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In this document we provide the proofs omitted from the main manuscript.

1 Properties of dp(H,H')

Claim 1. The distance dp(H,H') = maxpey dp(h, H') between two hypothesis sets satisfies the
triangle inequality dp(H1, Hs) < dp(Hi, Ha) + dp(Ha, Hs).
Proof.
for any hy € Hy:
dp(h = min dp(h1,h
p(h1,H3) i p(h1,h3)

< min (dD(hl,hQ) + dD(hQ, hd)) A h2 c Hg

h3€H3
:dD(hh hg) + hIBIgLIS dD(hQ, h3) Y ho € Ho
=dp(h1,h2) +dp(h2, H3) ¥V ha € Ha
<dp(hi,h2) +dp(Hz,H3) ¥ ha € Ha
by minimizing over hso:
dp(hi,H3) <dp(hi,H2) +dp(Hz2,H3)
by maximizing over h; on the right hand side:
dp(hi,Hs) <dp(Hi,Hz2) + dp(Hz2,Hs3)
by maximizing over h; on the left hand side:

dp(Hi,Hs) <dp(H1,H2) + dp(Ha, H3).

2 Proof of Lemma 2

We will prove the statement by induction on k over a stronger statement that the conclusion holds
for Vi, = MV(wy,...,wi, hy,..., hg) and Vi = MV (wy, ..., w;, hy, ..., hg) for any we, ..., w;.
Note that for k£ = 1 the statement follows from Lemma 1.
Let V = MV (w1, ..., w;, ha, ..., i1, hy). Then:
dp(Vie, Vi) <dp(Vi, V}) + dp(V], Vi) (by triangle inequality)
<dp(hi, hi) +dp(V}., Vi) (by Lemma 1)
k—1
<er + Z €; (by assumption and induction).
i=1
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3 Proof of Theorem 3

1. First, as in the proof of Theorem 2, we need to control the total probability of any conclusion
of Algorithm 2 being incorrect. For every task ¢ = 2,...,n Algorithm 2 preforms at most two
estimations. Therefore the total probability of failure is:
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2. Performance guarantees follow from the design of the algorithm (as in Theorem 2).

3. The fact that k& < k can be proven in a way analogous to Theorem 2. However, we need to make

sure that for every k= 1,..., k, by using Lemma 2, we will obtain a suitable result. In particular, by
construction forevery j = 1,...,k — 1dp, (ki hj) < €}. Therefore by Lemma 2:
dp, (MV(Bi,,....hi ), MVl ) < (k=1) 5+Zej. (1)

By the definition of ¢:
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Together with the assumption on discrepancies, this guarantees that:

~ ~ €
dp, (MV(hi,,....hi )MV (R, By _y) < 7, )

which is exactly what is needed to come to contradiction.
4. The sample complexity of Algorithm 2 consists of the same parts as that of Algorithm 1.

The first difference comes from the fact that ¢’ changes over time, because the algorithm does not
know the total number of tasks. However, the smallest value it attains is J/(4n?) and, since the
dependence of the sample complexity on the § is only logarithmic, it does not change the result
significantly.

The second difference is that also € changes over time, because the algorithm does not know the
parameter k in advance. This influences the sample complexity of learning "base tasks". In order to
control it we need to control the following sum:
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Therefore the complexity of learning the "base tasks" is
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