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Reconstructing metastatic seeding patterns
of human cancers
Johannes G. Reiter1,2, Alvin P. Makohon-Moore3,4, Jeffrey M. Gerold1, Ivana Bozic1,5, Krishnendu Chatterjee2,

Christine A. Iacobuzio-Donahue3,4,6, Bert Vogelstein7,8 & Martin A. Nowak1,5,9

Reconstructing the evolutionary history of metastases is critical for understanding their basic

biological principles and has profound clinical implications. Genome-wide sequencing data

has enabled modern phylogenomic methods to accurately dissect subclones and their

phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However,

existing methods are not designed to infer metastatic seeding patterns. Here we develop a

tool, called Treeomics, to reconstruct the phylogeny of metastases and map subclones to

their anatomic locations. Treeomics infers comprehensive seeding patterns for pancreatic,

ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguates true seeding

patterns from sequencing artifacts; 7% of variants were misclassified by conventional sta-

tistical methods. These artifacts can skew phylogenies by creating illusory tumour hetero-

geneity among distinct samples. In silico benchmarking on simulated tumour phylogenies

across a wide range of sample purities (15–95%) and sequencing depths (25-800�)

demonstrates the accuracy of Treeomics compared with existing methods.
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G
enetic evolution underlies our current understanding of
cancer1–3 and the development of resistance to
therapies4,5. The principles governing this evolution are

still an active area of research, particularly for metastasis6–8,
the final biological stage of cancer that is responsible for the
vast majority of deaths from the disease. Although many insights
into the nature of metastasis have emerged9, we do not yet
know how malignant tumours evolve the potential to metastasize,
nor do we know the fraction of primary tumour cells that
have the potential to give rise to metastases. Moreover, the
temporal, spatial and evolutionary rules governing the seeding of
metastases at spatially distinct sites distant from the primary
tumour have mostly remained undetermined6,10,11.

To better understand the evolutionary process of cancer,
researchers have reconstructed the temporal evolution of
patients’ cancers from genome sequencing data12–16. Thus
far, phylogenomic analysis has largely focused on the subclonal
composition and branching patterns of primary tumours17–19.
The evolutionary relationships among metastases are equally
important but have less often been determined for several
reasons20–23. First, comprehensive data sets of samples from
spatially distinct metastases in different organs are rarely
available. Second, most advanced cancer samples are derived
from patients who have been treated with toxic and mutagenic
chemotherapies, imposing a variety of unknown constraints
on genetic evolution, metastatic progression and its interpreta-
tion. Third, tumours are composed of varying proportions
of neoplastic and non-neoplastic cells, and inferring meani-
ngful evolutionary patterns from such impure samples is
challenging24,25. Fourth, chromosome-level changes, including
losses, are frequently observed in cancers, and previously acquired
variants can be lost23 (that is, some variants are not ‘persistent’).
Fifth, even when performed at high depth, next-generation
sequencing coverage is always non-uniform, resulting in
different amounts of uncertainty at different loci within the
same DNA sample as well as among different samples at the same
locus. Finally, evolutionarily informative genetic differences
among the founding cells of distant metastases tend to be
rare26,27 and therefore the confidence in the inferred metastatic
seeding pattern is often low.

The variety of methods that have recently been used to
infer evolutionary relationships among tumours underscore
these complicating factors and the need for a robust phyloge-
nomic approach. The methods include those based on genetic
distance20,28, maximum parsimony19,22,29, clonal ordering3,15

and variant allele frequency (VAF)30–32. Modern phylogenomic
methods classify variants based on the observed VAFs, account
for varying ploidy and neoplastic cell content, and reconstruct
comprehensive phylogenies33–41. In this study, however, as we
will show below, in the case of reconstructing the evolution
of metastases, these methods suffer from the low number of
informative variants and may fail to identify the subclones
that gave rise to the observed seeding patterns. Classical
phylogenetics assumes that the individual traits are known with
certainty24. Consequently, these methods struggle with noisy
high-throughput DNA sequencing data and do not exploit
the full potential of these data due to the error-prone binary
present/absent classification of variants. Furthermore, many of
the methods used for inferring cancer evolutionary trees are
based on those designed for more complex evolutionary processes
involving sex and recombination11. The key conceptual difference
between the new approach used here (‘Treeomics’) and previous
ones is that Treeomics reconstructs metastatic seeding patterns
and infers the ancestral subclones that seeded metastases
at various anatomic locations. Treeomics utilizes multiple
samples from spatially distinct sites and assumes mostly

monophyletic samples (that is, monoclonal seeding; polyclonal
seeding and reseeding of metastases only happens occasionally8).

Results
Evolutionarily incompatible mutation patterns. To illustrate
our approach, we first focused on the data of a treatment-naı̈ve
pancreatic cancer patient Pam03 (ref. 27) (Fig. 1). Whole-genome
sequencing (WGS; coverage: median 51�, mean 56�) as well as
deep targeted sequencing (coverage: median 296�, mean 644�)
was performed on 10 spatially distinct samples: two from
the primary tumour and eight from distinct liver and lung
metastases (‘Methods’ section and ref. 27). Estimated purities
ranged from 21 to 48% per sample (Supplementary Fig. 1), typical
for low-cellularity cancers (Fig. 1). Founder variants (clonal in all
samples) and unique variants (present in exactly one sample)
are parsimony uninformative in the sense that they do
not provide any information about common ancestors of spatially
distinct samples (except the founding clone) and hence do
not resolve metastatic seeding patterns. Nonetheless, unique
variants can provide information about the subclonal composi-
tion and phylogeny within a sample. Parsimony-informative
variants (variants present in some but not in all samples)
exhibited contradicting mutation patterns when we tried
to reconstruct a phylogeny consistent with the evolutionary
processes underlying tumour progression using conventional
methods. Identifying the evolutionarily compatible variants
is known as the ‘binary maximum compatibility problem’ and
has been widely studied for decades42–47. A strict binary
present/absent classification can be very problematic due to the
above described reasons. For example, likely clonal variants in
the driver genes ATM and KRAS would be classified as absent in
sample LuM 2 because both were sequenced only fourteen times
and were mutated only once (Fig. 1c; Supplementary Data 1).
We developed a Bayesian inference model to determine
the posterior probability of whether a variant was or was not
found in each sequenced lesion rather than rely on a binary input
(‘present’ or ‘absent’; Fig. 1c; ‘Methods’ section). This genera-
lization, formalized as a Mixed Integer Linear Program (MILP)48,
enabled us to simultaneously predict sequencing artifacts
and infer phylogenies in a remarkably robust fashion.

Two clonal variants are evolutionarily compatible if there
exists an evolutionary tree where each variant is only acquired
once and never lost. This condition is known as the perfect
(the same variant is not independently acquired twice; infinite
sites model49) and persistent (acquired variants are not lost; no
back mutation) phylogeny assumption—the basic principle of
modern tumour phylogeny reconstruction methods34–38. In our
case the mutation pattern of a variant is given by the set of
samples where the variant is present (Supplementary Fig. 2).
Therefore, two somatic variants a and b are evolutionarily
incompatible if and only if samples with the following three
patterns exist: (i) variant a is absent and b is present, (ii) a is
present and b is absent and (iii) both variants are present. Because
somatic variants are by definition absent in the germline, a and b
are evolutionarily incompatible and no perfect and persistent
phylogeny can explain these data (Supplementary Fig. 2).
As expected, based on conventional binary present/absent
classification of variants, a perfect and persistent tree consistent
with the observed (noisy) data of Pam03 cannot be inferred.
We show that such a phylogeny indeed exists but that it is hidden
behind misleading artifacts, mostly resulting from insufficient
coverage or low neoplastic cell content.

Identifying evolutionarily compatible mutation patterns. To
account for inconclusive data, we utilize a Bayesian inference
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model to calculate the probability that a variant is present
in a sample (Fig. 1c; ‘Methods’ section). Using these probabilities
for each individual variant, we calculated reliability scores
combining the evidence for each possible mutation pattern across
all variants and samples. We constructed an evolutionary conflict
graph where the nodes were determined through analysis of
all mutation patterns. Each node was assigned a weight provided
by the calculated reliability scores (Supplementary Fig. 3). If
two nodes (mutation patterns) were evolutionarily incompatible,
an edge between the corresponding nodes was added. We aimed
to identify the set of nodes that maximized the sum of the weights
(reliability scores) when no pair of nodes was evolutionarily
incompatible. This maximal set represents the most reliable
and evolutionarily compatible mutation patterns (Supplementary
Methods). To evaluate the confidence in the identified evolutio-
narily compatible mutation patterns, we performed bootstrapping
on the given variants.

Predicting putative artifacts in sequencing data. The solution
obtained with the MILP directly provided the most likely evolu-
tionarily compatible mutation pattern for each variant. By
comparing our inferred classifications to conventional binary
classifications, Treeomics predicted putative sequencing artifacts

in the data (Fig. 2a,b). The conventional classifications differed
in 9.0% of the variants in Pam03 (81 putative artifacts from
90 variants across 10 samples; Fig. 2b). As expected, the majority
(68) of the differences were caused by putative false-negatives
in the binary classification that were inferred to be present
by Treeomics. Fifty-five of these putative false-negatives had
relatively low coverage (mean: 21), explaining how they could
easily be misclassified as absent given the low neoplastic
cell content in the samples. Accordingly, many of these under-
powered false-negatives occurred in samples with the lowest
coverage (liver metastasis LiM 5, lung metastases LuM 2–3)
or lowest neoplastic cell content (LuM 1; Supplementary Fig. 1).
In LuM 2, the driver gene mutation KRAS was incorrectly
classified as absent by conventional means though it is most likely
a clonal founding mutation and was present at a VAF of 19% in
the original WGS sample (Supplementary Table 1). Similarly,
the driver gene mutation ATM was incorrectly classified as absent
in two samples (VAF 18% and 19% in the WGS data). Although
manual review of these samples revealed mutant reads in KRAS,
it is not scalable to manually review every putative variant
detected by next-generation sequencing. Some variants contained
false-negatives across many samples, indicating that these
variants were generally difficult to call. Remarkably, 89% (49/55)
of the predicted under-powered false-negatives were either
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Figure 1 | Tumour heterogeneity across lesions of pancreatic cancer patient Pam03. (a,b) Histology at low (20�, scale bar, 200mm) and high

(200�, scale bar, 20mm) power of liver metastasis LiM 1 and lung metastasis LuM 1, with estimates of neoplastic cellularity determined by pathological

review. Arrows highlight the few cancer cells in LuM 1. (c) Heatmap depicting the posterior probability (p) that a variant is considered as present in

deep targeted sequencing data. Top five rows show samples from five distinct liver metastases (LiM 1–5); the following three rows show samples from

three distinct lung metastases (LuM 1–3); the bottom two rows show different parts of the primary tumour (PT 10-11). Dark blue corresponds to a variant

being present with probability 499.9% and dark red corresponds to being absent with probability 499.9%. In some samples the mutation status for the

most likely clonal driver mutations in ATM and KRAS is unknown.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14114 ARTICLE

NATURE COMMUNICATIONS | 8:14114 | DOI: 10.1038/ncomms14114 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


significantly present in the WGS data (38/49; mostly at
higher coverage than in the targeted sequencing data), or the
genomic region of the variant possessed a low alignability score50

(28/49; Supplementary Table 1).
For two variants sequenced at high depth, Treeomics predicted

13 putative false-negatives. The WGS data confirmed sequencing
artifacts in these two variants but indicated that four likely
false-positives (all absent in the WGS data) induced Treeomics
to predict 13 false-negatives rather than four false-positives
(Supplementary Table 2). Of the 13 putative false-positives
(pink squares in Fig. 2b), 92% (12/13) were classified as absent
in the original WGS data and their mean VAF was 2.3% (Supple-
mentary Table 3). In total, 75% (49 putative false-negativesþ 12
putative false-positives; 61/81) of the predicted artifacts were
successfully validated. Hence, we verified that at least 7% (61/900)
of the variants were misclassified by conventional binary
classification. If a phylogenomic method does not account
for sequencing artifacts, the mutation patterns of a large fraction
of variants will often be inconsistent with any inferred
evolutionary tree. In Pam03, the mutation patterns of
31.1% (28/90) of the variants would be evolutionarily incompa-
tible (Fig. 2a). These putative artifacts may also help to explain
the observed high tumour heterogeneity in earlier studies and
the recently reported intratumor similarity when sequencing
depth is increased19,26,27.

Inferring evolutionary trees. From the identified mutation
patterns, Treeomics inferred an evolutionary tree rooted at
the germline DNA sequence of the pancreatic cancer patient
Pam03 (Fig. 2c). We found strong support for an evolutionarily
related group of geographically distinct lesions: samples LiM 2–5
(liver metastases) and PT 11 (primary tumour). This result
suggests that a recent parental clone of PT 11 seeded these

liver metastases. We also found the same evolutionary relation-
ship by using the low-coverage WGS data (Supplementary Fig. 4).
In contrast to the targeted sequencing data, the WGS data indi-
cated that lung metastasis LuM 1 was more closely related to
LuM 2 and LuM 3. Though the low neoplastic cell content
prevents a definite conclusion about the seeding subclone of
LuM 1, the reconstructed phylogeny strongly suggests that
the liver metastasis LiM 1 was seeded from a genetically different
subclone than all other liver metastases. This diversity in seeding
subclones and the origin of distinct metastases was also found
in another treatment-naı̈ve pancreatic cancer patient (Pam01)
whose data similarly indicated that liver metastases were seeded
from genetically distinct subclones (Supplementary Fig. 5).
The phylogeny of Pam01 suggested that distinct subclones
of the primary tumour gave rise to not just different liver
metastases but also different lymph node metastases. This
observation suggests that spatially and genetically distinct
subclones in the primary tumour have the capacity to seed
metastases. Moreover, these subclones are not necessarily
predisposed to seeding at a particular site. In contrast, the
phylogeny of Pam02 revealed that all liver metastases except one
(LiM 7 with low median coverage of 27) were very closely related
to each other and to various regions of the primary tumour—
indicating recent divergence (Supplementary Fig. 6). Pam02’s
pancreatic cancer might have expanded very rapidly with only
0.5 months from diagnosis to death compared with 7 and
10 months for Pam01 and Pam03. The observed genetic similarity
across geographically distinct regions of the primary tumour
and seven metastases could indicate high metastatic potential
of large parts of the primary tumour leading to this very
short survival.

To further validate our approach, we reanalyzed data from
high-grade serous ovarian cancers20. We were able to reproduce
all phylogenetic trees of Bashashati et al.20 except for cases 1 and
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5 (Supplementary Fig. 7 and Fig. 1d in ref. 20; Supplementary
Fig. 8). For case 5, the authors reported an early divergence of
sample 5c while Treeomics suggested a later divergence
(Supplementary Fig. 7c). Comprehensive analysis of their
data (reinterpreted in Supplementary Fig. 7a,b) revealed that
their tree either required that several variants (including two
driver gene mutations and multiple indels) occurred
independently twice or that two mutations in the driver genes
ABL1 and MDM4 were lost. Both possibilities seem unlikely
(Supplementary Fig. 7 and Fig. 1d in ref. 20); this discrepancy
was also identified by Popic et al.37. Treeomics did not require
these implausible scenarios to construct an otherwise similar
tree. Distance-based methods can be compromised by large
differences in the number of acquired mutations among samples;
sample 5c had twice as many mutations than all other samples.
For case 1, Treeomics reported rather low bootstrap values
and Popic et al. inferred yet another phylogeny such that no
definitive conclusion could be obtained. This disagreement across
methods highlights the importance of a confidence measure
for the inferred branches as otherwise phylogenies are difficult
to interpret in a conclusive fashion.

If multiple subclones with spatially distinct evolutionary
histories (that is, polyphyletic samples due to polyclonal seeding
or reseeding of a metastasis) were present in the same sample
at detectable frequencies, conventional phylogenetic approaches
would be unable to separate their evolutionary trajectories.

In these scenarios, evolutionarily incompatible mutation patterns
with high reliability scores were utilized to detect these subclones
and to infer separate evolutionary histories (Supplementary
Fig. 9a; ‘Methods’ section). For the prostate cancer data of
case 6 (ref. 17; Supplementary Fig. 9), Treeomics identified
subclonal structures and separated their evolutionary trajectories
without requiring high purity samples or deep sequencing data.

In silico benchmarking demonstrates high accuracy. We
implemented a stochastic continuous-time multi-type branching
process to imitate the genetics of distinct metastases
seeded according to an evolving cancer51,52 (Fig. 3; ‘Methods’
section). We investigated a total of 90,000 independently
simulated phylogenies comprised of 180 different combinations
of sample purity, mean sequencing depth, point mutation
rate, chromosome-level changes and mono- and polyphyletic
metastases. Based on the simulated ground truth data, we
compared the performance of Treeomics with conventional
phylogenetic methods (maximum parsimony and neighbour
joining) and modern phylogenomic methods (LICHeE37 and
PhyloWGS36) across sample purities of 15–95% and sequencing
depths of 25–800� (Fig. 3c) representing the range of common
sequencing data. A comparison of the mean branching error
demonstrates that phylogenies reconstructed from low coverage
whole-exome sequencing (WES) data or from samples with very
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Figure 3 | Simulated tumour phylogenies illustrate challenges in reconstructing metastatic seeding patterns. (a) Simulated metastatic progression

according to a stochastic branching process51,52. Metastases (M 1-6) are numbered in chronological order of their seeding. Purple and blue lines indicate

evolution among lineages within the primary tumour (PT). Pink numbers correspond to the founding variants present in all cancer cells and blue numbers

correspond to the parsimony-informative variants. Numbers in red denote subclonal variants acquired after the seeding of the metastasis. SC indicates

subclone. Dotted boxes illustrate biopsies. (b) Treeomics correctly reconstructed the simulated phylogeny in panel a by identifying the parsimony-

informative variants (blue). Private mutations (purple numbers in panel a) acquired in the primary tumour are indistinguishable from subsequently acquired

mutations (red numbers in panel a). (c) Benchmarking across 15,000 simulated phylogenies with six monophyletic metastases depicting the mean

branching error conditioned on at least one variant per branch. Phylogenies reconstructed from low coverage WES data or from samples with very low

neoplastic cell content exhibited high error rates independent of the used method. Necessary binary present/absent classification for maximum parsimony

and neighbour joining was based on Treeomics’ Bayesian inference model (variant was present if p450%).
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low neoplastic cell content exhibit high error rates independent of
the used method. For mean coverages of 100 and above, the error
rates drop dramatically and phylogenies can be accurately
reconstructed (Fig. 3c, Supplementary Fig. 10).

Current subclone inference algorithms do not directly
reconstruct phylogenies of distinct sites as Treeomics does but
infer joint phylogenies of variants, which are sometimes
simultaneously grouped into subclones36–40. To enable a
comparison of these slightly different methodologies, we
developed a mutation matrix error score (similar as in ref. 37)
that checks (i) if variants of the same subclone were indeed
assigned to the same subclone and (ii) if the ancestral relationship
among variants was correctly determined (‘Methods’ section).
For example, in the simulated phylogeny illustrated in Fig. 3a, the
tested tools had to correctly assign the acquired variants to the
founding subclone (PT SC 1) and the parsimony-informative
subclones (PT SC 3-5, 7). Since the runtime of PhyloWGS
increases significantly with the number of variants, we removed
all private variants in the input for PhyloWGS (purple and red
variants in Fig. 3a). Treeomics and LICHeE were provided with
all detected variants and therefore had to distinguish between
parsimony-informative variants and private variants as well as
sequencing artifacts. All tools accurately identified ancestral
subclones and their variants for mean coverages above 200 and a
neoplastic cell content 435% (Fig. 4a). Treeomics outperformed
LICHeE and PhyloWGS in all considered scenarios (Fig. 4a). In
the majority of scenarios, the error score of PhyloWGS was more
than 10-fold higher than the error score of Treeomics. For mean
coverages below 50, the error score of LICHeE increased notably
while PhyloWGS was mostly struggling with low neoplastic cell
content (o35%).

In the case of reseeded metastases21,23,53 leading to multiple
evolutionary trajectories and therefore polyphyletic lesions,

the error score of Treeomics and LICHeE slightly increased
while the performance of PhyloWGS did not change significantly
(possibly due to the advantageous input; Fig. 4b). Treeomics
exhibited the lowest error score across methods in all scenarios.
Interestingly both Treeomics and LICHeE performed best
in the case of high sequencing depth but low or medium
purity—suggesting that there is further room for improvement
(Fig. 4b). We hypothesize that the higher purity leads to more
detected private variants and hence to more potential sequen-
cing artifacts. In the case of an elevated point mutation rate
(for example, due to mismatch repair deficiency) or highly
chromosomally unstable cancers54, Treeomics continued to have
the lowest mutation matrix error score in 119 of 120 considered
scenarios (Supplementary Figs 11 and 12). The runtime of
PhyloWGS was around 5-8 h per simulated phylogeny (in total
B300,000 core computing hours; elevated mutation rate could
not be evaluated due to the high runtime), while LICHeE
needed on average a few minutes (B4,000 h) and Treeomics less
than a minute per case (in total B800 core computing hours).

Discussion
The new approach described here efficiently reconstructs
the evolutionary history, detects potential artifacts in noisy
sequencing data, and finds the ancestral subclones giving rise to
the distinct metastases. The evolutionary theory of asexually
evolving populations combined with Bayesian inference and
Integer Linear Programming enabled us to infer detailed
phylogenomic trees with significantly fewer errors than existing
methods (Figs 3 and 4, Supplementary Figs 10–12). In contrast
to other tools, Treeomics accounts for putative artifacts in
sequencing data and can thereby infer the branches where
somatic variants were acquired as well as where some may have
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Figure 4 | In silico benchmarking demonstrates the high accuracy of Treeomics across varying sample purities and mean sequencing depth.

(a) Benchmarking across 15,000 simulated phylogenies with six monophyletic metastases (no reseeding). Treeomics greatly outperformed LICHeE in all

considered scenarios. In the orange-framed scenarios, LICHeE was unable to infer a valid solution for the majority of cases. PhyloWGS exhibited mean error

scores more than 10-fold higher than those of Treeomics in most considered scenarios. (b) Benchmarking across 15,000 simulated phylogenies with three

monophyletic and three polyphyletic metastases imitating patients with reseeded metastases21,23,53. Treeomics exhibited the lowest mean error score

across all scenarios. The performance of PhyloWGS did not significantly change compared with monophyletic metastases (possibly due to the

advantageous input). The error scores of Treeomics and LICHeE slightly increased.
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been lost during evolution, presumably through losses of
heterozygosity resulting from chromosomal instability23,55. The
branching in the inferred trees shed new light on the origin
and the seeding patterns of particular metastatic lesions6,11.
For example, in contrast to colon cancer, where liver metastases
are assumed to seed lung metastases56, our results suggest
that this may not be the case in pancreatic cancer. The
reconstructed phylogenies also indicate that distinct subclones
in the primary tumour were equally capable to seed metastases in
the same and in different organs (Supplementary Fig. 5).
However, we did not find any evidence for polyphyletic
metastases, which confirms findings in a mouse model of
pancreatic cancer where the large majority of lung and liver
metastases were monophyletic53. The evolutionary rules of
natural metastatic cancers leading to the highly non-random
pattern of metastases in Pam03 are just beginning to emerge.

Despite these detailed reconstructed phylogenies, there are
several limitations that should not be neglected. A low mutation
matrix error score does not directly imply correctly reconstructed
seeding patterns (compare Figs 3c and 4a). A method can exhibit
low mutation matrix error scores while exhibiting high branching
errors and vice versa. Moreover, without additional data, even
correctly inferred cancer phylogenies do not directly provide
information about the temporal ordering in which metastases
were seeded nor about the anatomic location of the seeding
subclones. For example, metastasis M4 diverged first in the
simulated phylogeny but was seeded rather late (Fig. 3a).
Furthermore, a single seeding event cannot be distinguished
from multiple seeding events from the topology of the
reconstructed tree alone11. Only sufficient sampling of all sites
can provide evidence about the location of the seeding
subclone and the likely timing of the seeding event. For
example, the genetic similarity of the primary tumour sample
PT 11 and the liver metastases LiM 2–5 suggests multiple seeding
events from a recent ancestor of PT 11. Future phylogenomic
approaches could incorporate estimated growth rates and
mutation rates to better quantify the probability of metastasis-
to-metastasis spread.

We have designed Treeomics from first principles to directly
handle ambiguity in high-throughput sequencing data, including
samples with low neoplastic cell content or coverage.
The mutation patterns and their evolutionary conflict graph
form a robust data structure and consequently the painful task
of semi-automatic filtering becomes unnecessary. As a result
of the Bayesian confidence estimates for the individual variants,
this method can infer more robust results than traditional
phylogenetic methods, which employ a binary representation
of sequencing data (Fig. 2a). Furthermore, as shown above,
distance-based methods can produce results inconsistent with
the evolutionary theory of cancer as they often ignore knowledge
of biological phenomena specific to neoplasia (Supplementary
Fig. 7). We note that PhyloWGS, LICHeE and other subclone
inference methods have not been designed to reconstruct
phylogenies based on these few genetic variants that determine
the evolutionary history of metastases. The key difference
between these approaches is that Treeomics assumes that mixing
of subclones from two spatially distinct sites and hence
polyphyletic samples are rare23,26,53. Treeomics therefore works
extremely well among metastases but is not applicable for liquid
cancers. On the contrary, tools like PhyloWGS work extremely
well in liquid cancers. Last, we compared our results to
AncesTree38, which roughly identified the evolutionarily related
samples in Pam03 but excluded 70% (63/90) of the variants
(among them the driver gene mutations in KRAS and ATM)
in the inferred phylogeny due to evolutionary incompatibilities
(Supplementary Fig. 13).

At present, Treeomics only employs nucleotide substitutions
and short insertions and deletions—a subset of the available
information. The benchmarking results demonstrate that a single
mutation varying in two samples is typically sufficient
for Treeomics to infer the correct evolutionary history
(Fig. 3a,b); a crucial property given the high genetic similarity
of metastases26,27. Other types of data, such as copy number
alterations, structural variations and DNA methylation, could
be incorporated into Treeomics to further improve the accuracy
of the inferred results.

Methods
DNA sequencing design and validation. Sequencing data were generated
in two stages27. First, genomic DNA from 26 tumour samples of three subjects
(20 metastases and six primary tumour sections) was evaluated by 60� whole-
genome sequencing (WGS) using an Illumina Hi-Seq 2000 (Fig. 1, Supplementary
Figs 5 and 6 for anatomic locations of the individual samples). Importantly,
genomic DNA from the normal tissue of each patient was used to facilitate
identification of somatic variants. We obtained an average coverage of
69� with 97.5% of bases covered at 410�, revealing a total of 127,597 putative
coding and noncoding somatic mutations (average of 4,908 per sample). To limit
the artifacts generated by WGS and alignment, we filtered the putative variants
using several quality parameters, including read directionality, mutant allele
frequency detected in the normal, known human SNPs, and the number of
independent tags at each site. This analysis, combined with manual inspection of
the raw data, yielded a total of 2,105 potential mutations for subsequent validation.

Second, we utilized a targeted sequencing approach to independently screen
every mutation that we observed to be of high quality in at least one WGS tumour
sample. Briefly, probes for capture were designed to flank each potential mutant
base (2,105) and libraries were prepared for the original 26 WGS samples
of the three subjects. Using an Illumina chip-based approach, we successfully
aligned, processed, and validated 381 mutations (range 106–164 per patient)
at an average sequencing depth of 731� (Supplementary Data 1–3). In addition
to the increased coverage and sensitivity of targeted sequencing, both sequencing
approaches generated independent data sets in which we could directly
compare putative variants in silico among many tumours within a patient.
Additional details regarding patient selection, processing of tissue samples and
DNA extraction and quantification can be found in ref. 27.

Bayesian inference model. To compute reliability scores for each mutation
pattern, we extract posterior probabilities for the presence and absence of
a variant in a sample from a Bayesian binomial likelihood model of error-prone
sequencing. If f is the true fraction of variant reads in the sample, p is our prior
belief about f, and e is the sequencing error rate, the posterior distribution
P of f given N total reads and K variant reads is

P f jN;Kð Þ ¼
N

K

� �
� f 1� eð Þþ 1� fð Þe½ �K � f � eþ 1� fð Þ 1� eð Þ½ �N �K �p fð Þ � 1

Z

ð1Þ

where Z is a normalizing constant (Supplementary Methods). A priori, the VAF in
a sample is exactly zero (f¼ 0) with some positive probability c0. The prior p is then
of the following form

p fð Þ ¼ c0 � d fð Þþ 1� c0ð Þ � g fð Þ; ð2Þ

where d(f) denotes the Dirac delta function and g(f) denotes a prior given the
variant is present. We use a sample-specific prior function to account for the by
multiple fold varying neoplastic cell content across samples (Supplementary
Methods; Supplementary Fig. 2). The posterior probability that a variant is absent
in a sample with low neoplastic cell content will be lower than in a sample with
high neoplastic cell content despite the same K and N (Supplementary Methods).
The posterior probability that a variant is absent, denoted by q, and the probability
that a variant is present, denoted by p, are

q ¼ P f � fabsent � gsjN;Kð Þ; p ¼ 1� q ð3Þ

where gs is the estimated neoplastic cell content in sample s and fabsent is the
maximal frequency threshold for an absent single nucleotide variant (SNV)
(Supplementary Methods). A variety of more sophisticated variant detection
algorithms can be used here as long as the output can be converted to posterior
probabilities of presence and absence. We obtained robust results across all
investigated scenarios with the frequency threshold of fabsent¼ 0.05. We calculate
the probability of each mutation pattern for a particular variant by multiplying
the corresponding posterior probabilities for each sample. Each mutation pattern
has some positive probability, but those supported by the data are given
much more weight. A mutation pattern v is denoted as a binary vector of length
|S| (total number of samples) where vs is 1 if the variant is present in sample s and

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14114 ARTICLE

NATURE COMMUNICATIONS | 8:14114 | DOI: 10.1038/ncomms14114 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


0 if absent. The likelihood Lm(v) that a variant m exhibits pattern v is

LmðnÞ ¼
Y
s2S

p ns
m;s � q 1� ns

m;s : ð4Þ

If the presence or absence of a variant in some samples is uncertain, the likelihood
of any individual mutation pattern will generally be lower. The reliability score
ov of each mutation pattern v (corresponding to a node in the evolutionary conflict
graph; Supplementary Fig. 3) is given by

on ¼
� log

Q
m 1� Lm nð Þ
� �
m

: ð5Þ

Assuming mutations are independent across each other and across samples,
the argument of the logarithm denotes the likelihood that no mutation has
pattern v and hence leverages the full sequencing information from all variants.
With these scores (weights) normalized by the number of considered variants m,
the minimum weight vertex cover of the evolutionary conflict graph corresponds
to identifying the most reliable and evolutionarily compatible mutation patterns
(see Supplementary Methods for further details).

Identifying evolutionarily compatible mutation patterns. Given the calculated
reliability scores, we efficiently find the most reliable and evolutionarily compatible
mutation pattern for all variants via solving a MILP48. In the Supplementary
Information we prove that finding these mutation patterns is equivalent to solving
the Minimum Vertex Cover problem; one of Karp’s original 21 NP-complete
problems42,57. In the Minimum Vertex Cover problem one wants to find the
minimum set of nodes in an undirected graph such that each edge in the
graph is adjacent to one of the nodes in the minimum set. Therefore, by definition
all edges are covered by the nodes in the minimum set. Similarly, we try to find
the weighted set of nodes (here mutation patterns) with the minimal sum of
reliability scores such that no evolutionary incompatibilities in the conflict
graph remain. After this minimal set of nodes and their adjacent edges have
been removed from the graph, we can easily infer an evolutionary tree since
evolutionary conflicts no longer exist among the remaining nodes (that is, all
edges were covered and removed with the minimal set). The remaining set of
mutation patterns is by definition the maximal set of evolutionarily compatible
patterns (Supplementary Methods).

In the evolutionary conflict graph G¼ (V, E), each node iAV represents
a different mutation pattern. For n samples, the number of nodes |V| is given
by 2n. For each pair of evolutionarily incompatible mutation patterns i and j,
there exists an edge (i, j)AE. The weight (ci) of each node i is given by the
reliability scores oi described in the Bayesian inference model section
(Supplementary Fig. 3).

The MILP to find the minimal-weighted set of evolutionarily incompatible
mutation patterns is defined by the following objective function and constraints:

objective functionð Þ minimize
P
i2V

ci � xi

constraintsð Þ subject to xi þ xj � 1 for all ði; jÞ 2 E

xi 2 f0; 1g; ci40 for all i 2 V

ð6Þ
This formulation guarantees that the MILP solver finds the minimal value
of the objective function such that all constraints are met and hence the
nodes in the selected set cover all edges. The evolutionarily compatible and
most reliable mutation patterns {i|xi¼ 0} are given by the complement set
of the optimal solution {i|xi¼ 1} to the MILP.

Day and Sankoff showed that inferring the most likely evolutionary trajectories
is a computationally challenging problem (NP-complete42). Sophisticated
approximation algorithms have been developed in the context of language
and cancer evolution43,45,46. However, medium-sized instances of NP-complete
problems are no longer intractable due to the enormous engineering and
research effort that has been devoted to ILP solvers. The MILP48 formulation
enables an efficient and robust analysis of large data sets. We prove that an
approximation algorithm that would guarantee that its solution is at most
36.06% worse than the optimal solution cannot exist unless the complexity class
P¼NP (Supplementary Methods, Theorem 1). Salari et al.46 explored a related
approach but approximated two NP-complete problems, possibly leading to
suboptimal results. Treeomics produces a mathematically guaranteed to be
optimal result without convergence or termination issues. Note that a
mathematical optimal solution is not necessarily equivalent to the biological truth,
especially in the case of low neoplastic cell content or coverage (Figs 3 and 4).
MILPs may also be useful in other areas of phylogenetic inference where
methods with strong biological assumptions (for example, constant mutation
rates or specific substitution profiles) are not applicable or are computationally
too expensive to obtain guaranteed optimal solutions.

Inferring evolutionary trees. After the evolutionarily compatible mutation
patterns {i|xi¼ 0} have been identified and variants are assigned to their most
likely evolutionarily compatible pattern based on the maximum likelihood weights

given by the Bayesian inference model, the derivation of an evolutionary tree is a
trivial computational task. In quadratic time (Oðn �mÞ) of the input size we
construct a unique phylogeny where n is the number of samples and m is the
total number of distinct variants58. The branches where the individual variants
are acquired follow from the inferred tree.

Detecting subclones of distinct origin. Evolutionary incompatible mutation
patterns with high reliability scores may indicate mixed subclones with distinct
evolutionary trajectories (Supplementary Fig. 9). Recall that evolutionary
incompatibility requires that the conflicting variants need to be present together in
at least one sample. However, even if both variants are mutated in a statistically
significant fraction in the same sample, these variants may not be present in
the same cells and the evolutionary laws of an asexually evolving population
may not be violated. If an evolutionarily incompatible mutation pattern exhibits a
reliability score higher than expected from noise, Treeomics utilizes this evidence
to infer subclones with distinct evolutionary trajectories and unidirectional
spreading. A detailed pseudo-code is provided in the Supplementary Methods.
Subsets (descendants) and supersets (ancestors) of the conflicting mutation pattern
are simultaneously identified and a comprehensive evolutionary tree is inferred.
We performed extensive benchmarking of the subclone detection algorithm for
various scenarios described in the following section (Fig. 4, Supplementary Fig. 9).
Furthermore, we tested the method on sequencing samples from the same prostate.
After two subclones were separated in mixed samples from a prostate tumour17,
12,643 (out of 12,645) variants supported the inferred evolutionary tree
(Supplementary Fig. 9). The remaining two variants were predicted to be
false-positives by Treeomics.

In silico benchmarking. To assess the performance of Treeomics, we simulated
metastatic progression according to a stochastic multi-type continuous-time
branching process51,59–63 where metastases are seeded independently at random.
Cells divide with birth rate b¼ 0.16, die with death rate d¼ 0.1555, and can leave
the current site to successfully colonize a new site with probability q¼ 10� 9,
(refs 51,64). When a cell divides, a point mutation is acquired with probability
u¼ 0.145 (assuming a point mutation rate of 5� 10� 10 per basepair and 45
megabases covered by Illumina exome sequencing65) and a copy number variant
(CNVs) is acquired with a rate of 0.1% per division. The evolutionary process is
initiated by a single advanced cancer that already accumulated driver gene
mutations. Subsequently accumulated mutations, SNVs and CNVs, are assumed
to be neutral66,67. Variants are acquired randomly across all chromosome pairs
such that no two copy number events overlap along the same lineage. SNVs
and CNVs may overlap, in which case the timing of the events is used to determine
the allele fraction of SNVs at the affected locus. CNV length is sampled from the
observed length distribution in ref. 68. After m spatially distinct metastases reached
the detection size M¼ 108, the simulation is stopped. Note that new metastases can
also be seeded from previously seeded metastases.

To model the biopsy and sequencing process, a single sample consisting of
one million cells of each of the m metastases consistent to the considered
purity (15%, 35%, 55%, 75%, 95%) is subject to in silico sequencing. Metastases
with a mixture of ancestries (polyphyletic samples) are simulated by random
sampling from two distinct sites proportional to the tumour sizes at these sites
(size of the second site possibly below the detection limit). Sequencing depth is
negative-binomially distributed with a given mean (25, 50, 100, 200, 400, 800).
A sequencing error rate of e¼ 0.5% is assumed. The simulation output is the
number of variant and reference ‘reads’ in each metastasis sample for each mutated
locus present with a VAF of at least 5% and supported by at least four variant reads
(two in the case of a coverage of 25) in any of the sampled metastases. An example
for a simulated phylogeny is depicted in Fig. 3a. Simulated phylogenies are
available on github: https://github.com/johannesreiter/treeomics.

We compared Treeomics to standard phylogenetic reconstruction
(maximum parsimony69, neighbour joining69) and modern tumour phylogeny
reconstruction methods (LICHeE37, PhyloWGS36). Two different error
metrics demonstrate the performance of Treeomics against existing methods:
branching error and mutation matrix error score. The branching error
quantifies the accuracy of the reconstructed coalescent relationships among distinct
sites. From the true coalescent tree among metastatic sites, the collection of
coalescent events among the sites is computed and compared with those predicted
by the method. The branching error is defined as the fraction of true coalescent
events missed by the reconstruction method. Since maximum parsimony and
neighbour joining trees do not infer the evolutionary relationships among
individual variants, the branching error metric was used to compare these
methods (Fig. 3).

The mutation matrix error score quantifies the accuracy of the reconstructed
sequence of mutations acquired during an evolutionary process. For a tumour
with k parsimony-informative mutations across m metastases, a k by k matrix A is
constructed where Ai,j¼ 1 if mutation i is parental to mutation j and 0 otherwise.
If two mutations are acquired on the same branch in the true phylogeny, the
correct evolutionary ordering among this pair of mutations is not required and
Ai,j¼ 0.5. In PhyloWGS, where many phylogenies are sampled, this reconstructed
phylogeny mutation matrix Â is averaged over all samples. If a tool did not
provide any information about a pair of mutations i,j, Âi;j is set to Ai,j� 0.5.
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For the reconstructed matrix Â, the normalized error score is computed asP
i;j Ai;j � Âi;j
� �2

=ðk2 � kÞ. Because LICHeE and PhyloWGS do not directly
infer the coalescent relationship among sites, the mutation matrix error score
was used in the benchmarking (Fig. 4, Supplementary Figs 11 and 12). Recall
that only founder and parsimony-informative mutations were provided as input
to PhyloWGS while LICHeE and Treeomics also had to deal with noisy private
mutations. PhyloWGS was run with 2,500 MCMC iterations and 5,000 inner
Metropolis-Hastings iterations for a maximum of 15 h for each individual case.
Increasing the number of samples and iterations did not significantly decrease the
mutation matrix error score. LICHeE was run with the default parameter values
except that we set maxVAFAbsent and minVAFPresent to 0.05 as well as
minClusterSize and minProfileSupport to 1. These parameter changes significantly
improved the performance of LICHeE in our data set.

Binary present/absent classification. We perform conventional binary
present/absent classification of each variant to allow a comparison to the
inferred classification used in our new approach. We scored each variant
by calculating a P value in all samples (one-tailed binomial test):

Pr X � K jH0;K;Nð Þ ¼ 1�
PK � 1

i¼0

�N
i

�
� pi

fpr � ð1� pfprÞN � i where N denotes

the coverage, K denotes the number of variant reads observed at this position,
and X denotes the random number of false-positives. As null hypothesis H0, we
assume that the variant is absent. Similar to Gundem et al.21, we assumed
a false-positive rate (pfpr) of 0.5% for the Illumina chip-based targeted deep
sequencing. We used the step-up method70 to control for an average false-
discovery rate of 5% in the combined set of P values from all samples of a patient.
Variants with a rejected null hypothesis were classified as present. The remaining
variants were classified as absent.

Code availability. The source code and a manual for Treeomics, as well as
multiple examples illustrating its usage, are provided at https://github.com/
johannesreiter/treeomics as well as in Supplementary Software. Treeomics v1.5.2
was used for the entire analysis. The tool is implemented in Python 3.4. The
inputs to the tool are the called variants and the corresponding sequencing data,
either in tab-separated-values format or as matched tumour-normal VCF files.
As output, Treeomics produces a comprehensive HTML report (see github repo-
sitory) including statistical analysis of the data, a mutation table plot and a list of
putative artifacts (false-positives, well-powered and under-powered false-nega-
tives). Additionally, Treeomics produces evolutionary trees in LaTeX/TikZ
format for high-resolution plots in PDF format. If circos is installed, Treeomics
automatically creates the evolutionary conflict graph and adds it to the HTML
report. Treeomics also supports various filtering (for example, minimal sample
median coverage, false-positive rate, false-discovery rate) for an extensive
analysis of the sequencing data. Detailed instructions for the filtering and analysis
are provided in the readme file in the online repository. For solving the MILP,
Treeomics makes use of the common CPLEX solver (v12.6) from IBM.

Data availability. Targeted sequencing data of subjects Pam01, Pam02, and
Pam03 have been deposited in the github repository in the directory /src/input/
Makohon2016 and are also provided in Supplementary Data 1–3. All other relevant
data are available within the article and its Supplementary Files or available from
the corresponding authors.
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