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In [3], Poonen and Slavov recently developed a novel approach 
to Bertini irreducibility theorems over an arbitrary field, based 
on random hyperplane slicing. In this paper, we extend their 
work by proving an analogous bound for the dimension of the 
exceptional locus in the setting of linear subspaces of higher 
codimensions.
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1. Introduction

Bertini theorems are a family of results which typically state that if a projective 
variety X ⊆ Pn

F over a field F has a certain nice property (such as smoothness, or 
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geometric irreducibility), then a generic hyperplane section of X has this property too. 
We define

P̂n
F = {hyperplanes H ⊆ Pn

F }

M
(1)
bad = {H ∈ P̂n

F : X ∩H is not geometrically irreducible}.

The set of bad hyperplanes M(1)
bad is a constructible locus in Pn

F , and so it makes sense 
to ask about its dimension. A classical Bertini irreducibility theorem would state that 
dimM

(1)
bad � n − 1. However, much more is true, as demonstrated by the following 

theorem of Benoist.

Theorem 1.1. [1, Théorème 1.4] We have dimM
(1)
bad � n − dimX + 1.

In 2020, Poonen and Slavov reproved Theorem 1.1 using a novel approach based on 
estimates for the mean and variance of random hyperplane slices of X over a finite field. 
In this paper, we demonstrate that Poonen and Slavov’s methods can be generalised to 
deal with linear subspaces H of a general codimension k. For a fixed 1 � k � n − 1, we 
define

V = G(n− k, n) = {linear subspaces H ⊆ Pn
F of codimension k} (1.1)

M
(k)
bad = {H ∈ V : X ∩H is not geometrically irreducible}. (1.2)

The main result of this paper is the following theorem.

Theorem 1.2. Let X ⊆ Pn
F be a geometrically irreducible variety over an arbitrary field 

F . Let V and M(k)
bad be as in (1.1) and (1.2). Then

dimM
(k)
bad � dimV − dimX + k.

We recall that for any k � n, dim(G(n − k, n)) = (n − k + 1)k. Therefore, on taking 
k = 1 in Theorem 1.2, we recover the bound dimM

(1)
bad � n −dimX+1 from Theorem 1.1.

Remark 1.3. Suppose that dimX � k. If X is not linear, then a generic intersection X∩H
for H ∈ V will either be empty or a union of at least two points, and so not irreducible. 
Hence we cannot expect a Bertini irreducibility theorem to hold in this setting. This is 
consistent with the fact that the bound in Theorem 1.2 becomes trivial when dimX � k.

In the case k = 1, Benoist proves in [1, Proposition 3.1] that Theorem 1.1 is best 
possible, by exhibiting an irreducible variety X with the property dimM

(1)
bad = n −

dimX + 1. The following theorem, which we prove in Section 4, is a generalisation of 
this argument, and shows that Theorem 1.2 is sharp whenever dimX � k.
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Theorem 1.4. Let 1 � k � r � n − 1. Then there exists an irreducible variety X ⊆ Pn
F of 

dimension r such that

dimM
(k)
bad = dimV − r + k.

Remark 1.5. Rather than considering intersections X∩H, Poonen and Slavov work in [3]
with a morphism ϕ : X → Pn

F whose nonempty fibres all have the same dimension. They 
then study the exceptional locus of the hyperplanes H ⊆ Pn

F such that ϕ−1(H) is not 
geometrically irreducible. The reader comparing our arguments to [3] should consider ϕ to 
be the embedding X ⊆ Pn

F from the statement of Theorem 1.2, so that ϕ−1(H) = X∩H. 
However, we expect that Theorem 1.2 could easily be extended to the more general choice 
of ϕ used in [3].

Acknowledgments. The authors would like to thank Tim Browning for suggesting this 
project and for many helpful discussions during the development of this paper. We are 
also grateful to the anonymous referees for providing helpful feedback on an earlier 
version of this work.

2. Statistics of random linear slices

In this section, we work over a fixed finite field Fq, and estimate the mean and variance 
of the number of Fq-points on random linear slices of X.

Lemma 2.1. Fix a variety X ⊆ Pn
Fq

. Let V = G(n − k, n). For H ∈ V (Fq) chosen 
uniformly at random, define the random variable Z := #(X ∩ H)(Fq). Let μ and σ2

denote the mean and variance of Z respectively. Then

μ = #X(Fq)(q−k + O(q−k−1)),

σ2 = O(q−k#X(Fq)).

Proof. We begin by considering the mean. We have

μ = 1
#V (Fq)

∑
H∈V (Fq)

#(X ∩H)(Fq)

= 1
#V (Fq)

∑
H∈V (Fq)

∑
x∈(X∩H)(Fq)

1

= 1
#V (Fq)

∑
x∈X(Fq)

∑
H∈V (Fq)
x∈H(Fq)

1. (2.1)

We observe that the inner sum in (2.1) is independent of x. Consequently, we can average 
the value of this sum over a dummy variable w ∈ Pn(Fq) to obtain
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∑
H∈V (Fq)
x∈H(Fq)

1 = 1
#Pn(Fq)

∑
w∈Pn(Fq)

∑
H∈V (Fq)
w∈H(Fq)

1.

Returning to (2.1), we conclude that

μ = 1
#Pn(Fq)#V (Fq)

∑
x∈X(Fq)

∑
H∈V (Fq)

∑
w∈H(Fq)

1

= #X(Fq)#Pn−k(Fq)
#Pn(Fq)

(2.2)

= #X(Fq)(q−k + O(q−k−1)). (2.3)

A similar argument can be applied for the variance. We have

σ2 =

⎛
⎝ 1

#V (Fq)
∑

H∈V (Fq)

(#(X ∩H)(Fq))2
⎞
⎠− μ2

=

⎛
⎝ 1

#V (Fq)
∑

H∈V (Fq)

∑
x,y∈(X∩H)(Fq)

1

⎞
⎠− μ2

=

⎛
⎜⎜⎝ 1

#V (Fq)
∑

x,y∈X(Fq)

∑
H∈V (Fq)
x,y∈H(Fq)

1

⎞
⎟⎟⎠− μ2. (2.4)

The contribution to (2.4) from the case x = y is simply μ. Therefore, σ2 = B − μ2 + μ, 
where

B = 1
#V (Fq)

∑
x,y∈X(Fq)

x�=y

∑
H∈V (Fq)
x,y∈H(Fq)

1. (2.5)

A similar trick to above can be applied to the inner sum of (2.5), by averaging over two 
dummy variables u and v, ranging over the entirety of Pn(Fq), but this time, with the 
added condition u �= v. We obtain

B = 1
#V (Fq)#Pn(Fq)(#Pn(Fq) − 1)

∑
x,y∈X(Fq)

x�=y

∑
u,v∈Pn(Fq)

u �=v

∑
H∈V (Fq)
u,v∈H(Fq)

1

= 1
#V (Fq)#Pn(Fq)(#Pn(Fq) − 1)

∑
x,y∈X(Fq)

x�=y

∑
H∈V (Fq)

∑
u,v∈H(Fq)

u �=v

1

= #X(Fq)(#X(Fq) − 1)#Pn−k(Fq)(#Pn−k(Fq) − 1)
#Pn(Fq)(#Pn(Fq) − 1) . (2.6)
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Now, inspecting every term in (2.6) and comparing it to the corresponding term in 
the expression for μ2 obtained from squaring (2.2), we see that B � μ2, implying that 
σ2 � μ. Combining with (2.3), we deduce that in particular, σ2 = O(q−k#X(Fq)). �
3. Proof of Theorem 1.2

For the remainder of this paper, we allow all implied constants to depend on X but 
not on q. (In fact, the implied constants need only depend on the geometric complexity
of X, as defined in [3, Section 5].)

The following classical theorem of Lang and Weil provides an estimate for the number 
of Fq-points on a projective variety X.

Lemma 3.1 ([2]). Let X be a projective variety over Fq of dimension r. Let a be the num-
ber of irreducible components of X that are geometrically irreducible and have dimension 
r. Then #X(Fq) = aqr + O(qr−1/2).

We can now deduce Theorem 1.2 from Lemma 2.1 and Lemma 3.1 by following a 
similar argument to [3, Sections 5, 6]. By applying Poonen and Slavov’s reduction from 
[3, Section 3], we may assume that the ground field F is finite. Moreover, we are free to 
pass to a sufficiently large finite extension Fq ⊇ F .

We call H ∈ V (Fq) very bad if the number of Fq-irreducible components of X ∩ H

which are geometrically irreducible is not 1. Let A ⊆ V (Fq) denote the set of very bad 
linear spaces H. The strategy will be to deduce Theorem 1.2 from appropriate upper 
and lower bounds for #A .

We obtain a lower bound for #A by applying [3, Lemma 6.2]. We choose an irreducible 
variety B ⊆ M

(k)
bad with the same dimension as M(k)

bad. We define a variety Y ⊆ X × B

via the incidence relation Y = {(x, H) ∈ X × B : x ∈ H}. Let ψ : Y → B be the 
morphism sending (x, H) to H. Then the fibres ψ−1(H) are isomorphic to X ∩H, and 
so by definition of B the generic fibre of ψ is not geometrically irreducible. Applying [3, 
Lemma 6.2] with this choice of B and ψ, we deduce that

#A � qdimB � #M
(k)
bad(Fq). (3.1)

In order to obtain an upper bound for #A , we follow a similar approach to [3, Lemma 
6.1]. The idea is to show that if H ∈ A , then the random variable Z = #(X ∩H)(Fq)
introduced in Section 2 differs considerably from the mean μ. Hence there cannot be 
many such H by the upper bound for the variance obtained in Lemma 2.1.

Let r = dimX. Combining Lemma 2.1 and Lemma 3.1, we have

μ = qr−k + O(qr−k−1/2)

σ2 = O(qr−k).
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If H ∈ A , then by Lemma 3.1, #(X ∩H)(Fq) is either O(qr−k−1/2) or at least 2qr−k −
O(qr−k−1/2). Consequently,

| #(X ∩H)(Fq) − μ |� qr−k −O(qr−k− 1
2 ) � 1

2q
r−k,

for sufficiently large q. Define t such that 1
2q

r−k = tσ. Then,

Prob(H ∈ A ) � Prob(| #(X ∩H)(Fq) − μ |� tσ)

� 1
t2

(by Chebyshev’s inequality)

= 4σ2

q2(r−k)

= O(q−r+k).

Multiplying by #V (Fq), we obtain

#A = O(qdimV−r+k). (3.2)

Therefore, combining (3.1) and (3.2), we conclude that

dimM
(k)
bad � dimV − r + k.

4. Proof of Theorem 1.4

If r = 1, then k = 1, and so by Remark 1.3 it suffices to take X to be any curve of 
degree at least 2. From now on, we assume that r � 2. We use the same construction 
of X as in [1, Proposition 3.1], which we now recall for convenience. Fix an integral 
curve C of degree at least 2, and a linear space L of dimension r − 2 not containing C. 
Let X ⊆ Pn

F be a cone with base C and vertex L. Then X is an irreducible variety of 
dimension r.

Let H denote the locus of hyperplanes H which contain L. We denote by U the locus 
of hyperplanes H ∈ H satisfying the following additional properties.

(1) (H ∩ C) � L.
(2) dim(X ∩H) = r − 1.
(3) deg(X ∩H) � 2.

These properties hold for a generic H ∈ H , so dim U = dim H . Suppose that H ∈ U . 
We choose a point P in H ∩ C not contained in L. Let N denote the linear span of L
and P . Then N ⊆ H. Furthermore, X contains all lines between P and L, and hence 
also contains N . Therefore N ⊆ X ∩H. From the above properties, we deduce that N



P. Kmentt, A. Shute / Finite Fields and Their Applications 83 (2022) 102085 7
is a proper closed subset of X ∩H with dimN = r− 1 = dim(X ∩H), and hence X ∩H

is not irreducible. We conclude that

dimM
(1)
bad � dim U = dim H = n− r + 1,

and in fact, equality holds by Theorem 1.1.
We now generalise to an arbitrary k � r. Fix H ∈ U , and let N be chosen as above. 

Let MH denote the locus of linear spaces M ∈ G(n − k, n) satisfying M ⊆ H. Then

dim MH = dim(G(n− k, n− 1)) = dim(G(n− k, n)) − (n− k + 1). (4.1)

For a generic M ∈ MH , we have

(1) dim(X ∩M) = r − k = dim(N ∩M).
(2) deg(X ∩M) � 2.
(3) The linear span of M and L is H.

To see that property (3) holds generically, we note that the linear span of M and L has 
dimension dimM + dimL − dim(M ∩ L). (This is true even when M ∩ L = ∅ if we use 
the convention dim ∅ = −1.) Every M ∈ MH has codimension k − 1 in H. Therefore, 
for generic M ∈ MH , we have that dim(M ∩L) = dimL − (k− 1), and hence the linear 
span of M and L has dimension dimM + (k − 1) = n − 1 = dimH.

For M satisfying the above three properties, we have that N ∩M is a proper closed 
subset of X ∩M with the same dimension as X ∩M , and hence M ∈ M

(k)
bad. Property 

(3) ensures that H is the unique element of U containing M . Combining with (4.1), we 
deduce that

dimM
(k)
bad � dim(G(n− k, n)) − (n− k + 1) + dim U (4.2)

= dim(G(n− k, n)) + k − r,

and from Theorem 1.2, (4.2) is in fact an equality.
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