
Information-flow Interfaces?

Ezio Bartocci1 , Thomas Ferrère2 , Thomas A. Henzinger3 ,
Dejan Nickovic4 , and Ana Oliveira da Costa1(�)

1 Technische Universität Wien, Vienna, Austria
{ezio.bartocci, ana.costa}@tuwien.ac.at

2 Imagination Technologies, Kings Langley, UK
thomas.ferrere@imgtec.com

3 IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

4 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

Abstract. Contract-based design is a promising methodology for tam-
ing the complexity of developing sophisticated systems. A formal con-
tract distinguishes between assumptions, which are constraints that the
designer of a component puts on the environments in which the com-
ponent can be used safely, and guarantees, which are promises that the
designer asks from the team that implements the component. A theory of
formal contracts can be formalized as an interface theory, which supports
the composition and refinement of both assumptions and guarantees.
Although there is a rich landscape of contract-based design methods
that address functional and extra-functional properties, we present the
first interface theory that is designed for ensuring system-wide security
properties. Our framework provides a refinement relation and a compo-
sition operation that support both incremental design and independent
implementability. We develop our theory for both stateless and state-
ful interfaces. We illustrate the applicability of our framework with an
example inspired from the automotive domain.

Keywords: Contract-based design, Interface Theory, Hyperproperties,
Information-flow.

1 Introduction

The rise of pervasive information and communication technologies seen in cyber-
physical systems, internet of things, and blockchain services has been accompa-
nied by a tremendous growth in the size and complexity of systems [28]. Subtle
dependencies involving multiple architectural layers and unforeseen environmen-
tal interactions can expose these systems to cyber-attacks. This problem is fur-
ther exacerbated by the heterogeneous nature of their constituent components,

? This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 956123 and was funded in
part by the FWF project W1255-N23 and by the ERC-2020-AdG 101020093.

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 3–22, 2022.
https://doi.org/10.1007/978-3-030-99429-7_1

http://orcid.org/0000-0002-8004-6601
http://orcid.org/0000-0001-5199-3143
http://orcid.org/0000-0002-2985-7724
http://orcid.org/0000-0001-5468-0396
http://orcid.org/0000-0002-8741-5799
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_1

which are often developed independently by different teams or providers. In such
a scenario, defining and enforcing security requirements across components at an
early stage of the design process becomes a necessity. This engineering approach
is called security-by-design. Although in recent years there has been impressive
progress in the verification of security properties for individual system compo-
nents, the science of compositional security design [22,23] is still in its infancy.

Security policies are usually enforced by restricting the flow of information
in a system [30]. Information-flow policies define which information a user or
a software/hardware component is allowed to observe or to interfere with while
interacting with another component.

The goal of information-flow control is to ensure that a system as a whole
satisfies the desired policies. It is especially challenging to verify that there are
no side-channels or implicit flows that violate a given policy. For example, in a
modern car, the tight coupling between the cyber and the physical components
allows an attacker to infer computational properties, such as secrets used for
encryption, from side-channels, such as power consumption and electromagnetic
radiation [17]. Moreover, the increasing connectivity of automotive systems with
their environment makes it easier for the attacker to gather data about the
system behavior. The attacker can use this data to exploit weaknesses of the
system implementation and gain control over the system [32,7]. These attacks
often rely on analyzing and comparing multiple observations to deduce protected
information. From a formal-language perspective, such security vulnerabilities
are not characterized by properties of a single system execution, but rather by
properties of sets of execution traces, which are called hyperproperties [12].

The rigorous design of systems that satisfy information flow requirements is
essential from the security perspective. This activity can be supported by the
verification of information flow properties, a well-studied problem with a rich
landscape of both theory and tools, ranging from language-based [29,18,15,11]
to simulation-based [25] approaches. Nevertheless, the existing verification solu-
tions do not address two important aspects. First, components in complex sys-
tems are often heterogeneous and cannot be analysed with a single verification
tool. Moreover, it is not clear how to combine component verification outcomes
to infer system-level information-flow properties. Second, existing methods do
not provide guidelines on which information flow properties need to be veri-
fied against individual components to provide system-level guarantees regarding
leakage of information.

In this paper, we present a contract-based design [8] approach for the struc-
tural aspect of information-flow policies. Contract-based design provides a formal
framework for building complex systems from individual components, mixing
both top-down and bottom-up steps. A top-down step decomposes and refines
system-wide requirements; a bottom-up step assembles a system by combin-
ing available components. A formal contract distinguishes between assumptions,
which are constraints that the designer of a component puts on the environments
in which the component can be used safely, and guarantees, which are promises
that the designer asks from the team that implements the component. A theory

4 E. Bartocci et al.

Information-flow Interfaces 5

of formal contracts can be formalized as an interface theory, which supports the
composition and refinement of both assumptions and guarantees [2,3,31]. While
there is a rich landscape of interface theories for functional and extra-functional
properties [10,4,13,20], we present the first interface theory that is designed for
ensuring system-wide security properties, thus paving the way for a science of
safety and security co-engineering.

The focus on the structural aspects of information flow and abstraction from
concrete semantics enables compositional reasoning in presence of heterogeneous
components and is complementary to the existing body of work on information
flow verification. A different component implementation verified under different
semantics could result in different flows being detected. However, after deriving
the component flows from the implementation under some concrete semantics,
the theory can be agnostic about the underlying semantic interpretation. Hence
it enables the design of secure systems from trusted components by abstracting
away how information flows and by focusing on whether it can flow at all. In
essence, our approach enables to decompose system-level information flow re-
quirements and derive component properties that need to hold, thus providing
a divide-and-conquer procedure for organizing verification tasks.

Our theory is based on information-flow assumptions as well as information-
flow guarantees. As an interface theory, our theory supports both incremental
design and independent implementability [3]. Incremental design allows the com-
position of different system parts, each coming with their own assumptions and
guarantees, without requiring additional knowledge of the overall design con-
text. Independent implementability enables the separate refinement of different
system parts by different teams that, without gaining additional information
about each other’s design choices, can still be certain that their designs, once
combined, preserve the specified system-wide requirements. While in previous
interface theories, the environment of a component is held responsible for meet-
ing assumptions, and the implementation of the component for the guarantees,
there are cases of information-flow violations for which blame cannot be assigned
uniquely to the implementation or the environment. In information-flow inter-
faces we therefore introduce, besides assumptions and guarantees, a new, third
type of constraint—called properties—whose enforcement is the shared respon-
sibility of the implementation and the environment.

We develop our framework for both stateless and stateful interfaces. Stateless
information-flow interfaces are built from primitive information-flow constraints—
assumptions, guarantees, and properties—of the form “the value of a variable x
is always independent of the value of another variable y.” Stateful information-
flow interfaces add a temporal dimension, e.g., “the value of y is independent of
x until the value of z is independent of x.” The temporal dimension is introduced
through a natural notion of state and state transition for interfaces, not through
logical operators. We prove that our calculus of information-flow interfaces sat-
isfies the principles of incremental design and independent implementability.

2 Application Example

We showcase the applicability of our theory with an example from the auto-
motive industry: a stepwise design of a shared communication infrastructure
(a bus) from distance warners and a wheel sensor to the braking system and the
odometer. We adapted this use-case from the industrial case study presented
by Marcus Mikulcak et al. [25]. The main goal of this system design is to en-
sure the integrity of a communication channel used to perform a safety-critical
functionality. We consider two integrity levels, high and low, to characterize
functionalities in our system. Then, we want to guarantee that data exchanged
by high-integrity functionalities is not compromised by low-integrity functions.

Distance warners sense the car’s proximity to other objects and send their
analysis to other components. In our example, we have two distance warners,
at the front and the back of the car, that use the shared bus to communicate
with the braking system. The wheel sensor senses the wheel rotations and sends
this information through the shared bus to the odometer. The braking system
is a high-integrity system since it performs safety-critical functions. Hence the
communication channel between the distance warners and the braking system is
classified with high-integrity, while the communication between the wheel sensor
and the odometer is low-integrity. Thus, data sent by the wheel sensor should
not interfere with the high-integrity channel to prevent distance warnings sent
to the braking system from being delayed or lost. The main goal of our design
process is to guarantee that the closed system requirement that information from
the wheel sensor does not flow to the braking system is propagated accordingly
to subsystems through successive decomposing and refinement steps.

interface component

assumption no-flow
guarantee no-flow
property no-flow
component flow

input
output

Fig. 1: Representation of the
objects in our theory.

Figure 1 shows the graphical representation we
adopt throughout the paper for the objects in our
theory. We represent the open system no-flows re-
quirements with dashed arrows. Then, arrows to
input ports are assumptions while arrows to out-
put parts are guarantees. The closed system no-
flows, properties, are represented as dotted arrows.
To improve the readability of the drawings, it is
implicit that for each drawn property, we have the
same guarantee over the open system. When it is
clear from the context we may omit port(s) names.

We present, in Fig. 2, the stepwise design of the security requirement that
data from the wheel sensor, wheel tick, should not flow to the target of the
distance warners, distw f t and distw b t. The first interface in Fig. 2 includes two
properties that specify this security requirement. The system is then decomposed
into the sending subsystems (warners and wheel sensor), the shared bus, and the
receiving subsystems.

Naturally, we keep the two properties from the first interface as proper-
ties in the Bus interface. However, this natural decomposition does not define
a well-formed interface according to our theory because the properties in the
Bus interface cannot be satisfied given the interface’s current assumption and

6 E. Bartocci et al.

Information-flow Interfaces 7

distw f t
distw b t

odometer

distw b t
distw f t

odometer

distw f s
distw b s

wheel tick

Bus

wheel tick
distw b s
distw f s distw f t

distw b t
odometer

Receiving

distw f s

distw b s

wheel tick

distw f t
distw b t
odometer

distw f s

wheel tick
distw b s

Odometer

Braking System

Sending Bus Receiving

Sending

distw b t
distw f t

Bus

odometer

distw f s

wheel tick
distw b s

distw f t
distw b t
odometer

ReceivingSending

wheel tick
distw b s
distw f s

distw f s odometerdistw b tdistw b s distw f twheel tick

1.

2.

3.

d
ec

om
p

os
e

an
d

re
fi

n
e

Fig. 2: Top-down design of a shared communication infrastructure used by two
distance warners, distw f s and distw b s, and a wheel sensor, wheel tick, to com-
municate with the braking system, distw f t and distw b t, and the odometer,
odometer, respectively.

guarantee. As the environment allows a flow from wheel tick to the source of
the front distance warner, wheel tick distw f s then, with the flow allowed
by the guarantee from a distance warner source to its target, we have the flow
wheel tick distw f s distw f t. This flow is forbidden by the interface’s prop-
erties. If we specified the no-flow properties in the Bus interface as guarantees,
then the interface would be well-formed. However, the composition of the three
subsystems would not satisfy the initial specification because guarantees only
apply to implementations of their interface, and the flow described above would
still be allowed in the composition of the three subsystems. This illustrates two
applications of the information-flow interface theory: to detect inconsistent no-
flow specifications and faulty decompositions. Moreover, when an interface is not
well-formed we can provide a witness for the property violation. We can use this
witness to guide the refinement of an ill-formed interface into a well-formed one.

In the second step of our refinement, in Figure 2, we add the missing as-
sumptions to the Bus interface. Our notion of composition compatibility between
interfaces requires that the Sending interface includes guarantees that implies
the Bus assumptions, as the Sending interface will be part of the Bus environ-
ment. At this point, with a certified decomposition of the original specification,
our theory guarantees that each subsystem can now be further refined indepen-
dently (possibly by different teams). The last step illustrates an independent
refinement of the Sending and the Receiving interfaces.

In Fig. 3, we present the stateful view of the system, which requires that
the system satisfies the composition of the Sending, the Bus, and the Receiving
interfaces derived in Fig. 2 at all times. We present, as well, a refinement of
that specification, which requires that in each time point only one of the sending
components can use the bus. The interfaces that define each state are named
after the sending component that can use the bus (e.g. in the state Swheel only
the wheel tick can use the bus). If the access to the bus is mutually exclusive,
then we can simplify the assumptions on the environment in the Bus interface.
With more guarantees on the implementations we need fewer assumptions to
satisfy the properties.

refinedistw f t
distw b t
odometer

distw f s

wheel tick
distw b s distw f t

distw b t
odometerwheel tick

distw b s
distw f s

distw f t
distw b t
odometer

distw f s
distw b s distw b t

wheel tick

distw f t

odometer

distw f s
distw b s

wheel tick

Swheel

Sdistw bSdistw f

Fig. 3: Design of mutually exclusive shared communication infrastructure for dis-
tance warners and the wheel odometer. Each state is defined by the composition
of the interfaces inside.

Finally, the components of our system can be, for instance, the Simulink and
Stateflow models provided to the authors [25] by their industrial partners. We can
then use the tool introduced in their work to verify whether these components
implement the stateful interfaces we derived.

In summary, our framework defines relations on both stateless and stateful
interfaces specifying information-flow policies that allow to check if: (i) a given
interface refines (or abstracts) the current specification; (ii) two interfaces are
compatible for composition; (iii) a specification is consistent; (iv) information-
flows in a component define an implementation of a given interface; and (v) a
system decomposition refines the system specification.

3 Stateless Information-flow Interfaces

In this section, we introduce a stateless interface and component algebra for
secure information flow. Information flows between two variables when the value
of one influences the other.

8 E. Bartocci et al.

Information-flow Interfaces 9

We are interested in the structural properties of information flow within a
system and define relations abstracting flows, flow relations, as being both reflex-
ive and transitively closed. An information-flow component abstracts the imple-
mentation of a system by a flow relation. An information-flow interface specifies
forbidden flows in an open system by defining three kinds of constraints: as-
sumptions, guarantees, and properties. The assumption characterizes flows that
we assume are not part of the environment while the guarantee describes all
flows the system forbids and that are local to it. The property qualifies the for-
bidden flows at the interaction between the system and its environment. Hence,
it represents a requirement on the closed system that needs to be enforced by
guarantees on the open system and assumptions on its environment.

Definition 1. Let X and Y be disjoint sets of input and output variables,
respectively, with Z = X ∪ Y the set of all variables. A stateless information-
flow component is a tuple (X,Y,M), where M ⊆ Z × Y is a (reflexive and
transitive) flow relation, called flows. A stateless information-flow interface is
a tuple (X,Y,A,G,P), where: A ⊆ Z × X is a relation, called assumption;
G ⊆ Z × Y is a relation, called guarantee; and P ⊆ Z × Y is a relation, called
property.

Given an interface F we are interested in components that do not implement
flows forbidden by either the interface guarantees (called implementations of F)
or the interface assumptions (called environments of F).

Definition 2. A component fE = (Y,X, E) is called an environment of F =
(X,Y,A,G,P). An environment is admissible for F , denoted by fE |= F , iff
E ⊆ A. A component f = (X,Y,M) implements the interface F , denoted by
f |= F , iff M⊆ G.

Example 1.

distw b t
distw f t

odometerwheel tick

distw f s
distw b s

sending

distw b s
distw f s

wheel tick
distw b t
distw f t

odometer

bus

Bus

Fig. 4: Interface Bus with
an implementation, bus,
and an admissible environ-
ment, sending.

In Figure 4, we have the first refinement of the in-
terface Bus from our application example. The
Bus interface specifies the requirement on the
closed system (using properties) that there are
no-flows from wheel tick to both distw f s and
distw b s. The Bus interface specifies this re-
quirement as a guarantee on the open system,
too. Then, the bus component is an implemen-
tation of Bus because it has only a flow from
distw f s to distw f t, which is not in the guaran-
tees of the Bus interface. Bus does not have any
assumptions, then the sending component is an
environment for Bus.

When we compose the components sending and bus, there is a flow from wheel tick
to distw f t, which is in the properties of the Bus. Hence the assumption and
guarantee specified over the open system are not enough to ensure the property
over the closed system. The composition of these two components witness that
the Bus interface is not well-formed.

An information-flow interface is well-formed when it has at least one imple-
mentation and one admissible environment. Therefore, all of its relations must
be irreflexive. We refer to irreflexive relations as no-flow relations. A well-formed
interface ensures, additionally, that an interface property is consistent with its
assumptions and guarantees. An interface property is not consistent when the
flow relation defined by the composition of one of the interface’s admissible
environments with one of its implementations includes a pair specified in the
interface property. To check whether the property is consistent, we compute the
flow relation of the closed system defined by an interface F , which includes all
flows that are in the composition of any of the interface’s admissible environ-
ments with one of its implementations. The main challenge is that, in general,
the complement of an interface’s guarantee (assumption) may not define the flow
relation of any of its implementations (environments). Hence there may be no
maximal implementation or admissible environment for a given interface.

Example 2.
bustbuss

Fig. 5: Bus im-
plementations.

In Figure 5, we have two components, buss and bust, that
implement the interface Bus from the previous example.
A maximal implementation of Bus must include the flows
in both buss and bust. As flows are transitively closed,
the maximal implementation would include a flow from
wheel tick to distw f t, which violates the Bus guarantees.

Given that we do not have maximal implementations and maximal admis-
sible environments, then we cannot characterize all flows of the closed system
defined by an interface F by computing the transitive closure of all pairs in the
complement of F ’s assumption and guarantee – (A∪ G)∗. This approach would
yield more flows than the flows of the closed system defined by F . Instead, we
consider all pairs (z, z′) such that there exists a path from z to z′ that alternates
between flows in the complement of the assumption, A, and the guarantee, G. We
define this notion below as the composition between no-flow relations. In Propo-
sition 1 we prove that this definition captures our intended relation between an
interface property and its environments and implementations.

Definition 3. A no-flow relation N ⊆ (A ∪ B) × B is an irreflexive relation.
and its complement is N = ((A ∪ B) × B) \ N . Let N ⊆ (A ∪ B) × B and
N ′ ⊆ (A′ ∪ B′)× B′ be two no-flow relations. The set of flows defined by their
composition is N • N ′ = (IdA′∪B′ ∪ N) ◦ (N ′ ◦ N)∗ ◦ (IdB ∪ N ′), where IdZ =
{(z, z) | z ∈ Z} and R ◦ R′ = {(z, z′′) | (z, z′) ∈ R and (z′, z′′) ∈ R′} is the usual
composition between relations.

We have now all the ingredients to define well-formed interfaces.

Definition 4. An interface (X,Y,A,G,P) is well-formed iff A, G and P are
no-flow relations; and the property is consistent, i.e. (A • G) ∩ P = ∅.

Proposition 1. For all well-formed interfaces F = (X,Y,A,G,P), and for all
components f = (X,Y,M) and fE = (Y,X, E): if f implements F , f |= F , and

10 E. Bartocci et al.

fE is an admissible environment of F , fE |= F , then their combined flows are
consistent with the property of F , (M∪ E)∗ ∩ P = ∅.

3.1 Composition and Incremental Design

We now present how to compose components and interfaces. We introduce a
compatibility predicate that checks whether the composition of two interfaces is
a well-formed interface. We prove that these two notions support the incremental
design of systems.

The different types of variables between interfaces F and F ′ are defined as
YF,F ′ = Y ∪ Y ′, XF,F ′ = (X ∪ X ′) \ YF,F ′ , and ZF,F ′ = YF,F ′ ∪ XF,F ′ . The
same definition applies to components f and f ′. The composition of components
f and f ′ is the reflexive and transitive closure of the union of the individual
component flows, i.e. f ⊗ f ′ = (Xf,f ′ , Yf,f ′ , (M∪M′)∗). We present interface
composition by defining separately A, G and P of the composed interface.

We compose interfaces through their shared variables. Shared variables be-
tween two interfaces are all variables that are an input variable in one of the
interfaces and an output variable in the other one. The composite flows between
two interfaces is the set with all flows that are in the composition of any of their
implementations. As for the definition of flows in the closed system defined by
an interface, the composite flows are the composition of the guarantees of the
interfaces being composed (as defined in Definition 3). The composition of two
interfaces should not restrict their sets of implementations, thus the composite
guarantees are the complement of the composite flows.

Definition 5. Let F = (X,Y,A,G,P) and F ′ = (X ′, Y ′,A′,G′,P ′) be two in-
terfaces. Their composite flows are GF,F ′ = G • G′. The composite guarantees
of F and F ′ are defined as GF,F ′ =(ZF,F ′×YF,F ′)\GF,F ′ , also denoted by GF⊗F ′ .

The assumption of an interface resulting from the composition of multiple
interfaces is the weakest condition on the environment that allows the interfaces
being composed to work together. Additionally, it must support incremental
design, i.e. the admissibility of an environment must be independent of the order
in which the interfaces are composed.

Naturally, all assumptions of each interface must be considered during com-
position. However, not all of them can be kept as assumptions of the composite
interface, because shared variables will be output variables of the composition. If
the environment can still influence the information flow to a shared variable, then
we may need to add assumptions to prevent such a flow. Propagated assumptions
between two interfaces are derived by looking in their respective assumptions for
no-flow pairs pointing to a shared variable.

Information-flow Interfaces 11

12 E. Bartocci et al.

Example 3.

Fcan

can

deb

ecu

imm

Fimm

key

can
imm

Fig. 6: Propagating as-
sumptions.

In Figure 6, we depict an interface specifying
information-flow policies for a car immobilizer,
Fimm, along with an interface for a Controller Area
Network (CAN bus), Fcan. Interface Fimm has only
one assumption that key does not flow to can.
In this design, the immobilizer uses the CAN to
communicate with the car electronic control unit
(ECU). Our goal is to compose both interfaces.

These interfaces share the port can. Thus, can will be an output port of their
composition. The interface Fcan cannot guarantee that the only assumption in
Fimm is satisfied after composition because it does not have a port key. As we
are working with open systems and assume that the environment is helpful, we
can add further assumptions to ensure the correctness of this composition. For
example, we can add assumptions that prevent key from flowing to an input port
in Fcan that can flow to can. Such flows could be part of a flow from key to can,
which would violate the assumption we want to enforce. In this case, we note
that in Fcan information in ecu can flow to can. So, the composite interface needs
to include the assumption that key does not flow to ecu. This is a propagated
assumption.

Definition 6. The set of assumptions propagated from F = (X,Y,A,G,P)
to F ′ = (X ′,Y ′,A′,G′,P ′) is ÂF→F ′ = {(z, z′) | ∃s ∈ X ∩ Y ′ s.t. (z, s) ∈
A and (z′, s) ∈ GF,F ′}. The set with all propagated assumptions of F and F ′ is

ÂF,F ′ = ÂF→F ′ ∪ ÂF ′→F . The composite assumptions of F and F ′ are defined

as AF,F ′ = (A ∪A′ ∪ ÂF,F ′) ∩ (ZF,F ′×XF,F ′), also denoted by AF⊗F ′ .

Example 4. From the example before, information from the ports ecu, imm and
deb can all flow to can. So, they are flows in the composite interface and, by
Definition 5, {(ecu, can), (imm, can), (deb, can)} ⊆ GFimm,Fcan

. Then, ÂFimm→Fcan
=

{(key, ecu), (key, imm), (key, deb)}. From those assumptions only (key, ecu) points
to a variable in XF,F ′ , so AFimm,Fcan = {(key, ecu)}.

The properties of the composition contains all properties of each interface
being composed. They include, additionally, all derived properties from the as-
sumptions and guarantees of the composite. Derived properties are guarantees
that hold under any admissible environment. They are defined by all pairs (z, y)
in an interface guarantee s.t. there is no combination of flows allowed by its
assumptions and guarantees that creates a flow from z to y. Then, the derived
properties of an assumption A and guarantee G is defined as PA,G = G \ (A•G).
The composite properties of F and F ′ are PF,F ′ = P ∪ P ′ ∪ PAF,F ′ ,GF,F ′ .

Definition 7. The composition of two interfaces F and F is the interface: F ⊗
F = (XF,F ′ , YF,F ′ ,AF,F ′ ,GF,F ′ ,PF,F ′), where AF,F ′ is defined in Definition 6,
GF,F ′ defined in Definition 5 and PF,F ′ in the previous paragraph.

We allow composition for any two arbitrary interfaces. However, not all com-
positions result in a well-formed interface. We define next the notions of two

Information-flow Interfaces 13

interfaces being composable and compatible. Composability imposes the syntac-
tic restriction that both interface’s output variables are disjoint. Compatibility
captures the semantic requirement that whenever an interface F provides in-
puts to another interface F ′, then F ′ needs to include guarantees that imply the
assumptions of F .

Definition 8. Two interfaces F = (X,Y,A,G,P) and F ′ = (X ′, Y ′,A′,G′,P ′)
are composable iff Y ∩Y ′ = ∅. The interfaces F and F ′ are compatible, denoted
F ∼ F ′ iff they are composable and ((A ∪A′) ∩ (ZF,F ′ × YF,F ′)) ⊆ GF,F ′ .

Clearly, both the composition operator and the compatibility relation are
commutative. Additionally, we prove that composition preserves well-formedness
and that it supports incremental design of systems. The full proofs are in the
appendix.

Theorem 1. Let F and F ′ be well-formed interfaces. If the interfaces are com-
patible, F ∼ F ′, then their composition, F ⊗F ′, defines a well-formed interface.

Theorem 2 (Incremental design). Let F , F ′ and F ′′ be interfaces. If F ∼ F ′
and (F ⊗ F ′) ∼ F ′′, then F ′ ∼ F ′′ and F ∼ (F ′ ⊗ F ′′).

Proof. We proved first that composite assumptions are associative. We assume
that F ∼ F ′ and (F ⊗ F ′) ∼ F ′′. The most interesting case is when (z, s) is
an assumption of F and s is a shared variable between F and F ′ ⊗ F ′′. Then,
we need to prove that (z, s) ∈ GF,F ′⊗F ′′ . We prove this by assuming towards a
contradiction that (z, s) ∈ GF,F ′⊗F ′′ . We illustrate it in Figure 7.

s
z′

z z
z′

s
s′

F ⊗ F ′

z′

F ′′

s′

F

∈ ÂF→F ′

Fig. 7: Incremental design.

By composite flows being associative, (z, s) ∈
GF⊗F ′,F ′′ . By (z, s) being an assumption of
F and (s′, s) ∈ GF⊗F ′ , then we have the
derived assumption (z, s′) ∈ ÂF→F ′ and, so
(z, s′)∈AF⊗F ′ . Moreover, (z, s′)∈GF⊗F ′,F ′′ , be-
cause z can flow to s′ when F ⊗ F ′ is composed
with F ′′. This contradicts our initial assumption
that (F ⊗ F ′) ∼ F ′′.

We prove additionally that composition is associative for compatible inter-
faces.

Theorem 3. If F ∼ F ′ and F ⊗F ′ ∼ F ′′, then (F ⊗F ′)⊗F ′′ = F ⊗ (F ′⊗F ′′).

Finally, we show that flows resulting from the composition of any components
that implement two given interfaces are allowed by the composition of these
interfaces.

Proposition 2. For all two interfaces F and F ′, and all two components f =
(X,Y,M) and f ′ = (X ′, Y ′,M′) that implement them, f |= F and f ′ |= F ′, then
the composition of the components implements the composition of the interfaces,
f ⊗ f ′ |= F ⊗ F ′.

14 E. Bartocci et al.

3.2 Refinement and Independent Implementability

We now define a refinement relation between interfaces. Intuitively, an interface
F ′ refines F iff F ′ admits more environments than F , while possibly constraining
its implementations.

Definition 9. Interface F ′ = (X ′, Y ′,A′,G′,P ′) refines F = (X,Y,A,G,P),
written F ′ � F , when A′ ⊆ A, G ⊆ G′ and P ⊆ P ′.

Let F and F ′ be interfaces s.t. F ′ � F . Let f = (X,Y,M) and fE = (Y,X, E)
be components. Then, (a) If f |= F ′, then f |= F ; and (b) if fE |= F , then
fE |= F ′.

Additionally, we show below that refinement and composition supports in-
dependent implementability.

Theorem 4 (Independent implementability). For all well-formed inter-
faces F ′1, F1 and F2, if F ′1 � F1 and F1 ∼ F2, then F ′1 ∼ F2 and F ′1⊗F2 � F1⊗F2.

Proof. The challenging part is to prove that the refined composite contains all
properties of the abstracted one, i.e. PF1⊗F2 ⊆ PF ′

1⊗F2
. We prove by induction

on n ∈ N that if a pair of variables (z, y) cannot be defined by assume-guarantee
paths of size at most n of the abstract composition, then it cannot be defined by
assume-guarantee paths of size at most n of the refined composition. We can see
easily for the base case. If for all (z, s) ∈ AF1,F2

s.t. there exists (s, y) ∈ GF1,F2
,

then, by F ′1 � F1, it follows that for all (z, s) ∈ AF ′
1,F2

there exists (s, y) ∈ GF ′
1,F2

.

Hence if (z, y) /∈ AF1,F2
◦ GF1,F2

, then (z, y) /∈ AF ′
1,F2
◦ GF ′

1,F2
as well.

3.3 Discussion

Properties. In this work, we consider transitively closed flows. In this setting, in
an open system, information can flow from z to z′ by flowing from z to s through
the environment, and then from s to z′ through one of its implementations. As
our algebra focuses on the design of structural requirements of no-flows in open
systems, it needs to support the specification of global no-flow requirements. We
made them explicit by introducing properties. If we did not include properties
in our interfaces, then either assumptions or guarantees would need to take over
the role of specifying global no-flows. Let’s assume that, alternatively, guarantees
would be interpreted as global no-flows. Then, to support incremental design,
the compatibility criteria between interfaces would turn out to be overly restric-
tive, with intuitive and correct designs being considered incompatible. This led
us to the distinction between guarantees and properties, where properties may
be supported by assumptions on the environment that can restrict the set of
compatible interfaces. In other words, the main advantage of having properties
is that the designer can choose how to split the responsibilities between the
environment and the implementations to satisfy a global no-flow.

Information-flow Interfaces 15

Semantics. The structural approach that abstracts away semantic considera-
tions is an important feature of our theory. The practicability of our approach
lies in the support for the design of such requirements by decoupling the de-
sign process from (its orthogonal) semantic considerations. Hence, our approach
does not deny semantics, but rather separates the design of specifications from
component implementation concerns. The presented approach even allows using
tailored semantics and tools for different parts of the design. For example, at
the bottom (component) level, no-flows and flows relations can be instantiated
with different semantic interpretations. After deriving the component no-flows
from the implementation under a concrete semantics, the theory can be agnostic
about the underlying semantic interpretation and can focus on whether there
exists a flow at all.

4 Stateful Information-Flow Interfaces

We extend our theory with stateful components and interfaces. These are tran-
sition systems in which each state is a stateless component or interface, respec-
tively.

Definition 10. Let X and Y be disjoint sets of input and output variables,
respectively, with Z = X ∪Y the set of all variables. Let Q be a set of states with
q̂ ∈ Q being the initial state and δ : Q→ 2Q be a transition relation. A stateful
information-flow component f is a tuple (X,Y,Q, q̂, δ,M), where M : Q→ 2Z×Y

is a state labeling such that for all states q ∈ Q, M(q) defines a flow relation. We
denote by f(q) = (X,Y,M(q)) the stateless component implied by the labeling of
q. A stateful information-flow interface F is a tuple (X,Y,Q, q̂, δ,A,G,P), where
A : Q → 2Z×X is called assumption; G : Q → 2Z×Y is called guarantee;
and P : Q → 2Z×Y is called property. For each state q ∈ Q we denote by
F(q) = (X,Y,A(q),G(q),P(q)) the stateless interface implied by the assumption,
guarantee and property of q.

A stateful interface F is well-formed iff F(q̂) is a well-formed stateless inter-
face, and for all q ∈ Q reachable from q̂ the stateless interface F(q) is well-formed.
In what follows, F = (X,Y,Q, q̂, δ,A,G,P) and F′ = (X ′, Y ′, Q′, q̂′, δ′,A′,G′,P′)
are stateful interfaces, and f = (X,Y,Qf , q̂f , δf ,M) and fE = (Y,X,QE , q̂E , δE ,E)
are stateful components.

A stateful component f implements a stateful interface F if there exists a
simulation relation from f to F such that the stateless components in the relation
implement the stateless interfaces they are related to. Admissible environments
require a simulation relation from them to the interface they are admissible on.

Definition 11. A component f implements the interface F, denoted by f |= F, iff
there exists H ⊆ Qf ×Q s.t. (q̂f , q̂) ∈ H and for all (qf , q) ∈ H: (i) f(qf) |= F(q);
and (ii) if q′f ∈ δf (qf), then there exists a state q′ ∈ δ(q) s.t. (q′f , q

′) ∈ H.
A component fE is an admissible environment for the interface F, denoted by
fE |= F, iff there exists a relation H ⊆ Q × QE s.t. (q̂, q̂E) ∈ H and for all

16 E. Bartocci et al.

(q, qE) ∈ H: (i) f(qE) |= F(q); and (ii) if q′ ∈ δF(q), then there exists a state
q′E ∈ δE(qE) s.t. (q′, q′E) ∈ H.

As for stateless interfaces, we have that interface’s properties are satisfied
after we compose any of its implementations f with any of its admissible envi-
ronments fE .

Proposition 3. For all well-formed interfaces F, and all relations H ⊆ Qf ×
Q and HE ⊆ Q × QE that witness f |= F and fE |= F, respectively, it holds:
(i) (M(q̂f)∪E(q̂E))

∗ ∩P(q̂) = ∅; and (ii) for all q ∈ Q that are reachable from q̂,
if (qf , q) ∈ H and (q, qE) ∈ HE , then (M(qf) ∪ E(qE))

∗ ∩ P(q) = ∅.

Composition of two components is defined as their synchronous product. The
composition of two interfaces is defined as their synchronous product, as well.
However, we only keep the states that are defined by the composition of two
compatible stateless interfaces.

Definition 12. Let F and F′ be two interfaces. Their composition is defined
as the tuple: F ⊗ F′ = (XF,F′ , YF,F′ , QF,F′ , q̂F,F′ , δF,F′ ,AF,F′ ,GF,F′ ,PF,F′), where:
q̂F,F′ = (q̂, q̂′) and QF,F′ = {q̂F,F′}∪{(q, q′) | F(q) ∼ F′(q′)}; (q2, q

′
2) ∈ δF,F′(q1, q

′
1)

iff q2 ∈ δ(q1) and q′2 ∈ δ′(q′1); for all (q, q′) ∈ QF,F′ : FF,F′(q, q′) = F(q)⊗ F′(q′).

Two stateful interfaces are compatible if the stateless interfaces defined by
their initial states are compatible, i.e. F(q̂) ∼ F′(q̂′). It follows from the results
proved for the stateless interfaces that compatibility is commutative, composition
preserves well-formedness and stateful interfaces support incremental design.

Proposition 4. If f |= F and g |= G, then f ⊗ g |= F⊗G.

Given an interface, we define transitions parameterized by no-flows on its
input variables (i.e. with fixed assumptions) or on its output variables (i.e. with
fixed guarantees and properties).

Definition 13. Let F be an interface. Input transitions from a given state q ∈
Q are defined as δX(q) = {δX(q,A) | A ⊆ Z × X} with δX(q,A) = {q′ ∈
δ(q) | A(q′) = A}. Output transitions from a given state q ∈ Q are defined as
δY (q) = {δY (q,G,P) | G ⊆ Z × Y and P ⊆ Z × Y } with δY (q,G,P) = {q′ ∈
δ(q) | G(q′) = G and P(q′) = P}.

Interface FR refines FA, if all output steps of FR can be simulated by FA, while
all input steps of FA can be simulated by FR. This corresponds to alternating
refinement [5].

Definition 14. Interface FR refines FA, written FR � FA, iff there exists a rela-
tion H ⊆ QR×QA s.t. (q̂R, q̂A) ∈ H and for all (qR, qA) ∈ H: (i) FR(qR) � FA(qA);
(ii) for all set of states O ∈ δYR (qR), there exists O′ ∈ δYA (qA) s.t. for all set of
states I ′ ∈ δXA (qA), there exists I ∈ δXR (qR) s.t. (O ∩ I)× (O′ ∩ I ′) ⊆ H.

Information-flow Interfaces 17

(b)(a)

z
y
x

z
y
x

z
y
x

x
y
z

z
y
x

y
y′x′

x

x y
y′

x′

x y
y′

x′

y
y′x′

x
x y

y′
x′q′3

q′2

q̂′1 q′2q̂′1

�

q̂1

q2

q3

q̂1 q2

�

Fig. 8: Refined interfaces with witness: (a) relation {(q̂1, q̂′1), (q2, q
′
2)}; and (b)

relation {(q̂1, q̂′1), (q2, q
′
2), (q3, q

′
2)}.

Example 5. In Figure 8 we depict two examples of refined stateful interfaces.

In Figure 8(a) the stateless interface in each state only uses output ports
and it only specifies properties. The initial state of both stateful interfaces is
the same, so they clearly refine each other. As there are no assumptions and
guarantees, then, by Definition 14, we need to check that for all successors of the
initial state in the refined interface qs, there exists a successor of the initial state
in the abstract interface q′s such that PA(q′s) ⊆ PR(qs). This holds for the states
(q2, q

′
2). Hence the relation {(q̂1, q̂′1), (q2, q

′
2)} witnesses the refinement. Note that

the refined interface is obtained by removing a nondeterministic choice on the
transition function.

The witness relation for the refinement depicted in Figure 8(b) is {(q̂1, q̂′1),
(q2, q

′
2), (q3, q

′
2)}. The initial states are the same, so the condition (i) in Definition

14 is trivially satisfied. The refined interface has two distinct output transitions
from the initial state q̂1. It can either go to state q2 by choosing the set of
guarantees and proposition with only one element (x, y) or it can transition to
state q3 by committing to the set of no-flows {(x, y), (x′, y)} for the guarantees
and {(x, y)} as property. From the initial state of the abstract interface, there
exists only one input transition possible, to assume that x does not flow to x′

and y′ does not flow to x. The following holds for both states accessible from
the initial state in the refined interface: AR(q2) ⊆ AA(q′2) and AR(q3) ⊆ AA(q′2).
The refined interface specifies an alternative transition from the initial state
(represented by state q3) that allows more environments while restricting the
implementation and preserving the property.

Theorem 5. Let F′ � F. (a) If f |= F′, then f |= F. (b) If fE |= F, then fE |= F′.

Theorem 6 (Independent implementability). For all well-formed inter-
faces F′1, F1 and F2, if F′1 � F1 and F1 ∼ F2, then F′1 ∼ F2 and F′1⊗F2 � F1⊗F2.

The composition operation on stateful information-flow interfaces can be
generalized to distinguish between compatible and incompatible transitions of
interfaces when they are composed. Usually this is done by labeling transitions
with letters from an alphabet, so that only transitions with the same letter can
be synchronized. While necessary for practical modeling, we omit this technical
generalization to allow the reader to focus on the novelty of our formalism, which

18 E. Bartocci et al.

is the ability to specify information-flow constraints (environment assumptions,
implementation guarantees, and global properties) at each state of an interface.

5 Related Work

To the best of our knowledge, we are the first to provide a theory for top-down
and bottom-up design of information-flow system requirements that supports
both incremental design and independent implementability of systems. The lit-
erature closest to our work about information-flow focus on the semantic aspects
of it. The novelty of our work lies on explicit separation of the structural concerns
from the semantic aspects of information-flow.

Language-based techniques have been proved useful to verify and enforce
information flow policies [29]. Examples range from type systems [15] to program
analysis using program-dependency graphs (PDGs) [18,16]. In our approach we
aim at composition and refinement notions that are independent of the language
adopted for the implementations.

Information-flow properties can be specified with respect to the observed be-
havior of a system, in which each of its execution runs is abstracted as a trace. In
this approach, properties often compare multiple executions of a system to certify
that no forbidden flow can be deduced by an observer. Such properties over mul-
tiple execution traces are called hyperproperties [12]. Temporal logics [26], like
LTL or CTL* are used to specify trace properties of reactive systems. HyperLTL
and HyperCTL* [11] extend temporal logics by introducing quantifiers over path
variables. They allow relating multiple executions and expressing information-
flow security properties [12,11]. Epistemic temporal logics (ETL) [9] provide the
knowledge connective with an implicit quantification over traces. With ETL we
can reason about the knowledge gain of agents over time. Then, we can spec-
ify which information can be learned by the agents while interacting with the
system [6]. All these LTL extensions reason about closed systems while our ap-
proach allows compositional reasoning about open systems. Moreover, we focus
here on the structural aspect of information-flow, and not yet on its semantic
interpretation. Thus, all information-flow trace-based semantics are orthogonal
to our approach.

Interface theories belong to the broader area of contract-based design [8], orig-
inally popularized by Meyer [24], following earlier ideas introduced by Floyd and
Hoare [14,19]. Our theory follows closely the philosophy for formal frameworks
for systems design introduced for Interface automata (IA) [1] and Assume/Guar-
antee (A/G) [2] interfaces. Interface theories were later extended with extra-
functional requirements such as resource [10], timing [4,13] and security [21]
requirements. Unlike in previous interface formalisms, we had to introduce the
notion of properties which capture the intent of the designer and can be used to
steer the refinement of interfaces.

Interface for structure and security (ISS) [21] is a variant of IA that enables
specification of two types of actions on (1) low and (2) high confidential in-
formation. ISS uses a bisimulation-based notion of non-interference that checks

Information-flow Interfaces 19

whether the system behaves in the same way when high actions are performed
or when they are considered hidden actions. Our approach is orthogonal to IA
and their extensions: we do not characterise the type of actions of each compo-
nent, but only their input/output ports, defining explicitly the information-flow
relations between variables.

Our approach took inspiration from relational interfaces (RIs) [31]. RIs spec-
ify the legal inputs that the environment is allowed to provide to the component
along with the legal outputs that the component can generate when provided
with these input. RIs do not have assumptions and guarantees defined separately.
Instead, they have a contract that specifies the desired input-output behavior.
A contract in RIs is expressed over individual traces. Then, an RI contract can
only relate input and output values in a trace, and not across multiple traces.
This restricts considerably RIs expressivity concerning information-flow proper-
ties. Besides, RIs are trace-based interfaces, while in our approach we focus on
the structural aspect of information-flow, which may change from state to state
(in the stateful case). Our approach can be seen as a limited way to introduce
relational properties into A/G interfaces, namely solely for guiding refinement.
This limited way avoids many of the technical complexities of general relational
interfaces [31].

6 Conclusion

We propose a novel interface theory to specify information-flow properties. Our
framework includes both stateless and stateful interfaces and supports both in-
cremental design and independent implementability. To achieve this, unlike in
previous interface formalisms, we introduce the notion of properties which cap-
tures the intent of the designer for the interaction between assumptions and
guarantees. Moreover, properties can be used to steer the refinement of inter-
faces. It will be interesting to study the introduction of such design-guiding
properties in the context of other interface languages.

As future work, we will explore how to extend our theory with sets of must-
flows, i.e. support for modal specifications [27]. This will enable, for example, to
specify flows that a state q must implement so that the system can transition
to a different state, which is useful to specify declassification of information.
Another direction is to explore trace semantics for our interfaces.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: European Software Engi-
neering Conference/Foundations on Software Engineering (ESEC/FSE). p. 109120.
ACM (2001). https://doi.org/10.1145/503209.503226

2. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based de-
sign. In: Embedded Software. LNCS, vol. 2211, pp. 148–165. Springer (2001).
https://doi.org/10.1007/3-540-45449-7 11

https://doi.org/10.1145/503209.503226
https://doi.org/10.1007/3-540-45449-7_11

3. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theo-
ries of Software Intensive Systems. NATO Science Series (Series II: Mathemat-
ics, Physics and Chemistry), vol. 195, pp. 83–104. Springer Netherlands (2005).
https://doi.org/10.1007/1-4020-3532-2 3

4. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Embedded Soft-
ware. LNCS, vol. 2491, pp. 108–122. Springer (2002). https://doi.org/10.1007/3-
540-45828-X 9

5. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: CONCUR’98 Concurrency Theory. LNCS, vol. 1466, pp. 163–178.
Springer (1998). https://doi.org/10.1007/BFb0055622

6. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information
flow security. In: Proceedings of the ACM SIGPLAN 6th Workshop on Pro-
gramming Languages and Analysis for Security (PLAS). pp. 1–12. ACM (2011).
https://doi.org/10.1145/2166956.2166962

7. Benadjila, R., Renard, M., Lopes-Esteves, J., Kasmi, C.: One car, two frames:
attacks on hitag-2 remote keyless entry systems revisited. In: 11th USENIX Work-
shop on Offensive Technologies (2017)

8. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier,
P., Sangiovanni-Vincentelli, A.L., Damm, W., Henzinger, T.A., Larsen, K.G.: Con-
tracts for system design. Foundations and Trends in Electronic Design Automation
12(2-3), 124–400 (2018). https://doi.org/10.1561/1000000053

9. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal log-
ics. In: Foundations of Software Science and Computation Structures (FoSSaCS).
LNCS, vol. 9034, pp. 167–182. Springer (2015). https://doi.org/10.1007/978-3-662-
46678-0 11

10. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource inter-
faces. In: Embedded Software. LNCS, vol. 2855, pp. 117–133. Springer (2003).
https://doi.org/10.1007/978-3-540-45212-6 9

11. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N.,
Sánchez, C.: Temporal logics for hyperproperties. In: Principles of Secu-
rity and Trust (POST). LNCS, vol. 8414, pp. 265–284. Springer (2014).
https://doi.org/10.1007/978-3-642-54792-8 15

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6), 1157–1210 (2010). https://doi.org/10.3233/JCS-2009-0393

13. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed
I/O automata: a complete specification theory for real-time systems.
In: Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Control (HSCC). pp. 91–100. ACM (2010).
https://doi.org/10.1145/1755952.1755967

14. Floyd, R.W.: Assigning meanings to programs. Proceedings of Symposium on Ap-
plied Mathematics 19, 19–32 (1967). https://doi.org/10.1007/978-94-011-1793-7 4

15. Focardi, R., Maffei, M.: Types for security protocols. Formal Mod-
els and Techniques for Analyzing Security Protocols 5, 143–181 (2011).
https://doi.org/10.3233/978-1-60750-714-7-143

16. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in Java
programs - a practical guide. In: Software Engineering 2013 - Workshopband. LNI,
vol. P-215, pp. 123–138. Gesellschaft für Informatik e.V. (2013), https://dl.gi.de/
20.500.12116/17361

17. Hamilton, M.D., Tunstall, M., Popovici, E.M., Marnane, W.P.: Side channel
analysis of an automotive microprocessor. In: IET Irish Signals and Systems

20 E. Bartocci et al.

https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/3-540-45828-X_9
https://doi.org/10.1007/3-540-45828-X_9
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1561/1000000053
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.3233/978-1-60750-714-7-143
https://dl.gi.de/20.500.12116/17361
https://dl.gi.de/20.500.12116/17361

Information-flow Interfaces 21

Conference (ISSC). pp. 4–9. Institution of Engineering and Technology (2008).
https://doi.org/10.1049/cp:20080630

18. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security 8(6), 399–422 (2009). https://doi.org/10.1007/s10207-
009-0086-1

19. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

20. Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) International Symposium
on Formal Methods (FM). LNCS, vol. 4085, pp. 82–97. Springer (2006).
https://doi.org/10.1007/11813040 7

21. Lee, M., D’Argenio, P.R.: Describing secure interfaces with interface automata.
Electronic Notes in Theoretical Computer Science 264(1), 107–123 (2010).
https://doi.org/10.1016/j.entcs.2010.07.008

22. Mantel, H.: On the composition of secure systems. In: IEEE Sympo-
sium on Security and Privacy. pp. 88–101. IEEE Computer Society (2002).
https://doi.org/10.1109/SECPRI.2002.1004364

23. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for compo-
sitional noninterference. In: IEEE Computer Security Foundations Symposium
(CSF). pp. 218–232. IEEE (2011). https://doi.org/10.1109/CSF.2011.22

24. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

25. Mikulcak, M., Herber, P., Göthel, T., Glesner, S.: Information flow analysis of
combined simulink/stateflow models. Information Technology And Control 48(2),
299–315 (2019). https://doi.org/10.5755/j01.itc.48.2.21759

26. Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Founda-
tions of Computer Science (FOCS). pp. 46–57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

27. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.:
A modal interface theory for component-based design. Fundamenta Informaticae
108(1-2), 119–149 (2011). https://doi.org/10.3233/FI-2011-416

28. Ratasich, D., Khalid, F., Geissler, F., Grosu, R., Shafique, M., Bartocci, E.: A
roadmap toward the resilient internet of things for cyber-physical systems. IEEE
Access 7, 13260–13283 (2019). https://doi.org/10.1109/ACCESS.2019.2891969

29. Sabelfeld, A., Myers, A.C.: Language-based information-flow security.
IEEE Journal on Selected Areas in Communications 21(1), 5–19 (2003).
https://doi.org/10.1109/JSAC.2002.806121

30. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security 3(1), 30–50 (2000). https://doi.org/10.1145/353323.353382

31. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous re-
lational interfaces. ACM Transactions on Programming Languages and Systems
(TOPLAS) 33(4), 14 (2011). https://doi.org/10.1145/1985342.1985345

32. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with hitag2.
In: 21st USENIX Security Symposium. pp. 237–252 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

https://doi.org/10.1049/cp:20080630
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/11813040_7
https://doi.org/10.1016/j.entcs.2010.07.008
https://doi.org/10.1109/SECPRI.2002.1004364
https://doi.org/10.1109/CSF.2011.22
https://doi.org/10.1109/2.161279
https://doi.org/10.5755/j01.itc.48.2.21759
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.3233/FI-2011-416
https://doi.org/10.1109/ACCESS.2019.2891969
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/1985342.1985345
http://creativecommons.org/licenses/by/4.0/

22 E. Bartocci et al.

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

	Information-flow Interfaces
	1 Introduction
	2 Application Example
	3 Stateless Information-flow Interfaces
	3.1 Composition and Incremental Design
	3.2 Refinement and Independent Implementability
	3.3 Discussion

	4 Stateful Information-Flow Interfaces
	5 Related Work
	6 Conclusion
	References

