Lifelong Learning with Weighted Majority Votes: Supplementary Material

Anastasia Pentina
IST Austria
apentina@ist.ac.at

Ruth Urner

Max Planck Institute for Intelligent Systems
rurner@tuebingen.mpg.de

In this document we provide the proofs omitted from the main manuscript.

1 Properties of $d_{D}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$

Claim 1. The distance $d_{D}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)=\max _{h \in \mathcal{H}} d_{D}\left(h, \mathcal{H}^{\prime}\right)$ between two hypothesis sets satisfies the triangle inequality $d_{D}\left(\mathcal{H}_{1}, \mathcal{H}_{3}\right) \leq d_{D}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)+d_{D}\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right)$.

Proof.
for any $h_{1} \in \mathcal{H}_{1}$:

$$
\begin{aligned}
d_{D}\left(h_{1}, \mathcal{H}_{3}\right) & =\min _{h_{3} \in \mathcal{H}_{3}} d_{D}\left(h_{1}, h_{3}\right) \\
& \leq \min _{h_{3} \in \mathcal{H}_{3}}\left(d_{D}\left(h_{1}, h_{2}\right)+d_{D}\left(h_{2}, h_{3}\right)\right) \forall h_{2} \in \mathcal{H}_{2} \\
& =d_{D}\left(h_{1}, h_{2}\right)+\min _{h_{3} \in \mathcal{H}_{3}} d_{D}\left(h_{2}, h_{3}\right) \forall h_{2} \in \mathcal{H}_{2} \\
& =d_{D}\left(h_{1}, h_{2}\right)+d_{D}\left(h_{2}, \mathcal{H}_{3}\right) \forall h_{2} \in \mathcal{H}_{2} \\
& \leq d_{D}\left(h_{1}, h_{2}\right)+d_{D}\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right) \forall h_{2} \in \mathcal{H}_{2}
\end{aligned}
$$

by minimizing over h_{2} :

$$
d_{D}\left(h_{1}, \mathcal{H}_{3}\right) \leq d_{D}\left(h_{1}, \mathcal{H}_{2}\right)+d_{D}\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right)
$$

by maximizing over h_{1} on the right hand side:

$$
d_{D}\left(h_{1}, \mathcal{H}_{3}\right) \leq d_{D}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)+d_{D}\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right)
$$

by maximizing over h_{1} on the left hand side:

$$
d_{D}\left(\mathcal{H}_{1}, \mathcal{H}_{3}\right) \leq d_{D}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)+d_{D}\left(\mathcal{H}_{2}, \mathcal{H}_{3}\right)
$$

2 Proof of Lemma 2

We will prove the statement by induction on k over a stronger statement that the conclusion holds for $V_{k}=\operatorname{MV}\left(w_{1}, \ldots, w_{l}, h_{1}, \ldots, h_{k}\right)$ and $\tilde{V}_{k}=\operatorname{MV}\left(w_{1}, \ldots, w_{l}, \tilde{h}_{1}, \ldots, \tilde{h}_{k}\right)$ for any w_{1}, \ldots, w_{l}. Note that for $k=1$ the statement follows from Lemma 1.
Let $V_{k}^{\prime}=\operatorname{MV}\left(w_{1}, \ldots, w_{l}, h_{1}, \ldots, h_{k-1}, \tilde{h}_{k}\right)$. Then:

$$
\begin{aligned}
d_{D}\left(V_{k}, \tilde{V}_{k}\right) & \leq d_{D}\left(V_{k}, V_{k}^{\prime}\right)+d_{D}\left(V_{k}^{\prime}, \tilde{V}_{k}\right) \text { (by triangle inequality) } \\
& \leq d_{D}\left(h_{k}, \tilde{h}_{k}\right)+d_{D}\left(V_{k}^{\prime}, \tilde{V}_{k}\right) \text { (by Lemma 1) } \\
& \leq \epsilon_{k}+\sum_{i=1}^{k-1} \epsilon_{i} \text { (by assumption and induction). }
\end{aligned}
$$

3 Proof of Theorem 3

1. First, as in the proof of Theorem 2, we need to control the total probability of any conclusion of Algorithm 2 being incorrect. For every task $i=2, \ldots, n$ Algorithm 2 preforms at most two estimations. Therefore the total probability of failure is:

$$
\delta_{1}+\sum_{i=2}^{n} 2 \delta_{i}=\frac{\delta}{2}+\sum_{l=1}^{\lfloor\log n\rfloor} 2\left(2^{l+1}-2^{l}\right) \frac{\delta}{2^{2 l+2}}=\frac{\delta}{2}+\frac{\delta}{2} \sum_{l=1}^{\lfloor\log n\rfloor} \frac{1}{2^{l}} \leq \frac{\delta}{2}+\frac{\delta}{2} \sum_{l=1}^{\infty} \frac{1}{2^{l}}=\frac{\delta}{2}+\frac{\delta}{2}=\delta
$$

2. Performance guarantees follow from the design of the algorithm (as in Theorem 2).
3. The fact that $\tilde{k} \leq k$ can be proven in a way analogous to Theorem 2. However, we need to make sure that for every $\hat{k}=1, \ldots, \tilde{k}$, by using Lemma 2 , we will obtain a suitable result. In particular, by construction for every $j=1, \ldots, \hat{k}-1 d_{D_{i_{j}}}\left(h_{i_{j}}^{*}, \tilde{h}_{j}\right) \leq \epsilon_{j}^{\prime}$. Therefore by Lemma 2 :

$$
\begin{equation*}
d_{D_{i_{\hat{k}}}}\left(M V\left(h_{i_{1}}^{*}, \ldots, h_{i_{\hat{k}-1}}^{*}\right), M V\left(\tilde{h}_{1}, \ldots, \tilde{h}_{\hat{k}-1)}\right)\right) \leq(\hat{k}-1) \xi+\sum_{j=1}^{\hat{k}-1} \epsilon_{j}^{\prime} . \tag{1}
\end{equation*}
$$

By the definition of ϵ_{j}^{\prime} :

$$
\sum_{j=1}^{\hat{k}-1} \epsilon_{j}^{\prime} \leq \frac{\epsilon}{16}+\sum_{m=1}^{\lfloor\hat{k}\rfloor}\left(2^{m+1}-2^{m}\right) \frac{\epsilon}{2^{2 m+4}}=\frac{\epsilon}{16}+\frac{\epsilon}{16} \sum_{m=1}^{\lfloor\hat{k}\rfloor} \frac{1}{2^{m}}<\frac{\epsilon}{16}+\frac{\epsilon}{16}=\frac{\epsilon}{8}
$$

Together with the assumption on discrepancies, this guarantees that:

$$
\begin{equation*}
d_{D_{i_{\hat{k}}}}\left(\operatorname{MV}\left(h_{i_{1}}^{*}, \ldots, h_{i_{\hat{k}-1}}^{*}\right), \operatorname{MV}\left(\tilde{h}_{1}, \ldots, \tilde{h}_{\hat{k}-1)}\right)\right) \leq \frac{\epsilon}{4} \tag{2}
\end{equation*}
$$

which is exactly what is needed to come to contradiction.
4. The sample complexity of Algorithm 2 consists of the same parts as that of Algorithm 1.

The first difference comes from the fact that δ^{\prime} changes over time, because the algorithm does not know the total number of tasks. However, the smallest value it attains is $\delta /\left(4 n^{2}\right)$ and, since the dependence of the sample complexity on the δ is only logarithmic, it does not change the result significantly.

The second difference is that also ϵ^{\prime} changes over time, because the algorithm does not know the parameter k in advance. This influences the sample complexity of learning "base tasks". In order to control it we need to control the following sum:

$$
\sum_{j=1}^{\tilde{k}} \frac{1}{\epsilon_{j}^{\prime}} \leq \sum_{m=1}^{\lfloor\log k\rfloor}\left(2^{m+1}-2^{m}\right) \frac{2^{2 m+4}}{\epsilon}=\frac{16}{\epsilon} \sum_{m=1}^{\lfloor\log k\rfloor} 2^{3 m} \leq \frac{k^{3} \log k}{\epsilon}
$$

Therefore the complexity of learning the "base tasks" is:

$$
\begin{equation*}
\tilde{O}\left(\frac{\mathrm{VC}(\mathcal{H}) k^{3}}{\epsilon}\right) \tag{3}
\end{equation*}
$$

