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ABSTRACT
We consider the many-body time evolution of weakly interacting bosons in the mean field regime for initial coherent states. We show that
bounded k-particle operators, corresponding to dependent random variables, satisfy both a law of large numbers and a central limit theorem.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0086712

I. INTRODUCTION AND MAIN RESULTS
We consider N weakly interacting bosons in the mean-field regime described on L2

s (R3N
), the symmetric subspace of L2

(R3N
), by the

Hamilton operator

HN =
N

∑
i=1
(−Δi) +

1
N

N

∑
i<j=1

v(xi − xj), (1.1)

with the two-body interaction potential v satisfying
v2
≤ C(1 − Δ) (1.2)

for a positive constant C > 0. The mean-field regime is characterized through weak and long-range interactions of particles. Trapped Bose
gases at extremely low temperatures, as prepared in the experiments, are known to relax to the ground state. The ground state ψgs

N of (1.1), if
it exists, exhibits Bose–Einstein condensation,17 i.e., the associated ℓ-particle reduced density

γ(ℓ)ψgs
N
∶= tr ℓ+1,...,N ∣ψ

gs
N ⟩⟨ψ

gs
N ∣ (1.3)

converges in the trace norm to
γ(ℓ)ψgs

N
→ ∣φ⟩⟨φ∣⊗ℓ as N →∞ (1.4)

for all ℓ ∈ N, where φ ∈ L2
(R3
) denotes the condensate wave function, known to be the Hartree minimizer. However, we remark that the

factorized state φ⊗N does not approximate the ground state due to correlations of particles.11

A. Law of large numbers
Turning to the probabilistic picture, the property of Bose–Einstein condensation (1.4) implies a law of large numbers for bounded one-

particle operators.3 To be more precise, for k ∈ N, we denote with O(k) a bounded, self-adjoint k-particle operator on L2
(R3k
) and with ik the

multi-index
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ik = (i1, . . . , ik) ∈ I
(k)
N , I(k)N ∶= {(i1, . . . , ik) ∈ {1, . . . , N}k

∣ ij ≠ im forj ≠ m}. (1.5)

Then, we define for fixed k ≤ N the N-particle operator

O(k)ik
with ik ∈ I

(k)
N , (1.6)

acting as O(k) on particles i1, . . . , ik and as identity elsewhere. We consider the operator O(k)ik
as a random variable with probability distribution

determined through ψN by
PψN [O

(k)
ik
∈ A] = EψN [χA(O(k)ik

)] = ⟨ψN ∣χA(O(k)ik
)∣ψN⟩, (1.7)

where χA denotes the characteristic function of the set A ⊂ R.
For one-particle operators, factorized states correspond to i.i.d. random variables as for any subsets A1, A2 ⊂ R and i, j ∈ I(1)N with i ≠ j,

Pφ⊗N [O(1)i ∈ A1, O(1)j ∈ A2] = ⟨φ⊗N
∣χA1(O

(1)
i )χA2(O

(1)
j )∣φ

⊗N
⟩

= ⟨φ∣χA1(O
(1)
)∣φ⟩⟨φ∣χA2(O

(1)
)∣φ⟩

= ⟨φ⊗N
∣χA1(O

(1)
i )∣φ

⊗N
⟩⟨φ⊗N

∣χA2(O
(1)
j )∣φ

⊗N
⟩

= Pφ⊗N [O(1)i ∈ A1] Pφ⊗N [O(1)j ∈ A2]. (1.8)

In particular, for factorized states, Chebychef’s inequality implies a law of large numbers for the centered averaged sum,

1
N

O(1)N :=
1
N

N

∑
i=1
(O(1)i − ⟨φ∣O(1)∣φ⟩). (1.9)

In contrast to one-particle operators for k-particle operators with k ≥ 2, factorized states do not correspond to i.i.d. random variables. In fact,
for k ≥ 2, we have

Eφ⊗N [(O(k)ik
− ⟨φ⊗k

∣O(k)∣φ⊗k
⟩)(O(k)j

k
− ⟨φ⊗k

∣O(k)∣φ⊗k
⟩)] ≠ 0 (1.10)

for all ik ≠ j
k

for which ik contains at least one element of j
k
. We conclude that in this case, the random variables are correlated and, thus,

dependent. In contrast, whenever ik does not intersect with j
k
, the random variables O(k)ik

, O(k)j
k

are independent [following from arguments

similarly to (1.8)]. Consequently, for factorized states, the random variables {O(k)ik
}ik∈ I

(k)
N

denote a sequence of m-dependent random variables
with m ∈ R. Still, as in Theorem 1.1, the centered averaged sum

1
(

N
k )

O(k)N :=
1
(

N
k )
∑

ik∈ I
(k)
N

(O(k)ik
− ⟨φ⊗k

∣O(k)∣φ⊗k
⟩) (1.11)

satisfies a law of large numbers.

Theorem 1.1 (law of large numbers). For k ∈ N, let O(k) denote a self-adjoint bounded k-particle operator, φ ∈ L2
(R3
), and ψN ∈ L2

s (R3N
)

be a bosonic wave function satisfying
γ(ℓ)ψN
→ ∣φ⟩⟨φ∣⊗ℓ as N →∞ (1.12)

for all ℓ ∈ N. Then, for any fixed k ∈ N and δ > 0, the averaged sum O(k)N defined in (1.11) satisfies

PψN[∣
1
(

N
k )

O(k)N ∣ > δ]→ 0 as N →∞. (1.13)

For factorized states, we have γ(ℓ)φ⊗N = ∣φ⟩⟨φ∣⊗ℓ, and a law of large numbers follows from Theorem 1.1.
In particular, Theorem 1.1 shows that the property of condensation (1.12) implies a law of large numbers for bounded k-particle operators

for fixed k ∈ N. Thus, Theorem 1.1 generalizes known results from Ref. 3 for bounded one-particle operators to k-particle operators with fixed
k ∈ N. We recall that the ground state ψgs

N of (1.1) cannot be approximated by a factorized state; nonetheless, the condensation property (1.4)
ensures that bounded k-particle operators satisfy a law of large numbers for ψgs

N , too.
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1. Generalization to the Fock space
In order to generalize Theorem 1.1 to any Fock space vector ψ ∈ F of the bosonic Fock space F =⊕n≥0 L2

(R3
)
⊗

n
s , we introduce some

more notation.
For any vector ψ ∈ F , we have the following identity for the operator Õ (k) = O(k) − ⟨φ⊗k

∣O(k)∣φ⊗k
⟩ on the N-particle sector:

(dΓ(k)(Õ (k))ψ)
(N)
= ONψ(N), (1.14)

where we introduced the second quantization for any integral operator O(k) on L2
(R3k
),

dΓ(k)(O(k)) = ∫ dx1 . . . dxkdy1 . . . dyk O(k)(x1, . . . , xk; y1, . . . yk)a
∗
x1 . . . a∗xk ay1 . . . ayk. (1.15)

Note that we can generalize the definition of the probability distribution (1.7) to the Fock space: For any ψ ∈ F , integral operator O(k) on
L2
(R3k
), and A ⊂ R, we have

Pψ[dΓ(k)(O(k)) ∈ A] = Eψ[χA(dΓ(k)(O(k)))] = ⟨ψ∣χA(dΓ(k)(O(k)))∣ψ⟩. (1.16)

On the Fock space, the k-particle reduced density γ(k)ψ associated with ψ ∈ F is given by the integral operator with kernel

γ(k)ψ (x1, . . . , xk; y1, . . . yk) ∶= ⟨ψ∣a
∗
y1 . . . a∗yk ax1 . . . axk ∣ψ⟩. (1.17)

It follows from a generalization of Theorem 1.1’s proof in Sec. II that for ψ ∈ F satisfying (1.12), we have for any δ > 0,

PψN[∣
1
(

N
k )

dΓ(k)(Õ (k))∣ > δ]→ 0 as N →∞. (1.18)

2. Dynamics
We are interested in the dynamics of initially trapped Bose gases. Removing the trap, the bosons evolve with respect to the Schrödinger

equation,
i∂tψN,t = HNψN,t , (1.19)

with HN being the mean-field Hamiltonian given in (1.1). In the following, we consider coherent initial data, i.e., initial data of the form

ψN,0 =W(
√

Nφ)Ω, (1.20)

where Ω denotes the vacuum of the bosonic Fock space F =⊕n≥0L2
(R3
)
⊗

n
s equipped with creation and annihilation operators a∗( f ), a( f )

for f ∈ L2
(R3
), W( f ) = ea∗( f )−a( f ) denotes the Weyl operator, and f ∈ H1

(R3
) denotes the condensate wave function. Coherent states of the

form (1.20) exhibit Bose–Einstein condensation in the quantum state φ, i.e., they satisfy (1.4).
Thus, it follows from Theorem 1.1 that initially a law of large numbers holds true. The property of condensation is preserved along the

many-body time evolution (Ref. 4, Theorem 3.1), i.e., the ℓ-particle reduced density γ(ℓ)N,t associated with ψN,t satisfies

γ(ℓ)N,t → ∣φt⟩⟨φt ∣
⊗ℓ as N →∞ for all ℓ ∈ N, (1.21)

where φt ∈ H1
(R3
) denotes the solution to the Hartree equation,

i∂tφt = hH(t)φt with hH(t) = −Δ + (v ∗ ∣φt ∣
2
), (1.22)

with initial data φ0 = φ ∈ H1
(R3
) (for further references, see, e.g., Refs. 1, 2, 7, 9, 10, 15, 22, and 23). Theorem 1.1 and (1.21) show that

1
(

N
k )

dΓ(O(k)t ) :=
1
(

N
k )

dΓ(O(k) − ⟨φ⊗k
t ∣O

(k)
∣φ⊗k

t ⟩) (1.23)

satisfies a law of large numbers for positive times t > 0 too, i.e., for any δ > 0,

PψN,t[∣
1
(

N
k )

dΓ(O(k)t )∣ > δ]→ 0 as N →∞ for all t ∈ R. (1.24)
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B. Central limit theorem
While the law of large numbers characterizes the mean of the probability distribution, fluctuations around the mean are governed through

the central limit theorem. Before stating our result on a central limit theorem for fluctuations of order O(Nk−1/2
), we introduce some notations.

For a bounded k-particle integral operator O(k) and φ ∈ L2
(R3
), we define

(φ⊗(k−1)
t O(k)φ⊗k

t )
j
(x)

∶= ∫ dx1 . . . dxj−1dxj+1 . . . dxkdy1 . . . dyk O(k)(x1, . . . , xi−1, x, xi+1, . . . , xk; y1, . . . yk)
k

∏
i=1
i≠j

φt(xi)
k

∏
m=1

φt(ym), (1.25)

and furthermore, for t ∈ R, 0 ≤ s ≤ t, and j ∈ {1, . . . , k}, the function f ( j)
s;t is given by

i∂s f ( j)
s;t = (hH(s) + K1,s − K2,sJ) f ( j)

s;t with f ( j)
t;t = qt(φ⊗(k−1)

t O(k)φ⊗k
t )

j
, (1.26)

with the anti-linear operator J f = f for any f ∈ L2
(R3
), qt = 1 − ∣φt⟩⟨φt ∣, the Hartree Hamiltonian hH defined in (1.22), and the operators

K1,t(x; y) = φt(x)v(x − y)φt(y), K2,t(x; y) = φt(x)v(x − y)φt(y). (1.27)

Theorem 1.2 (central limit theorem). For k, N ∈ N with k ≤ N, let O(k) be a self-adjoint, bounded k-particle integral operator and φt be the
solution to the Hartree equation (1.22) with initial datum φ0 = φ ∈ H1

(R3
). Let ψN,t ∈ L2

s (R3N
) denote the solution to the Schrödinger equation

(1.19) with the initial datum of the form ψN,0 =W(
√

Nφ)Ω.
Let a, b ∈ R with a < b; then, there exists a constant Ca,b,k > 0 such that the centered averaged sum dΓ(O(k)t ) defined in (1.23) satisfies

∣PψN,t[N
−k+1/2dΓ(O(k)t ) ∈ [a, b]] − P[Gt ∈ [a, b]]∣ ≤ Ca,b,k eC∣t∣N−1/12, (1.28)

where Gt denotes the centered Gaussian random variable with variance given by

σ2
t =

k

∑
i,j=1
⟨ f (i)0;t ∣∣ f

( j)
0;t ⟩. (1.29)

We remark that for a factorized state, we can explicitly compute the variance

σ2
N = Eφ⊗N [(O(k)N )

2
] − Eφ⊗N [O(k)N ]

2

= ∑

ik ,j
k
∈I(k)

N

Eφ⊗N [Õ(k)ik
Õ(k)j

k
] −
⎛
⎜
⎝
∑

ik∈I
(k)
N

Eφ⊗N [Õ(k)ik
]
⎞
⎟
⎠

2

, (1.30)

where we introduced the centered k-particle operator

Õ (k) = O(k) − ⟨φ⊗k
∣O(k)∣φ⊗k

⟩. (1.31)

The last sum of the rhs of (1.30) vanishes. Furthermore, the first sum vanishes whenever j
k

does not intersect with ik, and for the remaining
terms, we find

σ2
N =

k

∑
i,j=1

N ⋅ ⋅ ⋅ (N − 2k + 1)
k!(k − 1)!

Mφ⊗N (i, j) +O(N2k−2
) (1.32)

using the definition
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Mφ⊗N (i, j) = ⟨(φ⊗(k−1)Õ (k)φ⊗k
)

i
∣(φ⊗(k−1)Õ (k)φ⊗k

)
j
⟩

L2(R3)

= ⟨q(φ⊗(k−1)O(k)φ⊗k
)

i
∣q(φ⊗(k−1)O(k)φ⊗k

)
j
⟩

L2(R3)

(1.33)

with q = 1 − ∣φ⟩⟨φ∣ and (1.25). In particular, we observe that the variance scales as σ2
N = O(N2k−1

), and thus, we expect fluctuations to be
O(Nk−1/2

).
We observe that Theorem 1.2 shows that the fluctuations of the many-body dynamics scale similarly to the fluctuations of a factorized

state. Moreover, for t = 0, the variance σ2
0 of the many-body dynamics defined in (1.29) agrees with the covariance matrix Mφ⊗N (i, j) in (1.33)

of a factorized state.
We remark that for k = 1, i.e., considering bounded one-particle observables, Theorem 1.2 generalizes known results3,6 to more general

one-particle observables. This generalization is due to a different strategy of the Proof of Theorem 1.3 than in Refs. 3 and 6. We follow the
ideas of Ref. 6; however, we directly use as a first step in Lemma 4.1 the norm approximation (4.1) of the many-body time evolution (for more
details, see Sec. IV B). Furthermore, the authors of Ref. 6 proved a multivariate central limit theorem: it is shown that the expectation value
of products of functions f1, . . . , fk of bounded, self-adjoint, and centered one-particle operators O1, . . . , Ok [i.e., operators of the special form
(1.9)] can be approximated with the integral of f1, . . . , fk against a complex-valued Gaussian density.

Recently, for one-particle operators, the probability distribution’s tails were characterized through large deviation estimates,14,21 showing
that

lim
N→∞

1
N

log PψN,t[
1
N

dΓ(O(1)t ) > x] = −
x2

∥̃f (1)0;t ∥
2
2

+O(x5/2
) (1.34)

for sufficiently small x ≤ Ce−eC∣t∣
, where f̃ (1)t,0 is defined similarly to (1.26), but using the projected kernels K̃ j,s(x, y) = qsKj,s(x, y)qs.

Furthermore, for one-particle operators, a central limit theorem is proven for stronger particles’ interactions in the intermediate regime,19

interpolating between the mean-field and the Gross–Pitaevski regime. In the Gross–Pitaevski regime of singular particles’ interaction, a central
limit theorem is proven for quantum fluctuations in the ground state,20 too.

Theorem 1.2 follows from an approximation of the random variable’s characteristic function given in the following.

Theorem 1.3. Under the same assumptions as in Theorem 1.2, we have

∣EψN,t[e
iN−k+1/2dΓ(O(k)

t )] − e−σ
2
t /2∣ ≤ CkeC∣t∣

∥O(k)∥op

2k−1

∑
ℓ=1

N−ℓ/2
⎛

⎝
1 +∑

i,j
∥O(k)∥2

op
⎞

⎠

(ℓ+1)/2

. (1.35)

In the following, we will now first turn to the Proof of Theorem 1.1 in Sec. II, then prove Theorem 1.2 from Theorem 1.3 in Sec. III, and
finally prove Theorem 1.3 in Sec. IV.

II. PROOF OF THEOREM 1.1
We generalize ideas from Ref. 3 on a law of large numbers for bounded one-particle observables to the case of k-particle operators.

Proof. By Chebycheff’s inequality, we have

PψN[∣
1
(

N
k )

O(k)N ∣ > δ] ≤
1

(
N
k )

2δ2
EψN

⎡
⎢
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRRRRR

∑

ik∈ I
(k)
N

Õ (k)ik

RRRRRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.1)

where we used the notation Õ (k) defined in (1.31). Furthermore, we denote with ♯{ik, j
k
} the number of elements of ik agreeing with j

k
. Then,

we can write
RRRRRRRRRRRRRR

∑

ik∈ I
(k)
N

Õ (k)ik

RRRRRRRRRRRRRR

2

=
k

∑
ℓ=0

∑

ik ,j
k
∈ I (k)

N

♯{ik ,j
k
}=ℓ

Õ(k)ik
Õ(k)j

k
. (2.2)

We can express the rhs of (2.1) in terms of j-particle reduced density matrices defined in (1.3) and find

EψN

⎡
⎢
⎢
⎢
⎢
⎣

RRRRRRRRRRR

∑
i1 ,...,ik∈IN

Õ (k)
{i1 ,...,ik}

RRRRRRRRRRR

2⎤
⎥
⎥
⎥
⎥
⎦

=
k

∑
ℓ=0

∑

ik ,j
k
∈ I (k)

N

♯{ik ,j
k
}=ℓ

tr γ(2k−ℓ)
ψN

Õ(k)ik
Õ(k)j

k
. (2.3)
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Plugging (2.3) into the rhs of (2.1), we find

PψN [∣O
(k)
N ∣ > δ] ≤

1

(
N
k )

2δ2

k

∑
ℓ=0

∑

ik ,j
k
∈ I (k)

N

♯{ik ,j
k
}=ℓ

tr γ(2k−ℓ)
ψN

(Õ(k)ik
Õ(k)j

k
). (2.4)

For ℓ = 0, the term of the sum of the rhs of (2.4) is given by

1

(
N
k )

2δ2
∑

ik ,j
k
∈ I (k)

N

♯{ik ,j
k
}=0

tr γ(2k
ψN

Õ(k)ik
Õ(k)j

k
=
(

N
2k)

(
N
k )

2δ2
tr γ(2k)

ψN
(Õ (k) ⊗ Õ (k)) ≤ Cktr γ(2k)

ψN
(Õ (k) ⊗ Õ (k)). (2.5)

Since ψN exhibits Bose–Einstein condensation, it follows by assumption (1.12),

tr γ(2k)
ψN
(Õ (k) ⊗ Õ (k))

(2k)
→ tr ∣φ⟩⟨φ∣⊗(2k)

(Õ (k) ⊗ Õ (k))
(2k)

as N →∞, (2.6)

and by definition (1.31) of Õ (k), we arrive at

tr ∣φ⟩ ⟨φ∣⊗(2k)
(Õ (k) ⊗ Õ (k))

(2k)
= 0. (2.7)

For ℓ ≥ 1, the terms of the sum of the rhs of (2.4) consist of (2k − ℓ)-particle operators whose expectation values are computed with
(2k − ℓ)-particle operators. In particular, we find

1

(
N
k )

2δ2

k

∑
ℓ=1

∑

ik ,j
k
∈ I (k)

N

♯{ik ,j
k
}=ℓ

tr γ(2k−ℓ)
ψN

(Õ(k)ik
Õ(k)j

k
) ≤ Ck∥O

(k)
∥

2
op

k

∑
ℓ=1

(
N

2k−ℓ)

(
N
k )

2 ≤ Ck∥O
(k)
∥

2
op

k

∑
ℓ=1

1
Nℓ
→ 0 (2.8)

as N →∞.
We conclude with (2.4), (2.7), and (2.8) by

PψN[∣
1
(

N
k )

O(k)N ∣ > δ]→ 0 as N →∞. (2.9)

◻

III. PROOF OF THEOREM 1.2
We use standard arguments from probability theory to prove Theorem 1.2 from Theorem 1.3. We follow the arguments from Ref. 6,

Corollary 1.2.

Proof. We consider the difference

PψN,t[N
−k+1/2dΓ(O(k)t ) ∈ [a, b]] − P[Gt ∈ [a, b]]

= ⟨ψN,t ∣χ[a,b](N
−k+1/2dΓ(O(k)t ))∣ψN,t⟩ −

1
√

2πσt
∫ dx e

− x2

2σ2
t χ[a,b](x)

= EψN,t[χ[a,b](N
−k+1/2dΓ(O(k)t ))] − E[χ[a,b](Gt)], (3.1)

where χ[a,b] denotes the characteristic function of the set [a, b]. We observe that for g ∈ L1
(R) with Fourier transform ĝ ∈ L1

(R, (1 + s2k
) ds),

we have, on the one hand,

EψN,t[g(N
−k+1/2dΓ(O(k)t ))] = ⟨ψN,t ∣g(N−k+1/2dΓ(O(k)t ))∣ψN,t⟩

= ∫ dτ ĝ(τ)⟨ψN,t ∣eiτN−k+1/2dΓ(O(k)
t )∣ψN,t⟩ (3.2)

and, on the other hand,

E[g(Gt)] =
1

√
2πσ2 ∫

dx g(x) e
− x2

2σ2
t = ∫ dτ ĝ(τ) e−

τ2σ2
t

2 , (3.3)
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and, in particular, by Theorem 1.3,

∣EψN,t[g(N
−k+1/2dΓ(O(k)t ))] − E[g(Gt)]∣

≤CkeC∣t∣
∥O(k)∥op ∫ dτ ∣̂g(τ ∣

2k−1

∑
ℓ=1

N−ℓ/2(1 + τ2
∥O(k)∥2

op)
(ℓ+1)/2

. (3.4)

Thus, in order to find an estimate for (3.1), we shall find an approximation from above f+,ε and from below f−,ε of the characteristic
function χ[a,b], which satisfy f −,ε, f +,ε ∈ L1

(R3
) and f̂ −,ε, f̂ +,ε ∈ L1

(R, (1 + s2k
)ds). For this, let η ∈ C∞0 (R) with η ≥ 0, η(s) = 0 for all ∣s∣ ≥ 1

and ∫ ds η(s) = 1. Furthermore, for ε > 0, let ηε(s) = ε−1η(s/ε). Then, for any ε > 0, we define

f −,ε ∶= χ[a+ε,b−ε] ∗ ηε and f +,ε ∶= χ[a−ε,b+ε] ∗ ηε, (3.5)

which satisfy
f −,ε ≤ χ[a,b] ≤ f +,ε. (3.6)

Moreover, the Fourier transform is given by

f̂ −,ε(τ) = −iτ−1
(eiτ(b−ε)

− eiτ(a+ε)
) η̂(ετ). (3.7)

Thus, it follows from (3.1) and (3.6) that

PψN,t[N
−k+1/2dΓ(O(k)t ) ∈ [a, b]] − P[Gt ∈ [a, b]]

≥ −∣E[ f −,ε(Gt)] − EψN,t[ f −,ε(N−k+1/2dΓ(O(k)t ))]∣ − ∣E[ f −,ε(Gt)] − E[χ[a,b](Gt)]∣, (3.8)

and with (3.4) and (3.7), we arrive at

PψN,t[N
−k+1/2dΓ(O(k)t ) ∈ [a, b]] − P[Gt ∈ [a, b]]

≥ −CkeC∣t∣
2k−1

∑
ℓ=1

N−ℓ(∣a − b∣ε−1
+ ε−2

)
(ℓ+1)/2)

− Cε. (3.9)

Similarly, using f+,ε, we have

PψN,t[N
−k+1/2dΓ(O(k)t ) ∈ [a, b]] − P[Gt ∈ [a, b]]

≤ CkeC∣t∣
2k−1

∑
ℓ=1

N−ℓ(∣a − b∣ε−1
+ ε−2

)
(ℓ+1)/2)

+ Cε. (3.10)

Now, we optimize with respect to ε > 0 and arrive at (1.28). ◻

IV. PROOF OF THEOREM 1.3
A. Fluctuations around the Hartree dynamics

In the following, we consider the bosonic N-particle wave function ψN,t as an element of the bosonic Fock space F =⊕n≥0L2
(R3
)
⊗

n
s with

creation and annihilation operators a∗( f ), a( f ) for f ∈ L2
(R3
). Theorem 1.3 characterizes the fluctuations around the Hartree dynamics,

which are well described by the approximation of the many-body time evolution (Ref. 4, Theorem 4.1, and Ref. 6, Proposition 3.3) in the
L2
(R3N

)-norm,
∥ψN,t −W(

√
Nφt)U∞(t; 0)Ω∥ ≤ C∣t∣ N−1/2, (4.1)

where the limiting dynamics U∞(t; 0) is given by

i∂t U∞(t; 0) = L(t)U∞(t; 0), U∞(0; 0) = 1, (4.2)

with the generator

L(t) = dΓ(hH(t) + K1,t) + ∫ dxdy(K2,t(x; y)a∗x a∗y + K2,t(x; y)axay). (4.3)
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Here, dΓ(A) = ∫ dxdy A(x; y)a∗x ay denotes the second quantization of an operator A on L2
(R3
), hH(t) denotes the Hartree Hamiltonian

defined in (1.22), and K j,t denote the operators defined in (1.27). For further references, see also Refs. 8, 12, 13, 16, and 18. The generator
L∞(t) is quadratic in creation and annihilation operators and thus (Ref. 3, Theorem 2.2) (see also Refs. 5 and 19) gives rise to a Bogoliubov
dynamics, i.e., there exist bounded operators U(t; 0), V(t; 0) on L2

(R3
) such that for f , g ∈ L2

(R3
) and the operator A( f , g) = a( f ) + a∗(g),

we have

U ∗∞(t; 0)A( f , g)U∞(t; 0) = A(Θ(t; 0)( f , g)) with Θ(t; 0) =
⎛
⎜
⎝

U(t; 0) JV(t; 0)J

V(t; 0) JU(t; 0)J

⎞
⎟
⎠

, (4.4)

where J f = f for any f ∈ L2
(R3
). In particular, for the operator

ϕ( f ) = a( f ) + a∗( f ) for f ∈ L2
(R3
), (4.5)

from (4.4), we have
U ∗∞(t; 0)ϕ( f )U∞(t; 0) = ϕ((U(t; 0) + JV(t; 0)) f ), (4.6)

and it follows from Ref. 3, Theorem 2.2, and the subsequent remark that

i∂s(U(t; s) + JV(t; s)) f = (hH(s) + K1,s − K2,sJ)(U(t; s) + JV(t; s)) f . (4.7)

Compared with (1.26), we note that the variance σt defined in (1.29) is determined by the limiting Bogoliubov dynamics (4.2), i.e., the
fluctuations’ quasi-free approximation.

B. Proof of Theorem 1.3
Proof 1.3 is split into three steps covered by Lemmas 4.1–4.3.
For the first step, Lemma 4.1, we use a strategy similar to the strategy in Refs. 19 and 20, directly the norm approximation (4.1). This

allows us to consider more general k (respectively, one) particle operators than in Refs. 3 and 6 where the difference of the limiting fluctuation
dynamics U∞(t; 0) defined in (4.2) to the full many-body dynamics was estimated in (4.10) by Duhamel’s formula and a Gronwall estimate.
The remaining steps use the same ideas as in Refs. 3 and 6.

Lemma 4.1. Under the same assumptions as in Theorem 1.2, let

ξN,t =W(
√

Nφt)U∞(t; 0)Ω. (4.8)

Then, there exists C > 0 such that
∣EψN,t[e

iN−k+1/2dΓ(O(k)
t )] − EξN,t[e

iN−k+1/2dΓ(O(k)
t )]∣ ≤ C∣t∣N−1/2. (4.9)

Proof. We have

EψN,t[e
iN−k+1/2dΓ(O(k)

t )] − EξN,t[e
iN−k+1/2dΓ(O(k)

t )]

= ∣⟨ψN,t ∣eiτN−k+1/2dΓ(O(k)
t )∣ψN,t − ξN,t⟩∣ + ∣⟨ψN,t − ξN,t ∣eiτN−k+1/2dΓ (O(k)

t ))∣ξN,t⟩∣. (4.10)

The operator O(k) is a self-adjoint operator; thus, ∥eiN−k+1/2Ok
N ∥op ≤ 1, and we find with (4.1) and (4.8),

∣EψN,t[e
iN−k+1/2dΓ(O(k)

t )] − EξN,t[e
iN−k+1/2dΓ(O(k)

t )]∣ ≤ C∣t∣N−1/2. (4.11)

◻

Lemma 4.2. Under the same assumptions as in Theorem 1.2, let ϕ( f ) be defined as in (4.5) and ht = ∑
k
j=1 hj,t ∈ L2

(R3
) be defined with

(1.25) by
hj,t = (φ⊗(k−1)

t O(k)φ⊗k
t )

j
. (4.12)

Then, there exists C > 0 such that

∣EξN,t[e
iN−k+1/2dΓ(O(k)

t )] − E U∞(t;0)Ω[e
iϕ(ht)]∣ ≤ Ck eC∣t∣

∥O(k)∥op

2k−1

∑
j=1

N−j/2
(1 + ∥O(k)∥2

op)
( j+1)/2

. (4.13)
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Proof. Recalling (4.8), we shall estimate the expectation value

EξN,t[e
N−k+1/2dΓ(O(k)

t )] = ⟨W∗
(
√

Nφt)eiτN−k+1/2dΓ(k)
(Õ (k)

)W(
√

Nφt)⟩U∞(t; 0)Ω

= E U∞(t;0)Ω[W
∗
(
√

Nφt)eiτN−k+1/2dΓ(k)
(Õ (k)

)W(
√

Nφt)]. (4.14)

In order to compute the operator

ON,t = N−k+1/2W∗
(
√

Nφt) dΓ(k)(Õ(k)t )W(
√

Nφt), (4.15)

we use the Weyl operators’ shifting properties on creation and annihilation operators, i.e.,

W∗
(
√

Nφt)axW(
√

Nφt) = ax +
√

Nφt(x), W∗
(
√

Nφt)a∗x W(
√

Nφt) = a∗x +
√

N φt(x). (4.16)

With O(k)t ∶= O(k) − ⟨φ⊗k
t ∣O

(k)
∣φ⊗k

t ⟩, we find

ON,t = N−k+1/2
∫ dx1 . . . dxkdy1 . . . dyk O(k)t (x1, . . . , xk; y1, . . . yk)

× (a∗x1 +
√

N φt(x1)) ⋅ ⋅ ⋅ (a∗xk +
√

N φt(xk))(ay1 +
√

Nφt(y1)) ⋅ ⋅ ⋅ (ayk +
√

Nφt(yk)). (4.17)

We observe that the leading order term O(Nk
) vanishes by the definition of Õ (k) in (1.31). Thus, the first non-vanishing leading order

term is O(Nk−1/2
), and in particular, we have with (4.5) and (4.12),

ON,t = ∫ dx1 . . . dxkdy1 . . . dyk Õ (k)(x1, . . . , xk; y1, . . . yk)

×

⎛
⎜
⎜
⎝

k

∏
m=1

φt(ym)
k

∑
j=1

a∗xj

k

∏
i=1
i≠j

φt(xi) +
k

∏
m=1

φt(xm)
k

∑
j=1

ayj

k

∏
i=1
i≠j

φt(yi)

⎞
⎟
⎟
⎠

+RN

= ϕ(ht) +RN. (4.18)

The remainder
RN = ON,t − ϕ(ht) (4.19)

is the sum of (2k
− 2k) terms. The estimates

∥a( f )ξ∥ ≤ ∥ f ∥2∥N 1/2ξ∥, ∥a∗( f )ξ∥ ≤ ∥ f ∥2∥(N + 1)1/2ξ∥ (4.20)

for any f ∈ L2
(R3
) and any Fock space vector ξ ∈ F together with (4.17) yield the upper bound

∥RNξ∥ ≤ Ck∥O
(k)
∥op

2k

∑
j=1

N−j/2
∥(N + 1)(j+1)/2ξ∥ (4.21)

for any ξ ∈ F . We use the fundamental theorem of calculus to write

EξN,t[e
iN−k+1/2dΓ(O(k)

t )] − E U∞(t;0)Ω[e
iϕ(ht)]

= ⟨eiτN−k+1/2ON,t ⟩U∞(t; 0)Ω − ⟨U∞(t; 0)Ω∣eiτϕ(ht)∣U∞(t; 0)Ω⟩

= −∫

1

0
ds

d
ds
⟨U∞(t; 0)Ω∣ei(1−s)O N,t eisϕ(ht)∣U∞(t; 0)Ω⟩

= ∫

1

0
ds⟨U∞(t; 0)Ω∣ei(1−s)O N,tRN eisϕ(ht)∣U∞(t; 0)Ω⟩. (4.22)

Then, it follows from (4.21) that

J. Math. Phys. 63, 081902 (2022); doi: 10.1063/5.0086712 63, 081902-9

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

∣EξN,t [e
iN−k+1/2dΓ(O(k)

t )] − E U∞(t;0)Ω[e
iϕ(ht)]∣

≤ ∫

1

0
ds ∥RN eisϕ(ht)U∞(t; 0)Ω∥

≤ Ck∥O
(k)
∥op∫

1

0
ds

2k−1

∑
j=1

N−j/2
∥(N + 1)(j+1)/2eisϕ(ht)U∞(t; 0)Ω∥. (4.23)

With Ref. 6, Proposition 3.4 and ∥ht∥
2
2 ≤ ∥O

(k)
∥

2
op by definition (1.25), we have

∥(N + 1)(j+1)/2eisϕ(ht)U∞(t; 0)Ω∥ ≤ C∥(N + 1 + s2
∥O(k)∥2

op)
(j+1)/2

U∞(t; 0)Ω∥, (4.24)

and furthermore, with Ref. 6, Lemma 3.2,

∥(N + 1)(j+1)/2eisϕ(ht)U∞(t; 0)Ω∥

≤ CeC∣t∣
∥(N + 1 + s2

∥O(k)∥2
op)
(j+1)/2

Ω∥ ≤ CeC∣t∣
(1 + s2

∥O(k)∥2
op)
(j+1)/2

. (4.25)

We use now estimate (4.25) for (4.23) and arrive at

∣EξN,t [e
iN−k+1/2dΓ(O(k)

t )] − E U∞(t;0)Ω[e
iϕ(ht)]∣

≤ Ck eC∣t∣
∥O(k)∥op

2k−1

∑
j=1

N−j/2
∫

1

0
ds (1 + s2

∥O(k)∥2
op)
(j+1)/2

≤ Ck eC∣t∣
∥O(k)∥op

2k−1

∑
j=1

N−j/2
(1 + ∥O(k)∥2

op)
(j+1)/2

, (4.26)

which proves the lemma. ◻

Lemma 4.3. Under the same assumptions as in Theorem 1.2, let f t;s = ∑
k
i=1 f (i)t;s ∈ L2

(R3
) be given by (1.26). Then, we have

E U∞(t;0)Ω[e
iϕ(ht)] = e−∥ f t;0∥

2
2/2. (4.27)

Proof. We need to compute the expectation value

E U∞(t;0)Ω[e
iϕ(ht)] = ⟨U∞(t; 0)Ω∣eiϕ(ht)∣U∞(t; 0)Ω⟩. (4.28)

We recall that the limiting dynamics U∞(t; 0) defined in (4.2) acts as a Bogoliubov transform. In particular, in follows from (4.4) and (4.7)
and the notations introduced therein that

U ∗∞(t; 0)ϕ(ht)U∞(t; 0) = ϕ([U(t; 0) + JV(t; 0)]ht) = ϕ( f 0;t), (4.29)

with f0;t defined in (1.26). Hence, we have

E U∞(t;0)Ω[e
iϕ(ht)] = ⟨Ω∣ei U ∞(t;0)∗ϕ(ht) U∞(t;0)∣Ω⟩ = ⟨Ω∣eiϕ( f 0;t)∣Ω⟩. (4.30)

With the Baker–Campbell–Hausdorff formulas, we split the sum in the exponential and arrive at

E U∞(t;0)Ω[e
iϕ(ht)] = e−∥ f 0;t∥

2
2/2⟨Ω∣eia∗( f 0;t)eia( f 0;t)∣Ω⟩ = e−∥ f 0;t∥

2
2/2. (4.31)

◻

Proof of Theorem 1.3. Combining now Lemmas 4.1–4.3, we arrive at Theorem 1.3. ◻
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