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In this document we provide the proofs omitted from the main manuscript.

1 Properties of dD(H,H′)

Claim 1. The distance dD(H,H′) = maxh∈H dD(h,H′) between two hypothesis sets satisfies the
triangle inequality dD(H1,H3) ≤ dD(H1,H2) + dD(H2,H3).

Proof.

for any h1 ∈ H1:

dD(h1,H3) = min
h3∈H3

dD(h1, h3)

≤ min
h3∈H3

(dD(h1, h2) + dD(h2, h3)) ∀ h2 ∈ H2

=dD(h1, h2) + min
h3∈H3

dD(h2, h3) ∀ h2 ∈ H2

=dD(h1, h2) + dD(h2,H3) ∀ h2 ∈ H2

≤dD(h1, h2) + dD(H2,H3) ∀ h2 ∈ H2

by minimizing over h2:

dD(h1,H3) ≤dD(h1,H2) + dD(H2,H3)

by maximizing over h1 on the right hand side:

dD(h1,H3) ≤dD(H1,H2) + dD(H2,H3)

by maximizing over h1 on the left hand side:

dD(H1,H3) ≤dD(H1,H2) + dD(H2,H3).

2 Proof of Lemma 2

We will prove the statement by induction on k over a stronger statement that the conclusion holds
for Vk = MV(w1, . . . , wl, h1, . . . , hk) and Ṽk = MV(w1, . . . , wl, h̃1, . . . , h̃k) for any w1, . . . , wl.
Note that for k = 1 the statement follows from Lemma 1.

Let V ′k = MV(w1, . . . , wl, h1, . . . , hk−1, h̃k). Then:

dD(Vk, Ṽk) ≤dD(Vk, V
′
k) + dD(V ′k, Ṽk) (by triangle inequality)

≤dD(hk, h̃k) + dD(V ′k, Ṽk) (by Lemma 1)

≤εk +

k−1∑
i=1

εi (by assumption and induction).
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3 Proof of Theorem 3

1. First, as in the proof of Theorem 2, we need to control the total probability of any conclusion
of Algorithm 2 being incorrect. For every task i = 2, . . . , n Algorithm 2 preforms at most two
estimations. Therefore the total probability of failure is:

δ1 +

n∑
i=2

2δi =
δ

2
+

blognc∑
l=1

2(2l+1 − 2l)
δ

22l+2
=
δ

2
+
δ

2

blognc∑
l=1

1

2l
≤ δ

2
+
δ

2

∞∑
l=1

1

2l
=
δ

2
+
δ

2
= δ.

2. Performance guarantees follow from the design of the algorithm (as in Theorem 2).

3. The fact that k̃ ≤ k can be proven in a way analogous to Theorem 2. However, we need to make
sure that for every k̂ = 1, . . . , k̃, by using Lemma 2, we will obtain a suitable result. In particular, by
construction for every j = 1, . . . , k̂ − 1 dDij

(h∗ij , h̃j) ≤ ε
′
j . Therefore by Lemma 2:

dDi
k̂
(MV (h∗i1 , . . . , h

∗
ik̂−1

),MV (h̃1, . . . , h̃k̂−1))) ≤ (k̂ − 1)ξ +

k̂−1∑
j=1

ε′j . (1)

By the definition of ε′j :

k̂−1∑
j=1

ε′j ≤
ε

16
+

bk̂c∑
m=1

(2m+1 − 2m)
ε

22m+4
=

ε

16
+

ε

16

bk̂c∑
m=1

1

2m
<

ε

16
+

ε

16
=
ε

8
.

Together with the assumption on discrepancies, this guarantees that:

dDi
k̂
(MV(h∗i1 , . . . , h

∗
ik̂−1

),MV(h̃1, . . . , h̃k̂−1))) ≤
ε

4
, (2)

which is exactly what is needed to come to contradiction.

4. The sample complexity of Algorithm 2 consists of the same parts as that of Algorithm 1.

The first difference comes from the fact that δ′ changes over time, because the algorithm does not
know the total number of tasks. However, the smallest value it attains is δ/(4n2) and, since the
dependence of the sample complexity on the δ is only logarithmic, it does not change the result
significantly.

The second difference is that also ε′ changes over time, because the algorithm does not know the
parameter k in advance. This influences the sample complexity of learning "base tasks". In order to
control it we need to control the following sum:

k̃∑
j=1

1

ε′j
≤
blog kc∑
m=1

(2m+1 − 2m)
22m+4

ε
=

16

ε

blog kc∑
m=1

23m ≤ k3 log k

ε
.

Therefore the complexity of learning the "base tasks" is:

Õ

(
VC(H)k3

ε

)
. (3)
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