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Abstract
In this note, we study large deviations of the num-
ber 𝐍 of intercalates (2 × 2 combinatorial subsquares
which are themselves Latin squares) in a random
𝑛 ×𝑛 Latin square. In particular, for constant 𝛿 > 0 we
prove that exp(−𝑂(𝑛2 log 𝑛)) ⩽ Pr(𝐍 ⩽ (1 − 𝛿)𝑛2∕4) ⩽
exp(−Ω(𝑛2)) and exp(−𝑂(𝑛4∕3(log 𝑛))) ⩽ Pr(𝐍 ⩾ (1 +
𝛿)𝑛2∕4) ⩽ exp(−Ω(𝑛4∕3(log 𝑛)2∕3)). As a consequence,
we deduce that a typical order-𝑛 Latin square has (1 +
𝑜(1))𝑛2∕4 intercalates, matching a lower bound due to
Kwan and Sudakov and resolving an old conjecture of
McKay and Wanless.

MSC ( 2020 )
05B15, 05C80, 60F10 (primary)

1 INTRODUCTION

A Latin square (of order 𝑛) is an 𝑛 × 𝑛 array filled with the numbers 1 through 𝑛 (we call these
symbols), such that every symbol appears exactly once in each row and column. Latin squares are a
fundamental type of combinatorial design, and in their various guises they play an important role
in many contexts (ranging, for example, from group theory, to experimental design, to the theory
of error-correcting codes). A classical introduction to the subject of Latin squares can be found in
[33]. More recently, Latin squares have also played a role in the ‘high-dimensional combinatorics’
programme spearheaded by Linial, where they can be viewed as the first non-trivial case of a
‘high-dimensional permutation’† (see, for example, [43–45]).

† To see the analogy to permutationmatrices, note that a Latin square can equivalently, andmore symmetrically, be viewed
as an 𝑛 × 𝑛 × 𝑛 zero-one array such that every axis-aligned line sums to exactly 1.

© 2022 The Authors. Bulletin of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1421

F IGURE 1 On the left is an example of a Latin square of order 5 with an intercalate in bold (in the first and
second rows, and the second and fourth columns). On the right is depicted the 3-uniform hypergraph
representation of an intercalate

There are still a number of surprisingly basic questions about Latin squares that remain unan-
swered, especially with regard to statistical aspects. For example, there is still a big gap between
the best known upper and lower bounds on the number of order-𝑛 Latin squares (see, for exam-
ple, [53, Chapter 17]), and there is no known algorithm that (provably) efficiently generates a ran-
dom order-𝑛 Latin square.† Perhaps the main difficulty is that Latin squares are extremely ‘rigid’
objects: in general there is very little freedom to make local perturbations to change one Latin
square into another.
Despite this difficulty, there are a number of theorems that have been rigorously proved about

random Latin squares (and a larger number of conjectures and speculations); see, for example,
[11–13, 27, 40, 41, 44–47, 54, 55]. A large portion of this work has focused on existence and enumer-
ation of various types of substructures. As perhaps the simplest non-trivial example, an intercalate
in a Latin square 𝐿 is an order-2 Latin (combinatorial) subsquare. That is, it is a pair of rows 𝑖 < 𝑗
and a pair of columns 𝑥 < 𝑦 such that 𝐿𝑖,𝑥 = 𝐿𝑗,𝑦 and 𝐿𝑖,𝑦 = 𝐿𝑗,𝑥 (see Figure 1). It is a classical fact
that (for all orders except 2 and 4) there exist Latin squares with no intercalates [38, 39, 48]. How-
ever, in 1999 McKay and Wanless [46] proved that with probability 1 − exp(−𝑛2−𝑜(1)) a random
order-𝑛 Latin square has at least one intercalate, and that with probability 1 − 𝑜(1) there are at
least 𝑛3∕2−𝑜(1) intercalates. In the same paper, they conjectured that the typical number of inter-
calates is (1 + 𝑜(1))𝑛2∕4. More recently, Kwan and Sudakov [41] proved the lower bound in this
conjecture — that random Latin squares typically have at least this many intercalates (see also
[13] for previous progress on this conjecture). In the present paper we finally resolve McKay and
Wanless’ conjecture in full.

Theorem 1.1. Let 𝐋 be a uniformly random order-𝑛 Latin square. Then, with probability 1 − 𝑜(1),
the number of intercalates in 𝐋 is (1 + 𝑜(1))𝑛2∕4.

It is natural to draw an analogy to small subgraph counts in random graphs and hypergraphs.
For example, in an Erdős–Rényi random graph 𝔾(𝑛, 𝑝), the number of triangles is typically
close to its expected value of

(𝑛
3

)
𝑝3 (as may be proved with a routine application of Chebyshev’s

inequality). There is no obvious way to compute almost any kind of expected value in random
Latin squares, but this point of view at least gives a heuristic explanation for why one should
expect Theorem 1.1 to hold, as follows. An order-𝑛 Latin square can be equivalently viewed

† Jacobson and Matthews [30] and Pittenger [49] designed Markov chains that converge to the uniform distribution, but
it is not known whether these Markov chains mix rapidly.
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1422 KWAN

as a 3-partite 3-uniform hypergraph with parts of size 𝑛 (corresponding to rows, columns and
symbols), satisfying the property that every pair of vertices in different parts is included in exactly
one (hyper)edge. In this setting an intercalate is a subgraph isomorphic to a particular 4-edge
hypergraph; see Figure 1. Now, every Latin square has exactly 𝑛2 edges, so by symmetry, in a
random Latin square each of the 𝑛3 possible edges is present with probability 1∕𝑛. If we imagine
that each of these edges were present with probability 1∕𝑛independently, then the expected
number of intercalates would be 2

(𝑛
2

)3
(1∕𝑛)4 = (1 + 𝑜(1))𝑛2∕4.

There are a huge number of questions about subgraph counts in random graphs and hyper-
graphs that have natural analogues for random Latin squares. One particularly influential direc-
tion is the study of large deviations. For example, what is the probability that a random graph
𝔾(𝑛, 𝑝) has more than twice as many triangles as expected? What is the probability it has fewer
than half as many as expected? These types of questions have been intensely studied and are inti-
mately related to the development of many important techniques in graph theory and probability
theory; see, for example, the monograph of Chatterjee [15] and the more recent works [1, 4, 6,
16, 28]. Beyond Theorem 1.1, we are able to prove the following near-optimal bounds on large
deviation probabilities for intercalates in random Latin squares.

Theorem 1.2. Fix a constant 𝛿 > 0. Let 𝐍 be the number of intercalates in a uniformly random
order-𝑛 Latin square 𝐋. Then

(a) Pr(𝐍 ⩽ (1 − 𝛿)𝑛2∕4) ⩽ exp(−Ω(𝑛2)),
(b) Pr(𝐍 ⩾ (1 + 𝛿)𝑛2∕4) ⩽ exp(−Ω(𝑛4∕3(log 𝑛)2∕3)).

Moreover, these bounds are best possible up to logarithmic factors in the exponent:

(c) Pr(𝐍 ⩽ (1 − 𝛿)𝑛2∕4) ⩾ exp(−𝑂(𝑛2 log 𝑛)) for 𝛿 ⩽ 1,
(d) Pr(𝐍 ⩾ (1 + 𝛿)𝑛2∕4) ⩾ exp(−𝑂(𝑛4∕3 log 𝑛)).

Note that Theorem 1.1 is a direct corollary of Theorem 1.2(a–b). Another direct corollary of
Theorem 1.2(a) is thatPr(𝐍 = 0) ⩽ exp(Ω(−𝑛2)), improvingMcKay andWanless’ aforementioned
bound of exp(−𝑛2−𝑜(1)). We remark that the lower tail bound proved by Kwan and Sudakov [41]
was of the form Pr(𝐍 ⩽ (1 − 𝛿)𝑛2∕4) ⩽ exp(−Ω(

√
𝑛∕ log 𝑛)).

From the form of the upper and lower tail probabilities in Theorem 1.2, one can already begin
to get an idea for why the upper bound in Theorem 1.1 is more difficult than the lower bound. In
general, for subgraph counts in random graphs and hypergraphs, lower tails tend to behave in a
relatively simple ‘Gaussian-like’ way, while upper tails tend to be quite different due to ‘clustering’
behaviour (for example, in some regimes the ‘most likely way’ for a random graph to have a large
number of triangles is for it to contain a large clique that has many triangles on its own). This
phenomenon is often referred to as the ‘infamous upper tail’ (see [31] for a survey). In the setting
of Theorem 1.2, it seems that the ‘most likely way’ for a random Latin square to have a large
number of intercalates is for it to contain a configuration similar to the multiplication table of an
abelian 2-group (ℤ∕2ℤ)𝑞 (which may be interpreted as a Latin square of order 2𝑞), for suitably
chosen 𝑞.
We remark that as a naïve approach to try to prove Theorem 1.2, we might try to study the

independent random hypergraph model mentioned earlier (in which each edge is present with
probability 1∕𝑛 independently), and to condition on the (hopefully not too unlikely) event
that our random hypergraph is in fact a Latin square. For example, it is possible to study large
deviations in random regular graphs with a related approach [5, 26] (although the details are
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1423

highly non-trivial). However, the property of being a Latin square is extremely restrictive, and
there does not seem to be any simple independent model that produces a Latin square with prob-
ability greater than about (1∕

√
𝑛)𝑛

2 (which is vanishingly small compared to the large deviation
probabilities in Theorem 1.2(a–b)). Therefore, we employ some techniques not commonly seen
in large deviations theory.
The upper and lower tails in Theorem 1.2 are handled quite differently. For the lower tail, we

employ the powerful machinery of Keevash (see [34–37]) originally developed for his celebrated
proof of the existence of designs conjecture. Using Keevash’s machinery, Kwan [40] developed a
generalmethod for comparing randomLatin squareswith a stochastic graph process called the tri-
angle removal process. It has been observed by Simkin [52] that this method is suitable for bound-
ing lower tail probabilities, but to prove the strong bound in Theorem 1.2(a), we need to refine
Kwan’s method (introducing an additional averaging technique).
For the upper tail bound in Theorem 1.2(b), instead of working directly with random Latin

squares we work with random Latin rectangles (a Latin rectangle is a 𝑘 × 𝑛 array, for some 𝑘 ⩽ 𝑛,
filled with the symbols 1 through 𝑛, such that every number appears at most once in each row and
column). As observed byMcKay andWanless, we can use estimates on the permanent (Bregman’s
theorem [9] and the Egorychev–Falikman theorem [18, 21]) to compare random Latin rectangles
with random Latin squares. To study random Latin rectangles we use the method of switchings
(in which we study the typical effect of random perturbations to a Latin rectangle), in connection
with a general enumeration theorem of Godsil and McKay [25] and the so-called deletion method
of Rödl and Ruciński (see [32, 50]), adapted to this highly non-independent situation.

1.1 Further directions

There are a few natural questions left open by our work. Let𝐍 be the number of intercalates in a
random order-𝑛 Latin square.

∙ Can we improve our understanding of the large deviation probabilities for𝐍, and sharpen the
logarithmic factors† in Theorem 1.2? In particular, it seems that Theorem 1.2(c) is improvable,
but the difficulty lies in finding a general way to complete partial Latin squares to Latin squares
without introducing too many intercalates. It seems that Keevash’s machinery may not be suit-
able for this, but the more recent approach of ‘iterative absorption’ due to Glock, Kühn, Lo and
Osthus [24] (see also [3]) may be helpful here.

∙ It would be nice to obtain a more accurate understanding of the expected value 𝔼𝐍, and to say
more about the distribution of𝐍 (in particular, it is not even obvious how to estimate the vari-
ance of𝐍). With the ideas in this paper it is possible to find an explicit interval of length 𝑛2−Ω(1)
in which 𝐍 typically lies, but we suspect that the true behaviour is that 𝐍 has an asymptotic
Gaussian distribution with standard deviation Θ(𝑛).

∙ We have studied 2 × 2 Latin subsquares; of course it is natural to consider subsquares of higher
order. McKay andWanless [46] conjectured that the expected number of 3 × 3 Latin subsquares
is 1∕18 + 𝑜(1) (we would further conjecture that the distribution is asymptotically Poisson with
thismean), and they suggested that Latin subsquares of higher order should typically not appear
at all. They also proved that 𝑛∕2 × 𝑛∕2 subsquares are vanishingly unlikely in a random order-𝑛

†Wenote that in the case of triangles in random graphs, it was a longstanding open problem to find the correct logarithmic
factor in the exponent of the upper tail probability. Thiswas famously solved byChatterjee [14] andDeMarco andKahn [17].
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1424 KWAN

Latin square (this is, the largest a proper Latin subsquare could possibly be). We suspect that it
may not be too hard to show that a typical order-𝑛 Latin square does not contain a proper Latin
subsquare of order greater than 𝑛1∕2+𝜀 (for any constant 𝜀 > 0), and it would be interesting to
go beyond this. Of course, it is also possible to study more general subgraph statistics: for any
fixed partial Latin square 𝐻, we can ask about the number of copies of 𝐻 in a random Latin
square.

∙ A Steiner triple system of order 𝑛 is a 3-uniform hypergraph on a vertex set of size 𝑛, such that
every pair of vertices is included in exactly one edge. These objects are natural ‘non-partite’
analogues of Latin squares, and are even more difficult to study (to our knowledge, the only
non-trivial results about random Steiner triple systems can be found in [2, 22, 40, 52]). In the
setting of Steiner triple systems, the 4-edge hypergraph we have been calling an intercalate is
usually called a Pasch configuration. Pasch configurations represent the smallest non-trivial
‘girth’ obstruction for Steiner triple systems (Erdős conjectured that there exist Steiner triple
systems with arbitrarily high girth; see [19]), and they provide one of very few ways to ‘switch’
between different Steiner triple systems. Simkin [52] adapted some ideas of Kwan [40] to prove
that a random Steiner triple system typically has at least (1 − 𝑜(1))𝑛2∕24 Pasch configurations
(and the ideas in this paper are suitable for proving near-optimal bounds on the lower tail prob-
abilities), but due to the ‘infamous upper tail’ it will require new ideas to prove a corresponding
bound for the upper tail.

∙ We would also like to draw attention to a few other interesting open problems in the area of
random Latin squares that are a bit less directly related to the results in this paper. Linial and
Luria [44] conjectured that randomLatin squares typically satisfy an expansion property closely
resembling the expandermixing lemma (see [41] for progress on this conjecture) andCavenagh,
Greenhill and Wanless [13] conjectured that a fixed pair of rows in a random Latin square can
be very closely approximated (in some precise sense) by a uniformly random derangement (see
also [11] for further discussion).

1.2 Notation

We use standard asymptotic notation throughout, as follows. For functions 𝑓 = 𝑓(𝑛) and g =
g(𝑛), we write 𝑓 = 𝑂(g) to mean that there is a constant 𝐶 such that |𝑓| ⩽ 𝐶|g|, 𝑓 = Ω(g) to
mean that there is a constant 𝑐 > 0 such that 𝑓(𝑛) ⩾ 𝑐|g(𝑛)| for sufficiently large 𝑛, 𝑓 = Θ(g) to
mean that 𝑓 = 𝑂(g) and 𝑓 = Ω(g) and 𝑓 = 𝑜(g) to mean that 𝑓∕g → 0 as 𝑛 → ∞. Also, following
[34], the notation 𝑓 = 1 ± 𝜀 means 1 − 𝜀 ⩽ 𝑓 ⩽ 1 + 𝜀.
We will use the convention that random objects (for example, random variables or random

graphs) are printed in bold.

2 APPROXIMATION FOR RANDOM LATIN SQUARES

In this section we state and prove a refined version of a theorem due to Kwan [40] (Theorem 2.4),
usingmachinery due to Keevash [35] to approximate a random Latin square with the so-called tri-
angle removal process. This will be the main technical ingredient for the proof of Theorem 1.2(a).
To say a bit more about our contribution: Kwan’s original approximation theorem ([40, Theo-

rem 2.4]) is not capable of proving that any events hold with probability less than 𝑒−𝑛, so is not
sufficient for proving the extremely strong lower tail bound in Theorem 1.2(a). Our improvement
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1425

comes from an averaging/double counting technique (for the reader familiar with the proof of
[40, Theorem 2.4], instead of conditioning on an outcome of a random subset of a random Latin
square, we average over many subsets). This averaging technique is closely related to the ‘distance
to hyperplane’ lemma in work of Rudelson and Vershynin [51], which is ubiquitous in random
matrix theory.
First, we need some definitions, including the (equivalent) hypergraph formulation of a Latin

square.

Definition 2.1. Define

𝑅 = 𝑅𝑛 = {1, … , 𝑛}, 𝐶 = 𝐶𝑛 = {𝑛 + 1,… , 2𝑛}, 𝑆 = 𝑆𝑛 = {2𝑛 + 1,… , 3𝑛}.

We call the elements of 𝑅, 𝐶 and 𝑆 rows, columns and symbols, respectively. A partial Latin square
(of order 𝑛) is a 3-partite 3-uniform hypergraph with 3-partition 𝑅 ∪ 𝐶 ∪ 𝑆, such that no pair of
vertices is involved inmore than one edge. Let𝑚 be the set of partial Latin squares with𝑚 edges.
A Latin square is a partial Latin square with exactly 𝑛2 edges (this is the maximum possible, and
implies that every pair of vertices in different parts is contained in exactly one edge). Let  be the
set of Latin squares.

Definition 2.2. The (3-partite) triangle removal process is defined as follows. Start with the com-
plete 3-partite graph𝐾𝑛,𝑛,𝑛 on the vertex set𝑅 ∪ 𝐶 ∪ 𝑆. At each step, consider the set of all triangles
in the current graph, select one uniformly at random and remove it. Note that after𝑚 steps of this
process, the set of removed triangles can be interpreted as a partial Latin square 𝐿 ∈ 𝑚 (unless
we run out of triangles before the𝑚th step). Let 𝕃(𝑛,𝑚) be the distribution on 𝑚 ∪ {∗} obtained
from𝑚 steps of the triangle removal process (where ‘∗’ corresponds to the event that we run out
of triangles).

Definition 2.3. Let 𝑚 ⊆ 𝑚 be a property of 𝑚-edge partial Latin squares and let  ⊆  be a
property of Latin squares. Say that 𝑚 is 𝜌-inherited from  if for any 𝐿 ∈  , taking 𝐋𝑚 ⊆ 𝐿 as a
uniformly random subset of𝑚 edges of 𝐿, we have 𝐋𝑚 ∈ 𝑚 with probability at least 𝜌.

Now, our approximation theorem is as follows.

Theorem 2.4. Let 𝛼 ∈ (0, 1∕2). There is an absolute constant 𝛾 > 0 such that the following holds.
Consider 𝑚 ⊆ 𝑚 with𝑚 = 𝛼𝑛2 and  ⊆  such that 𝑚 is 1∕2-inherited from  . Let 𝐏 ∼ 𝕃(𝑛,𝑚)
be a partial Latin square obtained by 𝑚 steps of the triangle removal process, and let 𝐋 ∈  be a
uniformly random order-𝑛 Latin square. Then

Pr(𝐋 ∈  ) ⩽ exp(𝑛2−𝛾) Pr(𝐏 ∈ 𝑚).

In our proof of Theorem 2.4, we will need to refer to a number of general-purpose lemmas
about random Latin squares and the triangle removal process, each of which essentially appears
in [40]. The lemmas in [40] were stated in the setting of Steiner triple systems, but the necessary
adaptations to the setting of Latin squares are straightforward. For completeness, in the time since
the initial version of this paper we have prepared the companion note [42] with self-contained
proofs of all the lemmas we will need, explicitly written for Latin squares.
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1426 KWAN

2.1 Counting completions of partial Latin squares

Firstly, we need the fact that all partial Latin squares satisfying a certain quasirandomness prop-
erty extend to a Latin square in a comparable number of ways. This is proved with the entropy
method, the triangle removal process and Keevash’s machinery. Firstly we define our notion of
quasirandomness.

Definition 2.5. For this definition we write 𝑉1, 𝑉2, 𝑉3 instead of 𝑅, 𝐶, 𝑆 for the three parts of
𝐾𝑛,𝑛,𝑛. A subgraph 𝐺 ⊆ 𝐾𝑛,𝑛,𝑛 with 𝑒(𝐺) edges is (𝜀, ℎ)-quasirandom if for each 𝑖 ∈ {1, 2, 3}, every
set 𝐴 ⊆ 𝑉 ⧵ 𝑉𝑖 with |𝐴| ⩽ ℎ has (1 ± 𝜀)(𝑒(𝐺)∕(3𝑛2))|𝐴|𝑛 common neighbours in 𝑉𝑖 . For a par-
tial Latin square 𝑃 ∈ 𝑚, let 𝐺(𝑃) be the graph consisting of those edges of 𝐾𝑛,𝑛,𝑛 which are not
included in some edge of 𝑃 (so if 𝑚 = 𝑛2, then 𝐺(𝑃) is always the empty graph, and if 𝑚 = 0,
then always 𝐺(𝑃) = 𝐾𝑛,𝑛,𝑛). Let 

𝜀,ℎ
𝑚 be the set of partial Latin squares 𝑃 ∈ 𝑚 such that 𝐺(𝑃) is

(𝜀, ℎ)-quasirandom.

Secondly, it is convenient to define a notion of an ordered (partial) Latin square.

Definition 2.6. An ordered partial Latin square is a partial Latin square 𝑃 ∈ 𝑚 together with
an ordering on its edge set. Since the triangle removal process removes triangles sequentially, we
can actually interpret 𝕃(𝑛,𝑚) as a distribution on ordered partial Latin squares with𝑚 edges. Let

𝜀,ℎ
𝑚 be the set of ordered partial Latin squares 𝑃 ∈ 𝑚 such that, for each 𝑖 ⩽ 𝑚, writing 𝑃𝑖 for

the partial Latin square consisting of the first 𝑖 edges of 𝑃, the graph 𝐺(𝑃𝑖) is (𝜀, ℎ)-quasirandom.

Now, our counting lemma is as follows.

Lemma 2.7 [42, Lemma 1.6]. For an ordered partial Latin square 𝑃 with 𝑚 edges, let ∗(𝑃) be
the set of ordered Latin squares extending 𝑃 (that is, whose first 𝑚 edges are equal to 𝑃). Fixing a
sufficiently large constant ℎ ∈ ℕ and fixing a constant 𝑎 > 0, there is 𝑏 = 𝑏(𝑎, ℎ) > 0 such that the
following holds. Fix a constant 𝛼 ∈ (0, 1), let 𝜀 = 𝑛−𝑎 and𝑚 ⩽ 𝛼𝑛2, and let 𝑃, 𝑃′ ∈ 

𝜀,ℎ
𝑚 . Then

|∗(𝑃)||∗(𝑃′)| ⩽ exp(𝑂(𝑛2−𝑏)).
2.2 The triangle removal process

Next, we need the fact that the triangle removal process produces every quasirandom partial Latin
square with a comparable probability. This follows from the fact that quasirandom graphs have a
predictable number of triangles.

Lemma 2.8 [42, Lemma 1.7]. The following holds for any fixed constant 𝑎 ∈ (0, 2) and 𝛼 ∈ (0, 1).
Let 𝜀 = 𝑛−𝑎, let 𝑃, 𝑃′ ∈ 

𝜀,2
𝛼𝑚 and let 𝐏 ∼ 𝕃(𝑛, 𝛼𝑚). Then

Pr(𝐏 = 𝑃)

Pr(𝐏 = 𝑃′)
⩽ exp(𝑂(𝑛2−𝑎)).

We also need the fact that the triangle removal process is likely to produce quasirandom partial
Latin squares (and not output ∗). This follows from a very simple and crude analysis (as in [42,
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1427

Section 6]). We note that with modern techniques it is possible to prove a much stronger theorem
(see [7]), but this will not be necessary for our application.

Lemma 2.9 [42, Lemma 1.10]. For any constant ℎ ∈ ℕ there is a constant 𝑎 = 𝑎(ℎ) ∈ (0, 2) such
that the following holds. Fix 𝛼 ∈ (0, 1), let 𝑚 ⩽ 𝛼𝑛2, let 𝜀 = 𝑛−𝑎 and let 𝐏 ∼ 𝕃(𝑛,𝑚). Then Pr(𝐏 ∉

𝜀,ℎ
𝑚 or 𝐏 =∗) = 𝑜(1).

2.3 Randomly ordered Latin squares

Finally, we need to know that a random ordering of any Latin square is likely to satisfy our quasir-
andomness property. This follows from a simple Chernoff bound calculation.

Lemma2.10 [42, Lemma 1.8].The following holds for any fixed constantsℎ ∈ ℕ,𝛼 ∈ (0, 1) and𝑎 ∈
(0, 1∕2). Let 𝑚 ⩽ 𝛼𝑛2 and 𝜀 = 𝑛−𝑎, consider any Latin square 𝐿, and let 𝐋𝑚 be a random ordering
of a random set of𝑚 edges of 𝐿. Then Pr(𝐋𝑚 ∉ 

𝜀,ℎ
𝑚 ) = 𝑜(1).

2.4 Putting everything together

Finally, we prove Theorem 2.4.

Proof of Theorem 2.4. Let ℎ be as in Lemma 2.7, let 𝑎 = 𝑎(ℎ) be as in Lemma 2.9, let 𝜀 = 𝑛−𝑎, and
let 𝑏 = 𝑏(𝑎, ℎ) be as in Lemma 2.7.
Let 𝑁pair be the number of pairs (𝐿, 𝐿𝑚) where 𝐿 ∈  is a Latin square satisfying property  ,

and 𝐿𝑚 is an ordered partial Latin square consisting of 𝑚 edges of 𝐿, which satisfies† 𝑚 ∩ 
𝜀,ℎ
𝑚 .

Then

𝑁pair ⩾ (1∕2 − 𝑜(1))𝑛
2(𝑛2 − 1)… (𝑛2 − 𝑚 + 1)| |,

by Lemma 2.10 and the definition of being 1∕2-inherited.
Let 𝑁ext = 𝑛2(𝑛2 − 1)… (𝑛2 − 𝑚 + 1)||∕|𝜀,ℎ𝑚 | be an upper bound on the average number of

ways to extend a partial Latin square 𝑃 ∈ 
𝜀,ℎ
𝑚 to a Latin square. By Lemma 2.7, we have

𝑁pair ⩽ exp(𝑛
2−𝑏)|𝑚 ∩ 𝜀,ℎ𝑚 |𝑁ext.

It follows that

Pr(𝐋 ∈  ) =
| ||| ⩽ (2 + 𝑜(1)) exp(𝑛2−𝑏) |𝑚 ∩ 

𝜀,ℎ
𝑚 |

|𝜀,ℎ𝑚 | .

Using Lemma 2.8, we have

|𝑚 ∩ 𝜀,ℎ𝑚 |
|𝜀,ℎ𝑚 | ⩽ exp(𝑂(𝑛2−𝑎)) Pr(𝐏 ∈ 𝑚 |𝐏 ∈ 𝜀,ℎ𝑚 ),

†Here we are abusing notation slightly, because 𝑚 is technically a property of unordered partial Latin squares. Here we
say that an ordered partial Latin square satisfies 𝑚 if its underlying unordered partial Latin square does.
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1428 KWAN

and using Lemma 2.9, we have

Pr(𝐏 ∈ 𝑚 |𝐏 ∈ 𝜀,ℎ𝑚 ) ⩽
Pr(𝐏 ∈ 𝑚)

Pr(𝐏 ∈ 
𝜀,ℎ
𝑚 )
= (1 + 𝑜(1)) Pr(𝐏 ∈ 𝑚).

The desired result follows (taking 𝛾 < min{𝑏, 𝑎}). □

3 LATIN RECTANGLES

In this section we recall the notion of a Latin rectangle and some useful facts about them. The
results in this section will be used in the proofs of the upper tail bounds Theorem 1.2(b,d).

Definition 3.1. A Latin rectangle (of order 𝑛, with 𝑘 rows) is a 𝑘 × 𝑛 array containing the symbols
1, … , 𝑛, such that every symbol appears at most once in each row and column. (So, if 𝑘 = 𝑛, this is
the same as a Latin square). A partial Latin rectangle is a 𝑘 × 𝑛 array satisfying the same property,
but where some of the cells are allowed to be empty.

There is also an equivalent hypergraph formulation of a Latin rectangle.

Definition 3.2. Recall the sets 𝑅 = 𝑅𝑛, 𝐶 = 𝐶𝑛, 𝑆 = 𝑆𝑛 fromDefinition 2.1 and, for 𝑘 ⩽ 𝑛, in addi-
tion define

𝑅(𝑘) = {1, … , 𝑘} ⊆ 𝑅.

A partial Latin rectangle (of order 𝑛, with 𝑘 rows) is a 3-partite 3-graph with tripartition 𝑅(𝑘) ∪ 𝐶 ∪
𝑆 such that no pair of vertices is involved inmore than one edge. A Latin rectangle is a partial Latin
rectangle with exactly 𝑘𝑛 edges (which is the maximum possible). Let (𝑘) denote the set of all
such Latin rectangles (we omit the superscript when 𝑘 is clear from context).We note that one can
similarly define 𝐶(𝑘) = {𝑛 + 1,… , 𝑛 + 𝑘} and 𝑆(𝑘) = {2𝑛 + 1,… , 2𝑛 + 𝑘}, and symmetrically define
a notion of a Latin rectangle with 𝑘 columns or with 𝑘 symbols.

We will switch back and forth between the two equivalent definitions in3.1, 3.2, depending on
which is more convenient at the time (this will be clear from context).

3.1 Counting completions of Latin rectangles

The primary reason Latin rectangles will be important for us is that every Latin rectangle can be
completed in roughly the same number of ways to a Latin square. The following lemma is from
[46, Proposition 4]. It is proved by iteratively applying Bregman’s theorem [9] and the Egorychev–
Falikman theorem [18, 21] to give upper and lower bounds on the number of ways to add an extra
row to a given Latin rectangle.

Theorem 3.3. Let 𝑄,𝑄′ be two Latin rectangles with order 𝑛 and the same number 𝑘 of rows. Let 𝐋
be a random Latin square and let 𝐋𝑘 be the Latin rectangle consisting of its first 𝑘 rows. Then

Pr(𝐋𝑘 = 𝑄)

Pr(𝐋𝑘 = 𝑄
′)
= 𝑒𝑂(𝑛(log 𝑛)

2).
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1429

3.2 Subset probabilities in random Latin rectangles

The following theorem provides estimates on the probability that a given set of entries is present
in a random Latin rectangle. It is a direct consequence of a theorem of Godsil and McKay ([25,
Theorem 4.7]), and is proved using the switching method.

Theorem 3.4. Let 𝑃 be a partial Latin rectangle, let 𝑑𝑖(𝑃) denote the number of entries of 𝑃 in
row 𝑖 and let Δ = max1⩽𝑖⩽𝑘 𝑑𝑖(𝑃). Let 𝐋 be a uniformly random 𝑘 × 𝑛 Latin rectangle and suppose
Δ ⩽ 𝑛 − 5𝑘. Then

Pr(𝑃 ⊆ 𝐋) =

(
1 + 𝑂(𝑘∕(𝑛 − 2𝑘 − Δ))

𝑛

)|𝑃|
.

4 LOWER BOUNDS

In this section we prove Theorem 1.2(c–d), lower-bounding the large deviation probabilities for
the number of intercalates𝐍 in a random Latin square.

Proof of Theorem 1.2(c). As noted in the introduction, for all orders except 2 and 4 there is a Latin
square with no intercalates (this combines results of Kotzig, Lindner and Rosa [38], McLeish [48]
and Kotzig and Turgeon [39]). On the other hand, the total number of order-𝑛 Latin squares is
clearly at most 𝑛𝑛2 = exp(𝑂(𝑛2 log 𝑛)). The desired result follows. □

Proof of Theorem 1.2(d). Let 𝑘 = 2𝑞 be the smallest power of two such that 𝑘
(𝑘
2

)
∕2 ⩾ (1 + 𝛿)𝑛2∕4.

Let 𝐿 be the Latin square corresponding to the multiplication table of (ℤ∕2ℤ)𝑞 (where we fix
some correspondence between elements of this group and the integers 1, … , 𝑘). Then, 𝐿 has order
𝑘 = Θ(𝑛2∕3), and it is easy to see that it has 𝑘

(𝑘
2

)
∕2 ⩾ (1 + 𝛿)𝑛2∕4 intercalates (see, for example,

[10]). Let𝐐 ∈  be a uniformly randomorder-𝑛 Latin rectanglewith 𝑘 rows. By Theorem 3.4, with
probability at least ((1 − 𝑜(1))∕𝑛)𝑘2 = exp(−𝑂(𝑛4∕3 log 𝑛)), our special Latin square 𝐿 appears in
the first 𝑘 columns of 𝐐.
Let 𝐋𝑟 be the Latin rectangle consisting of the first 𝑘 rows of our random Latin square 𝐋. By

Theorem 3.3, the probabilities of different outcomes of 𝐋𝑟 differ by a factor of only 𝑒𝑂(𝑛(log 𝑛)
2), so

with probability at least exp(−𝑂(𝑛4∕3 log 𝑛 + 𝑛(log 𝑛)2)) = exp(−𝑂(𝑛4∕3 log 𝑛)), our special Latin
square 𝐿 appears in the first 𝑘 rows and columns of 𝐋, in which case𝐍 ⩾ (1 + 𝛿)𝑛2∕4. □

5 UPPER-BOUNDING THE LOWER TAIL

In this section we prove Theorem 1.2(a). We will apply Theorem 2.4 with  being the property
of having ‘too few’ intercalates. Firstly, we establish that this property is likely to be inherited by
random subsets.

Lemma 5.1. Fix 𝛼, 𝛿 ∈ [0, 1], let  𝛿 ⊆  be the property that a Latin square 𝐿 ∈  has at most
(1 − 𝛿)𝑛2∕4 intercalates, and for 𝑚 = 𝛼𝑛2 let  𝛿𝑚 ⊆ 𝑚 be the property that a partial Latin square
𝑃 ∈ 𝑚 has at most 𝛼4(1 − 𝛿∕2)𝑛2∕4 intercalates. Then  𝛿𝑚 is 1∕2-inherited from  𝛿 .
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1430 KWAN

Proof. Let 𝐿 ∈ 𝑇𝛿 and let 𝐋𝑚 consist of 𝑚 random edges of 𝐿. Let  be the set of intercalates in
𝐿, for 𝐼 ∈  let 𝟏𝐼 be the indicator random variable for the event that 𝐼 ⊆ 𝐿𝑚 and let 𝐗 =

∑
𝐼∈ 𝟏𝐼

be the number of intercalates in 𝐋𝑚. For each 𝐼 ∈  we have 𝔼𝟏𝐼 = 𝛼4 + 𝑂(1∕𝑛), so 𝔼𝐗 ⩽ 𝛼4(1 −
𝛿 + 𝑜(1))𝑛2∕4. Also, for each pair of disjoint 𝐼, 𝐽 ∈  we haveCov(𝟏𝐼, 𝟏𝐽) = 𝑂(1∕𝑛). In every Latin
square, every intercalate intersects at most 4𝑛 other intercalates, so there are 𝑂(𝑛3) intersecting
pairs of intercalates in , meaning Var𝐗 = 𝑂(𝑛3). By Chebyshev’s inequality, we conclude that

Pr(𝐋𝑚 ∈  ) = Pr(𝐗 < 𝛼4(1 − 𝛿∕2)𝑛2∕4) = 1 − 𝑜(1) > 1∕2,

meaning that  𝛿𝑚 is 1∕2-inherited from  𝛿. □

Before we continue with the proof we record some auxiliary lemmas.

5.1 A coupling lemma

It is not very easy to study the triangle removal process directly, so the following coupling lemma
is useful in combination with Theorem 2.4. Let 𝔾(3)(𝑛, 𝑝) be the random 3-partite 3-graph on the
vertex set 𝑅 ∪ 𝐶 ∪ 𝑆 obtained by including all possible edges with probability 𝑝 independently.

Lemma 5.2 [42, Lemma 1.9]. †Let  be a property of unordered partial Latin squares that is mono-
tone decreasing in the sense that 𝑃 ∈  and 𝑃′ ⊆ 𝑃 implies 𝑃′ ∈  . Fix 𝛼 ∈ (0, 1), let 𝐏 ∼ 𝕃(𝑛, 𝛼𝑛2),
let 𝐆 ∼ 𝔾(3)(𝑛, 𝛼∕𝑛) and let 𝐆∗ be the partial Latin square obtained from 𝐆 by deleting (all at once)
every edge which intersects another edge in more than one vertex. Then

Pr(𝐏 ∈  ) ⩽ 𝑂(Pr(𝐆∗ ∈  )).

We remark that one can prove a similar coupling lemma for monotone increasing properties
(see [22, Lemma 2.6]), though this will not be necessary for us.

5.2 A concentration inequality

The following concentration inequality may be deduced from an inequality of Freedman [23]. It
appears as [40, Theorem 2.11].

Theorem 5.3. Let 𝝎 = (𝝎1, … , 𝝎𝑁) be a sequence of independent, identically distributed ran-
dom variables with Pr(𝝎𝑖 = 1) = 𝑝 and Pr(𝝎𝑖 = 0) = 1 − 𝑝. Let 𝑓 ∶ {0, 1}𝑁 → ℝ satisfy the Lips-
chitz condition |𝑓(𝝎) − 𝑓(𝝎′)| ⩽ 𝐾 for all pairs 𝝎,𝝎′ ∈ {0, 1}𝑁 differing in exactly one coordinate.
Then

Pr(|𝑓(𝝎) − 𝔼𝑓(𝝎)| > 𝑡) ⩽ exp(− 𝑡2

4𝐾2𝑁𝑝 + 2𝐾𝑡

)
.

† The statement of [42, Lemma 1.9] is for a monotone increasing property  ; to derive the statement here we simply take
 to be the complement of  .
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1431

5.3 Putting everything together

We are now ready to prove Theorem 1.2(a).

Proof of Theorem 1.2(a). Let 𝛼 > 0 be some constant that is sufficiently small with respect to 𝛿, let
𝑚 = 𝛼𝑛2, let 𝐆,𝐆∗ be as in Lemma 5.2 and let  𝛿𝑚 be the property that a partial Latin square (not
necessarily with exactly 𝑚 edges) has at most (1 − 𝛿∕2)𝛼4𝑛2∕4 intercalates. We bound Pr(𝐆∗ ∈
 𝛿𝑚) using a ‘maximum disjoint family’ technique essentially due to Bollobás [8]. Let 𝐍 be the
number of intercalates in𝐆∗, let𝐍′ be the maximum size of a collection of disjoint intercalates in
𝐆∗ and let 𝐍2 be the number of pairs of distinct intercalates in 𝐆 which share an edge. Observe
that𝐍′ ⩾ 𝐍 −𝐍2.
Now, we estimate 𝔼𝐍. There are 2

(𝑛
2

)3 ways to specify an intercalate, and each is present in 𝐆∗
with probability (𝛼∕𝑛)4(1 − 𝛼∕𝑛)12(𝑛−1)−8. So,

𝔼𝐍 = (𝑒−12𝛼 + 𝑜(1))𝛼4𝑛2∕4.

For𝔼𝐍2, we observe that there are𝑂(𝑛7)ways to specify a pair of intercalates that share two edges,
and each such pair is present in 𝐆 with probability (𝛼∕𝑛)6. There are 2

(𝑛
2

)3
⋅ 4(𝑛 − 2)3 ways to

specify an ordered pair of intercalates that share one edge, and each such pair is present in𝐆with
probability (𝛼∕𝑛)7. So,

𝔼𝐍2 = (𝛼
3 + 𝑜(1))𝛼4𝑛2.

If 𝛼 is sufficiently small (in terms of 𝛿), then 𝔼𝐍′ ⩾ 𝔼𝐍 − 𝔼𝐍2 ⩾ 𝛼4(1 − 𝛿∕4)𝑛2∕4.
Wenext claim that𝐍′ is a 3-Lipschitz function of the edges of the randomhypergraph𝐆. Indeed,

adding an edge to 𝐆 can increase 𝐍′ by at most one, and removing an edge from 𝐆 can increase
𝐍′ by at most three (by adding up to three edges to 𝐆∗). So, by Theorem 5.3 we have

Pr(𝐆∗ ∈  𝛿𝑚) ⩽ Pr(𝐍
′ ⩽ 𝔼𝐍′ − 𝛼4𝛿𝑛2∕16) ⩽ exp(−Ω(𝑛2)).

It follows from Lemma 5.2 that if 𝐏 ∼ 𝕃(𝑛, 𝛼𝑛2), then Pr(𝐏 ∈  𝛿𝑚) ⩽ exp(−Ω(𝑛
2)). The desired

result follows from Lemma 5.1 and Theorem 2.4. □

6 UPPER-BOUNDING THE UPPER TAIL

In this section we prove Theorem 1.2(b). We will work mostly with random Latin rectangles, and
use Theorem 3.3 to transfer our results to randomLatin squares. Recall that we defined two equiv-
alent notions of a Latin rectangle (3.1, 3.2); we will use both perspectives in this section.

6.1 Deletion

The first step in the proof of Theorem 1.2(b) is to adapt the deletion method of Rödl and Ruciński
(see [32, 50]), using Theorem 3.4, to reduce to the case where one has a small subset of edges
which contributes a large number of the intercalates. To effectively apply Theorem 3.4, for now
we restrict our attention to a small number of rows, columns and symbols.
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1432 KWAN

Lemma6.1. Fix a sufficiently small constant 𝛿 > 0, and let 𝑘 = ⌊𝛿2𝑛⌋. Let𝐋 be a uniformly random
order-𝑛 Latin square, and let 𝐋(𝑘) be the subhypergraph induced by 𝑅(𝑘) ∪ 𝐶(𝑘) ∪ 𝑆(𝑘) (that is to say,
𝐋(𝑘) consists of the entries in the first 𝑘 columns and the first 𝑘 rows, involving the first 𝑘 symbols).
Then with probability 1 − exp(−Ω(𝑛4∕3(log 𝑛)2∕3)) there is a set 𝐄0 ⊆ 𝐋(𝑘) of 𝑛4∕3(log 𝑛)2∕3 edges
such that 𝐋(𝑘) ⧵ 𝐄0 contains at most (1 + 𝛿∕2)𝑘6∕(4𝑛4) intercalates.

Proof. We first note that this event is purely a function of the first 𝑘 rows of 𝐋, and therefore by
Theorem 3.3 it suffices to prove the same event for a uniformly random order-𝑛 Latin rectangle
𝐐 ∈ with 𝑘 rows (as the relative change of measure exp(𝑂(𝑛(log 𝑛)2)) is simply swallowed into
the error term). Let 𝐐(𝑘) be the subhypergraph of 𝐐 induced by 𝑅(𝑘) ∪ 𝐶(𝑘) ∪ 𝑆(𝑘).
Now let  be the event that the desired property fails (that is, for each set 𝐸 ⊆ 𝐐(𝑘) of size

𝑟 = 𝑛4∕3(log 𝑛)2∕3, the partial Latin rectangle 𝐐(𝑘) ⧵ 𝐸 contains at least 𝑁 = (1 + 𝛿∕2)𝑘6∕(4𝑛4)
intercalates). Let 𝑍 be the number of 𝜅 = ⌊𝑟∕4⌋-element sequences of disjoint intercalates in
𝐐(𝑘). If  holds, then 𝑍 ⩾ 𝑁𝜅, since we may choose 𝜅 intercalates sequentially with at least
𝑁 choices each time. On the other hand, there are 2

(𝑘
2

)3
= (1 + 𝑜(1))𝑘6∕4 potential interca-

lates that can appear in 𝐐(𝑘), and by Theorem 3.4 each 𝜅-element sequence of disjoint interca-
lates appears in 𝐐 with probability at most ((1 + 𝑂(𝛿2))∕𝑛4)𝜅 ⩽ ((1 + 𝛿∕4)∕𝑛4)𝜅 (for small 𝛿). So,
𝔼𝑍 ⩽ ((1 + 𝛿∕3)𝑘6∕(4𝑛4))𝜅 by linearity of expectation, and by Markov’s inequality it follows that
Pr() ⩽ 𝔼𝑍∕𝑁𝜅 ⩽ exp(−Ω(𝑛4∕3(log 𝑛)2∕3)). □

6.2 A combinatorial decomposition

Given Lemma 6.1, we now wish to understand the probability that there is a small set of edges
participating inmany intercalates. Tomake this analysis tractable, we need a lemma decomposing
any set of edges into well-behaved subsets.

Definition 6.2. A star is a hypergraph all of whose hyperedges contain a common vertex. A
matching is a hypergraph all of whose hyperedges are disjoint.

Lemma 6.3. For any 𝑟 ∈ ℕ, every 3-uniform hypergraph with𝑚 hyperedges can be partitioned into
a combination of at most 𝑚∕𝑟 stars and at most 3𝑟 + 𝑚∕𝑟 matchings, each of which have at most
𝑟 edges.

Proof. As long as there is a vertex incident to 𝑟 edges, take 𝑟 of these edges as a star (we obtain at
most𝑚∕𝑟 stars in this way). After nomore deletions are possible, we now have a 3-uniform hyper-
graphwith all degrees less than 𝑟. We can greedily find a proper edge-colouring of this hypergraph
with at most 3(𝑟 − 1) + 1 ⩽ 3𝑟 colours. Each of the colour classes is a matching. Finally, arbitrar-
ily decompose the matchings into sub-matchings each with at most 𝑟 edges, which introduces at
most𝑚∕𝑟 new matchings. □

6.3 Switching for stars and matchings

By applying Lemma 6.3 to the set 𝐄0 provided by Lemma 6.1, it now suffices to bound the prob-
ability that there is a small star or matching which participates in many intercalates. We will
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1433

handle both cases separately, with similar switching-based proofs (in random Latin rectangles;
afterwards we will use Theorem 3.3 to deduce a result for random Latin squares). Our application
of the switching method will be rather simple and completely elementary, but we remark that
Fack and McKay [20] and Hasheminezhad and McKay [29] have proved very general theorems
with which one can analyse more complicated switching operations.
Firstly, the following lemma will be used to handle stars (note that in the context of Latin rect-

angles, a star is a set of entries corresponding to a single row, column or symbol).

Lemma 6.4. Let 𝑘 ⩽ 𝑛∕10, and let 𝐐 ∈  be a uniformly random order-𝑛 Latin rectangle with 𝑘
rows. Let 𝑁(𝐐) be the number of intercalates in 𝐐 which involve the first row. Then Pr(𝑁(𝐐) ⩾ 𝑡) ⩽
(𝑘∕𝑡)Ω(𝑡) for 𝑡 ⩾ 20𝑘.

Proof. Let (𝓁) ⊆  be the set of Latin rectangles 𝑄 ∈  for which there are exactly 𝑁(𝑄) = 𝓁
intercalates involving the first row.
Consider the following switching operation: select a row 𝑖 ∈ 𝑅(𝑘) ⧵ {1} (that is, not the first row)

and a pair of columns 𝑥, 𝑦 ∈ 𝐶, and swap the contents of columns 𝑥 and 𝑦 in row 𝑖. Note that it is
possible that the resulting 𝑘 × 𝑛 array is no longer a Latin rectangle (columns 𝑥 and 𝑦 may now
contain a repeated symbol). We next compute some upper and lower bounds on the number of
ways to switch from a Latin rectangle 𝑄 ∈ (𝓁) to a Latin rectangle 𝑄 ∈ (𝓁′), for 𝓁 ≠ 𝓁′.
In the hypergraph formulation of a Latin rectangle, our switching introduces two new edges

and removes two edges. In a Latin rectangle, every edge outside the first row participates in at
most one intercalate involving the first row, so it is only possible to switch from (𝓁) to (𝓁′) if|𝓁 − 𝓁′| ⩽ 2.
Next, we observe that for any Latin rectangle𝑄 ∈ , there are atmost (𝑘 − 1)𝑛 ⩽ 𝑘𝑛 switchings

which create an intercalate involving the first row. Indeed, first note that swapping entries in
columns 𝑥 and 𝑦 of a given row can never create an intercalate involving the first row and both 𝑥
and 𝑦. Then, for every column 𝑧, we consider the number of switchings that create an intercalate
involving 𝑧without actually swapping an entry in column 𝑧. Such an intercalate must involve one
of the 𝑘 − 1 rows other than the first, and for each such row 𝑖, there is at most one switching that
actually creates the desired intercalate (in row 𝑖, wemust swap the column 𝑥 satisfying𝑄𝑖,𝑥 = 𝑄1,𝑧
with the column 𝑦 satisfying 𝑄1,𝑦 = 𝑄𝑖,𝑧).
Now, given a Latin rectangle 𝑄 ∈ (𝓁), there are 𝓁 intercalates involving the first row. Note

that each such intercalate is destroyed by at least 2(𝑛 − 2𝑘) switchings which maintain the Latin
rectangle property. Indeed, consider one of the two edges of the intercalate not in the first row
(in row 𝑖, column 𝑥 and symbol 𝑠, say). There are at most 𝑘 columns which already include 𝑠,
and at most 𝑘 columns whose symbol in row 𝑖 already appears in column 𝑥. For any of the (at
least 𝑛 − 2𝑘) other rows 𝑦, we can swap columns 𝑥 and 𝑦 in row 𝑖 to destroy the desired inter-
calate. Now, the intercalates involving the first row are edge-disjoint outside of this first row, but
a given switching could remove two different intercalates at once (or destroy an intercalate by
interchanging its entries outside the first row). So, there are a total of at least 𝓁(𝑛 − 2𝑘) distinct
switchings which maintain the Latin rectangle property and remove an intercalate. We have just
observed that at most 𝑘𝑛 of these switchings also introduce an intercalate, so for any 𝓁 ⩾ 2 we
deduce

(𝓁(𝑛 − 2𝑘) − 𝑘𝑛) |(𝓁)| ⩽ 𝑘𝑛 (|(𝓁 − 1)| + |(𝓁 − 2)|).
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1434 KWAN

This implies |(𝓁)| ⩽ (4𝑘∕𝓁)max{|(𝓁 − 1)|, |(𝓁 − 2)|} for 𝓁 ⩾ 10𝑘. Iterating this, we see that
for 𝓁 ⩾ 20𝑘 we have

|(𝓁)| ⩽ 4𝑘
𝓁

⋅
4𝑘

𝓁 − 2
⋅ ⋯ ⋅

4𝑘

𝓁 − 2⌈(𝓁 − 10𝑘 − 2)∕2⌉ ⋅max{|(10𝑘)|, |(10𝑘 − 1)|} ⩽ (
𝑘

𝓁

)Ω(𝓁)||.
(To justify the second inequality, note that at least𝓁∕4 terms in the product are atmost 8𝑘∕𝓁). This
implies thatPr(𝑁(𝐐) = 𝓁) ⩽ (𝑘∕𝓁)Ω(𝓁), and the desired result follows by summing over𝓁 ⩾ 𝑡. □

To handle matchings, we first use a similar switching argument to handle intercalates which
are ‘mostly disjoint’ from the vertices of the matching, other than the necessary included edge.
Note that in the context of Latin rectangles, a matching is a set of entries such that no pair shares
a row, column or symbol. Such a set is also called a partial transversal.

Lemma 6.5. Let 𝑘 ⩽ 𝑛∕10 and let 𝐐 ∈  be a uniformly random order-𝑛 Latin rectangle with 𝑘
rows. Fix a set𝑀 of 𝑟 = 𝑘∕6 disjoint triples in 𝑅(𝑘) × 𝐶 × 𝑆 (which may or may not appear as edges
in 𝐐). Say an intercalate is good if it includes one of the triples in𝑀 as an edge, and its other three
vertices are completely disjoint from the vertices in𝑀. Let 𝑁(𝐐) be the number of good intercalates
in 𝐐. Then Pr(𝑁(𝐐) ⩾ 𝑡) ⩽ (𝑘∕𝑡)Ω(𝑡) for 𝑡 ⩾ 20𝑘.

Proof. Similarly to the proof of Lemma 6.4, we partition the set of all 𝑘 × 𝑛 Latin rectangles 
into subsets (𝓁) depending on the number 𝓁 of good intercalates they contain. Without loss
of generality we may assume that 𝑀 involves the first 𝑟 rows, the first 𝑟 columns and the first
𝑟 symbols. We consider the same switching operation as before, but we only consider swaps in
rows 𝑖 > 𝑟 (that is, we never switch in the rows where the entries of 𝑀 live). As in the proof of
Lemma 6.4, we need to prove estimates on the number of ways to switch between different (𝓁).
The arguments will be very similar, so we will be brief with the details.
This time, it is only possible to switch between (𝓁) and (𝓁′) if |𝓁 − 𝓁′| ⩽ 6. This is because

any given entry outside the first 𝑟 rows can be involved in at most 3 good intercalates (it must
share a row, column or symbol with an edge in𝑀).
The same considerations as before show that for any 𝑄 ∈ , there are at most 𝑟𝑘 switchings

which create a good intercalate. Also, if we consider any 𝑄 ∈ (𝓁), there are at least 𝓁(𝑛 − 2𝑘)∕3
switchings which destroy an intercalate in 𝑄 (the reason we divide by three is that a single entry
can participate in at most three good intercalates). We deduce that, for 𝓁 ⩾ 6,

(𝓁(𝑛 − 2𝑘)∕3 − 𝑟𝑘) |(𝓁)| ⩽ 𝑟𝑘 6∑
𝑟=1

|(𝓁 − 𝑟)|,
and we can then iterate this bound to conclude the proof in essentially the same way as
Lemma 6.4. □

Now, a simple combinatorial argument allows us to infer a bound not requiring disjointness.

Lemma 6.6. There is a constant𝐶6.6 > 0 such that the following holds. Let 𝑘 ⩽ 𝑛∕10 and let𝐐 ∈ 

be a uniformly random order-𝑛 Latin rectangle with 𝑘 rows. Fix a set 𝐹 of 𝑟 ⩽ 𝑘∕6 disjoint triples in
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LARGE DEVIATIONS IN RANDOM LATIN SQUARES 1435

𝑅(𝑘) × 𝐶 × 𝑆 (which may or may not appear as edges in 𝐐). Let 𝑁(𝐐) be the number of intercalates
in 𝐐 which include an edge in 𝐹. Then Pr(𝑁(𝐐) ⩾ 𝑠) ⩽ (𝑘∕𝑠)Ω(𝑠) for 𝑠 ⩾ 𝐶6.6𝑘.

Proof. We claim that if any Latin rectangle 𝑄 ∈  has at least 𝑠 ⩾ 𝐶6.6𝑘 intercalates involving
edges in 𝐹, then there is a subset𝑀 ⊆ 𝑄 such that there are at least 𝑠∕16 intercalates in 𝑄 which
are good with respect to 𝑀 (that is, they involve an edge in 𝑀, and the three vertices outside
this edge are completely disjoint from𝑀). This suffices to prove the lemma: if𝐻 is large enough,
then Lemma 6.5 and the union bound show that with probability at least 1 − 2𝑟(16𝑘∕𝑠)Ω(𝑠∕16) =
1 − (𝑘∕𝑠)Ω(𝑠), our random Latin rectangle 𝐑 has the property that there is no subset 𝑀 ⊆ 𝑄 for
which there are at least 𝑠∕16 intercalates in 𝐑 which are good with respect to𝑀.
To prove the claim, we use the probabilistic method. Consider any Latin rectangle 𝑄 ∈ , and

let𝑀 be a random subset of 𝐹 obtained by including each element of 𝐹 independently with prob-
ability 1∕2. For each intercalate 𝐼 involving an edge in 𝑒 ∈ 𝐹, note that 𝐼 is good with respect
to 𝑀 with probability at least 1∕16. Indeed, note that there are at most 3 edges in 𝐹 ⧵ {𝑒} which
intersect 𝐼. The probability that 𝑒 ∈ 𝑀 and the other intersecting edges are not in 𝑀 is at least
(1∕2) ⋅ (1∕2)3 = 1∕16.
By linearity of expectation, the expected number of intercalates which are good with respect to

𝑀 is at least 𝑠∕16, so there is an outcome of𝑀 such that there are at least 𝑠∕16 good intercalates.
This completes the proof of the claim. □

Weconclude this subsection by using Theorem 3.3 to deduce from6.4, 6.6 a corresponding result
for random Latin squares.

Lemma 6.7. Let 𝑘 ⩽ 𝑛∕10 and 𝑟 ⩽ 𝑘∕6. Let 𝐋 ∈  be a uniformly random order-𝑛 Latin square,
and let𝐋(𝑘) be the subhypergraph induced by 𝑅(𝑘) ∪ 𝐶(𝑘) ∪ 𝑆(𝑘) (that is, the first 𝑘 rows, columns and
symbols). Let 𝐾(3)

𝑘,𝑘,𝑘
be the complete 3-uniform 3-partite hypergraph with parts 𝑅(𝑘), 𝐶(𝑘), 𝑆(𝑘), and

fix a star or matching 𝐹 ⊆ 𝐾(3)
𝑘,𝑘,𝑘

with 𝑟 edges. Let 𝐍𝐹 be the number of intercalates in 𝐋(𝑘) which
include an edge in 𝐹. Then Pr(𝐍𝐹 ⩾ 𝑠) ⩽ exp(𝑂(𝑛(log 𝑛)2))(𝑘∕𝑠)Ω(𝑠) for 𝑠 ⩾ 𝐶6.6𝑘, where 𝐶6.6 is the
constant in Lemma 6.6.

Proof. If 𝐹 is amatching, wemay assumewithout loss of generality that it involves the first 𝑟 rows.
The desired result then follows from Lemma 6.6 and Theorem 3.3 (recall that by Theorem 3.3, we
lose a factor of at most exp(𝑂(𝑛(log 𝑛)2)) when changing measure from a random 𝑘 × 𝑛 Latin
rectangle to the first 𝑘 rows of a random Latin square).
If 𝐹 is a star, without loss of generality we may assume that all of its edges are in the first row

(recall that there is a symmetry between the rows, columns and symbols of a Latin square). We
then apply Lemma 6.4 and Theorem 3.3 in the same way. □

6.4 Completing the proof

We are now ready to bound the upper tail deviation probability.

Proof of Theorem 1.2(b). We may assume that 𝛿 is sufficiently small (the desired bound only
becomes stronger as we make 𝛿 smaller). Let 𝑘 = ⌊𝛿2𝑛⌋, and let 𝐋(𝑘) be the subhypergraph
induced by𝑅(𝑘) ∪ 𝐶(𝑘) ∪ 𝑆(𝑘) (that is, the first 𝑘 rows, columns and symbols). Let𝐍𝑘 be the number
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1436 KWAN

of intercalates in𝐋(𝑘); wewill prove thatPr(𝐍𝑘 ⩾ (1 + 2𝛿∕3)𝑘6∕(4𝑛4)) ⩽ exp(−Ω(𝑛4∕3(log 𝑛)2∕3)).
To see that this suffices, note that by symmetry and the union bound, it would follow that(𝑛
𝑘

)3
exp(−Ω(𝑛4∕3(log 𝑛)2∕3)) = exp(−Ω(𝑛4∕3(log 𝑛)2∕3)) is an upper bound on the probability that

there is any choice of 𝑘 rows, columns and symbols which containsmore than (1 + 2𝛿∕3)𝑘6∕(4𝑛4)
intercalates. But if an order-𝑛 Latin square 𝐿 contains at least (1 + 𝛿)𝑛2∕4 intercalates, then
by averaging there is some subset of 𝑘 rows, 𝑘 columns and 𝑘 symbols inducing at least (1 +
2𝛿∕3)𝑘6∕(4𝑛4) intercalates.
So, we study intercalates in 𝐋(𝑘). Let 𝐾(3)

𝑘,𝑘,𝑘
be the complete 3-uniform 3-partite hypergraph

with parts 𝑅(𝑘), 𝐶(𝑘), 𝑆(𝑘), and for a set of edges 𝐸 ⊆ 𝐾(3)
𝑘,𝑘,𝑘

, let 𝐍𝐸 be the number of intercalates
in 𝐋(𝑘) involving an edge of 𝐸. For every possible outcome of 𝐋(𝑘), let 𝐄0 ⊆ 𝐋(𝑘) be a subset of
𝑚 = 𝑛4∕3(log 𝑛)2∕3 edges of 𝐋(𝑘) such that 𝐍𝐄0 is maximised. By Lemma 6.1, it suffices to show
that Pr(𝐍𝐄0 ⩾ (𝛿∕6)𝑘

6∕(4𝑛4)) ⩽ exp(−Ω(𝑛4∕3(log 𝑛)2∕3)).
Let 𝑟 =

√
𝑚 = 𝑛1∕3(log 𝑛)1∕3. By Lemma 6.3, we can always partition 𝐄0 into at most 3𝑟 +

𝑚∕𝑟 = 4𝑟 stars and matchings each with at most 𝑟 edges. In order to have 𝐍𝐄0 ⩾ (𝛿∕6)𝑘
6∕(4𝑛4),

there must be some 𝑟-edge star or matching 𝐹 with

𝐍𝐹 ⩾
(𝛿∕6)𝑘6∕(4𝑛4)

4𝑟
= Ω

(
𝑛4∕3(log 𝑛)−1∕3

)
.

But this occurs with probability at most
(𝑛3
𝑘

)
exp(−Ω(𝑛4∕3(log 𝑛)2∕3)) = exp(−Ω(𝑛4∕3(log 𝑛)2∕3))

by Lemma 6.7 and the union bound. □
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