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Data-driven dimensionality reduction methods such as proper orthogonal decomposition
and dynamic mode decomposition have proven to be useful for exploring complex
phenomena within fluid dynamics and beyond. A well-known challenge for these
techniques is posed by the continuous symmetries, e.g. translations and rotations, of
the system under consideration, as drifts in the data dominate the modal expansions
without providing an insight into the dynamics of the problem. In the present study, we
address this issue for fluid flows in rectangular channels by formulating a continuous
symmetry reduction method that eliminates the translations in the streamwise and
spanwise directions simultaneously. We demonstrate our method by computing the
symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of
data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow
simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the
invariant solutions with translation symmetries, i.e. travelling waves and relative periodic
orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution
that can be approximated by a low-dimensional linear expansion.

Key words: low-dimensional models, turbulence modelling, computational methods

1. Introduction

Turbulence is a strongly nonlinear phenomenon exhibiting chaotic spatiotemporal
behaviour at many scales. Despite its complexity, a certain degree of coherence is observed
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and has been studied for many years with the goal of describing dynamics of turbulent
flows in terms of a few coherent structures (Jiménez 2018a). In the context of wall-bounded
flows, a considerable amount of research (see e.g. Hamilton, Kim & Waleffe 1995; Waleffe
1997; Jiménez & Pinelli 1999; Schoppa & Hussain 2002) is devoted to understanding
the turbulence-sustaining mechanisms in terms of quasi-streamwise vortices, i.e. coherent
regions of vortically moving fluid transverse to the flow direction, and streaks, i.e.
elongated high- or low-speed modulation of the base flow. Despite the abundant numerical
and experimental evidence supporting the importance of streaks in wall turbulence, and
the intuitive physical picture provided by their interactions with vortices, the definition
of a streak is based on experimental observations, thus is inherently subjective (Jiménez
2018b). Consequently, one does not know how much is lost by neglecting the rest of the
fluctuations in turbulent flow.

A complementary, yet mathematically exact, approach to low dimensionality in
turbulence is provided by the so-called (Waleffe 2001) exact coherent structures
(ECS), which are unstable time-invariant (self-sustaining) solutions of the Navier–Stokes
equations such as equilibria, travelling waves and periodic orbits. These correspond to
compact low-dimensional objects in the infinite-dimensional state space of all possible
flow fields, and influence the dynamics in their vicinity via their stable and unstable
manifolds (Gibson, Halcrow & Cvitanović 2008; van Veen & Kawahara 2011; Budanur
et al. 2017; Budanur & Hof 2018; Budanur, Dogra & Hof 2019; Farano et al. 2018; Suri
et al. 2017, 2018, 2019). In other words, together with their stable and unstable manifolds,
ECS provide the intrinsic coordinates that can approximate turbulence transiently. Despite
the importance of ECS being fully established for transitional and low-Reynolds-number
turbulent flows (see extensive reviews by Kerswell 2005; Eckhardt et al. 2007; Kawahara,
Uhlmann & van Veen 2012; Graham & Floryan 2021), tools for computing them become
impractical at higher Reynolds numbers that require many more numerical degrees of
freedom to resolve in a direct numerical simulation (DNS). Thus the relevance of ECS for
complex turbulent flows remains an open question.

The current availability of large data sets, from both experiments and simulations, and
ongoing developments of data-driven modelling tools, offer new avenues for tackling the
problem of identifying low-dimensional behaviour underpinning complex fluid dynamics.
Indeed, high-dimensional data can be fed into data-driven decomposition techniques to
gain useful information about the underlying physical processes (Rowley & Dawson 2017).
Amongst these methods, dynamic mode decomposition (DMD) (Schmid & Sesterhenn
2008; Schmid 2010) has been applied successfully to many complex fluid systems (for
a comprehensive list, see Rowley & Dawson 2017, table 3) with the aim of extracting
dynamically important flow features from time-resolved data. DMD generates a hierarchy
of flow fields (DMD modes) and the associated eigenvalues (DMD eigenvalues) that can
be used to approximate the input data by a linear expansion. Finding a linear modal
expansion to describe strongly nonlinear chaotic fluid dynamics might at first sound like
a hopeless endeavour. However, such an approximation can be found for a finite time,
similar, in spirit, to using a nonlinear invariant solution and its stable/unstable manifolds
to approximate turbulent time evolution in its neighbourhood. One way of rationalizing
this is through the interpretation of DMD modes as the eigenmodes of the best-fit linear
system for the given data set (Kutz et al. 2016). Another way of reasoning follows
from the correspondence between DMD and Koopman mode decomposition (Rowley
et al. 2009), which, under certain assumptions, states that DMD can be interpreted
as a finite-dimensional approximation to the spectrum of the linear Koopman operator
(Koopman 1931; Mezić 2005) that acts on the observables associated with the dynamical
system under consideration.
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In this paper, we present applications of DMD to the data obtained from the DNS
of transitional Couette and turbulent Poiseuille flows in rectangular channels. The key
technical advancement here is the preprocessing of data by symmetry reduction to
eliminate the degeneracies due to streamwise and spanwise translations, which resolves
the well-known shortcomings (Kutz et al. 2016; Sesterhenn & Shahirpour 2019) of DMD
in systems with continuous symmetries. In such settings, the drifts in the continuous
symmetry directions artificially increase the dimensionality of embeddings that can
capture the dynamics reliably (Rowley & Marsden 2000; Sesterhenn & Shahirpour 2019;
Lu & Tartakovsky 2020; Mendible et al. 2020; Baddoo et al. 2021). Furthermore, in
spatiotemporal systems with a continuous flux, such as the Poiseuille flow considered
here, the drifting motion completely dominates the DMD spectra, obscuring the physically
important dynamics of the system under study. Through examples in the following,
we demonstrate that the symmetry-reduced dynamic mode decomposition (SRDMD) of
the channel flows resolves the aforementioned issues and reveals episodes that can be
described reliably by low-dimensional linear expansions.

The paper is organized as follows. In § 2, we introduce channel flows and our
computational set-up. We introduce the symmetries of channel flows and formulate our
continuous symmetry reduction method in § 3. We summarize the DMD algorithm in § 4,
then apply it to the symmetry-reduced DNS data from Couette and Poiseuille flows in §§ 5
and 6, respectively. We conclude with a discussion of our results and future directions in
§ 7.

2. Channel flows and the computational set-up

We consider flows between two parallel plates in a rectangular domain (x, y, z) ∈ [0, Lx)×
[−1, 1] × [0, Lz), where x, y, z are the streamwise, wall-normal and spanwise directions,
respectively. We take the base-fluctuation decomposition utotal(x, t) = U( y) x̂ + u(x, t),
ptotal(x, t) = Px(t) x + p(x, t), where U( y) x̂ is the base (laminar) flow, and Px(t) is the
spatial mean of the streamwise pressure gradient. Using these definitions, the governing
Navier–Stokes equations can be written as

∂tu = −utotal · ∇utotal − ∇p + Re−1 ∇2u +
[
Re−1∂2

y U( y)− Px

]
x̂, (2.1)

where ∂a := ∂/∂a, and Re is the Reynolds number. In the following, we consider two
base flows, namely U(C) = y (Couette) and U(P) = 1 − y2 (Poiseuille). In both cases,
the fluctuating velocity fields are periodic in the homogeneous directions, i.e. u(x, t) =
u(x + Lxx̂, t) = u(x + Lzẑ, t), vanish (no-slip) at the walls, i.e. u(x, t)|y=±1 = 0, and
satisfy the incompressibility condition ∇ · u = 0. All of our results to follow are given
for the fluctuations u = [u, v,w](x, y, z) from the base flows, for which we define the L2
inner product and the L2 norm, respectively, as

〈u1,u2〉 := 1
2LxLz

∫ Lz

0

∫ 1

−1

∫ Lx

0
u1 · u2 dx dy dz and ‖u‖ =

√
〈u,u〉. (2.2a,b)

We utilize Channelflow 2.0 (Gibson et al. 2020) for the numerical integration of
(2.1) in computational domains, properties of which are summarized in table 1. In all
simulations, we use dynamically adjusted time steps so that the Courant–Friedrichs–Lewy
number (CFL) satisfies 0.15 � CFL < 0.3. Our first Couette domain W03 is identical
to that of Waleffe (2003), and the second domain HKW is based on Hamilton et al.
(1995); see table 1. For the latter, we adopt the resolution used in Viswanath (2007),
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W03 HKW P2K P5K

U( y) y y 1 − y2 1 − y2

Re 400 400 2000 5000
Lx 2π/1.14 2π/1.14 2π/2.2 2π/4.6
Lz 2π/2.5 2π/1.67 2π/5 2π/10.7
Nx 48 48 64 64
Nz 35 48 48 48
Ny 48 65 97 193
Constraints Px = 0 Px = 0 Q̇x = 0, Ryu = u Q̇x = 0, Ryu = u

Table 1. The laminar flows U( y), domain lengths Lx and Lz, grid dimensions Nx, Ny, Nz, and additional
constraints of the computational set-ups. Here, W03 and HKW correspond to the Couette domains of Waleffe
(2003) and Hamilton et al. (1995), respectively, while P2K and P5K correspond to the Poiseuille systems at
Re = 2000 and 5000, respectively.

which is higher than that used in Hamilton et al. (1995). For Poiseuille flow, we chose
Re = 2000 and Re = 5000, which we refer to as P2K and P5K, respectively, in table 1
and hereafter. We determined the spatial resolutions such that the energy stored in the
Fourier/Chebyshev modes with the highest wavenumbers is at least six orders of magnitude
smaller than that in the lowest ones at all times. All of our domains are ‘minimal’
in the sense that if the spanwise extent is reduced, the simulations quickly laminarize.
The Couette simulations are carried under the constraint Px = 0, hence the fluid flux
Qx(t) = ∫ 1

−1

∫ Lz
0 u · x̂ dy dz varies instantaneously. In contrast, we simulate Poiseuille

flow under the constraint Qx = 4Lz/3, which leaves Px(t) fluctuating. Additionally in
the Poiseuille case, we impose symmetry invariance with respect to the midplane on
the velocity fields, which restricts the dynamics into a lower-dimensional flow-invariant
subspace without altering wall friction and the Reynolds stresses near the wall. For the
Poiseuille systems P2K and P5K, we estimate the friction Reynolds numbers and the
channel dimensions in wall units (Pope 2000) as (Reτ , L+

x , L+
z ) ≈ (98, 280, 123) and

(Reτ , L+
x , L+

z ) ≈ (205, 280, 120), respectively. Note that our spanwise domain length is
slightly larger than the minimal flow unit L+

z ≈ 100 established in Jiménez & Moin (1991).
We suspect that this is due to our symmetry constraint, which does not allow for single-wall
localization of turbulent structures that was observed by Jiménez and Moin at this Re.

3. Symmetries and symmetry reduction

Both Couette and Poiseuille systems are equivariant under the translations

T (δx, δz)[u, v,w](x, y, z) = [u, v,w](x − δx, y, z − δz), (3.1)

where δx ∈ [0, Lx) and δz ∈ [0, Lz), and the reflection

Rz[u, v,w](x, y, z) = [u, v,−w](x, y,−z). (3.2)

Additionally, Poiseuille flow admits the equivariance under the reflection

Ry[u, v,w](x, y, z) = [u,−v,w](x,−y, z) (3.3)

with respect to the midplane; and plane-Couette flow is equivariant under the simultaneous
reversal of streamwise and wall-normal directions, i.e.

Rxy[u, v,w](x, y, z) = [−u,−v,w](−x,−y, z). (3.4)
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For the present study, the equivariance of a flow under a symmetry group G has two
important consequences (Golubitsky & Schaeffer 1985; Chossat & Lauterbach 2000).
(i) If u(x, t) for t ∈ [ti, tf ] is a trajectory of the system, then so is Su(x, t), where S ∈ G.
(ii) If u(x, 0) is invariant under S ∈ G satisfying Su(x, 0) = u(x, 0), then its forward-time
evolution remains invariant under S, i.e. Su(x, t) = u(x, t) for t > 0. We make use of (ii)
when restricting our study of Poiseuille flow into the space of solutions that are invariant
under (3.3). Due to the presence of continuous symmetries, (i) effectively implies that the
generic solutions of Couette and Poiseuille flows have infinitely many symmetry copies
due to translations and their combinations with various reflections.

Sirovich (1987b) showed that if a data set of flow states is symmetric under a continuous
translation, then its proper orthogonal decomposition (POD) results in modes that align
with Fourier modes in the homogeneous directions, carrying no information about the
physics of the system. As a remedy, Rowley & Marsden (2000) suggested reducing the
symmetry degree of freedom prior to the POD of the data obtained from a system with
translation symmetry. Their method relied on an experimentally chosen template to which
the simulation data are matched. As noted by the authors themselves, such a symmetry
reduction method has a finite domain of applicability, the boundary of which is set by
the singularity of the so-called reconstruction equation. Recently, the difficulties posed
by continuous symmetries for dimensionality reduction have also received attention in
the DMD and machine learning literature, and several new techniques to address them
were proposed. Sesterhenn & Shahirpour (2019) suggested a space–time rotation that
can be employed at a characteristic group velocity to improve the performance of DMD
in drift-dominated systems. Lu & Tartakovsky (2020) introduced the Lagrangian DMD,
which requires one to co-evolve the solution grid along with the scalar fields. In the
physics-informed DMD developed by Baddoo et al. (2021), the DMD matrix that provides
the best-fit linear system to the data is constrained to the space of matrices that commute
with the symmetry operators. Finally, Kneer et al. (2022) utilize the so-called spatial
translation networks to perform template matching akin to that of Rowley & Marsden
(2000). Each of these methods comes with a new set of technical difficulties, and it is
unclear whether they are practical for the three-dimensional complex fluid flows that we
consider here. In the following, we avoid these difficulties by taking an approach similar
to that of Rowley & Marsden (2000), and formulate a symmetry reduction method for
preprocessing channel flow data prior to the DMD. Differently from Rowley & Marsden
(2000), our method yields a symmetry reduction for all dynamics of interest.

Budanur et al. (2015b) showed that a polar coordinate transformation in the Fourier
space of a spatially extended system can be interpreted as a slice, that is, a codimension-1
manifold in the state space where each set of translation-equivalent states is represented by
its unique intersection with this manifold. On applications to the Kuramoto–Sivashinsky
system, Budanur et al. (2015b) demonstrated that such a first Fourier mode slice can be
used to reduce the translation symmetry of the flow for all dynamics of interest. Later,
the method was adapted successfully to two-dimensional Kolmogorov flows (Farazmand
2016; Hiruta & Toh 2017) and three-dimensional pipe flows (Willis, Short & Cvitanović
2016; Budanur et al. 2017; Budanur & Hof 2018); see Budanur, Borrero-Echeverry &
Cvitanović (2015a) for a pedagogical introduction. Here, we formulate this method for
flows in rectangular channels. We begin by defining the slice templates

û′
x := f x( y) cos(2πx/Lx), (3.5)

û′
z := f z( y) cos(2πz/Lz), (3.6)
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where f x( y) and f z( y) are to-be-specified vector-valued functions of the wall-normal
coordinate only. Let u be a solution, and let the set Mx

u = {T (δx, 0)u | δx ∈ [0, Lx)} be
formed by u and its streamwise-translation copies. The key idea behind the first Fourier
mode slice is the observation that any non-zero projection of Mx

u onto the plane spanned
by û′

x and its quarter-domain shift T (Lx/4, 0) û′
x = f x( y) sin(2πx/Lx) is of circular shape.

Thus a transformation that fixes the polar angle φx := arg
(〈

u, û′
x
〉 + i

〈
u,T (Lx/4, 0) û′

x
〉)

can be used to reduce the translation symmetry. Following analogous observations, we
define φz := arg

(〈
u, û′

z
〉 + i

〈
u,T (0, Lz/4) û′

z
〉)

and the symmetry-reducing transformations

Sx(u) := T
(

−φxLx

2π
, 0

)
u, (3.7)

Sz(u) := T
(

0,−φzLz

2π

)
u. (3.8)

Noting that the slice templates û′
x(x, y) in (3.5) and û′

z( y, z) in (3.6) do not depend on the z
and x coordinates, respectively, and the translations in the x and z directions commute, we
reduce the streamwise and spanwise translations simultaneously by simply applying (3.7)
and (3.8) consecutively as

û = S(u) = Sz(Sx(u)). (3.9)

Until now, we left the wall-normal dependence of the template functions (3.5), (3.6)
unspecified. In order to clarify this final point, let us first give a geometric interpretation
of continuous symmetry reduction. Since symmetry reduction eliminates two continuous
translation degrees of freedom, the symmetry-reduced velocity fields û(t) are confined to
a submanifold in the state space with two dimensions fewer than that accommodating the
original velocity fields u(t). This information, however, is not lost and can be recovered
as long as one keeps track of the slice phases φx(t) and φz(t). Rowley & Marsden (2000)
showed that these phases can also be obtained by integrating the reconstruction equations

φ̇x(t) =
(

2π

Lx

) 〈
∂xû′

x, ∂tu|u=û(t)
〉

〈
∂xû′

x, ∂xû(t)
〉 , (3.10)

φ̇z(t) =
(

2π

Lz

) 〈
∂zû′

z, ∂tu|u=û(t)
〉

〈
∂zû′

z, ∂zû(t)
〉 . (3.11)

Note that these phase velocities diverge if the denominators of the reconstruction equations
vanish, at which point our symmetry reduction method would suffer a discontinuity. It is
straightforward to confirm that these denominators are proportional to the amplitudes of
the projections of the flow state u onto the plane spanned by the respective slice template
and their half-domain shift. In other words,

〈
∂xû′

x, ∂xû(t)
〉 ∝

√〈
u, û′

x
〉2 + 〈

u,T (Lx/4, 0) û′
x
〉2
, (3.12)

〈
∂zû′

z, ∂zû(t)
〉 ∝

√〈
u, û′

z
〉2 + 〈

u,T (0, Lz/4) û′
z
〉2
, (3.13)

thus as long as these projections onto the template planes do not vanish, the right-hand
sides of the reconstruction equations (3.10), (3.11) remain finite. With this in mind, we
determine f x( y) and f z( y) as follows to maximize the projection amplitudes (3.12) and
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(3.13) for turbulent trajectories. Let

f x( y) =
nf∑

n=0

Tn( y) [c(x,n)x x̂ + c( y,n)
x ŷ + c(z,n)x ẑ], (3.14)

f z( y) =
nf∑

n=0

Tn( y) [c(x,n)z x̂ + c( y,n)
z ŷ + c(z,n)z ẑ], (3.15)

where Tn( y) are the Chebyshev polynomials of the first kind, and ci,n
j (i ∈ {x, y, z},

j ∈ {x, z}, n ∈ {0, 1, . . . , nf }) are the coefficients that we determine by maximizing

Jx =
K∑

k=0

〈
u(k δt), û′

x
〉2 + 〈

u(k δt),T (Lx/4, 0) û′
x
〉2
, (3.16)

Jz =
K∑

k=0

〈
u(k δt), û′

z
〉2 + 〈

u(k δt),T (0, Lz/4) û′
z
〉2
, (3.17)

for a turbulent trajectory {u(t), t ∈ [0,K δt]}, under the constraints ‖û′
x‖ = 1 and ‖û′

z‖ =
1. The necessity of these unit-norm constraints can be understood by observing that (3.10)
and (3.11) are invariant under the scaling of û′

x and û′
z by a constant. Thus if we do

not apply these constraints, then the prescribed optimization would diverge by arbitrarily
increasing the template amplitudes, without a reduction in phase fluctuations. In the case of
Poiseuille flow, we have the additional constraint that the slice templates be Ry-symmetric
like the underlying flow. The cost functions (3.16) and (3.17) are the sums of squares
of projection amplitudes (right-hand sides of (3.12) and (3.13)). For each domain that
we study, we determine (3.14) and (3.15) truncated at nf = 7 using a single turbulent
trajectory sampled at steps ts = 0.1. The resulting f x( y) and f z( y) are plotted in figure 1,
and the slice templates can be downloaded from Yalnız, Marensi & Budanur (2022). The
phase velocities (3.10), (3.11) are plotted in figure 2. As shown, although the phase speeds
exhibit occasional fast episodes, they remain finite throughout our simulations. Note that
in figure 2, all phase velocities but φ̇x of plane-Poiseuille flow fluctuate about zero. This is
a consequence of Poiseuille flow’s broken reflection symmetry in the streamwise direction
due to the presence of a non-zero mean pressure gradient. Intuitively, one can understand
this by considering the presence of the net drift due to the non-zero bulk velocity Ub

in Poiseuille flow. However, it is also important to note that φ̇x in Poiseuille flow is not
equal to 2πUb/Lx, neither is any other phase velocity equal to 0, the bulk velocity at their
respective directions, at all times: phase velocities vary instantaneously and match the
corresponding bulk velocities only when averaged over long periods.

As we will explain further in § 5 through an example, the episodes with fast phase
velocities in figure 2 correspond to those at which chaotic trajectories have relatively
small projection amplitudes (3.12), (3.13). Observing this, one might suggest the temporal
minimum of these projections as a cost function to maximize as opposed to the sums of
squares (3.16), (3.17). Although we experimented with such a cost function, ultimately we
opted against it because the optimization problem of maximizing a temporal minimum is
non-differentiable, thus significantly more complex, since the instance of the minimum
jumps during the optimization procedure. In addition to its computational simplicity,
another motivation to use the cost functions (3.16) and (3.17) is that we also want the
episodes with fast phase oscillations to be infrequent. Note that in all the domains that we
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Figure 1. Wall-normal dependencies of the slice templates. Columns correspond to the domains studied, with
the domain name noted at the top. Each f x and f z was normalized with max | f x| and max | f z|, which does
not affect slicing, in order for the plots to share the horizontal axes.
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(a)

Figure 2. Finite-difference approximations φ̇x,z(t) ≈ (φx,z(t + η)− φx,z(t))/η with η = 0.1 to the slice phase
velocities (a) φ̇x and (b) φ̇z, corresponding to turbulent trajectories in simulation domains considered. Here,
φ̇x,z are normalized by 2π/Lx,z to present the different domains together.

considered, the wall-normal dependence of the spanwise slice template ûz has the largest
contribution from the streamwise fluctuations as shown in figures 1(e–h). Remembering
that all of our computational domains are minimal flow units (Jiménez & Moin 1991), we
interpret our optimal slice templates as those that fix the spanwise positions of streaks,
since the minimal flow units are characterized by the presence of a single pair of fast/slow
streaks, which appear predominantly in the first spanwise Fourier mode of streamwise
velocity. Conversely, the streamwise contribution to the streamwise slice templates is
much smaller (figures 1a–d) since in this direction, streaks make the largest contribution
to the zeroth streamwise Fourier mode of streamwise velocity. Physically, we expect the
symmetry reduction procedure to eliminate the drifts of the flow structures whose first
Fourier mode components align with the slice templates. It should be noted, and can also
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be seen in supplementary movies 1 and 2 available at https://doi.org/10.1017/jfm.2022.
1001, that drifts with respect to these structures are still present in the symmetry-reduced
time evolution because in a turbulent flow, fluctuations are advected at the local mean
velocity, which varies within the domain. In other words, symmetry reduction does not
eliminate all drifts in the velocity fluctuations, but rather eliminates the translation degrees
of freedom in the data by finding a representative state for each set of the states that can
be mapped to one another via symmetry operations.

4. Symmetry-reduced dynamic mode decomposition

Let ξ(t) be the n-dimensional symmetry-reduced state vector corresponding to the fluid
state at time t, let Φ t(ξ) be the finite-time flow induced by the DNS and symmetry
reduction, and let 〈ξ1, ξ2〉 and ‖ξ‖ denote the L2 inner product and norm, respectively,
of the corresponding velocity fields as defined in (2.2a,b). Let ξk and ξ ′

k be a pair of
snapshots that are separated by time δt, i.e. ξ ′

k = Φδt(ξk). Defining the n × m (n 
 m)
data matrices Ξ := [ξ0, ξ1, . . . , ξm−1] and Ξ ′ := [ξ ′

0, ξ
′
1, . . . , ξ

′
m−1], we consider the

linear approximation Ξ ′ ≈ AΞ , where A is an n × n matrix. The best fit (in the L2

sense) to this approximation is given by A = Ξ ′Ξ†, where † denotes the Moore–Penrose
pseudo-inverse. We adopt the standard DMD algorithm (Tu et al. 2014; Kutz et al. 2016),
which approximates the eigenvalues and eigenvectors of A without explicitly computing
it, as follows. Let Ξ ≈ UΣV∗ denote the rank-r (r < m) singular value decomposition
approximation of Ξ , where U ∈ Cn×r, Σ ∈ Cr×r, V ∈ Cm×r, and ∗ indicates the
Hermitian transpose. Noting that the columns of U are the POD modes, we can rewrite the
best-fit linear operator and its r × r projection onto the POD space as A = Ξ ′VΣ−1U∗
and Ã = U∗AU = U∗Ξ ′VΣ−1, respectively. Finally, we compute the eigenvalues Λj and
eigenvectors ψ̃j of Ã, from which we obtain the SRDMD modes as ψj = Ξ ′VΣ−1ψ̃j.
Hereafter, we refer toΛj as the ‘SRDMD multipliers’ and λj := ln(Λj)/δt as the ‘SRDMD
exponents’. With these definitions, we can now write the SRDMD approximation of the
time evolution as

ξ̃(t) =
Nd−1∑
j=0

cjψj eλjt ≈ ξ(t), (4.1)

where cj are the SRDMD coefficients, and Nd � r is the number of SRDMD modes used
to reconstruct the velocity field. Following Page & Kerswell (2019), we set the coefficients
cj as those that minimize the cost function

J (c0, c1, . . . , cNd−1) =
m−1∑
k=0

‖ξ(tk)− ξ̃(tk)‖2. (4.2)

In the following, we refer to the SRDMD mode ψ0 with Λj ≈ 1 (λj ≈ 0) as the ‘marginal
mode’, and sort the rest according to their normalized spectra (Tu et al. 2014) in descending
|Λj|m ‖cjψj‖. Note that ordering the SRDMD modes in this way amplifies (penalizes)
those that grow (decay) by multiplying them with their respective multiplier raised to the
power m.

We compute the singular value decomposition of Ξ using the method of snapshots
(Sirovich 1987a) and follow Holmes, Lumley & Berkooz (1996) and Sirovich (1989) to
truncate it such that a sufficiently large fraction cσ of the total energy is captured, and no
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neglected mode contains, on average, more than a small fraction cχ of the energy contained
in the first mode. Namely,

r−1∑
i=0

σ 2
i > cσ

m−1∑
i=0

σ 2
i and

1
m − r

m−1∑
i=r

σ 2
i < cχσ 2

0 , (4.3a,b)

where σi are the singular values. For all of our results to follow, we set cσ = 0.9999 and
cχ = 0.001, which we determined by ensuring that higher-rank truncations do not alter the
leading SRDMD exponents in the first two digits.

Note that the above-summarized formulation of DMD does not necessitate the data
points ξ0, ξ1, ξ2, . . . to be uniformly distributed in time. The only requirement is for the
snapshot separation time δt to be fixed across all snapshot pairs (ξk, ξ

′
k). Therefore, one

can increase the number of data points corresponding to a time interval by sampling it at
a time step ts = δt/n, where n ∈ Z+. In our plane-Couette examples of § 5, we make use
of this property by choosing ts = δt/10, whereas in our Poiseuille flow demonstrations of
§ 2, we use uniformly distributed samples separated by δt.

5. Relative invariant solutions and their SRDMD

Page & Kerswell (2019, 2020) demonstrated how DMD captures dynamics of the
plane-Couette flow near simple equilibria and periodic orbits defined by

ueq(t) = ueq(0) and upo(t + Tpo) = upo(t), (5.1a,b)

respectively. The equilibria of the plane-Couette flow belong to the flow-invariant
subspaces of S1Rz and S2Rxy, where S1 and S2 are some elements of plane-Couette
flow’s symmetry group. Invariance of these solutions under the symmetries involving
reflections Rz and Rxy restricts their dynamics to the space of ‘non-drifting’ velocity
fields; see Gibson, Halcrow & Cvitanović (2009) for details. Besides the equilibria, these
flow-invariant subspaces can also accommodate periodic orbits. Alternatively, the periodic
orbits can be formed by two periods of a ‘preperiodic’ (Budanur & Cvitanović 2016)
solution defined by uppo(t + T) = Sr uppo(t), where Sr ∈ G satisfies S2

r = I. When such
symmetries are not present, the generic solutions of plane-Couette flow exhibit streamwise
and spanwise drifts. The simplest invariant solutions with drifts are the relative equilibria
that satisfy

ureq(t) = T (cxt, czt)ureq(0), (5.2)

where cx and cz are phase velocities; and the drifting counterparts of the periodic orbits
are the relative periodic orbits defined by

urpo(t + Trpo) = T (�xrpo,�zrpo)urpo(t). (5.3)

As our first demonstration of SRDMD, we apply it to trajectories in the vicinity of
the relative equilibrium TW3, a travelling wave originally found by Gibson et al. (2009)
in the W03 domain. (The data for this solution are available in the channelflow.org
database.) Figure 3(a) shows the SRDMD exponents (blue crosses) computed using
five trajectories initiated as random perturbations to ξTW3 with perturbation amplitudes
equal to 10−2‖ξTW3‖. We integrated each of these trajectories in time, and sampled the
states at time steps ts = 0.1 in the time interval t = [10, 80] in which the dynamics was
found to be approximately linear. To construct the data matrices Ξ and Ξ ′, we chose
a separation time δt = 1 between the corresponding snapshots (ξ, ξ ′), and we randomly
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Figure 3. (a) Linear stability eigenvalues (+, black) of the travelling wave TW3 approximated via Arnoldi
iteration and the SRDMD exponents (×, blue) computed from randomly perturbed trajectories in TW3’s
vicinity. (b) A spiral-out trajectory (see main text) on TW3’s unstable manifold, and its SRDMD approximation
visualized as a projection onto the leading SRDMD modes centred about the marginal one. (c) A spiral-in
trajectory (see main text) on TW3’s stable manifold, and its SRDMD approximation visualized as a projection
onto the leading SRDMD modes centred about the marginal one. (d–f ) Same as (a–c) without symmetry
reduction. Panels (a,d) have their axes normalized by |φ̇TW3

x | = 0.53, the streamwise slice velocity of TW3,
which is constant for a travelling wave.

selected 200 pairs of snapshots out of the (Tw − δt)/ts + 1 possible samples from each of
the five trajectories, where the window length is Tw = 70. Using the resulting SRDMD
modes, we computed the best-fit coefficients c(k)j as explained in § 4 for each trajectory

k = 1, 2, . . . , 5, and ordered the exponents in descending (1/5)
∑5

k=1 |Λj|m ‖c(k)j ψj‖, i.e.
according to the trajectory-averaged normalized spectrum. For comparison, figure 3(a)
also shows the linear stability spectrum of TW3, which we approximated via Arnoldi
iteration (Trefethen & Bau 1997) using its channelflow implementation. As shown, the
SRDMD exponents yield an approximation to the leading (ordered in descending real
parts) linear stability eigenvalues of the travelling wave. Specifically, the four unstable
eigenvalues with Re λ > 0 of TW3 are captured very well by SRDMD, whereas the stable
part of the spectrum can be only partially observed among the SRDMD eigenvalues, and
a spurious complex conjugate SRDMD stable mode with Re λ < −0.05 is also present in
figure 3(a). In contrast, when we repeat this computation without symmetry reduction, we
find that all non-marginal DMD modes simply lie at the drift frequency and its multiples,
as seen in figure 3(d), and thus carry no information about the dynamics in the vicinity of
the travelling wave.

To further illustrate how SRDMD captures dynamics in the vicinity of a travelling wave,
we perturbed TW3 in the directions of the eigenvectors corresponding to the eigenvalues
λ3 and λ9 (counting eigenvalues starting from the most unstable λ1), and computed
SRDMD approximations to these trajectories using four modes, i.e. Nd = 4. Each of
these calculations effectively resulted in three-dimensional SRDMD approximations with
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the fourth mode amplitude being negligible. Indeed, after symmetry reduction, one
neutral mode along with a pair of complex conjugates is sufficient for capturing spiral
in/out dynamics. In figures 3(b,c), these trajectories and their SRDMD approximations
are visualized as projections onto the hyperplanes spanned by the real and imaginary
parts of the leading non-marginal SRDMD modes, centred around their respective
marginal modes. In these and all of our state-space projections to follow, the axes

correspond to pi = 〈ξ(t)− ψ0, ψi〉 and pi =
〈
ξ̃(t)− ψ0, ψi

〉
for DNS trajectories and

their SRDMD approximations, respectively. As shown, SRDMD captures nicely the
spiral-out/in dynamics of these unstable/stable neighbourhoods.

In order to demonstrate how the drifting motion of the travelling wave obscures
the dynamics when the continuous symmetries are not taken into consideration, we
repeated our spectrum calculation and approximations to the unstable/stable subspaces
without reducing the continuous symmetries. As shown in figure 3(d), when the drifts
are not eliminated, the DMD exponents show no resemblance to the spectrum of TW3,
and the individual DMD approximations are completely dominated by the drifts as
indicated by the approximately circular projections in figures 3(e, f ). Although DMD still
approximates the trajectories shown in figures 3(e, f ), essentially the only information
carried in these projections is that of the drifts, and only after symmetry reduction
in figures 3(b,c) can one see that these trajectories belong to different dynamical
regimes.

As our second application, we adapt the DMD-based periodic orbit search method
of Page & Kerswell (2020) to relative periodic orbits. To this end, we simulate the
plane-Couette flow in the HKW cell for a time interval [0, 2000], and sample the trajectory
at steps ts = 0.1. We then slide a temporal window of fixed duration Tw = 60 in steps
Δw = 5 along the time series, and compute the SRDMD of each window using m = 100
randomly chosen snapshot pairs with separation time δt = 1. Next, we calculate the
periodicity indicator (Page & Kerswell 2020)

ε(nh) := 1
nhω

2
f

nh∑
j=1

|Im λj − jωf |2, (5.4)

where

ωf (nh) := 2
nh(nh + 1)

nh∑
j

Im λj, (5.5)

and the sums are carried over the nh SRDMD exponents with Re λj < μmax and 0 <
Im λ1 < · · · < Im λnh−1 < Im λnh . For an exactly periodic signal, ε = 0, and the DMD
exponents are purely imaginary, i.e. Re λj = 0 (Rowley et al. 2009). Thus ε < εth for a set
of DMD exponents with real parts below a chosen threshold μmax indicates approximate
periodicity (Page & Kerswell 2020). We set nh = 2, μmax = 0.1, and select guesses for
relative periodic orbits from episodes with ε < 10−4. Note that the chosen subset of
SRDMD exponents contains at least one real mode, and for all the flagged episodes
analysed here, we have Nd = 5 (one real mode plus two complex conjugate pairs). We
experimented with higher numbers of harmonics, i.e. nh = 3 and 4 (corresponding to
Nd = 7 and 9), but we found that increasing the number of harmonics did not provide
any additional initial guess that converged to a relative periodic orbit. For the flagged
episodes that we obtained, we use the state ξ (g) at the time instant within the window
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corresponding to the minimum of the reconstruction error, the period T(g) = 2π/ωf , and
the shifts �x(g) = Lx[φx(t(g) + T(g))− φx(t(g))]/(2π) and �z(g) = Lz[φz(t(g) + T(g))−
φz(t(g))]/(2π) as initial guesses to initiate Newton–Krylov-hookstep (Viswanath 2007)
searches for relative periodic orbits. Here, the superscript (g) stands for ‘guess’. Among
16 such searches, two converged to the time-periodic solutions of the plane-Couette flow
in the HKW cell. One of these orbits was a known periodic orbit of plane-Couette flow
with (Tpo,�xpo,�zpo) = (64.9, 0, 0) and can be found in the channelflow.org database.
Since our goal here is to illustrate the utility of symmetry reduction for dynamics with
spatial drifts, we do not report this orbit here, and turn our attention to the other with a
non-zero drift in the streamwise direction. Figures 4(a,b) show the SRDMD exponents
and spectra of the DNS window that converged to a relative periodic orbit RPO79.4
with (Trpo,�xrpo,�zrpo) = (79.4, 0.356Lx, 0). Note that the converged orbit’s period is
approximately 4/3 s of the DMD time window, demonstrating that SRDMD is capable
of producing an initial condition for a relative periodic orbit search even when the
orbit is not followed by the chaotic dynamics for a full period. This can also be seen
by comparing the state-space projections of the guess episode shown in figure 4(c) to
that of the converged orbit in figure 4( f ) onto the subspaces spanned by the leading
non-marginal SRDMD modes. Hence SRDMD successfully extends the periodic orbit
detection method of Page & Kerswell (2020) to the relative periodic orbits with spatial
drifts. The SRDMD of the converged orbit computed using snapshots separated by δt = 1
along one full period approximates a Fourier expansion, as indicated by the fact that the
near-neutral (with Re λ < 10−4) exponents are located at the harmonics of f = 1/Trpo, as
shown in figure 4(e). This is expected since continuous symmetry reduction transforms
the relative periodic orbit to a periodic one, for which the DMD corresponds to a Fourier
expansion (Rowley et al. 2009). For comparison, in figures 4(g,h), we show the DMD
exponents corresponding to the same data set and spectra of the relative periodic orbit
without reducing its symmetry, which shows no resemblance to that of a Fourier series.
Finally, figure 4(i) shows the state-space projection of the converged relative periodic orbit
without symmetry reduction, where the separation of the initial and final states is seen
clearly. Although figure 4(i) suggests that DMD without the symmetry reduction still
yields a decent approximation to the periodic orbit, the corresponding DMD spectrum
has a leading non-marginal DMD eigenvalue that is negative real, i.e. non-oscillatory,
as shown by the orange marker in figures 4(g,h). The difference between the initial
and final states of the orbit is also visible in supplementary movie 3, where the flow
structures of the initial and final states appear at the same spots only after symmetry
reduction.

Figure 5(a) shows the streamwise slice phase velocity φ̇x along one period of RPO79.4
approximated by finite differences φ̇x ≈ (φx(t + η)− φx(t))/η and the reconstruction
equation (3.10), for which we approximated the state-space velocity as ∂tu ≈ (u(t + η)−
u(t))/η and used η = 0.01 for both finite difference approximations. As shown, near
the midpoint of the shown time window, the phase velocity momentarily approaches
φ̇ ≈ −10, the effect of which can also be seen as a fast drift in supplementary movie
3. Figure 5(b) shows that this instance coincides with a near-zero of the denominator of
the reconstruction equation (3.10), which accentuates the instantaneous decrease of the
numerator term, as shown in figure 5(c). This illustrates an important property of our
symmetry reduction method: even though instantaneous fast oscillations can be introduced
as an artefact, the net drift of an invariant solution, in this case a relative periodic orbit, is
zero for the totality of the orbit, i.e. one full period.
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Figure 4. (a) SRDMD exponents and (b) spectrum of the episode from which the initial guess for a relative
periodic orbit RPO79.4 is constructed. (c) State-space projection of this episode and its SRDMD approximation
onto the plane spanned by the leading non-marginal SRDMD modes centred around the marginal mode.
(d) SRDMD exponents and (e) spectrum of RPO79.4. ( f ) State-space projection of RPO79.4 and its SRDMD
approximation. (g) DMD exponents and (h) DMD spectrum of the same orbit without symmetry reduction;
and (i) the corresponding state-space projections. In (b,e) and (h), fj = |Im λj|/2π and the dashed vertical lines
correspond to multiples of the fundamental frequency 2π/Trpo, where Trpo is the period of RPO79.4.

6. Locally linear approximations by SRDMD

Through the examples of the previous section, we demonstrated how symmetry reduction
enables DMD to capture the transitional/low-Re dynamics in the vicinity of the relative
invariant solutions of plane-Couette flow with spatial drifts. We now turn our attention
to plane-Poiseuille flow domains P2K and P5K, corresponding to Re = 2000 and 5000,
respectively; see table 1. Both of these domains are significantly more complex than the
settings considered in the previous section, hence searching for invariant solutions in them
is impractical. As we will illustrate, one can nevertheless utilize SRDMD in this problem
to discover turbulent episodes that can be approximated transiently by a low-dimensional
linear expansion.

We consider turbulent channel flow simulations in P2K and P5K, each spanning a time
interval [0, 2000]. We compute SRDMD of the data setsΞ = [

ξ0, ξ1, . . . , ξm−1
]

andΞ ′ =
[ξ1, ξ2, . . . , ξm], where ξn are the symmetry-reduced fluid states sampled at δt over sliding
time windows of length Tw. In P2K, we took δt = 1 and Tw ∈ {30, 60, 100}, whereas in
P5K, we set these to half of their values, i.e. δt = 0.5 and Tw ∈ {15, 30, 50}, approximately
matching the P2K values in wall units. In order to compare different episodes and window

954 A10-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1001


Symmetry-reduced dynamic mode decomposition

−5

0

Reconstruction

Finite difference

0

0.05

0.10

〈∂ x
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Figure 5. Time series from a full period of RPO79.4. (a) The streamwise slice velocity found from the
reconstruction equation (3.10) versus its approximation via finite differences of slice phases. (b) Denominator
and (c) numerator of the reconstruction equation (3.10).

lengths, we construct SRDMD approximations (4.1) with Nd = 11 (or 12, depending on the
number of complex conjugate exponents in the dominant part of the SRDMD spectrum,
such that if a complex mode is in the spectrum, so is its complex conjugate). We evaluate
the accuracy of SRDMD by measuring the residual

R̄(t) = 1
m

m−1∑
k=0

‖ξ̃(t + k δt)− ξ(t + k δt)‖
‖ξ(t + k δt)‖ , (6.1)

which is the mean relative error of the SRDMD approximation (4.1) to the
symmetry-reduced DNS states in the same time window [t, t + Tw). Figure 6 shows the
residuals (6.1) of our SRDMD approximations with Nd � 12 to the sliding windows of the
turbulent channel flow data. Low-error episodes are detected along the turbulent trajectory
and appear to be clustered around certain time instants, for example around t ≈ 250, 950
and 1250 in figure 6(a), thus signalling portions of the turbulent evolution that can be
well captured by a reduced linear expansion. As expected, a linear approximation is more
successful for shorter times, and accordingly the dips in the R̄(t) curves are most marked
for the shortest window lengths Tw = 30 (P2K) and Tw = 15 (P5K), although they are still
distinguishable for longer time windows. In the following, we decided to focus on Tw = 60
and Tw = 30 in P2K and P5K, respectively (orange curves in figure 6), which are the
longest time windows of those analysed above where clear low-error episodes (R̄ < 0.1)
were detected. In the rest of this section, different dynamical behaviours captured by the
SRDMD approximations at these time window lengths will be illustrated.

Figure 7(a) shows the SRDMD spectrum of the data window corresponding to t ∈
[1280, 1340) in P2K, where the coloured crosses indicate the dominant part of the
spectrum, and the black ones show the first three discarded modes. To illustrate the flow
structures captured by SRDMD, figures 7(b–d) show three-dimensional visualizations of
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Figure 6. SRDMD residuals (6.1) in (a) the P2K domain for time windows of duration Tw = 30, 60, 100, and
(b) the P5K domain for Tw = 15, 30, 50. Time windows were slid across the time series in steps Δw = 5.
Dashed vertical lines correspond to the initial times of the windows that are presented in figures 7–10.

ψ0, Reψ1 and Imψ1, respectively. In figures 7(b–d) and the rest of the flow visualizations
of this paper, the red and blue isosurfaces show u = 0.5 max u and u = 0.5 min u,
respectively, and the green and purple isosurfaces show ωx = 0.5 maxωx and ωx =
0.5 minωx, respectively, where ωx is the streamwise vorticity. Once again, for comparison
in figure 7(e) we show the DMD spectrum, without symmetry reduction, of the same
episode. For this computation, we needed a temporal resolution δt = 0.1 because the
time scale associated with advection is much faster than those of the coherent structures.
As visualized in figures 7(b–d), the SRDMD modes represent the full complexity of
the turbulent episode that they approximate, and remarkably, their linear time evolutions
exhibit generation and disappearance of coherent structures as shown in supplementary
movie 4. As shown in figure 7(e), in the absence of symmetry reduction, the dominant
frequency of the spectrum appears near the drift frequency fd = Ub/Lx ≈ 0.23, where
Ub = 2/3 is the bulk velocity marked by a dashed line in figure 7(e). In contrast to
the complex flow structures captured by the SRDMD, in this case the marginal mode
(figure 7f ) shows elongated structures, and the leading non-marginal DMD mode aligns
with the first streamwise Fourier mode (figures 7g,h), as signified by the fact that Imψ1
(figure 7g) is virtually the same as Reψ1 (figure 7h) up to a quarter-domain shift in the
x direction. We see that even for the limited time window that we consider here, the
streamwise drift of channel flow completely dominates its DMD.

As illustrations of different dynamical regimes captured by SRDMD, in figure 8, we
show state-space projections of several time windows and their SRDMD approximations
onto the subspaces spanned by complex conjugate SRDMD modes. In figures 8(a,b),
we see spiral-out/in dynamics corresponding to the low-error episodes in figure 6(a),
reminiscent of similar episodes that we illustrated for a travelling wave in figures 3(c,d).
In figure 8(c), we show a nearly periodic trajectory at Re = 2000, which we detected at a
minimum of the periodicity indicator (5.4) with nh = 4, μmax = 0.1 and εth = 2 × 10−3.
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Figure 7. SRDMD in the time window t ∈ [1280, 1340) of the P2K domain. (a) Normalized SRDMD
spectrum where fj = |Im λj|/2π. The coloured symbols correspond to the modes that are included in the sum
(4.1), while the black symbols are the first three discarded modes. (b–d) Three-dimensional visualizations of
the SRDMD modes (b) ψ0, (c) Reψ1 and (d) Imψ1, where the red (blue) isosurfaces show u = 0.5 max u (u =
0.5 min u) and the green (purple) indicate the streamwise vorticity isosurfaces ωx = 0.5 maxωx (ωx =
0.5 minωx). (e) DMD spectrum (without symmetry reduction) of the same episode. The dashed vertical
line corresponds to the drift frequency fd = Ub/Lx, where Ub is the bulk velocity. ( f –h) Three-dimensional
visualizations of the DMD modes. The colours of the bounding boxes in the three-dimensional visualizations
correspond to the (SR)DMD modes marked with the same colours in the spectra in (a) and (e).

As expected, at Re = 5000 the dynamics is significantly more complex, nevertheless the
resemblance of state-space projections of DNS data and their SRDMD approximations can
also be seen in figures 8(a–c). Differently from figures 8(a,b), here we do not see simple
spiral-in/out dynamics, but several instabilities at play, as illustrated by figures 8(d,e),
which show the projections of the same low-error episode into the subspaces spanned by
the corresponding SRDMD modes ψ2 and ψ4. Finally, figure 8( f ) shows a nearly periodic
episode in the P5K domain detected at a minimum of the periodicity indicator (5.4) using
the same parameters as P2K.

For the spiral-out event starting at t = 1280 in P2K (figure 8b), we compare the
evolution of the flow structures reconstructed using SRDMD to those of the original
turbulent dynamics; see figure 9 and supplementary movie 4. The SRDMD spectrum
and the first two SRDMD modes for this time window were displayed in figure 7. As
shown in figure 9, SRDMD can capture the evolution of streaks and rolls, visualized as
isosurfaces of streamwise velocity and streamwise vorticity, respectively, with only 12
modes. In particular, it can capture the initial growth of the rolls, which then break up
into smaller structures and appear to decay towards the end of the time window, while the
streaks start meandering.

As our final illustration, in figure 10, we show flow states and their SRDMD
approximations corresponding to the time window [425, 455) of the P5K domain.
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Figure 8. State-space projections of DNS trajectories and their SRDMD approximations from (a–c) the P2K
domains and (d–f ) the P5K domains, onto complex SRDMD modes centred around the marginal modes. The
episodes correspond to (a) t ∈ [240, 300), (b) t ∈ [1280, 1340), (c) t ∈ [1300, 1360) in P2K, and (d,e) t ∈
[425, 455) and ( f ) t ∈ [1680, 1710) in P5K.
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Figure 9. Three-dimensional visualizations of symmetry-reduced flow states and their SRDMD
approximations for the time window t ∈ [1280, 1340) in the P2K domain.

Although the one-to-one correspondence of vortical structures is not as evident as in the
P2K configuration, the streak evolution is still captured by the SRDMD approximation.
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Figure 10. Three-dimensional visualizations of symmetry-reduced flow states and their SRDMD
approximations for the time window t ∈ [425, 455) in the P5K domain.

7. Conclusion and outlook

In this paper, we developed a continuous symmetry reduction method for three-
dimensional flows in rectangular channels and applied it to plane-Couette and
plane-Poiseuille simulations at various Re to illustrate the necessity of symmetry reduction
for preprocessing the data prior to DMD. We showed in § 5 that the combination of
symmetry reduction and DMD, which we named SRDMD, yields linear modal expansions
that capture the stable/unstable dynamics in the vicinity of a travelling wave, whereas
the standard DMD of the same data was dominated by the drifts. Moreover, utilizing
SRDMD, we extended the Page & Kerswell (2020) DMD-based periodic orbit search
method to relative periodic orbits and showed that a guess for a relative periodic orbit can
be generated by SRDMD even when turbulence does not follow the relative periodic orbit
for a full period, enabling relative periodic orbit searches that would not have been possible
via recurrent flow analysis (Chandler & Kerswell 2013). In the light of recent evidence
(Krygier, Pughe-Sanford & Grigoriev 2021; Yalnız, Hof & Budanur 2021; Crowley et al.
2022) that the approaches of turbulence to periodic solutions are often not for a full period,
we think that SRDMD-based approaches can accelerate relative periodic orbit searches in
future studies.

One of the main motivations behind studying the invariant solutions of the
Navier–Stokes equations follows from the observation that, together with their stable and
unstable manifolds, the invariant solutions provide ‘efficient’ bases for approximating
chaotic dynamics in their vicinity. This is also illustrated in figure 4 of the present paper,
where the state-space projection of the turbulent trajectory in figure 4(c) shows the features
of the nearby relative periodic orbit, shown in figure 4( f ). The main message that we
hope to convey with the present paper is that such seemingly simple dynamics can also
be found in more complicated settings, such as the turbulent plane-Poiseuille flow that
we studied here. We would like to point out the similarities between the Poiseuille flow
state-space projections shown in figures 8(a,b) and those in the vicinity of a simple
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travelling wave shown in figures 3(b,c). Although the spatial structures captured by the
SRDMD modes are considerably complex, as illustrated in figures 7(b,c) and 9 in the
Poiseuille case, the temporal dynamics is surprisingly similar to that in the vicinity of
a travelling wave. Similarly, the state-space projection of the nearly periodic Poiseuille
flow episode in figure 8(c) is reminiscent of that of an actual shadowing of a relative
periodic orbit by turbulence shown in figure 4(c). In the light of these observations, we
speculate that a modelling paradigm wherein one searches for simple data-driven models
that apply to specific state-space regions could be a viable strategy for extending dynamical
systems approaches to turbulence to regimes that are more complicated than those in which
invariant solutions can be found.

While symmetry reduction enables us to apply DMD to flows with continuous
symmetries, it of course does not eliminate limitations that are intrinsic to DMD itself. One
of these is already apparent in figure 6, where the episodes with low reconstruction error
mostly disappear when the SRDMD window is extended to Tw = 100 and Tw = 50 in the
P2K and P5K domains, respectively. In general, we do not expect to find low-dimensional
SRDMD approximations for longer time horizons since even though DMD modes are
non-orthogonal and can represent nonlinear processes such as generation of vortices,
the temporal dynamics constructed by them is still linear. Recently, Linot & Graham
(2020) have shown that a combination of symmetry reduction, an autoencoder and a
reservoir computer can be used to approximate the spatiotemporally chaotic dynamics
of the one-dimensional Kuramoto–Sivashinsky equation. Replacing DMD with such deep
learning methods can extend the prediction horizon beyond what can be approximated by
SRDMD. Similar to the finite time horizon, we also expect SRDMD to perform poorly
in larger domains since turbulent flows have finite correlation lengths. This can be seen
readily by comparing the snapshots in figure 9 to those in figure 10, where the height
difference of the two domains, which have the same length and width in wall units, is
apparent. Consequently, more flow structures are present in the wall-normal extent of the
Re = 5000 domain, and the corresponding SRDMD approximations in figures 8(b,e) are
considerably more complex. One obvious remedy to this might be replacing the L2 inner
product (2.2a,b) that we used here with one incorporating a spatial filter that isolates a
shorter wall-normal extent, or any other dynamical region of interest if SRDMD is applied
to a flow in a larger domain.

Finally, we would like to note that in addition to it being the first continuous symmetry
reduction method for channel flows, a novel aspect of the present formulation is our
optimization-based determination of the wall-normal dependence of the slice templates.
Previous implementations (Willis et al. 2016; Budanur & Hof 2017, 2018) of the first
Fourier mode slice in three-dimensional pipe flows in which both homogeneous (axial and
azimuthal) and inhomogeneous (radial) directions are present relied on trial-and-error in
determining the radial dependence of slice templates. The template optimization procedure
developed here provides a systematic alternative to this, which we recommend for future
applications of the first Fourier mode slice in similar set-ups. In hopes to lower the
technical barriers for such future applications, we provide our codes in Yalnız et al. (2022)
as examples.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.1001.
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ROWLEY, C.W., MEZIĆ, I., BAGHERI, S., SCHLATTER, P. & HENNINGSON, D.S. 2009 Spectral analysis of

nonlinear flows. J. Fluid Mech. 641, 115–127.
SCHMID, P. & SESTERHENN, J. 2008 Dynamic mode decomposition of numerical and experimental data.

In 61st Annual Meeting of the APS Division of Fluid Dynamics, Bull. Am. Phys. Soc., vol. 53 (15),
pp. MR–007, http://meetings.aps.org/link/BAPS.2008.DFD.MR.7.

SCHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656,
5–28.

SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453,
57–108.

SESTERHENN, J. & SHAHIRPOUR, A. 2019 A characteristic dynamic mode decomposition. Theor. Comput.
Fluid Dyn. 33 (3–4), 281–305.

SIROVICH, L. 1987a Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl.
Maths 45 (3), 561–571.

SIROVICH, L. 1987b Turbulence and the dynamics of coherent structures. II. Symmetries and transformations.
Q. Appl. Maths 45 (3), 573–582.

SIROVICH, L. 1989 Chaotic dynamics of coherent structures. Physica D 37 (1), 126–145.
SURI, B., PALLANTLA, R.K., SCHATZ, M.F. & GRIGORIEV, R.O. 2019 Heteroclinic and homoclinic

connections in a Kolmogorov-like flow. Phys. Rev. E 100 (1), 013112.
SURI, B., TITHOF, J., GRIGORIEV, R.O. & SCHATZ, M.F. 2017 Forecasting fluid flows using the geometry

of turbulence. Phys. Rev. Lett. 118 (11), 114501.
SURI, B., TITHOF, J., GRIGORIEV, R.O. & SCHATZ, M.F. 2018 Unstable equilibria and invariant manifolds

in quasi-two-dimensional Kolmogorov-like flow. Phys. Rev. E 98 (2), 023105.
TREFETHEN, L.N. & BAU, D. 1997 Numerical Linear Algebra. SIAM.
TU, J.H., ROWLEY, C.W., LUCHTENBURG, D.M., BRUNTON, S.L. & KUTZ, J.N. 2014 On dynamic mode

decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391–421.
VAN VEEN, L. & KAWAHARA, G. 2011 Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett.

107 (11), 114501.
VISWANATH, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339–358.
WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883–900.
WALEFFE, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93–102.
WALEFFE, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15 (6), 1517–1534.
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