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Entanglement-based observables for quantum impurities
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Quantum impurities exhibit fascinating many-body phenomena when the small interacting impurity changes
the physics of a large noninteracting environment. The characterisation of such strongly correlated nonpertur-
bative effects is particularly challenging due to the infinite size of the environment, and the inability of local
correlators to capture the buildup of long-ranged entanglement in the system. Here, we harness an entanglement-
based observable—the purity of the impurity—as a witness for the formation of strong correlations. We showcase
the utility of our scheme by exactly solving the open Kondo box model in the small box limit, and thus
describe all-electronic dot-cavity devices. Specifically, we conclusively characterize the metal-to-insulator phase
transition in the system and identify how the (conducting) dot-lead Kondo singlet is quenched by an (insulating)
intraimpurity singlet formation. Furthermore, we propose an experimentally feasible tomography protocol for
the measurement of the purity, which motivates the observation of impurity physics through their entanglement
build up.
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I. INTRODUCTION

Quantum many-body systems are an important frontier of
physics [1,2]. The system’s ground state can be dominated by
many-body interactions and thus profoundly removed from its
simpler single-particle limit, i.e., nonlocal entanglement man-
ifests between the system’s constituents. Correspondingly,
finding the strongly correlated ground state is equivalent to
solving complex optimization problems [3]. Alongside theo-
retical and numerical studies of quantum many-body systems,
analog quantum simulators serve as an alternative method to
emulate strongly correlated effects using experimentally con-
trollable devices [4–6]. Examples of such simulators include
trapped atoms [7] or ions [8,9], light-matter systems [10],
and electronic [11] or superconducting [12] mesoscopic de-
vices. These comprise the bulk of the activity in the so-called
noisy intermediate-scale quantum (NISQ) era [5]. Interest-
ingly, within the NISQ domain, entanglement has become a
standard order parameter for the study of many-body physics
[13–16].

Among strongly correlated systems, quantum impurity
problems hold a prominent position [17]. They engender
a simple case where many-body interactions manifest only
at a specific spot in space, i.e., at the quantum impurity.
Nevertheless, by coupling the impurity to a large reservoir
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of noninteracting particles, strong correlations manifest in
the whole system. As such, understanding quantum impurity
problems is key to understanding quantum many-body sys-
tems as a whole [18,19]. Moreover, quantum impurities also
model a large class of quantum simulators, which are com-
posed of confined regions of space embedded within a larger
experimental environment. Conversely, NISQ devices can be
harnessed to emulate and solve impurity problems, which
promotes the utilization of entanglement-based observables.

Perhaps the most ubiquitous impurity model is that of
the Kondo effect, where a magnetic impurity is screened by
an electron cloud and forms a so-called many-body Kondo
singlet [20]. Commonly, the effect arises in both strongly
correlated materials and mesoscopic quantum devices and is
identified via stationary transport signatures [21–26]. Within
NISQ, the emulation of the Kondo effect has been proposed,
for example, with superconducting qubit circuits [27]. How-
ever, such a realization requires new detection schemes, as
stationary transport is not applicable within the finite size of
the quantum simulators [28]. Current efforts in this direction
focus on the direct characterization of the amount of entan-
glement in Kondo singlets in quantum dots by measuring the
dot’s entropy [29,30] or by quantifying the entanglement in
Kondo clouds [31–35].

The more complex the internal structure of a quantum
impurity is, the broader the variety of many-body phenomena
that can arise. An example of such a structured quantum impu-
rity problem involves an electronic dot-cavity system [36–38].
The model’s impurity consists of a quantum dot that is cou-
pled to an electronic cavity, i.e., to a discrete set of electronic
noninteracting levels, as well as to three electron leads [37].
The system resembles a double dot system [39,40], where one
of the two dots is large and noninteracting, i.e., it is equivalent
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to a so-called Kondo box [41] in the large level-spacing limit.
The open dot-cavity model was used to describe the transport
signatures of a mesoscopic device, that showcased a metal-
to-insulator phase transition. The transition was postulated to
arise when a dot-cavity molecular singlet forms and quenches
the conducting Kondo effect of the dot [36]. Thus far, only
approximate methods were used to describe the dot-cavity
phase transition [37,42].

In this work, we devise measurable entanglement witnesses
for the observation of strong correlations in quantum im-
purities. Specifically, we harness the purity of subparts of
the structured impurity as the entanglement witness. As an
example for our scheme, we report on an exact study of
the dot-cavity system [36–38] and its nonlocal entanglement
characteristics. We use the purity of the dot and that of the dot-
cavity to resolve whether the dot forms a many-body Kondo
singlet with its leads or is isolated from the environment by
forming a singlet with the cavity. Our analysis relies on a
numerical nonperturbative method for the study of quantum
impurity systems that combines the strengths of both Numeri-
cal Renormalization Group (NRG) and Matrix Product States
(MPS) formalism [43,44]. Last but not least, we propose a
measurement protocol to detect the purity of the selected
subsystem and motivate alternative experimental observables
for detecting strong correlations in quantum impurities.

II. PURITY

We are interested in the entanglement of a quantum impu-
rity with its environment, see Fig. 1(a). As a witness for the
entanglement, we will use the purity of the impurity together
with the purity of its subparts. In a bipartite closed system
A ⊗ B, the purity PA of a subsystem A (e.g., of the impurity)
reads

PA = Tr
[
ρ2

A

]
, (1)

where ρA = TrB(ρ) is the reduced density matrix of subsystem
A obtained by tracing out subsystem B (the environment). The
purity is a witness for entanglement: when A is decoupled
from its environment, then PA = 1; if A is fully mixed with the
environment, then PA = 1/n, where n is the size of the Hilbert
space of A, e.g., 1/4 for a single spinful electron site, and 1/16
for a system with two spinful electron sites. Crucially, when a
singlet forms between A and B the purity is PA = 1/2. Note
that other entanglement measurements can be equivalently
evaluated, and would result in the same physical picture of the
model [45]. Yet, because the purity is calculated based on the
density operator of the subsystem only, see Appendix D, we
show here that it engenders significantly-low computational
costs and becomes amenable to experimental observation in
small impurity systems.

III. MODEL

The effective Hamiltonian of the dot-cavity system reads
[36,37] [cf. Fig. 1(b)]

H = Hdot + Hcav + Hcoupl + Hleads + Htun. (2)

FIG. 1. (a) A quantum impurity (purple dot) coupled to a non-
interacting environment (grey shape) is a paradigmatic setting for
studying the buildup of many-body strong correlations between the
impurity and its environment [17]. (b) Sketch of the dot-cavity (open
Kondo box) model [37], cf. Eq. (2). A spinful single-level quantum
dot (yellow) with energy εd and on-site interaction U is tunnel cou-
pled to two leads L,R with tunneling amplitudes tL, tR, respectively,
as well as to an electronic cavity (red) with tunnel coupling �.
The cavity is composed of a set of spinful noninteracting levels at
energies ε ( j)

c and level spacing δ. It is tunnel coupled to its own lead
with rate tB. (c) Charge stability diagram of the closed dot-cavity
system (ti = 0, i∈{L, R, B}) as a function of the dot level εd and
cavity energy offset εc. Regions with a different total number of
electrons ntot = 〈nd+nc〉 on the dot-cavity molecule are separated
by lines, whereas population within the molecule are marked by
(nd, nc ). The diagram is obtained using exact diagonalization with
Fermi energy εF = 0, cavity level spacing δ = U , tunnel coupling
� = 0.2U , and the cavity Hilbert space is truncated to include two
spin-degenerate levels.

The dot Hamiltonian

Hdot =
∑

σ

εdndσ
+ Und↑nd↓ (3)

describes an Anderson impurity [46] with a spin-degenerate
electron level at energy εd and electron-electron charging en-
ergy U . Here, ndσ

denotes the dot level’s occupation number
with spin σ∈{↑,↓}. The cavity Hamiltonian is

Hcav =
∑

jσ

ε ( j)
c f †

jσ f jσ , (4)

where the index j labels spin-degenerate electron levels with
equally-spaced energies ε

( j)
c = εcav+ jδ with spacing δ, and

f †
jσ ( f jσ ) is the fermionic cavity creation (annihilation) oper-

ator of the jth level. Note that due to the screening within the
large spatial extent of mesoscopic electronic cavities [36,37],
no electron-electron repulsion term is introduced in Hcav. The
dot and cavity are tunnel coupled

Hcoupl =
∑

jσ

� jd
†
σ f jσ + H.c., (5)

with energy-dependent coupling amplitudes � j . The environ-
ment is composed of three leads

Hleads =
∑
k�σ

εk�
c†

k�σ
ck�σ

+
∑
kσ

εkBc†
kBσ

ckBσ
, (6)
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where we denote ck�σ
(c†

k�σ
) the fermionic annihilation (cre-

ation) of an electron with momentum k and spin σ in the leads
left and right to the dot; �∈{L, R}. The ckBσ

(c†
kBσ

) opera-
tor acts on the cavity lead and is defined analogously. The
tunneling Hamiltonian term Htun = Hdot

tun + H cav
tun couples the

closed dot-cavity system to the leads. We assume that the dot
is coupled to the left and right leads, with energy-independent
tunneling amplitudes t�;

Hdot
tun =

∑
�kσ

t�d†
σ ck�σ

+ H.c.. (7)

Similarly, the cavity is tunnel coupled to its own lead

H cav
tun =

∑
jkσ

tB f †
jσ ckBσ

+ H.c., (8)

with an energy-independent tunneling amplitude tB [47].
As discussed in Ref. [37], the closed dot-cavity system,

i.e., Eq. (2) with tL, tR, tB = 0, forms an “artificial molecule”
impurity. Specifically, as a function of dot and cavity energies
(set experimentally by tuning voltage gates), it exhibits a
charge stability diagram with regions dominated by Coulomb
or exchange blockade, separated by resonance lines where
the particle number on the molecule is not conserved, see
Fig. 1(c). The exchange blockade region involves the forma-
tion of a dot-cavity singlet for sufficiently-large level spacing
in the cavity δ � 12�2

j/U .

IV. METHODS

Coupling the dot-cavity molecule to its leads can change
the occupation of the molecule and transport through it.
In experiments [36], Kondo transport is observed, separated
by exchange-blockade regions whenever the cavity couples
strongly to the dot’s electron spin. In Ref. [37], a strong
hybridization between dot and cavity was assumed alongside a
perturbative treatment with respect to the rest of the electronic
environment. This observation led to the conjecture that the
blockade regions form due to the formation of a spin-singlet
between dot and cavity. Yet, it was not known whether this sin-
glet is decoupled or influenced by the hybridization with the
environment. Here, instead, we treat the system-environment
couplings exactly with the NRG-MPS method for quantum
impurity systems [43,44].

According to the NRG-MPS method for quantum impu-
rity systems [43,44], we transform the infinite environment
of the dot-cavity system [Eqs. (6)–(8)] in 1D Wilson
chains. In the equilibrium configuration (zero bias volt-
age μL = μR = μB across the device), we can combine
the identical left and right leads using the transformation
ckPσ

= α(tLckLσ
+tRckRσ

), whose orthogonal complementary
combination ckMσ

= α(tRckLσ
−tLckRσ

) fully decouples from
Hdot and the rest of the system [24]. The prefactor α is a
normalization constant. The leads’ Hamiltonian, Eq. (6), thus
respectively transform into

Hdot
tun 	→

∑
kσ

td d†
σ ckPσ

+ H.c. (9)

(a) (b)

FIG. 2. NRG-MPS reshaping of the dot-cavity Hamiltonian.
(a) The reshaped dot-cavity model [cf. Eq. 2 and Fig. 1(b)] is trans-
formed into a 1D chain using Wilson’s transformation [48,51]. Open
circles denote sites along the resulting chain with colors grey, yellow,
and red matching the leads, dot, and cavity, respectively. (b) For
numerical calculations, we characterize states and operators along
the chain using the MPS formalism [53], denoted by open rounded
squares.

and

Hdot
leads 	→

∑
ksσ

εk c†
ksσ cksσ + H.c., (10)

where s∈{P, M}. As the transformed M lead is decoupled from
the system, we can henceforth neglect it.

As a next step, we map the remaining P lead and its tunnel
coupling to a 1D semi-infinite Wilson chain [48], see Fig. 2(a),

Ĥdot
chain =

∑
σ

td d†
σ c0σ +

∞∑
nσ

tdnc†
nσ cn+1σ + H.c., (11)

where cnσ is the annihilation operator of a fermion with spin
σ at site n of the P chain. Similarly, we transform the terms
including the cavity lead into a Wilson chain

Ĥ cav
tun =

∑
σ

tc f †
σ b0σ +

∞∑
nσ

tcnb†
nσ bn+1σ + H.c., (12)

where bnσ is the annihilation operator in the cavity lead de-
fined analogously to cnσ . From the Wilson transformation
[48], the nearest-neighbour hopping coefficients along the
chain are exponentially decaying in the chain site number
tdn = tcn ∝ 	−n/2 for n � 1.

An impurity problem with environments that are trans-
formed into Wilson chains is commonly studied with the NRG
technique [48–50]. In our work, we instead calculate equilib-
rium properties of a finite chain with a variational algorithm
for MPS [43,44]. As sites beyond some point in the Wilson
chain become marginal [51], we truncate both the dot and
cavity leads at a finite length N (here N = 40), obtaining a
1D finite chain that approximates the open dot-cavity sys-
tem. Nevertheless, recall that each chain site has a d = 4
dimensional Hilbert space with empty |0〉, full |↑↓〉, or singly
occupied |↑〉, |↓〉 basis states. Therefore, the number of coef-
ficients required to characterize a pure state of the chain grows
as dN , hitting the current computational limits at relatively
small N . On this account, we work with MPS to characterize
states and operators [Fig. 2(b)], which allows for a controlled
truncation of the number of required coefficients based on the
entanglement information between different chain sites. This
truncation harnesses a Singular Value Decomposition (SVD)
compression that caps the maximal number of Schmidt values
describing each link in the chain, dubbed bond dimension D.
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Only thus, are we able to reach chains of length Ntot > 80 sites
[52].

We analyze the full system at equilibrium, i.e., we set a
zero bias voltage μL = μR = μB across the device, where
μi denotes the chemical potential of the ith lead. Even
though the NRG-MPS method does not treat the impurity-
environment coupling perturbatively, its performance depends
on the system parameters: as the impurity-environment cou-
pling becomes smaller, the required resolution to find the
Kondo ground state increases. In the following, we establish
that the purity is a good witness for observing the formation
of the Kondo singlet. Hence, per system parametrization, we
systematically explore convergence of our variational ground-
state search by following the dot’s purity Pd as a function of
the NRG-MPS numerical truncation knobs, see Appendix A.
Furthermore, we observe that the physics of the system only
depends on the presence of an unpaired cavity electron and
is fully equivalent between the different cavity levels εc =
εcav+ jδ in the experimentally relevant regime where δ �
12�2/U , see Appendix B.

V. RESULTS

Having obtained the converged ground state of the whole
system (impurity plus environment) per parametrization, we
start by revisiting the charge stability diagram, see Fig. 3(a).
The occupation ntot = 〈nd + nc〉 of the dot-cavity subsystem
(evaluated on the obtained ground state) qualitatively matches
that obtained by the exact diagonalization treatment of the
closed dot-cavity system. Crucially, we observe a region com-
peting with the dot’s Coulomb blockade regimes, where due
to the dot-cavity tunnel coupling, the cavity has an odd oc-
cupation. This hints towards the fact that in this region a
dot-cavity spin-singlet forms (exchange blockade) also in the
open system. Quantitatively, we observe that the coupling to
the environment shifts the charge instability lines to slightly
higher energies, as expected from self-energy renormalization
of the closed systems’ levels by high-order coupling to the
environment [37].

To verify the formation of a dot-cavity spin singlet and
the existence of an exchange blockade region, we analyze the
spin configuration of the dot-cavity molecule. To this end, we
define and calculate their spin-spin correlation

C(d, c) = 1

2

∑
σ

〈ndσ 〉〈ncσ̄ 〉 − 〈ndσ ncσ̄ 〉, (13)

which returns 1 (−1) when the spins on the dot and cavity are
aligned (antialigned). We plot the resulting C(d, c) in Fig. 3(b)
and observe three main phases (i)–(iii). (i) When the dot has an
even occupation, no dot-cavity spin-spin correlations appear.
(ii) When the dot has an odd occupation and the cavity has
an even occupation, we observe weak spin-spin alignment.
In this region, we expect that the dot antialigns with the
lead electrons (Kondo singlet). The ensuing strong dot-lead
correlation leaves space for the cavity electrons (holes) to
partially redistribute into the leads in the full (empty) cavity
level configuration. The spin of these residual particles tends
to align with the spin of the electron occupying the dot, see
Appendix C. (iii) In the (1, 1) occupation region, we observe

FIG. 3. Dot-cavity observables [cf. Eq. (13)] and purity [cf.
Eq. (1)] calculated with the NRG-MPS approach as a function of the
dot energy εd and the cavity energy εc. (a) Occupation of the open
dot-cavity artificial molecule. We denote (〈nd〉, 〈nc〉) the dot and cav-
ity occupation. Solid lines are superimposed from the closed system
calculation [cf. Fig. 1(c)]. (b) Dot-cavity spin-spin correlation, cf.
Eq. (13). (c) Inverse of the purity of the dot 1/Pd and (d) of the
dot-cavity 1/Pdc molecule. The dashed lines in (b)–(d) indicate the
contour of the numerical results of (a). The coupling parameters of
the system are as in Fig. 1(c), with td = 0.25U , tc = 0.18U , ρ = U ,
and constant leads’ density of states D0 = 1/4U . We set MPS bond
dimension D = 100 and a Wilson chain length of N = 40 for both
the dot and cavity lead. Regions (i)–(iii) mark distinct restructuring
in the many-body states, cf. Sec. V.

strong spin antialignment behavior in agreement with the
closed system exact diagonaliation results. The latter clearly
confirms the hypothesized formation of a molecular dot-cavity
singlet [36,37].

The results presented so far do not identify signatures of
strong coupling to the environment. To observe these strong
correlations, we propose to use quantum information inspired
observables, namely the dot and dot-cavity purities Pd, Pdc,
see Figs. 3(c) and 3(d), and cf. Eq. (1). Combining the in-
formation from both purities, we can deduce much about the
correlation in the full system. For example, in region (i) both
Pd→1 and Pdc→1, i.e., the electron on the dot is decoupled
from all lead and cavity electrons, and the combined dot-
cavity electrons are also decoupled from the lead electrons.
This decoupling highlights that in region (i) the many-body
ground state does not show strong correlations between the
impurity and the environment. Similarly, in region (iii), the
dot-cavity “molecule” decouples from the leads (Pdc→1).
Yet a Pd ≈ 1/2 attests that the dot electron is in a spin-
singlet configuration with its cavity counterpart. Crucially, in
region (ii), Pd ≈Pdc ≈ 1/2 marks that the dot forms a singlet,
but that this singlet is not affected by the inclusion of the
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cavity’s Hilbert space. Here, we have a clear evidence for the
formation of a Kondo singlet between the dot and lead elec-
trons. Note that our environment model includes 2D fermionic
baths via Wilson chains and does not consists of tailored
1D environments as considered in previous works [31,33].
Additionally, we model the quantum dot with an Anderson
Impurity Hamiltonian instead of the Kondo Hamiltonian con-
sidered in Ref. [44], i.e., we did not a priori assume the
formation of Kondo effects. Thereby, our method does not
merely verify the Kondo singlet formation for the Anderson
model; it additionally fully characterizes the phase transitions
to other many-body entanglement regimes in the structured
impurity of the open Kondo box.

VI. MEASUREMENT PROTOCOL

To emulate the action of the partial trace [cf. Eq. (1)], our
entanglement witness can be experimentally measured using
a fast (diabatic) gate pulse that detaches the impurity from
its environment. After this pulse, the purity of the subsystem
can be read out using tomography techniques that are com-
monly harnessed in superconducting and silicon spin qubit
devices [54–56]. Hence, in the following, we focus on pro-
viding an estimation for the gate pulse frequency necessary
for a diabatic lead detachment. We detach the leads within
the time interval Tcut by linearly decreasing the dot-lead and
cavity-lead coupling coefficients td, tc, see Fig. 4(a). We sim-
ulate this protocol using Time Evolving Block Decimation
[28,57] on the dot-cavity MPS state for both the Kondo and
singlet cases. Following the detachment, tomography on the
dot-cavity subsystem is performed to evaluate its purity, see
Fig. 4(b)–4(f). The resulting purity deviates from the ideal
case when v = td/Tcut is insufficiently large. However, with
increasing velocity we obtain a very good agreement.

Using the Landau-Zener formula [58,59],

Pdiab = exp

[
−2πJ2

(
h̄

∣∣∣∣dq

dt

∂

∂q
�E

∣∣∣∣
)−1

]
, (14)

the performance of our protocol improves when the probabil-
ity for a diabatic transition to occur Pdiab→1, see Fig. 4(b).
Here,

�E ≈
√

πt2
dD0U/2 exp

[−U/
(
8t2

dD0
)]

(15)

is the energy gap between the many-body ground and first
excited state of the system [60], J ∼ �E is the coupling am-
plitude between these states, and q = td(T ) is the detachment
perturbation parameter.

Using Eq. (14), we estimate the minimal gate pulse fre-
quency for a sufficiently diabatic lead detachment. In the
experiment, U ≈ 700μeV [36]. Assuming a typical semi-
conductor device bandwidth of W = 0.1 eV and lead tunnel
coupling

S + D ≡ 2π |td|2D0 = 80 μeV, (16)

the diabatic probability is Pdiab > 0.92 for Tcut = 1ns. Thus,
with a pulse in the GHz regime, a diabatic detachment of the
leads from the dot-cavity impurity is possible.

FIG. 4. Procedure and results of the measurement protocol.
(a) The dot and cavity leads are linearly detached within a time
interval Tcut with velocity v = td/Tcut. (b) Purity of the dot-cavity
impurity measured after a detachment with velocity v for a singly
occupied dot εd = −U/2 in the Kondo (εc = −U/2, yellow line) and
dot-cavity singlet (εc = 0, red line) regimes. Horizontal transparent
lines mark the numerical value obtained by the ideal trace operation,
cf. Fig. 3(d). The dashed (gray) line marks the estimated diabatic
transition probability, cf. Eq. (14). (c)–(f) Full state tomography of
the dot-cavity impurity in the Kondo regime [(c) adiabatic with v =
0.125U 2/h̄ and (d) diabatic with v = 10U 2/h̄]. (e) and (f) show the
same comparison for the dot-cavity singlet case. The other coupling
parameters of the system are as in Fig. 3.

VII. CONCLUSION

Our work demonstrates that the purity of different subparts
can be harnessed to study complex quantum impurity systems
and highlights the applicability of quantum information based
observables for studying strongly correlated systems. Em-
ploying minimal and sufficient entanglement measure (such
as the purities proposed here) in experiments is an important
next step for the quantum simulation field, where tomogra-
phy on small subsystems is readily accessible. Additionally,
we showcase three important developments: (a) an experi-
mental measurement protocol of the purity, (b) the power of
NRG-MPS approaches for solving multi-channels quantum
impurity problems as insinuated in Refs. [43,44], and (c)
the conclusive demonstration of the physics behind the dot-
cavity metal-to-insulator transition. Future work will explore
the generalization of entanglement quantification [61,62] in
out-of-equilibrium and mixed state quantum impurity systems
[63].
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FIG. 5. Convergence analysis for Pd for a singly occupied dot,
and a cavity level located far away from resonance εc = U (a) as a
function of dot-lead tunnel coupling td and MPS bond dimension D
for a fixed Wilson chain length N = 40, and (b) as a function of the
Wilson N and tunnel td for a fixed bond dimension D = 100.
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APPENDIX A: CONVERGENCE BEHAVIOR OF THE
NRG-MPS TECHNIQUE

The quality of a Matrix Product State (MPS) or operator
(MPO) representation is affected by the extent of the singular
value decomposition (SVD) truncation, namely by choosing
the bond dimension D. There is no general rule for determin-
ing the minimal D that ensures a converged physical result.
Hence, trials with different bond dimensions are performed.
Convergence properties of physical observables might indi-
cate a minimal bond dimension that is still able to capture the
physics of the system. Similarly to the MPS bond dimension,
also the length of the Wilson chain N must be sufficiently
large in order to observe the formation of a Kondo singlet.
We check the results of the dot-cavity model for convergence.
For example, in Fig. 5(a), we observe a strong dependence of
the dot purity Pd on the bond dimension. At high dot-lead
coupling td/U � 0, the dot fully mixes with the environ-
ment, and Pd ≈ 1/4 is minimal for any bond dimension. For
lower coupling strengths, the purity gradually increases to
approximately 1/2, marking the formation of a Kondo singlet.
The jumps in Pd observed in the 0.2U < td < 0.3U range
showcase the aforementioned limitation of the MPS method:
a finite MPS bond dimension is not sufficient to capture the
physics of the system. Indeed, a purity value indicating the
presence of a dot-lead Kondo singlet is expected for any td in
the low coupling regime.

In Fig. 5(b), we repeat the convergence analysis of the Pd

for varying Wilson chain length N for both the dot and cavity
leads. We see that the weaker the dot-lead tunnel coupling
is, the longer N has to be to capture the Kondo-associated
entanglement features established in the system. This is a
known requirement in NRG since the Wilson chain relates
to the energy resolution of the lead. A finite chain truncates
the information corresponding to coupling with lead electrons
near the Fermi level. These low-energy electrons are the ones
dominating the hybridization with the dot in the low tunnel
coupling regime.

Following our calibration, in the results presented in
the main text, we set the dot-lead tunneling amplitude at

FIG. 6. Comparison between single-level (solid line) and two-
level (dotted line) cavities at εd = −U/2. (a) The dot and cavity
occupation 〈nd〉 and 〈nc〉, respectively. (b) The purity of the dot
and dot-cavity subsystems Pd,Pdc, respectively. We use here the
parameters as in Fig. 3.

td = 0.25U , as well as use MPS bond dimension D = 100 and
an NRG chain length N = 40 for both the dot and cavity leads,
i.e., where the purity value is close to 1/2, and the expected
dot-lead Kondo singlet is detected.

APPENDIX B: TRUNCATION TO A SINGLE
CAVITY LEVEL

In Sec. III of the main text, we define and discuss the
cavity Hamiltonian Hcav, whose spin-degenerate electron lev-
els ε

( j)
c = εcav+ jδ have constant spacing δ, cf. Eq. (4). For

the presented results, however, we suffice to include only a
two-level cavity. In this section, we check the validity of this
approximation. In Fig. 6, we compare the outcome of our
VMPS analysis between a dot-cavity system with a single-
level cavity and a two-level one. We perform the comparison
for a dot located at εd = −U/2, where the competition be-
tween Kondo and dot-cavity singlet formations occurs.

In Figs. 6(a) and 6(b), we show that for εc > −U/2 the
single-level cavity exhibits the same physics as the two-level
cavity. As discussed in Sec. V of the main text, at εc ≈ 0 [cf.
region (i)], the cavity is approximately occupied by a single
electron and the dot-cavity molecule decouples from the envi-
ronment [Pdc→1]. For a cavity approximately empty or full,
the purities are Pd ≈ Pdc ≈ 1/2. Hence, we conclude that the
cavity does not impact the many-body strong hybridization
between the dot and its environment, namely the dot-lead
Kondo singlet.

A different picture emerges for εc < −U/2. In region
(ii), for the single-level cavity case, the occupation 〈nc〉 = 2
saturates and the system remains in the dot-lead singlet con-
figuration. For the two-level case, a third electron occupies the
cavity 〈nc〉 > 2. At εc ≈ −U , Pd and Pdc of the two-level cav-
ity [cf. region (iii)] are equal to the Pd and Pdc at εc ≈ 0 [cf.
region (i)]. Thus, in the 〈nc〉 ≈ 3 configuration the unpaired
cavity electron couples to the dot, exactly as in the 〈nc〉 ≈ 1
configuration, and establishes a molecular dot-cavity singlet
quenching the Kondo effect.

With these results, we conclude that the physics in the
multi-level cavity case only depends on the presence of an
unpaired electron in the cavity, regardless of the number of
occupied cavity levels. Thus, it is sufficient to consider a
two-level cavity for characterizing the many-body physics of
the electronic dot-cavity impurity.
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FIG. 7. (a) Dot-cavity spin correlation C(d, c) and (b) dot and
cavity occupation [〈nd〉] (blue lines) and 〈nc〉 (orange lines), respec-
tively] as a function of the cavity level εc. The dot energy level is
taken at εd = −U/2 (dotted lines) and εd = −0.34U (dashed lines).
The rest of the parameters are as in Fig. 3.

APPENDIX C: DOT-CAVITY ALIGNMENT
IN THE KONDO REGIME

As discussed in Sec. V of the main text [cf. Fig. 3, re-
gion (ii)], whenever the dot and lead form a Kondo singlet,
we observe a limited dot-cavity spin alignment, see also
Fig. 7(a), region (ii). This effect coexists with the strong
dot-lead hybridization and implies that the cavity occupation
is not perfectly quantized. A necessary condition for the dot
and cavity spin to align is that the cavity is not perfectly full
(empty) for positive (negative) εc. Such behavior is corrob-
orated by our calculation of 〈nc〉, see Fig. 7(b). The cavity
electrons (holes) could redistribute into the leads, the dot, or
both.

In Fig. 7(b), we observe that the dot occupation is constant
in the (ii) region. Thus, in the Kondo dot-lead configuration,
the cavity electrons (holes) partially redistribute into the leads
in the full (empty) cavity configuration. In the Kondo singlet,
a continuous second-order scattering of lead electrons near the
Fermi level occurs. Thus, for a dot electron in the σ spin con-
figuration, a lead electron in σ̄ scatters in and out of its energy
level [22], leaving the latter free for a fraction of time. When
the cavity is tuned near the Fermi level, the σ̄ cavity electron
(hole) partially redistributes in the free lead level. The σ̄ cavity
electron (hole) level is therefore partially empty. Hence, dot
and cavity showcase a marginal spin-spin alignment behavior.
Our results show that the NRG-MPS method is capable of
identifying such higher-order processes.

APPENDIX D: PURITY CALCULATION
IN MPS FORMALISM

In this section, we show how to readily calculate the purity
of a subsystem using an MPS formalism. The density operator
ρA of a subsystem A is defined as

ρA = TrB(ρAB) =
∑

k

(IA ⊗ 〈σk|B)ρAB(IA ⊗ |σk〉B), (D1)

where ρAB is the density operator of the full system A ⊗ B,
IA is the identity operator on A, and {|σk〉B} is an orthonormal
basis of B. In our work, we deal with density matrices of a
1D discrete system (chain), whose pure state can be written in
Fano form

|ψ〉 =
∑

σ

cσ1,σ2...,σN |σ1〉 ⊗ |σ2〉 ⊗ . . . ⊗ |σN 〉 , (D2)

where {|σi〉} is a basis of the Hilbert space of the ith chain site,
and cσ1,σ2...,σN are the amplitudes of the specific tensorial basis
state. The reduced density operator of, e.g., the subsystem
composed of the first chain reads

ρ1 = Trenv (ρ) (D3)

=
∑

σ2,...,σN

(I1 ⊗ 〈σ2 . . . σN |) |ψ〉 〈ψ | (I1 ⊗ |σ2 . . . σN 〉),

(D4)

where with env we indicate the environment
|σ2〉 ⊗. . . |σN 〉 ≡ |σ2. . .σN 〉 and I1 the identity operator of
the first site. In MPS formalism, the pure state as in Eq. (D2)
is expressed as

|ψ〉 =
∑

σ

Mσ1 . . . MσN |σ1〉 ⊗ |σ2〉 ⊗ . . . ⊗ |σN 〉, (D5)

where {Mσi} is a set of matrices (the MPS matrices) character-
izing the ith site, see Ref. [53] for a detailed discussion. The
calculation of ρ1 in MPS formalism is particularly efficient if
the chain is of the so-called “orthonormal” form [53]. Under
this condition, the MPS sets of matrices i = 2, . . . , N satisfy
the orthogonality properties

∑
σi

(Mσi )†Mσi = Ii, and the cal-
culation of ρ1 reduces to

ρ1 =
∑
σ1,σ

′
1

Mσ1 (Mσ ′
1 )† |σ1〉 〈σ ′

1| . (D6)

Analogously, the density operator of the ith site of the chain
reduces to

ρi =
∑
σiσ

′
i

Mσi (Mσ ′
i )† |σi〉 〈σ ′

i | , (D7)

from which the square of the density operator reads

ρ2
i =

∑
σi,σ

′
i ,σ

′′
i

Mσi (Mσ ′
i )†Mσ ′

i (Mσ ′′
i )† |σi〉 〈σ ′′

i | . (D8)

The purity Pi of the ith chain site in MPS formalism therefore
reads

Pi = Tr
(
ρ2

i

) = Tr

⎧⎨
⎩

∑
σi,σ

′
i

Mσi (Mσ ′
i )†[Mσi (Mσ ′

i )†]†

⎫⎬
⎭. (D9)
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