
Nested Weighted Limit-Average Automata of
Bounded Width∗

Krishnendu Chatterjee1, Thomas A. Henzinger2, and Jan Otop3

1 IST Austria
krish.chat@ist.ac.at

2 IST Austria
tah@ist.ac.at

3 University of Wrocław
jotop@cs.uni.wroc.pl

Abstract
While weighted automata provide a natural framework to express quantitative properties, many
basic properties like average response time cannot be expressed with weighted automata. Nested
weighted automata extend weighted automata and consist of a master automaton and a set
of slave automata that are invoked by the master automaton. Nested weighted automata are
strictly more expressive than weighted automata (e.g., average response time can be expressed
with nested weighted automata), but the basic decision questions have higher complexity (e.g.,
for deterministic automata, the emptiness question for nested weighted automata is PSpace-
hard, whereas the corresponding complexity for weighted automata is PTime). We consider a
natural subclass of nested weighted automata where at any point at most a bounded number k
of slave automata can be active. We focus on automata whose master value function is the limit
average. We show that these nested weighted automata with bounded width are strictly more
expressive than weighted automata (e.g., average response time with no overlapping requests can
be expressed with bound k = 1, but not with non-nested weighted automata). We show that
the complexity of the basic decision problems (i.e., emptiness and universality) for the subclass
with k constant matches the complexity for weighted automata. Moreover, when k is part of the
input given in unary we establish PSpace-completeness.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases weighted automata; nested weighted automata; complexity; mean-payoff

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.24

1 Introduction

Traditional to quantitative verification. In contrast to the traditional view of formal veri-
fication that focuses on Boolean properties of systems, such as “every request is eventually
granted”, quantitative specifications consider properties like “the long-run average success
rate of an operation is at least one half” or “the long-run average response time is below
a threshold.” Such properties are crucial for performance related properties, for resource-
constrained systems, such as embedded systems, and significant attention has been devoted
to them [21, 14, 13, 22, 2].

∗ This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), ERC Start grant (279307: Graph Games), Vienna
Science and Technology Fund (WWTF) through project ICT15-003 and by the National Science Centre
(NCN), Poland under grant 2014/15/D/ST6/04543.

licensed under Creative Commons License CC-BY
41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Nested Weighted Limit-Average Automata of Bounded Width

Weighted automata. A classical model to express quantitative properties is weighted auto-
mata that extends finite automata where every transition is assigned a rational number called
a weight. Each run results in a sequence of weights, and a value function aggregates the
sequence into a single value. For non-deterministic weighted automata, the value of a word
is the infimum value of all runs over the word. Weighted automata provide a natural and
flexible framework to express quantitative1 properties [14]. Weighted automata have been
studied over finite words with weights from a semiring [21], and extended to infinite words
with limit averaging or supremum as a value function [14, 13, 12]. While weighted automata
over semirings can express several quantitative properties [27], they cannot express long-run
average properties that weighted automata with limit averaging can [14]. However, even
weighted automata with limit averaging cannot express the basic quantitative property of
average response time [16, Example 5].

Nested weighted automata. To express properties like average response time, weighted
automata were extended to nested weighted automata (NWA) [16]. An NWA consists of a
master automaton and a set of slave automata. The master automaton runs over infinite
input words. At every transition the master automaton can invoke a slave automaton that
runs over a finite subword of the infinite word, starting at the position where the slave
automaton is invoked. Each slave automaton terminates after a finite number of steps and
returns a value to the master automaton. Each slave automaton is equipped with a value
function for finite words, and the master automaton aggregates the returned values from
slave automata using a value function for infinite words. For Boolean finite automata, nested
automata are as expressive as the non-nested counterpart, whereas NWA are strictly more
expressive than non-nested weighted automata [16]. It has been shown in [16] that NWA
provide a specification framework where many basic quantitative properties, which cannot
be expressed by weighted automata, can be expressed easily, and they provide a natural
framework to study quantitative run-time verification.

The basic decision questions. We consider the basic automata-theoretic decision ques-
tions of emptiness and universality. The importance of these basic questions in the weighted
automata setting is as follows: (1) Consider a system modeled by a finite-automaton recog-
nizing traces of the system and a quantitative property given as a weighted automaton or
an NWA. Then whether the worst-case (resp., best-case) behavior has the value at least λ is
the emptiness (resp., universality) question on the product. (2) Problems related to model
measuring (that generalizes model checking) and model repair also reduce to the emptiness
problem [25, 16].

Complexity gap. In this work we focus on the following classical value functions: LimAvg
for infinite words, which is the long-run average property; and Sum,Sum+ (where Sum+

is the sum of absolute values) for finite words. While NWA are strictly more expressive
than weighted automata, the complexity of the decision questions are either unknown or
considerably higher. Table 1 (non-bold-faced results) summarizes the existing results for
weighted automata [14] and NWA [16], for example, for NWA for Sum+ the known bounds
are ExpSpace and PSpace-hard, and for Sum even the decidability of the basic decision

1 We use the term “quantitative” in a non-probabilistic sense, which assigns a quantitative value to each
infinite run of a system, representing long-run average or maximal response time, or power consumption,
or the like, rather than taking a probabilistic average over different runs.

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:3

Table 1 Decidability and complexity of emptiness and universality for weighted and nested
weighted automata with LimAvg value function and Sum and Sum+ value function for slave auto-
mata. Our results are bold faced. Moreover all PTime results become NLogSpace-complete when
the weights are specified in unary.

Deterministic Nondeterministic Nondeterministic
(Emptiness/Universality) Emptiness Universality

Weighted aut. PTime Undecidable
NWA ExpSpace, PSpace-hard

(LimAvg, Sum+) PTime (width k is constant) Undecidable
PSpace-c. (bounded width)

NWA Open
(LimAvg, Sum) PTime (width k is constant) Undecidable

PSpace-c. (bounded width)

questions is open (or undecidable). Thus, a fundamental question is whether there exist
sub-classes of NWA that are strictly more expressive than weighted automata and yet have
better complexity than general NWA. We address this question in this paper.

Nested weighted automata with bounded width. For NWA, let the maximum number
of slave automata that can be active at any point be the width of the automaton. In this
work we consider a natural special class of NWA, namely, NWA with bounded width, i.e.,
NWA where at any point at most k slave automata can be active. For example, the average
response time with bounded number of requests pending at any point can be expressed by
an NWA with bounded width, but not with a weighted automaton. Moreover, the class
of NWA with bounded width is equivalent to automata with monitor counters [18], which
are automata equipped with counters, where at each transition, a counter can be started,
terminated, or the value of the counter can be increased or decreased. The transitions do
not depend on the counter values, and hence they are referred to as monitor counters. The
values of the counters when they are terminated give rise to the sequence of weights, which
is aggregated into a single value with the LimAvg value function (see [18]). Automata with
monitor counters are similar in spirit with the class of cost register automata of [2].

Our contributions. Our contributions are as follows (summarized as bold-faced results in
Table 1):
1. Constant width. We show that the emptiness problem (resp., the emptiness and the

universality problems) for non-deterministic (resp., deterministic) NWA with constant
width (i.e., k is constant) can be solved in polynomial time and is NLogSpace-complete
when the weights are specified in unary. Thus we achieve the same complexity as weighted
automata for a much more expressive class of quantitative properties.

2. Bounded width. We show that the emptiness problem (resp., the emptiness and the
universality problems) for non-deterministic (resp., deterministic) NWA with bounded
width (i.e., k is a part of input given in unary) is PSpace-complete. Thus we establish
precise complexity when k is a part of input given in unary.

3. Deciding width. We show that checking whether a given NWA has width k can be solved
in polynomial time for constant k and in PSpace if k is given in the input (Theorem 6).

Technical contributions. Our main technical contributions for deterministic
(LimAvg; Sum)-automata are as follows.

MFCS 2016

24:4 Nested Weighted Limit-Average Automata of Bounded Width

1. Infinite infimum. We first identify a necessary and sufficient condition for the infimum
value over all words to be −∞, and show that this condition can be checked efficiently.

2. Lasso-approximation. We show that if the above condition does not hold, then the
infimum over all words can be approximated by lasso words, i.e., words of the form
vuω. Moreover, we show that the infimum value is achieved with words where the slave
automata run for short length relative to the point of the invocation, and hence the
partial averages converge.

3. Reduction to width 1. Using the lasso-approximation we reduce the emptiness problem
of width bounded by k to the corresponding problem of width 1. We show that the case
of width 1 can be solved using standard techniques.

In the paper we present the key intuitions of the proofs, and due to space restrictions the
technical details are in the full version [17].

Related works. Weighted automata over finite words have been extensively studied, the
book [21] provides an excellent collection of results. Weighted automata on infinite words
have been studied in [14, 13, 22]. The extension to weighted automata with monitor counters
over finite words has been considered as cost register automata in [2]. A version of nested
weighted automata over finite words has been studied in [6], and nested weighted automata
over infinite words has been studied in [16]. Several quantitative logics have also been
studied, such as [5, 7, 1]. In this work we consider a subclass of nested weighted automata
which is strictly more expressive than weighted automata yet achieve the same complexity for
the basic decision questions. Probabilistic models (such as Markov decision processes) with
quantitative properties (such as limit-average or discounted-sum) have also been extensively
studied for single objectives [23, 28], and for multiple objectives and their combinations [20,
10, 15, 8, 19, 9, 24, 11, 3, 4]. While NWA with bounded width have been studied under
probabilistic semantics [18], the basic automata theoretic decision problems have not been
studied for them.

2 Preliminaries

2.1 Words and automata
Words. We consider a finite alphabet of letters Σ. A word over Σ is a (finite or infinite)
sequence of letters from Σ. We denote the i-th letter of a word w by w[i], and for i < j we
have w[i, j] is the word w[i]w[i+ 1] . . . w[j]. The length of a finite word w is denoted by |w|;
and the length of an infinite word w is |w| =∞. For an infinite word w, thus w[i,∞] is the
suffix of the word with first i− 1 letters removed.

Labeled automata. For a set X, an X-labeled automaton A is a tuple 〈Σ, Q,Q0, δ, F, C〉,
where (1) Σ is the alphabet, (2) Q is a finite set of states, (3) Q0 ⊆ Q is the set of initial
states, (4) δ ⊆ Q × Σ × Q is a transition relation, (5) F is a set of accepting states,
and (6) C : δ 7→ X is a labeling function. A labeled automaton 〈Σ, Q, {q0}, δ, F, C〉 is
deterministic if and only if δ is a function from Q × Σ into Q and Q0 is a singleton. For
deterministic labeled automata, we omit curly brackets for Q0 and write 〈Σ, Q, q0, δ, F, C〉.

Semantics of (labeled) automata. A run π of a (labeled) automaton A on a word w is
a sequence of states of A of length |w| + 1 such that π[0] belongs to the initial states of A
and for every 0 ≤ i ≤ |w| − 1 we have (π[i], w[i + 1], π[i + 1]) is a transition of A. A run
π on a finite word w is accepting iff the last state π[|w|] of the run is an accepting state of

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:5

A. A run π on an infinite word w is accepting iff some accepting state of A occurs infinitely
often in π. For an automaton A and a word w, we define Acc(w) as the set of accepting
runs on w. Note that for deterministic automata, every word w has at most one accepting
run (|Acc(w)| ≤ 1).

Weighted automata. A weighted automaton is a Z-labeled automaton, where Z is the set
of integers. The labels are called weights.

Semantics of weighted automata. We define the semantics of weighted automata in two
steps. First, we define the value of a run. Second, we define the value of a word based on the
values of its runs. To define values of runs, we will consider value functions f that assign real
numbers to sequences of integers. Given a non-empty word w, every run π ofA on w defines a
sequence of weights of successive transitions of A, i.e., C(π) = (C(π[i−1], w[i], π[i]))1≤i≤|w|;
and the value f(π) of the run π is defined as f(C(π)). We denote by (C(π))[i] the weight
of the i-th transition, i.e., C(π[i− 1], w[i], π[i]). The value of a non-empty word w assigned
by the automaton A, denoted by LA(w), is the infimum of the set of values of all accepting
runs; i.e., infπ∈Acc(w) f(π), and we have the usual semantics that infimum of an empty set
is infinite, i.e., the value of a word that has no accepting run is infinite. Every run π on the
empty word has length 1 and the sequence C(π) is empty, hence we define the value f(π) as
an external (not a real number) value ⊥. Thus, the value of the empty word is either ⊥, if
the empty word is accepted by A, or ∞ otherwise. To indicate a particular value function
f that defines the semantics, we will call a weighted automaton A an f -automaton.

Value functions. For finite runs we consider the following classical value functions: for
runs of length n+ 1 we have

Sum, absolute sum: the sum function Sum(π) =
∑n
i=1(C(π))[i], the absolute sum

Sum+(π) =
∑n
i=1 Abs((C(π))[i]), where Abs(x) is the absolute value of x,

For infinite runs we consider:
Limit average: LimAvg(π) = lim inf

k→∞
1
k ·

∑k
i=1(C(π))[i].

Silent moves. Consider a (Z ∪ {⊥})-labeled automaton. We can consider such an auto-
maton as an extension of a weighted automaton in which transitions labeled by ⊥ are silent,
i.e., they do not contribute to the value of a run. Formally, for every function f ∈ InfVal
we define sil(f) as the value function that applies f on sequences after removing ⊥ symbols.
The significance of silent moves is as follows: it allows to ignore transitions, and thus provide
robustness where properties could be specified based on desired events rather than steps.

2.2 Nested weighted automata
In this section we describe nested weighted automata introduced in [16], and closely follow
the description of [16]. For more details and illustration of such automata we refer the reader
to [16]. We start with an informal description.

Informal description. A nested weighted automaton (NWA) consists of a labeled automaton
over infinite words, called the master automaton, a value function f for infinite words, and
a set of weighted automata over finite words, called slave automata. A nested weighted
automaton can be viewed as follows: given a word, we consider the run of the master
automaton on the word, but the weight of each transition is determined by dynamically

MFCS 2016

24:6 Nested Weighted Limit-Average Automata of Bounded Width

running slave automata; and then the value of a run is obtained using the value function f .
That is, the master automaton proceeds on an input word as an usual automaton, except
that before it takes a transition, it starts a slave automaton corresponding to the label of
the current transition. The slave automaton starts at the current position of the word of the
master automaton and works on some finite part of the input word. Once a slave automaton
finishes, it returns its value to the master automaton, which treats the returned value as
the weight of the current transition that is being executed. The slave automaton might
immediately accept and return value ⊥, which corresponds to silent transitions. If one of
slave automata rejects, the nested weighted automaton rejects. We first present an example
and then the formal definition.

I Example 1 (Average response time). Consider an alphabet Σ consisting of requests r,
grants g, and null instructions #. The average response time (ART) property asks for the
average number of instructions between any request and the following grant. This property
cannot be expressed by a non-nested automaton: a quantitative property is a function from
words to reals, and as a function the range of non-nested LimAvg-automata is bounded,
whereas the ART can have unbounded values (for details see [16]).

Nested weighted automata. A nested weighted automaton (NWA) is a tuple
〈Amas; f ;B1, . . . ,Bl〉, where (1) Amas, called the master automaton, is a {1, . . . , l}-labeled
automaton over infinite words (the labels are the indexes of automata B1, . . . ,Bl), (2) f
is a value function on infinite words, called the master value function, and (3) B1, . . . ,Bl

are weighted automata over finite words called slave automata. Intuitively, an NWA can
be regarded as an f -automaton whose weights are dynamically computed at every step by
the corresponding slave automaton. We define an (f ; g)-automaton as an NWA where the
master value function is f and all slave automata are g-automata.

Semantics: runs and values. A run of A on an infinite word w is an infinite sequence
(Π, π1, π2, . . .) such that (1) Π is a run of Amas on w; (2) for every i > 0 we have πi is a
run of the automaton BC(Π[i−1],w[i],Π[i]), referenced by the label C(Π[i− 1], w[i],Π[i]) of the
master automaton, on some finite word of w[i, j]. The run (Π, π1, π2, . . .) is accepting if all
runs Π, π1, π2, . . . are accepting (i.e., Π satisfies its acceptance condition and each π1, π2, . . .

ends in an accepting state) and infinitely many runs of slave automata have length greater
than 1 (the master automaton takes infinitely many non-silent transitions). The value of
the run (Π, π1, π2, . . .) is defined as sil(f)(v(π1)v(π2) . . .), where v(πi) is the value of the run
πi in the corresponding slave automaton. The value of a word w assigned by the automaton
A, denoted by LA(w), is the infimum of the set of values of all accepting runs. We require
accepting runs to contain infinitely many non-silent transitions as f is a value function over
infinite sequences, hence the sequence v(π1)v(π2) . . . with ⊥ removed must be infinite.

Deterministic nested weighted automata. An NWA A is deterministic if (1) the master
automaton and all slave automata are deterministic, and (2) slave automata recognize prefix-
free languages, i.e., languages L such that if w ∈ L, then no proper extension of w belongs
to L. Condition (2) implies that no accepting run of a slave automaton visits an accepting
state twice. Intuitively, slave automata have to accept the first time they encounter an
accepting state as they will not visit an accepting state again.

I Definition 2 (Width of NWA). An NWA has width k if and only if in every run at every
position at most k slave automata are active.

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:7

I Example 3 (Non-overlapping ART). We consider a variant of the ART property, called
the 1-ART property, where after a request till it is granted additional requests are not con-
sidered. Formally, we consider the ART property over the language L1 defined by (r#∗g#∗)ω
(equivalently, given a request, the automata can check if the slave automaton is not active,
and only then invoke it). An NWA A1 computing the ART property over L1 is obtained from
the NWA for the ART property (see [16]) by taking the product of the master automaton
Amas with an automaton recognizing the language L1. The automaton A1 is a determin-
istic (LimAvg; Sum+)-automaton. Indeed, the master automaton and the slave automata
are deterministic and the slave automata recognize prefix-free languages. Moreover, in any
(infinite) run at most one slave automaton is active, i.e., A1 has width 1. The dummy
slave automata do not increase the width as they immediately accept, and hence they are
not considered as active even at the position they are invoked. Finally, observe that the 1-
ART property can return unbounded values, which implies that there exists no (non-nested)
LimAvg-automaton expressing it. Also see Example 3 of the full version [17].

Decision problems. The classical questions in automata theory are language emptiness and
universality. These problems have their counterparts in the quantitative setting of weighted
automata and NWA. The (quantitative) emptiness and universality problems are defined in
the same way for weighted automata and NWA; in the following definition the automaton
A can be either a weighted automaton or an NWA.

Emptiness and universality: Given an automaton A and a threshold λ, the emptiness
(resp. universality) problem asks whether there exists a word w with LA(w) ≤ λ (resp.,
for every word w we have LA(w) ≤ λ).

I Remark. In this work we focus on value functions Sum and Sum+ for finite words,
and LimAvg for infinite words. There are other value functions for finite words, such as
Max,Min and bounded sum. However, it was shown in [16] that for these value functions,
there is a reduction to non-nested weighted automata. Also for infinite words, there are
other value functions such as Sup,LimSup, where the complexity and decidability results
have been established in [16]. Hence in this work we focus on the most conceptually inter-
esting case of LimAvg function for master automaton and Sum and Sum+ value functions
for the slave automata.

3 Examples

We present several examples of properties that can be specified with NWA of bounded width.

I Example 4 (Variants of ART). Recall the ART property (Example 1) and its variant
1-ART property (Example 3). We present two variants of the ART property.

First, we extend Example 3 and consider the k-ART property over languages Lk defined
by (#∗r(#∗r#∗)≤k−1g#∗)ω, i.e., the language where there are at most k-pending requests
before each grant. As Example 3, an NWA Ak computing the k-ART property can be
constructed from the NWA from Example. 3 by taking the product of the master automaton
Amas of the ART property with an automaton recognizing Lk. The NWA Ak has width k.

Second, we consider the 1-ART[k] property, where Σ = {ri, gi : i ∈ {1, . . . , k}} ∪ {#},
i.e., there are k-different types of “request-grant” pairs. The 1-ART[k] property asks for
the average number of instructions between any request and the following grant of the
corresponding type. Moreover, we consider as for 1-ART property that for every i, between
a request ri and the following grant of the corresponding type gi, there is no request ri of

MFCS 2016

24:8 Nested Weighted Limit-Average Automata of Bounded Width

the same type. The 1-ART[k] can be expressed with an (LimAvg; Sum+)-automaton A[k]
1

of width bounded by k, which is similar to A1 from Example 3. Basically, the NWA A[k]
1

has k slave automata; for i ∈ {1, . . . , k} the slave automaton Bi is invoked on letters ri and
it counts the number of steps to the following grant gi. Additionally, the master automaton
checks that for every i, between any two grants gi, there is at most one request ri.

In Examples 1, 3, and 4 we presented properties that can be expressed with
(LimAvg; Sum+)-automata. The following property of average excess can be expressed with
slave automata with Sum value functions that have both positive and negative weights, i.e.,
it can be expressed by an (LimAvg; Sum)-automaton, but not (LimAvg; Sum+)-automata.

I Example 5 (Average excess). Consider the alphabet {r, g, #} from Example 1 with an ad-
ditional letter $. The average excess (AE) property asks for the average difference between
requests and grants over blocks separated by $. For example, for $(rr#g$)ω the aver-
age excess is 1. The AE property can be expressed by (LimAvg; Sum)-automaton AAE
of width 1 (presented below), but it cannot be expressed with (LimAvg; Sum+)-automata;
(LimAvg; Sum+)-automata return values form the interval [0,∞), while AE ranges from
(−∞,∞). The automaton AAE invokes a slave automaton B1 at positions of letter $ and
a dummy automaton B2 on the remaining positions. The slave automaton B1 runs until
it sees $ letter; it computes the difference between the number of r and g letters by taking
transitions of weights 1,−1, 0 respectively on letters r, g, #. The master automaton as well
as the slave automata of AAE are deterministic and the slave automata recognize prefix-free
languages. Therefore, the NWA AAE is deterministic and has width 1.

4 Our Results

In this section we establish our main results. We first discuss complexity of checking whether
a given NWA has width k. Next, we comment the results we need to prove.

Configurations. Let A be a non-deterministic (LimAvg; Sum)-automaton of width k. We
define a configuration of A as a tuple (q; q1, . . . , qk) where q is a state of the master automaton
and each q1, . . . , qk is either a state of a slave automaton of A or ⊥. In the sequence q1, . . . , qk
each state corresponds to one slave automaton, and the states are ordered w.r.t. the position
when the corresponding slave automaton has been invoked, i.e., q1 correspond to the least
recently invoked slave automaton. If there are less than k slave automata active, then ⊥
symbols follow the actual states (denoting there is no slave automata invoked). We define
Conf(A) as the number of configurations of A.

Key ideas. NWA without weights are equivalent to Büchi automata [16]. The property
of having width k is independent from weights. It can be decided with a construction of a
(non-weighted) Büchi automaton, which tracks configurations (q; q1, . . . , qk) of a given NWA
(assuming width k) and accepts only if the width-k condition is at some point violated.

I Theorem 6. (1) Fix k > 0. We can check in polynomial time whether a given NWA has
width k. (2) Given an NWA and a number k given in unary we can check in polynomial
space whether the NWA has width k.

Comment. We first note that for deterministic automata, emptiness and universality ques-
tions are similar. Hence we focus on the emptiness problem for non-deterministic automata
(which subsumes the emptiness problem for deterministic automata) to establish the new

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:9

results of Table 1. Moreover, the Sum+ value function is a special case of the Sum value
function with only positive weights. Since our main results are algorithms to establish up-
per bounds, we will only present the result for the emptiness problem for non-deterministic
(LimAvg; Sum)-automata. However, as a first step we show that without loss of generality,
we can focus on the case of deterministic automata.

I Lemma 7. Let k > 0. Given a non-deterministic (LimAvg; Sum)-automaton A over
alphabet Σ of width k, a deterministic (LimAvg; Sum)-automaton Ad of width k over an
alphabet Σ × Γ such that infu∈Σω A(u) = infu′∈(Σ×Γ)ω Ad(u′) can be constructed in time
exponential in k and polynomial in |A|. Moreover, Conf(Ad) is polynomial in Conf(A)
and k and only the alphabet of Ad is exponential (in k) as compared to the alphabet of A.

Proof sketch. The main idea is that the part Γ of the alphabet encodes the possible
non-deterministic choices, and the possible non-deterministic choices basically correspond
to transitions between configurations.

Proof overview. We present our proof overview for the emptiness of deterministic
(LimAvg; Sum)-automata. The proof consists of the following four key steps.
1. First, we identify a condition, and show in Lemma 9 that it is sufficient to ensure that

the infimum value among all words is −∞ (i.e., the least value possible). Moreover we
show that the condition can be decided in PTime if k is constant (even NLogSpace if
additionally the weights are in unary) and in PSpace if k is given in unary.

2. Second, we show that if the above condition does not hold, then there is a family of lasso
words (i.e., a finite prefix followed by an infinite repetition of another finite word) that
approximates the infimum value among all words. This shows that the above condition
is both necessary and sufficient. Moreover, we consider dense words, in which an i-th
invoked slave automaton runs for at most for O(log(i)) steps. We show that the infimum
is achieved by a dense word. These results are established in Lemma 11.

3. Third, we show using the above result, that the problem for bounded width can be
reduced to the problem of width 1, and the reduction is polynomial in the size of the
original automaton, and only exponential in k. Thus if k is constant, the reduction is
polynomial. This is established in Lemma 12.

4. Finally, we show that for automata with width 1, the emptiness problem can be solved
in NLogSpace if weights are in unary and otherwise in PTime (Lemma 13).

The above four steps give our main result (Theorem 14). We start with the first item.

Intuition for the condition. We first illustrate with an example that for very similar auto-
mata, which just differ in order of invoking slave automata, the infima over the values are
very different. For one automaton the infimum value is −∞ and for the other it is 0. This
example provides the intuition for the need of the condition to identify when the infimum
value is −∞.

I Example 8. Consider two deterministic (LimAvg; Sum)-automata A1,A2 defined as fol-
lows. The master automaton Amas of A1 accepts the language (12a∗#)ω. At letter 1 (resp.,
2) it invokes an automaton B1 (resp., B2). The slave automaton B1 increments its value
at every a letter and it terminates once it reads #. The slave automaton B2 works as B1
except that it decrements its value at a letters. NWA A2 is similar to A1 except that it
accepts the language (21a∗#)ω. It invokes the same slave automata as A1. Thus the two
automata only differ in the order of invocation of the slave automata. Observe that the
infimum over values of all words in A1 is 0. Basically, the values of slave automata are

MFCS 2016

24:10 Nested Weighted Limit-Average Automata of Bounded Width

always the opposite, therefore the average of the values of slave automata is 0 infinitely
often. However, the infimum over values of all words in A2 is −∞. Indeed, consider a word
21a1# . . . 21a2i

. . .. At positions proceeding 1a2i , the automaton B2 returns the value −2i
and the average of all previous 2 · i values is 0. Thus, the average at this position equals
− 2i

2·i (recall that the average is over the number of invocations of slave automata). Hence,
the limit infimum of averages is −∞.

Condition for infinite infimum. Let k > 0 and A be a deterministic (LimAvg; Sum)-
automaton of width k. Let C be the minimal weight of slave automata of A. Condition (*):
(*) C < 0 and there exists a word w accepted by A and infinitely many positions b such

that the sum of weights, which automata active at position b accumulate while running
on w[b,∞], is less than C · k2 ·Conf(A).

Intuitively, condition (*) implies that there is a subword u which can be repeated so that the
values of slave automata invoked before position b can be decreased arbitrarily. Note that
pumping that word may not decrease the total average of the word. However, with LimAvg
value function, we need to ensure only the existence of a subsequence of positions at which
the averages tend to −∞, i.e., we only need to decrease the values of slave automata invoked
before position b (for infinitely many positions).

Illustration of condition on example. Consider automata A1,A2 from Example 8. The
automaton A2 satisfies condition (*), whereas A1 does not. In the word 21a1# . . . 21a2i

. . .,
consider positions b, where B2 is invoked by A2. The automaton B2 works on the subword
21a2i , where both automata B1,B2 are active and the sum of their values past any position
is 0. However, the only slave automaton active at position b is B2. These automaton accu-
mulates the value −2i past position b. Therefore, past some position N , all such positions b
satisfy the statement from condition (*), and hence A2 satisfies condition (*). Now, for A1,
at every position at which B2 is active, B1 is active as well, hence for any position b, the
values accumulated by slave automaton active past this position is non-negative. Hence, A1
does not satisfy condition (*). We now present our lemma about the condition.

I Lemma 9. Let k > 0 and A be a deterministic (LimAvg; Sum)-automaton of width
k.
1. If condition (*) holds for A, then infu∈Σω A(u) = −∞.
2. Condition (*) can be checked in NLogSpace for constant width and weights in unary,

PTime for constant width, and in PSpace if the width is given in unary.

Key intuitions. For (1), we show that the word from condition (*) can be pumped at some
positions to achieve a word u′ with A(u′) = −∞. For (2), we show that condition (*) holds
if and only if there exists a cycle in the graph of configurations of A, which (a) can be
visited infinitely often, and (b) for some j ≥ 1, the sum of weights in this cycle of the j least
recently invoked slave automata is negative. Recall that the order of invocation of slave
automaton is encoded in the configuration, i.e., in (q; q1, . . . qj , qj+1, . . . , qk) slave automata
that correspond to the states q1, . . . , qj are the j least recently invoked.

I Definition 10. Let A be a deterministic (LimAvg; Sum)-automaton of width k. A word w
is dense (w.r.t. A) if in the run of A on w, for every i > 0, the i-th invoked slave automaton
takes at most O(log(i)) steps.

Intuitive explanation of dense words. In a deterministic (LimAvg; Sum)-automaton, the
average is over the number of invoked slave automata, but in general, the returned values of

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:11

w

a b

αε βε

αε βε βε βε

Figure 1 Explanation to Lemma 11; the blue part corresponds to H, while the green part
corresponds to T .

the slave automata can be arbitrarily large as compared to the number of invocations, and
hence the partial averages need not converge. Intuitively, in dense words, slave automata
are invoked and terminated relatively densely, i.e., the length of their runs depends on the
number of slave automata invoked till this position. In consequence, the value they can
accumulate is small w.r.t. the average, i.e., their absolute contribution to the sum of the
first n elements is O(log(n)), and hence the contribution of the value a single slave automaton
converges to 0 and the partial averages converge on dense words.

Illustration on example. Consider an automaton A1 from Example 8. We discuss the
definition of density on an example of word w = 12a1#12a3# . . . 12a2·i+1# . . ., which is not
dense (w.r.t. A1). Observe that at the position of subword 12a2·i+1, the partial average
is 0. Once B1 is invoked it returns value 2 · i+ 1 and it is (2 · i+ 1)-th invocation of a slave
automaton. Hence, the average increases to 1 only to be decreased to 0 after invocation of
B2. Now, word w′ = 12a1#(12a2#)3 . . . (12a2·i+1#)2i

. . . is dense. Indeed, before the slave
automaton invoked at subword 12a2·i+1# there are at least

∑i−1
j=1 2j = 2i − 1 invoked slave

automata. Therefore, the value 2 · i+ 1 returned by B1 invoked on 12a2·i+1 is logarithmic
in the number of invoked slave automata 2i−1 and it changes the average by at most 2·i+1

2i ;
as previously invoking B2 in the next step bring the average back to 0. Thus, the sequence
of partial averages of values returned by slave automata converges to 0.

I Lemma 11. Let k > 0 and A be a deterministic (LimAvg; Sum)-automaton of width k.
Assume that condition (*) does not hold. Then the following assertions hold:
1. For every ε > 0 there exist finite words αε, βε such that | infu∈Σω A(u)−A(αε(βε)ω)| < ε.
2. The value infu∈Σω A(u) is greater than −∞.
3. There exists a dense word wd such that infu∈Σω A(u) = A(wd).

Proof sketch: We present the key ideas for each item (detailed proof in [17]). Assume that
condition (*) fails.
1. We consider ε > 0 and a word wε, which is ε

4 -close to the infimum over all values of
A. We show that wε contains a subword βε on which (a) the automaton A starts and
ends with the same configuration, and (b) the average of the values returned by the slave
automata is at most A(wε) + ε

4 . The existence of such a word follows from the fact that
the partial averages are infinitely often ε

4 -close to the value of wε. We then show that
βε together with αε, the prefix preceding βε, satisfy | infu∈Σω A(u)− A(αε(βε)ω)| < ε. If
we consider the sequence of values returned by slave automata on the word βωε , then it
differs from the sequence of values returned when we consider the corresponding suffix
in wε: this is because the values of slave automata in βε as a subword of wε depend on
the following letters. The difference of partial averages can be bounded with an estimate

MFCS 2016

24:12 Nested Weighted Limit-Average Automata of Bounded Width

of H −T which is defined below. Consider the subword αε ·βε. Let X be the set of slave
automata that are active when βε is invoked (i.e., after αε). Let H be the sum of weights
of the active slave automata in X accumulated in the part of their respective runs on βε.
Let Y be the set of active slave automata after αε · βε. Let T be the sum of weights of
the active slave automata in Y accumulated in the part of their respective runs on wε
past αε · βε. See Fig 1 for an illustration. We establish an estimate on H − T using the
fact that (*) does not hold.

2. Almost all slave automata invoked in the run of A on a word of the form α(β)ω take at
most |β| steps. Only slave automata invoked at α can take more steps without looping.
Thus, the value A(α(β)ω) is finite. Therefore, (1) implies that infu∈Σω A(u) is finite
(given some words are accepted and condition(*) fails.)

3. We construct wd from a word β
k[1]
1 β

k[2]
1
2
β
k[3]
1
3

. . . by choosing the sequence k[0], k[1], . . .
to increase sufficiently fast. By repeating k[n] times word β 1

n
, we increase the number

of invoked slave automata at least by k[n], so the number of steps of slave automaton
invoked in β 1

n+1
, which is bounded by |β 1

n+1
|, can be made arbitrarily small w.r.t. k[n].

I Remark. Lemma 9 together with (2) of Lemma 11 imply that for a deterministic
(LimAvg; Sum)-automaton A of width k condition (*) is both necessary and sufficient for
the infimum over all values equal to −∞. Moreover, this condition can be checked efficiently.

Lemma 12 reduces the emptiness problem for deterministic (LimAvg; Sum)-automata of
width k to the same problem with automata of width 1.

I Lemma 12. Let k > 0 and A be a deterministic (LimAvg; Sum)-automaton of width k.
Assume that condition (*) does not hold. Then, there exists a deterministic (LimAvg; Sum)-
automaton A1 of width 1 over an alphabet ∆ such that infu∈Σω A(u) = infu∈∆ω A1(u). The
size of A1 is O(|A|k) and it can be constructed on-the-fly.

Key intuitions. Consider a deterministic (LimAvg; Sum)-automaton A of width k. We
define the automaton A1, which uses a single slave automaton to keep track of all k automata
of A. This single slave automaton takes transitions whose weight is the sum of weights of
transitions of tracked slave automata of A. Therefore, A and A1 compute the averages of the
same weights. Still, the way these weights are aggregated, i.e., their order in the sequence is
different, and hence these automata may return different values on the same word. However,
we show that on dense words the values of both automata coincide. This and Lemma 11
stating that there exists a dense word at which the automaton A1 realizes its infimum implies
that the infimum over all values of A and A1 coincide.

I Lemma 13. The emptiness problem for deterministic (LimAvg; Sum)-automata of width
1 is in PTime and if the weights are in unary, then it is in NLogSpace.

Key intuitions. We show that every transition of Amas, the master automaton of A,
at which a slave automaton is invoked, can be substituted by a transition whose weight
is the minimal value the invoked slave automaton can achieve. More precisely, while a
slave automaton is running on the input word, the master automaton Amas is still active.
Therefore, we substitute transitions (q, a, q′, i) of Amas by multiple transitions of the form
(q, (q, a, i, q′′), q′′), where (q, a, i, q′′) is a new letter, q′′ is a state of Amas and the weight of
this transition is the minimal value Bi can achieve over words au such that Amas moves
from q to q′′ upon reading au. Such a transformation preserves the infimum over all words
and it transforms a deterministic (LimAvg; Sum)-automaton of width 1 to a deterministic

Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop 24:13

LimAvg-automaton. The emptiness problem for LimAvg-automaton is decidable in PTime
and even in NLogSpace provided that weights are given in unary.

We now present the algorithm and lower bound for our main result.

The algorithm. We present an algorithm, which, given a non-deterministic
(LimAvg,Sum)-automaton A of width k and λ ∈ Q, decides whether infu∈Σω A(u) ≤
λ.
1. Transform A into a deterministic (LimAvg,Sum)-automaton Ad of the same width such

that infu∈Σω A(u) = infu∈(Σ×Γ)ω Ad(u) (Lemma 7).
2. Check condition (*) for Ad. If it holds, then infu∈Σω A(u) = −∞ and return answer

YES. Otherwise, continue the algorithm.
3. Transform Ad into a deterministic (LimAvg,Sum)-automaton A1 of width 1 such that

infu∈(Σ×Γ)ω Ad(u) = infu∈∆ω A1(u) (Lemma 12).
4. Compute infu∈∆ω A1(u) (Lemma 13), and return whether infu∈∆ω A1(u) ≤ λ.
Transformations in (1) and (3) are polynomial in the size of the automaton and exponential
in k. Also, transformation from (1) does not increase k. Therefore, the size of A1 is
polynomial in the size A and singly exponential in k. Moreover, these transformations can
be done on-the-fly, i.e., there is not need to store the whole resulting automaton. Therefore,
checks from (2) and (4), can be done in NLogSpace if k is constant and weights are in
unary, PTime if k is constant, and PSpace if k is given in unary.

Hardness results. If k is constant, then the reachability problem on directed graphs, which
is NLogSpace-complete, can be reduced to language emptiness of a finite automaton, which
is a special case the emptiness problem for non-deterministic (LimAvg,Sum)-automata of
width 1 with unary weights. If k is given in unary, consider the emptiness problem for
the intersection of regular languages, which given k and regular languages L1, . . . ,Lk, asks
whether L1 ∩ . . . ∩ Lk = ∅. This problem is PSpace-complete [26] and reduces to the
emptiness problem for deterministic (LimAvg,Sum)-automata of width given in unary: the
PSpace-hardness result for emptiness of NWA given in [16] uses NWA of width |A|.

I Theorem 14. The emptiness problem for non-deterministic (LimAvg,Sum)-automata
is (a) NLogSpace-complete in the size of A for constant width k with weights in unary;
(b) PTime in the size of A for constant width k; and (c) PSpace-complete when the bounded
width k is given as input in unary.

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL. In TACAS, 2014,

pages 424–439, 2014.
2 Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei

Yuan. Regular functions and cost register automata. In LICS 2013, pages 13–22, 2013.
3 Christel Baier, Clemens Dubslaff, and Sascha Klüppelholz. Trade-off analysis meets prob-

abilistic model checking. In CSL-LICS 2014, pages 1:1–1:10, 2014.
4 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Weight mon-

itoring with linear temporal logic: complexity and decidability. In CSL-LICS 2014, pages
11:1–11:10, 2014.

5 Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. Temporal
specifications with accumulative values. ACM TOCL, 15(4):27:1–27:25, 2014.

6 Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble weighted
automata and transitive closure logics. In ICALP 2010, Part II, pages 587–598. Springer,
2010.

MFCS 2016

24:14 Nested Weighted Limit-Average Automata of Bounded Width

7 Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In
CONCUR 2014, pages 266–280, 2014.

8 Tomás Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Ku-
cera. Two views on multiple mean-payoff objectives in Markov decision processes. In LICS
2011, pages 33–42, 2011.

9 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Multigain: A
controller synthesis tool for MDPs with multiple mean-payoff objectives. In TACAS 2015,
pages 181–187, 2015.

10 Krishnendu Chatterjee. Markov decision processes with multiple long-run average object-
ives. In FSTTCS, pages 473–484, 2007.

11 Krishnendu Chatterjee and Laurent Doyen. Energy and mean-payoff parity Markov De-
cision Processes. In MFCS 2011, pages 206–218, 2011.

12 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating weighted
automata. In FCT’09, pages 3–13. Springer, 2009.

13 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and
closure properties for quantitative languages. LMCS, 6(3), 2010.

14 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM TOCL, 11(4):23, 2010.

15 Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. Multi-objective discounted
reward verification in graphs and MDPs. In LPAR, pages 228–242, 2013.

16 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata.
In LICS 2015, pages 725–737, 2015.

17 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted limit-
average automata of bounded width. CoRR, abs/1606.03598, 2016. A conference version
accepted to MFCS 2016. URL: http://arxiv.org/abs/1606.03598.

18 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative automata under
probabilistic semantics. CoRR, abs/1604.06764, 2016. A conference version accepted to
LICS 2016. URL: http://arxiv.org/abs/1604.06764.

19 Krishnendu Chatterjee, Zuzana Komárková, and Jan Kretínský. Unifying two views on
multiple mean-payoff objectives in Markov Decision Processes. In LICS 2015, pages 244–
256, 2015.

20 Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Markov Decision
Processes with multiple objectives. In STACS 2006, pages 325–336, 2006.

21 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 1st edition, 2009.

22 Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite
words. In DLT 2006, pages 49–58, 2006.

23 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1996.
24 Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.

Quantitative multi-objective verification for probabilistic systems. In TACAS, pages 112–
127, 2011.

25 Thomas A. Henzinger and Jan Otop. From model checking to model measuring. In CON-
CUR 2013, pages 273–287, 2013.

26 Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266. IEEE
Computer Society, 1977.

27 Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. J.
Aut. Lang. & Comb., 7(3):321–350, 2002.

28 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, 1st edition, 1994.

http://arxiv.org/abs/1606.03598
http://arxiv.org/abs/1604.06764

	Introduction
	Preliminaries
	Words and automata
	Nested weighted automata

	Examples
	Our Results

