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Abstract
We extend the recent rigorous convergence result of Abels and Moser (SIAM J Math Anal
54(1):114–172, 2022. https://doi.org/10.1137/21M1424925) concerning convergence rates
for solutions of the Allen–Cahn equation with a nonlinear Robin boundary condition towards
evolution by mean curvature flow with constant contact angle. More precisely, in the present
work we manage to remove the perturbative assumption on the contact angle being close to
90◦. We establish under usual double-well type assumptions on the potential and for a certain

class of boundary energy densities the sub-optimal convergence rate of order ε
1
2 for general

contact angles α ∈ (0, π). For a very specific form of the boundary energy density, we
even obtain from our methods a sharp convergence rate of order ε; again for general contact
angles α ∈ (0, π). Our proof deviates from the popular strategy based on rigorous asymptotic
expansions and stability estimates for the linearized Allen–Cahn operator. Instead, we follow
the recent approach by Fischer et al. (SIAM J Math Anal 52(6):6222–6233, 2020. https://
doi.org/10.1137/20M1322182), thus relying on a relative entropy technique. We develop a
careful adaptation of their approach in order to encode the constant contact angle condition.
In fact, we perform this task at the level of the notion of gradient flow calibrations. This
concept was recently introduced in the context of weak-strong uniqueness for multiphase
mean curvature flow by Fischer et al. (arXiv:2003.05478v2).
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1 Introduction

1.1 Context

Curvature driven interface evolution arises in a broad range of applications, including for
instance liquid-solid interface evolution in solidification processes (e.g., [24]), noise removal
and feature enhancement in image processing (e.g., [34]), flame front propagation in com-
bustion processes (e.g., [27]), or grain coarsening in an annealing polycrystal (e.g., [32]).
The present work is concerned with the most basic mathematical model representing the
evolution of an interface (i.e., the common boundary of a binary system) driven by an extrin-
sic curvature quantity, namely evolution by mean curvature flow (MCF). Of course, this is
a classical subject in the literature, see, e.g., the seminal works by Gage and Hamilton [11]
and Grayson [13] for the flow of a smooth and simple closed curve in R2.

The main focus of the present work is related to the rigorous treatment of a certain class of
nontrivial boundary effects. More precisely, we are concerned with the mean curvature flow
of an interface within a physical domain � ⊂ R

d (e.g., a container holding a binary alloy
with a moving internal interface), so that the interface intersects the domain boundary ∂�

at a constant contact angle α ∈ (0, π); see Fig. 1 for an illustration of the geometry. The
inclusion of such a boundary condition poses an interesting and nontrivial mathematical
problem because the evolving geometry is necessarily singular due to the contact set.

Mean curvature flowof an interfacewith constant contact angle can be generated as the L2-
gradient flow of a suitable energy functional. The total energy consists of two contributions:
i) interfacial energy in the interior of the container, and ii) surface energy along the boundary
of the container. Given a disjoint partition of the container into two phases represented by
an open subdomain A ⊂ � and its open complement �\A , denote with I the associated
interface given by the common boundary of these two sets (cf. again Fig. 1). Expressing the
associated surface tension constants by c0, σ+ and σ−, respectively, the total energy is then
given by

E[A ] := c0

∫
I
1 dHd−1 + σ+

∫
∂A ∩∂�

1 dHd−1 + σ−
∫

∂(�\A )∩∂�

1 dHd−1,

or alternatively by subtracting the constant σ−
∫
∂�

1 dHd−1

E[A ] := c0

∫
I
1 dHd−1 + (σ+−σ−)

∫
∂A ∩∂�

1 dHd−1. (1.1)

The surface tension constants are assumed to satisfy Young’s relation, i.e.,

|σ+−σ−| < c0,

so that in particular there exists an angle α ∈ (0, π) such that

σ+−σ− = c0 cosα.

Switching the roles of A and �\A , we may of course assume without loss of generality
that α ∈ (0, π

2 ]. The geometric interpretation of α is that it represents the angle formally
formed by the intersection of the interface I with the boundary of the container ∂� through
the domain �\A (cf. again Fig. 1).

As usual in the context of geometric evolution equations, the corresponding flow in general
can not avoid the occurrence of topology changes and geometric singularities. For an example
specific to the framework of contact angle problems, one may imagine an initially interior
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Fig. 1 Illustration of a
prototypical geometry for
interface evolution with constant
contact angle

Ω

α
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point of the interface to touch the boundary of the container at a later time; see [23, Figure 2]
for an illustration of this scenario. It is for this reason that a global-in-time representation of
the dynamics is in general only possible in a weaker form than the one provided by solution
concepts relying on parametrized surfaces with boundary.

One popular approach in this direction consists of phase-field models which are based on
the introduction of a time-dependent order parameter taking values in the continuum [−1, 1].
Roughly speaking, the regions within the container � in which the order parameter takes
values close to +1 or −1 represent the two underlying evolving phases. The associated
evolving interface is in turn represented by the region in which the order parameter undergoes
a transition between these two values. The relevant dynamics for the order parameter are again
induced by studying the (in our case L2) gradient flow of an associated energy functional.

Following the modeling in the sharp-interface regime, this energy also consists of two
contributions. Within the container �, we consider the standard Cahn–Hilliard energy asso-
ciated with a double-well type potential W . For the boundary contribution, we rely on the
proposal of Cahn [4] and include a boundary contact energy in terms of a boundary energy
density σ . Both contributions together then result in the following ansatz for the total energy
functional of the order parameter:

Eε[u] :=
∫

�

ε

2
|∇u|2 + 1

ε
W (u) dx +

∫
∂�

σ(u) dHd−1. (1.2)

The associated ( 1
ε
-accelerated) L2-gradient flow leads to the standard Allen–Cahn equa-

tion within the container �. Boundary effects along ∂� are captured by a nonlinear Robin
boundary condition; cf. (AC1)–(AC3) below for the full PDE problem.

Concerning the static case, Modica [29] shows that phase-field energies of the form (1.2)
�-converge to sharp-interface energies of the form (1.1), and thus relates the associated
minimizers of these energy functionals in the limit ε ↘ 0 (cf. also Kagaya and Tonegawa [22]
for a varifold setting). The main goal of the present work is instead concerned with the
corresponding dynamics. It consists of a rigorous justification of the relation of the L2-
gradient flows associated with the energies (1.1) and (1.2) in the limit ε ↘ 0. Computations
based on formal asymptotic expansions by Owen and Sternberg [33] suggest that solutions
of the phase-field model based on (1.2) converge to solutions of the sharp-interface model
related with (1.1), i.e., mean curvature flow with constant contact angle. The main result
of the present work establishes this connection in a rigorous fashion for a certain class of
double-well type potentials W and boundary energy densities σ ; cf. Sect. 1.2 below for
precise assumptions. To the best of our knowledge, our result is the first for which this is
achievedwithout any restriction on the value of the contact angleα. Apart from the qualitative
statement of convergence, we also establish convergence rates as a consequence of a general
quantitative stability estimate between solutions of the phase-field model and solutions of
its sharp-interface limit. Within the full generality of our assumptions, these are suboptimal
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with respect to the scaling in the parameter ε. However, for a specific choice of the boundary
energy density σ , we even obtain optimal convergence rates. We finally remark that our
results hold true on a time horizon on which a sufficiently regular solution to mean curvature
flowwith constant contact angle exists, i.e., prior to the occurrence of geometric singularities.
We refer to Theorem 1 below for a complete mathematical statement.

Before we proceed in Sect. 1.2 with a precise description of the mathematical setting and
assumptions, let us first put our main result into the context of the existing literature. In the
most basic setting of the full-space problem � = R

d , rigorous proofs for the convergence
of solutions of the Allen–Cahn equation towards solutions of MCF were already established
several decades ago. Evans, Soner and Souganidis [7] provide a global-in-time convergence
result based on the notion of viscosity solutions for MCF, thus relying in an essential way
on the comparison principle. The global-in-time convergence result of Ilmanen [19] instead
makes use of the notion of Brakke flows. Only recently, Laux and Simon [25] succeeded
in deriving a conditional convergence result for the vectorial Allen–Cahn problem whose
sharp-interface limit is represented by multiphase MCF. Their result is phrased in terms of
so-called BV solutions and is conditional due to a required energy convergence assumption
in the spirit of the seminal work by Luckhaus and Sturzenhecker [26]. Based on a natural
varifold generalization of BV solutions, even an unconditional convergence result holds true
at least in the two-phase regime as shown by Laux and the first author [16]. Finally, local-
in-time convergence of solutions of the Allen–Cahn equation towards classical solutions of
MCF in the full-space setting � = R

d goes back to the seminal work of De Mottoni and
Schatzman [6]. Their method is based on rigorous asymptotic expansions as well as stability
estimates for the linearized Allen–Cahn operator.

When including boundary effects in form of constant contact angles, the majority of the
results in the existing literature treats the case of vanishing boundary energy density σ = 0.
In other words, a fixed-in-time 90◦ angle condition is prescribed for the intersection of the
interface with the boundary of the container. In terms of the phase-field approximation, this
modeling assumption leads to a homogeneous Neumann boundary condition for the order
parameter. Global-in-time convergence in this setting towards weak solutions of MCF inter-
preted in a viscosity sense is due to Katsoulakis, Kossioris and Reitich [23]. A corresponding
result with respect to a suitably generalized notion of Brakke flows is derived by Mizuno
and Tonegawa [28] (for strictly convex and smooth containers) and Kagaya [21] (for general
smooth containers).

Local-in-time convergence results in terms of smooth solutions to MCF with constant 90◦
angle condition were in turn established in a work of Chen [5] and a recent work of Abels
and the second author [1]. The former relies on the construction of super- and subsolutions
of the Allen–Cahn equation as well as comparison principle arguments, whereas the latter
extends the method of De Mottoni and Schatzman [6] to the 90◦ contact angle setting; see in
this context also the work of the second author [31] for extensions of [1] in several directions.

We next comment on the literature in the regime of general boundary energy densities σ

modeling the case of general contact anglesα ∈ (0, π
2 ] in the sharp-interface limit. To the best

of our knowledge, up to the presentwork no rigorous convergence result allowing for arbitrary
values of the contact angle has been established. The only two results we are aware of consist
of the non-rigorous derivation of the sharp-interface limit byOwen and Sternberg [33] as well
as the recent work by Abels and the second author [2], which constitutes the first rigorous
version of the formal arguments given byOwen andSternberg [33].However, the results of [2]
are restricted to a perturbative regime in the sense that the contact angle is assumed to be
close to 90◦. The present work does not rely on this requirement and therefore establishes for
the first time a local-in-time convergence proof for general contact angles α ∈ (0, π

2 ], which,
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similar to [2], even provides convergence rates. Note that in a companion article, Laux and the
first author [15] also prove a (purely qualitative) global-in-time convergence result towards
a novel notion of BV solutions to MCF with general constant contact angle α ∈ (0, π

2 ].
We conclude the discussion with some context on our methods. In contrast to the work

of Abels and the second author [2], which makes use of rigorous asymptotic expansions and
stability of the linearized Allen–Cahn operator in the spirit of DeMottoni and Schatzman [6],
our proof is directly inspired by the recent approach of Fischer, Laux and Simon [10]. They
employ a novel relative entropy technique to prove, even in an optimally quantifiedway, local-
in-time convergence of solutions of the full-space Allen–Cahn equation towards smooth
solutions of MCF. Their technique is based on a natural phase-field analogue of an error
functional which has been extensively used throughout recent years to study stability and
weak-strong uniqueness properties of weak solution concepts in interface evolution problems
on the sharp interface level.

One version of this error functional, which is supposed to measure the difference between
two solutions in a sufficiently strong sense, appeared for the first time in the work of Jerrard
and Smets [20] dealing with binormal curvature flow of curves in R

3. In a structurally
analogous but slightly adapted form more suited for interface evolution, it was used by
Fischer and the first author [8] to establish weak-strong uniqueness for a two-phase Navier–
Stokes system with surface tension. It was afterwards extended by Fischer, Laux, Simon
and the first author [9] to treat the case of planar multiphase MCF (see also [17] and [16]).
In the present work, we develop a careful adaptation of the approach by Fischer, Laux and
Simon [10] to incorporate the contact angle condition. This is a nontrivial task due to the
necessarily singular nature of the geometry associated with a solution of MCF with constant
contact angle. For a more detailed description of our strategy, we refer to the discussion in
Sects. 2.1 and 2.2 below.

1.2 Assumptions and setting

In the present work, we study the convergence of solutions to the Allen–Cahn equation with
a nonlinear Robin boundary condition. In its strong PDE formulation, the problem is given
as follows:

∂t uε = 	uε − 1

ε2
W ′(uε) in �×(0, T ), (AC1)

(n∂� · ∇)uε = 1

ε
σ ′(uε) on ∂�×(0, T ), (AC2)

uε|t=0 = uε,0 in �. (AC3)

Here, � ⊂ R
d denotes a bounded (not necessarily convex) domain with orientable and

sufficiently regular boundary ∂�, the vector field n∂� denotes the associated inward pointing
unit normal, T ∈ (0,∞) is a finite time horizon, and W : R → [0,∞) is a standard free
energy density (per unit volume) of double-well type whereas σ : R → [0,∞) denotes a
boundary contact energy density (per unit surface area). The latter two are assumed to be at
least differentiable; more assumptions on W and σ will be imposed below.

As already mentioned previously, the Allen–Cahn problem (AC1)–(AC3) can in fact
be derived as the ( 1

ε
-accelerated) L2-gradient flow of the free energy functional (1.2). In

particular, sufficiently regular solutions to (AC1)–(AC3) satisfy an energy dissipation equality
of the form
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Eε[uε(·, T ′)] = Eε[uε,0] −
∫ T ′

0

∫
�

1

ε
H2

ε dx dt (1.4)

for all T ′ ∈ [0, T ], where the map Hε is defined by

Hε := −ε	uε + 1

ε
W ′(uε). (1.5)

We now specify our assumptions with respect to the nonlinearities W and σ . For the
potential W , we impose W ∈ C2(R) and the following conditions:

1. W has a double-well shape in the following sense:

W (±1) = 0, W ′(±1) = 0, W ′′(±1) > 0, W > 0 in R\{±1}. (1.6a)

2. There exist p ∈ [2,∞) and constants c,C, R > 0 such that

c|u|p ≤ W (u) ≤ C |u|p and |W ′(u)| ≤ C |u|p−1 for all |u| ≥ R. (1.6b)

3. The decomposition W = W1 + W2 holds with W1,W2 ∈ C2(R),

W1 ≥ 0 convex and |W ′′
2 | ≤ C . (1.6c)

Note that (1.6b) and (1.6c) represent analogous assumptions as in [25], where the vector-
valued Allen-Cahn equation was considered (see [25, Lemma 2.3] for the existence of weak
solutions in this case). The standard choice satisfying the conditions (1.6a)–(1.6c) consists
of course of W (u) ∼ (1 − u2)2.

We next define

ψ(r) :=
∫ r

−1

√
2W (s) ds, r ∈ R, (1.7)

as well as the interfacial surface tension constant

c0 :=
∫ 1

−1

√
2W (s) ds. (1.8)

In view of the Modica–Mortola [30]/Bogomol’nyi [3] trick, the motivation behind this defi-
nition is that the map ψε := ψ(uε) represents an approximation for (a suitable multiple of)
the indicator function of a phase with sharp interface evolving by mean curvature flow. The
boundary energy density is then assumed to satisfy

σ ∈ C1,1(R; [0,∞)), σ ′ ≥ 0 in R, supp σ ′ ⊂ [−1, 1], (1.9a)

as well as

σ(−1) = 0, σ ≥ ψ cosα on [−1, 1], σ (1) = ψ(1) cosα = c0 cosα. (1.9b)

Due to σ(−1) = 0, the third item of (1.9b) in fact reads σ(1) − σ(−1) = c0 cosα and thus
may be identified with Young’s law.

Note that the assumptions on σ are slightly different (and in fact disjoint) compared to
the work by Abels and the second author [2]. Roughly speaking, here we rely on a sign
condition (cf. the second item of (1.9b)) to obtain coercivity of our error functional, whereas
in [2] perturbation arguments are used for which smoothness and smallness assumptions for
σ are required. The latter work also restricts the angle to be close to π

2 , while the angle in the
current paper is arbitrary in (0, π). Finally, note that in [2] Young’s law appears as a necessary
condition to solve the lowest order in the asymptotic expansion at the contact points.
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Under the above assumptions on the potential W and the boundary energy density σ ,
we derive in the present work suboptimal convergence rates for solutions of the Allen–
Cahn problem (AC1)–(AC3) towards smooth solutions of mean curvature flow with constant
contact angle α (cf. Theorem 1 below for a precise statement). In order to achieve an optimal
rate of convergence, our approach relies on a more restrictive assumption on the boundary
energy density:

σ(r) :=

⎧⎪⎨
⎪⎩
0 r ∈ (−∞,−1),

ψ(r) cosα r ∈ [−1, 1],
c0 cosα r ∈ (1,∞).

(1.10)

Note that (1.10) is obviously consistent with (1.9a) and (1.9b).

2 Main results and definitions

As already announced in the introduction, our main result concerns the rigorous derivation of
convergence rates for the Allen–Cahn problem (AC1)–(AC3) with well-prepared initial data
towards the sharp interface limit given by evolution by mean curvature flow with a constant
contact angle α ∈ (0, π

2 ]. The precise statement reads as follows.

Theorem 1 (Convergence rates for the Allen–Cahn problem (AC1)–(AC3) towards strong
solutions of mean curvature flow with constant contact angle 0 < α ≤ π

2 ) Consider
a finite time horizon T ∈ (0,∞) and a bounded C3-domain � ⊂ R

2, and let A =⋃
t∈[0,T ] A (t)×{t} be a strong solution to evolution by mean curvature flow in � with con-

stant contact angle α ∈ (0, π
2 ] in the sense of Definition 10. Denote for every t ∈ [0, T ]

by χA (t) the characteristic function associated with A (t).
Moreover, let a potential W and boundary energy density σ be given such that the assump-

tions (1.6a)–(1.6c) and (1.9a)–(1.9b) are satisfied, respectively, and consider an initial phase
field uε,0 with finite energy Eε[uε,0] < ∞ which moreover satisfies

uε,0 ∈ [−1, 1] almost everywhere in �. (2.1)

Denote by uε : �×[0, T̃ ] → R the associated weak solution of the Allen–Cahn prob-
lem (AC1)–(AC3) in the sense of Definition 5 (on a time horizon T̃ > T ).

Then, there exists a constant C = C(A , T ) > 0 such that it holds (for the definition of
the relative energy functional ErelEn and the bulk error functional Ebulk , we refer to (3.4)
and (4.1) below, respectively)

∥∥ψ
(
uε(·, T ′)

)−c0χA (T ′)
∥∥
L1(�)

≤ eCT ′√
ErelEn

[
uε,0|A (0)

]+Ebulk[uε,0|A (0)] (2.2)

for all T ′ ∈ [0, T ], wherewe recall from (1.7)and (1.8) the definition ofψ and c0, respectively.
Furthermore, the class of finite energy initial phase fields satisfying (2.1) and

ErelEn
[
uε,0|A (0)

] + Ebulk[uε,0|A (0)] � ε (2.3)

is non-empty. In particular, for such well-prepared initial data one obtains from the quanti-

tative stability estimate (2.2) a suboptimal convergence rate of order ε
1
2 . Finally, in case of

the specific choice (1.10), one may upgrade the requirement (2.3) from ε to ε2, and thus as a

consequence the suboptimal convergence rate ε
1
2 to an optimal convergence rate of order ε.
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Proof First note that due to Theorem 4 there exists a boundary adapted gradient flow cali-
bration (ξ, B, ϑ) with respect to a strong solution A evolving by mean curvature flow in �

with constant contact angle α ∈ (0, π
2 ] in the sense of Definition 10. Hence the estimate (2.2)

follows directly from a combination of the quantitative stability estimates relative to a cal-
ibrated evolution, see Theorem 3, a post-processing of the latter based on Lemma 13, and
Gronwall’s inequality.

The assertions with respect to the existence of well-prepared initial phase fields are part
of Lemma 9. ��

2.1 Quantitative stability with respect to calibrated evolutions in d ≥ 2

Our approach to the proof of Theorem 1 is directly inspired by the recent work [10] of Fischer,
Laux and Simon, who establish the same result in a full space setting. In contrast to other
approaches (cf. Sect. 1), they capitalize on a novel relative entropy technique. Their strategy
can be interpreted as a diffuse interface analogue of the relative entropy approach to weak-
strong uniqueness for certain mean curvature driven sharp interface evolution problems as
introduced in [8] by Fischer and the first author (cf. also the earlier work [20] of Jerrard and
Smets for a similar approach in the setting of a codimension two evolution problem).

However, in comparison to the work [10] of Fischer, Laux and Simon, we will employ a
conceptually more general viewpoint by splitting the task into two separate steps. This two-
step procedure is directly inspired by the recent work [9] of Fischer, Laux, Simon and the
first author on weak-strong uniqueness for planar multiphase mean curvature flow (cf. also
the work [17] of Laux and the first author). The first step concerns the notion of a calibrated
evolution along the gradient flow of an interfacial energy, which in a sense generalizes the
classical notion of calibrations from minimal surface theory to an evolutionary setting, and
to prove quantitative stability of solutions to (AC1)–(AC3) with respect to such calibrated
evolutions. The second step then consists of showing that sufficiently regular solutions to
mean curvature flow with constant contact angle are in fact calibrated, so that the stability
estimates from the first step can be used to yield the asserted convergence rate.

The following definition represents a generalization of the two-phase versions of [9, Def-
inition 2 and Definition 4] in order to encode the correct constant contact angle condition for
the intersection of the evolving interface with the boundary of the container.

Definition 2 (Calibrated evolutions and boundary adapted gradient flow calibrations) Let
T ∈ (0,∞) be a finite time horizon and let � be a bounded C2-domain in R

d . Consider
A = ⋃

t∈[0,T ] A (t)×{t} such that for each t ∈ [0, T ] the set A (t) is an open subset of �

with finite perimeter in R
d and the closure of ∂∗A (t) ⊂ � is given by ∂A (t). Denote

for all t ∈ [0, T ] by n∂∗A (t) the measure-theoretic unit normal along ∂∗A (t) pointing
insideA (t). Writing χ(·, t) for the characteristic function associated with A (t), we assume
that χ ∈ BV (Rd×(0, T )) ∩ C([0, T ]; L1(Rd)) and that the measure ∂tχ is absolutely
continuous with respect to the measure |∇χ | restricted to

⋃
t∈(0,T )(∂

∗A (t) ∩ �)×{t} (i.e.,
the associated Radon–Nikodým derivative yields a normal speed). Let α ∈ (0, π

2 ] and c0 > 0
be two constants.

We then call A = ⋃
t∈[0,T ] A (t)×{t} a calibrated evolution for the L2-gradient flow of

the sharp interface energy functional

E[A (t)] := c0

∫
∂∗A (t)∩�

1 dHd−1 + c0

∫
∂∗A (t)∩∂�

cosα dHd−1 (2.4)
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if there exists a triple (ξ, B, ϑ) of maps as well as constants c ∈ (0, 1) and C > 0 subject to
the following conditions. First, concerning regularity it is required that

ξ ∈ C1(�×[0, T ];Rd) ∩ C
([0, T ];C2

b (�;Rd)
)
, (2.5a)

B ∈ C
([0, T ];C1(�;Rd) ∩ C2

b (�;Rd)
)
, (2.5b)

ϑ ∈ C1
b

(
�×[0, T ]) ∩ C

(
�×[0, T ]; [−1, 1]). (2.5c)

Second, for each t ∈ [0, T ] the vector field ξ(·, t) models an extension of the unit normal
of ∂∗A (t) ∩ � and the vector field B(·, t) models an extension of a velocity vector field
of ∂∗A (t) ∩ � in the precise sense of the conditions

ξ(·, t) = n∂∗A (t) and
(∇ξ(·, t))Tn∂∗A (t) = 0 along ∂∗A (t) ∩ �, (2.6a)

|ξ |(·, t) ≤ 1−cmin
{
1, dist2

(·, ∂∗A (t) ∩ �
)}

in �, (2.6b)

as well as

|∂tξ + (B · ∇)ξ + (∇B)Tξ |(·, t) ≤ C min
{
1, dist

(·, ∂∗A (t) ∩ �
)}

in �, (2.6c)

|ξ · (∂tξ + (B · ∇)ξ)|(·, t) ≤ C min
{
1, dist2

(·, ∂∗A (t) ∩ �
)}

in �, (2.6d)

|ξ · B + ∇ · ξ |(·, t) ≤ C min
{
1, dist

(·, ∂∗A (t) ∩ �
)}

in �, (2.6e)

|ξ · (ξ · ∇)B|(·, t) ≤ C min
{
1, dist

(·, ∂∗A (t) ∩ �
)}

in �, (2.6f)

which are accompanied by the (natural) boundary conditions

ξ(·, t) · n∂�(·) = cosα along ∂�, (2.6g)

B(·, t) · n∂�(·) = 0 along ∂�. (2.6h)

Third, for all t ∈ [0, T ] the weight ϑ(·, t)models a truncated and sufficiently regular “signed
distance” of the interface ∂∗A (t) ∩ � in the sense that

ϑ(·, t) < 0 in the essential interior of A (t), (2.7a)

ϑ(·, t) > 0 in the essential exterior of A (t) within �, (2.7b)

ϑ(·, t) = 0 along ∂∗A (t) ∩ �, (2.7c)

as well as

min{dist (·, ∂∗A (t) ∩ �
)
, 1

} ≤ C |ϑ |(·, t) in �, (2.7d)

|∂tϑ + (B · ∇)ϑ |(·, t) ≤ C |ϑ |(·, t) in �. (2.7e)

Given a calibrated evolution A = ⋃
t∈[0,T ] A (t)×{t}, an associated triple (ξ, B, ϑ)

subject to these requirements is called a boundary adapted gradient flow calibration.

We remark that the second property in (2.6a) only enters the proof of Lemma 9 on the
existence of well-prepared initial data in the sense of Theorem 1, and thus is in principle only
needed at the initial time t = 0. Note also that for sufficiently small c in (2.6b) there is no
contradiction with (2.6g).

Keeping in mind that the vector field ξ models an extension of the unit normal vector field
of the evolving interfacewhereas Bmodels an extension of an associated velocity vector field,
the boundary conditions (2.6g) and (2.6h) are natural. Indeed, the former simply encodes the
constant contact angle condition along the evolving contact set whereas the latter is directly
motivated by the fact that the evolution of the contact set occurs within the domain boundary.
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Note also that condition (2.6e) is then the only requirement in the previous definition which
formally makes a connection to evolution by mean curvature flow.

The merit of Definition 2 consists of the fact that it already implies a rigorous justification
of the heuristic that solutions to the Allen–Cahn problem (AC1)–(AC3) with well-prepared
initial data represent an approximation to evolution bymean curvature flowwith constant con-
tact angle (for a non-rigorous derivation based on formally matched asymptotic expansions,
see Owen and Sternberg [33]). More precisely, we show that solutions to the Allen–Cahn
problem (AC1)–(AC3) can in a way be interpreted as stable perturbations of a calibrated
evolution (as measured in the sense of a relative energy).

Theorem 3 (Quantitative stability for the Allen–Cahn problem (AC1)–(AC3) with respect to
a calibrated evolution) Consider a finite time horizon T ∈ (0,∞) and a bounded C2-domain
� ⊂ R

d , fix a contact angle α ∈ (0, π
2 ], and let A = ⋃

t∈[0,T ] A (t)×{t} be a calibrated
evolution with respect to this data in the sense of Definition 2. Furthermore, let a potential W
as well as a boundary energy density σ be given such that the assumptions (1.6a)–(1.6c)
and (1.9a)–(1.9b) are satisfied, respectively. Consider finally an initial phase field uε,0 ∈
H1(�) with finite energy Eε[uε,0] < ∞ such that uε,0 ∈ [−1, 1] almost everywhere in �.

Then, denoting by uε the associated weak solution of the Allen–Cahn problem (AC1)–
(AC3) in the sense of Definition 5, byχ the time-dependent characteristic function associated
with A , as well as by ErelEn[uε|A ] and Ebulk[uε|A ] the relative energy functional and
bulk error functional defined by (3.4) and (4.1), respectively, there exists a constant C =
C(A , T ) > 0 such that for all T ′ ∈ [0, T ]

ErelEn[uε|A ](T ′) ≤ ErelEn[uε|A ](0) + C
∫ T ′

0
ErelEn[uε|A ](t) dt,

Ebulk[uε|A ](T ′) ≤ (ErelEn+Ebulk)[uε|A ](0) + C
∫ T ′

0
(ErelEn+Ebulk)[uε|A ](t) dt .

Apart from the above quantitative stability result in terms of the phase-field approximation,
we remark that a calibrated evolution in the sense of Definition 2 also gives rise to a weak-
strong uniqueness principle for a notion of BV solutions to evolution by mean curvature
flow with constant contact angle. This is made precise in a paper by Laux and the first
author [15] (for a major part of the argument, one may already consult Subsection 2.3.3 of
the PhD thesis [14] of the first author).

2.2 Existence of boundary adapted gradient flow calibrations in d = 2

In view of Theorem 3, it essentially remains to show in a second step that sufficiently regular
solutions to evolution by mean curvature flow with constant contact angle admit a boundary
adapted gradient flow calibration. This is the content of the following result, which is stated
in the planar setting for simplicity only. We expect an extension to the d = 3 case (i.e., an
evolving contact line) to be rather straightforward; definitely less involved than the triple line
construction in the recent work [17] of Laux and the first author. For a related (yet again
planar) construction in the case of two-phase Navier–Stokes flow with constant 90◦ contact
angle, we refer to the recent work [18] of Marveggio and the first author.

Theorem 4 (Strong solutions of planar mean curvature flow with constant contact angle 0 <

α ≤ π
2 are calibrated) Fix a finite time horizon T ∈ (0,∞) and a bounded C3-domain

� ⊂ R
2, and letA = ⋃

t∈[0,T ] A (t)×{t} be a strong solution to evolution bymean curvature
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flow in � with constant contact angle α ∈ (0, π
2 ] in the sense of Definition 10. Then, the

evolution given by A is calibrated in the sense of Definition 2.

Even though not needed for the goals of the present work, we remark that our construction
of the pair of vector fields (ξ, B) satisfies the following additional conditions, which may
become handy for potential future purposes: denoting ∇sym := 1

2 (∇+∇T), we have

(ξ · ∇symB)(·, t) = 0 along ∂�, (2.8)

(n∂� · ∇symB)(·, t) = 0 along ∂�, (2.9)

|ξ · ∇symB|(·, t) ≤ C min
{
1, dist

(·, ∂∗A (t) ∩ �
)}

in � (2.10)

for all t ∈ [0, T ]. A proof of these three conditions is contained in the proof of Theorem 4.

2.3 Weak solutions to the Allen–Cahn problem (AC1)–(AC3)

In this subsection, we introduce the definition of a weak solution concept for the Allen–Cahn
problem (AC1)–(AC3).

Definition 5 (Weak solutions of the Allen–Cahn problem (AC1)–(AC3))We consider a finite
time horizon T ∈ (0,∞), a potential W that satisfies (1.6b)–(1.6c), a boundary energy
density σ subject to the properties (1.9a), and an initial phase field uε,0 ∈ H1(�) with finite
energy Eε[uε,0] < ∞.

We call a measurable map uε : �×[0, T ] → R an associated weak solution of the Allen–
Cahnproblem (AC1)–(AC3) if it satisfies the following conditions. First, in terms of regularity
we require that for p ∈ [2,∞) from (1.6b)

uε ∈ H1(0, T ; L2(�)
) ∩ L∞(

0, T ; H1(�) ∩ L p(�)
)
. (2.11a)

Second, the evolution problem (AC1)–(AC2) is satisfied in weak form of
∫ T ′

0

∫
�

ζ∂t uε dx dt +
∫ T ′

0

∫
�

∇ζ · ∇uε dx dt

= −
∫ T ′

0

∫
∂�

ζ
1

ε
σ ′(uε) dHd−1 dt −

∫ T ′

0

∫
�

ζ
1

ε2
W ′(uε) dx dt (2.11b)

for all T ′ ∈ (0, T ) and all ζ ∈ C∞
cpt

([0, T );C∞(�)
)
, whereas the initial condition (AC3) is

achieved in form of

uε(·, 0) = uε,0 almost everywhere in �. (2.11c)

Existence of weak solutions in the sense of the previous definition will be established by
means of a minimizing movements scheme. More precisely, we obtain

Lemma 6 (Existence of weak solutions) Let T ∈ (0,∞) be a finite time horizon, let W be a
potential with (1.6b)–(1.6c), let σ be a boundary energy density with the properties (1.9a),
and let uε,0 ∈ H1(�) be an initial phase field with finite energy Eε[uε,0] < ∞. Then there
exists an associated unique weak solution of the Allen–Cahn problem (AC1)–(AC3) in the
sense of Definition 5.

If the initial phase field in addition satisfies uε,0 ∈ [−1, 1] a.e. in �, then the associated
weak solution uε of the Allen–Cahn problem (AC1)–(AC3) is subject to

uε(·, T ′) ∈ [−1, 1] a.e. in � (2.12)

for all T ′ ∈ [0, T ].
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As usual in the context of aminimizingmovements scheme, the associated energy estimate
is short by a factor of 2 with respect to the sharp energy dissipation principle, which is crucial
for our purposes. If one does not want to make use of De Giorgi’s variational interpolation
and the concept of metric slope, an alternative way to proceed is bymeans of higher regularity
of weak solutions (which we anyway rely on in the derivation of the estimate of the time
evolution of the relative energy). For our purposes, it suffices to prove the following result.

Lemma 7 (Higher regularity for boundedweak solutions) In the situationof Lemma6, assume
in addition that the initial phase field satisfies uε,0 ∈ [−1, 1] almost everywhere in �. Then,
the associated weak solution uε of the Allen–Cahn problem (AC1)–(AC3) satisfies the higher
regularity

uε ∈ L2(0, T ; H2(�)
) ∩ C([0, T ]; H1(�)), ∇∂t uε ∈ L2

loc

(
0, T ; L2(�)

)
. (2.13)

In particular, it holds

∂t uε = 	uε − 1

ε2
W ′(uε) almost everywhere in �×(0, T ), (2.14)

as well as∫
�

ζ 	uε(·, T ′) dx = −
∫

�

∇ζ · ∇uε(·, T ′) dx −
∫

∂�

ζ
1

ε
σ ′(uε(·, T ′)

)
dHd−1 (2.15)

for all ζ ∈ C∞(�) and almost every T ′ ∈ (0, T ).

With the previous regularity statement in place, we may then establish the required sharp
energy dissipation principle which, as a consequence of the higher regularity, even occurs as
an identity.

Lemma 8 (Energy dissipation equality for bounded weak solutions) In the situation of
Lemma 6, assume in addition that uε,0 ∈ [−1, 1] almost everywhere in �. Then, for the
associated weak solution uε of the Allen–Cahn problem (AC1)–(AC3), the energy dissipa-
tion principle (1.4) holds true in form of the following equality

Eε[uε(·, T ′)] +
∫ T ′

0

∫
�

ε
∣∣∂t uε

∣∣2 dx dt = Eε[uε,0] (2.16)

for all T ′ ∈ (0, T ).

Proofs for the previous three results can be found in “Appendix A”. We conclude this
subsection on weak solutions for the Allen–Cahn problem (AC1)–(AC3) by mentioning that
the set of well-prepared initial data as formalized in the statement of Theorem 1 is indeed non-
empty. The construction of a well-prepared initial phase field is deferred until “Appendix B”.

Lemma 9 (Existence of well-prepared initial data)Consider a finite time horizon T ∈ (0,∞)

and a bounded C2-domain � ⊂ R
2, and letA = ⋃

t∈[0,T ] A (t)×{t} be a strong solution to
evolution by mean curvature flow in � with constant contact angle α ∈ (0, π

2 ] in the sense
of Definition 10. Let a boundary energy density σ be given such that (1.9a)–(1.9b) hold true.

Then there exists an initial phase field uε,0 with finite energy Eε[uε,0] < ∞ which is
well-prepared with respect to A (0) in the precise sense of (2.1) and (2.3). In case of the
specific choice (1.10), one may upgrade the requirement (2.3) to ε2.
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2.4 Definition of strong solutions to planar MCF with contact angle

For completeness, we make precise what we mean by a sufficiently regular solution to evolu-
tion by mean curvature flow with a constant contact angle. We model the evolving geometry
by the space-time track A = ⋃

t∈[0,T ] A (t) × {t} of a time-dependent family (A (t))t∈[0,T ]
of sufficiently regular open sets in �. For simplicity only, we will reduce ourselves to the
most basic topological setup: the phaseA (t) consists of only one connected component and
the associated interface I (t) := ∂∗A (t) ∩ � is a sufficiently regular connected curve with
exactly two distinct boundary points which in turn are located on ∂�; recall Fig. 1 for a
sketch. We emphasize that the chosen setup already involves all the major difficulties.

Definition 10 (Strong solutions of planar mean curvature flow with constant contact
angle 0 < α ≤ π

2 ) Let � ⊂ R
2 be a bounded domain with C3-boundary, T > 0 and

α ∈ (0, π
2 ]. We call A = ⋃

t∈[0,T ] A (t) × {t} a strong solution to mean curvature flow with
constant contact angle α if the following conditions are satisfied:

1. Evolving regular partition in�: For all t ∈ [0, T ] the setA (t) ⊂ � is open and connected
withfinite perimeter inR2 such that ∂∗A (t) = ∂A (t). The interface I (t) := ∂∗A (t) ∩ �

is a compact, connected, one-dimensional embedded C5-manifold with boundary such
that its interior I (t)◦ lies in � and its boundary ∂ I (t) consists of exactly two distinct
points which are located on the boundary of the domain, i.e., ∂ I (t) ⊂ ∂�.
Moreover, there are diffeomorphisms �(·, t) : R2 → R

2, t ∈ [0, T ], with �(·, 0) = Id
as well as

�(A (0), t) = A (t), �(I (0), t) = I (t) and �(∂ I (0), t) = ∂ I (t)

for all t ∈ [0, T ], such that � : I (0)×[0, T ] → I := ⋃
t∈[0,T ] I (t)×{t} is a diffeomor-

phism of class C0
t C

5
x ∩ C1

t C
3
x .

2. Mean curvature flow: the interface I evolves by MCF in the classical sense.
3. Contact angle condition: Let nI (·, t) denote the inner unit normal of I (t) with respect to

A (t) and let n∂� be the inner unit normal of ∂� with respect to �. Let p0 ∈ ∂ I (0) be a
boundary point, and let p(t) := �(p0, t) ∈ ∂ I (t). Then

nI |(p(t),t) · n∂�|p(t) = cosα (2.17)

for all t ∈ [0, T ] encodes the contact angle condition.

We emphasize that the required regularity of a strong solution implies necessary (higher-
order) compatibility conditions at the contact points for the initial data. For the purposes
of this work, we only rely on the one which one obtains from differentiating in time the
contact angle condition (2.17) and sending t ↘ 0. To formulate it, let J denote the constant
counter-clockwise rotation by 90◦, and define the tangent vector fields τ∂� := J Tn∂� as well
as τI (·, 0) := J TnI (·, 0). Denoting by H ∂� and H I (·, 0) the scalar mean curvature of ∂�

and I (0) oriented with respect to n∂� and nI (·, 0), respectively, we then have as a necessary
condition for the initial data the identity (for a derivation, see Remark 17)

− H I |(p0,0)H ∂�|p0 + (H I )2τI |(p0,0) · τ∂�|p0 − n∂�|p0 · ((τI · ∇)H I )τI |(p0,0) = 0

for each of the two contact points p0 ∈ ∂ I (0).
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2.5 Structure of the paper

The remaining parts of the paper are structured as follows. In Sect. 3, we define the relative
energy functional, cf. (3.4), encoding a distance measure between solutions of (AC1)–(AC3)
and a calibrated evolution, discuss its coercivity properties, and finally derive the associ-
ated stability estimate from Theorem 3. We then proceed in Sect. 4 to derive, based on the
stability estimate for the relative energy, a stability estimate in terms of a phase field ver-
sion of a Luckhaus–Sturzenhecker type error functional, cf. (4.1), which in turn controls the
square of the L1-error appearing on the left hand side of the main quantitative convergence
estimate (2.2). Section 5 is devoted to the construction of a boundary adapted gradient flow
calibration with respect to a sufficiently regular evolution by mean curvature flow with con-
stant contact angle, thus providing a proof of Theorem 4. We conclude with two appendices,
“Appendix A” and “Appendix B”, providing the proofs for the auxiliary results on weak
solutions of (AC1)–(AC3) as stated in Sect. 2.3 and the existence of well-prepared initial
data, Lemma 9.

3 The stability estimate for the relative energy

The aim of this section is to derive the first stability estimate from Theorem 3, which is
phrased in terms of a suitable relative energy. With respect to the definition and the coerciv-
ity properties of the relative energy functional, we follow closely [10, Subsection 2.2 and
Subsection 2.3].

3.1 Definition of the relative energy

Let A = ⋃
t∈[0,T ] A (t)×{t} be a calibrated evolution in � ⊂ R

d with associated boundary
adapted gradient flow calibration (ξ, B, ϑ) in the sense of Definition 2. Let uε be a solution to
the Allen–Cahn problem (AC1)–(AC3) in the sense of Definition 5 with finite energy initial
data satisfying uε,0 ∈ [−1, 1]. To be precise, we assume that the boundary energy density σ

satisfies both (1.9a) and (1.9b). Recalling (1.7), define

ψε(x, t) := ψ
(
uε(x, t)

) =
∫ uε(x,t)

−1

√
2W (s) ds, (x, t) ∈ �×[0, T ], (3.1)

and by fixing an arbitrary unit vector s ∈ S
d−1

nε :=
{ ∇uε|∇uε | if ∇uε �= 0,

s else.
(3.2)

Due to the regularity properties of the weak solution uε from Definition 5 as well as Lemma
6 and Lemma 7, it holds ψε ∈ C([0, T ], H1(�)), nε ∈ L∞((0, T ) × �) and together with
the features of ξ, B from Definition 2 the following computations are rigorous. First, note
that the definitions (3.1) and (3.2) imply the relations

∇ψε = √
2W (uε)∇uε, nε|∇uε| = ∇uε, nε|∇ψε| = ∇ψε. (3.3)

Given this data, we define a relative energy as follows

ErelEn[uε|A ](t) :=
∫

�

ε

2

∣∣∇uε(·, t)
∣∣2 + 1

ε
W

(
uε(·, t)

) − ∇ψε(·, t) · ξ(·, t) dx
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+
∫

∂�

σ
(
uε(·, t)

) − ψ
(
uε(·, t)

)
cosα dHd−1, t ∈ [0, T ]. (3.4)

3.2 Coercivity properties of the relative energy

Using ∇ψε = √
2W (uε)∇uε and completing the square yields the alternative representation

ErelEn[uε|A ](t) =
∫

�

1

2

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)2

dx

+
∫

�

(1 − nε · ξ)(·, t)|∇ψε(·, t)| dx

+
∫

∂�

σ
(
uε(·, t)

) − ψ
(
uε(·, t)

)
cosα dHd−1, t ∈ [0, T ].

(3.5)

It follows immediately from the representation (3.5) and the first item of (1.9b) that for all
t ∈ [0, T ]

0 ≤
∫

�

1

2

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)2

dx ≤ ErelEn[uε|A ](t), (3.6)

0 ≤
∫

�

(1 − nε · ξ)(·, t)|∇ψε(·, t)| dx ≤ ErelEn[uε|A ](t), (3.7)

0 ≤
∫

∂�

σ
(
uε(·, t)

) − ψ
(
uε(·, t)

)
cosα dHd−1 ≤ ErelEn[uε|A ](t). (3.8)

The first estimate (3.6) means that the relative energy ErelEn controls the lack of equipartition
of energy for the phase-field. In particular, note that the total variation of the discrepancy
measure

(
ε
2 |∇uε(·, t)|2 − 1

ε
W (uε(·, t))

)
dx is controlled in the sense that for all t ∈ [0, T ]

∫
�

∣∣∣ ε
2
|∇uε(·, t)|2 − 1

ε
W (uε(·, t))

∣∣∣ dx ≤ 2
√
ErelEn[uε|A ](t)√Eε[uε(·, t)],

where we used the elementary inequality |a2 − b2| ≤ |a − b|(|a| + |b|), Cauchy–Schwarz
inequality, (3.6), and the elementary bound (|a| + |b|)2 ≤ 4(|a|2 + |b|2).

Moreover, it is a consequence of the length constraint (2.6b) and the coercivity prop-
erty (3.7) that

∫
�

min
{
1, dist2

(·, ∂∗A (t) ∩ �
)}|∇ψε(·, t)| dx ≤ 1

c
ErelEn[uε|A ](t), t ∈ [0, T ], (3.9)

∫
�

|(nε−ξ)(·, t)|2|∇ψε(·, t)| dx ≤ 2ErelEn[uε|A ](t), t ∈ [0, T ]. (3.10)

Finally, as it turns out in the sequel, we have to control analogous terms with the diffuse
surfacemeasure ε|∇uε|2 instead of |∇ψε|. Therefore adding zero aswell as using that∇ψε =√
2W (uε)∇uε in a first step, and then applying Young’s inequality together with (2.6b) in

form of |ξ | ≤ 1 in a second step yields an auxiliary estimate for all t ∈ [0, T ]
∫

�

|(nε−ξ)(·, t)|2ε|∇uε(·, t)|2 dx

=
∫

�

|(nε−ξ)(·, t)|2√ε|∇uε(·, t)|
(√

ε|∇uε(·, t)| −
√
2W (uε(·, t))√

ε

)
dx
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+
∫

�

|(nε−ξ)(·, t)|2|∇ψε(·, t)| dx

≤ 1

2

∫
�

|(nε−ξ)(·, t)|2ε|∇uε(·, t)|2 dx + 2
∫

�

(√
ε|∇uε(·, t)| −

√
2W (uε(·, t))√

ε

)2

dx

+
∫

�

|(nε−ξ)(·, t)|2|∇ψε(·, t)| dx .

Hence, absorbing the first right hand side term of this inequality into the corresponding left
hand side, and recalling the coercivity properties (3.6) and (3.10), respectively, we thus obtain
the bound∫

�

|(nε−ξ)(·, t)|2ε|∇uε(·, t)|2 dx ≤ 12ErelEn[uε|A ](t), t ∈ [0, T ]. (3.11)

Along similar lines using also (3.9), one establishes that for all t ∈ [0, T ]
∫

�

min
{
1, dist2

(·, ∂∗A (t) ∩ �
)}

ε|∇uε(·, t)|2 dx ≤ (1+2c−1)ErelEn[uε|A ](t). (3.12)

3.3 Time evolution of the relative energy

We proceed with the derivation of the stability estimate for the relative energy from Theo-
rem 3. The basis is given by the following relative energy inequality.

Lemma 11 In the setting of Theorem 3, the following estimate on the time evolution of the
relative energy ErelEn[uε|A ] defined by (3.4) holds true:

ErelEn[uε|A ](T ′) +
∫ T ′

0

∫
�

1

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2+ 1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2
dx dt

≤ ErelEn[uε|A ](0)

+
∫ T ′

0

∫
�

1√
ε

(
Hε+(∇ · ξ)

√
2W (uε)

)(
B · (nε−ξ)

) √
ε|∇uε| dx dt

+
∫ T ′

0

∫
∂�

(
σ(uε) − ψε cosα

)
(Id−n∂� ⊗ n∂�) : ∇B dHd−1 dt

+
∫ T ′

0

∫
�

2
∣∣(B · ξ)+(∇ · ξ)

∣∣2 ε|∇uε|2 dx dt

+
∫ T ′

0

∫
�

2|∇ · ξ |2
(√

ε|∇uε|−
√
2W (uε)√

ε

)2

dx dt

−
∫ T ′

0

∫
�

(nε−ξ) · (
∂tξ+(B · ∇)ξ+(∇B)Tξ

) |∇ψε| dx dt

−
∫ T ′

0

∫
�

ξ · (
∂tξ+(B · ∇)ξ

) |∇ψε| dx dt

−
∫ T ′

0

∫
�

(nε−ξ) ⊗ (nε−ξ) : ∇B |∇ψε| dx dt

+
∫ T ′

0

∫
�

(∇ · B)(1 − nε · ξ) |∇ψε| dx dt
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+
∫ T ′

0

∫
�

(∇ · B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dx dt

−
∫ T ′

0

∫
�

(nε ⊗ nε−ξ ⊗ ξ) : ∇B
(
ε|∇uε|2−|∇ψε|

)
dx dt

−
∫ T ′

0

∫
�

ξ ⊗ ξ : ∇B
(
ε|∇uε|2−|∇ψε|

)
dx dt . (3.13)

for all T ′ ∈ (0, T ].

Proof Fix T ′ ∈ (0, T ]. Based on the definitions (1.2) and (3.4) of the energy functional and
the relative energy, respectively, and the boundary condition (2.6g) for ξ , we may write

ErelEn[uε|A ](T ′) = Eε[uε(·, T ′)] −
∫

�

∇ψε(·, T ′) · ξ(·, T ′) dx

−
∫

∂�

ψε(·, T ′)
(
n∂� · ξ(·, T ′)

)
dHd−1.

Hence, by means of the energy dissipation equality (2.16) (which can be equivalently
expressed in form of (1.4) thanks to (2.14)), the analogous representation of the relative
energy at the initial time, the fundamental theorem of calculus facilitated by a standard
mollification argument in the time variable, the definitions (1.7) and (3.1) together with
an application of the chain rule, the boundary condition (2.6g) for ξ , as well as finally an
integration by parts, we then obtain the estimate

ErelEn[uε|A ](T ′)

= ErelEn[uε|A ](0) −
∫ T ′

0

∫
�

1

ε
H2

ε dx dt

−
( ∫

�

∇ψε(·, T ′) · ξ(·, T ′) dx −
∫

�

∇ψε(·, 0) · ξ(·, 0) dx
)

−
( ∫

∂�

ψε(·, T ′)
(
n∂� · ξ(·, T ′)

)
dHd−1 −

∫
∂�

ψε(·, 0)
(
n∂� · ξ(·, 0)) dHd−1

)

= ErelEn[uε|A ](0) −
∫ T ′

0

∫
�

1

ε
H2

ε dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)
√
2W (uε)∂t uε dx dt −

∫ T ′

0

∫
�

nε · ∂tξ |∇ψε| dx dt . (3.14)

Adding zero twice implies

−
∫ T ′

0

∫
�

nε · ∂tξ |∇ψε| dx dt = −
∫ T ′

0

∫
�

nε · (
∂tξ+(B · ∇)ξ+(∇B)Tξ

) |∇ψε| dx dt

+
∫ T ′

0

∫
�

ξ ⊗ nε : ∇B |∇ψε| dx dt

+
∫ T ′

0

∫
�

nε · (B · ∇)ξ |∇ψε| dx dt

= −
∫ T ′

0

∫
�

(nε−ξ) · (
∂tξ+(B · ∇)ξ+(∇B)Tξ

) |∇ψε| dx dt
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−
∫ T ′

0

∫
�

ξ · (
∂tξ+(B · ∇)ξ

) |∇ψε| dx dt

+
∫ T ′

0

∫
�

ξ ⊗ (nε−ξ) : ∇B |∇ψε| dx dt

+
∫ T ′

0

∫
�

nε · (B · ∇)ξ |∇ψε| dx dt .

Moreover, we may compute by means of nε|∇ψε| = ∇ψε , the product rule, and adding zero
twice

∫ T ′

0

∫
�

nε · (B · ∇)ξ |∇ψε| dx dt =
∫ T ′

0

∫
�

∇ψε · (B · ∇)ξ dx dt

=
∫ T ′

0

∫
�

∇ψε · (∇ · (ξ ⊗ B)
)
dx dt

−
∫ T ′

0

∫
�

(nε · ξ − 1)(∇ · B) |∇ψε| dx dt

−
∫ T ′

0

∫
�

(Id−nε ⊗ nε) : ∇B |∇ψε| dx dt

−
∫ T ′

0

∫
�

nε ⊗ nε : ∇B |∇ψε| dx dt .

By an integration by parts based on the regularity (2.5a)–(2.5b) of (ξ, B), an application
of the product rule, the symmetry relation ∇ · (∇ · (ξ ⊗ B)

) = ∇ · (∇ · (B ⊗ ξ)
)
, and an

application of the boundary condition (2.6h) for the velocity field B, we also get

∫ T ′

0

∫
�

∇ψε · (∇ · (ξ ⊗ B)
)
dx dt = −

∫ T ′

0

∫
�

ψε∇ · (∇ · (ξ ⊗ B)
)
dx dt

−
∫ T ′

0

∫
∂�

ψεn∂� · (∇ · (ξ ⊗ B)
)
dHd−1 dt

=
∫ T ′

0

∫
�

∇ψε · (∇ · (B ⊗ ξ)
)
dx dt

+
∫ T ′

0

∫
∂�

ψεn∂� · (ξ · ∇)B dHd−1 dt

−
∫ T ′

0

∫
∂�

ψεn∂� · (
(B · ∇)ξ+(∇ · B)ξ

)
dHd−1 dt

=
∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt

+
∫ T ′

0

∫
�

nε ⊗ ξ : ∇B |∇ψε| dx dt

−
∫ T ′

0

∫
∂�

ψε(n∂� · ξ)(∇ · B) dHd−1 dt

−
∫ T ′

0

∫
∂�

ψεn∂� · (B · ∇)ξ dHd−1 dt
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+
∫ T ′

0

∫
∂�

ψεn∂� · (ξ · ∇)B dHd−1 dt .

Splitting the vector field ξ into tangential and normal components in the form of ξ =
(n∂� · ξ)n∂� + (Id−n∂� ⊗ n∂�)ξ , and making use of ∇ tan(B · n∂�) = 0 due to the bound-
ary condition (2.6h) for the velocity field B as well as the product rule, we may further
equivalently express

∫ T ′

0

∫
∂�

ψεn∂� · (ξ · ∇)B dHd−1 dt

=
∫ T ′

0

∫
∂�

ψε(n∂� · ξ)n∂� · (n∂� · ∇)B dHd−1 dt

−
∫ T ′

0

∫
∂�

ψεB · (
(Id−n∂� ⊗ n∂�)ξ · ∇)

n∂� dHd−1 dt .

Exploiting the boundary condition (2.6h) for B, applying the product rule, splitting again the
vector field ξ into tangential and normal components as before, and finally relying on the
classical facts that (∇ tann∂�)Tn∂� = 0 and (∇ tann∂�)T = ∇ tann∂� along ∂�, we also have

−
∫ T ′

0

∫
∂�

ψεn∂� · (B · ∇)ξ dHd−1 dt

=
∫ T ′

0

∫
∂�

ψεξ · (B · ∇)n∂� dHd−1 dt −
∫ T ′

0

∫
∂�

ψε(B · ∇)(ξ · n∂�) dHd−1 dt

=
∫ T ′

0

∫
∂�

ψε(Id−n∂� ⊗ n∂�)ξ · (B · ∇)n∂� dHd−1 dt

−
∫ T ′

0

∫
∂�

ψε(B · ∇)(ξ · n∂�) dHd−1 dt

=
∫ T ′

0

∫
∂�

ψεB · (
(Id−n∂� ⊗ n∂�)ξ · ∇)

n∂� dHd−1 dt

−
∫ T ′

0

∫
∂�

ψε(B · ∇)(ξ · n∂�) dHd−1 dt .

The previous three displays in total imply

∫ T ′

0

∫
�

∇ψε · (∇ · (ξ ⊗ B)
)
dx dt =

∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt

+
∫ T ′

0

∫
�

nε ⊗ ξ : ∇B |∇ψε| dx dt

−
∫ T ′

0

∫
∂�

ψε(n∂� · ξ)(∇ tan · B) dHd−1 dt

−
∫ T ′

0

∫
∂�

ψε(B · ∇)(ξ · n∂�) dHd−1 dt,

so that the combination of the previous six displays culminates into

−
∫ T ′

0

∫
�

nε · ∂tξ |∇ψε| dx dt =
∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt
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−
∫ T ′

0

∫
�

(Id−nε ⊗ nε) : ∇B |∇ψε| dx dt

−
∫ T ′

0

∫
∂�

ψε(n∂� · ξ)(∇ tan · B) dHd−1 dt

−
∫ T ′

0

∫
∂�

ψε(B · ∇)(ξ · n∂�) dHd−1 dt

−
∫ T ′

0

∫
�

(nε−ξ) · (
∂tξ+(B · ∇)ξ+(∇B)Tξ

) |∇ψε| dx dt

−
∫ T ′

0

∫
�

ξ · (
∂tξ+(B · ∇)ξ

) |∇ψε| dx dt

−
∫ T ′

0

∫
�

(nε−ξ) ⊗ (nε−ξ) : ∇B |∇ψε| dx dt

−
∫ T ′

0

∫
�

(nε · ξ − 1)(∇ · B) |∇ψε| dx dt . (3.15)

Inserting (3.15) back into (3.14) and inspecting the structure of the right hand side of the
desired estimate (3.13), we still have to post-process the terms Res := Res(1) +Res(2), where

Res(1) := −
∫ T ′

0

∫
�

1

ε
H2

ε dx dt +
∫ T ′

0

∫
�

(∇ · ξ)
√
2W (uε)∂t uε dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt

−
∫ T ′

0

∫
�

(Id−nε ⊗ nε) : ∇B |∇ψε| dx dt, (3.16)

Res(2) := −
∫ T ′

0

∫
∂�

ψε(n∂� · ξ)(∇ tan · B) dHd−1 dt

−
∫ T ′

0

∫
∂�

ψε(B · ∇)(ξ · n∂�) dHd−1 dt . (3.17)

We start with the first residual term Res(1), and rewrite the last term for ε|∇uε|2 instead
of |∇ψε| using the boundary condition (2.6h) for B and the definition (1.5) for Hε . It turns
out later that the difference can be controlled. Recalling nε|∇uε| = ∇uε and integrating by
parts in the sense of the identity (2.15) based on the higher regularity of uε provided by the
first item of (2.13) shows that

∫ T ′

0

∫
�

nε ⊗ nε : ∇B ε|∇uε|2 dx dt =
∫ T ′

0

∫
�

ε∇uε ⊗ ∇uε : ∇B dx dt

= −
∫ T ′

0

∫
�

ε	uε(B · nε) |∇uε| dx dt

−
∫ T ′

0

∫
�

ε∇uε ⊗ B : ∇2uε dx dt

−
∫ T ′

0

∫
∂�

σ ′(uε)(B · ∇)uε dHd−1 dt . (3.18)
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Moreover, another integration by parts in combination with the boundary condition (2.6h)
for the velocity field B entails

−
∫ T ′

0

∫
�

ε∇uε ⊗ B : ∇2uε dx dt =
∫ T ′

0

∫
�

ε∇uε ⊗ B : ∇2uε dx dt

+
∫ T ′

0

∫
�

(∇ · B) ε|∇uε|2 dx dt .

In other words,

−
∫ T ′

0

∫
�

ε∇uε ⊗ B : ∇2uε dx dt =
∫ T ′

0

∫
�

(∇ · B)
1

2
ε|∇uε|2 dx dt,

so that completing the square, exploiting∇ψε = √
2W (uε)∇uε, integrating by parts (relying

in the process on nε|∇uε| = ∇uε as well as yet again the boundary condition (2.6h) for the
velocity field B) and finally recalling the definition (1.5) of the map Hε yields

−
∫ T ′

0

∫
�

ε	uε(B · nε) |∇uε| dx dt −
∫ T ′

0

∫
�

ε∇uε ⊗ B : ∇2uε dx dt

=
∫ T ′

0

∫
�

(∇ · B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dx dt

+
∫ T ′

0

∫
�

(∇ · B) |∇ψε| dx dt +
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt . (3.19)

Inserting back (3.19) into (3.18), making use of the chain rule and the surface divergence
theorem in form of (relying in the process also on the higher regularity of uε provided by the
first item of (2.13) and the boundary condition (2.6h) for B)

−
∫ T ′

0

∫
∂�

σ ′(uε)(B · ∇)uε dHd−1 dt =
∫ T ′

0

∫
∂�

σ(uε)(∇ tan · B) dHd−1 dt,

and adding zero several times thus implies

−
∫ T ′

0

∫
�

(Id−nε ⊗ nε) : ∇B |∇ψε| dx dt

=
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt −
∫ T ′

0

∫
�

nε ⊗ nε : ∇B
(
ε|∇uε|2−|∇ψε|

)
dx dt

+
∫ T ′

0

∫
�

(∇ · B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dx dt

+
∫ T ′

0

∫
∂�

σ(uε)(∇ tan · B) dHd−1 dt . (3.20)

Appealing to the boundary condition (2.6g) of the vector field ξ in form of

Res(2) = −
∫ T ′

0

∫
∂�

ψε cosα (∇ tan · B) dHd−1 dt

wemay thus infer from (3.20) and the definitions (3.16)–(3.17) of the two residual terms that
it holds for Res = Res(1) + Res(2)

Res = −
∫ T ′

0

∫
�

1

ε
H2

ε dx dt +
∫ T ′

0

∫
�

(∇ · ξ)
√
2W (uε)∂t uε dx dt
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+
∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt +
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt

+
∫ T ′

0

∫
∂�

(
σ(uε) − ψε cosα

)
(Id−n∂� ⊗ n∂�) : ∇B dHd−1 dt

−
∫ T ′

0

∫
�

(nε ⊗ nε−ξ ⊗ ξ) : ∇B
(
ε|∇uε|2−|∇ψε|

)
dx dt

−
∫ T ′

0

∫
�

ξ ⊗ ξ : ∇B
(
ε|∇uε|2−|∇ψε|

)
dx dt

+
∫ T ′

0

∫
�

(∇ · B)
1

2

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dx dt . (3.21)

For the derivation of the desired relative energy inequality, it thus suffices in view of (3.14),
(3.15) and (3.21) to post-process the first four right hand side terms of (3.21). To this end, one
may argue as follows. First, based on the definition (1.5) of the map Hε , nε|∇ψε| = ∇ψε,
the identity ∇ψε = √

2W (uε)∇uε, and finally the Allen–Cahn equation (AC1) expressed in
form of ∂t uε = − 1

ε
Hε thanks to (2.14) and (1.5), we obtain by completing the square and

adding zero

−
∫ T ′

0

∫
�

1

ε
H2

ε dx dt +
∫ T ′

0

∫
�

(∇ · ξ)
√
2W (uε)∂t uε dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt +
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt

= −
∫ T ′

0

∫
�

1

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2
dx dt

−
∫ T ′

0

∫
�

1

2ε
H2

ε dx dt +
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt

+
∫ T ′

0

∫
�

1

2

(
(∇ · ξ)

√
2W (uε)√

ε

)2

dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)

√
2W (uε)√

ε
(B · ξ)

√
ε|∇uε| dx dt

+
∫ T ′

0

∫
�

1√
ε
(∇ · ξ)

√
2W (uε)

(
B · (nε−ξ)

) √
ε|∇uε| dx dt . (3.22)

Completing the square yet again also entails

−
∫ T ′

0

∫
�

1

2ε
H2

ε dx dt +
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt

= −
∫ T ′

0

∫
�

1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2 dx dt

+
∫ T ′

0

∫
�

1√
ε
Hε

(
B · (nε−ξ)

) √
ε|∇uε| dx dt +

∫ T ′

0

∫
�

1

2
(B · ξ)2 ε|∇uε|2 dx dt .

(3.23)
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Finally, observe that it holds
∫ T ′

0

∫
�

1

2

(
(∇ · ξ)

√
2W (uε)√

ε

)2

dx dt +
∫ T ′

0

∫
�

1

2
(B · ξ)2 ε|∇uε|2 dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)

√
2W (uε)√

ε
(B · ξ)

√
ε|∇uε| dx dt

=
∫ T ′

0

∫
�

1

2

∣∣∣∣(B · ξ)
√

ε|∇uε| + (∇ · ξ)

√
2W (uε)√

ε

∣∣∣∣
2

dx dt

=
∫ T ′

0

∫
�

1

2

∣∣∣∣
(
(B · ξ)+(∇ · ξ)

)√
ε|∇uε| − (∇ · ξ)

(√
ε|∇uε|−

√
2W (uε)√

ε

)∣∣∣∣
2

dx dt

≤
∫ T ′

0

∫
�

2
∣∣(B · ξ)+(∇ · ξ)

∣∣2 ε|∇uε|2 dx dt

+
∫ T ′

0

∫
�

2|∇ · ξ |2
(√

ε|∇uε|−
√
2W (uε)√

ε

)2

dx dt . (3.24)

Hence, the combination of (3.22)–(3.24) yields

−
∫ T ′

0

∫
�

1

ε
H2

ε dx dt +
∫ T ′

0

∫
�

(∇ · ξ)
√
2W (uε)∂t uε dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)(B · nε) |∇ψε| dx dt +
∫ T ′

0

∫
�

Hε(B · nε) |∇uε| dx dt

≤ −
∫ T ′

0

∫
�

1

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2
dx dt

−
∫ T ′

0

∫
�

1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2 dx dt

+
∫ T ′

0

∫
�

1√
ε

(
Hε+(∇ · ξ)

√
2W (uε)

)(
B · (nε−ξ)

) √
ε|∇uε| dx dt

+
∫ T ′

0

∫
�

2
∣∣(B · ξ)+(∇ · ξ)

∣∣2 ε|∇uε|2 dx dt

+
∫ T ′

0

∫
�

2|∇ · ξ |2
(√

ε|∇uε|−
√
2W (uε)√

ε

)2

dx dt .

This in turn concludes the proof. ��
A post-processing of the relative energy inequality based on the coercivity properties of

the relative energy functional now yields the asserted stability estimate.

Corollary 12 In the setting of Theorem 3, there exist two constants c ∈ (0, 1) and C ∈ (1,∞)

such that

ErelEn[uε|A ](T ′) +
∫ T ′

0

∫
�

c

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2+ 1

2ε

(
Hε−(B · ξ)ε|∇uε|

)2
dx dt

≤ ErelEn[uε|A ](0) + C
∫ T ′

0
ErelEn[uε|A ](t) dt (3.25)

for all T ′ ∈ (0, T ].
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Proof Note that by (3.1), (1.7), and the chain rule

ε|∇uε|2 − |∇ψε| = √
ε|∇uε|

(√
ε|∇uε| −

√
2W (uε)√

ε

)
. (3.26)

Hence, the right hand side terms of (3.13) can all be estimated in terms of the relative energy
itself (or by absorption into the first quadratic term on the left hand side of (3.13)) based
on straightforward arguments exploiting the coercivity properties (3.6)–(3.12) of the relative
energy and the properties (2.6c)–(2.6f) of the vector fields (ξ, B). ��

4 Quantitative stability with respect to a calibrated evolution

Themain goal of this section is to conclude the proof of Theorem3. To this end, we first define
an error functional which gives a direct control for the L1-distance between the evolving
indicator function associated with a calibrated evolution and the solution of (AC1)–(AC3)
in terms of (3.1).

4.1 Definition and coercivity properties of the bulk error functional

Let A = ⋃
t∈[0,T ] A (t)×{t} be a calibrated evolution in � ⊂ R

d with associated boundary
adapted gradient flow calibration (ξ, B, ϑ) in the sense of Definition 2. Denote by χ(·, t)
the characteristic function associated to A (t), t ∈ [0, T ]. Let uε be a weak solution to the
Allen–Cahn problem (AC1)–(AC3) in the sense of Definition 5 with finite energy initial data
satisfying uε,0 ∈ [−1, 1].

Recalling the definitions (1.7), (1.8) and (3.1) of ψ , c0 and ψε , we then define a bulk error
functional by means of

Ebulk[uε|A ](t) :=
∫

�

(
ψε(·, t) − c0χ(·, t))ϑ(·, t) dx, t ∈ [0, T ]. (4.1)

Note that thanks to (2.12) (in particular ψε ∈ [0, c0]) and the fact that ϑ(·, t) < 0 (resp.
ϑ(·, t) > 0) in the essential interior of A (t) within � (resp. the essential exterior of A (t)),
definition (4.1) indeed provides a non-negative quantity for all t ∈ [0, T ]:

Ebulk[uε|A ](t) =
∫

�

|ψε(·, t) − c0χ(·, t)∣∣∣∣ϑ(·, t)∣∣ dx ≥ 0. (4.2)

Under additional regularity assumptions onA , one may further guarantee that the bulk error
functional Ebulk[uε|A ](t) controls the squared L1-distance between ψε(·, t) and c0χ(·, t)
for all t ∈ [0, T ]. For simplicity, let us state and prove this auxiliary result in terms of a
strong solution.

Lemma 13 (Coercivity of the bulk error functional) In the setting of Theorem 1, there exists
a constant C > 0 such that for all t ∈ [0, T ] it holds

‖ψε(·, t) − c0χ(·, t)‖2L1(�)
≤ CEbulk[uε|A ](t). (4.3)

Proof We divide the proof into two steps.
Step 1: A slicing argument. Let M ⊂ R

d be a an embedded, compact and oriented
(d−1)-dimensional C2-submanifold of Rd (potentially with boundary). Moreover, let nM
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denote a unit normal vector field along M . Based on the tubular neighborhood theorem, fix
a localization scale rM ∈ (0, 1) and a constant CM > 0 such that the map

�M : M × (−rM , rM ) → R
d , (x, s) �→ x + snM (x)

defines a C2-diffeomorphism onto its image and such that sdistM = (�−1
M )2 on �M (M ×

(−rM , rM )) as well as

|∇�M | ≤ CM , |∇�−1
M | ≤ CM .

For any measurable g : Rd → R bounded by 1 (or by a uniform constant) it holds

∫
M

∣∣∣∣
∫ rM

−rM

∣∣g(x+snM (x)
)∣∣ ds

∣∣∣∣
2

dHd−1 �
∫
M

∫ rM

−rM

∣∣g(x+snM (x)
)∣∣∣∣s∣∣ ds dHd−1.

This estimate can be shown by splitting the inner integral at 0, using the Fubini Theorem and
by dividing (0, rM )2 into two triangles (cf. Fischer, Laux and Simon [10], proof of Theorem
1, for a similar argument). By changing variables back and forth by means of �M and �−1

M ,
respectively, implies the estimate

∣∣∣∣
∫

�M (M×(−rM ,rM ))

|g| dx
∣∣∣∣
2

�
∫

�M (M×(−rM ,rM ))

|g| dist(·, M) dx . (4.4)

Step 2: Proof of (4.3). We claim that in the setting of Theorem 1, for any measur-
able ‖g‖L∞(Rd ) ≤ 1 it holds

∣∣∣∣
∫

�

|g| dx
∣∣∣∣
2

�
∫

�

|g||ϑ |(·, t) dx (4.5)

uniformly over all t ∈ [0, T ], which in turn of course implies the claim.
For a proof of (4.5), fix t ∈ [0, T ] and then define a scale r := min{r∂�, r∂∗A (t)∩�} as

well as sets

�bulk := {
x ∈ � : dist(·, ∂∗A (t) ∩ �) ≥ r

}
�∂∗A (t)∩� := � ∩ �∂∗A (t)∩�

(
∂∗A (t) ∩ �×(−r , r)

)
�∂� := �\(�bulk ∪ �∂∗A (t)∩�).

Then, it holds by a union bound

∣∣∣∣
∫

�

|g| dx
∣∣∣∣
2

�
∣∣∣∣
∫

�bulk

|g| dx
∣∣∣∣
2

+
∣∣∣∣
∫

�
∂∗A (t)∩�

|g| dx
∣∣∣∣
2

+
∣∣∣∣
∫

�∂�

|g| dx
∣∣∣∣
2

.

Due to the definition of the set�bulk and the lower bound (2.7d) for theweightϑ , the first right
hand side term of the previous display obviously admits an estimate of required form. For an
estimate of the second term, one simply applies the estimate (4.4) with M = ∂∗A (t) ∩ �

and then post-processes it to required form based on the definition of the set �∂∗A (t)∩�

and the lower bound (2.7d) for the weight ϑ . The argument for the third term is essentially
analogous thanks to (4.4) with M = ∂�, at least once one carefully noted that �∂� ⊂
�∂�(∂�×(−r , r)) as well as dist(·, ∂�) ≤ C dist(·, ∂∗A (t) ∩ �) throughout �∂�. ��
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4.2 Time evolution of the bulk error functional

In a next step, we derive a suitable representation for the time evolution of the error func-
tional Ebulk[uε|A ].

Lemma 14 In the setting of Theorem 3, the time evolution of the bulk error func-
tional Ebulk[uε|A ] defined by (4.1) can be represented by

Ebulk[uε|A ](T ′) = Ebulk[uε|A ](0) +
∫ T ′

0

∫
�

ϑ(B · ξ)
(|∇ψε| − ε|∇uε|2

)
dx dt

+
∫ T ′

0

∫
�

ϑ
√

ε|∇uε|
(
(B · ξ)

√
ε|∇uε| − Hε√

ε

)
dx dt

+
∫ T ′

0

∫
�

ϑ

(
Hε√

ε
+(∇ · ξ)

√
2W (uε)√

ε

)(√
ε|∇uε|−

√
2W (uε)√

ε

)
dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)ϑ

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dx dt

−
∫ T ′

0

∫
�

(∇ · ξ)ϑ
√

ε|∇uε|
(√

ε|∇uε| −
√
2W (uε)√

ε

)
dx dt

+
∫ T ′

0

∫
�

ϑ
(
B · (nε − ξ)

) |∇ψε| dx dt

+
∫ T ′

0

∫
�

(ψε − c0χ)ϑ(∇ · B) dx dt

+
∫ T ′

0

∫
�

(ψε − c0χ)
(
∂tϑ+(B · ∇)ϑ

)
dx dt (4.6)

for all T ′ ∈ [0, T ].

Proof By an application of the fundamental theorem of calculus together with a standard
mollification argument in the time variable, an application of the chain rule, as well as by
exploiting that the measure ∂tχ is absolutely continuous with respect to the measure |∇χ |
restricted to the set

⋃
t∈(0,T )(∂

∗A (t) ∩ �)×{t}, on which in turn the weight ϑ vanishes due
to (2.7c), it holds

Ebulk[uε|A ](T ′) = Ebulk[uε|A ](0) +
∫ T ′

0

∫
�

ϑ
√
2W (uε)∂t uε dx dt

+
∫ T ′

0

∫
�

(ψε − c0χ)∂tϑ dx dt .

Adding zero twice, making use of the chain rule, and integrating by parts (exploiting in the
process the boundary condition (2.6h) for B and again the condition (2.7c) for ϑ) yields the
following update of the previous display

Ebulk[uε|A ](T ′) = Ebulk[uε|A ](0) +
∫ T ′

0

∫
�

ϑ
√
2W (uε)∂t uε dx dt

+
∫ T ′

0

∫
�

ϑ(B · ξ) |∇ψε| dx dt
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+
∫ T ′

0

∫
�

ϑ
(
B · (nε − ξ)

) |∇ψε| dx dt

+
∫ T ′

0

∫
�

(ψε − c0χ)ϑ(∇ · B) dx dt

+
∫ T ′

0

∫
�

(ψε − c0χ)
(
∂tϑ+(B · ∇)ϑ

)
dx dt,

for which we also recall nε|∇ψε| = ∇ψε . Moreover, inserting the Allen–Cahn equa-
tion (AC1) in form of ∂t uε = − 1

ε
Hε thanks to (2.14) and (1.5) entails together with adding

zero twice that∫ T ′

0

∫
�

ϑ
√
2W (uε)∂t uε dx dt +

∫ T ′

0

∫
�

ϑ(B · ξ) |∇ψε| dx dt

=
∫ T ′

0

∫
�

ϑ(B · ξ)
(|∇ψε| − ε|∇uε|2

)
dx dt

+
∫ T ′

0

∫
�

ϑ
√

ε|∇uε|
(
(B · ξ)

√
ε|∇uε| − Hε√

ε

)
dx dt

+
∫ T ′

0

∫
�

ϑ
Hε√

ε

(√
ε|∇uε| −

√
2W (uε)√

ε

)
dx dt .

Continuing in this fashion by adding appropriate zeros moreover gives
∫ T ′

0

∫
�

ϑ
Hε√

ε

(√
ε|∇uε| −

√
2W (uε)√

ε

)
dx dt

=
∫ T ′

0

∫
�

ϑ

(
Hε√

ε
+ (∇ · ξ)

√
2W (uε)√

ε

)(√
ε|∇uε| −

√
2W (uε)√

ε

)
dx dt

+
∫ T ′

0

∫
�

(∇ · ξ)ϑ

(√
ε|∇uε| −

√
2W (uε)√

ε

)2

dx dt

−
∫ T ′

0

∫
�

(∇ · ξ)ϑ
√

ε|∇uε|
(√

ε|∇uε| −
√
2W (uε)√

ε

)
dx dt .

The collection of the previous four displays now entails the claim. ��
We have everything in place to proceed with the proof of the first main result of this work

concerning quantitative stability for the Allen–Cahn problem (AC1)–(AC3) with respect to
a calibrated evolution.

4.3 Proof of Theorem 3

Recalling the identity (3.26), the coercivity properties (3.6)–(3.12), the estimate (3.25) for
the time evolution of the relative energy functional, the representation (4.6) of the time
evolution of the bulk error functional, as well as the properties (2.7c)–(2.7e) of the weight ϑ
(here (2.7c) implies the estimate |ϑ(·, t)| ≤ C‖∇ϑ(·, t)‖L∞(�) min{1, dist(·, ∂∗A (t) ∩ �)})
for all t ∈ [0, T ]), we obtain by straightforward arguments that there exists two constants
c ∈ (0, 1) and C > 0 such that

Ebulk[uε|A ](T ′) +
∫ T ′

0

∫
�

c

2ε

(
Hε+(∇ · ξ)

√
2W (uε)

)2+ c

2ε

(
Hε−(B · ξ)ε|∇uε|

)2
dx dt
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≤ (ErelEn + Ebulk)[uε|A ](0) + C
∫ T ′

0
(ErelEn + Ebulk)[uε|A ](t) dt

for all T ′ ∈ [0, T ]. Together with (3.25), this implies the desired estimates. ��

5 Construction of boundary adapted gradient flow calibrations

We follow the strategy of [9] by constructing local candidates for the vector fields (ξ, B)

around each topological feature, i.e., the contact points in Sect. 5.1, the bulk interface in
Sect. 5.2, and the domain boundary in Sect. 5.3. These local constructions are then merged
together into the global one in Sect. 5.4. The construction of ϑ is simpler and carried out in
Sect. 5.5.

Let A be a strong solution for mean curvature flow with contact angle α on the time
interval [0, T ] as in Definition 10. In the following we summarize some notation and asser-
tions concerning tubular neighbourhoods for I and ∂� in Remarks 15 and 16, respectively.
Necessary compatibility conditions at the contact points are collected in Remark 17.

Remark 15 (Notation and tubular neighbourhoods for strong solutions of planar mean cur-
vature flow with constant contact angle 0 < α ≤ π

2 ) For the following, we refer to [9,
Definition 21 and Lemma 23] and comments there.

In the situation of Definition 10, the assumptions imply the existence of a uniform local-
ization scale rI ∈ (0, 1] such that natural ball conditions at interior and boundary points
are satisfied. Moreover, the standard tubular neighbourhood map XI : I × (−rI , rI ) →
R
2 × [0, T ] : (x, t, s) �→ (x + snI (x, t), t) is well-defined, bijective onto its image im(XI ),

and the inverse has the regularity CtC4
x ∩ C1

t C
2
x on im(XI ).

We denote by s I the signed distance function with respect to the unit normal nI and let
P I be the orthogonal projection. Then s I is of class CtC5

x ∩ C1
t C

3
x on im(XI ) and P I the

same except one regularity less in space. We note that

|s I (x̃, t)| = distx (·, I )(x̃, t) := dist(x̃, I (t)) for (x̃, t) ∈ im(XI ),

where the latter is also defined globally on R
2 and we will sometimes use the notation

distx (·, I ) for convenience.
Moreover, the following definitions yield extensions of the inner unit normal nI and the

(mean) curvature H I to the tubular neighbourhood:

nI := ∇s I and H I := −	s I |(P I ,prt )
on im(XI ), (5.1)

where prt is the projection onto the time component. Then nI has the regularityCtC4
x ∩C1

t C
2
x

on im(XI ) and H I the same just one order less in space. Moreover,

|∇s I |2 = 1, ∇s I = ∇s I |(P I ,prt )
and ∂t s

I = ∂t s
I |(P I ,prt )

on im(XI ).

Finally, let us define τI := J TnI pointwise on im(XI ), where J is the constant rotation by
90◦ counter-clockwise. Then by [9, (128) and (129)], we have

∇nI = −H I τI ⊗ τI and ∇τI = H I nI ⊗ τI on I . (5.2)

Note that we did not use 2. and 3. from Definition 10 up to now. If 2. holds, then

∂t s
I = 	s I |(P I ,prt )

= −H I and ∂tnI = −∇H I on im(XI ). (5.3)
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Remark 16 (Notation for the boundary) Since the boundary ∂� of the domain is C3, we can
use similar constructions and definitions as in the last Remark 15, except equations (5.3).
In particular, there is a suitable localization scale r∂� ∈ (0, 1] and an associated (time-
independent) tubular neighbourhood diffeomorphism X∂�, so that s∂� denotes the signed
distance, P∂� the orthogonal projection and n∂�, τ∂�, and H ∂� are defined in the analogous
way as in Remark 15. Concerning regularity s∂� is C3

x , P
∂�, n∂�, τ∂� are C2

x and H ∂� is of
class C1

x .

Remark 17 (Compatibility conditions for strong solutions of planarmean curvature flowwith
constant contact angle 0 < α ≤ π

2 )We remark that 1.–3. in Definition 10 imply compatibility
conditions at the boundary points. The latter will be important for the local construction of
the calibrations close to the boundary points. Let us fix a boundary point p ∈ ∂ I (0) for the
initial interface and set p(t) := �(p, t) for t ∈ [0, T ]. Then p(t) ∈ ∂� and mean curvature
flow yield

d

dt
p(t) · n∂�|p(t) = 0 and

d

dt
p(t) · nI |(p(t),t) = H I |(p(t),t), t ∈ [0, T ]. (5.4)

In order to obtain a higher order compatibility condition, we differentiate the angle condi-
tion (2.17) with respect to time. This yields together with (5.2)

0 =
(

−H ∂�τ∂� ⊗ τ∂�|p(t) ddt p(t)
)

· nI |(p(t),t)

+ n∂�|p(t) ·
(

−H I τI ⊗ τI |(p(t),t) ddt p(t) + ∂tnI |(p(t),t)
)

for all t ∈ [0, T ].

We insert the identities from (5.4) for d
dt p(t) and use the properties of the rotation J ; the

latter to rewrite n∂�|p(t) · τI |(p(t),t) = −τ∂�|p(t) · nI |(p(t),t). Therefore we obtain the next
compatibility condition, which is third order concerning derivatives: for all t ∈ [0, T ] it holds

−H I |(p(t),t)H ∂�|p(t) + (H I )2τI |(p(t),t) · τ∂�|p(t) − n∂�|p(t) · ∇H I |(p(t),t) = 0. (5.5)

5.1 Local building block for (�, B) at contact points

For the construction at the contact points we proceed in a similar way as in the case of a triple
junction for multiphase mean curvature flow, see [9, Section 6]. Therefore we introduce an
appropriate localization radius rp for the contact points, such that there are suitable evolving
sectors confining the topological features on an evolving ball on this scale. This is done in
Lemma 18 below. Then in Sect. 5.1.1 we construct candidates for (ξ, B) defined on tubular
neighborhoods of the interface I and the boundary ∂�, respectively, which will serve as a
definition on corresponding sectors. Here ideas from [9, Section 6.1] are adjusted for the
present situation. Finally, these constructions will be interpolated in Sect. 5.1.2 analogously
to [9, Section 6.2].

Lemma 18 Let A be a strong solution for mean curvature flow with contact angle α on
the time interval [0, T ] as in Definition 10. Moreover, let p ∈ ∂ I (0), p(t) := �(p, t) for
t ∈ [0, T ] and P := ⋃

t∈[0,T ]{p(t)} × {t} be the corresponding evolving contact point.
Then there is a localization radius r = rp ∈ (0,min{rI , r∂�}] such that the evolving ball
Br (p) := ⋃

t∈[0,T ] Br (p(t)) × {t} has a wedge-decomposition in the following sense:

1. Br (p) is separated at each time t ∈ [0, T ] into open wedge-type domains WI (t), W±(t),
W0(t) and an open double-wedge-type domain W∂�(t). The latter are disjoint and the
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Fig. 2 Illustration of wedge
decomposition at a contact point

∂Ω

I(t)A (t)
WI(t)

W−(t)
W+(t)

W0(t)

W∂Ω(t)

union of the closures gives Br (p(t)). These domains are the intersections of Br (p(t))
with cones defined from unit C1-vector fields in time with constant-in-time angle relation
(analogous to [9, Definition 24]). The corresponding space-time domains are denoted
by WI , W±, W0 and W∂�.

2. Moreover, W±(t), W∂�(t), W0(t) are contained in the tubular neighborhood for ∂�,
and W±(t), WI (t) are contained in the tubular neighborhood of I (t) for all t ∈ [0, T ].
Additionally, for all t ∈ [0, T ] it holds

W+(t) ⊂ A (t), W−(t) ⊂ �\A (t), W0(t) ⊂ R
2\�, WI (t) ⊂ �,

and finally I (t) ∩ Br (p(t)) ⊂ WI (t) ∪ {p(t)} and ∂� ∩ Br (p(t)) ⊂ W∂�(t) ∪ {p(t)}
for all t ∈ [0, T ].

3. Finally, on eachof the separatingdomains, there areuniformnatural estimates comparing
the distances to the different topological features (similar to [9, Definition 24]).

We henceforth call WI interface wedge, W∂� boundary (double-)wedge, W± bulk (or
interpolation) wedges and W0 outer wedge, cf. Fig. 2.

Proof The separating domains can be defined in a purely geometric way, and one may argue
simply along the lines of the proof of [9, Lemma 25]. Therefore, we refrain from going into
details. ��

We may now formulate the main result of this subsection.

Theorem 19 LetA be a strong solution for mean curvature flow with contact angle α on the
time interval [0, T ] as in Definition 10, and let the notation of Remarks 15 and 16 be in place.
For each of the two contact points p± ∈ ∂ I (0) with associated trajectory p±(t) ∈ ∂ I (t), let
r± = rp± be an associated localization radius in the sense of Lemma 18 above. For a given
r̂± ∈ (0, r±], we define a space-time domain Br̂±(p±) := ⋃

t∈[0,T ] Br̂±(p±(t))×{t}.
There then exists a localization scale r̂± ∈ (0, rp±] and a pair of local vector fields

ξ p± , B p± : Br̂±(p±) ∩ (�×[0, T ]) → R
2 such that the following conditions hold:

1. (Regularity) It holds

ξ p± ∈ C1(Br̂±(p±) ∩ (�×[0, T ])) ∩ CtC
2
x (Br̂±(p±) ∩ (�×[0, T ])), (5.6)

B p± ∈ CtC
1
x (Br̂±(p±) ∩ (�×[0, T ])) ∩ CtC

2
x (Br̂±(p±) ∩ (�×[0, T ])), (5.7)

and there exists C > 0 such that

|∇2ξ p±| + |∇2B p±| ≤ C in Br̂±(p±) ∩ (�×[0, T ]). (5.8)
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2. (Consistency)We have |ξ p±| = 1 in Br̂±(p±) ∩ (� × [0, T ]) as well as
ξ p± = nI and

(∇ξ p±)TnI = 0 along Br̂±(p±) ∩ I , (5.9)

B p±(p±(t), t) = d

dt
p±(t) for all t ∈ [0, T ]. (5.10)

3. (Boundary conditions)Moreover, it holds

ξ p± · n∂� = cosα and B p± · n∂� = 0 along Br̂±(p±) ∩ (∂�×[0, T ]). (5.11)

4. (Motion laws) In terms of evolution equations, there exists C > 0 such that

|∂tξ p± + (B p± · ∇)ξ p± + (∇B p±)Tξ p±| ≤ C distx (·, I ), (5.12)

|(∂t + B p± · ∇)|ξ p±|2| = 0, (5.13)

|B p± · ξ p± + ∇ · ξ p±| ≤ C distx (·, I ), (5.14)

|ξ p± ⊗ ξ p± : ∇B p±| ≤ C distx (·, I ) (5.15)

throughout Br̂±(p±) ∩ (� × [0, T ]).
5. (Additional constraints) Finally, the construction of B p± may be arranged in a way to

guarantee that

∇symB p± = 0 along Br̂±(p±) ∩ (I ∪ (∂�×[0, T ])). (5.16)

The proof of this result occupies the whole remainder of this subsection.

5.1.1 Construction of local candidates for (�, B) at contact points

We fix the contact point P in this section and consider a localization radius r = rp as in
Lemma 18. Then there is a unique rotation Rα (rotation by −α or α) such that

Rαn∂�|p(t) = nI |(p(t),t) and hence Rατ∂�|p(t) = τI |(p(t),t). (5.17)

Motivated from [9, Section 6.1], and the conditions in Definition 2, we consider the
following candidate vector fields

ξ̃ I := nI + s Iβ I τI − 1

2
(s Iβ I )2nI on Br (p) ∩ im(XI ), (5.18)

ξ̃ ∂� := Rα

[
n∂�+s∂�β∂�τ∂�−1

2
(s∂�β∂�)2n∂�

]
on Br (p) ∩ (im(X∂�)×[0, T ]),

(5.19)

where β I = β̂ I (P I , prt ) on im(XI ) and β∂� = β̂∂�(P∂�, prt ) on (im(X∂�)×[0, T ]) with
β̂ I : I → R and β̂∂� : ∂� × [0, T ] → R. Note that the quadratic terms are just added for a
length correction later. Moreover, we introduce

B̃ I := H I nI + (γ I + s Iρ I )τI on Br (p) ∩ im(XI ), (5.20)

B̃∂� := (γ ∂� + s∂�ρ∂�)τ∂� on Br (p) ∩ (im(X∂�)×[0, T ]), (5.21)

where γ I , ρ I are defined via projection from some γ̂ I , ρ̂ I : I → R and γ ∂�, ρ∂� are defined
via projection from some γ̂ ∂�, ρ̂∂� : ∂� × [0, T ] → R analogously as before.

Our task is to choose the ansatz functions β̂ I , γ̂ I , ρ̂ I and β̂∂�, γ̂ ∂�, ρ̂∂� in such a way
that the above vector fields ξ̃ I , ξ̃ ∂� and B̃ I , B̃∂� are compatible at P up to first order in
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space derivatives, respectively, and that the latter equal d
dt p at P . Moreover, the property

(2.6a) should be satisfied at P for both ξ̃ I and ξ̃ ∂�, and the left hand side of the equations
(2.6c)–(2.6f) should be zero exactly on I ∩ Br (p) for ξ̃ I , B̃ I and be zero at P for ξ̃ ∂�,
B̃∂�. Finally, the boundary conditions (2.6g)–(2.6h) should be satisfied for ξ̃ I , BI at P
and for ξ̃ ∂�, B̃∂� on (∂� × [0, T ]) ∩ Br (p). See also Theorem 22 below for more precise
statements. Note that the consistency for second order space derivatives in the regularity
class from Definition 2 is not needed and will be taken care of via a suitable interpolation in
Sect. 5.1.2.

Therefore let us compute the required derivatives to first order for the above vector fields:

Proposition 20 Let β̂ I , β̂∂� be of class C1 on their respective domains of definition, and let
γ̂ I , ρ̂ I , γ̂ ∂�, ρ̂∂� have the regularity CtC1

x on their respective domains of definition. Then
it holds

∂t ξ̃
I |I = −∇H I − β I H I τI on Br (p) ∩ I ,

∂t ξ̃
∂�|∂�×[0,T ] = 0 on Br (p) ∩ (∂�×[0, T ]),

∇ ξ̃ I |I = τI ⊗ [−H I τI + β I nI ] on Br (p) ∩ I ,

∇ ξ̃ ∂�|∂�×[0,T ] = Rατ∂� ⊗ [−H ∂�τ∂� + β∂�n∂�] on Br (p) ∩ (∂�×[0, T ]),
∇ B̃ I |I = (τI · ∇H I + γ I H I )nI ⊗ τI + (τI · ∇γ I − (H I )2)τI ⊗ τI

+ ρ I τI ⊗ nI on Br (p) ∩ I ,

∇ B̃∂�|∂�×[0,T ] = (γ ∂�H ∂�)n∂� ⊗ τ∂� + (τ∂� · ∇γ ∂�)τ∂� ⊗ τ∂�

+ ρ∂�τ∂� ⊗ n∂� on Br (p) ∩ (∂�×[0, T ]).
Proof This follows from a straightforward calculation using the identities from Remark 15
and Remark 16 and the definitions (5.18)–(5.21). ��

Now we can insert the compatibility conditions and derive equations for the ansatz
functions β̂ I , γ̂ I , ρ̂ I and β̂∂�, γ̂ ∂�, ρ̂∂�, respectively, in order to satisfy the requirements
mentioned just before Proposition 20.

First, we have by (5.17), (5.18) and (5.19)

ξ̃ I |(p(t),t) = nI |(p(t),t) = Rαn∂�|p(t) = ξ̃ ∂�|(p(t),t) for all t ∈ [0, T ].
Moreover, note that it holds Rατ∂�|p(t) = τI |(p(t),t) for all t ∈ [0, T ]. Therefore, due to
Proposition 20 the compatibility of the gradient at the contact point, i.e., ∇ ξ̃ I |(p(t),t) =
∇ ξ̃ ∂�|(p(t),t) for t ∈ [0, T ], is equivalent to

β I |(p(t),t) = −H ∂�|p(t)τ∂� · nI |(p(t),t) + β∂�|(p(t),t)n∂� · nI |(p(t),t),
−H I |(p(t),t) = −H ∂�|p(t)τ∂� · τI |(p(t),t) + β∂�|(p(t),t)n∂� · τI |(p(t),t) (5.22)

for t ∈ [0, T ]. Hence we obtain for t ∈ [0, T ]

β∂�|(p(t),t) = 1

n∂� · τI |(p(t),t)
(
−H I |(p(t),t) + H ∂�|p(t)τ∂� · τI |(p(t),t)

)
, (5.23)

where |n∂� · τI |(p(t),t)| = cos( π
2 − α) > 0. This determines also β I |(p(t),t). Note that in

the case α = π
2 one simply gets β I |(p(t),t) = −H ∂�|p(t) and β∂�|(p(t),t) = −H I |p(t),

respectively.
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Next, we consider the requirement

B̃ I |(p(t),t) = d

dt
p(t) = B̃∂�|(p(t),t) for t ∈ [0, T ].

Because of (5.4) for d
dt p from Remark 17, we simply obtain that for t ∈ [0, T ]

γ I |(p(t),t) = d

dt
p(t) · τI |(p(t),t), (5.24)

γ ∂�|(p(t),t) = d

dt
p(t) · τ∂�|(p(t),t). (5.25)

Now let us consider ∇ B̃ I . Let us note that (2.6c) is an approximate equation for the
transport and rotation of the vector field ξ . This motivates us to require ∇ B̃ I to be anti-
symmetric on the interface I , since then the latter can be interpreted as an infinitesimal
rotation. Hence in the formula for ∇ B̃ I |I in Proposition 20 the coefficient of τI ⊗ τI should
vanish and the prefactors of nI ⊗ τI and τI ⊗ nI should be the negative of each other. This
yields

τI · ∇γ I = (H I )2 on I , (5.26)

ρ I = −τI · ∇H I − γ I H I on I . (5.27)

Then the equation for ∇ B̃ I |I becomes

∇ B̃ I = ρ I (τI ⊗ nI − nI ⊗ τI ) = ρ I J on I , (5.28)

with the counter-clockwise rotation J by 90◦. Due to the same reason, we require ∇ B̃∂� to
be anti-symmetric on ∂� × [0, T ] which yields

τ∂� · ∇γ ∂� = 0 on ∂� × [0, T ], (5.29)

ρ∂� = −γ ∂�H ∂� on ∂� × [0, T ], (5.30)

and thus

∇ B̃∂� = ρ∂� J on ∂�×[0, T ]. (5.31)

Hence, the compatibility condition at first order ∇ B̃ I |(p(t),t) = ∇ B̃∂�|(p(t),t) is equivalent
to

ρ∂�|(p(t),t) = ρ I |(p(t),t) for t ∈ [0, T ]. (5.32)

Because of (5.26)–(5.27) and (5.29)–(5.30) the latter is the same as

−γ ∂�|(p(t),t)H ∂�|p(t) = −τI · ∇H I − γ I H I |(p(t),t) for t ∈ [0, T ].
By inserting (5.24)–(5.25) and using

(τ∂�|p(t) · nI |(p(t),t))τI · ∇H I = −n∂�|p(t) · ∇H I |(p(t),t)
due to the properties of J and H I being constant in direction of nI , we see that (5.32) is in
fact equivalent to the compatibility condition (5.5), which in turn is valid because of Remark
17.

It will turn out that these choices will ensure the requirements for the candidate vector
fields. Therefore let us fix these vector fields in the following definition.
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Definition 21 We define ξ̃ I , ξ̃ ∂� and B̃ I , B̃∂� as in (5.18)–(5.19) and (5.20)–(5.21), respec-
tively, with the following choices of the coefficient functions β̂ I , γ̂ I , ρ̂ I : I → R and
β̂∂�, γ̂ ∂�, ρ̂∂� : ∂�×[0, T ] → R:

1. Let β̂ I : I → R and β̂∂� : ∂�×[0, T ] → R be defined by the right hand side of (5.22)
and (5.23), respectively, in the sense that these coefficient functions are independent of
the space variable.

2. Let γ̂ I : I → R be determined by (5.24) and (5.26).
3. Let γ̂ ∂� : ∂�×[0, T ] → R be defined by the right hand side of (5.25) in the sense

that γ̂ ∂� is independent of the space variable.
4. Finally, ρ̂ I : I → R is given by (5.27) and ρ̂∂� : ∂� × [0, T ] → R by (5.30).

Note that the equations for γ̂ I can be reduced to a parameter-dependent ODE which can
be explicitly solved, cf. [9, Proof of Lemma 27]. In the next theorem we prove the properties
of the above construction. One may compare with Definition 2 and Theorem 19.

Theorem 22 In the above situation and with the choices from Definition 21 the following
holds:

1. Regularity: ξ̃ I , ξ̃ ∂� are of class CtC2
x ∩ C1

t Cx and B̃ I , B̃∂� have the regularity CtC2
x

on their respective domains of definition.
2. Compatibility: For t ∈ [0, T ] it holds

ξ̃ I |(p(t),t) = ξ̃ ∂�|(p(t),t), (∂t ,∇)ξ̃ I |(p(t),t) = (∂t ,∇)ξ̃ ∂�|(p(t),t), (5.33)

B̃ I |(p(t),t) = d

dt
p(t) = B̃∂�|(p(t),t) and ∇ B̃ I |(p(t),t) = ∇ B̃∂�|(p(t),t). (5.34)

3. Local gradient flow calibration properties: We have

ξ̃ I |I = nI and (∇ ξ̃ I )TnI |I = 0 on Br (p) ∩ I . (5.35)

Moreover, it holds |ξ̃ I |2 = 1 − 1
4 (β

I s I )4 on Br (p) ∩ im(XI ) as well as

|∂t ξ̃ I + (B̃ I · ∇)ξ̃ I + (∇ B̃ I )Tξ̃ I | ≤ C |s I | on Br (p) ∩ im(XI ), (5.36)

|(∂t + B̃ I · ∇)|ξ̃ I |2| ≤ C |s I |4 on Br (p) ∩ im(XI ), (5.37)

|ξ̃ I · B̃ I + ∇ · ξ̃ I | ≤ C |s I | on Br (p) ∩ im(XI ), (5.38)

|ξ̃ I · (ξ̃ I · ∇)B̃ I | ≤ C |s I | on Br (p) ∩ im(XI ). (5.39)

Additionally, |ξ̃ ∂�|2 = 1 − 1
4 (β

∂�s∂�)4 on Br (p) ∩ im(X∂�) and

∂t ξ̃
∂�+(B̃∂� · ∇)ξ̃ ∂�+(∇ B̃∂�)Tξ̃ ∂� = 0 at P, (5.40)

|(∂t+B̃∂� · ∇)|ξ̃ ∂�|2| ≤ C |s∂�|4 on Br (p) ∩ (im(X∂�)×[0, T ]), (5.41)

ξ̃ ∂� · B̃∂� + ∇ · ξ̃ ∂� = 0 at P, (5.42)

ξ̃ ∂� · (ξ̃ ∂� · ∇)B̃∂� = 0 at P. (5.43)

4. Boundary Conditions: It holds ξ̃ ∂� · n∂� = cosα as well as B̃∂� · n∂� = 0 onBr (p) ∩
(∂�×[0, T ]).

5. AdditionalConstraints:∇ B̃ I is anti-symmetric onBr (p)∩I and∇ B̃∂� is anti-symmetric
on Br (p) ∩ (∂�×[0, T ]).
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Note that the anti-symmetry condition 5. for∇ B̃∂� is only used to derive the corresponding
condition in Theorem 19. The latter will be used to obtain the additional conditions (2.8)–
(2.10). If these are not needed, then it would suffice to require (5.29)–(5.30) at the contact
point. Hence, ρ̂∂� could be chosen space-independent.

Proof Ad1.The regularity properties can be derived by considering the equations determining
the functions in Definition 21. For the coefficient, γ̂ I this can be done as in [9, Proof of
Lemma 27].
Ad 2. These compatibility assertions at the contact point follow from the choices in Defi-
nition 21 and the derivations from above between Proposition 20 and Definition 21, except
for the time derivative. Concerning the latter, observe that due to Proposition 20 we have to
show ∂t ξ̃

I |(p(t),t) = 0 for all t ∈ [0, T ], which by the first identity of Proposition 20 and
(nI · ∇)H I = 0 is equivalent to

(−τI · ∇H I − β I H I )|(p(t),t) = 0 for t ∈ [0, T ]. (5.44)

We then use (5.22)–(5.23), again (nI · ∇)H I = 0, and multiply by n∂� · τI |(p(t),t) to rewrite
the left side of (5.44) as

−n∂� · ∇H I + H ∂�H I ((τ∂� · nI )(n∂� · τI ) − (n∂� · nI )(τ∂� · τI )) + (H I )2(n∂� · nI ),
where all terms are evaluated at (p(t), t) for arbitrary t ∈ [0, T ]. However, due to

(τ∂� · nI )(n∂� · τI ) − (n∂� · nI )(τ∂� · τI )|(p(t),t) = −|n∂� · τI |2 − |n∂� · nI |2|(p(t),t)
= −|(n∂� · τI )τI + (n∂� · nI )nI |2|(p(t),t) = −|n∂�|2|(p(t),t) = −1

and n∂� · nI |(p(t),t) = τ∂� · τI |(p(t),t) for t ∈ [0, T ], it turns out that the validity of (5.44)
is in fact equivalent to the compatibility condition (5.5). The latter holds because of Remark
17.
Ad 3. Equation (5.35) is directly clear from the definition (5.18) of ξ̃ I and the formula for
∇ ξ̃ I in Proposition 20. Moreover, the identities for |ξ̃ I |2 and |ξ̃ ∂�|2 follow directly from the
definitions (5.18)–(5.19). The latter yield the estimates (5.37) and (5.41) by using the product
and chain rule for the differential operators ∂t + B̃ I · ∇ and ∂t + B̃∂� · ∇, respectively, as
well as

(∂t + B̃ I · ∇)s I = ∂t s
I + H I = 0 on Br (p) ∩ im(XI ),

(∂t + B̃∂� · ∇)s∂� = ∂t s
∂� = 0 on Br (p) ∩ (im(X∂�)×[0, T ]).

wherewe usedRemarks 15 and 16 aswell as (B̃∂� ·∇)s∂� = B̃∂� ·n∂� = 0 along ∂�×[0, T ]
due to (5.21).

Next, we observe

(ξ̃ I · B̃ I + ∇ · ξ̃ I )|I = (H I + Tr∇ ξ̃ I )|I = 0 on Br (p) ∩ I

because of Tr(a⊗b) = a·b for vectors a, b inRd . Then (5.38) follows fromaTaylor expansion
argument, and (5.42) holds due to the compatibility conditions (5.33)–(5.34). Furthermore,
by (5.28) and (5.35)

ξ̃ I · (ξ̃ I · ∇)B̃ I |I = ξ̃ I · (∇ B̃ I )ξ̃ I |I = ρ I nI · JnI |I = 0 on Br (p) ∩ I ,

Hence, (5.39) and (5.43) follow as above.
Finally, we compute the left hand side of (5.36) on I . By Proposition 20 and (5.28)

[∂t ξ̃ I + (B̃ I · ∇)ξ̃ I + (∇ B̃ I )Tξ̃ I ]|I
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= −∇H I |I − β I H I τI + τI ⊗ [−H I τI + β I nI ]|I (H I nI + γ I τI )|I + ρ I J TnI |I
= −∇H I |I − (γ I H I + ρ I )τI |I = 0,

where the last equation follows from the form (5.27) of ρ I and (nI · ∇)H I = 0. Therefore
(5.36) is valid because of a Taylor expansion argument. Finally, (5.40) holds due to the
compatibility conditions (5.33)–(5.34).
Ad 4. The boundary conditions are evident from the definitions (5.19) and (5.21) for the
vector fields ξ̃ ∂� and B̃∂�, respectively.
Ad 5. This follows directly from the choices of Definition 21. Indeed, recall that these
imply (5.28) and (5.31). ��

5.1.2 Interpolation of local candidates for (�, B) at contact points

In this section we piece together the local candidates from the last Sect. 5.1.1 in order to
construct the ones in Theorem 19. Therefore, we use the wedge decomposition from Lemma
18 and suitable interpolation functions on the interpolation wedges W±:

Lemma 23 (Interpolation Functions) Let A be a strong solution for mean curvature flow
with contact angle α on the time interval [0, T ] as in Definition 10. Moreover, let p ∈ ∂ I (0),
p(t) := �(p, t) for t ∈ [0, T ] andP = ⋃

t∈[0,T ]{p(t)}×{t} be the corresponding evolving
contact point. Finally, let r = rp be an admissible localization scale as in Lemma 18 and
recall the notation there.

Then there exists a constant C > 0 and interpolation functions

λ± :
⋃

t∈[0,T ]

(
Br (p(t)) ∩ W±(t)\{p(t)}) × {t} → [0, 1]

of the class C1
t C

2
x such that:

1. For all t ∈ [0, T ] it holds
λ±(., t) = 0 on (∂W±(t) ∩ ∂W∂�(t))\{p(t)}, (5.45)

λ±(., t) = 1 on (∂W±(t) ∩ ∂WI (t))\{p(t)}. (5.46)

2. There is controlled blow-up of the derivatives when approaching the contact point. More
precisely for all t ∈ [0, T ] we have in Br (p(t)) ∩ W±(t)\{p(t)}:

|(∂t ,∇)λ±(., t)| ≤ C dist(·, p(t))−1, (5.47)

|∇2λ±(., t)| ≤ C dist(·, p(t))−2. (5.48)

Moreover, on the wedge lines these derivatives vanish: for all t ∈ [0, T ] it holds
(∂t ,∇,∇2)λ± = 0 on Br (p(t)) ∩ ∂W±(t)\{p(t)}. (5.49)

3. The advective derivative with respect to d
dt p stays bounded, i.e., for all t ∈ [0, T ]:

∣∣∣∣∂tλ±(., t) +
(
d

dt
p(t) · ∇

)
λ±(., t)

∣∣∣∣ ≤ C in Br (p(t)) ∩ W±(t)\{p(t)}. (5.50)

Proof One can define these interpolation functions in an explicit and purely geometric way,
in fact completely analogously to [9, Proof of Lemma 32]. ��
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Proof of Theorem 19 The procedure is similar to [9, Proof of Proposition 26]. In the following,
we fix one of the two contact points p ∈ {p±} for convenience. Let r̂ ∈ (0, r) where r = rp
denotes the localization scale from Lemma 18.

Step 1: Definition of interpolations.We define ξ̂ : Br̂ (p) → R
2 by

ξ̂ :=

⎧⎪⎨
⎪⎩

ξ̃ I on WI ∩ Br̂ (p),

ξ̃ ∂� on (W∂� ∪ W0) ∩ Br̂ (p),

λ±ξ̃ I + (1−λ±)ξ̃ ∂� on W± ∩ Br̂ (p),

where ξ̃ I , ξ̃ ∂� are from Theorem 22 and λ± are from Lemma 23. In the analogous way, we
define B : Br̂ (p) → R

2 with the B̃ I , B̃∂� from Theorem 22. It will turn out to be enough to
prove the desired properties for ξ̂ , B first and then to normalize ξ̂ in the end. This last step
gives rise to the smaller domain of definition Br̂ (p).

Step 2: Regularity (5.6)–(5.7) and (5.8) for ξ̂ , B. In terms of the required qualitative
regularity, in the following we even show that ξ̂ ∈ C1(Br̂ (p)) ∩ CtC2

x (Br̂ (p)\P) and
B ∈ CtC1

x (Br̂ (p)) ∩ CtC2
x (Br̂ (p)\P). First, ξ̂ , B are well-defined and have the asserted

regularity on WI and on W∂� ∪W0\P due to Theorem 22. Within the interpolation wedges
W±, we also have this qualitative regularity by Theorem 22 and Lemma 23. Next, note
that thanks to (5.45), (5.46) and (5.49) no jumps occur for the vector fields ξ̂ , B and their
required derivatives across the wedge lines Br̂ (p(t)) ∩ ∂W±(t)\{p(t)}, t ∈ [0, T ], which
proves ξ̂ , B ∈ CtC2

x (Br̂ (p)\P).
For a proof of ξ̂ ∈ C1(Br̂ (p)), B ∈ CtC1

x (Br̂ (p)), and the quantitative regularity esti-
mate (5.8), we need to study the behaviour when approaching the contact point. To this end,
one employs the controlled blow-up rates (5.47)–(5.48) of λ± from Lemma 23 as well as the
compatibility up to first order for ξ̃ I , ξ̃ ∂� and B̃ I , B̃∂� from Theorem 22; the latter in fact
in form of the Lipschitz estimates

|ξ̃ I−ξ̃ ∂�| + |B̃ I−B̃∂�| ≤ C dist2x (·,P) on W±, (5.51)

|(∂t ,∇)ξ̃ I−(∂t ,∇)ξ̃ ∂�| + |∇ B̃ I−∇ B̃∂�| ≤ C distx (·,P) on W±. (5.52)

For example, ∇ ξ̂ is continuous on Br̂ (p) because on one side ∇ ξ̃ I |P = ∇ ξ̃ ∂�|P due
to (5.33), so that on the other side by (5.51), (5.52) and (5.47)∣∣(∇(λ±ξ̃ I )+∇((1−λ±)ξ̃ ∂�)

) − ∇ ξ̃ I |P
∣∣

≤ λ±
∣∣∇ ξ̃ I−∇ ξ̃ I |P

∣∣ + (1−λ±)
∣∣∇ ξ̃ ∂�−∇ ξ̃ ∂�|P

∣∣ + |∇λ±|∣∣ξ̃ I−ξ̃ ∂�
∣∣ ≤ C distx (·,P).

Continuing in this fashion for the remaining first order derivatives ∂t ξ̂ and∇B, and employing
an even simpler argument for ξ̂ and B itself, we indeed obtain ξ̂ ∈ C1(Br̂ (p)) and B ∈
CtC1

x (Br̂ (p)). A similar argument based on the same ingredients (5.47)–(5.48) and (5.51)–
(5.52) also implies (5.8).

Step 3: Additional properties for ξ̂ , B. Consider 2.-3. and 5. in Theorem 19 first. The
consistency in 2. (except the |.|-constraint) is satisfied for ξ̂ on Br̂ (p) ∩ I because of its
definition and since this is true for ξ̂ I by Theorem 22. Moreover, the boundary conditions in
Theorem 19, 3., hold onBr̂ (p) ∩ (∂�×[0, T ]) since these are valid for ξ̃ ∂� and B̃∂� due to
Theorem 22. Finally, ∇B is anti-symmetric on Br̂ (p) ∩ (I ∪ (∂�×[0, T ])) because of its
definition and Theorem 22.

Next, we consider the required motion laws in Theorem 19, 4., except for (5.13). The
following estimates

|∂t ξ̂ + (B · ∇)ξ̂ + (∇B)Tξ̂ | ≤ C distx (·, I ),
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|B · ξ̂ + ∇ · ξ̂ | ≤ C distx (·, I ),
|ξ̂ ⊗ ξ̂ : ∇B| ≤ C distx (·, I )

in Br̂ (p) ∩ (�×[0, T ]) can be shown in a similar manner as in [9, Proof of Proposition 26,
Steps 3 and 4], where admittedly the analogue of the third estimate is not proven. The idea,
however, is the same for all three estimates: away from the interpolation wedges, i.e., in WI

and W∂�, one can simply use the corresponding estimates obtained from Theorem 22 (with
an additional Taylor expansion argument throughoutW∂�). On the interpolation wedges, one
uses the definition of ξ̂ and B together with the product rule, the corresponding estimates
in Theorem 22, the Lipschitz estimates (5.51)–(5.52), and the controlled blow-up rates for
the λ± from Lemma 23. For the first estimate, also the control of the advective derivative of
λ± with respect to d

dt p in form of (5.50) enters.

Step 4: Normalization of ξ̂ and conclusion of the proof. In order to divide by |ξ̂ | and to
carry over the estimates and properties, we have to control |ξ̂ | and the first derivatives in a
uniform way. Indeed, one can prove

|1 − |ξ̂ |2| ≤ C dist2x (·, I ),
|(∂t ,∇)|ξ̂ |2| ≤ C distx (·, I )

inBr̂ (p) similar as in [9, Proof of Proposition 26, Step 5]. Again, away from the interpolation
wedges this is a consequence of Theorem 22 (evenwith the rates increased by 2 in the orders).
On the interpolation wedges one uses the definition of ξ̂ , Theorem 22, and again the Lipschitz
estimates (5.51)–(5.52) as well as the controlled blow-up rates for the λ± from Lemma 23.

Finally, we can choose r̂ > 0 small such that 1
2 ≤ |ξ̂ |2 ≤ 3

2 in Br̂ (p). Then we define

ξ := ξ̂ /|ξ̂ | on Br̂ (p). One can directly check that the properties of ξ̂ above carry over to ξ .
Here one uses the chain rule and the above estimates, cf. [9, Proof of Proposition 26, Step 7]
for a similar calculation. Additionally, it holds |ξ | = 1 inBr̂ (p) by definition and this finally
also yields (5.13). The proof of Theorem 19 is therefore completed. ��

5.2 Local building block for (�, B) at the bulk interface

We proceed with the less technical parts of the local constructions. In this subsection, we take
care of the local building blocks in the vicinity of the bulk interface. Recalling the notation
from Remark 15, we simply define

ξ I := nI on im(XI ) ∩ (�×[0, T ]). (5.53)

For a suitable definition of the velocity field BI on im(XI ) ∩ (�×[0, T ]), we first provide
some auxiliary constructions. Denote by θ : R → [0, 1] a standard smooth cutoff satisfying
θ ≡ 1 on [− 1

2 ,
1
2 ] and θ ≡ 0 on R\(−1, 1). Furthermore, for each of the two contact

points p± ∈ ∂ I (0) with associated trajectory p±(t) ∈ ∂ I (t), denote by r̂± and B p± the
associated localization scale and local velocity field from Theorem 19, respectively. Define

r̂ := min
{
r̂+, r̂−,

1

3
min

t∈[0,T ] dist(p+(t), p−(t))
}

(5.54)

and

γ̃ I : im(XI ) ∩ (�×[0, T ]) → R,
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(x, t) �→ θ
(dist(x, p+(t))

r̂

)
(τI · B p+)(x, t) + θ

(dist(x, p−(t))

r̂

)
(τI · B p−)(x, t),

(5.55)

ρ̃ I : im(XI ) ∩ (�×[0, T ]) → R,

(x, t) �→ −(
(nI · ∇)γ̃ I )(x, t) − H I (x, t)γ̃ I (x, t) − (

(τI · ∇)H I )(x, t), (5.56)

as well as

BI := H I nI + (γ̃ I + ρ̃ I s I )τI on im(XI ) ∩ (�×[0, T ]). (5.57)

With these definitions in place, we then have the following result.

Lemma 24 Let A be a strong solution for mean curvature flow with contact angle α on the
time interval [0, T ] as in Definition 10, and let the notation from Remark 15 be in place.
Then, the local vector fields ξ I and BI defined by (5.53) and (5.57) satisfy

ξ I ∈ (C0
t C

4
x ∩ C1

t C
2
x )(im(XI ) ∩ (�×[0, T ])), (5.58)

BI ∈ CtC
1
x (im(XI ) ∩ (�×[0, T ])) ∩ CtC

2
x (im(XI ) ∩ (�×[0, T ])), (5.59)

and there exists C > 0 such that

|∇2BI | ≤ C in im(XI ) ∩ (�×[0, T ]). (5.60)

Moreover, it holds

∂t s
I + (BI · ∇)s I = 0, (5.61)

∂tξ
I + (BI · ∇)ξ I + (∇BI )Tξ I = 0, (5.62)

ξ I · (∂t + (BI · ∇))ξ I = 0, (5.63)

|BI · ξ I + ∇ · ξ I | ≤ C |s I |, (5.64)

|ξ I · ∇symBI | ≤ C |s I | (5.65)

on the whole space-time domain im(XI ) ∩ (�×[0, T ]) as well as
ξ I = nI and

(∇ξ I )TnI = 0 along I . (5.66)

For each p± ∈ ∂ I (0) with associated trajectory p±(t) ∈ ∂ I (t), denote further by ξ p±

and B p± the local vector fields from Theorem 19, respectively. These vector fields are com-
patible with ξ I and BI in the sense that∣∣ξ I − ξ p± ∣∣ + ∣∣(∇ξ I − ∇ξ p±)Tξ I

∣∣ ≤ C |s I |, (5.67)∣∣(ξ I − ξ p±) · ξ I
∣∣ ≤ C |s I |2, (5.68)∣∣BI − B p± ∣∣ ≤ C |s I |, (5.69)∣∣(∇BI − ∇B p±)Tξ I
∣∣ ≤ C |s I |. (5.70)

on Br̂/2(p±(t))∩ (
W p±

I (t)∪W p±+ (t)∪W p±− (t)
) ⊂ � for all t ∈ [0, T ], where r̂ was defined

by (5.54) and W p±
I (t),W p±+ (t),W p±− (t) denote the wedges from Lemma 18 with respect to

the contact points p±, respectively.

Proof The asserted regularity (5.58)–(5.60) is a consequence of the definitions (5.53)
and (5.57), Remark 15, and Theorem 19. The identities (5.61)–(5.63) and the estimate (5.64)
follow by straightforward arguments, e.g., along the lines of [9, Proof of Lemma 22]. The
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estimate (5.65) is immediate from the definitions (5.53) and (5.57), the fact that it holds
(nI · ∇)H I = 0 due to (5.1), and the precise choice (5.56) of ρ̃ I . Note also for this compu-
tation that γ̃ I is not constant in normal direction. The properties of (5.66) hold true because
of (5.53) and (5.2).

The local compatibility estimates (5.67)–(5.70) follow along the lines of [9, Proof of
Proposition 33]. Note for the proof of (5.70) that the first order perturbation in the defini-
tion (5.70) of BI does not play a role since we contract in the end with ξ I . ��

5.3 Local building block for (�, B) at the domain boundary

This subsection concerns the definition of local building blocks for (ξ, B), which will be
used near to the domain boundary but away from the bulk interface. This constitutes the by
far easiest part of the local constructions. Indeed, the conditions (2.6c)–(2.6f) only require to
provide estimates with respect to the distance to the bulk interface and not the domain bound-
ary. Essentially, we only have to respect the required boundary conditions (2.6g) and (2.6h).
The most straightforward choice to satisfy these consists of

ξ∂�(x, t) := (cosα)n∂�(P∂�(x)), B∂�(x, t) := 0, (x, t) ∈ im(X∂�)×[0, T ], (5.71)
for which we also recall the notation from Remark 16. This choice will also become handy
for a proof of the additional requirements (2.8) and (2.9). Note finally that by Remark 16 it
holds

ξ∂� ∈ C∞
t C2

x (im(X∂�)×[0, T ]). (5.72)

5.4 Global construction of (�, B)

We finally perform a gluing construction to lift the local constructions from the pre-
vious three subsections to a global construction. To fix notation, we denote again by
ξ I , BI : im(XI ) ∩ (�×[0, T ]) → R

2 the local building blocks in the vicinity of the bulk
interface as defined by (5.53) and (5.57), and by ξ∂�, B∂� : im(X∂�)×[0, T ] → R

2 the
local building blocks in the vicinity of the domain boundary as defined by (5.71). For each
of the two contact points p± ∈ ∂ I (0) with associated trajectory p±(t) ∈ ∂ I (t), we further
denote by ξ p± , B p± : Br̂±(p±)∩ (�×[0, T ]) → R

2 the local building blocks in the vicinity
of the two moving contact points as provided by Theorem 19, respectively. For a recap of the
definition of the associated space-time domains im(XI ), im(X∂�) andBr̂±(p±), we refer to
Remarks 15, 16 and Theorem 19, respectively.

Before we proceed with the gluing construction, let us fix a final localization scale r̄ ∈
(0, 1]. To this end, recall first fromRemarks 15 and16 the choice of the localization scales rI ∈
(0, 1] and r∂� ∈ (0, 1], respectively. For each of the moving contact points, we then chose
a corresponding localization radius r± ∈ (0,min{rI , r∂�}] such that the conclusions of
Lemma 18 hold true. Next, we derived the existence of a potentially even smaller radius r̂± ∈
(0, r±] so that also the conclusions of Theorem 19 are satisfied. Recalling in the end the
definition (5.54) of the localization scale r̂ , we eventually define

r̄ := 1

2
r̂ = 1

2
min

{
r̂+, r̂−,

1

3
min

t∈[0,T ] dist(p+(t), p−(t))
}
. (5.73)

Apart from r̄ , it turns out to be convenient to introduce a second localization scale δ̄ ∈ (0, 1]
which is chosen as follows. Recall from Remarks 15 and 16 the definition of the tubular
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neighborhood diffeomorphisms XI and X∂�, respectively. Their restrictions to I×(−δ̄r̄ , δ̄r̄)

and ∂�×(−δ̄r̄ , δ̄r̄)will be denoted by Xr̄ ,δ̄
I and Xr̄ ,δ̄

∂�, respectively.We then choose δ̄ ∈ (0, 1]
small enough such that for all t ∈ [0, T ] the images of Xr̄ ,δ̄

I (·, t, ·) and Xr̄ ,δ̄
∂� do not overlap

away from the contact points p±(t):(
im(Xr̄ ,δ̄

I (·, t, ·))\
⋃

p∈{p+,p−}
Br̄ (p(t))

)
∩

(
im(Xr̄ ,δ̄

∂�)\
⋃

p∈{p+,p−}
Br̄ (p(t))

)
= ∅. (5.74)

The implementation of the gluing construction now works as follows. Given a set of
localization functions

ηI , ηp± , η∂�, η̃I , η̃p± , η̃∂� : �×[0, T ] → [0, 1],
whose supports are at least required to satisfy the natural conditions supp ηI ∪ supp η̃I ⊂
im(XI ) ∩ (�×[0, T ]), supp ηp± ∪ supp η̃p± ⊂ Br̂±(p±) ∩ (�×[0, T ]) and supp η∂� ∪
supp η̃∂� ⊂ im(X∂�)×[0, T ], one then defines

ξ : �×[0, T ] → R
2, (x, t) �→ (

ηI ξ
I + ηp+ξ p+ + ηp−ξ p− + η∂�ξ∂�

)
(x, t), (5.75)

B : �×[0, T ] → R
2, (x, t) �→ (̃

ηI B
I + η̃p+ B

p+ + η̃p− B
p− + η̃∂�B∂�

)
(x, t). (5.76)

The main task then is to extract conditions on the localization functions guaranteeing that the
vector fields ξ and B defined by (5.75) and (5.76), respectively, satisfy the requirements of a
boundary adapted gradient flow calibration of Definition 2. Such conditions are captured by
the following definition. If one does not rely on the additional constraints (2.8)–(2.10), we
remark that one may in fact choose η̃I = ηI , η̃p± = ηp± and η̃∂� = η∂�.

Definition 25 In the setting of this subsection, we call a collection of maps ηI , ηp± , η∂�, η̃I ,

η̃p± , η̃∂� : �×[0, T ] → [0, 1] an admissible family of localization functions if they satisfy
the following list of requirements:

1. (Regularity) It holds

ηI , ηp± , η∂�, η̃I , η̃p± , η̃∂� ∈ C1(�×[0, T ]) ∩ CtC
2
x (�×[0, T ]), (5.77)

and there exists C > 0 such that

|∇2(ηI , ηp± , η∂�, η̃I , η̃p± , η̃∂�)| ≤ C in �×[0, T ]. (5.78)

2. (Localization)We have for all t ∈ [0, T ]
supp ηI (·, t) ⊂ supp η̃I (·, t) ⊂ (

im(Xr̄ ,δ̄
I (·, t, ·))\∂�

) ∪ ∂ I (t), (5.79)

supp η∂�(·, t) ⊂ supp η̃∂�(·, t) ⊂ im(Xr̄ ,δ̄
∂�)\(I (t) ∩ �), (5.80)

supp ηp±(·, t) ⊂ supp η̃p±(·, t) ⊂ Br̄ (p±(t)) ∩ �, (5.81)

such that for all t ∈ [0, T ] one has minimal overlaps in the sense of

supp η̃p+(·, t) ∩ supp η̃p−(·, t) = ∅, (5.82)

Br̄ (p±(t)) ∩ supp η̃I (·, t) ⊂ Br̄ (p±(t)) ∩ (
W p±

I (t) ∪ W p±+ (t) ∪ W p±− (t)
)
, (5.83)

Br̄ (p±(t)) ∩ supp η̃∂�(·, t) ⊂ Br̄ (p±(t)) ∩ (
W p±

∂� (t) ∪ W p±+ (t) ∪ W p±− (t)
)
, (5.84)

supp η̃∂�(·, t) ∩ supp η̃I (·, t) ⊂
⋃

p∈{p±}
Br̄ (p(t)) ∩ (

W p
+(t) ∪ W p

−(t)
)
. (5.85)
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Here, W p±
I (t),W p±+ (t),W p±− (t),W p±

∂� (t) denote the wedges from Lemma 18 with
respect to the contact points p±. We emphasize that the relations (5.82)–(5.85) also hold
with (̃ηI , η̃p± , η̃∂�) replaced by (ηI , ηp± , η∂�) thanks to the first inclusions of (5.79)–
(5.81), respectively.

3. (Partition of unity) Define ηbulk := 1 − ηI − ηp+ − ηp− − η∂�. Then

ηbulk ∈ [0, 1] on �×[0, T ] and ηbulk = 0 along I ∪ (∂�×[0, T ]). (5.86)

The same properties are satisfied by η̃bulk := 1 − η̃I − η̃p+ − η̃p− − η̃∂�.
4. (Coercivity estimates) There exists C ≥ 1 such that

C−1 min{1, dist2(·, I (t)), dist2(·, ∂�)} ≤ ηbulk(·, t), (5.87)

(ηbulk + η̃bulk + η∂� + η̃∂�)(·, t) ≤ C min{1, dist2(·, I (t))}, (5.88)

|(∇, ∂t )(ηbulk, η̃bulk, η∂�, η̃∂�)|(·, t) ≤ C min{1, dist(·, I (t))}, (5.89)

|(∇, ∂t )(ηI , η̃I )|(·, t) ≤ C min{1, dist(·, ∂�))}, (5.90)

throughout � for all t ∈ [0, T ]. Moreover, there exists C > 0 such that

dist2(x, I (t)) ≤ C(1−ηp±)(x, t), t ∈ [0, T ], x ∈ Br̄ (p±(t)) ∩ W p±
∂� (t). (5.91)

5. (Motion laws) There exists C > 0 such that

|∂tηbulk + (B · ∇)ηbulk|(·, t) ≤ C min{1, dist2(·, I (t))}, (5.92)

|∂tη∂� + (B · ∇)η∂�|(·, t) ≤ C min{1, dist2(·, I (t))} (5.93)

throughout � for all t ∈ [0, T ], where B is defined by (5.76).
6. (Additional boundary constraints) Finally, it holds for all t ∈ [0, T ]

η̃p±(·, t) = 1 − η̃∂�(·, t) = 1 along supp ηp±(·, t) ∩ ∂�, (5.94)

(n∂� · ∇ )̃η∂�(·, t) = (n∂� · ∇ )̃ηp±(·, t) = 0 along ∂�. (5.95)

With the above definition in place, we then have the following result.

Proposition 26 Let ηI , ηp± , η∂�, η̃I , η̃p± , η̃∂� : �×[0, T ] → [0, 1] be an admissible family
of localization functions in the sense ofDefinition 25. Then the vector fields ξ and B defined by
means of (5.75) and (5.76), respectively, satisfy the requirements (2.5a)–(2.5b) and (2.6a)–
(2.6h) of a boundary adapted gradient flowcalibration ofDefinition2 aswell as the additional
constraints (2.8)–(2.10).

It thus remains to construct an admissible family of localization functions.

Proposition 27 In the setting as described at the beginning of this subsection, there exist
ηI , ηp± , η∂�, η̃I , η̃p± , η̃∂� : �×[0, T ] → [0, 1] which form an admissible family of local-
ization functions in the sense of Definition 25.

The remainder of this subsection is devoted to the proofs of these two results.

Proof of Proposition 26 The proof is split into several steps.
Step 1: Proof of regularity (2.5a)–(2.5b). This is an obvious consequence of the defini-

tions (5.75) and (5.76), the regularity of the local building blocks (5.6)–(5.8), (5.58)–(5.60),
and (5.72) (recall from (5.71) that B∂� = 0), respectively, as well as the regularity of the
localization functions (5.77)–(5.78).
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Step 2: Proof of consistency (2.6a) and boundary conditions (2.6g)–(2.6h). Plugging in the
definition (5.75), exploiting the properties (5.79)–(5.81) and (5.86), as well as recalling (5.9)
and (5.66) yields the first part of (2.6a) due to

ξ(·, t)|I (t)∩� =
∑

n∈{I ,p+,p−}
(ηnξ

n)(·, t)|I (t)∩� =
( ∑
n∈{I ,p+,p−}

ηn(·, t)|I (t)∩�

)
nI (·, t)

= nI (·, t).
Relying in addition on (5.89) shows the second part of (2.6a) due to

(∇ξ(·, t))T|I (t)∩�nI (·, t)
=

∑
n∈{I ,p+,p−}

ηn(·, t)(∇ξn(·, t))T|I (t)∩�nI (·, t) +
∑

n∈{I ,p+,p−}
∇ηn(·, t)|I (t)∩�

= −∇ηbulk(·, t)|I (t)∩� = 0.

The same properties of the localization functions together with (5.11) and (5.71) also
imply (2.6g) as the following computation reveals:

ξ(·, t)|∂� · n∂� =
∑

n∈{∂�,p+,p−}
(ηnξ

n)(·, t)|∂� · n∂� =
( ∑
n∈{∂�,p+,p−}

ηn(·, t)|∂�

)
cosα

= cosα.

One may finally infer (2.6h) analogously.
Step 3: Proof of coercivity estimate (2.6b). Fix a point (x, t) ∈ �×[0, T ]. Let nmax(x, t) ∈

{I , p+, p−, ∂�} be defined by nmax = argmaxn∈{I ,p+,p−,∂�} ηn(x, t). Without loss of gen-
erality, we may assume that there exists n ∈ {I , p+, p−, ∂�} such that x ∈ supp ηn(·, t)
and that this topological feature satisfies n = nmax(x, t). Moreover, we may assume without
loss of generality that it holds ηn(x, t) ≥ 1

4 . Indeed, otherwise we get |ξ(x, t)| ≤ 3
4 as a

consequence of the definition (5.75), the triangle inequality, and the fact that at most three
localization functions can be simultaneously strictly positive due to (5.82). The estimate
|ξ(x, t)| ≤ 3

4 in turn of course implies (2.6b) for such (x, t).
We now distinguish between two cases. First, if n = nmax(x, t) = ∂�, it follows

from (5.86), η∂�(x, t) ≥ 1
4 and |ξ∂�(x, t)| = cosα, cf. (5.71), that

|ξ(x, t)| ≤ η∂�(x, t) cosα +
∑

n∈{I ,p+,p−}
ηn(x, t)

≤ 1 − η∂�(x, t)(1− cosα) ≤ 1 − 1

4
(1− cosα),

which in turn implies (2.6b).
If instead n = nmax(x, t) ∈ {I , p−, p+}, it follows from the localization proper-

ties (5.79) and (5.81) that x ∈ (
Br̄ (p+(t)) ∪ Br̄ (p−(t))

) ∪ im(Xr̄ ,δ̄
I (·, t, ·)). In case of

x /∈ Br̄ (p+(t)) ∪ Br̄ (p−(t)), condition (5.74) ensures that there exists C ≥ 1 such
that dist(x, I (t)) ≤ C dist(x, ∂�). We thus infer (2.6b) for such x from (5.87) due to
|ξ(x, t)| ≤ 1 − ηbulk(x, t). In case of x ∈ Br̄ (p+(t)) ∪ Br̄ (p−(t)), say for concreteness
x ∈ Br̄ (p+(t)), the same conclusions hold true if in addition x ∈ W p+

I (t)∪W p++ (t)∪W p−
I (t).

Hence, consider finally x ∈ W p+
∂� (t) ∩ Br̄ (p+(t)). Due to the localization properties (5.82)–

(5.85) it follows ηI (x, t) = ηp−(x, t) = 0. Recalling further |ξ∂�(x, t)| = cosα, cf. (5.71),
we may then estimate

1 − |ξ(x, t)| ≥ 1 − ηp+(x, t) − (cosα)η∂�(x, t) ≥ (1− cosα)(1−ηp+)(x, t).
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Hence, (2.6b) follows from (5.91).
Step 4: From local to global compatibility estimates.We claim that there exists a constant

C > 0 such that for all n ∈ {I , p+, p−} it holds in �×[0, T ]
χsupp η̃n

(|ξn−ξ | + |(∇ξn−∇ξ)Tξn |) ≤ C min{1, dist(·, I )}, (5.96)

χsupp η̃n |(ξn−ξ) · ξn | ≤ C min{1, dist2(·, I )}, (5.97)

χsupp η̃n |(Bn−B)| ≤ C min{1, dist(·, I )}, (5.98)

χsupp η̃n |(∇Bn−∇B)Tξn | ≤ C min{1, dist(·, I )}. (5.99)

Plugging in the definitions (5.75) and (5.76) and making use of the estimate (5.88) entails

χsupp η̃n (ξ
n−ξ) = χsupp η̃n

∑
n′∈{I ,p+,p−}\{n}

ηn′(ξn−ξn
′
) + O(min{1, dist2(·, I )}),

χsupp η̃n (B
n−B) = χsupp η̃n

∑
n′∈{I ,p+,p−}\{n}

η̃n′(Bn−Bn′
) + O(min{1, dist2(·, I )}).

Hence, due to (5.82), (5.83) and the choice (5.73), the first part of (5.96) follows from the first
part of (5.67) and the first identity of the previous display. The estimate (5.98) in turn follows
from (5.69) and the second identity of the previous display. Furthermore, the estimate (5.97)
follows from (5.68) and contracting the first identity of the previous display with ξn .

We proceed computing based on the definition (5.75), the estimate (5.89), the prop-
erty (5.82), and the first part of the estimate (5.67)

χsupp η̃n (∇ξn−∇ξ)Tξn

= χsupp η̃n

∑
n′∈{I ,p+,p−}\{n}

(
ηn′(∇ξn−∇ξn

′
)Tξn + (

(ξn−ξn
′
) · ξn

)∇ηn
)

+ O(min{1, dist2(·, I )})
= χsupp η̃n

∑
n′∈{I ,p+,p−}\{n}

ηn′(∇ξn−∇ξn
′
)Tξn + O(min{1, dist(·, I )}).

Hence, the second part of (5.96) follows now from (5.82), (5.83), the choice (5.73), and the
second part of (5.67). The proof of the remaining estimate (5.99) is analogous.

Step 5: Proof of error estimates (2.6c)–(2.6f). For a proof of the estimates (2.6c) and (2.6e),
we may simply refer to the corresponding argument given in [9, Proof of Lemma 42].
Indeed, the whole structure of this argument solely relies on the structure of the def-
initions (5.75) and (5.76), the coercivity estimates (5.88) and (5.89), the compatibility
estimates (5.96), (5.98), and (5.99), the local counterparts (5.12) and (5.62) of (2.6c), the local
counterparts (5.14) and (5.64) of (2.6e), and finally the regularity estimates of the involved
constructions.

Next, we provide a proof of (2.6f). Starting with the definition (5.75), the bound (5.88),
adding zero in form of ξn

′ = (ξn
′−ξ) + (ξ−ξn) + ξn , and the estimate (5.96), we get

ξ ⊗ ξ : ∇B =
∑

n,n′∈{I ,p+,p−}
ηn′ηnξ

n′ · (∇B)Tξn + O(min{1, dist2(·, I )})

=
∑

n∈{I ,p+,p−}
ηnξ

n · (∇B)Tξn + O(min{1, dist(·, I )}).

Hence, (2.6f) is entailed by its local counterparts (5.15) and (5.65).
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In comparison to [9, Proof of Lemma 42], some changes are necessary for the proof
of (2.6d) due to the weaker compatibility estimate (5.98). In fact, the only essential difference
concerns the verification of the preliminary estimate

ξ · (∂tξ+(B · ∇)ξ)

=
∑

n,n′∈{I ,p+,p−}
ηn′ηnξ

n · (∂tξ
n′+(Bn′ · ∇)ξn

′
) + O(min{1, dist2(·, I )}). (5.100)

Post-processing (5.100) to (2.6d) can be done analogously to [9, Proof of Lemma 42] because
this argument solely relies on exploiting the local estimates (5.12)–(5.13) and (5.62)–(5.63),
respectively, as well as the compatibility estimates (5.96) and (5.99).

Hence, it remains to carry out a proof of (5.100) for which we give details now. Inserting
the definition (5.76), making use of the estimates (5.88) and (5.93), and adding zero in form
of B = (B−Bn′

) + Bn′
we obtain

ξ · (∂tξ+(B · ∇)ξ) =
∑

n∈{I ,p+,p−}
ηnξ

n · (∂tξ+(B · ∇)ξ) + O(min{1, dist2(·, I )})

=
∑

n,n′∈{I ,p+,p−}
ηnηn′ξn · (∂tξ

n′+(Bn′ · ∇)ξn
′
)

+
∑

n,n′∈{I ,p+,p−}
ηnηn′ξn · ((B−Bn′

) · ∇)ξn
′

+
∑

n,n′∈{I ,p+,p−}
ηn(ξ

n · ξn
′
)(∂tηn′+(B · ∇)ηn′)

+ O(min{1, dist2(·, I )}). (5.101)

Adding zero several times in form of ξn ·ξn′ = |ξ |2−|ξn−ξ |2+(ξn−ξ)·ξn+ξn
′ ·(ξn′−ξ)+

(ξn−ξn
′
) · (ξn

′−ξ), we get from (5.82), (5.83), the choice (5.73), and the compatibility
estimates (5.67), (5.96) and (5.97) that

∑
n,n′∈{I ,p+,p−}

ηn(ξ
n · ξn

′
)(∂t+(B · ∇))ηn′

= |ξ |2
∑

n,n′∈{I ,p+,p−}
ηn(∂t+(B · ∇))ηn′ + O(min{1, dist2(·, I )}).

Based on (5.88), (5.92) and (5.93) this may be upgraded to
∑

n,n′∈{I ,p+,p−}
ηn(ξ

n · ξn
′
)(∂t+(B · ∇))ηn′

= |ξ |2
∑

n′∈{I ,p+,p−}
(∂t+(B · ∇))ηn′ + O(min{1, dist2(·, I )})

= −|ξ |2(∂t+(B · ∇))ηbulk + O(min{1, dist2(·, I )}) = O(min{1, dist2(·, I )}).
(5.102)

Due to (5.82), (5.83), the choice (5.73), as well as the estimates (5.67), (5.96), (5.98),
and (5.88), we may further estimate

∑
n,n′∈{I ,p+,p−}

ηnηn′ξn · ((B−Bn′
) · ∇)ξn

′
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=
∑

n′∈{I ,p+,p−}
ηn′ξn

′ · ((B−Bn′
) · ∇)ξn

′ + O(min{1, dist2(·, I )})

=
∑

n′∈{I ,p+,p−}
ηn′ξn

′ · ((B−Bn′
) · ∇)ξ + O(min{1, dist2(·, I )})

=
∑

n′∈{I ,p+,p−}
ηn′ξ · ((B−Bn′

) · ∇)ξ + O(min{1, dist2(·, I )})

= O(min{1, dist2(·, I )}). (5.103)

The combination of (5.101), (5.102), and (5.103) thus implies (5.100) and therefore concludes
the proof of (2.6d).

Step 6: Proof of additional estimates (2.8)–(2.10). Plugging in the definition (5.76) and
exploiting the properties (5.88)–(5.89), we obtain

(ξ · ∇symB)(·, t)
=

∑
n∈{I ,p+,p−}

(̃ηnξ · ∇symBn)(·, t) +
∑

n∈{I ,p+,p−}
(ξ · (Bn ⊗ ∇η̃n)

sym)(·, t)

+ O(min{1, dist(·, I (t))}).
Due to the estimates (5.96), (5.98) and (5.89), the previous display upgrades to

(ξ · ∇symB)(·, t)
=

∑
n∈{I ,p+,p−}

(̃ηnξ
n · ∇symBn)(·, t) − (ξ · (B ⊗ ∇η̃bulk)

sym)(·, t)

+ O(min{1, dist(·, I (t))})
=

∑
n∈{I ,p+,p−}

(̃ηnξ
n · ∇symBn)(·, t) + O(min{1, dist(·, I (t))}).

Hence, (2.10) follows from the previous display and exploiting (5.16) and (5.65).
For a proof of (2.8) and (2.9), let v be either ξ(·, t) or n∂�. We first compute based on the

definition (5.75), the properties (5.79)–(5.81), (5.90) and (5.94) of the localization functions,
as well as the properties (5.16) and (5.71)

(v · ∇symB)(·, t)|∂� =
∑

n∈{p+,p−}
(̃ηnv · ∇symBn)(·, t)|∂�

+
∑

n∈{p+,p−}
(v · (Bn ⊗ ∇η̃n)

sym)(·, t)|∂�

=
∑

n∈{p+,p−}
(v · (Bn ⊗ ∇η̃n)

sym)(·, t)|∂�\ supp ηn(·,t).

Due to the second item of (5.11) and (5.95), we have on one side that (Bn ⊗ ∇η̃n)(·, t) only
carries a τ∂� ⊗τ∂� component along ∂�∩ supp η̃n(·, t), n ∈ {p+, p−}. On the other side, by
the localization properties (5.79)–(5.81) and (5.82) as well as the definition (5.71), we have
τ∂� · ξ(·, t) = 0 along (∂� ∩ supp η̃n(·, t))\ supp ηn(·, t), n ∈ {p+, p−}. Hence, for both
choices of v = ξ(·, t) and v = n∂� we obtain from these two facts and the previous display
that (2.8) and (2.9) are satisfied.

This in turn concludes the proof of Proposition 26. ��
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Proof of Proposition 27 First, we provide the definition of the localization functions. After-
wards, we prove that the required properties are satisfied. This second part of the proof will
be split into several steps.

Let us start with the choice of some suitable quadratic cutoff functions. To this end, fix two
smooth cutoffs θ, θ̃ : R → [0, 1] such that θ ≡ 1 on [−1/2, 1/2] and θ ≡ 0 on R\(−1, 1)
as well as θ̃ ≡ 1 on [−3/2, 3/2] and θ̃ ≡ 0 on R\(−2, 2). Define

ζ(s) := θ(s2)(1 − s2), s ∈ R, (5.104)

ζ̃ (s) := θ̃ (s2)

⎧⎪⎨
⎪⎩
1 |s| ≤ 1,

1 − (s − 1)2 s > 1,

1 − (s − (−1))2 s < −1.

(5.105)

We refer to Fig. 3 for a sketch.
For a given δ ∈ (0, δ̄] and a given c̄ ∈ (0, 1] which we fix later, we next define

(ζI , ζ̃I )(x, t) :=
{

(ζ, ζ̃ )
( s I (x,t)

δr̄

)
(x, t) ∈ im(XI ),

(0, 0) else,
(5.106)

(ζ∂�, ζ̃∂�)(x, t) := (ζ, ζ̃ )
( s∂�(x)

δr̄

)
, (x, t) ∈ R

2 × [0, T ], (5.107)

(ζp± , ζ̃p±)(x, t) :=
{

(ζ, ζ̃ )
(
dist(P∂�(x),p±(t))

c̄r̄

)
(x, t) ∈ im(X∂�),

(0, 0) else.
(5.108)

For each of the two contact points p±, denote byλ
p
± the two associated interpolation functions

from Lemma 23. We have everything in place to write down the definition of the localization
functions ηI , ηp, η∂�: for all (x, t) ∈ �×[0, T ], let

ηI (x, t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζI (x, t) x ∈ im(Xr̄ ,δ̄
I (·, t, ·))\⋃

p∈{p+,p−} Br̄ (p(t)),
(1−ζ∂�)ζI (x, t) x ∈ Br̄ (p±(t)) ∩ W p±

I (t),

λ
p±± (1−ζ∂�)ζI (x, t) x ∈ Br̄ (p±(t)) ∩ W p±± (t),

0 else,
(5.109)

and

η∂�(x, t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ∂�(x, t) x ∈ im(Xr̄ ,δ̄
∂�(·, t, ·))\⋃

p∈{p+,p−} Br̄ (p(t)),
(1−ζp±)ζ∂�(x, t) x ∈ Br̄ (p±(t)) ∩ W p±

∂� (t),

(1−λ
p±± )(1−ζp±)ζ∂�(x, t) x ∈ Br̄ (p±(t)) ∩ W p±± (t),

0 else,
(5.110)

as well as

ηp±(x, t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ∂�ζI (x, t) x ∈ Br̄ (p±(t)) ∩ W p±
I (t),

ζp±ζ∂�(x, t) x ∈ Br̄ (p±(t)) ∩ W p±
∂� (t),

λ
p±± ζ∂�ζI (x, t) + (1−λ

p±± )ζp±ζ∂�(x, t) x ∈ Br̄ (p±(t)) ∩ W p±± (t),

0 else.
(5.111)
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Fig. 3 The cutoff functions ζ and
ζ̃

r1/2 1 3/2 2−1/2−1−3/2−2

1

ζ(r) ζ̃(r)

The localization functions η̃I , η̃p± , η̃∂� are defined analogously in the sense that one simply
replaces the cutoffs (ζI , ζp± , ζ∂�) by (̃ζI , ζ̃p± , ζ̃∂�). We now continue with the verification
of the required properties from Definition 25.

Step 1: Regularity and localization properties. In order to guarantee the required regular-
ity (5.77) and (5.78) for the piecewise definitions (5.109)–(5.111) it suffices to choose δ ∈
(0, δ̄] and c̄ ∈ (0, 1] small enough, respectively, and to recall the regularity assertions from
Remark 15,Remark 16 andLemma23. Formore details, onemay consult the arguments given
in [9, Proof of Lemma 34, Steps 1–3]. Furthermore, the localization properties (5.79)–(5.85)
are straightforward consequences of the definitions (5.104)–(5.111), the choices (5.73)–
(5.74), the properties (5.45)–(5.46), as well as choosing δ ∈ (0, δ̄] and c̄ ∈ (0, 1] sufficiently
small again.

Step 2: Partition of unity. For a proof of (5.86), we first provide some useful identities
which will also be of help in later stages of the proof. Fix t ∈ [0, T ]. Due to the localization
properties (5.79)–(5.81), it holds

ηbulk(·, t) = 1 in �\
(
im(Xr̄ ,δ̄

I (·, t, ·)) ∪ im(Xr̄ ,δ̄
∂�) ∪

⋃
p∈{p±}

Br̄ (p(t))
)
. (5.112)

Using in addition the properties (5.82)–(5.85) and the choice (5.74), we also obtain from
plugging in the definitions (5.109)–(5.111)

ηbulk(·, t) = (1−ηI )(·, t) = (1−ζI )(·, t)
in � ∩

(
im(Xr̄ ,δ̄

I (·, t, ·))\
⋃

p∈{p±}
Br̄ (p(t))

)
, (5.113)

ηbulk(·, t) = (1−η∂�)(·, t) = (1−ζ∂�)(·, t)
in � ∩

(
im(Xr̄ ,δ̄

∂�)\
⋃

p∈{p±}
Br̄ (p(t))

)
, (5.114)

ηbulk(·, t) = (1−ηI−ηp±)(·, t) = (1−ζI )(·, t)
in � ∩ (

Br̄ (p±(t)) ∩ W p±
I (t)

)
, (5.115)

ηbulk(·, t) = (1−η∂�−ηp±)(·, t) = (1−ζ∂�)(·, t)
in � ∩ (

Br̄ (p±(t)) ∩ W p±
∂� (t)

)
, (5.116)

ηbulk(·, t) = (1−ηI−η∂�−ηp±)(·, t) = (
λ
p±± (1−ζI ) + (1−λ

p±± )(1−ζ∂�)
)
(·, t)

in � ∩ (
Br̄ (p±(t)) ∩ W p±± (t)

)
. (5.117)

The identities (5.112)–(5.117) immediately imply (5.86) due to the definitions (5.106)–
(5.108) and the properties of the wedges, cf. Lemma 18. Since the identities (5.112)–(5.117)
hold analogously with the localization functions (ηI , ηp± , η∂�) replaced by (̃ηI , η̃p± , η̃∂�)

and the cutoff functions (ζI , ζp± , ζ∂�) replaced by (̃ζI , ζ̃p± , ζ̃∂�), respectively, (5.86) also
follows in terms of η̃bulk.
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Step 3: Additional boundary constraints. The identities (5.94) and (5.95) are straightfor-
ward consequences of the definitions (5.104) and (5.105), the definitions (5.107) and (5.108),
and the definitions (5.110) and (5.111), respectively.

Step 4: Coercivity estimates. We first note that by the properties of the wedges from
Lemma 18 and the choice (5.74) that there exists a constantC ≥ 1 such that for all t ∈ [0, T ]
it holds

1 ≤ C min{dist(·, I (t)), dist(·, ∂�)} on the domain of (5.112), (5.118)

dist(·, I (t)) ≤ C dist(·, ∂�) on the domains of (5.113), (5.115), (5.117), (5.119)

dist(·, ∂�) ≤ C dist(·, I (t)) on the domains of (5.114), (5.116) , (5.117), (5.120)

dist(·, p±(t)) ≤ C dist(·, I (t)) on the domain of (5.116). (5.121)

dist(·, p±(t)) ≤ C min{dist(·, I (t)), dist(·, ∂�)} on the domain of (5.117). (5.122)

Furthermore, by the definitions (5.104)–(5.111) it follows that there exists C ≥ 1 such that
for all t ∈ [0, T ] it holds

C−1 dist2(·, I (t)) ≤ |1−ζI (·, t)| on the domains of (5.113), (5.115), (5.117), (5.123)

C−1 dist2(·, ∂�) ≤ |1−ζ∂�(·, t)| on the domains of (5.114), (5.116) , (5.117),
(5.124)

C−1 dist2(·, p±(t)) ≤ |1−ζp±(·, t)| on the domain of (5.116). (5.125)

The combination of the identities (5.112)–(5.117) from the previous step with the esti-
mates (5.118)–(5.125) from the current step and the definition (5.111) therefore implies
the coercivity estimates (5.87) and (5.91).

For a verification of the upper bounds (5.88)–(5.90), we first remark that as a straight-
forward consequence of the definitions (5.104)–(5.111) there exists C ≥ 1 such that for all
t ∈ [0, T ] we have

|1−ζI (·, t)| ≤ C dist2(·, I (t)) on the domains of (5.113), (5.115), (5.117), (5.126)

|(∇, ∂t )ζI (·, t)| ≤ C dist(·, I (t)) on the domains of (5.113), (5.115), (5.117), (5.127)

|1−ζ∂�(·, t)| ≤ C dist2(·, ∂�) on the domains of (5.114)–(5.117), (5.128)

|(∇, ∂t )ζ∂�(·, t)| ≤ C dist(·, ∂�) on the domains of (5.114)–(5.117), (5.129)

|(ζI−ζ∂�)(·, t)| ≤ C dist2(·, p±(t)) on the domain of (5.117), (5.130)

|1−ζp±(·, t)| ≤ C dist2(·, p±(t)) on the domains of (5.116), (5.117), (5.131)

|(∇, ∂t )ζp±(·, t)| ≤ C dist(·, p±(t)) on the domains of (5.116), (5.117). (5.132)

The upper bounds (5.88)–(5.89) with respect to ηbulk thus follow from the estimates (5.126)–
(5.130), the estimates (5.118) and (5.120), the estimate (5.47), as well as the identi-
ties (5.112)–(5.117). The upper bounds (5.88)–(5.89) with respect to η@¨ in turn are
implied by the estimates (5.129) and (5.131)–(5.132), the estimates (5.120)–(5.122), the esti-
mate (5.47), as well as the definition (5.110).We also obtain the desired upper bound (5.90) as
a consequence of the estimates (5.127) and (5.129), the estimate (5.119), the estimate (5.47),
as well as the definition (5.109).

Finally, we remark that the upper bounds (5.88)–(5.90) in terms of (̃ηbulk, η̃I , η̃∂�) follow
analogously.

Step 5: Motion laws. We claim that there exists C > 0 such that it holds

|(∂t + B · ∇)ζI | ≤ C dist2(·, I ) on im(XI ) ∩ (�×[0, T ]), (5.133)
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|(∂t + B · ∇)ζ∂�| ≤ C dist2(·, ∂�) on (im(X∂�)×[0, T ]) ∩ (�×[0, T ]), (5.134)

|(∂t + B · ∇)ζp±| ≤ C dist2(·, p±) on
⋃

t∈[0,T ]
Br̄ (p±(t))×{t}, (5.135)

|(∂t + B · ∇)λ
p±± | ≤ C on

⋃
t∈[0,T ]

(
Br̄ (p±(t)) ∩ W p±± (t)

)×{t}. (5.136)

Once these estimates are proved, one may argue along the lines of [9, Proof of Lemma 40]
to establish (5.92) and (5.93). Indeed, apart from (5.133)–(5.136) the structure of the argu-
ment of [9, Proof of Lemma 40] only relies on the already established ingredients from
Step 2 and Step 4 of this proof, the localization properties (5.79)–(5.85), the structure of the
definitions (5.75)–(5.76) and (5.109)–(5.111).

The estimate (5.135) is an easy consequence of B(p±(t), t) = d
dt p±(t), the chain rule

in form of (∂t + d
dt p±(t) · ∇)ζp± = 0, the estimate (5.132), and finally the estimate

|B− B(p±(t), t)| ≤ C dist(·, p±(t)). The bound (5.136) follows similarly thanks to the esti-
mates (5.47) and (5.50). Furthermore, one derives (5.134) by means of the definition (5.107),
the estimates (5.129) and |B(x, t)− B(P∂�(x), t)| ≤ C dist(x, ∂�), and finally the fact that
∂tζ∂� = 0 aswell as (B(P∂�(x), t)·∇)ζ∂�(x, t) = 0. The lattermore precisely follows from
∇s∂� = n∂� in form of∇ζ∂� ·τ∂� = 0 and the boundary condition B|∂� ·n∂� = 0 (cf. Proof
of Proposition 26, Step 2: Proof of (2.6h)). It remains to establish the estimate (5.133). This
in turn follows from (5.61), B|I = ηI B I + ηp+ B

p+ + ηp− B
p− due to (5.80) and (5.76), as

well as the estimates (5.127), (5.88), and (5.69) resulting in |(B−BI ) · ∇ζI | ≤ C dist2(·, I ).
��

5.5 Construction of the transported weight#

The last missing ingredient for the proof of Theorem 4 consists of the following result.

Lemma 28 Let the setting as described at the beginning of Sect. 5.4 be in place. For a given set
of admissible localization functions in the sense of Definition 25, let B denote the associated
velocity field defined by (5.76). There then exists a map ϑ : �×[0, T ] → [−1, 1] which
satisfies the corresponding requirements (2.5c) and (2.7a)–(2.7e) of a boundary adapted
gradient flow calibration.

Proof of Theorem 4 This now follows immediately from Propositions 26, 27 and Lemma 28.
Recall also in this context that the supplemental conditions (2.8)–(2.10) are taken care of by
Proposition 26. ��
Proof of Lemma 28 We first provide a construction of the transported weight ϑ . In a second
step, we establish the desired properties.

Let us start by fixing some useful notation. For the two localization scales r̄ and δ̄ defined
by (5.73) and (5.74), respectively, define for each t ∈ [0, T ] an associated neighborhood of
the interface ∂∗A (t) ∩ � by means of

Ur̄ ,δ̄(t) := im(Xr̄ ,δ̄
I (·, t, ·)) ∪

⋃
p∈{p±}

Br̄ (p(t)). (5.137)

For each t ∈ [0, T ], we also introduce for convenience the notation A+(t) := A (t) and
A−(t) := �\A (t).

Choose next a (up to the sign) smooth truncation of the identity ϑ̄ : R → [−1, 1] in the
sense that ϑ̄(s) = −s for s ∈ [−1/2, 1/2], ϑ̄ ′(s) < 0 for s ∈ (−1, 1), ϑ̄(s) = 1 for s ≤ −1
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and ϑ̄(s) = −1 for s ≥ 1. For a given δ ∈ (0, δ̄] which we fix later, we next define five
auxiliary maps

ϑI (x, t) := ϑ̄
( sI (x, t)

δr̄

)
, (x, t) ∈ im(XI ), (5.138)

ϑ±
p (x, t) := ϑ̄

(± dist(x, p(t))

δr̄

)
, (x, t) ∈ R

2×[0, T ], p ∈ {p+, p−}. (5.139)

We have everything set up to proceed with an adequate definition of the weight ϑ . Fix
t ∈ [0, T ]. Away from the two contact points, we set

ϑ(·, t) :=
{∓1 in A±(t)\Ur̄ ,δ̄(t),

ϑI (·, t) in im(Xr̄ ,δ̄
I (·, t, ·))\ ⋃

p∈{p±} Br̄ (p(t)),
(5.140)

whereas we define in the vicinity of a contact point p ∈ {p+, p−}

ϑ(·, t) :=

⎧⎪⎨
⎪⎩

ϑI (·, t) in Br̄ (p(t)) ∩ W p
I (t),

ϑ±
p (·, t) in Br̄ (p(t)) ∩ W p

∂�(t) ∩ A±(t),(
λ
p
±ϑI+(1−λ

p
±)ϑ±

p

)
(·, t) in Br̄ (p(t)) ∩ W p

±(t).

(5.141)

In order to guarantee the required regularity (2.5c) for the piecewise definitions (5.140)–
(5.141), it simply suffices to choose δ ∈ (0, δ̄] small enough and to recall the regularity
assertions from Remark 15, Remark 16 and Lemma 23. The desired sign conditions (2.7a)–
(2.7c) also follow immediately from an inspection of the definitions (5.140)–(5.141).

For a proof of the coercivity estimate (2.7d), note that by the properties of ϑ̄ and the
definition (5.138) there exists C > 0 such that for all t ∈ [0, T ]

dist(·, I (t)) ≤ C |ϑI (·, t)| on im(XI )(·, t, ·), (5.142)

In view of the estimates (5.118)–(5.122), the required bound (2.7d) therefore holds as a
consequence of the definitions (5.140)–(5.141).

For a proof of the estimate (2.7e), we first claim that there exists C > 0 such that for all
t ∈ [0, T ] it holds

|(∂t + B · ∇)ϑI |(·, t) ≤ C dist(·, I (t)) on im(XI )(·, t, ·) ∩ �, (5.143)

|ϑI − ϑ∂�|(·, t) ≤ C dist(·, p±(t)) on Br̄ (p±(t)) ∩ W p±± (t). (5.144)

Since (5.144) is obvious, let us concentrate on the proof of (5.143). This one, however, can be
derived along the lines of the argument in favor of the estimate (5.133). Being equipped with
the auxiliary estimates (5.143) and (5.144), the desired bound (2.7e) now follows frommaking
use of the definitions (5.140) and (5.141), the estimates (5.118)–(5.122), the estimate (5.136),
and the already established bound (2.7d). ��
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Appendix A. Weak solutions to the Allen–Cahn problem (AC1)–(AC3)

Proof of Lemma 6 Step 1: Implicit time discretization. Let T > 0 be fixed, N ∈ N and τ =
τ(N ) := T

N . We define u0N := uε,0 ∈ H1(�) and construct inductively for k = 1, . . . , N : if

uk−1
N ∈ H1(�) is known, then let ukN be a minimizer of

Ek : H1(�) → [0,∞] : u �→ Eε[u] + 1

2τ
‖u − uk−1

N ‖2L2(�)
. (A.1)

Clearly, Ek is non-trivial due to the assumptions on W , σ . The existence of a minimizer
can be shown via the direct method, cf. Step 2 below. Due to (1.6b) it follows that ukN ∈
H1(�) ∩ L p(�).

Due to the assumptions on W and σ one can proceed similar to Garcke [12], Lemma 3.5,
to obtain the associated Euler-Lagrange equation: for all test functions ξ ∈ H1(�)∩ L∞(�)

it holds

ε

∫
�

∇ukN · ∇ξ +
∫

�

ukN − uk−1
N

τ
ξ +

∫
�

1

ε
W ′(ukN )ξ +

∫
∂�

σ ′(trukN )trξ dHd−1 = 0.

We consider the piecewise constant extension uN (t) := ukN on ((k − 1)τ, kτ ] for k =
0, . . . , N and the piecewise linear extension uN (t) := λuk−1

N + (1 − λ)ukN for t = λ(k −
1)τ + (1 − λ)kτ , where λ ∈ [0, 1], k = 0, . . . , N .

Step 2: Existence of minimizers. To this end, we consider a minimizing sequence (un)n∈N
for Ek in H1(�). The functional Ek is coercive. More precisely, it holds

Ek(u) ≥ ε

2
‖∇u‖2L2(�)

+ 1

4τ
‖u‖2L2(�)

− C(‖ukN‖L2(�)),

where we used W , σ ≥ 0 and Young’s inequality. Hence (un)n∈N is a bounded sequence in
H1(�) and there is a weakly convergent subsequence (for simplicity denoted with the same
index) un⇀ũ for n → ∞ in H1(�) for some ũ ∈ H1(�). The terms in Ek without the W
and σ -contributions are convex and continuous, hence also weakly lower semi-continuous.
Furthermore, because of the compact embedding H1(�) ↪→↪→ L2(�) as well as the
compactness of the trace operator tr : H1(�) → L2(∂�), we obtain after sub-sequence
extractions that for n → ∞

un → ũ in L2(�), un → ũ a.e. in �,

trun → tr̃u in L2(∂�), trun → tr̃u a.e. in ∂�.

Finally, the Fatou Lemma yields that ũ is a minimizer of Ek .
Step 3: Uniform Estimates. Inserting ukN and uk−1

N in Ek from (A.1) yields

Eε[ukN ] + 1

2τ
‖ukN − uk−1

N ‖2L2(�)
≤ Eε[uk−1

N ].
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Because of uk−1
N , ukN ∈ H1(�) ∩ L p(�) the terms stemming from Eε are finite. Therefore

one can apply a telescope sum argument which implies

∫
�

ε

2
|∇ukN |2 +

∫
�

1

ε
W (ukN ) +

∫
∂�

σ(ukN )Hd−1 +
k∑

l=1

1

2τ
‖ulN − ul−1

N ‖2L2(�)

≤
∫

�

ε

2
|∇uε,0|2 +

∫
�

1

ε
W (uε,0) +

∫
∂�

σ(truε,0) dHd−1.

Therefore (1.6a) yields that the ukN are uniformly bounded in H1(�)∩ L p(�) independently
of k = 0, . . . , N and N ∈ N. Hence it follows that

(uN )N∈N is bounded in L∞(0, T ; H1(�) ∩ L p(�)),

(uN )N∈N is bounded in H1(0, T , L2(�)) ∩ L∞(0, T ; H1(�) ∩ L p(�)).

Step 4: Convergence. There is a sub-sequence (not re-labelled) and a û such that

uN⇀∗û in L∞(0, T ; H1(�) ∩ L p(�)).

Moreover, due to the Aubin-Lions-Lemma, cf. Simon [35], Corollary 5 , the space
L∞(0, T , H1(�)) ∩ H1(0, T , L2(�)) is compactly embedded into C([0, T ], Hs(�)) for
all s ∈ [0, 1), where we choose a fixed s ∈ ( 12 , 1). Therefore up to a sub-sequence for some
u it holds

uN → u in C([0, T ], Hs(�)).

With the estimate

‖uN (t) − uN (t)‖L2(�) ≤ ‖ukN − uk−1
N ‖L2(�) ≤ C

√
τ for all t ∈ [(k − 1)τ, kτ ]

for some C > 0 independent of k, N and using τ = T
N we obtain

uN → u in L∞(0, T , L2(�))

and û = u. Using φ ∈ L∞(0, T , H1(�)) and an interpolation estimate we get

uN → u in L∞(0, T , Hs(�)).

Moreover, it holds u ∈ C
1
2 ([0, T ], L2(�)) since (uN )N∈N is bounded in this space and an

interpolation estimate yields uN → u in Cα([0, T ], L2(�)) for all α ∈ (0, 1
2 ). Furthermore,

it holds

uN⇀u in L2(0, T , H1(�)) ∩ H1(0, T , L2(�)),

where the weak limit equals u due to the compactness into L2(0, T , L2(�)). Due to all these
convergence properties and the continuity of the trace operator from Hs(�) to L2(∂�), we
obtain after sub-sequence extraction that

uN , uN → u a.e. in � × (0, T ), truN , truN → tru a.e. in ∂� × (0, T ).

Step 5: Weak formulation. Using the above convergence properties one can pass to the
limit in the Euler-Lagrange equation. This yields (2.11b).

Step 6: Uniqueness and bound in Lemma 6. Using a Gronwall-argument and the splitting
(1.6c) of W , one can prove uniqueness of weak solutions. Now assume that the initial phase
field additionally satisfies uε,0 ∈ [−1, 1] a.e. in �. Then in the above construction of a weak
solution via the implicit time discretization one can choose the minimizers ukN in such a
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way that ukN ∈ [−1, 1] a.e. in � for k = 1, . . . , N , N ∈ N. This follows via mathematical
induction over k since the energy Ek(u) is non-increasing when truncating the values of u
at [−1, 1] provided that this holds for uk−1

N . Then the obtained weak solution also has the
desired property. ��

Proof of Lemma 7 We split the proof into three steps. In principle, all of these steps are based
on standard arguments. However, due to the nonlinear Robin boundary condition (AC2), we
decided to present some level of detail.

Step 1: Proof of the properties (2.14) and (2.15). Since the initial phase field satisfies
uε,0 ∈ [−1, 1] almost everywhere in �, it follows from (2.12) in Lemma 6 and the bound-
edness of W ′ on [−1, 1] that W ′(uε) ∈ L∞(�×(0, T )). Testing (2.11b) with test functions
which are compactly supported in �×(0, T ) thus entails together with the regularity in
time (2.11a) of uε that 	uε , as a distribution on �×(0, T ), is represented by an L2-function
on �×(0, T ), namely ∂t uε + 1

ε2
W ′(uε), which in turn proves (2.14). Then (2.15) directly

follows by testing (2.11b) with ζ ∈ C∞
cpt((0, T );C∞(�)).

Step 2: Proof of ∇∂t uε ∈ L2
loc(0, T ; L2(�)). Let 0 < s < t < T , and let η ∈

C∞
cpt((0, T ); [0, 1]) be such that η|[s,t] ≡ 1. Denote with Dh

t f the difference quotient in

the time variable for h > 0 and some function f . We test (2.11b) with D−h
t (ηDh

t uε) for
|h| �s,t 1, which is an admissible test function after approximation. Then by approaching
the characteristic function χ[s,t] with η we obtain

∫ t

s

∫
�

|Dh
t ∇uε|2 dx dt +

∫ t

s

∫
�

∂t
1

2
|Dh

t uε|2 dx dt

= −
∫ t

s

∫
�

1

ε2
Dh
t

(
W ′(uε)

)
Dh
t uε dx dt −

∫ t

s

∫
∂�

1

ε
Dh
t

(
σ ′(uε)

)
Dh
t uε dHd−1 dt

for all |h| �s,t 1.By aLipschitz estimate and standardSobolev theory for difference quotients
we have

∣∣∣∣
∫ t

s

∫
�

1

ε2
Dh
t

(
W ′(uε)

)
Dh
t uε dx dt

∣∣∣∣ ≤ C(ε, ‖W ′′‖L∞([−1,1]))
∫ T

0

∫
�

|∂t uε|2 dx dt

for all |h| �s,t 1. For an estimate of the boundary integral, we argue as follows. Since the
initial phase field satisfies uε,0 ∈ [−1, 1] almost everywhere in �, it follows from (2.12) that
we may replace σ by any C2-density σ̃ : R → R which coincides with σ on [−1, 1]. Fix
one such σ̃ . Then analogous as before we have

∣∣Dh
t

(
σ ′(uε)

)∣∣ ≤ C‖σ̃ ′′‖L∞([−1,1])
∣∣Dh

t uε

∣∣.
Using the trace (interpolation) inequality and Young’s inequality as well as standard Sobolev
theory for difference quotients we finally obtain the bound

∣∣∣∣
∫ t

s

∫
∂�

1

ε
Dh
t

(
σ ′(uε)

)
Dh
t uε dHd−1 dt

∣∣∣∣ ≤ C(δ, ε, ‖σ̃ ′′‖L∞([−1,1]))
∫ T

0

∫
�

|∂t uε|2 dx dt

+ δ

∫ t

s

∫
�

|Dh
t ∇uε|2 dx dt

for all δ ∈ (0, 1) and all |h| �s,t 1. Hence, an absorption argument together with the
fundamental theorem of calculus (the latter facilitated by a standard mollification argument
in the time variable) entails based on the previous four displays that

∫ t

s

∫
�

|Dh
t ∇uε|2 dx dt
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≤
∫

�

|Dh
t uε(·, s)|2 dx + C(ε, ‖W ′′‖L∞([−1,1]), ‖σ̃ ′′‖L∞([−1,1]))

∫ T

0

∫
�

|∂t uε|2 dx dt
for all 0 < s < t < T and all |h| �s,t 1. In particular, since for almost every s ∈ (0, T ) it
holds

∫
�

|∂t uε(·, s)|2 dx < ∞, it follows that for almost every s ∈ (0, T ) and all t ∈ (s, T )

it holds
∫ t
s

∫
�

|Dh
t ∇uε|2 dx dt � 1 uniformly over all |h| �s,t 1. This in turn implies the

claim by standard Sobolev theory for difference quotients.
Step 3: Proof of uε ∈ L2(0, T ; H2(�)). We only provide details for the local estimate

for tangential derivatives of ∇uε at a boundary point x0 ∈ ∂� after locally flattening the
boundary ∂� around x0. With respect to the latter—up to a rotation and translation—wemay
assume that x0 = 0 and that there exists a radius r > 0 as well as a C2-map g : Br (0) ∩
R
d−1 → R such that g(0) = 0 and

� ∩ Br (0) = {x = (x ′, xd) ∈ Br (0) : xd > g(x ′)},
∂� ∩ Br (0) = {x = (x ′, xd) ∈ Br (0) : xd = g(x ′)}.

Defining the map � : Br (0) → R
d : (x ′, xd) �→ (x ′, xd−g(x ′)), which is a C2-

diffeomorphism onto its image, and the coefficient field A := ∇�−1(∇�−1)T, we have
that det∇� = 1 and that the operator−∇(a∇ ·) is uniformly elliptic and bounded. Choosing
r ′ ∈ (0, 1) small enough such that Br ′(0) ⊂⊂ im�, we then obtain from (2.11b) and a
change of variables that

∫ T

0

∫
B+
r ′ (0)

ζ ∂t ũε dx dt +
∫ T

0

∫
B+
r ′ (0)

∇ζ · A∇ũε dx dt

= −
∫ T

0

∫
B+
r ′ (0)

ζ
1

ε2
W ′(̃uε) dx dt

−
∫ T

0

∫
Br ′ (0)∩{xd=0}

ζ

√
1+|∇x ′g(x ′)|2 1

ε
(σ ′ ◦ ũε)

(
x ′, g(x ′)

)
dHd−1 dt (A.2)

for all ζ ∈ C∞
cpt(Br ′(0)), where we have also defined ũε := uε ◦ �−1 as well as B+

r ′ (0) =
Br ′(0) ∩ {(x ′, xd) ∈ R

d : xd > 0}.
Let η ∈ C∞

cpt(
1
2 Br ′(0); [0, 1]). We denote by Dh

x f for h > 0 and some f the difference
quotient in the spatial variables with respect to an arbitrary, but fixed, tangential direction.
Testing (A.2) with the (after approximation) admissible test function D−h

x (η2Dh
x ũε) for

|h| < 1
2 we obtain together with the fundamental theorem of calculus (which is facilitated

by a standard mollification argument in the time variable) and the uniform ellipticity of A
∫ T

0

∫
B+
r ′ (0)

η2|Dh
x∇ũε|2 dx dt �

∫ T

0

∫
B+
r ′ (0)

η2Dh
x∇ũε · ADh

x∇ũε dx dt

≤
∫
B+
r ′ (0)

η2|Dh
x ũε(·, 0)|2 dx −

∫ T

0

∫
B+
r ′ (0)

η2Dh
x ũε

1

ε2
Dh
x

(
W ′(̃uε)

)
dx dt

−
∫ T

0

∫
Br ′ (0)∩{xd=0}

η2Dh
x ũε

√
1+|∇x ′g(x ′)|2 1

ε
Dh
x

(
(σ ′ ◦ ũε)(x

′, g(x ′))
)
dHd−1 dt

−
∫ T

0

∫
B+
r ′ (0)

Dh
x ũε2η∇η · ADh

x∇ũε dx dt

−
∫ T

0

∫
B+
r ′ (0)

η2Dh
x∇ũε · {

Dh
x

(
A∇ũε

) − ADh
x∇ũε

}
dx dt
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−
∫ T

0

∫
B+
r ′ (0)

Dh
x ũε2η∇η · {

Dh
x

(
A∇ũε

) − ADh
x∇ũε

}
dx dt

−
∫ T

0

∫
B+
r ′ (0)

η2Dh
x ũε ·

{
Dh
x

(√
1+|∇x ′g(x ′)|2 1

ε
(σ ′ ◦ ũε)

(
x ′, g(x ′)

))

−
√
1+|∇x ′g(x ′)|2 1

ε
Dh
x

(
(σ ′ ◦ ũε)(x

′, g(x ′))
)}

dHd−1 dt

for all η ∈ C∞
cpt(

1
2 Br ′(0); [0, 1]) and all |h| < 1

2 .
The terms on the right hand side without the first one can be estimated similarly as in

Step 2 of this proof by

δ

∫ T

0

∫
B+
r ′ (0)

η2|Dh
x∇ũε|2 dx dt + C(δ)

∫ T

0

∫
�(�∩Br (0))

|̃uε|2 + |∇ũε|2 dx dt

for all δ ∈ (0, 1), η ∈ C∞
cpt(

1
2 Br ′(0); [0, 1]) and |h| < 1

2 , where the first three of these

six terms can be estimated without the |̃uε|2-term on the right hand side. Altogether, by an
absorption argument and by fixing η ∈ C∞

cpt(
1
2 Br ′(0); [0, 1]) such that η| 1

4 Br ′ (0)
≡ 1, we

obtain
∫ T

0

∫
1
4 B

+
r ′ (0)

|Dh
x∇ũε|2 dx dt

≤ C
∫

�

|uε(·, 0)|2 + |∇uε(·, 0)|2 dx + C
∫ T

0

∫
�

|uε|2 + |∇uε|2 dx dt

uniformly over all |h| < 1
2 . This in turn establishes the desired local estimate for tan-

gential derivatives at a boundary point x0 ∈ ∂� after locally flattening the boundary ∂�

around x0. From here onwards, one may proceed by standard arguments to deduce uε ∈
L2(0, T ; H2(�)). ��
Proof of Lemma 8 We proceed in two steps.

Step 1: Proof of (2.16) under an additional assumption. In this step, we establish (2.16)
assuming momentarily that the energy functional Eε[uε] is continuous on [0, T ]. This fact
will then be checked in a second step. Under this additional assumption it clearly suffices to
prove that for all 0 < s < T ′ < T it holds

Eε[uε(·, T ′)] +
∫ T ′

s

∫
�

ε
∣∣∂t uε

∣∣2 dx dt = Eε[uε(·, s)]. (A.3)

Let 0 < s < T ′ < T , and letη ∈ C∞
cpt((0, T ); [0, 1]) such thatη|[s,T ′] ≡ 1. Testing (A.2)with

the thanks to Lemma 7 admissible test function εη∂t uε and by approaching the characteristic
function χ[s,T ′] with η shows

∫ T ′

s

∫
�

ε∇uε · ∂t∇uε dx dt +
∫ T ′

s

∫
�

1

ε
W ′(uε)∂t uε dx dt

+
∫ T ′

s

∫
∂�

σ ′(uε)∂t uε dHd−1 dt = −
∫ T ′

s

∫
�

ε|∂t uε|2 dx dt .

Bya standardmollification argument, the chain rule, and the fundamental theoremof calculus,
we thus obtain from the previous display the desired identity (A.3).
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Step 2: Proof of Eε[uε] ∈ C([0, T ]). Recalling that uε ∈ C([0, T ]; L2(�)), it suffices
to prove that the Dirichlet energy is continuous on [0, T ]. Indeed, continuity for the other
two energy contributions then follows from the trace (interpolation) inequality and a Lips-
chitz estimate. Hence note that uε ∈ H1(0, T ; L2(�)) ∩ L2(0, T ; H2(�)) due to (2.11a)
and (2.13). Interpolation yields uε ∈ C([0, T ]; H1(�)) which concludes the claim. ��

Appendix B. Construction of well-prepared initial data

Proof of Lemma 9 We split the proof into four steps.
Step 1: Construction of auxiliary signed distance to initial bulk interface. As the C2-

interface ∂∗A (0) ∩ � intersects theC2-domain boundary ∂� non-tangentially at two distinct
points c±(0) ∈ ∂�, we may choose two localization scales r , δ ∈ (0, 1) being sufficiently
small such that the following properties hold true:

First, we require as usual that (with n(·, 0) := n∂∗A (0)∩�)

� : (∂∗A (0)∩�) × (−r , r) → R
2, (x, s) �→ x + sn(x, 0)

defines a C1-diffeo onto its image im� such that � ∈ C1(∂∗A (0)∩�×[−r , r ]) and �−1 ∈
C1(im�). Furthermore, denote by L±(0) the tangent line to ∂∗A (0)∩� at c±(0) ∈ ∂�,
respectively, and let τ±(0) ∈ L±(0) the associated unit tangent to ∂∗A (0) ∩ � at c±(0) ∈ ∂�

pointing outside of � (i.e., c±(0)+�τ±(0) ∈ R
2\� for all 0 < � < r for r small). Denoting

by H±(0) the open half-space given by {x ∈ R
2 : (x−c±(0)) · τ±(0) > 0}, we next require

that r is small such that Br (y±) ∩ ∂∗A (0)∩� = {c±(0)} for all y± ∈ ∂Br (c±(0)) ∩H±(0).
By this choice of the scale r ∈ (0, 1), the set

Ĩ (0) := ∂∗A (0)∩� ∪
⋃
c±(0)

((
c±(0)+L±(0)

) ∩ H±(0) ∩ Br
2
(c±(0))

)
(B.1)

is an embedded, compact and orientable C1-manifold with boundary {c±(0)+ r
2τ±(0)}

extending the bulk interface ∂∗A (0)∩�. We write ñ(·, 0) for the associated continuous
unit normal vector field coinciding with n(·, 0) along ∂∗A (0)∩�. The second localization
scale δ ∈ (0, 1) is now chosen sufficiently small such that

�̃ : Ĩ (0) × [−δr , δr ] → R
2, (̃x, s̃) �→ x̃ + s̃ ñ(̃x, 0) (B.2)

defines a homeomorphism onto its image im �̃, and such that �\im �̃ decomposes into two
non-empty and disjoint connected components�±(�̃) such that the set ∂�±(�̃)∩� is given
by �̃( Ĩ (0)×{±δr}) ∩ �.

With two such localization scales r , δ ∈ (0, 1) in place, we remark that the projection onto
the second coordinate of the inverse �̃−1 defines a C1-function s̃ which inside � equals the
signed distance to Ĩ (0). Hence, by a slight abuse of notation wemay extend s̃ to a 1-Lipschitz
continuous function on � by means of

s̃(x) :=
{

± dist(x, Ĩ (0)) x ∈ �±(�̃),

s̃(x) x ∈ � ∩ im �̃,
(B.3)

which serves as a suitable extension of the signed distance function to the initial bulk inter-
face ∂∗A (0) ∩ � (by which we again understand the projection onto the second coordinate
of the inverse �−1).

Step 2: Definition of initial phase field uε,0. Let θ0 : R → (−1, 1) denote the optimal
transition profile associated with the double-well potentialW , i.e., the unique solution of the
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ODE θ ′′
0 = W ′(θ0) such that θ0(0) = 0 and limz→±∞ θ0(z) = ±1. Fix also a scale ε ∈ (0, 1).

Recalling the definition (B.3), we then introduce an initial phase field by means of

uε,0(x) := θ0

( s̃(x)
ε

)
, x ∈ �. (B.4)

Step 3: Properties of uε,0 and optimal estimates for bulk energy contributions.
That Eε[uε,0] < ∞ and (2.1) hold true follows directly from the definitions (B.3) and (B.4).
In terms of the required estimates, we claim that∫

�

ε

2
|∇uε,0|2 + 1

ε
W (uε,0) − ∇(ψ ◦ uε,0) · ξ(·, 0) dx � ε2, (B.5)

Ebulk[uε,0|A (0)] � ε2. (B.6)

In particular, in case of the specific choice (1.10) for the boundary energy density, these
two bounds immediately imply (2.3) with optimal rate ε2 since the boundary term in the
definition (3.4) of the relative energy simply vanishes in the special case (1.10).

For a proof of (B.5), we split our task into two contributions by decomposing � =
(� ∩ {|̃s | ≥ δr}) ∪ (� ∩ {|̃s | < δr}). By |∇(ψ ◦ uε,0) · ξ(·, 0)| ≤ √

2W (uε,0)|∇uε,0|, the
generalized chain rule for Lipschitz functions, |∇ s̃ | ≤ 1, and Young’s inequality, we have∫

�∩{|̃s | ≥δr}
ε

2
|∇uε,0|2 + 1

ε
W (uε,0) − ∇(ψ ◦ uε,0) · ξ(·, 0) dx

≤ 2

ε

∫
�∩{|̃s | ≥δr}

∣∣∣θ ′
0

( s̃(x)
ε

)∣∣∣2 + W
(
θ0

( s̃(x)
ε

))
dx,

which thanks to θ ′
0(r) = √

2W (θ0(r)) for all r ∈ R and the exponential decay of |θ ′
0|

upgrades to∫
�∩{|̃s | ≥δr}

ε

2
|∇uε,0|2 + 1

ε
W (uε,0) − ∇(ψ ◦ uε,0) · ξ(·, 0) dx � ε2. (B.7)

For an estimate of the contribution from � ∩ {|̃s | < δr}, we note that ∇uε,0(x) =
1
ε
θ ′
0(

s̃(x)
ε

)̃n(PĨ (0)(x), 0) and thus ∇(ψ ◦ uε,0)(x) = 1
ε
|θ ′
0(

s̃(x)
ε

)|2ñ(PĨ (0)(x), 0) for all
x ∈ � ∩ {|̃s | < δr} ⊂ im �̃, where the map PĨ (0) denotes the projection onto the nearest

point on Ĩ (0). In particular,∫
�∩{|̃s | <δr}

ε

2
|∇uε,0|2 + 1

ε
W (uε,0) − ∇(ψ ◦ uε,0) · ξ(·, 0) dx

= −
∫

�∩{|̃s | <δr}
1

ε

∣∣∣θ ′
0

( s̃(x)
ε

)∣∣∣2ñ(PĨ (0)(x), 0) · (
ξ(·, 0) − ñ(PĨ (0)(·), 0)

)
dx . (B.8)

We claim that ∣∣̃n(PĨ (0)(x), 0) · (
ξ(x, 0) − ñ(PĨ (0)(x), 0)

)∣∣ � s̃ 2(x) (B.9)

for all x ∈ � ∩ {|̃s | < δr}. Once the estimate (B.9) is established, it follows in combination
with (B.8) and the exponential decay of |θ ′

0| (together with a transformation argument) that∫
�∩{|̃s | <δr}

ε

2
|∇uε,0|2 + 1

ε
W (uε,0) − ∇(ψ ◦ uε,0) · ξ(·, 0) dx

� ε

∫
�∩{|̃s |<δr}

∣∣∣θ ′
0

( s̃(x)
ε

)∣∣∣2 s̃
2(x)

ε2
dx � ε2. (B.10)
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Obviously, the estimates (B.7) and (B.10) then imply the desired bound (B.5), so that it
remains to verify (B.9).

To this end, we observe first that for all x ∈ � ∩ {|̃s | < δr} ⊂ im �̃ it holds
ñ(PĨ (0)(x), 0) = n(P∂∗A (0)∩�(x), 0) due to the choice of r ∈ (0, 1) and the definition

of the extended interface Ĩ (0). Hence,

ñ(PĨ (0)(x), 0) · (
ξ(x, 0) − ñ(PĨ (0)(x), 0)

)
= n(P∂∗A (0)∩�(x), 0) · (

ξ(x, 0) − n(P∂∗A (0)∩�(x), 0)
)

for all x ∈ � ∩ {|̃s | < δr}. In particular, a Taylor expansion argument based on the condi-
tions (2.6a) and the regularity (2.5a) entails∣∣̃n(PĨ (0)(x), 0) · (

ξ(x, 0) − ñ(PĨ (0)(x), 0)
)∣∣ � dist2(x, ∂∗A (0)∩�)

for all x ∈ � ∩ {|̃s | < δr}. The previous display can be post-processed to (B.9) since
dist(·, ∂∗A (0)∩�) � |̃s | in � ∩ {|̃s | < δr}. Indeed, the latter claim is trivially true in the
image �̃((∂∗A (0)∩�)×(−δr , δr)) as dist(·, ∂∗A (0)∩�) = |̃s | on this set. For the remain-
ing points x ∈ (�∩{|̃s |<δr})\�̃((∂∗A (0)∩�)×(−δr , δr)) ⊂ im �̃, the claim follows from
recognizing that for such points P∂∗A (0)∩�(x) ∈ {c±(0)} and that the angle formed by the
vectors x − P∂∗A (0)∩�(x) and PĨ (0)(x) − P∂∗A (0)∩�(x) is bounded away from zero uni-
formly (which in turn holds true since the bulk interface intersects the domain boundary
non-tangentially).

We next turn to the proof of the estimate (B.6). Recalling (4.1), we start by plugging in
definitions in form of

Ebulk[uε,0|A (0)] =
∫
A (0)

|ϑ(·, 0)|
∣∣∣∣
∫ 1

θ0(
s̃(x)
ε

)

√
2W (�) d�

∣∣∣∣ dx

+
∫

�\A (0)
|ϑ(·, 0)|

∣∣∣∣
∫ θ0(

s̃(x)
ε

)

−1

√
2W (�) d�

∣∣∣∣ dx,
so that one obtains the preliminary estimate

Ebulk[uε,0|A (0)] �
∫
A (0)

|ϑ(·, 0)|
∣∣∣θ0

( s̃(x)
ε

)
− 1

∣∣∣ dx

+
∫

�\A (0)
|ϑ(·, 0)|

∣∣∣θ0
( s̃(x)

ε

)
− (−1)

∣∣∣ dx .
Both terms on the right hand side of the previous display can again be treated by decomposing
� = (� ∩ {|̃s | ≥ δr}) ∪ (� ∩ {|̃s | < δr}). Throughout � ∩ {|̃s | ≥ δr}, one then simply
capitalizes on the fact that the optimal profile θ0(r) converges exponentially fast to ±1 as
r → ±∞ and that χ = 0, 1 correlates with the sign of s̃. Throughout � ∩ {|̃s | < δr}, one
in addition makes use of the Lipschitz estimate |ϑ(·, 0)| � dist(·, ∂∗A (0)∩�) � |̃s | (recall
for the first inequality that ϑ(·, 0) = 0 along ∂∗A (0)∩�). In summary, one obtains (B.6).

Step 4: Estimate for boundary energy contribution.We claim that

0 ≤
∫

∂�

σ(uε,0) − ψ(uε,0) cosα dHd−1 � ε. (B.11)

Note that together with the estimates from the previous step, we in particular obtain the
asserted bound (2.3) once (B.11) is proven.

Due to the definition (1.7) and the compatibility conditions between σ and ψ at the
endpoints ±1 from (1.9b), it follows again from the exponentially fast convergence θ0(r) →
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±1 as r → ±∞ that the contribution coming from the integration over the set ∂�∩{|̃s| ≥ δr}
is of higher order comparedwith the claim (B.11).On ∂�∩{0 ≤ |̃s| < δr}wecan additionally
use an integral transformation and a scaling argument to obtain (B.11). ��
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