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Abstract

Better understanding of the potential benefits of information transfer and repre-
sentation learning is an important step towards the goal of building intelligent
systems that are able to persist in the world and learn over time. In this work, we
consider a setting where the learner encounters a stream of tasks but is able to retain
only limited information from each encountered task, such as a learned predictor.
In contrast to most previous works analyzing this scenario, we do not make any
distributional assumptions on the task generating process. Instead, we formulate a
complexity measure that captures the diversity of the observed tasks. We provide a
lifelong learning algorithm with error guarantees for every observed task (rather
than on average). We show sample complexity reductions in comparison to solv-
ing every task in isolation in terms of our task complexity measure. Further, our
algorithmic framework can naturally be viewed as learning a representation from
encountered tasks with a neural network.

1 Introduction

Machine learning has made significant progress in understanding both theoretical and practical
aspects of solving a single prediction problem from a set of annotated examples. However, if we
aim at building autonomous agents, capable to persist in the world, we need to establish methods
for continuously learning various tasks over time [25, 26]. There is no hope to initially provide, for
example, an autonomous robot with sufficiently rich prior knowledge to solve any problem that it may
encounter during the course of its life. Therefore, an important goal of machine learning research
is to replicate humans’ ability to learn from experience and to reuse knowledge from previously
encountered tasks for solving new ones more efficiently. This is aimed at in lifelong learning or
learning to learn, where a learning algorithm is assumed to encounter a stream of tasks and is aiming
to exploit commonalities between them by transferring information from earlier tasks to later ones.

The first theoretical formulation of this framework was proposed by Baxter [4]. In that model, tasks
are generated by a probability distribution and the goal, given a sample of tasks from this distribution,
is to perform well in expectation over tasks. Under certain assumptions, such as a shared good
hypothesis set, this model allows for sample complexity savings [4]. However, good performance in
expectation is often too weak a requirement. To stay with the robot example, failure on a single task
may cause severe malfunction – and the end of the robot’s life. Moreover, the theoretical analysis of
this model relies on the assumption that the learner maintains access to training data for all previously
observed tasks, which allows to formulate a joint optimization problem. However, it is unlikely that
an autonomous robot is able to keep all this data.

Thus, we instead focus on a streaming setting for lifelong learning, where the learner can only
retain learned models from previously encountered tasks. These models have a much more compact
description than the joint training data. Specifically, we are interested in analysis and performance
guarantees in the scenario that 1) tasks arrive one at a time without distributional or i.i.d. assumptions,
2) the learner can only keep the learned hypotheses from previously observed tasks, 3) error bounds
are required for every single task, rather than on average.
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The first analysis of this challenging setting was recently provided by Balcan et al. [3]. That work
demonstrates sample complexity improvements for learning linear halfspaces (and some boolean
function classes) in the lifelong learning setting in comparison to solving each task in isolation under
the assumption that the tasks share a common low dimensional representation. However, the analysis
relies on the marginal distributions of all tasks being isotropic log-concave. It was stated as an open
challenge in that work whether similar guarantees (error bounds for every task, while only keeping
limited information from earlier tasks) were possible under less restrictive distributional assumptions.

In this work, we (partially) answer this question in the positive. We do so by proposing to learn with
weighted majority votes rather than linear combinations over linear predictors. We show that the
shift from linear combinations to majority votes introduces stability to the learned ensemble that
allows exploiting it for later tasks. Additionally, we show that this stability is achieved for any ground
hypothesis class. We formulate a relatedness assumption on the sequence of tasks (similar to one used
in [3]) that captures how suitable to lifelong learning a sequence of tasks is. With this, we prove that
sample complexity savings through lifelong learning are obtained for arbitrary marginal distributions
(provided that these marginal distributions are related in terms of their discrepancy [5, 17]). This is a
significant generalization towards more practically relevant scenarios.

Summary of our work We employ a natural algorithmic paradigm, similar to the one in [3]. The
algorithm maintains a set of base hypotheses from some fixed ground hypothesis classH. These base
hypotheses are predictors learned on previous tasks. For each new task, the algorithm first attempts to
achieve good prediction performance with a weighted majority vote over the current base hypotheses,
and uses this predictor for the task if successful. Otherwise (if no majority vote classifier achieves
high accuracy), the algorithm resorts to learning a classifier from the ground class for this task. This
classifier is then added to the set of base hypotheses, to be used for subsequent tasks. We describe
this algorithm Section 4.1.

If the ground class is the class of linear predictors, this algorithm is actually learning a neural network.
Each base classifier becomes a node in a hidden middle layer, which represents a learned feature
representation of the neural net. A new task is then either solved by employing the representation
learned from previous tasks (the current middle layer), and just learning task specific weights for the
last layer, or, in case this is not possible, it extends the current representation. See also Section 4.2.

This paradigm yields sample complexity savings, if the tasks encountered are related in the sense
that for many tasks, good classification accuracy can be achieved with a weighted majority vote
over previously learned models. We formally capture this property as an effective dimension of
the sequence of tasks. We prove in Section 4.3 that if this effective dimension is bounded by
k, then the total sample complexity for learning n tasks with this paradigm is upper bounded by
Õ
(
(nk + VC(H)k2)/ε

)
, a reduction from Õ (nVC(H)/ε), the sample complexity of learning n

tasks individually without retaining information from previous tasks.

The main technical difficulty is to control the propagation of errors. Since every task is represented
by a finite training set, the learner has access only to approximations of the true labeling functions,
which may degrade the quality of this collection of functions as a “basis” for new tasks. Balcan et
al. [3] control this error propagation using elegant geometric arguments for linear predictors under
isotropic log-concave distributions. We show that moving from linear combinations to majority votes
yields the required stability for the quality of the representation under arbitrary distributions.

Finally, while we first present our algorithm and results for known upper bounds of k base tasks and
n tasks in total, we also provide a variation of the algorithm that does not need to know the number
of tasks and the complexity parameter of the task sequence. We show that similar sample complexity
improvements are achievable in this setting in Section 5.

2 Related Work

Lifelong learning. While there are many ways in which prediction tasks may be related [20], most
of the existing approaches to transfer or lifelong learning are exploiting possible similarities between
the optimal predictors for the considered tasks. In particular, one widely used relatedness assumption
is that these predictors can be described as linear or sparse combinations of some common meta-
features and the corresponding methods aim at learning this representations [10, 2, 15, 3]. Though
this idea was originally used in the multi-task setting, it was later extended to lifelong learning by
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Eaton et al. [9], who proposed a method for sequentially updating the underlying representation as
new tasks arrive. These settings were theoretically analyzed in a series of works [18, 19, 23, 21]
that have demonstrated that information transfer can lead to provable sample complexity reductions
compared to solving each task independently. However, all these results rely on Baxter’s model of
lifelong learning and therefore assume access to the training data for all (observed) tasks and provide
guarantees only on average performance over all tasks. An exception is [6], where the authors provide
error guarantees for every task in the multi-task scenario. However, these guarantees are due to the
relatedness assumption used which implies that all tasks have the same expected error. The task
relatedness assumption that we employ is related to the one used in [1] for multi-task learning with
expert advice. There the authors consider a setting where there exists a small subset of experts that
perform well on all tasks. Similarly, we assume that there is a small subset of base tasks, such that
the remaining ones can be solved well using majority votes over the corresponding base hypotheses.

Majority votes. Weighted majority votes are a theoretically well understood and widely used in
practice type of ensemble predictor. In particular, they are employed in boosting [11]. They are
also often considered in works that utilize PAC-Bayesian techniques [22, 12]. Majority votes are
also used in the concept drift setting [14]. The corresponding method, conceptually similar to the
one proposed here, dynamically updates a set of experts and uses their weighted majority votes for
making predictions.

3 Formal Setting

3.1 General notation and background

We let X ⊆ Rd denote a domain set and let Y denote a label set. A hypothesis is a function
h : X → Y , and a hypothesis class H is a set of hypotheses. We model learning tasks as pairs
〈D,h∗〉 of a distribution D over X and a labeling function h∗ : X → Y . The quality of a hypothesis
is measured by a loss function ` : Y × Y → R+. We deal with binary classification tasks, that is,
Y = {−1, 1}, under the 0/1-loss function, that is, `(y, y′) = Jy 6= y′K (we let J·K denote the indicator
function). The risk of a hypothesis h with respect to task 〈D,h∗〉 is defined as its expected loss:

LD,h∗(h) := Ex∼D[`(h(x), h∗(x))].

Given a sample S = {(x1, y1), (x2, y2), . . . , (xn, yn)}, the empirical risk of h with respect to S is

LS(h) :=
1

n

n∑
i=1

`(h(xi), yi).

For binary classification, the sample complexity of learning a hypothesis class is characterized (that
is, upper and lower bounded), by the VC-dimension of the class [27]. We will employ the following
generalization bounds for classes of finite VC-dimension:
Theorem 1 (Corollaries 5.2 and 5.3 in [7]). Let H be a class of binary functions with a finite
VC-dimension. There exists a constant C, such that for any δ ∈ (0, 1), for any task 〈D,h∗〉, with
probability at least 1− δ over a training set S of size n, sampled i.i.d. from 〈D,h∗〉:

LD,h∗(ĥ) ≤ LS(ĥ) +

√
LS(ĥ) ·∆ + ∆, (1)

LS(ĥ) ≤ LD,h∗(ĥ) +

√
LD,h∗(ĥ) ·∆ + ∆, (2)

LD,h∗(ĥ) ≤ inf
h∈H
LD(h) +

√
inf
h∈H
LD(h) ·∆ + ∆, (3)

where ĥ ∈ arg minh∈H LS(h) is an empirical risk minimizer and

∆ = C
VC(H) log(n) + log(1/δ)

n
. (4)

In the realizable case (h∗ ∈ H), the above bounds imply that the sample complexity is upper bounded
by Õ

(
VC(H)+log(1/δ)

ε

)
.
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Weighted majority votes Given a hypothesis classH, we define the class of k-majority votes as

MV(H, k) =

{
g : X → Y | ∃h1, . . . , hk ∈ H,∃w1, . . . , wk ∈ R : g(x) = sign

(
k∑
i=1

wihi(x)

)}
.

We will omit k in the above notation if clear from the context. The VC-dimension of MV(H, k) is
upper bounded as

VC(MV(H, k)) ≤ k(VC(H) + 1)(3 log(VC(H) + 1) + 2) (5)

(see Theorem 10.3 in [24]). This implies in particular, that the VC-dimension of majority votes over
a fixed set of k functions is upper bounded by Õ(k log(k)).

3.2 Lifelong learning

In the lifelong learning setting the learner encounters a stream of prediction problems
〈D1, h

∗
1〉, . . . , 〈Dn, h

∗
n〉, one at a time. In this work we focus on the realizable case, i.e. h∗i ∈ H for

every i and some fixedH. In contrast to most works on lifelong learning, we assume that the only
information the learner is able to store about the already observed tasks is the obtained predictors, i.e.
it does not have access to the training data of already solved tasks. The need to keep little information
from previous tasks has also been argued for in the context of domain adaptation [16].

Possible benefits of information transfer depend on how related or, in other words, how diverse the
observed tasks are. Moreover, since we do not make any assumptions on the task generation process
(in contrast to Baxter’s i.i.d. model [4]), we will formulate our relatedness assumption in terms of a
sequence of tasks. Intuitively, one would expect that the information transfer is beneficial if only a
few times throughout the course of learning information obtained from the already solved tasks will
not be sufficient to solve the current one. In order to formalize this intuition, we use the following
(pseudo-)metric over the hypothesis class with respect to a marginal distribution D:

dD(h, h′) = E
x∼D

Jh(x) 6= h′(x)K. (6)

Further, we can define a distance of a hypothesis to a hypothesis space as

dD(h,H′) = min
h′∈H′

dD(h, h′) (7)

and the distance between two sets of hypotheses as

dD(H,H′) = max
h∈H

dD(h,H′) = max
h∈H

min
h′∈H′

dD(h, h′). (8)

Note that the latter is not necessarily a metric over subsets of the hypothesis space. However, it does
satisfy the triangle inequality (see Section 1 in the supplementary material).

Now we can formulate the diversity measure for a sequence of learning tasks that we will employ.
Note that the concepts below are closely related to the ones used in [3] for the case of linear predictors
and linear combinations over these.
Definition 1. A sequence of learning tasks 〈D1, h

∗
1〉, . . . , 〈Dn, h

∗
n〉 is γ-separated, if for every i

dDi(h
∗
i ,MV(h∗1, . . . , h

∗
i−1)) > γ.

Definition 2. A sequence of learning tasks 〈D1, h
∗
1〉, . . . , 〈Dn, h

∗
n〉 has γ-effective dimension k, if

the largest γ-separated subsequence of these tasks has length k.

Formally, we will assume that the γ-effective dimension k of the observed sequence of tasks is
relatively small for a sufficiently small γ. Note that this assumption can also be seen as a relaxation of
the one used in [8]. There the authors assumed that there exists a set of k hypothesis such that every
task can be well solved by one of them. This would correspond to substituting the sets of weighted
majority votes MV(h∗1, . . . , h

∗
i−1) by just the collections {h∗1, . . . , h∗i−1} in the above definitions.

Moreover, we will assume that the marginal distributions have small discrepancy with respect to the
hypothesis setH:

discH(Di, Dj) = max
h,h′∈H

|dDi
(h, h′)− dDj

(h, h′)|. (9)

This is a measure of task relatedness that has been introduced in [13] and shown to be beneficial in
the context of domain adaptation [5, 17]. Note, however, that we do not make any assumptions on the
marginal distributions D1, . . . , Dn themselves.
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4 Algorithm and complexity guarantees

4.1 The algorithm

We employ a natural algorithmic paradigm, which is similar to the one in [3]. Algorithm 1 below
provides pseudocode for our procedure. The algorithm takes as parameters a classH, which we call
the ground class, accuracy and confidence parameters ε and δ, as well as a task horizon n (the number
of tasks to be solved) and a parameter k (a guessed upper bound on the number of tasks that will not
be solvable as majority votes over earlier tasks). In Section 5 we present a version that does not need
to know n and k in advance.

Algorithm 1 Lifelong learning of majority votes
1: Input parametersH, n, k, ε, δ
2: set δ′ = δ/(2n), ε′ = ε/(8k)
3: draw a training set S1 from 〈D1, h

∗
1〉, such that ∆1 := ∆(VC(H), δ′, |S1|) ≤ ε′

4: g1 = arg minh∈H LS1
(h)

5: set k̃ = 1, i1 = 1, h̃1 = g1
6: for i = 2 to n do
7: draw a training set Si from 〈Di, h

∗
i 〉, such that ∆i := ∆(VC(MV(h̃1, . . . , h̃k̃)), δ′, |Si|) ≤ ε

40
8: gi = arg minh∈MV(h̃1,...,h̃k̃)

LSi
(h)

9: if LSi(gi) +
√
LSi(gi) ·∆i + ∆i > ε then

10: draw a training set Si from 〈Di, h
∗
i 〉, such that ∆i := ∆(VC(H), δ′, |Si|) ≤ ε′

11: gi = arg minh∈H LSi(h)

12: set k̃ = k̃ + 1, h̃k̃ = gi, ik̃ = i
13: end if
14: end for
15: return g1, . . . , gn

During the course of its “life”, the algorithm maintains a set of base hypotheses (h̃1, . . . , h̃k̃) from
the ground class, which are predictors learned on previous tasks. In order to solve the first task, it
uses the hypothesis setH and a large enough training set S1 to ensure the error guarantee ε′ ≤ ε/8k
with probability at least 1− δ′, where δ′ = δ/2n. The learned hypothesis h̃1 ∈ H is the first member
of the set of base hypotheses. For each new task i, the algorithm first attempts to achieve good
prediction performance (up to error ε) with a weighted majority vote over the base hypotheses, i.e. it
attempts to learn this task using the class MV(h̃1, . . . , h̃k̃), and uses the obtained predictor for the
task if successful. Otherwise (if no majority vote classifier achieves high accuracy), the algorithm
resorts to learning a classifier from the base class for this task, which is then added to the set of base
hypotheses, to be used for subsequent tasks. The error guarantees are ensured with Theorem 1 by
choosing the training sets Si large enough so that

∆i := ∆(VC(Hi), δ′, |Si|) := C
VC(Hi) log(|Si|) + log(1/δ′)

|Si|
≤ cε,

where Hi is either the ground class H or the set of weighted majority votes over the current set of
base hypotheses MV(h̃1, . . . , h̃k̃), and constant c is set according to case, see pseudocode.

While this approach is very natural, the challenge is to analyze it and to specify the parameters.
In particular, we need to ensure that the algorithm will not have to search over (potentially large)
hypothesis set H too often and, consequently, will lead to provable sample complexity reductions
over solving each task independently. The following theorem summarizes the performance guarantees
for Algorithm 1 (the proof is in Section 4.3).
Theorem 2. Consider running Algorithm 1 on a sequence of tasks with γ-effective dimension at most
k and discH(Di, Dj) ≤ ξ for all i, j. Then, if γ ≤ ε/4 and kξ < ε/8, with probability at least 1− δ:

• The error of every task is bounded: LDi,h∗i
(gi) ≤ ε for every i = 1, . . . , n.

• The total number of labeled examples used is Õ
(
nk+VC(H)k2

ε

)
.
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Discussion Note that if we assume that all tasks are realizable byH, independently learning them
up to error ε would have sample complexity Õ

(
VC(H)n

ε

)
. The sample complexity of learning n

tasks in the lifelong learning regime with our paradigm in contrast is Õ
(
nk+VC(H)k2

ε

)
. This is a

significant reduction if the effective dimension of the task sequence k is small in comparison to the
total number n of tasks, as well as the complexity measure VC(H) of the ground class. That is,
if most tasks are learnable as combination of previously stored base predictors, much less data is
required overall.

Note that for all those tasks that are solved as majority votes, our algorithm and analysis actu-
ally require realizability only by the class of k-majority votes over H and not by the ground
class H. Learning the n tasks independently under this assumption, has sample complexity
Õ
(

VC(H)k
ε + (n−k)VC(H)k

ε

)
. In contrast, the lifelong learning method gradually identifies the

relevant set of base predictors and thereby reduces the number of required examples.

4.2 Neural networks

If the ground class is the class of linear predictors, our algorithm is actually learning a neural network
(with sign() as the activation function). Each base classifier becomes a new node in a hidden middle
layer. Thus, the maintained set of base classifiers can be viewed as feature representation in the
neural net, which was learned based on the encountered tasks. A new task is then either solved by
employing the representation learned from previous tasks (the current middle layer), and just learning
task specific weights for the last layer; or, in case this is not possible, a fresh linear classifier is
learned, and added as a node to the middle layer. Thus, in this case, the feature representation is
extended.

4.3 Analysis

We start with presenting the following two lemmas that show how to control the error propagation of
the learned representations (sets of base classifiers). We then proceed to the proof of Theorem 2.

Lemma 1. Let V =MV(h1, . . . , hk, g) and Ṽ =MV(h1, . . . , hk, g̃). Then, for any distribution D:

dD(V, Ṽ ) ≤ dD(g, g̃). (10)

Proof. By the definition of dD(V, Ṽ ) there exists u ∈ V such that:

dD(V, Ṽ ) = dD(u, Ṽ ). (11)

We can represent u as u = sign(
∑k
i=1 αihi + αg) and let u1 =

∑k
i=1 αihi. Note that while all hi-s,

g and g̃ are assumed to take values in {−1, 1}, u1 can take values in R. Then:

dD(u, Ṽ ) = min
h̃∈Ṽ

dD(u, h̃) ≤ min
h̃∈MV(u1,g̃)

dD(u, h̃)

≤ max
h∈MV(u1,g)

min
h̃∈MV(u1,g̃)

dD(h, h̃) = dD(MV(u1, g),MV(u1, g̃)).

Now we show that for any α1u1 + α2g ∈ MV(u1, g) there exists a close hypothesis in MV(u1, g̃).
In particular, this hypothesis is α1u1 + α2g̃:

dD(α1u1 + α2g, α1u1 + α2g̃) = E
x∼D

Jsign(α1u1(x) + α2g(x)) 6= sign(α1u1(x) + α2g̃(x))K

= E
x∼D

Jα2
1u

2
1(x) + α1α2u1(x)g(x) + α1α2u1(x)g̃(x) + α2

2g(x)g̃(x) < 0K.

Note that for every x on which g and g̃ agree, i.e. g(x)g̃(x) = 1, we obtain:

α2
1u

2
1(x) + α1α2u1(x)g(x) + α1α2u1(x)g̃(x) + α2

2g(x)g̃(x) = (α1u1(x) + α2g(x))2 ≥ 0.

Therefore:
dD(α1u1 + α2g, α1u1 + α2g̃) ≤ E

x∼D
Jg(x) 6= g̃(x)K = dD(g, g̃). (12)
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Lemma 2. Let Vk = MV(h1, . . . , hk) and Ṽk = MV(h̃1, . . . , h̃k). For any distribution D, if
dD(hi, h̃i) ≤ εi for every i = 1, . . . , k, then dD(Vk, Ṽk) ≤

∑k
i=1 εi.

For the proof see Section 2 in the supplementary material.

Proof of Theorem 2. 1. First, note that for every task Algorithm 1 solves at most 2 estimation
problems with a probability of failure δ′ for each of them. Therefore, with a union bound argument,
the probability of any of these estimations being wrong is at most 2 · n · δ′ = δ. Thus, from now we
assume that all the estimations were correct, that is, the high probability events of Theorem 1 hold.

2. To see that the error of every encountered task is bounded by ε, note that there are two cases. For
tasks i that are solved by a majority vote over previous tasks, we have LSi

(gi) +
√
LSi

(gi) ·∆i +
∆i ≤ ε. In this case, Equation (1) in Theorem 1 impliesLDi,h∗i

(gi) ≤ ε. For tasks i that are not solved
as a majority vote over previous tasks, we have ∆i = ∆(VC(MV(h̃1, . . . , h̃k̃)), δ′,m) ≤ ε/8k.
Since task i is realizable by the base classH, we have infh∈H LDi,h∗i

(h) = 0, and thus Equation (3)
of Theorem 1 implies LDi,h∗i

(gi) ≤ ε/8k < ε.

3. To upper bound the sample complexity we first prove that the number k̃ of tasks, which are not
learned as majority votes over previous tasks, is at most k. For that we use induction showing that for
every k̂ ≤ k̃, when we create a new h̃k̂ from the ik̂-th task, we have that

dDi
k̂
(h∗ik̂ ,MV(h∗i1 , . . . , h

∗
ik̂−1

)) > γ. (13)

This implies k̃ ≤ k by invoking that the γ-effective dimension of the sequence of encountered tasks
is at most k.

To proceed to the induction, note that for k̂ = 1, the claim follows immediately. Consider k̂ > 1. If
we create a new h̃k̂, it means that the condition in line 9 is true, which is:

LSi
k̂
(gik̂) +

√
LSi

k̂
(gik̂) ·∆i + ∆i > ε. (14)

Therefore LSi
k̂
(gik̂) > 0.83ε. Consequently, due to (2), LDi

k̂
,h∗i

k̂

(gik̂) > 0.67ε. Finally, by (3),

infg LDi
k̂
,h∗i

k̂

(g) > 0.5ε. Therefore there is no majority vote predictor based on h̃1, . . . , h̃k̂−1 that

leads to error less than ε/2 on the problem ik̂. In other words:

dDi
k̂
(h∗ik̂ ,MV(h̃1, . . . , h̃k̂−1)) > ε/2. (15)

Now, by way of contradiction, suppose that dDi
k̂
(h∗ik̂ ,MV(h∗i1 , . . . , h

∗
ik̂−1

)) ≤ γ. By construction

for every j = 1, . . . , k̂ − 1 dDij
(h∗ij , h̃j) ≤ ε′ ≤ ε/8k. By the definition of discrepancy and the

assumption on the marginal distributions it follows that for all j:

dDi
k̂
(h∗ij , h̃j) ≤ dDij

(h∗ij , h̃j) + discH(Dij , Dik̂
) ≤ ε′ + ξ. (16)

Therefore by Lemma 2:

dDi
k̂
(MV(h∗i1 , . . . , h

∗
ik̂−1

),MV(h̃1, . . . , h̃k̂)) ≤ k(ε′ + ξ). (17)

Consequently, by using the triangle inequality:

dDi
k̂
(h∗ik̂ ,MV(h̃1, . . . , h̃k̂−1)) ≤ γ + k(ε′ + ξ) ≤ ε/4 + ε/8 + ε/8 = ε/2, (18)

which is in contradiction with (15).

4. The total sample complexity of Algorithm 1 consists of two parts. First, for every task Algorithm 1
checks, whether it can be solved by a majority vote over the base, at most k̃ predictors. For that it
employs Theorem 1 and therefore needs the following number of samples:

Õ

(
nk̃ log k̃ log(k̃ log k̃) log(2n/δ)

ε

)
= Õ

(
nk

ε

)
. (19)

Second, there are at most k̃ tasks that satisfy the condition in line 9 and are learned using the
hypothesis setH with estimation error ε′ = ε/(8k). Therefore the corresponding sample complexity
is: O

(
k̃VC(H) log(2n/δ)

ε/(8k)

)
= Õ

(
VC(H)k2

ε

)
.
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5 Lifelong learning with unknown horizon

In this section we present a modification of Algorithm 1 for the case when the total number of
tasks n and the complexity of the task sequence k are not known in advance. The main difference
between Algorithm 2 and Algorithm 1 is that with unknown n and k the learner has to adopt the
parameters δ′ and ε′ on the fly. We show that this can be done by the doubling trick that is often used
in online learning. Theorem 3 summarizes the resulting guarantees (the proof can be found in the
supplementary material, Section 3).

Algorithm 2 Lifelong learning of majority votes with unkown horizon
1: Input parametersH, ε, δ
2: set δ1 = δ/2, ε′1 = ε/16
3: draw a training set S1 from 〈D1, h

∗
1〉 of size m, such that ∆(VC(H), δ1,m) ≤ ε′1 (see (4))

4: g1 = arg minh∈H LS1(h)

5: set k̃ = 1, i1 = 1, h̃1 = g1
6: for i = 2 to n do
7: set l = blog ic, m = blog k̃ + 1c
8: set δi = δ

22l+2 , ε′i = ε
22m+4

9: draw a training set Si from 〈Di, h
∗
i 〉 of size m, such that ∆(VC(MV(h̃1, . . . , h̃k̃)), δi,m) ≤

ε/40 (see (4))
10: gi = arg minh∈MV(h̃1,...,h̃k̃)

LSi
(h)

11: if LSi
(gi) +

√
LSi

(gi) ·∆ + ∆ > ε then
12: draw a training set Si from 〈Di, h

∗
i 〉 of size m, such that ∆(VC(H), δi,m) ≤ ε′i (see (4))

13: gi = arg minh∈H LSi
(h)

14: set k̃ = k̃ + 1, h̃k̃ = gi, ik̃ = i
15: end if
16: end for
17: return g1, . . . , gn

Theorem 3. Consider running Algorithm 2 on a sequence of tasks with γ-effective dimension at most
k and discH(Di, Dj) ≤ ξ for all i, j. Then, if γ ≤ ε/4 and kξ < ε/8, with probability at least 1− δ:

• The error of every task is bounded: LDi,h∗i
(gi) ≤ ε for every i = 1, . . . , n.

• The total number of labeled examples used is Õ
(
nk+VC(H)k3

ε

)
.

6 Conclusion

In this work, we have shown sample complexity improvements with lifelong learning in the challeng-
ing, yet as argued important setting, where tasks arrive in a stream (without assumptions on the tasks
generating process), where the learner is only allowed to maintain limited amounts of information
from previously encountered tasks, and where high performance is required for every single task,
rather than on average. While such improvements have been established in very specific settings [3],
our work shows they are possible in much more general and realistic scenarios. We hope that this will
open the door for more work in this area of machine lifelong learning and lead to better understanding
of how and when learning machines can benefit from past experience. An intriguing direction is to
investigate whether there exists a more general characterization of ensemble methods and/or data
distributions that would lead to benefits with lifelong learning. Another one is to better understand
lifelong learning with neural networks, analyzing cases of more complex network structures and
activation functions, an area where current machine learning practice yields exciting successes, but
little is understood.
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