LTC’s Trajectory Length. Let
Eq. 1 determine an LTC with θ = {W, b, τ, A}. With the
same conditions on f and I(t), as in Theorem 4, we have:

E

[
l(z(d)(t))

]
≥ O

((σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

)d×L
×

(
σw +

∥∥z(d)
∥∥

min(δt, L)

))
l(I(t)).

(9)

The proof is provided in Appendix. A rough outline: we
construct the recurrence between the norm of the hidden
state gradients and the components of the right-hand-side of
LTC separately which progressively build up the bound.

Discussion of The Theoretical Bounds
I) As expected, the bound for the Neural ODEs is very sim-
ilar to that of an n layer static deep network with the ex-
ception of the exponential dependencies to the number of
solver-steps, L. II) The bound for CT-RNNs suggests their
shorter trajectory length compared to neural ODEs, accord-
ing to the base of the exponent. This results consistently
matches our experiments presented in Figs. 2 and 3. III) Fig.
2B and Fig. 3C show a faster-than-linear growth for LTC’s
trajectory length as a function of weight distribution vari-
ance. This is confirmed by LTC’s lower bound shown in Eq.

7662

Dataset Metric LSTM CT-RNN Neural ODE CT-GRU LTC (ours)
Gesture (accuracy) 64.57% ± 0.59 59.01% ± 1.22 46.97% ± 3.03 68.31% ± 1.78 69.55% ± 1.13
Occupancy (accuracy) 93.18% ± 1.66 94.54% ± 0.54 90.15% ± 1.71 91.44% ± 1.67 94.63% ± 0.17
Activity recognition (accuracy) 95.85% ± 0.29 95.73% ± 0.47 97.26% ± 0.10 96.16% ± 0.39 95.67% ± 0.575
Sequential MNIST (accuracy) 98.41% ± 0.12 96.73% ± 0.19 97.61% ± 0.14 98.27% ± 0.14 97.57% ± 0.18
Traffic (squared error) 0.169 ± 0.004 0.224 ± 0.008 1.512 ± 0.179 0.389 ± 0.076 0.099 ± 0.0095
Power (squared-error) 0.628 ± 0.003 0.742 ± 0.005 1.254 ± 0.149 0.586 ± 0.003 0.642 ± 0.021
Ozone (F1-score) 0.284 ± 0.025 0.236 ± 0.011 0.168 ± 0.006 0.260 ± 0.024 0.302 ± 0.0155

Table 3: Time series prediction. Mean and standard deviation, n=5

9. IV) LTC’s lower bound also depicts the linear growth of
the trajectory length with the width, k, which validates the
results presented in 3B. V) Given the computational depth of
the models L in Table 2 for Hard-tanh activations, the com-
puted lower bound for neural ODEs, CT-RNNs and LTCs
justify a longer trajectory length of LTC networks in the ex-
periments of Section 5. Next, we assess the expressive power
of LTCs in a set of real-life time-series prediction tasks.

Experimental Evaluation
In this section, we evaluate the performance of the LTCs
compared to the state-of-the-art RNN models in a series of
time-series benchmarks.

Time Series Predictions
We evaluated the performance of LTCs realized by the
proposed Fused ODE solver against the state-of-the-art
discretized RNNs, LSTMs (Hochreiter and Schmidhuber
1997), CT-RNNs (ODE-RNNs) (Funahashi and Nakamura
1993; Rubanova, Chen, and Duvenaud 2019), continuous-
time gated recurrent units (CT-GRUs) (Mozer, Kazakov, and
Lindsey 2017), and Neural ODEs constructed by a 4th order
Runge-Kutta solver as suggested in (Chen et al. 2018), in
a series of diverse real-life supervised learning tasks. The
results are summarized in Table 3. The experimental setup
are provided in Appendix. We observed between 5% to 70%
performance improvement achieved by the LTCs compared
to other RNN models in four out of seven experiments and
comparable performance in the other three (see Table 3).

Person Activity Dataset
We use the ”Human Activity” dataset described in
(Rubanova, Chen, and Duvenaud 2019) in two distinct
frameworks. The dataset consists of 6554 sequences of ac-
tivity of humans (e.g. lying, walking, sitting), with a period
of 211 ms. we designed two experimental frameworks to
evaluate models’ performance. In the 1st Setting, the base-
lines are the models described before, and the input repre-
sentations are unchanged (details in Appendix). LTCs out-
perform all models and in particular CT-RNNs and neu-
ral ODEs with a large margin (Table 4. Note that the CT-
RNN architecture is equivalent to the ODE-RNN described
in (Rubanova, Chen, and Duvenaud 2019), with the differ-
ence of having a state damping factor τ .

In the 2nd Setting, we carefully set up the experiment to
match the modifications made by (Rubanova, Chen, and Du-
venaud 2019) (See supplements), to obtain a fair compari-

Algorithm Accuracy
LSTM 83.59%± 0.40
CT-RNN 81.54%± 0.33
Latent ODE 76.48%± 0.56
CT-GRU 85.27%± 0.39
LTC (ours) 85.48%± 0.40

Table 4: Person activity, 1st setting - n=5

Algorithm Accuracy
RNN ∆t

∗ 0.797± 0.003
RNN-Decay∗ 0.800± 0.010
RNN GRU-D∗ 0.806± 0.007
RNN-VAE∗ 0.343± 0.040
Latent ODE (D enc.)∗ 0.835± 0.010
ODE-RNN ∗ 0.829 ± 0.016
Latent ODE(C enc.)∗ 0.846 ± 0.013
LTC (ours) 0.882 ± 0.005

Table 5: Person activity, 2nd setting, n=5 Note: Accu-
racy for algorithms indicated by ∗, are taken directly from
(Rubanova, Chen, and Duvenaud 2019) with: RNN ∆t =
classic RNN + input delays, D-enc. = RNN encoder C-enc
= ODE encoder. RNN-Decay = RNN with exponential de-
cay on hidden states (Mozer, Kazakov, and Lindsey 2017).
GRU-D = gated recurrent unit + exponential decay + input
imputation (Che et al. 2018).

son between LTCs and a more diverse set of RNN variants
discussed in (Rubanova, Chen, and Duvenaud 2019). LTCs
show superior performance with a high margin compared to
other models. The results are summarized in Table 5).

Half-Cheetah Kinematic Modeling
We intended to evaluate how well continuous-time mod-
els can capture physical dynamics. To perform this, we
collected 25 rollouts of a pre-trained controller for the
HalfCheetah-v2 gym environment (Brockman et al. 2016),
generated by the MuJoCo physics engine (Todorov, Erez,
and Tassa 2012). The task is then to fit the observation space
time-series in an autoregressive fashion (Fig. 4). To increase
the difficulty, we overwrite 5% of the actions by random
actions. The test results are presented in Table 6, and root
for the superiority of the performance of LTCs compared to

7663

1
2

3

4
5

6

Time
𝜙

+−

17 input observations | 6 control outputs | 𝜙 = joint angle

Figure 4: Half-cheetah physics simulation

other models.

Related Works
Time-Continuous Models. TC networks have become un-
precedentedly popular. This is due to the manifestation of
several benefits such as adaptive computations, better con-
tinuous time-series modeling, memory, and parameter ef-
ficiency (Chen et al. 2018). A large number of alterna-
tive approaches have tried to improve and stabilize the ad-
joint method (Gholami, Keutzer, and Biros 2019), use neural
ODEs in specific contexts (Rubanova, Chen, and Duvenaud
2019; Lechner et al. 2019) and to characterize them better
(Dupont, Doucet, and Teh 2019; Durkan et al. 2019; Jia and
Benson 2019; Hanshu et al. 2020; Holl, Koltun, and Thuerey
2020; Quaglino et al. 2020). In this work, we investigated the
expressive power of neural ODEs and proposed a new ODE
model to improve their expressivity and performance.
Measures of Expressivity. Many works have tried to ad-
dress why deeper networks and particular architectures per-
form well, and where is the boundary between the approx-
imation capability of shallow and deep networks? In this
context, (Montufar et al. 2014) and (Pascanu, Montufar,
and Bengio 2013) proposed counting the linear regions of
NNs as a measure of expressivity, (Eldan and Shamir 2016)
showed that there exists a class of radial functions that
smaller networks fail to produce, and (Poole et al. 2016)
studied the exponential expressivity of NNs by transient
chaos.
These methods are compelling; however, they are bound
to particular weight configurations of a given network in
order to lower-bound expressivity (Serra, Tjandraatmadja,
and Ramalingam 2017; Gabrié et al. 2018; Hanin and Rol-
nick 2018, 2019; Lee, Alvarez-Melis, and Jaakkola 2019).
(Raghu et al. 2017) introduced an interrelated concept which
quantifies expressivity by trajectory length. We extended
their analysis to CT networks and provided lower-bound for
the growth of the trajectory length, proclaiming the superior
approximation capabilities of LTCs.

Conclusions, Scope and Limitations
We introduced liquid time-constant networks. We showed
that they could be implemented by arbitrary variable and
fixed step ODE solvers, and be trained by backpropaga-
tion through time. We demonstrated their bounded and sta-
ble dynamics, superior expressivity, and superseding perfor-
mance in supervised learning time-series prediction tasks,
compared to standard and modern deep learning models.

Algorithm MSE
LSTM 2.500± 0.140
CT-RNN 2.838± 0.112
Neural ODE 3.805 ± 0.313
CT-GRU 3.014± 0.134
LTC (ours) 2.308± 0.015

Table 6: Sequence modeling. Half-Cheetah dynamics n=5

Long-term Dependencies
Similar to many variants of time-continuous models, LTCs
express the vanishing gradient phenomenon (Pascanu,
Mikolov, and Bengio 2013; Lechner and Hasani 2020),
when trained by gradient descent. Although the model
shows promise on a variety of time-series prediction tasks,
they would not be the obvious choice for learning long-term
dependencies in their current format.

Choice of ODE Solver
Performance of time-continuous models is heavily tided to
their numerical implementation approach (Hasani 2020).
While LTCs perform well with advanced variable-step
solvers and the Fused fixed-step solver introduced here, their
performance is majorly influenced when off-the-shelf ex-
plicit Euler methods are used.

Time and Memory
Neural ODEs are remarkably fast compared to more sophis-
ticated models such as LTCs. Nonetheless, they lack ex-
pressivity. Our proposed model, in their current format, sig-
nificantly enhances the expressive power of TC models at
the expense of elevated time and memory complexity which
must be investigated in the future.

Causality
Models described by ODE semantics inherently possess
causal structures (Schölkopf 2019), especially models that
are equipped with recurrent mechanisms to map past experi-
ences to next-step predictions. Studying causality of perfor-
mant recurrent models such as LTCs would be an exciting
future research direction as their semantics resemble DCMs
(Friston, Harrison, and Penny 2003) with a bilinear dynam-
ical system approximation (Penny, Ghahramani, and Friston
2005). Accordingly, a natural application domain would be
the control of robots in continuous-time observation and ac-
tion spaces where causal structures such as LTCs can help
improve reasoning (Lechner et al. 2020a).

Acknowledgments
R.H. and D.R. are partially supported by Boeing. R.H. and
R.G. were partially supported by the Horizon-2020 ECSEL
Project grant No. 783163 (iDev40). M.L. was supported in
part by the Austrian Science Fund (FWF) under grant Z211-
N23 (Wittgenstein Award). A.A. is supported by the Na-
tional Science Foundation (NSF) Graduate Research Fel-
lowship Program. This research work is partially drawn from
the PhD dissertation of R.H.

7664

References
Bogacki, P.; and Shampine, L. F. 1989. A 3 (2) pair of
Runge-Kutta formulas. Applied Mathematics Letters 2(4):
321–325.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540 .
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y.
2018. Recurrent neural networks for multivariate time series
with missing values. Scientific reports 8(1): 1–12.
Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. In Ad-
vances in Neural Information Processing Systems, 6571–
6583.
Cybenko, G. 1989. Approximation by superpositions of a
sigmoidal function. Mathematics of control, signals and sys-
tems 2(4): 303–314.
Dormand, J. R.; and Prince, P. J. 1980. A family of embed-
ded Runge-Kutta formulae. Journal of computational and
applied mathematics 6(1): 19–26.
Dupont, E.; Doucet, A.; and Teh, Y. W. 2019. Augmented
neural odes. In Advances in Neural Information Processing
Systems, 3134–3144.
Durkan, C.; Bekasov, A.; Murray, I.; and Papamakarios, G.
2019. Neural spline flows. In Advances in Neural Informa-
tion Processing Systems, 7509–7520.
Eldan, R.; and Shamir, O. 2016. The power of depth for
feedforward neural networks. In Conference on learning
theory, 907–940.
Friston, K. J.; Harrison, L.; and Penny, W. 2003. Dynamic
causal modelling. Neuroimage 19(4): 1273–1302.
Funahashi, K.-I. 1989. On the approximate realization of
continuous mappings by neural networks. Neural networks
2(3): 183–192.
Funahashi, K.-i.; and Nakamura, Y. 1993. Approximation
of dynamical systems by continuous time recurrent neural
networks. Neural networks 6(6): 801–806.
Gabrié, M.; Manoel, A.; Luneau, C.; Macris, N.; Krzakala,
F.; Zdeborová, L.; et al. 2018. Entropy and mutual infor-
mation in models of deep neural networks. In Advances in
Neural Information Processing Systems, 1821–1831.
Gholami, A.; Keutzer, K.; and Biros, G. 2019. Anode: Un-
conditionally accurate memory-efficient gradients for neural
odes. arXiv preprint arXiv:1902.10298 .
Gleeson, P.; Lung, D.; Grosu, R.; Hasani, R.; and Larson,
S. D. 2018. c302: a multiscale framework for modelling the
nervous system of Caenorhabditis elegans. Phil. Trans. R.
Soc. B 373(1758): 20170379.
Hanin, B.; and Rolnick, D. 2018. How to start training: The
effect of initialization and architecture. In Advances in Neu-
ral Information Processing Systems, 571–581.
Hanin, B.; and Rolnick, D. 2019. Complexity of linear re-
gions in deep networks. arXiv preprint arXiv:1901.09021
.

Hanshu, Y.; Jiawei, D.; Vincent, T.; and Jiashi, F. 2020. On
Robustness of Neural Ordinary Differential Equations. In
International Conference on Learning Representations.

Hasani, R. 2020. Interpretable Recurrent Neural Networks
in Continuous-time Control Environments. PhD dissertation,
Technische Universität Wien.

Hasani, R.; Amini, A.; Lechner, M.; Naser, F.; Grosu, R.;
and Rus, D. 2019. Response characterization for audit-
ing cell dynamics in long short-term memory networks. In
2019 International Joint Conference on Neural Networks
(IJCNN), 1–8. IEEE.

Hasani, R.; Lechner, M.; Amini, A.; Rus, D.; and Grosu,
R. 2020. The natural lottery ticket winner: Reinforcement
learning with ordinary neural circuits. In Proceedings of
the 2020 International Conference on Machine Learning.
JMLR. org.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.

Holl, P.; Koltun, V.; and Thuerey, N. 2020. Learning to
Control PDEs with Differentiable Physics. arXiv preprint
arXiv:2001.07457 .

Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural networks 2(5): 359–366.

Hosea, M.; and Shampine, L. 1996. Analysis and imple-
mentation of TR-BDF2. Applied Numerical Mathematics
20(1-2): 21–37.

Jia, J.; and Benson, A. R. 2019. Neural jump stochastic dif-
ferential equations. In Advances in Neural Information Pro-
cessing Systems, 9843–9854.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Koch, C.; and Segev, K. 1998. Methods in Neuronal Model-
ing - From Ions to Networks. MIT press, second edition.

Lapicque, L. 1907. Recherches quantitatives sur l’excitation
electrique des nerfs traitee comme une polarization. Journal
de Physiologie et de Pathologie Generalej 9: 620–635.

Lechner, M.; and Hasani, R. 2020. Learning Long-Term
Dependencies in Irregularly-Sampled Time Series. arXiv
preprint arXiv:2006.04418 .

Lechner, M.; Hasani, R.; Amini, A.; Henzinger, T. A.; Rus,
D.; and Grosu, R. 2020a. Neural circuit policies enabling au-
ditable autonomy. Nature Machine Intelligence 2(10): 642–
652.

Lechner, M.; Hasani, R.; Rus, D.; and Grosu, R. 2020b.
Gershgorin Loss Stabilizes the Recurrent Neural Network
Compartment of an End-to-end Robot Learning Scheme. In
2020 International Conference on Robotics and Automation
(ICRA). IEEE.

Lechner, M.; Hasani, R.; Zimmer, M.; Henzinger, T. A.; and
Grosu, R. 2019. Designing worm-inspired neural networks
for interpretable robotic control. In 2019 International Con-
ference on Robotics and Automation (ICRA), 87–94. IEEE.

7665

Lee, G.-H.; Alvarez-Melis, D.; and Jaakkola, T. S. 2019. To-
wards robust, locally linear deep networks. arXiv preprint
arXiv:1907.03207 .

Montufar, G. F.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014.
On the number of linear regions of deep neural networks. In
Advances in neural information processing systems, 2924–
2932.

Mozer, M. C.; Kazakov, D.; and Lindsey, R. V. 2017.
Discrete Event, Continuous Time RNNs. arXiv preprint
arXiv:1710.04110 .

Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the diffi-
culty of training recurrent neural networks. In International
conference on machine learning, 1310–1318.

Pascanu, R.; Montufar, G.; and Bengio, Y. 2013. On
the number of response regions of deep feed forward net-
works with piece-wise linear activations. arXiv preprint
arXiv:1312.6098 .

Penny, W.; Ghahramani, Z.; and Friston, K. 2005. Bilinear
dynamical systems. Philosophical Transactions of the Royal
Society B: Biological Sciences 360(1457): 983–993.

Pontryagin, L. S. 2018. Mathematical theory of optimal pro-
cesses. Routledge.

Poole, B.; Lahiri, S.; Raghu, M.; Sohl-Dickstein, J.; and
Ganguli, S. 2016. Exponential expressivity in deep neural
networks through transient chaos. In Advances in neural in-
formation processing systems, 3360–3368.

Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flan-
nery, B. P. 2007. Numerical Recipes 3rd Edition: The Art
of Scientific Computing. New York, NY, USA: Cambridge
University Press, 3 edition.

Quaglino, A.; Gallieri, M.; Masci, J.; and Koutnı́k, J. 2020.
SNODE: Spectral Discretization of Neural ODEs for Sys-
tem Identification. In International Conference on Learning
Representations.

Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Dick-
stein, J. S. 2017. On the expressive power of deep neural
networks. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 2847–2854. JMLR.
org.

Rubanova, Y.; Chen, R. T.; and Duvenaud, D. 2019. La-
tent odes for irregularly-sampled time series. arXiv preprint
arXiv:1907.03907 .

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. nature
323(6088): 533–536.

Sarma, G. P.; Lee, C. W.; Portegys, T.; Ghayoomie, V.;
Jacobs, T.; Alicea, B.; Cantarelli, M.; Currie, M.; Gerkin,
R. C.; Gingell, S.; et al. 2018. OpenWorm: overview
and recent advances in integrative biological simulation of
Caenorhabditis elegans. Phil. Trans. R. Soc. B 373(1758):
20170382.

Schölkopf, B. 2019. Causality for Machine Learning. arXiv
preprint arXiv:1911.10500 .

Serra, T.; Tjandraatmadja, C.; and Ramalingam, S. 2017.
Bounding and counting linear regions of deep neural net-
works. arXiv preprint arXiv:1711.02114 .
Shampine, L. F. 1975. Computer solution of ordinary differ-
ential equations. The Initial Value Problem .
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.
Wicks, S. R.; Roehrig, C. J.; and Rankin, C. H. 1996. A dy-
namic network simulation of the nematode tap withdrawal
circuit: predictions concerning synaptic function using be-
havioral criteria. Journal of Neuroscience 16(12): 4017–
4031.
Zhuang, J.; Dvornek, N.; Li, X.; Tatikonda, S.; Pa-
pademetris, X.; and Duncan, J. 2020. Adaptive Checkpoint
Adjoint Method for Gradient Estimation in Neural ODE. In
Proceedings of the 37th International Conference on Ma-
chine Learning. PMLR 119.

7666

