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Abstract: We show that the fluctuations of the largest eigenvalue of a real symmetric
or complex Hermitian Wigner matrix of size N converge to the Tracy–Widom laws
at a rate O(N−1/3+ω), as N tends to infinity. For Wigner matrices this improves the
previous rate O(N−2/9+ω) obtained by Bourgade (J Eur Math Soc, 2021) for general-
ized Wigner matrices. Our result follows from a Green function comparison theorem,
originally introduced by Erdős et al. (Adv Math 229(3):1435–1515, 2012) to prove
edge universality, on a finer spectral parameter scale with improved error estimates. The
proof relies on the continuous Green function flow induced by amatrix-valuedOrnstein–
Uhlenbeck process. Precise estimates on leading contributions from the third and fourth
order moments of the matrix entries are obtained using iterative cumulant expansions
and recursive comparisons for correlation functions, along with uniform convergence
estimates for correlation kernels of the Gaussian invariant ensembles.

1. Introduction and Main Results

In this paper we study a quantitative version of the edge universality for Wigner random
matrices. Let HN be a real symmetric or complex Hermitian Wigner matrix of size N .
Then the edge universality asserts that the largest eigenvalue, λN , of HN satisfies

lim
N→∞P

(
N 2/3(λN − 2) < r

)
= TWβ(r), r ∈ R, (1.1)

where TWβ are the cumulative distribution functions of the Tracy–Widom laws [44,45]
and β = 1, 2 indicates the symmetry class (β = 1 for real symmetric and β = 2 for
complex Hermitian Wigner matrices). The universality of the Tracy–Widom laws was
first proved in [40,41] for Wigner matrices whose entries have symmetric distributions.
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This symmetry assumption was partially removed in [35,36]. Edge universality for
Wigner matrices whose entries have vanishing third moments was proved in [43]. Edge
universality without moment matching was proved in [19] for Wigner matrices and
in [2,6] for generalized Wigner matrices. A necessary and sufficient condition on the
entries’ distributions for the edge universality to hold was given in [31].

The main result of this paper is an estimate on the rate of convergence in (1.1) for
Wigner matrices. Theorem 1.3 below states that, for any fixed r0 ∈ R and small ω > 0,

sup
r>r0

∣∣∣P
(
N 2/3(λN − 2) < r

)
− TWβ(r)

∣∣∣ ≤ N−1/3+ω, (1.2)

for N sufficiently large. For the Gaussian unitary ensemble (GUE, β = 2) and Gaussian
orthogonal ensemble (GOE, β = 1) it was established in [25] that the convergence rate
for the largest eigenvalue on a proper scaling is of order O(N−2/3); see Theorem 1.2
below. The first rate of convergence for non-invariant ensembles was recently given
by Bourgade in [5] where the upper bound O(N−2/9+ω) for the convergence rate was
obtained for generalized Wigner matrices.

The proof of the estimate in (1.2) is based on the Green function comparison method
for the edge universality by Erdős et al. [19]. Our main technical result given in Theo-
rem 1.4 compares the expectation of a suitably chosen function of the Green function of
theWignermatrix HN with the corresponding quantity for theGaussian invariant ensem-
bles. Instead of the traditional Lindeberg type swapping strategy [8,19,43], we use the
continuous Green function flow induced by a matrix-valued Ornstein–Uhlenbeck pro-
cess in combination with cumulant expansions [29,30] for the comparison. To achieve
the convergence rate O(N−1/3) in (1.2) the comparison is required on amuch finer spec-
tral scale than the typical O(N−2/3) edge scaling. This requires in turn precise estimates
on the contributions to the Green function flow from third and fourth order moments of
the matrix entries.

Contributions from third moments can be estimated using the idea of unmatched
indices [19], however due to the finer spectral scale, we require expansions to arbitrary
order in terms of the control parameter of the strong local law for the Green function [19]
to implement this idea. This step relies on applying cumulant expansions iteratively to
Green functions and observing a cancellation to leading order [22,23,30]. The usefulness
of cumulant expansions in random matrix theory was recognized in [27] and has widely
been used since, e.g., [7,16,21,32].

Contributions from fourth moments are controlled by first showing that they can be
reduced to trace-like correlation functions of products of Green functions. This first step
is motivated by the Weingarten calculus [10] to compute Haar integrals of products of
eigenvector components for the invariant Gaussian ensembles. The actual reduction for
non-invariant ensembles relies on applying cumulant expansions iteratively. In a second
step we compare the resulting trace-like correlation functions between Wigner matrices
and the invariant ensembles using again the interpolating flow. This leads to a hierarchy
of correlation functions which, after expansion to arbitrary order, can be recursively
estimated by the local law for the Green function. Finally, we need to control the trace-
like correlation functions for the invariant ensembles. This is accomplished by using the
uniform asymptotics [13] for correlation kernels of the invariant ensembles in the edge
scaling.

Edge universality can also be studied through the dynamical approach of Erdős,
Schlein and Yau. The local relaxation time of Dyson’s Brownian motion (DBM) at the
edges is known [1,5,28] to be of order O(N−1/3). Combining his quantitative local
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relaxation estimates for the DBM with a Green function comparison for short times,
Bourgade obtained in [5] the convergence rate O(N−2/9) to the Tracy–Widom laws
for generalized Wigner matrices. In view of the local relaxation time of the DBM at the
spectral edges, the convergence rate estimate in (1.2)may be optimal forWignermatrices
in general, though numerical simulations in [20] indicate that certain Wigner matrices
exhibit faster convergence rates after a scaling and centering of the largest eigenvalue.
We suspect that such a centering would crucially depend on the fourth moments of the
entries and the symmetry type of the matrices.

The methods presented in this paper are rather robust and can be applied to other ran-
dom matrix models. Of interest in statistics are in particular convergence rate estimates
for sample covariance matrices. For the white Wishart ensemble the convergence rate
O(N−2/3) after a proper scaling were obtained in [14,33]. Edge universality for sample
covariance matrices was established in [37] and a first quantitative version appeared
recently in [46]. In the accompanying article [38] we establish the results corresponding
to (1.2) for sample covariance matrices. In this paper we focus on estimating the contri-
butions from third and fourth order moments of the matrix entries through assuming that
the variances are uniform as for the invariant ensembles. Studying generalized Wigner
matrices requires in addition new techniques to implement a variance profile and is thus
postponed to our upcoming work [39].

1.1. Setup and main results. Let H ≡ HN be an N × N Wigner matrix satisfying the
following.

Assumption 1.1. For a real symmetric (β = 1)Wignermatrix, we assume the following.

1. The matrix entries {Hi j | i ≤ j} are independent real-valued centered random vari-
ables.

2. For i �= j , E[(√NHi j )
2] = 1, and E[(√NHii )

2] are uniformly bounded.
3. All moments of the entries of

√
NHN are uniformly bounded, i.e., for any k ≥ 3,

there exists Ck independent of N such that, for all 1 ≤ i, j ≤ N ,

E[|√NHi j |k] ≤ Ck . (1.3)

For a complex Hermitian (β = 2) Wigner matrix, we assume the following.

a. The matrix entries {Hi j | i ≤ j} are independent complex-valued centered random
variables.

b. For i �= j , E[|√NHi j |2] = 1, E[(Hi j )
2] = 0, and E[(√NHii )

2] are uniformly
bounded.

c. The bound (1.3) holds true.

The Gaussian ensembles, which we denote by GβE for short, are Wigner matrices with
Gaussian entries: For the Gaussian unitary ensemble (GUE, β = 2) the off-diagonal ma-

trix entries are standard complex-valued Gaussians (i.e.,
√
NHi j

d= N (0, 1
2 )+iN (0, 1

2 ))

and the diagonal entries are standard real-valued Gaussians (i.e.,
√
NHii

d= N (0, 1)).
Similarly, for the Gaussian orthogonal ensemble (GOE, β = 1) the matrix entries are

real-valued Gaussians with
√
NHi j

d= N (0, 1) (i �= j) and
√
NHii

d= N (0, 2).
Let (λ j )

N
j=1 be the eigenvalues of HN arranged in a non-decreasing order. It is well

known that the largest eigenvalue λN converges to the spectral edge 2 in probability.
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The typical spacing of the top eigenvalues near 2 is of order O(N−2/3), due to the
square-root behavior at the end points of the limiting spectral density and eigenvalue
rigidity. The limiting distribution of N 2/3(λN −2) for theGaussian ensembles was found
by Tracy and Widom in [44,45]. The corresponding convergence rate was quantized by
Johnstone and Ma [25] in the following theorem.

Theorem 1.2 (Convergence rate for the Gaussian ensembles). Let HN be the GUE. For
any fixed r0 ∈ R, there exists a constant C = C(r0) such that

sup
r>r0

∣∣∣PGUE
(
N 2/3(λN − 2) < r

)
− TW2(r)

∣∣∣ ≤ CN−2/3. (1.4)

Moreover, considering the GOE with N even, we have

sup
r>r0

∣∣∣PGOE
(
(N − 1)1/6

√
N
(
λN − (4 − 2

N
)1/2
)

< r
)

− TW1(r)
∣∣∣ ≤ CN−2/3. (1.5)

The first quantitative convergence rate O(N−2/9+ω) for generalizedWigner matrices
was obtained by Bourgade [5] using optimal local relaxation estimates for the Dyson
Brownian motion and a quantitative Green function comparison theorem for short times.

The main result of this paper is an improved bound for the convergence rate of the
distribution of N 2/3(λN − 2) for arbitrary Wigner matrices to the Tracy–Widom laws.

Theorem 1.3 (Convergence rate for Wigner matrices). Let HN be a real or complex
Wigner matrix satisfying Assumption 1.1. For any fixed r0 ∈ R and small ω > 0,

sup
r>r0

∣∣∣P
(
N 2/3(λN − 2) < r

)
− TWβ(r)

∣∣∣ ≤ N− 1
3 +ω, (1.6)

for sufficiently large N ≥ N0(r0, ω). The corresponding statement holds for the smallest
eigenvalue λ1.

The proof of Theorem 1.3 relies on the Green function comparison method [18,19].
Let

G(z) := 1

HN − z
, mN (z) := 1

N
TrG(z), z ∈ C

+, (1.7)

denote the resolvent or Green function of the Wigner matrix HN and mN its normalized
trace. The distribution of the rescaled largest eigenvalue can be linked to the expectation
(of smooth functions) of the imaginary part of mN (z) for appropriately chosen spectral
parameters z; see Sect. 2.3. The main technical result of this paper is the following
comparison theorem at the spectral edges.

Theorem 1.4 (Green function comparison theorem). Let F be a smooth function with
uniformly bounded derivatives. For any small ε > 0, let N−1+ε ≤ η ≤ N−2/3+ε and
|κ1|, |κ2| ≤ C0N−2/3+ε for some C0 > 0. Then there exists some c0 > 0 that does not
depend on ε, such that

∣∣∣
(
E − E

GβE
)[

F
(
N
∫ κ2

κ1

ImmN (2 + x + iη)dx
)]∣∣∣ ≤ N−1/3+c0ε, (1.8)

for sufficiently large N ≥ N0(ε,C0).
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Remark 1.1. A first Green function comparison theorem at the spectral edges was ob-
tained in [19] for spectral parameters η of size O(N−2/3−ε) and with an error estimate
of size O(N−1/6+c0ε).

The constant c0 in the upper bound in (1.8) can be chosen as any number bigger than
one. An inspection of our proof in fact yields that the upper bound in (1.8) can be written
as

max{K4, |M2 − 1|}N− 1
3 +c0ε + O(N−1/2+ε),

where M2 = maxi
∣∣E[(√Nhii )2]

∣∣; K4 = maxi �= j
∣∣c(4)(

√
Nhi j )

∣∣, for β = 1, and K4 =
maxi �= j

∣∣c(2,2)(
√
Nhi j )

∣∣, for β = 2, with c(4)(
√
Nhi j ) the fourth cumulant of

√
Nhi j

given in (2.27) and c(2,2) the corresponding (2, 2)-cumulant defined in (2.24).

Remark 1.2. The proof of the Green function comparison is based on a continuous inter-
polation given by amatrix-valuedOrnstein–Uhlenbeck process; see (3.8). On the level of
the eigenvalues this evolution corresponds to Dyson’s Brownian motion (DBM). Bour-
gade’s proof of the convergence rate O(N−2/9+ε) consists of two parts: (1) the local
relaxation estimate for the DBM for t 
 N−1/3; (2) a quantitative version of the Green
function comparison theorem for small times t � 1, which is not sharp. Optimizing
the errors from these two parts, the error N−2/9 is obtained at t = N−1/9. In our proof,
we improve the Green function comparison even for long times t ∼ log N and then use
standard perturbation theory to bridge to the Gaussian ensembles.

1.2. Organization of the paper and outline of proofs. The paper is organized as follows.
In Sect. 2, we provide the preliminaries for the proofs, e.g., local law for the Green
function and cumulant expansions; and recall some properties of the invariant ensem-
bles. In Sect. 3, following the approach of [19], we first reduce the proof of the main
result Theorem 1.3 to the Green function comparison in Theorem 1.4. We then prove
Theorem 1.4 using the interpolating Green function flow and the key estimates on the
resulting drift term stated in Proposition 3.1 below.

In Sect. 4, before we give the proof of Proposition 3.1 for arbitrary functions F ,
we prove the corresponding Green function comparison theorem in the simplest case,
F(x) = x ; see Proposition 4.1. To make the statements easier, we first consider complex
Hermitian Wigner matrices. The proof of Proposition 4.1 is carried out in Sects. 4, 5
and 6. We sketch the proof in the following.

1. We first set up the interpolation between a given Wigner matrix and the GUE using
the matrix Ornstein–Uhlenbeck process in (3.7). Using Ito’s formula, we derive the
stochastic evolution for the time-dependent normalized trace of the Green function
mN (t, z) in (4.4). It then suffices to estimate the drift term given in (4.6). Using the
cumulant expansions of Lemma 2.4, we expand the expectation of the drift term up
to the fourth order. We observe a precise cancellation of the second order terms in
the cumulant expansions (4.5) for the off-diagonal entries. The cancellation of these
second order terms is due to Assumption 1.1 (b.), namely that the variances of our
Wigner matrices coincide with the invariant ensembles. It then suffices to estimate
the third and fourth order terms in (4.5) as well as the remaining second order terms
for the diagonal entries, which are averaged products of Green function entries.

2. All the third order terms, as well as the fourth order terms excluding the ones corre-
sponding to the (2,2)-cumulants of the off-diagonal entries are unmatched; see Def-
inition 4.1. The contributions from these unmatched terms are negligible, as stated
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in Proposition 4.2 which is proved in Sect. 6. For GUE matrices, corresponding esti-
mates can be established using the Weingarten calculus as discussed in Sect. 6.1. In
Sect. 6.2, we study an example of an unmatched term and introduce the expansion
mechanism used to prove Proposition 4.2 for general Wigner matrices. The key ob-
servation is that each timewe perform the cumulant expansion on an unmatched term,
we gain an additional off-diagonal Green function entry which slightly improves the
estimate by the entrywise local law in (3.10). In Sect. 6.3, we give the proof of Propo-
sition 4.2 for any unmatched term using the above expansion mechanism iteratively
by counting the number of off-diagonal Green function entries.

3. The fourth order terms corresponding to the (2, 2)-cumulants of the off-diagonal
entries and the second order terms stemming from the diagonal entries are given in
terms of matched terms with a certain structure; see Definition 4.2. Motivated by
the GUE computations based on the Weingarten calculus in Sect. 5.1, we show that
such terms can be expanded into trace-like correlation functions of Green functions
referred to as type-0 terms in Definition 4.2, as stated in Proposition 4.3. The proof
of Proposition 4.3 is presented in Sect. 5.2 using cumulant expansions iteratively.
The resulting type-0 terms are then estimated in Lemma 4.1 which is proved using
recursive comparisons and iterative expansions in Sect. 5.3. The key observation is
that, after deriving the stochastic evolution in (5.27) under the Ornstein–Uhlenbeck
flow for any type-0 term containing d1 off-diagonal Green function entries, we can
expand the corresponding drift term to arbitrary order using Propositions 4.2 and 4.3,
and end up with finitely many type-0 terms containing at least d1 + 1 off-diagonal
Green function entries as in (5.32).By recursive comparison, Lemma4.1 follows from
the local law in (3.10) for the Green function and the estimates of type-0 terms for
the GUE in Lemma 5.2. The last Sect. 5.4 is devoted to the proof of Lemma 5.2 using
the determinantal structure of the GUE and convergence properties of its correlation
kernel in the edge scaling.

In Sect. 7, we extend the above ideas to general functions F , and use the estimate
(4.3) from Proposition 4.1 as an input to prove Proposition 3.1. We then conclude with
the Green function comparison in Theorem 1.4 and hence our main result Theorem 1.3.
In the last Sect. 8, the real symmetric case is proved with the required modifications.

Notation:Wewill use the followingdefinitiononhigh-probability estimates from[15].

Definition 1.1. Let X ≡ X (N ) and Y ≡ Y(N ) be two sequences of nonnegative random
variables. We say Y stochastically dominates X if, for all (small) τ > 0 and (large) 	 >

0,

P
(
X (N ) > N τY(N )

) ≤ N−	, (1.9)

for sufficiently large N ≥ N0(τ, 	), and we write X ≺ Y or X = O≺(Y).

We often use the notation ≺ also for deterministic quantities, then (1.9) holds with
probability one. Properties of stochastic domination canbe found in the following lemma.

Lemma 1.1 (Proposition 6.5 in [17]).

1. X ≺ Y and Y ≺ Z imply X ≺ Z;
2. If X1 ≺ Y1 and X2 ≺ Y2, then X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2;
3. If X ≺ Y , EY ≥ N−c1 and |X | ≤ Nc2 almost surely with some fixed exponents c1,

c2 > 0, then we have EX ≺ EY .
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For any vector v ∈ C
N , let v( j) be the j-th entry of the vector. For any matrix

A ∈ C
N×N , the matrix norm induced by the Euclidean vector norm is given by ‖A‖2 :=

σmax(A), where σmax(A) denotes the largest singular value of A. We denote the sup
norm of the matrix by ‖A‖max := maxi, j |Ai j |. We use the notation A := 1

N TrA for the
normalized trace.

Throughout the paper, we use c and C to denote strictly positive constants that are
independent of N . Their values may change from line to line. We use the standard Big-O
and little-o notations for large N . For X,Y ∈ R, we write X � Y if there exists a small
c > 0 such that |X | ≤ N−c|Y | for large N . Moreover, we write X ∼ Y if there exist
constants c,C > 0 such that c|Y | ≤ |X | ≤ C |Y | for large N . Finally, we denote the
upper half-plane by C

+ := {z ∈ C : Im z > 0}, and the non-negative real numbers by
R
+ := {x ∈ R : x ≥ 0}.

2. Preliminaries

In the section, we collect some basic notations, tools and results required in the sub-
sequent sections, in particular we introduce the local law for the Green function of
Wigner matrices and eigenvalue rigidity estimates; relate the distribution function of the
largest eigenvalues to the normalized trace of the Green function; introduce the cumulant
expansion formalism and finally recall properties of the GUE and the Airy kernel.

2.1. Local law for Wigner matrices. For a probability measure ν on R denote by mν its
Stieltjes transform, i.e.,

mν(z) :=
∫

R

dν(x)

x − z
, z ∈ C

+. (2.1)

We refer to z as spectral parameter and often write z = E + iη, E ∈ R, η > 0. Note that
mν : C+ → C

+ is analytic and can be analytically continued to the real line outside the
support of ν. Moreover, mν satisfies limη↗∞ iηmμ(iη) = −1. The Stieltjes transform
of the semicircle distribution ρsc(x) := 1

2π

√
(4 − x2)+ is denoted by msc(z). It is well

know that msc(z) is the unique solution to

1 + zmsc(z) + m2
sc(z) = 0, (2.2)

satisfying Immsc(z) > 0, for Im z > 0. The Stieltjes transform of the empirical eigen-
value measure of a Wigner matrix HN , μN := 1

N

∑N
j=1 δλ j , is then given by the nor-

malized trace of its Green function defined in (1.7).
Let κ = κ(E) be the distance from E ∈ R to the closest edge point of the semicircle

law, i.e.,
κ := min{|E − 2|, |E + 2|}. (2.3)

Define the domain of the spectral parameter z,

S0 := {z = E + iη : |E | ≤ 5, 0 < η ≤ 10}. (2.4)

The Stieltjes transform msc has the following quantitative properties, for a reference,
see e.g., [17].

Lemma 2.1. The Stieltjes transformof the semicircular lawhas the following properties:
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1. The imaginary part of msc satisfies

|Immsc(z)| ∼
{√

κ + η, if E ∈ [−2, 2],
η√
κ+η

, otherwise,
(2.5)

uniformly in z ∈ S0.
2. There exists a strictly positive constant c, such that

c ≤ |msc(z)| ≤ 1 − cη, (2.6)

hold for all z ∈ S0.

For any arbitrary small ε > 0, introduce the following subdomain of S0,

S ≡ S(ε) := {z = E + iη : |E | ≤ 5, N−1+ε ≤ η ≤ 10
}
. (2.7)

We also define the deterministic control parameter

� ≡ �(z) :=
√
Immsc(z)

Nη
+

1

Nη
, z = E + iη. (2.8)

In particular, from (2.5), for any z ∈ S(ε), we have

C√
N

≤ �(z) ≤ C ′N−ε . (2.9)

With these notations, we are now ready to state the following local law for the Green
function of a Wigner matrix.

Theorem 2.1 (Local law for Wigner matrices [19]). Let H be a symmetric or Hermitian
N by N matrix satisfying Assumption 1.1 and recall the Green function of H and its
normalized trace in (1.7). Then we have

max
1≤i, j≤N

|Gi j (z) − δi jmsc(z)| ≺ �(z), |mN (z) − msc(z)| ≺ 1

Nη
, (2.10)

uniformly in z ∈ S.

2.2. Rigidity of eigenvalues. The local law for theGreen function inTheorem2.1 implies
the following rigidity estimates for the eigenvalues of H . Recall that the eigenvalues of
H are denoted as (λ j )

N
j=1 arranged in a non-decreasing order. For E1 < E2 (E1, E2 ∈

R ∪ {±∞}) denote the eigenvalue counting function by

N (E1, E2) := #{ j : E1 ≤ λ j ≤ E2} . (2.11)

We also define the classical location γ j of the j-th eigenvalue λ j by

j

N
=
∫ γ j

−∞
ρsc(x)dx . (2.12)
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Theorem 2.2 (Eigenvalue rigidity [19]). For any E1 < E2, we have

∣∣∣N (E1, E2) − N
∫ E2

E1

ρsc(x)dx
∣∣∣ ≺ 1 . (2.13)

In addition, for any 1 ≤ j ≤ N, we have

|λ j − γ j | ≺ N−2/3
(
min{ j, N − j + 1}

)−1/3
. (2.14)

In particular, fix any C1 and C2, then for any small ε > 0 and large 	 > 0 we have

|λN − 2| ≤ N−2/3+ε, N (2 − C1N
−2/3+ε, 2 + C2N

−2/3+ε) ≤ N 2ε, (2.15)

with probability bigger than 1 − N	 , for N sufficiently large.

2.3. Relating the distribution of the largest eigenvalue to the Green function. Fix a small
ε > 0 and set

EL := 2 + 4N−2/3+ε . (2.16)

For any E ≤ EL , we define
χE := 1[E,EL ], (2.17)

and note that N (E, EL) = TrχE (H). For η > 0, we define the mollifier θη by setting

θη(x) := η

π(x2 + η2)
= 1

π
Im

1

x − iη
. (2.18)

We can relate TrχE �θη(H) to the normalized trace of theGreen function by the following
identity,

TrχE � θη(H) = N

π

∫
χE (y)ImmN (y + iη)dy = N

π

∫ EL

E
ImmN (y + iη)dy . (2.19)

The following lemma assures that TrχE (H) can be sufficiently well approximated
by TrχE � θη(H) for η � N−2/3. Relying on this approximation, the lemma after,
Lemma 2.3, then yields the desired link between the distribution function of the rescaled
largest eigenvalue of H and the normalized trace of the Green function using a cleverly
chosen observable. This line of arguments was used first in [19] to prove the edge uni-
versality of Wigner matrices, where η is chosen slightly smaller than the typical edge
eigenvalue spacing N−2/3. In order to obtain a quantitative convergence rate, we aim to
choose here η much smaller with η 
 N−1. A similar argument was used in [5]. The
proofs of Lemmas 2.2 and 2.3 are modifications of [19] in order to accommodate the
small η regime, and are postponed to Appendix.

Lemma 2.2. Let E,η and l1 be scale parameters satisfying N−1 � η � l1 � EL−E ≤
CN−2/3+ε . Then, for any 	 > 0,

∣∣∣TrχE (H) − TrχE � θη(H)

∣∣∣ ≤ C
(
N (E − l1, E + l1) +

η

l1
N 2ε
)
, (2.20)

holds with probability bigger than 1 − N−	 , for N sufficiently large.
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Let F : R −→ R be a smooth cut-off function such that

F(x) = 1, if |x | ≤ 1/9; F(x) = 0, if |x | ≥ 2/9, (2.21)

and we assume that F(x) is non-increasing for x ≥ 0. Then one obtains from Lemma
2.2 the following result.

Lemma 2.3. Set l1 = N 3εη and l = N 3εl1 such that N−1 � η � l1 � l � EL − E ≤
CN−2/3+ε . Then for any 	 > 0, we have

TrχE+l � θη(H) − N−ε ≤ N (E,∞) ≤ TrχE−l � θη(H) + N−ε, (2.22)

with probability bigger than 1 − N−	 , for N sufficiently large. Furthermore, we have

E

[
F
(
TrχE−l�θη(H)

)]
−N−	 ≤ P

(
N (E,∞) = 0

)
≤ E

[
F
(
TrχE+l�θη(H)

)]
+N−	,

(2.23)
where F(x) is the cut-off function given in (2.21).

Hence, recalling (2.19), we have established the desired link to the normalized trace
of the Green function.

2.4. Cumulant expansion formulas. A key tool of this paper are the following cumulant
expansion identities. For reference, we refer to Lemma 3.1 in [21].

Lemma 2.4. Let h be a complex-valued random variable with finite moments. Define
the (p, q)-cumulant of h to be

c(p,q) := (−i)p+q
( ∂ p+q

∂s p∂tq
logEeish+ith

)∣∣∣
s,t=0

. (2.24)

Let f : C × C −→ C be a smooth function and denote its derivatives by

f (p,q)(z1, z2) := ∂ p+q

∂z p1 ∂zq2
f (z1, z2).

Then for any fixed l ∈ N, we have

E
[
h̄ f (h, h̄)

] =
l∑

p+q+1=1

1

p!q!c
(p,q+1)

E
[
f (p,q)(h, h̄)

]
+ Rl+1, (2.25)

where the error term Rl+1 can be bounded as

|Rl+1| ≤ ClE|h|l+1 max
p+q=l

{
sup

|z|≤M
| f (p,q)(z, z̄)|

}

+ ClE

[
|h|l+11|h|>M

]
max
p+q=l

‖ f (p,q)(z, z̄)‖∞, (2.26)

and M > 0 is an arbitrary fixed cutoff.
Moreover, we have the analogous cumulant expansion formula for a real-valued

random variable h with finite moments. Define the k-th cumulant of h to be

c(k) := (−i)k
( dk

dtk
logEeith

)∣∣∣
t=0

. (2.27)
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Let f : R −→ C be a smooth function and denote by f (k) its k-th derivative. Then for
any fixed l ∈ N, we have

E
[
h f (h)

] =
l∑

k+1=1

1

k!c
(k+1)

E[ f (k)(h)] + Rl+1, (2.28)

where the error term satisfies

|Rl+1| ≤ ClE|h|l+1 sup
|x |≤M

| f (l)(x)| + ClE

[
|h|l+11|h|>M

]
‖ f (l)‖∞,

and M > 0 is an arbitrary fixed cutoff.

2.5. GUE and the Airy kernel. Let H ≡ HN belong to the GUE and denote the eigen-
values of the rescaled matrix

√
NH by (μ j )

N
j=1 in non-decreasing order. The joint

eigenvalue density is explicitly given by

p(μ1, . . . , μN ) = 1

ZN ,β

∏
i< j

|μi − μ j |βe− β
4

∑N
i=1 μ2

i , β = 2,

with ZN ,β be the normalization constant.
The process of the eigenvalues is well known to be a determinantal point process

[24,42]. The n-point correlation function of the eigenvalue process is given by

pn(μ1, . . . , μn) = det[KN (μi , μ j )]1≤i, j≤n, (2.29)

with the reproducing kernel given by

KN (x, y) :=
N−1∑
k=0

qk(x)qk(y)e
− x2+y2

4 ,

where qk is the k-th Hermite polynomial given by

qk(x) := (−1)ke
x2
2

dk

dxk
e− x2

2 .

The Hermite polynomials are orthogonal with respect to the weight e− x2
2 over R. We

further define the k-th Hermite function by

φk(x) := 1√√
2πk!

e− x2
4 qk(x), (2.30)

which is a solution to the differential equation

φ′′
k (x) + (k +

1

2
− x2

4
)φk(x) = 0. (2.31)

One then checks that {φk} form an orthonormal basis of L2(R). TheChristoffel–Darboux
formula then states that
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KN (x, y) =
N−1∑
k=0

φk(x)φk(y) = √
N

φN (x)φN−1(y) − φN−1(x)φN (y)

x − y
, x �= y,

(2.32)

as well as

KN (x, x) = √
N
(
φ′
N (x)φN−1(x) − φ′

N−1(x)φN (x)
)
. (2.33)

We also have the trace identity for the kernel
∫

R

KN (x, x)dx = N , (2.34)

and the reproducing formula

KN (x, y) =
∫

R

KN (x, z)KN (z, y)dz. (2.35)

More details can be found in [3,12].
Recall that the eigenvalues (λ j )

N
j=1 of the GUE are given by λ j = μ j√

N
. Then the

corresponding kernel for the eigenvalue process (λ j ) is given by

K̃N (x, y) = √
NKN (

√
Nx,

√
N y). (2.36)

In the edge regime, we rescale the eigenvalues as λ j = 2+
l j

N2/3 and the corresponding
kernel is then given by

K edge
N (x, y) := 1

N 2/3 K̃N

(
2 +

x

N 2/3 , 2 +
y

N 2/3

)

= 1

N 1/6 KN

(
2
√
N +

x

N 1/6 , 2
√
N +

y

N 1/6

)
. (2.37)

Next, recall that the Airy kernel is defined by

Kairy(x, y) := Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

, (2.38)

with Ai be the Airy function of first kind, which is the solution of

Ai′′(x) − xAi(x) = 0, x ∈ R, (2.39)

satisfying the boundary condition Ai(x) → 0 as x → ∞. As x → y, the Airy kernel
reduces to

Kairy(x, x) := (Ai′(x))2 − Ai′′(x)Ai(x) = (Ai′(x))2 − x(Ai(x))2. (2.40)

Lemma 2.5 (Lemma 3.9.33 in [3]). For fixed L0 ∈ R, there exists a constant C, such
that one has uniformly in x, y ∈ [L0,+∞) that

∣∣∣∂ax ∂by Kairy(x, y)
∣∣∣ ≤ C, a, b ∈ {0, 1}. (2.41)

Furthermore, we have the asymptotics

Kairy(x, x) ∼x→∞
e− 4

3 x
3
2

x
; Kairy(x, x) ∼x→−∞

√|x |. (2.42)
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The following result of Deift and Gioev [13] quantizes the convergence rate of the
edge kernel in (2.37) to the limiting Airy kernel in (2.38).

Theorem 2.3 (Theorem 1.1 in [13]). For fixed L0 ∈ R, there exists constants C, c > 0
depending on L0, such that one has uniformly for x, y ∈ [L0,+∞),

∣∣∣∂ax ∂by

[
K edge

N (x, y) − Kairy(x, y)
]∣∣∣ ≤ CN−2/3e−cxe−cy, a, b ∈ {0, 1}. (2.43)

3. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3 from the main technical result, the
Green function comparison theorem, Theorem 1.4.

Proof of Theorem 1.3. Because of the rigidity of the eigenvalues in (2.15), one easily
verifies that, for any ε > 0 and 	 > 2/3,

sup
|r |≥N ε

∣∣∣P
(
N 2/3(λN − 2) < r

)
− P

GβE
(
N 2/3(λN − 2) < r

)∣∣∣ ≤ N−	, (3.1)

for sufficiently large N . Hence in order to prove Theorem 1.3, it suffices to focus on
r0 < r < N ε with r0 as in Theorem 1.2 and Theorem 1.3.

Set as in (2.16)

E := 2 + N−2/3r, and EL := 2 + 4N−2/3+ε .

Fix η = N−1+ε and l = N−1+7ε as in Lemma 2.3. Here we choose ε > 0 sufficiently
small such that l � N−2/3. From (2.19) and (2.23), we can relate the distribution of the
largest eigenvalue to the normalized trace of the Green function as follows,

E

[
F
(
N
∫ 4N−2/3+ε

N−2/3r−l
ImmN (2 + x + iη)dx

)]
− N−	 ≤ P

(
N 2/3(λN − 2) < r

)
= P

(
N (E, ∞) = 0

)

≤ E

[
F
(
N
∫ 4N−2/3+ε

N−2/3r+l
ImmN (2 + x + iη)dx

)]
+ N−	. (3.2)

By shifting the value of r in the second inequality of (3.2) and combining with the first
inequality of (3.2), we obtain

P

(
N 2/3(λN − 2) < r − 2N 2/3l

)
− N−	 ≤ E

[
F
(
N
∫ 4N−2/3+ε

N−2/3r−l
ImmN (2 + x + iη)dx

)]

≤ P

(
N 2/3(λN − 2) < r

)
+ N−	. (3.3)

Note that the above inequalities hold true forβ = 1, 2 and anyWignermatrices, including
the Gaussian ensembles. From the known convergence rates for the Gaussian ensembles
in Theorem 1.2 (for the GUE, and GOE with N even), and the convergence rate N−1/3

obtained in Theorem 1.2 of [9] for the GOE with N odd, we find

TWβ

(
r − 2N 2/3l

)
− CN−1/3 ≤ E

GβE
[
F
(
N
∫ 4N−2/3+ε

N−2/3r−l
ImmN (2 + x + iη)dx

)]

≤ TWβ(r) + CN−1/3.
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A similar upper and lower bound can be obtained in the same way when we consider +l
in the integral domain instead of −l. Since the Tracy–Widom distributions have smooth
and uniformly bounded densities and l = N−1+7ε , we have

sup
r0<r<N ε

∣∣∣EGβE
[
F
(
N
∫ 4N−2/3+ε

N−2/3r±l
ImmN (2 + x + iη)dx

)]
− TWβ(r)

∣∣∣ = O(N−1/3+7ε).

(3.4)

Using the Green function comparison theorem, Theorem 1.4, there exists some c0 > 0
independent of ε such that

sup
r0<r<N ε

∣∣∣
(
E − E

GβE
)[

F
(
N
∫ 4N−2/3+ε

N−2/3r±l
ImmN (2 + x + iη)dx

)]∣∣∣ ≤ N−1/3+c0ε, (3.5)

for sufficiently large N . In combination with (3.2) and (3.4), we choose ε < ω
max{c0,7} in

the setting of Theorem 1.3 and obtain

sup
r0<r<N ε

∣∣∣P
(
N 2/3(λN − 2) < r

)
− TWβ(r)

∣∣∣ ≤ N−1/3+ω. (3.6)

Together with (3.1), we have hence completed the proof of Theorem 1.3.

We now move on to the proof of the Green function comparison theorem, Theo-
rem 1.4. In the following, we first consider complex Hermitian Wigner matrices, as the
complex Hermitian case is slightly easier than the real symmetric case. The proof of the
Green function comparison theorem in the real symmetric setup is presented in Sect. 8.

Proof of Theorem 1.4. Consider the matrix Ornstein–Uhlenbeck process
(
hab(t)

)N
a,b=1:

dhab(t) = 1√
N
dβab(t) − 1

2
hab(t)dt, hab(0) = (HN )ab, (3.7)

where
(
βab(t)

)N
a<b are independent complex standard Brownian motions,

(
βaa(t)

)N
a=1

are independent real standard Brownian motions,
(
βab(t)

)
a<b are independent from(

βaa(t)
)N
a=1, and βba(t) = βab(t). The initial condition HN is a complex Hermitian

Wigner matrix satisfying Assumption 1.1. In distribution the above is equivalent to
writing

H(t)
d= e− t

2 HN +
√
1 − e−tGUEN , t ∈ R

+, (3.8)

where GUEN belongs to the GUE. For any t ∈ R
+, z ∈ C \ R, we define

G(t, z) := 1

H(t) − z
; mN (t, z) := 1

N
TrG(t, z). (3.9)

Recalling the local law Theorem 2.1 and Lemma 2.1, we obtain that the local law for
G(t, z),

max
i, j

|Gi j (t, z) − δi jmsc(z)| ≺ �(z); |mN (t, z) − msc(z)| ≺ 1

Nη
, (3.10)

holds uniformly in z ∈ S given in (2.7) and t ≥ 0. Indeed, we choose a mesh of the
interval 0 ≤ t ≤ T := 8 log N of size N 10, and obtain that (3.10) holds uniformly in
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z ∈ S, t ∈ [0, 8 log N ] from the continuity of the process (3.8) in time. Moreover, (3.10)
also holds uniformly in t ≥ 8 log N from (3.34) below.

In the following, we often ignore the parameters and write for short

H ≡ H(t), hab ≡ hab(t), G ≡ G(t, z), mN ≡ mN (t, z), t ∈ R
+, z ∈ C \ R.

For a fixed small ε > 0 and some C0 > 0, let

N−1+ε ≤ η ≤ N−2/3+ε, |κ1|, |κ2| ≤ C0N
−2/3+ε, (3.11)

with κ1 < κ2. In view of (2.19) and (2.23), we are interested in the quantity

X ≡ X (t) := N
∫ κ2

κ1

ImmN (t, 2 + x + iη)dx, t ∈ R
+. (3.12)

Hence X is a function of t , η as well as κ1 and κ2.
Let F : R → R be an arbitrary smooth function with uniformly bounded deriva-

tives. The next lemma determines the evolution of the observable F
(
X (t)

)
under the

Ornstein–Uhlenbeck flow in (3.7). To alleviate the notation, we introduce the following
abbreviations. Let P : R

+ × C \ R −→ C be an arbitrary function, then we introduce

Ĩm P ≡ Ĩm P(t, z) := 1

2i
(P(t, z) − P(t, z̄)), t ∈ R

+, z ∈ C \ R. (3.13)

For example, for complex Wigner matrices, ĨmGi j (t, z) �= ImGi j (t, z), unless i = j .
Further, we abbreviate, for t ∈ R

+, and z1, z2 ∈ C \ R,
�Ĩm P ≡ (�Ĩm P)(t, z1, z2)

:= 1

2i

(
P(t, z2) − P(t, z2)

)
− 1

2i

(
P(t, z1) − P(t, z1)

)
, (3.14)

where the spectral parameters are given as

z1 = 2 + κ1 + iη, z2 = 2 + κ2 + iη, (3.15)

with κ1, κ2, and η from (3.11). In particular, we have z1, z2 ∈ Sedge defined in (4.1)
below.

Returning to F(X ), Ito’s lemma yields the following result.

Lemma 3.1. The observable F(X ) satisfies the following stochastic differential equa-
tion:

dF(X ) = dM + �dt, (3.16)

with the diffusion term

dM = − 1√
N

N∑
a,b=1

(
F ′(X )�ĨmGba

)
dβab, (3.17)

and the drift term � ≡ �(t, z1, z2) is explicitly given in (3.25) below. Moreover, E[�]
can be written as

E[�] =
4∑

p+q+1=3
p,q∈N

Kp,q+1 + E2 + O≺(N−1/2), (3.18)
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for N sufficiently large, with

K p,q+1 := 1

2p!q!N p+q+1
2

N∑
a,b=1
a �=b

s(p,q+1)
ab E

[∂ p+q F ′(X )�ĨmGba

∂h p
ba∂h

q
ab

]
; (3.19)

E2 := 1

2N

N∑
a=1

(s(2)
aa − 1)E

[∂F ′(X )�ĨmGaa

∂haa

]
, (3.20)

where s(p,q+1)
ab ≡ s(p,q+1)

ab (t) and s(2)
aa ≡ s(2)

aa (t) are the cumulants of the rescaled time
dependent entries

√
Nhab defined in (2.24) and (2.27).

Remark 3.1. The diffusion term dM in (3.17) yields a martingale M(t) upon integra-
tion. Note that the operator norm of the Green function has the deterministic bound
‖G(z)‖2 ≤ 1

η
≤ N 1−ε , given z = E + iη with η ≥ N−1+ε . Since F has bounded deriva-

tives, |F ′(X )�ĨmGba | = O(N 1−ε). Thus M(t) is a true martingale with vanishing
expectation.

Remark 3.2. In (3.18), only cumulants of order three and higher appear, i.e. p+q+1 ≥ 3.
This is a consequence of our assumption that the second moments of the off-diagonal
matrix entries match with the Gaussian ensembles; see item b.) in Assumption 1.1.

Proof of Lemma 3.1. Recall the dynamics of the Orstein–Uhlenbeck process in (3.7)
and that G is a function of the matrix entries hab. Using the first Ito’s lemma and then
the relation

∂Gi j

∂hab
= −GiaGbj , (3.21)

we compute

dGi j (t, z) = ∂Gi j

∂t
dt +

∑
a

∂Gi j

∂haa
dhaa +

1

2

∑
a

∂2Gi j

∂haa∂haa
dhaadhaa

+
∑
a<b

∂Gi j

∂hab
dhab +

∑
a<b

∂Gi j

∂hab
dhab +

∑
a<b

∂2Gi j

∂hab∂hab
dhabdhab

= − 1√
N

N∑
a,b=1

GiaGbjdβab

+
1

2

N∑
a,b=1

(
habGiaGbj +

1

N
GibGbjGaa +

1

N
GiaGajGbb

)
dt. (3.22)

In view ofX from (3.12), we take the normalized trace of the Green function and the
imaginary part. Using the symmetry of H and

Gi j (z) = G ji (z̄),

we obtain the following stochastic differential equation:

d
(
ImmN (t, z)

)
= − 1

2iN 3/2

N∑
i,a,b=1

(
GiaGbi (z) − GiaGbi (z̄)

)
dβab
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+
1

4N i

N∑
i,a,b=1

[
hab
(
GiaGbi (z) − GiaGbi (z̄)

)

+
1

N

(
GibGbiGaa(z) − GibGbiGaa(z̄)

)

+
1

N

(
GiaGaiGbb(z) − GiaGaiGbb(z̄)

)]
dt

= − 1

N 3/2

N∑
i,a,b=1

Ĩm (GiaGbi )dβab +
1

2N

N∑
i,a,b=1

[
hab Ĩm (GiaGbi )

+
1

N
Ĩm
(
GibGbiGaa + GiaGaiGbb

)]
dt,

where we use the notation from (3.13).
Using Ito’s formula similarly on F(X ) and combining with (3.22), we obtain the

stochastic differential Eq. (3.16), with the diffusion term given by

dM = −F ′(X )
( ∫ κ2

κ1

1√
N

N∑
i,a,b=1

Ĩm
(
GiaGbi (t, 2 + x + iη)

)
dx
)
dβab, (3.23)

and the drift term given by (we omit the parameters t and z = 2 + x + iη of the Green
functions)

� = 1

2

N∑
i,a,b=1

hab
(
F ′(X )

∫ κ2

κ1

Ĩm (GiaGbi )dx
)

+
1

2N

N∑
i,a,b=1

F ′(X )

∫ κ2

κ1

Ĩm
(
GibGbiGaa + GiaGaiGbb

)
dx

+
1

2
F ′′(X )

1

N

N∑
i, j=1

N∑
a,b=1

( ∫ κ2

κ1

Ĩm (GiaGbi )dx
)( ∫ κ2

κ1

Ĩm (G jbGaj )dx
)
. (3.24)

Using G2(z) = d
dz G(z) and the definition of Ĩm in (3.13), we write

N∑
i=1

∫ κ2

κ1

Ĩm
(
(GiaGbi )(t, 2 + x + iη)

)
dx

=
∫ κ2

κ1

Ĩm
(dGba

dx
(t, 2 + x + iη)

)
dx = (�ĨmGba)(t, z1, z2),

with �Ĩm defined in (3.14) and z1, z2 given in (3.15). Applied to the martingale
term (3.23) we find (3.17). Applied to the drift term (3.24), we find

� = 1

2

N∑
a,b=1

hab
(
F ′(X )�ĨmGba

)

+
1

2N

N∑
a,b=1

(
F ′(X )�Ĩm (GaaGbb) + F ′′(X )(�ĨmGab)(�ĨmGba)

)
. (3.25)
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Next, we take the expectation of� and apply the cumulant expansions in Lemma 2.4
with respect to the independent entries hab in the first term on the right of (3.25). Using
the relation (3.21), we compute

∂F ′(X )

∂hba
= F ′′(X )

N∑
i=1

∫ κ2

κ1

∂(ImGii )

∂hba
dx

= −F ′′(X )

N∑
i=1

∫ κ2

κ1

Ĩm (GibGai )dx = −F ′′(X )�ĨmGab. (3.26)

We first apply cumulant expansions to the complex-valued off-diagonal entries hab,
i.e., let a �= b in the summations in (3.25). Then by direct computations and using
Assumption 1.1 (b.), the second order terms in the cumulant expansions corresponding
to s(1,1)

ab (t) ≡ 1 are canceled with the second term on the right of (3.25) with a �= b. The
third and fourth order terms in the cumulant expansions, corresponding to p + q + 1 ∈
{3, 4}, are given in (3.19).We stop the cumulant expansion at l = 4 and the corresponding
truncation error R5 =∑a �=b R

(ab)
5 is estimated as follows.

We have from (2.26) that

|R(ab)
5 | ≤ CE[|hab|5]E

[
max
p+q=4

{
sup

|w|≤N−1/2+γ

∣∣∣ ∂ p+q

∂h p
ba∂h

q
ab

fab
(
H (ab) + wE (ba) + w̄E (ab)

)∣∣∣
}]

+ CE

[
|hab|51|hab |>N−1/2+γ

]

E

[
max
p+q=4

{
sup
w∈C

∣∣∣ ∂ p+q

∂h p
ba∂h

q
ab

fab
(
H (ab) + wE (ba) + w̄E (ab)

)∣∣∣
}]

, (3.27)

with a fixed small γ > 0, and where we use the notation E (ab) := (δab)
N
i, j=1, H

(ab) :=
H − habE (ab) − hba E (ba), as well as

fab(H) := F ′(X )�ĨmGba . (3.28)

Using the second resolvent identity, we can write

GH (ab)

i j = GH
i j +

(
GH (ab)

(habE
(ab) + hba E

(ba))GH
)
i j

. (3.29)

From the local law in (3.10), we have maxi �= j |GH
i j | ≺ � and maxi |GH

ii | ≺ 1. In

addition, we have |hi j | ≺ 1√
N

from the moment condition (1.3). Therefore, we have

from (3.29) that maxi �= j |GH (ab)

i j | ≺ � and maxi |GH (ab)

i i | ≺ 1. Similarly, we have

GH (ab)+wE (ab)+w̄E (ba)

i j = GH (ab)

i j −
(
GH (ab)+wE (ab)+w̄E (ba)

(wE (ab) + w̄E (ba))GH (ab)
)
i j

,

(3.30)

and thus

sup
|w|<N−1/2+γ

{
max
i, j

∣∣∣GH (ab)+wE (ab)+w̄E (ba)

i j

∣∣∣
}

≺ 1. (3.31)
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Combining with (3.21), (3.26), and the fact that F in (3.28) has bounded derivatives, we
obtain that

sup
|w|<N−1/2+γ

∣∣∣ ∂ p+q

∂h p
ba∂h

q
ab

fab
(
H (ab) + wE (ba) + w̄E (ab)

)∣∣∣ ≺ 1.

Together with E|hi j |5 ≤ CN−5/2 under Assumption 1.1 and Lemma 1.1, the first term
on the right side of (3.27) is bounded by O≺(N−5/2). Note that for z = E + iη with
η ≥ N−1+ε , we have the deterministic upper bound for maxi, j |Gi j | ≤ ‖G‖2 ≤ 1

η
=

O(N 1−ε). So the conditions of statement (3) of Lemma 1.1 are satisfied, and we can
directly bound the expectation of the first term on the right side of (3.27).

We next estimate the second term on the right side of (3.27). Using the deterministic
bound maxi, j |Gi j | = O(N 1−ε), we have from (3.21), (3.26) and the fact that F in
(3.28) has bounded derivatives that

max
p+q=4

{
sup
w∈C

∣∣∣ ∂ p+q

∂h p
ba∂h

q
ab

fab
(
H (ab) + wE (ba) + w̄E (ab)

)∣∣∣
}

= O(N 5−5ε).

Combining with the moment condition (1.3) and Hölder’s inequality, the second term
on the right side of (3.27) can also be bounded by O≺(N−5/2). Thus the truncation error
R5 in the cumulant expansions satisfies |R5| = O≺(N−1/2). Throughout the paper, we
will use similar arguments as above to estimate the error terms stemming from cutting
cumulant expansions at some fixed order without specifically mentioning it.

Concerning the terms involving the diagonal entries haa in (3.25), we apply the
cumulant expansion for real-valued random variables in Lemma 2.4 and stop at the
second order l = 2. The resulting second order term in combination with the second
sum in (3.25) with a ≡ b is given by E2 in (3.20) and the truncation error is similarly
bounded by O≺(N−1/2). We have hence finished the proof of Lemma 3.1.

Having established Lemma 3.1, we next estimate the expectation of the drift term
E[�] in (3.18) in the next proposition, whose proof is postponed to Sect. 7.

Proposition 3.1. The drift term E[�] in (3.18) has the following bound:

|E[�(t, z1, z2)]| ≤ N−1/3+cε, (3.32)

uniformly in t ≥ 0 and z1, z2 given in (3.15), for a numerical constant c > 0 that does
not depend on ε and sufficiently large N ≥ N0(ε,C0).

In order to finish the proof of Theorem1.4, we now choose T := 8 log N and integrate
(3.16) over [0, T ]. Then taking the expectation, the diffusion term vanishes (see Remark
3.1) and the drift term is bounded using (3.32). We hence find by writing outX in (3.12)
that
∣∣∣E
[
F
(
N
∫ κ2

κ1

ImmN (0, 2 + x + iη)dx
)]

− E

[
F
(
N
∫ κ2

κ1

ImmN (T, 2 + x + iη)dx
)]∣∣∣

= O(N− 1
3 +cε log N ). (3.33)

Using the inequality ‖A‖max ≤ ‖A‖2 ≤ N‖A‖max, the second resolvent identity, that
‖G(E + iη)‖2 ≤ 1

η
, and (3.8), one shows that G(T, z) is sufficiently close to the Green

function of the GUE, i.e.,
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‖G(T, z) − GGUE(z)‖max ≤ ‖G(T, z)(GUE − H(T ))GGUE(z)‖2
≤ N

η2
‖(GUE − H(T ))‖max ≺ 1

N 3η2
. (3.34)

Since F is a smooth function with uniformly bounded derivatives, we have

∣∣∣F
(
N
∫ κ2

κ1

ImmN (T, 2 + x + iη)dx
)

− F
(
N
∫ κ2

κ1

ImmGUE
N (2 + x + iη)dx

)∣∣∣ ≺ N ε

N 8/3η2
. (3.35)

Combining (3.33) and (3.35), we conclude the proof of Theorem 1.4.

Remark 3.3. In the traditional approach to the Green function comparison theorem [19]
a Lindeberg type replacement strategy is used. In (3.8) we use a continuous flow to
interpolate between Wigner matrices and the invariant ensembles. This is notationally
easier than the Lindeberg replacement, especially when we do recursive comparisons to
estimate the contributions from the fourth order cumulants in Sect. 5.

4. A Special Case: Estimates on E [Im mN ]

In this section, we prove the simplest version of the Green function comparison theorem,
Theorem 1.4, when F(x) = x . It then suffices to compare the expected normalized trace
of the Green function of aWigner matrixE[mN (z)]withEGUE[mN (z)]. The ideas in this
section will also be used to prove Proposition 3.1, which is a key ingredient to establish
the Green function comparison theorem for a general function F . The proof for general
functions F will rely on the estimate (4.3) in Proposition 4.1 below as an input.

Proposition 4.1. Let HN be a complex Wigner matrix satisfying Assumption 1.1 and
recall the time dependent matrix H(t) in (3.7). For any ε > 0 and C0 > 0, define the
domain of the spectral parameter z near the upper edge,

Sedge ≡ Sedge(ε,C0)

:= {z = E + iη ∈ S : |E − 2| ≤ C0N
−2/3+ε, N−1+ε ≤ η ≤ N−2/3+ε}, (4.1)

with S given in (2.7). Then for any τ > 0, we have
∣∣∣E[mN (t, z)] − E

GUE[mN (z)]
∣∣∣ ≤ N−1/3+τ , (4.2)

uniformly in z ∈ Sedge and t ≥ 0, for sufficiently large N ≥ N0(C0, ε, τ ). Furthermore,
there exists some C > 0 independent of ε, such that

E[ImmN (t, z)] ≤ CN−1/3+ε, (4.3)

uniformly in z ∈ Sedge and t ≥ 0, for sufficiently large N ≥ N ′
0(C0, ε).

In the rest of this section we prove Proposition 4.1; its proof is split into several parts
organized in subsections.
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4.1. Interpolation between a Wigner matrix and the GUE. Following the proof of
Lemma 3.1 in Sect. 3, we start by applying Ito’s lemma to the time dependent nor-
malized trace of the Green function, mN (t, z), from (3.9). We find using (3.22) that

d(mN (t, z)) = − 1

N 3/2

N∑
v,a,b=1

GvaGbvdβab

+
1

2N

N∑
v,a,b=1

(
habGvaGbv +

1

N
GvbGbvGaa +

1

N
GvaGavGbb

)
dt

:= dM0 + �0dt, (4.4)
with diffusion term dM0 and drift term �0dt ≡ �0(t, z)dt ; here we use the subscript 0
to indicate that we are considering the simple case F(x) = x . The diffusion term dM0
yields a martingale after integration; see Remark 3.1. Taking the expectation of the drift
term and applying the cumulant expansions in Lemma 2.4, we have the analogue of
(3.18),

E[�0] = 1

2N 2

N∑
v,a=1

(s(2)
aa − 1)E

[∂(GavGva)

∂haa

]

+
1

2N

N∑
v,a,b=1
a �=b

4∑
p+q+1=3

1

p!q!
s(p,q+1)
ab

N
p+q+1

2

E

[∂ p+q(GbvGva)

∂h p
ba∂h

q
ab

]
+ O≺

( 1√
N

)

= − 1

2N 2

N∑
v,a=1

(s(2)
aa − 1)E

[∂2Gvv

∂h2aa

]

−
4∑

p+q+1=3

1

2p!q!N p+q+3
2

N∑
v,a,b=1
a �=b

s(p,q+1)
ab E

[∂ p+q+1Gvv

∂h p
ba∂h

q+1
ab

]
+ O≺

( 1√
N

)
, (4.5)

where the error stems from the truncation of the cumulant expansions at fourth order.
Recalling the arguments in Sect. 3, in order to establish Proposition 4.1 it suffices to
show that for any τ > 0,

|E[�0(t, z)]| ≤ N−1/3+τ , (4.6)

uniformly in z ∈ Sedge(ε,C0) and t ≥ 0, for sufficiently large N ≥ N0(C0, ε, τ ).
Admitting (4.6), for T = 8 log N and any 0 ≤ t ′ ≤ T , we integrate (4.4) over [t ′, T ]

and take the expectation to get
∣∣∣E
[
mN (t ′, z)

]
− E

[
mN (T, z)

]∣∣∣ = O
(
N−1/3+τ log N

)
. (4.7)

Combining with (3.34), we obtain the comparison estimate in (4.2) between the GUE
and the time dependent H(t) in (3.7) staring from theWigner matrix H . The bound (4.3)
will follow directly from the comparison result (4.2) and the corresponding estimate for
the GUE in Lemma 5.2 below.

In the remaining part of this section, we will hence prove (4.6). For that it suffices to
estimate the terms on the right side of (4.5).
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4.2. Third and fourth order terms with unmatched indices. Using the differential rule
for the Green function entries in (3.21), each term in the cumulant expansion (4.5) can
be written out in terms of an averaged product of the Green function entries. The first
group of terms on the right side of (4.5) is given by

− 2

N 2

N∑
v,a=1

(s(2)
aa − 1)E

[
GvaGavGaa

]
.

In the second group of terms on the right side of (4.5), one example of a third order term
with p = 1, q = 1 and one example of a fourth order term with p = 2, q = 1 are given
by,

√
N

1

N 3

∑
v,a,b

s(1,2)
ab

2
E

[
GvaGbvGaaGbb

]
, − 1

N 3

∑
v,a,b

s(2,2)
ab

4
E

[
GvaGavGaaGbbGbb

]
.

We remark that the third order terms with p + q + 1 = 3 are averaged products of Green
function entries with an additional leading factor

√
N .

To study these averaged products of the Green function entries in (4.5), we introduce
the general form in (4.8) below. We will use the letters v j to denote the free summation
indices running from 1 to N , and the letters xi , yi as the row and column indices of the
Green function entries. In order to avoid confusion, we clarify that xi = yi = v j means
that both xi and yi represent the same summation index v j . Further we write xi �= yi
if xi and yi represent two distinct summation indices, say v j and v j ′ . They could have
the same value as the summation indices v j and v j ′ run from 1 to N .

We are now ready to introduce the general form of averaged products of the Green
function entries:

1

Nm

N∑
v1=1

· · ·
N∑

vm=1

cv1,...,vm

( n∏
i=1

Gxi yi (t, z)
)

=: 1

N #I
∑
I

cI
( n∏
i=1

Gxi yi (t, z)
)
,

t ∈ R
+, z ∈ C

+, (4.8)

for m, n ∈ N, where I := {v j }mj=1 is a free summation index set which may include
a, b, v from (4.5), m := #{I} is the number of the free summation indices, and the
coefficients {cI := cv1,...,vm } are uniformly bounded complex numbers. Moreover, n is
the number of Green function entries in the product, and each row index xi and column
index yi (1 ≤ i ≤ n) of the Green function entries represent some element in the free
summation index set I.

We further define the degree of such a term in (4.8) to be the number of off-diagonal
terms in the product of the Green function entries, i.e.,

d := #{1 ≤ i ≤ n : xi �= yi }. (4.9)

In particular, we have 0 ≤ d ≤ n. We useQd ≡ Qd(t, z) to denote the collection of the
averaged products of the Green function entries of the form in (4.8) of degree d. For any
Qd ≡ Qd(t, z) ∈ Qd , it is clear from the local law in (3.10) that

|Qd(t, z)| ≺ �d +
1

N
, (4.10)
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uniformly in z ∈ S given in (2.7) and t ≥ 0.Wewill often omit the parameters z and t for
notational simplicity. The last error N−1 is from the coincidence of distinct summation
indices.

Now we first look at the third order terms in the cumulant expansion (4.5) with
p + q + 1 = 3. Using the differential rule for the Green function entries in (3.21), all
the third order terms with p + q + 1 = 3 can be written out in the form in (4.8), with an
extra factor

√
N in front. We observe that these terms are unmatched, see Definition 4.1

below, since the indices a, b both appear an odd number of times in the product of the
Green function entries.

In a similarly way, the fourth order terms in the cumulant expansion (4.5) with
p+q +1 = 4, except the ones corresponding to p = 2, q = 1, are also unmatched terms
of the form in (4.8) from Definition 4.1, since the number of times the index a (or b)
appears in the row index set does not agree with the number of times it appears in the
column index set of the product of Green function entries.

Definition 4.1 (Terms with unmatched indices). Given any Qd ∈ Qd of the form in
(4.8) of degree d, let ν(r)

j , ν(c)
j , be the number of times the free summation index v j ∈ I

appears as the row, respectively column, index in the product of the Green function
entries, i.e.,

ν
(r)
j := #{1 ≤ i ≤ n : xi = v j }, ν

(c)
j := #{1 ≤ i ≤ n : yi = v j }, 1 ≤ j ≤ m.

(4.11)

We define the set of the unmatched summation indices as

Io := {1 ≤ j ≤ m : ν
(r)
j �= ν

(c)
j } ⊂ I.

If Io is empty, i.e., all the free summation indices appear the same number of times
in the row index set {xi } and the row column index set {yi }, then we say that Qd is
matched. Otherwise, we say Qd is an unmatched term, denoted by Qo

d . The collection
of the unmatched terms of the form in (4.8) of degree d is denoted by Qo

d ⊂ Qd .
Given any unmatched term Qo

d ∈ Qo
d , we define the unmatched index set for both

row and column as

Ro := {1 ≤ j ≤ m : ν
(r)
j > ν

(c)
j } ⊂ Io; Co := {1 ≤ j ≤ m : ν

(r)
j < ν

(c)
j } ⊂ Io.

(4.12)

Neither of Ro and Co is empty. Moreover, Ro ∩ Co is empty, and Ro ∪ Co = Io.

Next, we give two examples of unmatched terms, which appear as fourth order terms
in (4.5),

− 1

N 3

∑
v,a,b

s(1,3)
ab

4
E

[
GvaGbvGbaGaaGbb

]
∈ Qo

3;

− 1

N 3

∑
v,a,b

s(0,4)
ab

12
E

[
GvaGbvGbaGbaGba

]
∈ Qo

5; (4.13)
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and two examples of the unmatched terms from the third order terms on the right side
of (4.5),

1

N 3

∑
v,a,b

s(1,2)
ab

2
E

[
GvaGbvGaaGbb

]
∈ Qo

2;
1

N 3

∑
v,a,b

s(0,3)
ab

4
E

[
GvaGbvGbaGba

]
∈ Qo

4,

(4.14)

up to a factor of
√
N .

The following proposition states that the expectations of the unmatched terms are
much smaller than their naive size obtained by the power counting from the local law as
in (4.10). The proof is postponed to Sect. 6.

Proposition 4.2. Consider any unmatched term Qo
d ∈ Qo

d of degree d with fixed n (the
number of Green function entries in the product) given in (4.8). For any fixed D ∈ N,
we have

E[Qo
d(t, z)] = O≺

( 1

N
+ �D

)
, (4.15)

uniformly in z ∈ S given in (2.7) and t ≥ 0.

Remark 4.1. In the observable Qo
d(t, z) in (4.15) the Green function entries from (4.8)

are all chosen at the same spectral parameter z ∈ S. Our proofs can be extended to the
setting where the Green function entries are evaluated at different spectral parameters
in the domain S with the estimate in (4.15) holding true. As we do not require this
generalization to prove Proposition 4.1 we do not pursue this direction here.

Therefore, using Proposition 4.2, the third order terms in the cumulant expansion
(4.5) are all bounded as O≺(N−1/2 +

√
N�D). Moreover all the fourth order terms

in the cumulant expansion (4.5), except the one corresponding to p = 2, q = 1, are
bounded by O≺(N−1 + �D). By choosing D ≥ 1

ε
with ε > 0 as in (2.9), we hence

obtain from (4.5) that

E[�0] = − 1

2N 2

N∑
v,a=1

(s(2)
aa − 1)E

[∂2Gvv

∂h2aa

]
− 1

4N 3

N∑
v,a,b=1
a �=b

s(2,2)
ab E

[ ∂4Gvv

∂h2ba∂h
2
ab

]

+ O≺(
1√
N

). (4.16)

The remaining terms on the right side of (4.16) are matched under Definition 4.1. It is
thus sufficient to estimate these matched terms, as presented in the next subsection.

4.3. Terms with matched indices. Applying the differentiation rule (3.21) to the right
side of (4.16), the index v appears once as a row index and once as a column index of
the Green function entries of the resulting terms on the right side of (4.16). In addition,
the indices a, b from (4.16) will take a special role and appear twice as a row index and
twice as a column index of the Green function entries. After differentiation by (3.21),
we write out these products of Green function entries and observe that they are of the
following form which we call type-AB terms.
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Definition 4.2 (Type-AB terms, type-A terms, type-0 terms). For arbitrary m, n ∈ N, we
consider averaged products of Green functions of the form

1

Nm+2

N∑
v1=1

· · ·
N∑

vm=1

N∑
a=1

N∑
b=1

ca,b,v1,...,vm

( n∏
i=1

Gxi yi (t, z)
)

=: 1

N #I+2
∑
I,a,b

ca,b,I
( n∏
i=1

Gxi yi

)
,

(4.17)

for t ∈ R
+, z ∈ C

+, where each xi and yi represent the free summation indices a, b or
v j (1 ≤ j ≤ m). Here the coefficients {ca,b,I := ca,b,v1,...,vm } are uniformly bounded
complex numbers. Note that the form in (4.17) is a special case of the form given in
(4.8) with the two indices a and b singled out. The degree, denoted by d, of such a term
is defined as in (4.9) by counting the number of the off-diagonal Green function entries.
Recall ν(r)

j , ν(c)
j defined in (4.11). We further define similarly

ν(r)
a := #{i : xi = a}, ν(c)

a := #{i : yi = a}, ν
(r)
b := #{i : xi = b}, ν

(c)
b := #{i : yi = b},

for the special indices a, b.
A type-AB term, denoted by PAB

d , is of the form in (4.17) with each v j appearing
once in the row index set {xi } and once in the column index set {yi } in the product of the
Green function entries, i.e., ν(r)

j = ν
(c)
j = 1. The indices a and b both appear the same

number of times (more than once) in the row index set {xi } and column index set {yi }
in the product of the Green function entries, i.e., ν(r)

a = ν
(c)
a ≥ 2 and ν

(r)
b = ν

(c)
b ≥ 2.

We denote by P AB
d ≡ P AB

d (t, z) the collection of the type-AB terms of degree d. We
remark that type-AB terms are matched in the sense of Definition 4.1.

A type-A term, denoted by PA
d , is of the form in (4.17) with ν

(r)
a = ν

(c)
a ≥ 2, and

ν
(r)
b = ν

(c)
b = ν

(r)
j = ν

(c)
j = 1 for 1 ≤ j ≤ m. We denote the collection of the type-A

terms of degree d by P A
d ≡ P A

d (t, z).
Finally, a type-0 term, denoted by Pd , is of the form in (4.17) with all the free

summation indices appearing once in the row index set {xi } and once in the column
index set {yi } in the product of the Green function entries, i.e., ν

(r)
a = ν

(c)
a = ν

(r)
b =

ν
(c)
b = ν

(r)
j = ν

(c)
j = 1 for 1 ≤ j ≤ m. We denote the collection of the type-0 terms of

degree d by Pd ≡ Pd(t, z).
We remark that the index b does no longer play a special role in type-A terms, as

well as the indices a and b are not special in type-0 terms. We keep them in the notation
in order to emphasize the inheritance from the form in (4.17).

Next, we give two examples for type-AB terms, which are generated from the fourth
order expansion terms in (4.16) corresponding to the (2, 2)-cumulants,

− 1

4N 3

∑
v,a,b

s(2,2)
ab

(
GvaGaaGavGbbGbb

)
∈ P AB

2 ;

− 1

4N 3

∑
v,a,b

s(2,2)
ab

(
GvaGabGbvGaaGbb

)
∈ P AB

3 ;

and an example of a type-A term, which is from the second order terms of diagonal
entries in the cumulant expansion (4.16),

− 1

2N 2

∑
v,a

(s(2)
aa − 1)

(
GvaGaaGav

)
∈ P A

2 ,
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where the index b no longer takes the special role.
In the following, we only consider special type-AB terms with both indices a and b

appearing in the product of the Green function entries four times (i.e., ν
(r)
a = ν

(c)
a =

ν
(r)
b = ν

(c)
b = 2) and the corresponding type-A terms. For the general case, see Re-

mark 4.2.
The next proposition claims that, in expectation, any type-AB term as well as any

type-A term of degree d can be expanded into linear combinations of type-0 terms of
degrees at least d up to negligible error. The proof of Proposition 4.3 is presented in
Sect. 5.2.

Proposition 4.3. Consider any type-AB term PAB
d ∈ P AB

d of the form in (4.8) of degree

d with fixed n ∈ N, and ν
(r)
a = ν

(c)
a = ν

(r)
b = ν

(c)
b = 2. Then for any fixed D ∈ N, we

have

E[PAB
d (t, z)] =

∑
Pd′ ∈Pd′
d≤d ′<D

E[Pd ′(t, z)] + O≺
( 1√

N
+ �D

)
, (4.18)

uniformly in z ∈ S (see (2.7)), t ∈ R
+, where we use

∑
Pd′ ∈Pd′ ,d≤d ′<D E[Pd ′(t, z)] to

denote a sum of finitely many type-0 terms of the form in (4.17) of degrees d ′ satisfying
d ≤ d ′ < D. Moreover, the number of type-0 terms in the sum above is bounded by
(6(n + 8D))2D and the number of the Green function entries in each type-0 term is
bounded by n + 8D.

Similarly, for any type-A term PA
d ∈ P A

d of the form in (4.17) with ν
(r)
a = ν

(c)
a = 2,

we have

E[PA
d (t, z)] =

∑
Pd′ ∈Pd′
d≤d ′<D

E[Pd ′(t, z)] + O≺
( 1√

N
+ �D

)
, (4.19)

uniformly in z ∈ S and t ∈ R
+. The number of the type-0 terms in the sum above is at

most (6(n + 4D))D, and the number of the Green function entries in each type-0 term is
at most n + 4D.

Remark 4.2. The above expansions also hold true if we consider a slightly generalized
setup when both indices a and b appear arbitrary even number of times, not limited to
ν

(r)
a = ν

(c)
a = ν

(r)
b = ν

(c)
b = 2. Then the number of expansions generated on the right

side also depends on the values ν
(r)
a (= ν

(c)
a ) and ν

(r)
b (= ν

(c)
b ); see also Remark 5.1.

Furthermore, in the above all the Green function entries are taken at the same spectral
parameter z ∈ S. The expansion results may be generalized to the settingwhen theGreen
functions are taken at different spectral parameters in the domain S, c.f. Remark 4.1.

Armed with Proposition 4.3, we return to (4.16). Recalling Definition 4.2 and using
(3.21), the second group of terms on the right side of (4.16) can bewritten out as type-AB
terms of the form in (4.17) of degrees satisfying d ≥ 2, where the number of Green
function entries in each type-AB term is n = 5, the summation index set I = {v} and
the coefficients ca,b,v = s(2,2)

ab . Similarly, the first group of terms on the right side of
(4.16) can be written as a type-A term with degree d = 2 and the number of Green
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function entries n = 3. Therefore, from Proposition 4.3, we can expand (4.16) as a sum
of finitely many type-0 terms of degrees at least two, i.e.,

E[�0(t, z)] =
∑

Pd∈Pd
2≤d≤D−1

E[Pd(t, z)] + O≺
( 1√

N
+ �D

)
, (4.20)

uniformly in z ∈ S and t ∈ R
+, where the number of type-0 terms in the sum above can

be bounded by (CD)cD , for some numerical constants C, c.
Having expanded E[�0(t, z)] into type-0 terms, we next estimate the size of type-0

terms of the form in (4.17) of degree d ≥ 2 in the edge scaling, i.e., when the spectral
parameter z is chosen in the domain Sedge defined in (4.1). The proof of Lemma 4.1 is
presented in Sect. 5.3.

Lemma 4.1. For any type-0 term Pd ∈ Pd of the form in (4.17) of degree d ≥ 2 with
fixed n ∈ N, we have

|E[Pd(t, z)]| = O≺(N−1/3), (4.21)

uniformly in z ∈ Sedge given by (4.1) and t ≥ 0.

We hence obtain the estimate of E[�0(t, z)] in (4.6) by combining (4.20) and (4.21),
and by choosing D ≥ 1

ε
and using the upper bound in (2.9). This yields the proof of

Proposition 4.1.

5. Product of Green Function Entries with Matched Indices

In this section, we prove Proposition 4.3 and Lemma 4.1. Before diving into their proofs,
we outline in the next subsection the intuition stemming from the GUE.

5.1. Intuition from theGUE. In this subsection, we focus on the special case of theGUE.
The idea of eliminating the indices appearing more than twice and reducing type-AB to
type-0 terms as in Proposition 4.3 stems from explicit computations for the GUE based
on the Weingarten calculus for Haar unitary matrices. To simplify the arguments, we
only consider the following example of a type-AB term of the form in (4.17),

1

N 2

∑
a,b

(Gaa(z))
2(Gbb(z))

2 ∈ P AB
0 . (5.1)

Thanks to the unitary conjugation invariance, we know that the eigenvalues (λi ) and
the corresponding orthonormal eigenvectors (ui ) of a GUE matrix are independent, and
that the collection of eigenvectors U := (u1, . . . , uN ) is distributed according to Haar
measure on the unitary group U (N ).

Further, using the spectral decomposition

G(z) = 1

H − z
=

N∑
j=1

u ju∗
j

λ j − z
, z ∈ S, (5.2)
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we write the expectation of (5.1) as

1

N 2

∑
a,b

E[(Gaa(z))
2(Gbb(z))

2]

= 1

N 2

∑
a,b

∑
j,k,p,q

E

[u j (a)u j (a)uk(a)uk(a)up(b)up(b)uq(b)uq(b)

(λ j − z)(λk − z)(λp − z)(λq − z)

]

= 1

N 2

∑
a,b

∑
j,k,p,q

E

[ 1

(λ j − z)(λk − z)(λp − z)(λq − z)

]

× E[UajUakUbpUbqUajUakUbpUbq ]. (5.3)

In order to estimate the expectations of the eigenvectors above, we use the following
result for the Weingarten calculus on the unitary groups [10,11].

Lemma 5.1 (Corollary 2.4, Proposition 2.6 in [11]). Let U = (Ui j )
N
i, j=1 be a Haar

unitary random matrix of size N. Let n ∈ N and denote by Sn the symmetric group of
order n. Then, for arbitrary column and row indices ik, i ′k, jk, j ′k ∈ �1, N�, 1 ≤ k ≤ n,
we have

E[Ui1 j1 · · ·Uin jnUi ′1 j ′1 · · ·Ui ′n j ′n ]
=
∑

α,β∈Sn
δi1,i ′α(1)

· · · δin ,i ′α(n)
δ j1, j ′β(1)

· · · δ jn , j ′β(n)
Wg(N , α−1β), (5.4)

where Wg(N , γ ) is the Weingarten function given by

Wg(N , γ ) := E[U11 · · ·UnnU1γ (1) · · ·Un,γ (n)], γ ∈ Sn . (5.5)

In the limit of large N, the Weingarten functionWg(N , γ ) has the following asymptotic
behavior: Let {ci }#(γ )

i=1 denotes the cycles of γ ∈ Sn, with #(γ ) the total number of cycles.
Then

Wg(N , γ ) =N #(γ )−2n
#(γ )∏
i=1

(−1)|ci |−1Cat(|ci | − 1) + O(N #(γ )−2n−2), (5.6)

where |ci | denotes the length of the cycle ci and Cat(k) = (2k)!
k!(k+1)! is the k-th Catalan

number.

Now we are ready to evaluate, for large N , E[UajUakUbpUbqUajUakUbpUbq ] from
(5.3) using Lemma 5.1 with n = 4. We may assume that a �= b, as the case a = b only
contributes O(N−1) to the expectation of (5.1) uniformly for z ∈ S, using the local law
(3.10) and Lemma 2.1. We set n = 4, i1 = i2 = i ′1 = i ′2 = a, i3 = i4 = i ′3 = i ′4 = b,
j1 = j ′1 = j , j2 = j ′2 = k, j3 = j ′3 = p, and j4 = j ′4 = q. Since maxγ∈Sn #(γ ) = 4,
the leading term in (5.4), corresponding toWg(N , γ )with γ = 1 (α−1β = 1), is of size
O( 1

N4 ) from (5.6) and the rest terms are bounded by O( 1
N5 ). Moreover, the coefficient

in front of Wg(N ,1) is given by the number of permutations σ ∈ S4 such that

il = i ′σ(l), jl = j ′σ(l), l = 1, 2, 3, 4. (5.7)
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We then separate into the following five cases: (1.) all indices j, k, p, q are distinct,
(2.) only two of them coincide while the other two are distinct, (3.) two pairs of them
coincide, (4.) three of them coincide and the rest one is different, and (5.) all the indices
are the same. As a �= b, the number of permutations satisfying (5.7) is given by 1, 8, 6,
8 and 4, respectively. Therefore, for a �= b, we obtain

E[(Gaa(z))
2(Gbb(z))

2] = 1

N 4

∑
j,k,p,q

all distinct

E

[ 1

(λ j − z)(λk − z)(λp − z)(λq − z)

]

×
(
1 + O

( 1
N

))

+
8

N 4

∑
j,p,q

all distinct

E

[ 1

(λ j − z)2(λp − z)(λq − z)

](
1 + O

( 1
N

))

+
6

N 4

∑
j �=q

E

[ 1

(λ j − z)2(λq − z)2

](
1 + O

( 1
N

))

+
8

N 4

∑
j �=q

E

[ 1

(λ j − z)3(λq − z)

](
1 + O

( 1
N

))

+
4

N 4

∑
j

E

[ 1

(λ j − z)4

](
1 + O

( 1
N

))
. (5.8)

For example, by direct computation, the first term on the right side of (5.8) can be
written using the spectral decomposition (5.2) as

1

N 4

∑
j,k,p,q

all distinct

E

[ 1

(λ j − z)(λk − z)(λp − z)(λq − z)

]

= 1

N 4E[(TrG)4] − 6

N 4E[(TrG2)(TrG)2]

+
8

N 4E[(TrG3)(TrG)] − 6

N 4E[TrG4] + 3

N 4E[(TrG2)(TrG2)]. (5.9)

Observe that the resulting terms on the right side are type-0 terms under Definition 4.2.
We further write the other terms on the right side of (5.8) similarly by type-0 terms using
the spectral decomposition. To sum up, averaging over a, b and adding the subleading
diagonal terms, (5.3) eventually becomes,

1

N 2

∑
a,b

E[(Gaa)
2(Gbb)

2] = 1

N 4E[(TrG)4] + 2

N 4E[(TrG2)(TrG)2]

+
1

N 4E[(TrG2)(TrG2)] + O(N−1),

uniformly in z ∈ S, after exact cancellations between the terms.
In this way, we have eliminated one pair of a-indices and b-indices from the type-AB

term (5.1) and shown that they can be written as linear combinations of type-0 terms,
which involves only products of traces.
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For Wigner matrices, the above does not apply anymore as the eigenvectors are
no longer exactly Haar distributed on U (N ), further the expectation in (5.3) does not
factorize. Yet successively applying cumulant expansions, we can reduce type-AB terms
to sums of type-A terms up to negligible error, and then finally reduce type-A terms to
sums of type-0 terms. This procedure is explained in the next subsection.

5.2. Proof of Proposition 4.3. In this subsection, we give the proof of Proposition 4.3
for arbitrary Wigner matrices using cumulant expansions.

Proof of Proposition 4.3. We consider a type-AB term of the form in (4.17) with both
indices a and b appearing twice as a row index and twice as a column index in the product
of the Green function entries. There are two steps as follows. We first expand the type-
AB term as a linear combination of type-A terms by eliminating one pair of the index b.
Then in a second step we expand the resulting type-A terms as linear combinations of
type-0 terms by further eliminating a pair of the index a.
Step 1: Reduction to type-A terms. Given a type-AB term, we will eliminate one pair of
the index b using the relation

Gi j = δi j G + Gi j HG − G(HG)i j , (5.10)

and then applying cumulant expansions. The identity may be checked directly from the
definition of the Green function. In (5.10) we use the notation A := 1

N TrA, for any
A ∈ C

N×N , to denote the normalized trace. Similar ideas were used in [22,30].
Consider now a type-AB term PAB

d ∈ P AB
d of the form in (4.17). We split into the

following two cases.
Case 1: If there exists some i such that xi = yi = b, i.e., there is a factor Gbb in the
product of Green function entries, we may then assume i = 1. Applying (5.10) to Gbb
and performing cumulant expansions for the resulting terms HG and (HG)bb, we obtain

E[PAB
d ] = 1

N #I+2
∑
I,a,b

ca,b,IE
[
(G + GbbHG − G(HG)bb)

∏
2≤i≤n

Gxi yi

]

= 1

N #I+2
∑
I,a,b

ca,b,IE
[
G
∏

2≤i≤n

Gxi yi

]

+
1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[∂GbbG jk

∏
2≤i≤n Gxi yi

∂h jk

]

− 1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[∂G j jGkb

∏
2≤i≤n Gxi yi

∂hkb

]
+ O≺

( 1√
N

)
, (5.11)

where the error O≺( 1√
N

) is from the truncation of the cumulant expansions.Using (3.21),

the first order of the second group of terms above corresponding to ∂
∂h jk

G jk is precisely

canceled by that of the third group of terms corresponding to ∂
∂hkb

Gkb. Then we write

E[PAB
d ] = 1

N #I+2
∑
I,a,b

ca,b,IE
[
G
∏

2≤i≤n

Gxi yi

]
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− 1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[∂Gbb

∏
2≤i≤n Gxi yi

∂h jk
G jk

]

+
1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[∂G j j

∏
2≤i≤n Gxi yi

∂hkb
Gkb

]

+ O≺(
1√
N

). (5.12)

The first term on the right side above is obtained by replacing Gbb by the normalized
trace G in the expression of PAB

d . In this way we have eliminated one pair of the index
b. Since the index b originally appeared twice as a row index and twice as a column
index in the product of the Green function entries, the first term has become a type-A
term of degree d. Moreover, from (3.21) and the fact that j, k are fresh indices, the other
terms on the right side of (5.12) can be written out as a sum of 2n type-AB terms of
the form in (4.17), where the corresponding free summation index set is I ′ = {I, j, k},
m′ = #I ′ = m + 2, and the number of Green function entries is n′ = n + 2.

We next study the degrees of these terms in detail. In the second group of summation
in (5.12), if ∂/∂h jk acts on Gbb, then the degree of the resulting term is increased by
three, since j and k are fresh indices. If ∂/∂h jk acts on Gxi yi (2 ≤ i ≤ n), then the
degree is increased by at least two for the same reason. In the last group of summation
in (5.12), if ∂/∂hkb acts on G j j , then the degree is increase by three. When ∂/∂h jk acts
on Gxi yi (2 ≤ i ≤ n), we split the discussion into three cases: 1) if Gxi yi is diagonal
and xi = yi �= b, then the degree is increased by three; 2) if Gxi yi is off-diagonal with
yi �= b, then the degree is increased by two; 3) if Gxi yi is off-diagonal with yi = b, then
the degree is increased by one.

Hence the degrees, denoted by d ′, of all the terms on the right side of (5.12) except
the first one, satisfy d ′ ≥ d + 1. We use

∑
PAB
d′ ∈P AB

d′ ,d ′≥d+1 E[PAB
d ′ ] to denote the finite

sum of these terms, i.e., we write

E[PAB
d ] = 1

N #I+2
∑
I,a,b

ca,b,IE
[
G

n∏
i=2

Gxi yi

]
+

∑

PAB
d′ ∈P AB

d′
d ′≥d+1

E[PAB
d ′ ] + O≺

( 1√
N

)
.

(5.13)

Therefore, the combination of the identity (5.10) and the cumulant expansion gives a
cancellation to first order, and the only leading term left is obtained by replacing a
factor Gbb with the normalized trace G of the product of Green function entries in the
expression of the original PAB

d .
Case 2: If there is no i such that xi = yi = b, i.e., there is no factor as Gbb in the

product of Green function entries in (4.17), wemay then assume that x1 = b and y1 �= b.
Since the index b appears exactly twice in {yi }ni=2, we may assume that y2 = y3 = b
and x2 �= b and x3 �= b. Then there is no b in the remaining column index set {yi }ni=4.
Using the identity (5.10) on Gby1 and applying cumulant expansions, we find

E[PAB
d ] = 1

N #I+2
∑
I,a,b

ca,b,IE
[
(Gby1HG − G(HG)by1)Gx2bGx3b

n∏
i=4

Gxi yi

]

+
1

N #I+2
∑
I,a,b

ca,b,IE
[
δby1G

n∏
i=2

Gxi yi

]
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= − 1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[∂Gby1Gx2bGx3b

∏n
i=4 Gxi yi

∂h jk
G jk

]

+
1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[∂G j jGx2bGx3b

∏n
i=4 Gxi yi

∂hkb
Gky1

]
+ O≺(

1√
N

),

(5.14)
where in the second step, we observe a cancellation to first order similarly as in (5.12),
and the last error O≺(N−1/2) is from the truncation of the cumulant expansions at the
third order, while the contribution from the diagonal case b ≡ y1, i.e., the second line
of (5.14), can be bounded by O≺(N−1) using the local law in (3.10). From (3.21), the
right side of (5.14) can again be written as a sum of 2n type-AB terms of the form in
(4.17) with I ′ = {I, j, k}, m′ = m + 2, and n′ = n + 2. Since j, k are fresh indices,
the resulting type-AB terms have degrees d ′ ≥ d + 1 (the finite sum of such terms is
denoted by

∑
PAB
d′ ∈P AB

d′ ,d ′≥d+1 E[PAB
d ′ ]), except the following two terms corresponding

to taking ∂
∂hkb

of a Green function entry whose column index coincides with b, i.e.,

1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[
G j jGx2kGbbGx3b

n∏
i=4

Gxi yi Gky1

]
(5.15)

and

1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[
G j jGx2bGx3kGbb

n∏
i=4

Gxi yi Gky1

]
. (5.16)

Compared with the original term PAB
d , one observes that the terms in (5.15) and (5.16)

are obtained by replacing one pair of the index b by a fresh index k and adding a factor
Gbb for the replaced index b. These terms are again type-AB terms in P AB

d with a factor
Gbb in the product of Green function entries considered in Case 1. Using (5.13) on these
terms and combining with (5.14), we hence obtain

E[PAB
d ] = 1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[
G j jGGky1Gx2kGx3b

n∏
i=4

Gxi yi

]

+
1

N #I+4
∑

I,a,b, j,k

ca,b,IE
[
G j jGGky1Gx2bGx3k

n∏
i=4

Gxi yi

]

+
∑

PAB
d′ ∈P AB

d′
d ′≥d+1

E[PAB
d ′ ] +

∑

PAB
d′′ ∈P AB

d′′
d ′′≥d+1

E[PAB
d ′′ ] + O≺

( 1√
N

)
, (5.17)

where the first two lines above are type-A terms in P A
d , obtained from the original term

PAB
d by replacing a pair of index b, i.e., (x1, y2) or (x1, y3) by a fresh index k and

multiplied by (G)2. The first group of sum on the last line of (5.17) comes from (5.14)
excluding two terms (5.15) and (5.16), and the number of the type-AB terms in the sum
is at most 2n − 2. The second group of sum on the last line of (5.17) is obtained from
expanding (5.15) and (5.16) by (5.13). The corresponding type-AB terms are of the form
in (4.17) with m′′ = m′ + 2 and n′′ = n′ + 2, and the number of the terms in the sum is
at most 4n′.
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Combining with Case 1, for any type-AB term PAB
d ∈ P AB

d , we rewrite (5.13) and
(5.17) in the short form

E[PAB
d ] =

∑

PA
d ∈P A

d

E[PA
d ] +

∑

PAB
d′ ∈P AB

d′
d ′≥d+1

E[PAB
d ′ ] + O≺

( 1√
N

)
, (5.18)

where the summations above denote a sum of at most two type-A terms of degree d and
a sum of at most (6n + 8) type-AB terms of degree not less than d + 1. The number of
the Green function entries in the product (see (4.17)) of each term is at most n + 4.

Remark 5.1. In general, if the number of the index b appearing in the Green function
entries of PAB

d is not limited to four, i.e., ν(r)
b = ν

(c)
b = s ≥ 3, then the terms in the first

group of sum on the right side of (5.18) are of the form in (4.17) with ν
(r)
b = ν

(c)
b =

s − 1 ≥ 2. Moreover, the number of such terms in the first group of the sum is at most
s. We can repeat the expansion procedure in (5.18) for s times until ν(r)

b = ν
(c)
b = 1. We

then end up with at most s! type-A terms in P A
d , and at most 6ss(n + 4s) type-AB terms

of degrees not less than d + 1 generated in the above expansion procedures.

Iterating the expansion procedure (5.18) D − d times, the resulting type-AB terms
have degrees at least D. Using the local law in (3.10), we expand an arbitrary type-AB
term PAB

d ∈ P AB
d as a finite sum of type-A terms of degrees at least d, up to negligible

error. We hence arrive at

E[PAB
d ] =

∑
d≤d ′<D

∑

PA
d′ ∈P A

d′

E[PA
d ′ ] + O≺

( 1√
N

+ �D). (5.19)

The number of the Green function entries in the product of each type-A term above is
bounded by n +4D, and the number of these type-A terms is bounded by (6(n +4D))D .

Step 2: Reduction to type-0 terms. For the expanded type-A terms on the right side
of (5.19), we follow the idea in Step 1 to expand the resulting type-A terms as linear
combinations of type-0 terms by further eliminating one pair of the index a.

Given a type-A term PA
d ∈ P A

d of the form in (4.17), we split into two cases: 1) there
exists a factor Gaa in the product of Green function entries; 2) there is no factor Gaa in
the product of the Green function entries. We utilize similar arguments as in Case 1 and
Case 2 of Step 1 above and obtain the analogue of (5.18), namely that

E[PA
d ] =

∑
Pd∈Pd

Pd +
∑

PA
d′′ ∈P A

d′′
d ′′≥d+1

E[PA
d ′′ ] + O≺

( 1√
N

)
, (5.20)

where the summations above denote a sum of at most two type-0 terms of degree d and
a sum of at most (6n + 8) type-A terms of degrees at least d + 1. The number of the
Green function entries in the product of each term is bound by n + 4.

Iterating the above expansion for D − d times, we then expand an arbitrary type-A
term PA

d ∈ P A
d as a sum of at most (6(n + 4D))D type-0 terms of degree d ′ satisfying

d ≤ d ′ < D, up to negligible error. As the analogue of (5.19), we write

E[PA
d ] =

∑
d≤d ′<D

∑
Pd′ ∈Pd′

E[Pd ′ ] + O≺
( 1√

N
+ �D), (5.21)
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where the number of the Green function entries in the product of each type-0 term above
is bounded by n + 4D.

Combining with the first step (5.19), we finish the proof of Proposition 4.3.

Remark 5.2. The expansion procedures in the proof of Proposition 4.3 are not unique
in the sense that at each step the resulting expansion will depend on the choice of
the Green function entry we pick to be replaced by the identity (5.10) and perform
cumulant expansions. However in view of Lemma 4.1 this is not pertinent to the proof of
Proposition 4.1. This arbitrariness can be used to derive relations among Green function
correlation functions. We finally remark that the errors O≺(N−1/2) in (5.19) and (5.21)
stemming from truncating the cumulant expansions at second order, can be improved to
O≺(N−1) because of the negligibility of third order terms; see Proposition 4.2.

5.3. Proof of Lemma 4.1. In the subsection, we estimate the expectations of the type-0
terms and prove Lemma 4.1. We start with the following lemma for the GUE.

Lemma 5.2. Let H belong to the GUE. For any ε > 0 and C0 > 0, recall the domain
Sedge ≡ Sedge(ε,C0) defined in (4.1). Then there exists a constant C independent of ε

such that
1

N
E
GUE
[
Im TrG(z)

]
≤ CN−1/3+ε, (5.22)

holds uniformly for all z ∈ Sedge, for sufficiently large N ≥ N0(C0, ε). Furthermore,
for any τ > 0, all the type-0 terms Pd ∈ Pd (d ≥ 2) of the form in (4.17) have the upper
bound

|EGUE[Pd(z)]| ≤ N−1/3+τ , (5.23)

uniformly for all z ∈ Sedge, for sufficiently large N ≥ N ′
0(C0, ε, τ ).

The proof of Lemma 5.2 is postponed to Sect. 5.4. Using the above lemma for the
GUE and the comparison method, we are now ready to prove Lemma 4.1 for arbitrary
Wigner matrices.

Proof of Lemma 4.1. Consider any type-0 term Pd ∈ Pd of the form in (4.17) of degree
d ≥ 2. If d ≥ D for some large D, then by the local law in (3.10), |E[Pd ]| = O≺(�D +
N−1). Else, if d is smaller, we estimate E[Pd ] using the comparison method iteratively
and the corresponding estimates for the GUE in (5.23).

We start the iteration by denoting the type-0 term Pd of the form in (4.17) as Pd ≡
P(1)
d1

, where the superscript (1) and degree d ≡ d1 will be used to indicate the iteration
step. We hence consider a term of the form

P(1)
d1

≡ P(1)
d1

(t, z) : 1

N #I1+2
∑

I1,a1,b1
ca1,b1,I1

( n1∏
i=1

Gxi yi (t, z)
)
, t ∈ R

+, z ∈ Sedge,

(5.24)

with n1 = #I1 + 2, where each summation index in {a1, b1, I1} appears exactly once in
the row index set {xi } and exactly once in the column index set {yi }. In the following,
we often omit the parameters t, z and the errors below are always bounded uniformly in
z ∈ Sedge and t ≥ 0.
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We next derive the stochastic differential equation for the type-0 term P(1)
d1

under the
Ornstein–Uhlenbeck flow in (3.7), similarly to (4.4). In general, for any {xi , yi }ni=1 with
some n ∈ N, using Ito’s formula and the stochastic differential equation for the Green
function entries in (3.22), we have

d
( n∏
i=1

Gxi yi

)
=

n∑
j=1

∏
i �= j

Gxi yi dGx j y j +
1

2

n∑
j,k=1

∏
i �= j,k

Gxi yi dGx j y j dGxk yk

= − 1√
N

N∑
a,b=1

n∑
j=1

Gx jaGby j

∏
i �= j

Gxi yi dβab

+
1

2

N∑
a,b=1

n∑
j=1

(
habGx j aGby j +

1

N
Gx j bGby j Gaa +

1

N
Gx jaGay j Gbb

)

∏
i �= j

Gxi yi dt

+
1

2N

N∑
a,b=1

n∑
j,k=1

Gx jaGby j GxkbGayk

∏
i �= j,k

Gxi yi dt := dM̂ + �̂ dt,

(5.25)

with diffusion term dM̂ and drift term �̂ dt . Applying cumulant expansions to the drift
term, we observe cancellations of the second order expansions as in (4.5) and obtain that

E[�̂] = 1

2N

N∑
a=1

(s(2)
aa − 1)

n∑
j=1

E

[∂(Gx jaGay j
∏

i �= j Gxi yi )

∂haa

]

+
1

2

N∑
a,b=1
a �=b

4∑
p+q+1=3

s(p,q+1)
ab

p!q!N p+q+1
2

×
n∑
j=1

E

[∂ p+q(Gx jaGby j
∏

i �= j Gxi yi )

∂h p
ba∂h

q
ab

]
+ O≺(

1√
N

)

= − 1

2N

N∑
a=1

(s(2)
aa − 1)E

[∂2(∏n
i=1 Gxi yi )

∂h2aa

]

−
4∑

p+q+1=3

1

2p!q!N p+q+1
2

N∑
a,b=1
a �=b

s(p,q+1)
ab E

[∂ p+q+1(
∏n

i=1 Gxi yi )

∂h p
ba∂h

q+1
ab

]

+ O≺(
1√
N

). (5.26)

From (5.25) and (5.26), we find that P(1)
d1

in (5.24) satisfies the stochastic differential
equation

d(P(1)
d1

) = dM (1)
d1

+ �
(1)
d1
dt, (5.27)
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where the diffusion term dM (1)
d1

yields a martingale after integration (see Remark 3.1)

and the drift term �
(1)
d1
dt satisfies the following analogue of (4.5),

E[�(1)
d1

] = − 1

2N

N∑
a2=1

(s(2)
a2a2 − 1)E

[∂2(P(1)
d1

)

∂h2a2a2

]

−
4∑

p+q+1=3

1

2p!q!N p+q+1
2

N∑
a2,b2=1
a2 �=b2

s(p,q+1)
a2b2

E

[∂ p+q+1(P(1)
d1

)

∂h p
b2a2

∂hq+1a2b2

]

+ O≺
( 1√

N

)
, (5.28)

where a2, b2 are fresh summation indices, as a, b in (5.26). The subscript 2 is used to
indicate the iteration step and distinguish from a1, b1 in (5.24).

From (3.21), all the third order terms for p + q + 1 = 3 in the cumulant expansion
above can be written out in the form in (4.8), with an extra factor

√
N in front. Since

the fresh indices a2, b2 both appear an odd number of times in the product of the Green
function entries, they are unmatched from Definition 4.1. Using Proposition 4.2, these
term are bounded by O≺(N−1/2 +

√
N�D).

The fourth order terms in the cumulant expansion with p + q + 1 = 4 in (5.28), with
the exception of those corresponding to p = 2, q = 1, are also unmatched terms of the
form in (4.8), since the number of times the index a2 (or b2) appears in the row index
set {xi } does not agree with the number of times it appears in the column index set {yi }.
Using Proposition 4.2, these term are bounded by O≺(N−1 + �D).

By choosing D ≥ 1
ε
with ε as in (2.9), we hence obtain the following analogue of

(4.16)

E[�(1)
d1

] = − 1

2N

N∑
a2=1

(s(2)
a2a2 − 1)E

[∂2(P(1)
d1

)

∂h2a2a2

]

− 1

4N 2

N∑
a2,b2=1
a2 �=b2

s(2,2)
a2b2

E

[ ∂4(P(1)
d1

)

∂h2b2a2∂h
2
a2b2

]
+ O≺(N−1/2) . (5.29)

It then suffices to estimate the remaining matched terms above. Using (3.21) and (5.24),
the second group of terms on the right side of (5.29) can be written out in the form:

1

N #I1+4
∑

I1,a1,b1,a2,b2
ca1,b1,a2,b2,I1

( n1+4∏
i=1

Gxi yi

)
, (5.30)

where the coefficients {ca1,b1,a2,b2,I1} are determined by {ca1,b1,I1} and {s(2,2)
a2,b2

}, and
each summation index in {a1, b1, I1} appears once in the row index set {xi } and once
in the column index set {yi }. Moreover, both indices a2, b2 appear exactly twice in the
row index set {xi } and exactly twice in the column index set {yi }. We define the degree
of the form in (5.30) as in (4.9) by counting the number of off-diagonal Green function
entries. Recall the definition of the type-AB, type-A and type-0 terms from Definition
4.2. The definitions can be adapted naturally with respect to the fresh indices a2 and b2,
for the form given in (5.30).
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Thus the second group of terms on the right side of (5.29) are n1(n1+1)(n1+2)(n1+3)
type-AB terms considered in Proposition 4.3 of degrees not less than d1 + 1, from (3.21)
and the fact thata2, b2 are fresh indices. Similarly, the first group of terms on the right side
of (5.29) are n1(n1 + 1) type-A terms of degrees not less than d1 + 1. Using Proposition
4.3, we expand each of these terms as a sum of finitely many type-0 terms of degrees at
least d1 + 1, which are in the form:

P(2)
d2

: 1

N #I2+4
∑

I2,a1,b1,a2,b2
ca1,b1,a2,b2,I2

( n2∏
i=1

Gxi yi

)
, (5.31)

whereI2 is a set of free summation indices, the coefficients {ca1,b1,a2,b2,I2} are uniformly
bounded complex numbers, and each index in {a2, b2, a1, b1, I2} appears once in {xi }
and once in {yi }. In particular, n2 = #I2 +4. The degree of such a term, denoted by d2, is
given as in (4.9). The collection of the type-0 terms of the form in (5.31) of degree d2 is
denoted by P(2)

d2
. Here we use the subscript 2 to indicate the iteration step. Note that the

form in (5.31) is a special case of the form given in (4.8) and the indices a1, b1, a2, b2 do
not take special roles. We keep them in the notation to emphasize the inheritance from
(5.30). Then from Proposition 4.3, we expand (5.29) and write for short

E[�(1)
d1

] =
∑

P(2)
d2

∈P(2)
d2

d1+1≤d2<D

E[P(2)
d2

] + O≺
(
N−1/2 + �D), (5.32)

uniformly in t ≥ 0 and z ∈ Sedge, where the summation above is over finitely many
type-0 terms of the form in (5.31), and the number of these terms is determined by D
and n1.

We now return to the stochastic differential equation for P(1)
d1

in (5.27). Integrating
(5.27) over [t ′, T ] for any 0 ≤ t ′ ≤ T = 8 log N and taking the expectation similarly to
(4.7), we find from (5.32) that

E[P(1)
d1

(T, z)] − E[P(1)
d1

(t ′, z)] =
∑

P(2)
d2

∈P(2)
d2

d1+1≤d2<D

∫ T

t ′
E[P(2)

d2
(t, z)]dt

+ O≺
(
log N (N−1/2 + �D)

)
. (5.33)

Using the local law in (3.10), (3.34) and (5.23), E[P(1)
d1

(T, z)] is sufficiently close (up

to an error O(N−1)) to E
GUE[P(1)

d1
(z)], which can be bounded by O≺(N−1/3). Hence

it suffices to estimate E[P(2)
d2

(t, z)] on the right side of (5.33), for t ∈ [0, T ], z ∈ Sedge
in (4.1).

Given any P(2)
d2

∈ P(2)
d2

(d2 ≥ d1 + 1) of the form in (5.31), if d1 = D − 1, we find

|E[P(2)
d2

(t, z)]| = O≺(�D + N−1) using the local law in (3.10). We then obtain from
(5.33) that

|E[P(1)
d1

(t ′, z)]| = O≺
(
log N (N−1/2 + �D) + N−1/3

)
, (5.34)

uniformly in t ′ ∈ [0, T ] and z ∈ Sedge.
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Else, if d1 ≤ D − 2, we repeat the above arguments for the resulting type-0 terms
P(2)
d2

∈ P(2)
d2

(d2 ≥ d1 + 1) on the right side of (5.33) as in (5.27). Using (5.25) and
(5.26), we then create two fresh summation indices, denoted by a3, b3, to derive the
evolution under the Ornstein–Uhlenbeck flow of any P(2)

d2
∈ P(2)

d2
. Similarly as in (5.29),

the expectation of the corresponding drift terms is given by

E[�(2)
d2

] = − 1

2N

N∑
a3=1

(s(2)
a3a3 − 1)E

[∂2(P(2)
d2

)

∂h2a3a3

]

− 1

4N 2

N∑
a3,b3=1
a3 �=b3

s(2,2)
a3b3

E

[ ∂4(P(2)
d2

)

∂h2b3a3∂h
2
a3b3

]
+ O≺(N−1/2) . (5.35)

From Definition 4.2, the right side above can be written out as linear combinations of
type-A terms and type-AB terms, with respect to fresh summation indices a3 and b3, of
degrees not less than d2 + 1. Using Proposition 4.3, these terms can further be expanded
by the type-0 terms of degrees at least d2 + 1. In this way, we obtain an estimate similar
to (5.34) for d1 = D − 2.

Next, we discuss the iterative mechanism to extend to any small d1 ≥ 2. In general,
for any s ≥ 1, we define a type-0 term in the s-th iteration step to be in the form of

P(s)
ds

: 1

N #Is+2s
∑

Is ,a1,b1,...,as ,bs
ca1,b1,...,as ,bs ,IsE

[ ns∏
i=1

Gxi yi (t, z)
]
, (5.36)

where Is is a set of free summation indices, the coefficients {ca1,b1,...,as ,bs ,Is } are uni-
formly bounded complex numbers, and each free summation index in
{a1, b1, . . . , as, bs, Is} appears once in {xi } and once in {yi }. In particular, we have
ns = #Is + 2s. The degree, denoted by ds , of such a term in (5.36) is given as in (4.9)
by counting the number of off-diagonal Green function entries. We denote by P(s)

ds
the

collection of the type-0 terms in the s-th step of the form in (5.36) of degree ds . Note
that the form in (5.36) is a special case of the form given in (4.8), in order to emphasize
the s-th iteration step and the dependence on {as, bs}.

We then derive the stochastic evolution for any P(s)
ds

∈ P(s)
ds

(s ≥ 1), using (5.25) and
(5.26) similarly as in (5.27) and (5.32). That is,

d(P(s)
ds

) = dM (s)
ds

+ �
(s)
ds
dt, (5.37)

where dM (s)
d yields a martingale after integration, and E[�(s)

d ] satisfies

E[�(s)
ds

(t, z)] =
∑

P(s+1)
ds+1

∈P(s+1)
ds+1

ds+1≤ds+1<D

E[P(s+1)
ds+1

(t, z)] + O≺(N−1/2 + �D), (5.38)

uniformly in t ≥ 0 and z ∈ Sedge, where the sums in (5.38) are over finitely many type-0
terms in the (s + 1)-th step given in (5.36) and the number of such terms is determined
by D and ns . Moreover, the number of Green function entries in the product of each
type-0 term is finite and determined by D, ns .
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We run the dynamics of P(s)
ds

in (5.37) up to T = 8 log N as chosen previously. We

next estimate the size of E[P(s)
ds

(t, z)] at the terminal time T for any P(s)
ds

∈ P(s)
ds

, with
s ≥ 1 and ds ≥ 2. Indeed, from (3.34) and the local law in (3.10), we have

∣∣E[P(s)
ds

(T, z)] − E
GUE[P(s)

ds
(z)]∣∣ = O(N−1) . (5.39)

Together with the estimate (5.23) for the GUE, we obtain that, for any s ≥ 1 and ds ≥ 2,
∣∣E[P(s)

ds
(T, z)]∣∣ = O≺(N−1/3) . (5.40)

Next, we return to the stochastic differential equation of P(s)
ds

in (5.37). Integrating
(5.37) over [t ′, T ] for any 0 ≤ t ′ ≤ T and taking the expectation as in (5.33), we have
from (5.38) and (5.40) that

E[P(s)
ds

(t ′, z)] =
∑

P(s+1)
ds+1

∈P(s+1)
ds+1

ds+1≤ds+1<D

∫ T

t ′
E[P(s+1)

ds+1
(t, z)]dt

+ O≺
(
log N (N−1/2 + �D) + N−1/3

)
. (5.41)

Now, we are ready to iterate using (5.41). In the first step, we start by P(1)
d1

(t, z) in

(5.24) and have (5.41) for s = 1. The number of the terms P(2)
d2

∈ P(2)
d2

with d2 ≥ d1 + 1
on the right side of (5.41) is finite and depends on n1 and D. Then we further estimate
these type-0 terms P(2)

d2
using (5.41) for s = 2 as the second step. The resulting type-0

terms P(3)
d3

∈ P(2)
d3

with d3 ≥ d2+1 ≥ d1+2will be estimated again using (5.41) for s = 3
as the third step. Since in each step of using (5.41), the degrees of the corresponding
type-0 terms P(s+1)

ds+1
∈ P(s+1)

ds+1
on the right side of (5.41) are increased by at least one,

we have ds+1 ≥ d1 + s. We hence stop at step s = s0 := D − d1. For any P(s0)
ds0

∈ P(s0)
ds0

with ds0 ≥ D − 1, the resulting terms P(s0+1)
ds0+1

∈ P(s0+1)
ds0+1

on the right side of (5.41) have
degrees ds0+1 ≥ D. The number of these terms is finite and depends on D, n1. Using
the local law in (3.10), all these terms can be bounded by O≺(�D + N−1). This implies
that the finite sum of these terms after integration over [t ′, T ] can be absorbed into the
error term on the right side of (5.41). That is, for any P(s0)

ds0
∈ P(s0)

ds0
with ds0 ≥ D − 1,

∣∣E[P(s0)
ds0

(t ′, z)]∣∣ = O≺
(
log N (N−1/2 + �D) + N−1/3

)
.

We hence plug the above estimate back to the previous step, i.e., (5.41) for s = s0−1.
We then obtain a similar estimate for any P(s0−1)

ds0−1
∈ P(s0−1)

ds0−1
with ds0−1 ≥ D − 2,

∣∣E[P(s0−1)
ds0−1

(t ′, z)]∣∣ = O≺
(
log2 N (N−1/2 + �D) + N−1/3 log N

)
.

Repeating the above process until s = 1, we hence obtain that, for d1 ≥ 2,
∣∣E[P(1)

d1
(t, z)]∣∣ = O≺

(
(N−1/3 + �D) logD N

)
,

uniformly in t ∈ [0, T ] and z ∈ Sedge. By choosing D ≥ 1
ε
with ε > 0 as in (2.9), we

prove (4.21) for t ∈ [0, T ]. If t ≥ T , a similar estimate can be obtained by using (5.39)
and (5.40). We have hence finished the proof of Lemma 4.1.
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5.4. Proof of Lemma 5.2. We end this section with the proof of Lemma 5.2 considering
the GUE.

Proof of Lemma 5.2. Using the spectral decomposition (5.2), we write

1

N
E
GUE
[
Im TrG(z)

]
= Nη

N 2 E
GUE
[ N∑

j=1

1

|λ j − z|2
]
, z ∈ Sedge. (5.42)

Then it suffices to estimate the following linear eigenvalue statistics,which can bewritten
from (2.29), (2.36) and then (2.37) as

1

N 2E
GUE
[ N∑
i=1

1

|λi − z|2
]

= 1

N 2

∫

R

K̃N (x, x)

|x − 2 − κ − iη|2 dx

= 1

N
2
3

∫

R

K edge
N (x, x)

|x − N 2/3κ − iN 2/3η|2 dx, (5.43)

where z = 2 + κ + iη ∈ Sedge, with |κ| ≤ C0N−2/3+ε and N−1+ε ≤ η ≤ N−2/3+ε .
To control the integral on the right side of (5.43), we choose a fixed L0 < 0

(see Lemma 2.5 and Theorem 2.3) and split the real line in the parts, (−∞,−N 2/3],
(−N 2/3, L0] and (L0 ∞).

For the integration domain (−∞,−N 2/3], we find that

1

N
2
3

∫

x<−N2/3

K edge
N (x, x)

|x − N 2/3κ − iN 2/3η|2 dx = O(N−1), (5.44)

using the trace identity (2.34) for the kernel KN and that |κ| ≤ C0N−2/3+ε .
Moreover, from Theorem 2.3 and Lemma 2.5, we have on (L0,∞), that

1

N
2
3

∫

x>L0

K edge
N (x, x)

|x − N 2/3κ − iN 2/3η|2 dx = 1

N
2
3

∫

x>L0

Kairy(x, x) + O(N−2/3)

|x − N 2/3κ − iN 2/3η|2 dx

= O
( 1

N
4
3 η

)
. (5.45)

It hence suffices to focus on the regime (−N 2/3, L0]. Recall from (2.32) and (2.37)
that

KN (x, x) =
N−1∑
k=0

φ2
k (x); K edge

N (x, x) = 1

N 1/6 KN

(
2
√
N +

x

N 1/6 , 2
√
N +

x

N 1/6

)
.

(5.46)
From (2.31) and (2.33), the derivative of KN (x, x) is given by

K ′
N (x, x) = −√

NφN−1(x)φN (x) .

The Hermite functions satisfy, for all k,

sup
x∈R

|φk(x)| ≤ Ck−1/12 . (5.47)
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for some constant C independent of k, as was proved in [4]. Therefore, the derivative of
the edge kernel K edge

N (x, x) is given by

(
K edge

N (x, x)
)′ = 1

N 1/3 K
′
N

(
2
√
N +

x

N 1/6 , 2
√
N +

x

N 1/6

)
= O(1) . (5.48)

For any x ∈ (−N 2/3, L0], we have from (5.48) and Lemma 2.5 that

K edge
N (x, x) = K edge

N (L0, L0) −
∫ L0

x

(
K edge

N (x, x)
)′dx ≤ C ′(1 + |x |). (5.49)

Therefore, we obtain from (5.49) that

1

N
2
3

∫

−N2/3<x<L0

K edge
N (x, x)

|x − N 2/3κ − iN 2/3η|2 dx

≤ C ′

N
2
3

∫

−N2/3<x<L0

1 + |x |
(x − N 2/3κ)2 + (N 2/3η)2

dx

= O
(
N−2/3 log N +

N ε

N
4
3 η

)
= O

( 1

N
4
3−εη

)
, (5.50)

where we used that |κ| ≤ C0N−2/3+ε .
Plugging (5.44), (5.45) and (5.50) into (5.43), there exists some constant C indepen-

dent of ε such that

1

N 2E
GUE
[ N∑

j=1

1

|λ j − z|2
]

≤ CN ε

N
4
3 η

, (5.51)

uniformly in z ∈ Sedge, for sufficiently large N ≥ N0(ε,C0). In combinationwith (5.42),
we hence have proved (5.22).

Finally, we consider any type-0 term Pd(z) ∈ Pd(z) of the form in (4.17) of degree
d ≥ 2 for the GUE. For notational simplicity, we no longer emphasize the indices a,b
and write

Pd(z) = 1

Nn

N∑
v1=1

· · ·
N∑

vn=1

cv1,...,vn

( n∏
i=1

Gxi yi (z)
)
, (5.52)

with n ≥ 2, where each summation index v j (1 ≤ j ≤ n) appears once in the row index
set {xi }ni=1 and once in the column index set {yi }ni=1 and the coefficients {cv1,...,vn } are
uniformly bounded complex numbers. For any 1 ≤ j ≤ n, if there exists 1 ≤ i ≤ n
such that xi = yi = v j , then we say that v j is isolated. For any 1 ≤ j �= j ′ ≤ n, if there
exists 1 ≤ i ≤ n such that either xi = v j , yi = v j ′ or yi = v j , xi = v j ′ , then we say
that v j and v j ′ are connected indices. Because the degree of (5.52) is at least two, there
exists at least one cluster of connected indices containing at least two elements. We may
assume that v1, . . . , vn0 (2 ≤ n0 ≤ n) form a cluster of connected indices. Using the
local law in (3.10), we have

|Pd(z)| ≺ 1

Nn0

N∑
v1=1

· · ·
N∑

vn0=1

∣∣Gv1v2Gv2v3 · · ·Gvn0v1(z)
∣∣ .
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If n0 = 2, from Young’s inequality and the Ward identity

1

N 2

∑
i, j

|Gi j (z)|2 = ImmN (z)

Nη
, z = E + iη ∈ C

+, (5.53)

which follows from the spectral decomposition (5.2), we then obtain

|Pd(z)| ≺ 1

N 2

∑
v1,v2

∣∣Gv1v2(z)Gv2v1(z)
∣∣ ≤ 1

2N 2

∑
v1,v2

(|Gv1v2(z)|2 + |Gv2v1(z)|2
)

= ImmN (z)

Nη
. (5.54)

For n0 ≥ 3, we have similarly from the local law (3.10) that

|Pd(z)| ≺ �n0−2 1

N 3

∑
v1,v2,v3

∣∣Gv1v2(z)Gv2v3(z)
∣∣∣

≤ �n0−2 1

2N 3

∑
v1,v2,v3

(|Gv1v2(z)|2 + |Gv2v3(z)|2
) = O

( ImmN (z)

(Nη)n0−1

)
, (5.55)

where in the last two steps we use Young’s inequality, the Ward identity (5.53), and that
�(z) = O( 1

Nη
) for any z ∈ Sedge. Therefore, combining with the estimate (5.22) for

the expectation of ImmN (z), the properties of stochastic domination in Lemma 1.1, and
that η ≥ N−1+ε , we have, for any τ > 0,

E
GUE[|P(s)

d (z)|] ≤ N−1/3+τ , d ≥ 2,

uniformly in z ∈ Sedge, for sufficiently large N ≥ N ′
0(C0, ε, τ ). This completes the

proof of (5.23), and hence the proof of Lemma 5.2.

6. Product of Green Function Entries with Unmatched Indices

In this section, we prove Proposition 4.2. Before stating the proof for Wigner matrices,
we first consider the GUE for the intuition why expectations of unmatched terms are
much smaller than the naive size obtained using power counting and the local law as in
(4.10).

6.1. Intuition from the GUE. In this subsection, we focus on the special case of the
GUE, as in Sect. 5.1. Consider any Qo

d ∈ Qo
d of the form (4.8). Using the spectral

decomposition (5.2) and the unitary invariance of the GUE similarly as in (5.3), we
write the expectation of the unmatched Qo

d as

E[Qo
d ] = 1

N #I
∑
I

cI
N∑

j1,..., jn=1

E

[ n∏
i=1

1

(λ ji − z)

]
× E

[ n∏
i=1

u ji (xi )u ji (yi )
]
, (6.1)

with (λ j ) the eigenvalues and the corresponding normalized eigenvectors (u j ), and each
xi , yi represent some free summation index in I. In order to estimate the expectations
of the eigenvectors, we recall the Weingarten calculus formula in Lemma 5.1. Under
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Definition 4.1 for unmatched indices, if the values of the free summation indices in I
are distinct, then δx1,yσ(1) · · · δxn ,yσ(n)

= 0, for any permutation σ ∈ Sn . Thus from (5.4),
for any 1 ≤ j1, . . . , jn ≤ N , we have

E

[ n∏
i=1

u ji (xi )u ji (yi )
]

= 0.

The non-vanishing contributions come from the diagonal cases when the values of some
free summation indices in I coincide. Because of the averaged form of Qo

d in (4.8) and
the local law in (3.10) one works out that, for any z ∈ S and t ≥ 0,

E[Qo
d ] = O(N−1) . (6.2)

For Wigner matrices, the above argument does not apply anymore. We hence use
similar expansions as in Sect. 5.2 to extend to arbitraryWigner matrices. Before we give
the proof of Proposition 4.2, we start by considering an example of the unmatched term
in Qo

d to illustrate the mechanism.

6.2. Example of an unmatched term. We look at the following example of an unmatched
term

1

N 2

∑
a,b

GabGbaGab ∈ Qo
3, (6.3)

with a ∈ Ro and b ∈ Co; see (4.12) in Definition 4.1. Using the local law in (3.10), the
expectation of this term can be naively bounded by O≺(�3 +N−1). The idea to improve
this bound is similar to the proof of Proposition 4.3. Note that the combination of the
identity (5.10) and the cumulant expansion gives a cancellation to the leading order.
Thus we can improve the upper bound to O≺(�4 + �3√

N
+ N−1). We next discuss the

details.
Using the identity (5.10) on the off-diagonal entry Gab with unmatched a as the row

index and applying cumulant expansions, we have

1

N 2

∑
a,b

E[GabGbaGab]

= 1

N 2

∑
a �=b

E

[(
GabHG − G(HG)ab

)
GbaGab

]
+

1

N 2

N∑
a=1

E[(Gaa)
3]

= 1

N 4

∑
a,b, j,k

E

[∂GabG jkGbaGab

∂h jk

]
− 1

N 4

∑
a,b, j,k

E

[∂G j jGkbGbaGab

∂hka

]

+
1√
N

1

N 4

∑
p+q+1=3

1

p!q!
∑

a,b, j,k

s(p,q+1)
jk E

[∂2GabG jkGbaGab

∂h p
jk∂h

q
k j

]

− 1√
N

1

N 4

∑
p+q+1=3

1

p!q!
∑

a,b, j,k

s(p,q+1)
ak E

[∂2G j jGkbGbaGab

∂h p
ka∂h

q
ak

]
+ O≺

( 1
N

)
, (6.4)



882 K. Schnelli, Y. Xu

where the last error term comes from the truncation of the cumulant expansions at the
third order and the diagonal case a = b.

Using (3.21) and that j, k are fresh summation indices, all the third order expansions
for {p + q + 1 = 3} can be written out using the terms of the form in (4.8) of degree at
least three, with an additional factor 1√

N
in front. Since both the fresh indices j, k appear

in the product of the Green function entries for an odd number of times, the resulting
terms are unmatched from Definition 4.1. From the local law in (3.10), they are bounded

by O≺
(

�3√
N
+ 1

N3/2

)
.

Now we return to the second order terms in the cumulant expansions in (6.4), i.e.,

1

N 4

∑
a,b, j,k

E

[∂GabG jkGbaGab

∂h jk

]
− 1

N 4

∑
a,b, j,k

E

[∂G j jGkbGbaGab

∂hka

]
. (6.5)

Using (3.21), the fresh indices j, k are then matched and the index a remains to be an
unmatched row index. The key observation here is that the leading sub-term from the
first term above, corresponding to taking ∂

∂h jk
of G jk , will be canceled precisely by the

leading sub-term from the second term above, resulting from taking ∂
∂hka

of Gkb. We
hence rewrite (6.5) as

1

N 4

∑
a,b, j,k

E

[∂GabGbaGab

∂h jk
G jk

]
− 1

N 4

∑
a,b, j,k

E

[∂G j jGbaGab

∂hka
Gkb

]
. (6.6)

The degrees of the resulting terms from the first part above are five as j, k are fresh
indices. Similarly, the ones from the second part have degrees at least four, except one
sub-term from taking ∂

∂hka
of Gba , whose column index coincides with the unmatched

row index a:
1

N 4

∑
a,b, j,k

E

[
G j jGbkGaaGabGkb

]
.

Compared with the original term in (6.3), one replaces one pair of the index a by a
fresh index k and adds a factor Gaa for the replaced index a. The good news is that
this leading term of degree three remains unmatched with an unmatched row index a.
We then expand it further as in (6.4) and obtain that

1

N 4

∑
a,b, j,k

E

[
G j jGaaGabGbkGkb

]

= 1

N 6

∑
a,b, j,k, j ′,k′

E

[∂G j jGaaGabGbkGkb

∂h j ′k′
G j ′k′

]

− 1

N 6

∑
a,b, j,k, j ′,k′

E

[∂G j jGaaG j ′ j ′GbkGkb

∂hk′a
Gk′b

]

+ {third order terms} + O≺
( 1

N

)
, (6.7)

with j ′, k′ another two fresh summation indices. Here, the third order terms are also
unmatched terms of the form in (4.8) of degree at least three with an extra 1√

N
in front,

similarly as in (6.4). From (3.21), the resulting terms from the first part on the right side
of (6.7) have degrees at least five. As for the second part above, even though the column
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index of the diagonal entry Gaa coincides with the unmatched row index a, the resulting
terms have degrees at least four.

In this way, we improve the upper bound of the unmatched term given in (6.3) to

∣∣∣ 1

N 2

∑
a,b

E

[
GabGbaGab

]∣∣∣ ≺ �4 +
�3

√
N

+ N−1 .

Indeed, we expand this unmatched term as

1

N 2

∑
a,b

E

[
GabGbaGab] =

∑
Qo
d′
1
∈Qo

d′
1

d ′
1≥4

E[Qo
d ′
1
] + 1√

N

∑
Qo
d′
2
∈Qo

d′
2

d ′
2≥3

E[Qo
d ′
2
] + O≺(N−1),

(6.8)

where we write
∑

Qo
d′
1
∈Qo

d′
1
,d ′

1≥4 Q
o
d ′
1
as a sum of finitely many unmatched terms of the

form in (4.8) of degrees increased by at least one, which comes from the second order
expansions. Moreover, we write 1√

N

∑
Qo
d′
2
∈Qo

d′
2
,d ′

2≥3 Q
o
d ′
2
as a finite sum of unmatched

terms of the form in (4.8) with an extra factor 1√
N
in front, which corresponds to the third

order expansions. The last error term O≺(N−1) is from the truncation of the cumulant
expansion and the diagonal cases. By repeating the above expansion procedure in (6.8)

for arbitrary D times, we improve the upper bound to O≺
(
�D + �D−1√

N
+ N−1

)
. The full

proof is presented in the following section.

6.3. Proof of Proposition 4.2. In this section, we give the proof of Proposition 4.2 for
Wigner matrices using the cumulant expansions as explained above.

Proof of Proposition 4.2. Consider an arbitrary unmatched term Qo
d ∈ Qo

d of the form
(4.8). Because it is equivalent to expand a Green function entry Gxy in the row index x
or column index y, we focus on the unmatched row indices in the following.

We may assume that the index v1 belongs to the unmatched row index setRo (which
cannot be empty) from Definition 4.1. Then there exists an off-diagonal factor in the
product of Green function entries with v1 as the row index. Without loss of generality,
we set x1 = v1, and y1 �= v1. Using (5.10) on the off-diagonal entry Gv1y1 and applying
cumulant expansions similarly as in (6.4), we have

E[Qo
d ] = 1

N #I
∑
I

cIE
[
Gv1y1

n∏
i=2

Gxi yi

]

= 1

N #I
∑
I

cIE
[
δv1y1Gv1y1

n∏
i=2

Gxi yi

]

+
1

N 2+#I
∑
I

cI
∑
j,k

E

[∂Gv1y1G jk
∏n

i=2 Gxi yi

∂h jk

]

− 1

N 2+#I
∑
I

cI
∑
j,k

E

[∂G j jGky1
∏n

i=2 Gxi yi

∂hkv1

]
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+
1

N 2+#I
1√
N

∑
I

cI
∑

p+q+1=3

1

p!q!
∑
j,k

s(p,q+1)
jk E

[∂2Gx1y1G jk
∏n

i=2 Gxi yi

∂h p
jk∂h

q
k j

]

− 1

N 2+#I
1√
N

∑
I

cI
∑

p+q+1=3

1

p!q!
∑
j,k

s(p,q+1)
v1k

E

[∂2G j jGky1
∏n

i=2 Gxi yi

∂h p
kv1

∂hqv1k

]

+ O≺(
1

N
)

= 1

N 2+#I
∑
I

cI
∑
j,k

E

[∂Gv1y1
∏n

i=2 Gxi yi

∂h jk
G jk

]

− 1

N 2+#I
∑
I

cI
∑
j,k

E

[∂G j j
∏n

i=2 Gxi yi

∂hkv1
Gky1

]

+ { third order terms for p + q + 1 = 3} + O≺
( 1
N

)
, (6.9)

where j, k are fresh summation indices, the last error O≺( 1
N ) is from the truncation of

the cumulant expansions at the third order and the diagonal case v1 ≡ y1.
We first look at the third order expansions for p + q +1 = 3, which are much smaller

because we gain an extra 1√
N
from the third order cumulants. Since both j, k are fresh

indices, it is straightforward to check from (3.21) that the resulting terms are also of the
form in (4.8) with an extra 1√

N
in front. Their degrees, denoted by d ′, satisfy d ′ ≥ d,

the corresponding free summation index set is I ′ = {I, j, k} and the number of Green
function entries is n′ = n +3. In addition, the number of such terms is at most 6(n +3)2.
Comparing these terms with the original Qo

d , we add in total an odd number of j’s (or
k’s) into the original row index set and column index set of the product of the Green
function entries. Then all these terms are unmatched terms from Definition 4.1. We use
1√
N

∑
Qo
d′ ∈Qo

d′ ;d ′≥d E[Qo
d ′ ] to denote the finite sum of these unmatched terms from the

third order expansions.
Next, we estimate the second order expansion terms, i.e., the second but last line on

the right side of (6.9). Using (3.21) we write them as a sum of at most 2n terms of the
form in (4.8) with I ′ = {I, j, k} and n′ = n+2. The degrees of these terms are estimated
as follows.

For the first group of terms in the second but last line of (6.9), comparing with the
original Qo

d , we have added one fresh index j and one fresh index k into both the original
row index set and column index set. Then j and k are both matched indices. Moreover,
v1 fromGv1y1 remains an unmatched row index. After taking ∂

∂h jk
by (3.21), the degrees

are then increased by at least two.
Similarly, we compare the second group in the second but last line of (6.9) with the

original Qo
d . We find again that both j and k are matched, and the index v1 is still an

unmatched row index. However, the degrees of the resulting terms from taking ∂
∂hkv1

may not be increased. This is because the column index of some Green function entry
Gxi yi (2 ≤ i ≤ n) may coincide with the unmatched row index v1. The number of such
Green function entries with v1 as column index is given by νc1(≤ n) from Definition 4.1.
So we split the discussion into three cases.

Case 1: If yi �= v1, then after taking ∂
∂hkv1

of Gxi yi , the degree of the resulting term

is increased by at least one.
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Case 2: If yi = xi = v1, then after taking ∂
∂hkv1

of Gxi yi , the degree is then increased

by exactly one.
Case 3: If yi = v1, but xi �= v1, then, for simplicity, we may assume that y2 = v1

and x2 �= v1. From Definition 4.1 for unmatched indices, there exists some 3 ≤ i ′ ≤ n
such that xi ′ = v1 and yi ′ �= v1, because else v1 cannot be an unmatched row index of
the original Qo

d . We may assume x3 = v1 and y3 �= v1. Then the corresponding term
after taking ∂

∂hkv1
of Gx2,v1 becomes

(∗) := 1

N 2+#I
∑
I, j,k

cIE
[
G j jGv1v1Gky1Gx2kGv1,y3

n∏
i=4

Gxi yi

]
, (6.10)

with y1 �= v1, x2 �= v1, and y3 �= v1, and the degree of this term is still d. Compared
with the original Qo

d , we have replaced one pair of the index v1, i.e., the row index of
Gx1y1 and the column index of Gx2y2 , by the fresh index k. Further we get an additional
diagonal Green function entry Gv1v1 for the replaced pair of index v1. Since the index v1
from Gv1y3 remains an unmatched row index, we can further expand the term in (6.10)
using the unmatched row index v1, as in (6.9). We write

(∗) = − 1

N 4+#I
∑

I, j,k, j ′,k′
cIE

[∂G j jGv1v1Gv1y3Gx2kGky1

(∏n
i=4 Gxi yi

)

∂h j ′k′
G j ′k′

]

+
1

N 4+#I
∑

I, j,k, j ′,k′
cIE

[∂G j jGv1v1G j ′ j ′Gx2kGky1

(∏n
i=4 Gxi yi

)

∂hk′v1
Gk′y3

]

+ { third order expansions for p + q + 1 = 3} + O≺
( 1
N

)
. (6.11)

Similar as (6.9), the third order expansions contains at most 6(n + 5)2 unmatched
terms of the form in (4.8) with an additional factor 1√

N
in front, of degrees d ′′ ≥ d, with

I ′′ = {I, j, k, j ′, k′} and n′′ = n + 5. We next estimate the second order expansions on
the right side of (6.11). From (3.21), they become a sum of at most 2n terms of the form
in (4.8), with I ′′ = {I, j, k, j ′, k′} and n′′ = n + 4.

If for any 4 ≤ i ≤ n, either yi �= v1 or xi = yi = v1 holds, as considered in Cases 1
and 2 above, then the degrees of these resulting terms are increased by at least one, i.e.,
d ′′ ≥ d + 1.

Else we may assume that y4 = v1 and x4 �= v1. The resulting leading term of
degree d, as the analogue of (6.10), is obtained from replacing one pair of the index v1,
i.e., the row index of Gx3y3 and the column index of Gx4y4 , by the fresh index k′ and
adding an additional diagonal Green function entry Gv1v1 . Moreover, there exists some
5 ≤ i ′′ ≤ n such that xi ′′ = v1 and yi ′′ �= v1 to make sure v1 is an unmatched row index
of the original Qo

d in (6.9), as explained at the beginning of Case 3. We may assume
i ′′ = 5 for simplicity. Then the index v1 from Gv1y5 is again unmatched. We can expand
this leading term of degree d for the third time by applying (5.10) on Gv1y5 and applying
cumulant expansions, similarly as in (6.11).

We continue this procedure of expanding in the unmatched row index v1 repeatedly
for s times, until there is no off-diagonal Green function entrywith column index yi = v1
in the remaining product of the Green function entries

∏n
i=2s Gxi yi . Then from Case 1
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and Case 2 above, the resulting terms have degrees increased by at least one. The number
of iteration s is at most ν(c)

1 (≤ n), where ν
(c)
1 defined in (7.5) is the number of times the

unmatched row index v1 appears in the column index set of the original Qo
d .

In this way, we expand the original unmatched Qo
d in terms of finitely many un-

matched terms in the form (4.8) of degrees at least d + 1, as well as the third order
cumulant expansion terms generated in the iterations, plus an error O≺(N−1) from
the truncation of the cumulant expansion and the diagonal cases. In summary, for any
unmatched Qo

d ∈ Qo
d , we write the following expansions for short:

E[Qo
d ] =

∑
Qo
d′
1
∈Qo

d′
1

d ′
1≥d+1

E[Qo
d ′
1
] + 1√

N

∑
Qo
d′
2
∈Qo

d′
2

d ′
2≥d

E[Qo
d ′
2
] + O≺(

1

N
), (6.12)

where the number of unmatched terms in the summations above is bounded by (Cn)cn ,
and the number of the Green function entries in the product of each the unmatched term
is bounded by Cn for some numerical constants C, c > 0.

We finally iterate the expansion in (6.12) for D−d times. Then the unmatched terms
in the first summation have degrees at least D, and the unmatched terms with 1√

N
in

the second summation have degrees at least D − 1. Note that the total number of the
terms generated in the iteration of the expansions is bounded by

(
(CDn)c

Dn
)D , and the

number of the Green function entries in the product of each term is bounded by CDn.
We hence obtain from the local law in (3.10) that

E[Qo
d ] = O≺

(
�D +

�D−1

√
N

+
1

N

) = O≺
(
�D +

1

N

)
. (6.13)

We hence have finished the proof of Proposition 4.2.

7. Proof of Proposition 3.1

In this section, we prove Proposition 3.1, which is a key ingredient in the proof the Green
function comparison theorem, Theorem 1.4. The special case of Proposition 3.1 consid-
ering F(x) = x was stated in (4.6), which leads to the corresponding Green function
comparison theorem for F(x) = x in Proposition 4.1. The proof of Proposition 3.1 relies
on the analogues of Proposition 4.3 (expansion in type-0 terms) and Proposition 4.2 (the
negligibility of unmatched terms), as well as the estimate (4.3) obtained in Proposition
4.1 to bound the resulting type-0 terms.

Proof of Proposition 3.1. We extend the ideas from the proofs of (4.6) to the setup of
Proposition 3.1. Recall E[�(t, z1, z2)] from (3.18), i.e.,

E[�(t, z1, z2)] ≡ E[�] =
4∑

p+q+1=3
p,q∈N

Kp,q+1 + E2 + O≺(N−1/2), (7.1)

with Kp,q+1 given in (3.19) and E2 given in (3.20).
Using the differentiation rules (3.21) and (3.26), each term on the right side of (7.1)

can be written out in terms of an average product of Green function entries with �Ĩm
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acting on it and multiplied by derivatives of F . We give one example of a third order
term with p = 1, q = 1,

√
N

1

N 3

∑
v,a,b

s(1,2)
ab

2
E

[
F ′(X )�Ĩm

(
GvaGbvGaaGbb

)]
,

and one example of a fourth order terms with p = 2, q = 1,

− 1

N 3

∑
v,a,b

s(2,2)
ab

4
E

[
F ′′(X )�Ĩm

(
GaaGbb

)
�Ĩm

(
GaaGbb

)]
.

We point out that the third order terms with p + q + 1 = 3 have an additional leading
factor

√
N .

To estimate these averaged products of Green function entries multiplied by deriva-
tives of F , we introduce the following form of terms generalizing the definition in (4.8):

Q̃(t, z1, z2) : 1

Nm

N∑
v1=1

· · ·
N∑

vm=1

cv1,...,vmE

[
F (α)(X )

i0∏
i=1

�Ĩm
( ni∏
l=1

G
x (i)
l y(i)

l

)]
, (7.2)

with α,m, i0, ni ∈ N, F (α) be the α-th derivative of a smooth function F which has
uniformly bounded derivatives, �Ĩm : R+ × (C \ R)2 → C defined in (3.14), where
I := {v j }mj=1 is a free summation index set, and the v j ’s may also represent a, b from
(3.19) and (3.20). The coefficients {cI := cv1,...,vm } are uniformly bounded complex
numbers, and each x (i)

l and y(i)
l represent some element in the free summation index set

I. The total number of the Green function entries in (7.2) is then given by

n :=
i0∑
i=1

ni . (7.3)

We further define the degree of a term in the form (7.2) by counting the number of
off-diagonal Green function entries, i.e.,

d :=
i0∑
i=1

#
{
1 ≤ l ≤ ni : x (i)

l �= y(i)
l

}
. (7.4)

In particular, we have 0 ≤ d ≤ n. The collection of the terms in the form (7.2) of
degree d is denoted by Q̃d ≡ Q̃d(t, z1, z2). From the definition of �Ĩm in (3.14), the
local law in (3.10) and the fact that F has bounded derivatives, we have, for any term
Q̃d ≡ Q̃d(t, z1, z2) ∈ Q̃d ,

|Q̃d(t, z1, z2)| = O≺
(
�d +

1

N

)
,

uniformly in t ∈ R
+, and z1, z2 ∈ S given in (2.7). In the following, we often omit the

parameters t, z1, z2 for notational simplicity.
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7.1. Unmatched terms K p,q+1 in (3.19). In this subsection, we follow the idea in Sect. 6
to show the negligibility of the terms Kp,q+1 given in (3.19) with unmatched indices as
defined next, c.f., Proposition 4.2. Recall Definition 4.1 for unmatched terms of the form
in (4.8).

Definition 7.1. Given any Q̃d ∈ Q̃d of the form in (7.2), let ν(r)
j , ν(c)

j , be the number of

times the free summation index v j ∈ I appears in the the row index set {x (i)
l } and the

column index set {y(i)
l } of the Green function entries, i.e.,

ν
(r)
j :=

i0∑
i=1

#{1 ≤ l ≤ ni : x (i)
l = v j }, ν

(c)
j :=

i0∑
i=1

#{1 ≤ l ≤ ni : y(i)
l = v j }. (7.5)

Definition 4.1 for unmatched terms can be adapted naturally to the general form given
in (7.2). Define the set of unmatched summation indices as

Io := {1 ≤ j ≤ m : ν
(r)
j �= ν

(c)
j } ⊂ I.

If Io is not empty, then we say Q̃d is an unmatched term, denoted by Q̃o
d . We denote by

Q̃o
d ⊂ Q̃d the collection of unmatched terms in the form (7.2) of degree d.

The combination of the identity (5.10) and the cumulant expansion formula Lemma
2.4 used previously in the proof of Proposition 4.2 still applies similarly to the form in
(7.2), using that {hi j } commute with�Ĩm given in (3.14), the differentiation rules (3.21)
and (3.26), and the assumption that the function F has bounded derivatives. Therefore,
for fixed D ≥ 1 and any unmatched term Q̃o

d ∈ Q̃o
d of the form in (7.2) with fixed n

given in (7.3),

E[Q̃o
d(t, z1, z2)] = O≺

( 1
N

+ �D), (7.6)

holds uniformly in t ∈ R
+ and z1, z2 ∈ S, as in Proposition 4.2.

Now we return to the right side of (7.1). Using (3.21) and (3.26), all the third order
expansion terms Kp,q+1 in (3.19) for p+q +1 = 3 can be written out as a sum of finitely
many unmatched terms of the form in (7.2) with an extra factor

√
N in front, since both

the indices a and b appear an odd number of times in the product of the Green function
entries. We hence have from (7.6) that

|K2,1 + K1,2 + K0,3| = O≺(N−1/2 +
√
N�D) . (7.7)

Similarly, the fourth order expansion terms Kp,q+1, p + q +1 = 4, in (3.19), with the
exception of K2,2, can also be written as a finite sum of unmatched terms of the form
in (7.2), since the number of times the index a (or b) appears in the row index set {x (i)

l }
does not agree with the number of times it appears in the column index set {y(i)

l }. We
then find from (7.6) that

|K3,1 + K1,3 + K0,4| = O≺
(
N−1 + �D) . (7.8)

It hence suffices to estimate the remaining matched terms K2,2 and E2 on the right
side of (7.1) as follows. We first consider K2,2 given in (3.19), E2 in (3.20) can then
be estimated similarly. The proof contains two parts: 1) expanding matched terms into
type-0 terms defined as below (c.f., Proposition 4.3); 2) estimating the resulting type-0
termswhose degrees are at least two (c.f.,Lemma 4.1) and the rest type-0 terms of degree
zero using the estimate (4.3) in the edge scaling.
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7.2. Expanding K2,2. We start by K2,2 given in (3.19), corresponding to the (2,2)-
cumulants. Using the differentiation rules (3.21) and (3.26), we first write K2,2 as the
following sum

K2,2 =
8∑

k=1

Ik, (7.9)

with

I1 := − 1

2N 2

∑
a �=b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2(Gbb)
2
)]

;

I2 := − 1

N 2

∑
a �=b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
GabGbaGaaGbb

)]
;

I3 := − 2

N 2

∑
a �=b

s(2,2)
ab E

[
F ′′(X )�Ĩm (Gab)�Ĩm

(
GaaGbbGba

)]
;

I4 := − 1

2N 2

∑
a �=b

s(2,2)
ab E

[
F ′′(X )

(
�Ĩm (GaaGbb)

)2];

I5 := − 1

N 2

∑
a �=b

s(2,2)
ab E

[
F ′′′(X )�Ĩm (Gab)�Ĩm (Gba)�Ĩm

(
GaaGbb)

)]
;

I6 := − 1

4N 2

∑
a �=b

s(2,2)
ab E

[
F ′′(X )�Ĩm

(
(Gab)

2
)
�Ĩm

(
(Gba)

2
)]

;

I7 := − 1

2N 2

∑
a �=b

s(2,2)
ab E

[
F ′′′(X )

(
�Ĩm (Gab)

)2
�Ĩm

(
(Gba)

2
)]

;

I8 := − 1

4N 2

∑
a �=b

s(2,2)
ab E

[
F ′′′′(X )

(
�Ĩm (Gab)

)2(
�Ĩm (Gba)

)2]
, (7.10)

where s(2,2)
ab (a �= b) are the (2,2)-cumulants of the rescaled entries

√
Nhab given in

(2.24).
Observe that for the terms given in (7.10), both indices a and b appear exactly twice

as the row index and exactly twice as the column index of a Green function entry.
We hence consider the special case of the form in (7.2) with the two indices a, b singled
out, namely,

1

N #I+2
∑
a,b,I

ca,b,IE
[
F (α)(X )

i0∏
i=1

�Ĩm
( ni∏
l=1

G
x (i)
l y(i)

l

)]
, (7.11)

where each x (i)
l and y(i)

l represent a, b or some element in the free summation index
set I = {v j }mj=1, and {ca,b,I} are uniformly bounded complex numbers. The number
of Green function entries in the product, denoted by n, is given as in (7.3). The degree,
denoted by d, is given as in (7.4) by counting the number of off-diagonal Green function
entries in the product.
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Definition 7.2. Given any term of the form in (7.11), Definition 4.2 for the type-AB,
type-A and Type-0 terms of the form in (4.17) can be adapted naturally. Recall ν(r)

j , ν
(c)
j

given in (7.5) for any free summation index v j ∈ I. We further define similarly for the
special summation indices a and b, i.e.,

ν(r)
a :=

i0∑
i=1

#{1 ≤ l ≤ ni : x (i)
l = a}, ν(c)

a :=
i0∑
i=1

#{1 ≤ l ≤ ni : y(i)
l = a};

ν
(r)
b :=

i0∑
i=1

#{1 ≤ l ≤ ni : x (i)
l = b}, ν

(c)
b :=

i0∑
i=1

#{1 ≤ l ≤ ni : y(i)
l = b}.

If the following two conditions are satisfied,

1. all the free summation indices in {I} appear once in the row index set {x (i)
l } and once

in the column index set {y(i)
l } of the Green function entries, i.e., ν

(r)
j = ν

(c)
j = 1

(1 ≤ j ≤ m);
2. both the special indices a and b appear twice in the row index set {x (i)

l } and twice in
the column index set {y(i)

l } of the Green function entries, i.e., ν(r)
a = ν

(c)
a = ν

(r)
b =

ν
(c)
b = 2,

then such a term is a type-AB term. We denote a type-AB term in the form (7.11) of
degree d by T AB

d ≡ T AB
d (t, z1, z2). The collection of all the type-AB terms of degree d

is denoted by T AB
d ≡ T AB

d (t, z1, z2).

A type-A term in the form (7.11) of degree d, denoted by T A
d , has ν

(r)
a = ν

(c)
a = 2,

and ν
(r)
b = ν

(c)
b = ν

(r)
j = ν

(c)
j = 1 (1 ≤ j ≤ m). Moreover, a type-0 term, denoted by

Td , is of the form (7.11) of degree d with ν
(r)
a = ν

(c)
a = ν

(r)
b = ν

(c)
b = ν

(r)
j = ν

(c)
j = 1

(1 ≤ j ≤ m). In addition, the collections of the type-A terms and the type-0 terms of
the form in (7.2) of degree d are denoted by T A

d ≡ T A
d (t, z1, z2) and Td ≡ Td(t, z1, z2),

respectively. We finally remark that the index b in a type-A term, as well as both indices
a, b in a type-0 term, do not take special roles. We keep them in the notation in order to
emphasize the inheritance from the form (7.11).

UnderDefinition7.2,weobserve that all the termsgiven in (7.10) are type-AB terms in
the form (7.11) with I = ∅ and the coefficients given by ca,b = s(2,2)

ab δa �=b. In particular,
we have that I1, I4 ∈ T AB

0 , I2, I3, I5 ∈ T AB
2 , and I6, I7, I8 ∈ T AB

4 . In the following,
we use, as in the proof of Proposition 4.3, the combination of the identity (5.10) and
cumulant expansion formula Lemma 2.4 to eliminate one pair of the index b and also
one pair of the index a, and thus expand the type-AB terms as linear combinations of
type-0 terms up to negligible error.

Lemma 7.1. For any fixed D ∈ N, we have

K2,2 = − s4
2

{
E
[
F ′(X )

(
�Ĩm (G)4

)]
+ E
[
F ′′(X )

(
�Ĩm (G)2

)2]}

+
∑
Td∈Td
2≤d<D

Td + O≺
( 1√

N
+ �D), (7.12)
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uniformly in t ∈ R
+, and z1, z2 ∈ S given in (2.7), with

s4 ≡ s4(t) := 1

N 2

∑
a �=b

s(2,2)
ab (t), (7.13)

where s(2,2)
ab (t) are the (2,2)-cumulants defined in (2.24) of the time-dependent scaled off-

diagonal entries
√
Nhab given in (3.7). In addition, the number of type-0 terms appearing

in the sum in (7.12) can be bounded by (CD)cD, for some numerical constants C, c > 0.

Proof. We first consider I1 ∈ T AB
0 given in (7.10) and expand it into a sum of finitely

many type-0 terms. The expansion procedure consists of two steps: (1) eliminating one
pair of the index b and expanding I1 in terms of type-A terms; (2) further eliminating
one pair of the index a in the resulting type-A terms from (1) and then expanding them
in terms of type-0 terms.

Recall the definition of �Ĩm in (3.14). Replacing Gbb by the relation (5.10) and
using the cumulant expansion formula in Lemma 2.4, since {hi j } commute with �Ĩm ,
we have

I1 = − 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2Gbb

(
G + GbbHG − G(HG)bb

))]

= − 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2GbbG
)]

− 1

2N 4

∑
a,b, j,k

s(2,2)
ab E

[∂F ′(X )�Ĩm
(
(Gaa)

2(Gbb)
2G jk

)

∂h jk

]

+
1

2N 4

∑
a,b, j,k

s(2,2)
ab E

[∂F ′(X )�Ĩm
(
(Gaa)

2GbbG j jGkb

)

∂hkb

]

+ O≺
( 1√

N

)
, (7.14)

where the error is from the truncation of the cumulant expansion, as in the proof of
Lemma 3.1. The first term on the right side of (7.14) is a type-A term in T A

0 of the form
(7.11) obtained by replacingGbb withG in the product of the Green function entries.We
observe as in (5.12), the leading sub-term from the second term above, corresponding
to taking ∂

∂h jk
of G jk , is exactly canceled by the leading sub-term from the third term

resulting from taking ∂
∂hkb

of Gkb. Thus using the differentiation rules (3.21) and (3.26),
the second and third term on the right side of (7.14) can be written as a sum of at most ten
type-AB terms of the form in (7.11) with degrees d ′ ≥ 2, the number of Green function
entries n′ = 6, and I ′ = { j, k}. We denote the finite sum as

∑
T AB
d′ ∈T AB

d′ ;d ′≥2 T
AB
d ′ , and

write

I1 = − 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2GbbG
)]

+
∑

T AB
d′ ∈T AB

d′ ;d ′≥2

T AB
d ′ + O≺

( 1√
N

)
. (7.15)
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Next, we further replace Gbb in the first terms on the right side of (7.15) by G
using (5.10) and the cumulant expansion formula as in (7.14) to obtain

− 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2GbbG
)]

= − 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2(G)2
)]

− 1

2N 4

∑
a,b, j,k

s(2,2)
ab E

[∂F ′(X )�Ĩm
(
(Gaa)

2GbbGG jk

)

∂h jk

]

+
1

2N 4

∑
a,b, j,k

s(2,2)
ab E

[∂F ′(X )�Ĩm
(
(Gaa)

2GG j jGkb

)

∂hkb

]

+ O≺
( 1√

N

)
. (7.16)

Observe similarly to above that the leading sub-term from the second term will be can-
celed exactly by the leading sub-term from the third term. The remaining sub-terms form
a sum of at most ten type-A terms of degrees at least two, denoted as

∑
T A
d′ ∈T A

d′ ;d ′≥2 T
A
d ′ .

Combining with (7.15), we have

I1 = − 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2(G)2
)]

+
∑

T A
d′ ∈T A

d′
d ′≥2

T A
d ′ +

∑

T AB
d′ ∈T AB

d′
d ′≥2

T AB
d ′ + O≺

( 1√
N

)
. (7.17)

In general, for an arbitrary type-AB term T AB
d ∈ T AB

d of the form (7.11) with fixed n
given in (7.3), we extend the arguments as in Step 1 in Sect. 5.2, using the differentiation
rules (3.21) and (3.26) and that {hi j } commute with �Ĩm in (3.14). We hence obtain the
analogue of (5.18),

T AB
d =

∑

T A
d ∈T A

d

T A
d +

∑

T AB
d′ ∈T AB

d′
d ′≥d+1

T AB
d ′ + O≺

( 1√
N

)
, (7.18)

where the summations above denote a sum of at most two type-A terms of degree d and
a sum of at most 6(n + 4) type-AB terms of degrees not less than d + 1. The number of
the Green function entries in each term above is at most n + 4. Iterating the expansion
procedure (7.18) D− d times and using the local law in (3.10), we expand T AB

d ∈ T AB
d

as a sum of at most (6(n + 4D))D type-A terms of degrees at least d, up to negligible
error. We write for short

T AB
d =

∑
d≤d ′<D

∑

T A
d′ ∈T A

d′

T A
d ′ + O≺

( 1√
N

+ �D), (7.19)
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where the number of the Green function entries in each type-A term above is bounded
by (n + 4D).

Therefore, from (7.17) and (7.19), the first term I1 ∈ T AB
0 given in (7.10) can be

reduced into the following sum of type-A terms,

I1 = − 1

2N 2

∑
a,b

s(2,2)
ab E

[
F ′(X )�Ĩm

(
(Gaa)

2(G)2
)]

+
∑

2≤d<D

∑

T A
d ∈T A

d

T A
d + O≺

( 1√
N

+ �D),

(7.20)

where the number of type-A terms above is bounded by (C1D)c1D and the number of
the Green function entries in each type-A term is bounded by C1D for some constants
c1,C1 > 0.

Next, we expand the resulting type-A terms on the right side of (7.20) into linear
combinations of type-0 terms by further eliminating one pair of the index a. In general,
for any type-A term T A

d ∈ T A
d of the form (7.11), using similar arguments as in Step 2

in Sect. 5.2, we obtain the analogue of (5.21),

T A
d =

∑
d≤d ′<D

∑
Td′ ∈Td′

Td ′ + O≺
( 1√

N
+ �D), (7.21)

where the number of these type-0 terms is bounded by (6(n + 4D))D , and the number
of the Green function entries in each type-0 term is bounded by (n + 4D).

Similar to (7.15) and (7.17), we further eliminate the index a and expand I1 ∈ T AB
0

in (7.20) into type-0 terms using (7.21), i.e.,

I1 = − s4
2
E

[
F ′(X )

(
�Ĩm (G)4

)]
+
∑

2≤d<D

∑
Td∈Td

Td + O≺
( 1√

N
+ �D), (7.22)

with s4 given in (7.13), where the number of the type-0 terms in the sum above is bounded
by (C2D)c2D .

We now turn to the remaining terms in (7.10). We only sketch the arguments for sake
of brevity. We start with I4 ∈ T AB

0 in (7.10). Similarly to I1 ∈ T AB
0 , I4 can be expanded

as

I4 = − s4
2
E

[
F ′′(X )

(
�Ĩm (G)2

)2]
+
∑

2≤d<D

∑
Td∈Td

Td + O≺
( 1√

N
+ �D) . (7.23)

Further, using (7.19) and (7.21), I2, I3, I5 ∈ T AB
2 from (7.10) can also be expanded

as sums of finitely many type-0 terms of degrees at least two up to negligible error.
Moreover, the last three terms I6, I7, I8 ∈ T AB

4 can be expanded similarly into type-0
terms of degrees at least four.

In sum, we have expanded K2,2 given in (7.9) as a finite sum of type-0 terms,

K2,2 = − s4
2

{
E

[
F ′(X )

(
�Ĩm (G)4

)]
+ E

[
F ′′(X )

(
�Ĩm (G)2

)2]}

+
∑

2≤d<D

∑
Td∈Td

Td + O≺
( 1√

N
+ �D),

where the number of the type-0 terms in the sum above is bounded by (C3D)c3D for
some c3,C3 > 0. This completes the proof of Lemma 7.1.

It then suffices to estimate the resulting type-0 terms on the right side of (7.12) in
Lemma 7.1.
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7.3. Estimate of type-0 terms. In this subsection, we first show that all the resulting
type-0 terms of degrees d ≥ 2 on the right side of (7.12) are bounded by O≺(N−1/3).
Using the estimate in (4.3) and similar arguments as in the proof of (5.23) in Lemma 5.2,
we establish the following analogue of Lemma 4.1.

Lemma 7.2. For any type-0 term Td ∈ Td of the form (7.11) of degree d ≥ 2, we have

|Td(t, z1, z2)| = O≺
(
N−1/3), (7.24)

uniformly in t ∈ R
+, z1, z2 ∈ Sedge given in (4.1).

Proof. Given any type-0 term Td ∈ Td of the form (7.11), we no longer emphasize the
indices a,b for notational simplicity. We then write Td from the definition of �Ĩm in
(3.14) as

E

[
F (α)(X )

1

N #I
∑
I

cI

i0∏
i=1

( ni∏
l=1

G
x (i)
l y(i)

l
(t, z1) −

ni∏
l=1

G
x (i)
l y(i)

l
(t, z1) −

ni∏
l=1

G
x (i)
l y(i)

l
(t, z2)

+
ni∏
l=1

G
x (i)
l y(i)

l
(t, z2)

]
,

with t ≥ 0, z1, z2 ∈ Sedge, and α,m, i0, ni ∈ N, where each summation index v j ∈
I := {v j }mj=1 appears exactly once in the row index set {x (i)

l } and once in the column

index set {x (i)
l } of the Green function entries. In particular, we have #I = n =∑i0

i=1 ni .

For 1 ≤ j ≤ m, if there exist x (i)
l = y(i)

l = v j , then we say v j is isolated. For any

1 ≤ j �= j ′ ≤ m, if there exist 1 ≤ i ≤ i0, 1 ≤ l ≤ ni such that either x (i)
l = v j ,

y(i)
l = v j ′ or y

(i)
l = v j , x

(i)
l = v j ′ , then we say that v j and v j ′ are connected indices.

We then write out Td as a linear combination of the terms in the following form, which
are rearranged using clusters of connected indices, denoted by {v(q)

1 , . . . , v
(q)
lq

}q ,

(∗∗) := E

[
F (α)(X )

1

N #I
∑
I

cI

∏
q

(
G

v
(q)
1 v

(q)
2

(t, z(q)
1 )G

v
(q)
2 v

(q)
3

(t, z(q)
2 ) · · ·G

v
(q)
lq

v
(q)
1

(t, z(q)
lq

)
)]

, (7.25)

where
∑

q lq = n, z(q)
l for any q and 1 ≤ l ≤ lq takes the values z1, z1, z2, or z2.

Because the degree d ≥ 2, there exists at least one cluster of connected indices such
that lq ≥ 2. We may assume that q = 1. Recall that the coefficients {cI} are uniformly
bounded and that the function F has bounded derivatives. Then using the local law in
(3.10) and the properties of stochastic domination in Lemma 1.1, we have that

|(∗∗)| ≺ E

⎡
⎢⎣ 1

Nl1

N∑

v
(1)
1 ,...,v

(1)
l1

=1

∣∣∣∣Gv
(1)
1 v

(1)
2

(t, z(1)1 )G
v

(1)
2 v

(1)
3

(t, z(1)2 ) · · ·G
v

(1)
l1

v
(1)
1

(t, z(1)l1
)

∣∣∣∣

⎤
⎥⎦ .
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In combination with Young’s inequality and the Ward identity (5.53), we find, similarly
to (5.55), that

|(∗∗)| ≺E[ImmN (t, z1)]
(Nη)l1−1 +

E[ImmN (t, z2)]
(Nη)l1−1 , l1 ≥ 2, z1, z2 ∈ Sedge. (7.26)

Together with the estimate (4.3) on E[ImmN (t, z)] in the edge scaling and the fact that
η ≥ N−1+ε , we obtain the estimate in (7.24).

Applying Lemma 7.2 to (7.12), we find that

K2,2 = − s4
2

{
E

[
F ′(X )

(
�Ĩm (G)4

)]
+ E

[
F ′′(X )

(
�Ĩm (G)2

)2]}

+ O≺(N−1/3 + �D), (7.27)

uniformly in t ≥ 0 and z1, z2 ∈ Sedge. It then suffices to estimate the remaining type-0
terms of degree zero on the right side of (7.27). Using the definition of �Ĩm in (3.14),
the estimate in (4.3) ofE[ImG(t, z)] for z ∈ Sedge and t ≥ 0, the properties of stochastic
domination Lemma 1.1 and that the function F has bounded derivatives, we conclude,
for any fixed D ≥ 1, that

|K2,2| = O≺(N−1/3+ε + �D), (7.28)

uniformly in t ∈ R
+ and z1, z2 ∈ Sedge.

7.4. Estimate of E2. In this subsection, we estimate the second order term E2 given in
(3.20) similarly as K2,2. Using (3.26) and (3.21), we write E2 as

E2 = − 1

2N

N∑
a=1

(s(2)
aa − 1)E

[
F ′(X )�Ĩm (Gaa)

2
]

− 1

2N

N∑
a=1

(s(2)
aa − 1)E

[
F ′′(X )

(
�Ĩm (Gaa)

)2]
. (7.29)

Observe that the above two terms are both type-A terms in T A
0 of the form (7.11), where

the index b no longer plays a special role. Using the combination of the identity (5.10)
and the cumulant expansion formula, we expand E2 into a sum of finitely many type-0
terms, similarly to (7.12). That is,

E2 = − s2 − 1

2

{
E

[
F ′(X )�Ĩm (G)2

]
+ E

[
F ′′(X )

(
�Ĩm (G)

)2]}

+
∑
Td∈Td
2≤d<D

Td + O≺
( 1√

N
+ �D

)
, (7.30)

uniformly in t ≥ 0 and z1, z2 ∈ S, with

s2 ≡ s2(t) := 1

N

N∑
a=1

s(2)
aa (t), (7.31)
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where s(2,2)
aa (t) are the second order cumulants given in (2.27) of the time-dependent

scaled entries
√
Nhaa . Moreover, the number of the type-0 terms in the summation on

the right side of (7.30) is bounded by (CD)cD for some numerical constants c,C > 0.
Similarly to (7.28), we conclude from Lemma 7.2 and the estimate in (4.3) that, for

any D ≥ 1,

|E2| = O≺
(
N−1/3+ε + �D), (7.32)

uniformly in t ∈ R
+ and z1, z2 ∈ Sedge.

Plugging (7.28), (7.32), (7.7), and (7.8) into (3.18) and by choosing D ≥ 1
ε
with

ε > 0 as in (2.9), we hence finish the proof of Proposition 3.1.

8. Real Symmetric Wigner Matrices

In this section, we prove the Green function comparison theorem, Theorem 1.4, for real
Wigner matrices, using similar ideas as for the complex Hermitian case. To simplify the
discussion, we will only address the differences.

Consider the real-valued matrix Ornstein–Uhlenbeck process
(
hab(t)

)N
a,b=1:

dhab(t) =
√
1 + δab

N
dβab(t) − 1

2
hab(t)dt, hab(0) = (HN )ab, (8.1)

where
(
βab(t)

)
a≤b are independent real standard Brownian motions with βba(t) =

βab(t). The initial condition HN is a real symmetric Wigner matrix satisfying Assump-
tion 1.1. In distribution this is equivalent to writing

H(t) = e− t
2 HN +

√
1 − e−tGOEN , t ∈ R

+. (8.2)

As the analogue of (3.21), we have a new differentiation rule for the Green function
entry of a real symmetric matrix,

∂Gi j

∂hab
= −GiaGbj + GibGaj

1 + δab
. (8.3)

Then using Ito’s formula similarly to (3.22), we obtain

dGi j (t, z) = dMi j + �i jdt, (8.4)

where the diffusion term dMi j := − 1√
N

∑
a≤b

1√
1+δab

(
GiaGbj + GibGaj

)
dβab, and

the drift term

�i j := 1

2

∑
a,b

habGiaGbj +
1

2N

∑
a,b

(
2GiaGabGbj + GibGbjGaa + GiaGajGbb

)
.

Recall F in (2.21) and X in (3.12). Applying Ito’s formula on F(X ) and using (8.4),
we derive the dynamics of F(X ) in the real symmetric case,

dF(X ) = dM + �dt,
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where the diffusion term dM yields a martingale after integration, see Remark 3.1, and
the drift term is given by (we omit the parameters t and 2+ x + iη of the following Green
function entries)

� = F ′(X )Im
∫ κ2

κ1

1

2

∑
i,a,b

(
habGiaGbi +

2

N
GiaGabGbi

+
1

N
GibGbiGaa +

1

N
GiaGaiGbb

)
dx

+ F ′′(X )
1

N

∑
i, j

∑
a,b

(
Im
∫ κ2

κ1

GiaGbidx
)(

Im
∫ κ2

κ1

G jbGajdx
)

= 1

2

∑
a,b

hab
(
F ′(X )�ImGba

)
+

1

N

∑
a,b

(
F ′(X )�Im (GaaGbb)

)

+
1

N

∑
a,b

(
F ′(X )�Im (Gab)

2)
)

+
1

N

∑
a,b

(
F ′′(X )(�ImGab)(�ImGba)

)
. (8.5)

where we abbreviate, for any function P : R
+ × C \ R −→ C,

�Im P ≡ (�Im P)(t, z1, z2) := Im P(t, z2) − Im P(t, z1), (8.6)

with t ∈ R
+, z1 = 2 + κ1 + iη, z2 = 2 + κ2 + iη ∈ Sedge, as in (3.15). In fact, comparing

with the drift term in (3.24) for complex Hermitian matrices, the notation Ĩm in (3.13)
is replaced with the imaginary part Im . This is because {hab} commute with taking the
imaginary part, and the Green function of a real symmetric matrix satisfies

Gi j (z) = G ji (z), z ∈ C \ R. (8.7)

Moreover, using (8.3), it is easy to find the analogous differentiation rule to (3.26),

∂F ′(X )

∂hab
= − 2

1 + δab
F ′′(X )

N∑
i=1

Im
( ∫ κ2

κ1

GiaGbi (2 + x + iη)dx
)

= − 2

1 + δab
F ′′(X )�ImGab, (8.8)

with �Im given in (8.6).
Next, we return to the right side of (8.5). Applying the real cumulant expansion

formula in Lemma 2.4 for the independent entries {hab}a≤b in the first term up to the
fourth order and using the differentiation rules (8.3) and (8.8), the second order terms
in the cumulant expansions are canceled exactly by the last three terms on the right side
of (8.5). We hence obtain the real analogue of (3.18),

E[�] = 1

2N

N∑
a=1

(s(2)
aa − 2)E

[∂F ′(X )�ImGaa

∂haa

]
+

1

4N 3/2

∑
a,b

s(3)
ab E

[∂2F ′(X )�ImGba

∂h2ab

]
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+
1

12N 2

∑
a,b

s(4)
ab E

[∂3F ′(X )�ImGba

∂h3ab

]
+ O≺

( 1√
N

)
, (8.9)

where the error O≺( 1√
N

) is from the truncation of the cumulant expansion, and s(k)
ab is

the k-th cumulant defined in (2.27) of the rescaled entries
√
Nhab.

We now claim that Proposition 3.1 holds true in the real case, which leads to Theorem
1.4 for β = 1. The arguments in the complex case discussed before can be applied
similarly, using the modified differentiation rules (8.3) and (8.8), and the real cumulant
expansion formula in Lemma 2.4.

To simplify the statement, we only consider the simplest version of theGreen function
comparison theorem for F(x) = x , as proved in Proposition 4.1 for complex Hermitian
Wigner matrices. The Green function comparison theorem for general functions F can
be proved using the same idea, following the arguments in Sect. 7 for the complex
Hermitian case.

Applying (8.4) to the timedependent normalized traceof theGreen function,mN (t, z),
we find the real analogue of (4.4), i.e.,

d(mN (t, z)) =dM0 + �0dt, (8.10)

with the diffusion term dM0 := 1
N

∑N
v=1 dMvv which yields a martingale term after

integration; see Remark 3.1, and the drift term �0dt := 1
N

∑N
v=1 �vvdt . Applying the

real cumulant expansion formula as in (8.9), the drift term satisfies the real analogue of
(4.5), i.e.,

E[�0] = 1

2N 2

∑
v,a

(s(2)
aa − 2)E

[∂(GvaGbv)

∂haa

]
+

1

4N 5/2

∑
v,a,b

s(3)
ab E

[∂2(GvaGbv)

∂h2ab

]

+
1

12N 3

∑
v,a,b

s(4)
ab E

[∂3(GvaGbv)

∂h3ab

]
+ O≺(

1√
N

) =: J2 + J3 + J4 + O≺
( 1√

N

)
.

(8.11)

It then suffices to prove the estimate (4.6) in the real symmetric case. Using (8.3), the
terms J2, J3, J4 above can be written out again in the form (4.8). The degree of a term in
the form (4.8) is defined as in (4.9). We recall from (8.7) that the row and column index
of a Green function entry can be switched.

Following the idea from complex Hermitian case, the proof of (4.6) consists of three
steps: 1) the third order terms from J3 are unmatched and thus negligible (c.f.,Proposition
4.2); 2) expanding the fourth order terms from J4 (as well as the second order terms in
J2) as linear combinations of type-0 terms of degrees at least two up to arbitrary order
(c.f., Proposition 4.3); 3) estimating the resulting type-0 terms in 2) of degrees at least
two (c.f., Lemma 4.1).

We start with the first step. Recall Definition 4.1 for unmatched terms in the complex
Hermitian case. Because of (8.7), we can ignore the difference from the row and column
index of a Green function entry of a real symmetric matrix.

Definition 8.1 (Terms with unmatched indices in the real case.) Given any term, denoted
by Qd , of the form (4.8) of degree d, let ν j be the number of times the free summation
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index v j ∈ I appears as the row or column index in the product of the Green function
entries, i.e.,

ν j := #{1 ≤ i ≤ n : xi = v j } + #{1 ≤ i ≤ n : yi = v j }, 1 ≤ j ≤ m. (8.12)

We define the set of the unmatched summation indices as

Io := {1 ≤ j ≤ m : ν j is odd } ⊂ I.

Note that #Io is even. If I0 = ∅, then we say Qd is matched. Otherwise, Qd is an
unmatched term, denoted by Qo

d . The collection of the unmatched terms in the form
(4.8) of degree d is denoted by Qo

d .

Then the third order terms from J3 on the right side of (8.11) are of the form (4.8)
with an extra

√
N in front and are unmatched with νa = νb = 3 defined in (8.14)

below. Following the arguments in Sect. 6, using the relation (5.10), the real cumulant
expansion formula, and the new differentiation rule of the Green function entry (8.3),
we observe a similar cancellation to the first order and then expand a unmatched term of
the form (4.8) iteratively and prove that Proposition 4.2 holds true in the real symmetric
case. Therefore, we have

|J3| = O≺
(
N−1/2 +

√
N�D) . (8.13)

Next, in the second step, we expand the remaining terms of the form (4.8) from J2
and J4 that are matched. Recall a special case of matched terms as in (4.17) with two
summation indices a, b singled out and Definition 4.2 for type-AB, type-A, type-0 terms
in the complex case.

Definition 8.2 (Type-AB terms, type-A terms, type-0 terms.) Given any term of the form
in (4.17) of degree d with two special indices a and b, recall ν j in (8.12) for any v j ∈ I
and define similarly

νa : = #{1 ≤ i ≤ n : xi = a} + #{1 ≤ i ≤ n : yi = a},
νb : = #{1 ≤ i ≤ n : xi = b} + #{1 ≤ i ≤ n : yi = b} . (8.14)

If for any 1 ≤ j ≤ m, ν j = 2 and νa = νb = 4, then such a term is a type-AB term. A
type-A term has νa = 4, and νb = ν j = 2 (1 ≤ j ≤ m). Finally, a type-0 term is defined
to be in the form (4.17) with νa = νb = ν j = 2 (1 ≤ j ≤ m). The collection of the
type-AB, type-A, type-0 terms of degree d is denoted byP AB

d ,P A
d , andPd , respectively.

Following the arguments in Sect. 5, using the relations (5.10) and (8.3), and the real
cumulant expansion formula, we expand any type-AB (or type-A) term iteratively and
prove that Proposition 4.3 holds true in the real symmetric case. Therefore, expanding
the type-AB terms from J2 and the type-A terms from J4 and then combiningwith (8.13),
we write (8.11) as

E[�0(t, z)] =
∑

Pd∈Pd
2≤d≤D−1

E[Pd(t, z)] + O≺
( 1√

N
+ �D), (8.15)

where the summation on the right side above denotes a linear combination of at most
(CD)cD type-0 terms of degrees at least two, for some numerical constants C, c.

In the last step, we aim to show that any type-0 term of degree d ≥ 2 can be bounded
by O≺(N−1/3) for real symmetric Wigner matrices, as in Lemma 4.1. This reduces to
prove Lemma 5.2 for the GOE.
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Lemma 8.1. For any z ∈ Sedge(ε,C0) given in (4.1) and t ≥ 0, we have the following
uniform estimate:

1

N
E
GOE
[
Im TrG(z)

]
= O

(
N−1/3+ε

)
. (8.16)

The corresponding estimate (5.23) of the type-0 terms of degree d ≥ 2 considering
the GOE follows directly from Lemma 8.1. Following the iterative comparison idea in
the proof of Lemma 4.1, one proves Lemma 4.1 similarly in the real case, using (8.3),
(8.4) and the real cumulant expansion formula. Therefore, we obtain from (8.15) that
(4.6) holds true in the real case and we hence finish the proof of Proposition 4.1 for real
Wigner matrices.

Proof of Lemma 8.1. The proof is similar to that of Lemma 5.2. For the one-point cor-
relation function of the GOE and the corresponding diagonal kernel KN ,1, we refer to
[3,34]. From Chapter 3.9 in [3], we write

KN ,1(x, x) = KN ,2(x, x) +

√
N

4
φN−1(x)

( ∫ ∞

−∞
sgn(x − t)φN (t)dt

)

+
1

2IN−1
φN−1(x)1N=2m+1, (8.17)

where KN ,2(x, x) is the one-point correlation function for the GUE given by (2.33),
{φk} are the Hermite functions in (2.30), and we use β = 1, 2 to denote the symmetry
class. Moreover, we set

I2m :=
∫ ∞

0
φ2m(t)dt = 1

2

∫

R

φ2m(t)dt = 2−1/4π1/4

√
(2m)!

22m(m!)2 ∼ m−1/4, (8.18)

by the Stirling approximation; see Proposition 3.9.28 in [3]. In addition, from Lemma 1
in [26], we have

I2m+1 :=
∫ ∞

0
φ2m+1(t)dt = O(m−1/4) . (8.19)

Note that the trace identity for the kernel KN ,1 still holds as in (2.34). Next, we change
the variable as in (2.37) and define

K edge
N ,1 (x, x) := 1

N 1/6 KN ,1

(
2
√
N +

x

N 1/6 , 2
√
N +

x

N 1/6

)
. (8.20)

From Theorem 1.1 in [13], as the real analogue of Theorem 2.3, for any L0 ∈ R, we
have, in the limit of large N , that

K edge
N ,1 (x, x) =Kairy(x, x) +

1

2
Ai(x)

∫ x

−∞
Ai(t)dt + o(1), (8.21)

uniformly in x ∈ [L0,∞). In addition, the right side of (8.21) is uniformly bounded for
x > L0; see Chapter 3 in [3] for a reference. Now we are ready to estimate

1

N
E
GOE
[
Im TrG(z)

]
= Nη

N 2 E
GOE
[ N∑

j=1

1

|λ j − z|2
]
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= Nη

N
2
3

∫

R

K edge
N ,1 (x, x)

|x − N 2/3κ − iN 2/3η|2 dx, (8.22)

for z = 2+κ +iη ∈ Sedge, in a similar way as in the proof of Lemma 5.2. Note that (5.44)
and (5.45) still hold true for the GOE. We will focus on the regime −N 2/3 < x ≤ L0,
for some fixed L0 < 0. Recalling the estimate (5.50) for the GUE, it suffices to prove,
for any x ∈ (−N 2/3, L0], that

∣∣∣K edge
N ,1 (x, x) − K edge

N ,2 (x, x)
∣∣∣ = O(1), (8.23)

which then leads to

1

N 2/3

∫ L0

−N2/3

K edge
N ,1 (x, x)

|x − N 2/3κ + iN 2/3η|2 dx = O
( 1

N
4
3−εη

)
. (8.24)

We hence obtain (8.16) for the GOE. In order to prove (8.23), we split into two cases
below and follow ideas from [26].

Case 1: N is even. Let N = 2m and the last term in (8.17) is vanishing. Since φN is
even, we write

K edge
N ,1 (x, x) =K edge

N ,2 (x, x) +
1

2
N 1/3φN−1(y)

∫ y

0
φN (t)dt, (8.25)

where we set for simplicity,

y = 2
√
N +

x

N 1/6 , with − N 2/3 < x ≤ L0, (8.26)

which implies that
√
N < y < 2

√
N + L0N−1/6. From [26] and references therein, we

have the following asymptotic formula of φN (t). In the domain

|t | ≤ √
2
(
(2N + 1)1/2 − (2N + 1)−1/6

)
, (8.27)

we have as N → ∞,

φN (t) = AN (t) + O
(
N 1/2(4N + 2 − t2)−7/4

)
, (8.28)

with

AN (t) :=
√

2

π
(4N + 2 − t2)−1/4 cos

( (2N + 1)(2αN − sin 2αN ) − π

4

)
, (8.29)

and αN := arccos(t (4N +2)−1/2). We choose L0 < 0 in (8.26) sufficiently small so that
the upper bound y of the integral in (8.25) satisfies (8.27). Thus we have from (8.28)
that

∫ y

0
φN (t)dt =

∫ y

0
AN (t)dt + O

(√
N
∫ y

0
(4N + 2 − t2)−7/4dt

)

=
∫ y

0
AN (t)dt + O(N−1/4). (8.30)
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Integrating AN given in (8.29) and using integration by parts, it was shown in (14) in
[26] that

∣∣∣
∫ y

0
AN (t)dt

∣∣∣ ≤ C(4N + 2 − y2)−3/4 = O(N−1/4), (8.31)

with
√
N < y < 2

√
N + L0N−1/6. Thus we have from (8.30) that

∣∣∣ ∫ y
0 φN (t)dt

∣∣∣ =
O(N−1/4), for y given in (8.26). Combiningwith (5.47), the estimate (8.23) then follows
from (8.25).

Case 2: N is odd. Let N = 2m + 1. Since φN is an odd function, we write

K edge
N ,1 (x, x) =K edge

N ,2 (x, x) +
1

2
N 1/3φN−1(y)

∫ y

0
φN (t)dt

− 1

2
N 1/3φ2m(y)I2m+1 +

1

2N 1/6 I2m
φ2m(y),

with y given in (8.26). Using (5.47), (8.18), and (8.19), the last two terms above are
bounded by O(1). The second term can be estimated similarly as in the case N = 2m.
Thus (8.23) also hold true for N = 2m + 1.

We hence have finished the proof of Lemma 8.1.
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Appendix

In this appendix we prove Lemma 2.2 and Lemma 2.3. To prove Lemma 2.2, we follow
the arguments in [19].
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Proof of Lemma 2.2. Recall the mollifier θη given in (2.18) and the indicator function
χE given in (2.17), where N−1 � η � EL − E ≤ CN−2/3+ε , with ε > 0 as in (2.7).
It suffices to estimate the linear eigenvalue statistics

TrχE (H) − TrχE � θη(H) = Trg(H) =
N∑
j=1

g(λ j ),

where

g(x) := χE (x) − χE � θη(x) =
( ∫

R

1[E,EL ](x) −
∫ EL−x

E−x

)
θη(y)dy . (A.1)

We first consider the function g. Note that for any E > 0, we have

cη

E + η
≤
∫ ∞

E
θη(y)dy = 1

π

∫ ∞

E

η

y2 + η2
dy ≤ Cη

E + η
.

Because of the symmetry of the integrand, we have a similar estimate for the integral
over (−∞, E] with E < 0. Thus, if x ∈ [E, EL ], we have from (A.1) that

|g(x)| =
( ∫ E−x

−∞
+
∫ ∞

EL−x

)
θη(y)dy ≤ Cη

( 1

|x − E | + η
+

1

|x − EL | + η

)
.

Else, if x ∈ [E, EL ]c, we have from the positiveness of θη(y) that

|g(x)| =
∫ EL−x

E−x
θη(y)dy ≤

{
Cη

|x−E |+η
, if x < E,

Cη
|x−EL |+η

, if x > EL ,
(A.2)

It is easy to check that
|g(x)| ≤ 2C, for x ∈ R. (A.3)

Now we choose a parameter l1 such that η � l1 � EL − E ≤ CN−2/3+ε . If we further
assume min{|x − E |, |x − EL |} ≥ l1, then we have

|g(x)| ≤ 2Cη

l1
, for |x − E | > l1, |x − EL | < l1. (A.4)

Plugging (A.3) and (A.4) into (A.1), we hence obtain
∣∣∣TrχE (H) − TrχE � θη(H)

∣∣∣ ≤ C
(
N (E − l1, E + l1) +N (EL − l1,∞)

+
η

l1
N (E, EL) + Tr f (H)

)
,

where

f (x) := (χE � θη

)
(x)1x≤E−l1 .

Using the rigidity of eigenvalues in (2.15), we obtain that
∣∣∣TrχE (H) − TrχE � θη(H)

∣∣∣ ≤ C
(
N (E − l1, E + l1) +

η

l1
N 2ε + Tr f (H)

)
, (A.5)
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with high probability, i.e., with probability bigger than 1 − N−	 for any large 	 > 0,
for N sufficiently large. It is then sufficient to estimate Tr f (H). We write

Tr f (H) =
∑

λi≤E−l1

f (λi ) =
∞∑
k=0

∑
λi∈Ik

f (λi ), Ik := (E − 3k+1l1, E − 3kl1]. (A.6)

If x ≤ E − l1, then EL − x ≥ E − x ≥ l1 
 η, and we have

f (x) =
∫ EL−x

E−x
θη(y)dy = arctan

( EL − x

η

)
− arctan

( E − x

η

)

= arctan
( η

E − x

)
− arctan

( η

EL − x

)
≤ Cη(EL − E)

(EL − x)(E − x)

≤C min
{ (EL − E)η

(E − x)2
,

η

E − x

}
.

In combination with (A.6), we have

Tr f (H) ≤ C
∞∑
k=0

min
{ (EL − E)η

32kl21
,

η

3kl1

}
Nk, Nk := #{i : λi ∈ Ik}. (A.7)

We next estimate Nk using the local law in (3.10). Consider

ImmN (E − 2 · 3kl1 + i3kl1) = 1

N

N∑
i=1

3kl1
|λi − (E − 2 · 3kl1)|2 + (3kl1)2

≥ 1

N

Nk

2 · 3kl1 .

(A.8)

Using the local law in (3.10) and (2.5), for any small τ > 0 and large 	 > 0, we find an
upper bound for the left hand side above as

ImmN (E − 2 · 3kl1 + i3kl1) ≤ Immsc(E − 2 · 3kl1 + i3kl1) +
N ε+τ

N3kl1

≤ C
√
3kl1 + |E − 2 · 3kl1 − 2| + N ε+τ

N3kl1

≤ C
(√

3kl1 +
N ε+τ

N3kl1
+ N−1/3+ε

)
,

with probability bigger than 1− N−	 . By choosing τ < ε, we hence obtain from (A.8)
that

Nk ≤ C
(
(3kl1)

3/2N + N 2ε + 3kl1N
2/3+ε

)
,

with high probability. Combining with (A.7), we have

Tr f (H) ≤ C
∞∑
k=0

min
{ (EL − E)η

32kl21
,

η

3kl1

}(
(3kl1)

3/2N + N 2ε + 3kl1N
2/3+ε

)

≤ CN 1/3+εη√
l1

+
CN 2εη

l1
≤ C ′N 2εη

l1
,
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with high probability. Together with (A.5), we hence obtain
∣∣∣TrχE (H) − TrχE � θη(H)

∣∣∣ ≤ C ′(N (E − l1, E + l1) +
η

l1
N 2ε
)
,

with high probability. This completes the proof of Lemma 2.2. ��
Next, we use Lemma 2.2 to prove Lemma 2.3.

Proof of Lemma 2.3. Under the same assumption in Lemma 2.2, we choose a parameter
l satisfying N−1 � η � l1 � l � EL − E ≤ CN−2/3+ε . We have from Lemma 2.3
that

TrχE (H) ≤ l−1
∫ E

E−l
Trχy(H)dy

≤ l−1
∫ E

E−l
Trχy � θη(H)dy + Cl−1

∫ E

E−l

(
N (y − l1, y + l1) +

η

l1
N 2ε
)
dy

≤ TrχE−l � θη(H) + C
(
N 2ε η

l1
+
l1
l
N (E − 2l, E + l)

)
, (A.9)

with high probability. Using the rigidity result (2.13) and l � N−2/3+ε , we have

N (E − 2l, E + l) ≤
∫ E+l

E−2l
Nρsc(x)dx + N ε ≤ CN ε,

with high probability. Thus we obtain from (A.9) that with high probability

TrχE (H) − TrχE−l � θη(H) ≤ CN 2ε
( η

l1
+
l1
l

)
.

One obtains a lower bound similarly. Therefore, for any large 	 > 0, we have

TrχE+l � θη(H) − CN 2ε
( η

l1
+
l1
l

)
≤ TrχE (H) ≤ TrχE−l � θη(H) + CN 2ε

( η

l1
+
l1
l

)
,

with probability bigger than 1 − N−	 . We pick l1 = N 3εη and l = N 3εl1 such that

N 2ε
(

η
l1
+ l1

l

)
= N−ε . Since the counting function N (E, EL) = TrχE (H) is integer

valued, we have

P

(
N (E, EL) = 0

)
≤ P

(
TrχE+l � θη(H) ≤ 1/9

)
+ N−	

≤ E

[
F
(
TrχE+l � θη(H)

)]
+ N−	,

where F is the cut-off function given in (2.21). In the other direction, we have

E

[
F
(
TrχE−l � θη(H)

)]
≤ P

(
TrχE−l � θη(H) ≤ 2/9

)
≤ P

(
N (E, EL) = 0

)
+ N−	.

Therefore, together with (2.15), we obtain

E

[
F
(
TrχE−l�θη(H)

)]
−N−	 ≤ P

(
N (E,∞) = 0

)
≤ E

[
F
(
TrχE+l�θη(H)

)]
+N−	.

This completes the proof of Lemma 2.3. ��
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