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Abstract
We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus
unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in
quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A
on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we
thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and
Lopatto [7] as valid for specific small-rank observables.
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1. Introduction

Wigner random matrices are 𝑁 × 𝑁 random Hermitian matrices 𝑊 = 𝑊∗ with centred, independent,
identically distributed (i.i.d.) entries up to the symmetry constraint 𝑤𝑎𝑏 = 𝑤𝑏𝑎. Originally introduced
by E. Wigner [53] to study spectral gaps of large atomic nuclei, Wigner matrices have become the most
studied random matrix ensemble since they represent the simplest example of a fully chaotic quantum
Hamiltonian beyond the explicitly computable Gaussian case.
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A key conceptual feature of Wigner matrices, as well as a fundamental technical tool to study
them, is the fact that their resolvent 𝐺 (𝑧) := (𝑊 − 𝑧)−1, with a spectral parameter z away from the
real axis becomes asymptotically deterministic in the large N limit. The limit is the scalar matrix
𝑚(𝑧) · 𝐼, where 𝑚(𝑧) = 1

2 (−𝑧 +
√
𝑧2 − 4) is the Stieltjes transform of the Wigner semicircular density,

𝜌sc (𝑥) = 1
2𝜋

√
4 − 𝑥2, which is the 𝑁 → ∞ limit of the empirical density of the eigenvalues of W under

the standard normalisation E |𝑤𝑎𝑏 |2 = 1/𝑁 . The local law on optimal scale asserts that this limit holds
even when z is very close to the real axis, as long as |�𝑧 | � 1/𝑁 . Noticing that the imaginary part of
the Stieltjes transform resolves the spectral measure on a scale comparable with |�𝑧 |, this condition is
necessary for a deterministic limit to hold since on scales of order 1/𝑁 , comparable with the typical
eigenvalue spacing, the resolvent is genuinely fluctuating.

The limit 𝐺 (𝑧) → 𝑚(𝑧) · 𝐼 holds in a natural appropriate topology, namely when tested against
deterministic 𝑁 ×𝑁 matrices A: that is, in the form 〈𝐺 (𝑧)𝐴〉 → 𝑚(𝑧)〈𝐴〉, where 〈·〉 := 1

𝑁 Tr(·) denotes
the normalised trace. It is essential that the test matrix A is deterministic; no analogous limit can hold
if A is random and strongly correlated with W: for example, if A is a spectral projection of W.

The first optimal local law for Wigner matrices was proven for 𝐴 = 𝐼 in [27]; see also [13, 32, 50,
51], extended later to more general matrices A in the form that1

��〈(𝐺 (𝑧) − 𝑚(𝑧))𝐴〉
�� ≤ 𝑁 𝜉 ‖𝐴‖

𝑁𝜂
, 𝜂 := |�𝑧 | (1.1)

holds with a very high probability for any fixed 𝜉 > 0 if N is sufficiently large. By optimality in this
paper, we always mean up to a tolerance factor 𝑁 𝜉 . This is a natural byproduct of our method yielding
very high probability estimates under the customary moment condition; see equation (2.2) later.2 The
estimate given by equation (1.1) is called the average local law, and it controls the error in terms of the
standard Euclidean matrix norm ‖𝐴‖ of A. It holds for arbitrary deterministic matrices A, and it is also
optimal in this generality with respect to the dependence on A: for example, for 𝐴 = 𝐼, the trace 〈𝐺 −𝑚〉
is approximately complex Gaussian with standard deviation [33]√

E|〈𝐺 − 𝑚〉|2 ≈ |𝑚′(𝑧) | |�𝑚(𝑧) |
𝑁𝜂 |𝑚(𝑧) |2

∼ 1
𝑁𝜂

, 𝜂 = |�𝑧 | = 𝑁−𝛼, 𝛼 ∈ [0, 1),

but equation (1.1) is far from being optimal when applied to matrices with small rank. Rank-one matrices,
𝐴 = 𝒚𝒙∗, are especially important since they give the asymptotic behaviour of resolvent matrix elements
𝐺𝒙𝒚 := 〈𝒙, 𝐺𝒚〉. For such special test matrices, a separate isotropic local law of the optimal form

|〈𝒙, (𝐺 (𝑧) − 𝑚(𝑧))𝒚〉| ≤ 𝑁 𝜉 𝜌1/2‖𝒙‖‖𝒚‖
√
𝑁𝜂

, 𝜂 = |�𝑧 |, 𝜌 := |�𝑚(𝑧) | (1.2)

has been proven; see [28] for special coordinate vectors and later [38] for general vectors 𝒙, 𝒚, as well
as [26, 34, 36, 40] for more general ensembles. Note that a direct application of equation (1.1) to
𝐴 = 𝒚𝒙∗ would give a bound of order 1/𝜂 instead of the optimal 1/

√
𝑁𝜂 in equation (1.2), which is

an unacceptable overestimate in the most interesting small 𝜂-regime. More generally, the average local
law given by equation (1.1) performs badly when A has effectively small rank: that is, if only a few
eigenvalues of A are comparable with the norm ‖𝐴‖ and most other eigenvalues are much smaller or
even zero.

1Traditional local laws for Wigner matrices did not consider a general test matrix A. This concept appeared later in connection
with more general random matrix ensembles; see, for example, [26].

2We remark that the 𝑁 𝜉 tolerance factor can be improved to logarithmic factors under slightly different conditions; see, for
example, [13, 31, 32].
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Quite recently, we found that the average local law given by equation (1.1) is also suboptimal for
another class of test matrices A, namely traceless matrices. In [15], we proved that��〈(𝐺 (𝑧) − 𝑚(𝑧))𝐴〉

�� = ��〈𝐺 (𝑧)𝐴〉
�� ≤ 𝑁 𝜉 ‖𝐴‖

𝑁
√
𝜂
, 𝜂 = |�𝑧 | (1.3)

for any deterministic matrix A with 〈𝐴〉 = 0: that is, traceless observables yield an additional √𝜂
improvement in the error. The optimality of this bound for general traceless A was demonstrated by
identifying the nontrivial Gaussian fluctuation of 𝑁√𝜂〈𝐺 (𝑧)𝐴〉 in [16].

While the mechanism behind the suboptimality of equation (1.1) for small rank and traceless A is
very different, their common core is that estimating the size of A simply by the Euclidean norm is too
crude for several important classes of A. In this paper, we present a local law that unifies all three local
laws in equations (1.1), (1.2) and (1.3) by identifying the appropriate way to measure the size of A. Our
main result (Theorem 2.2, 𝑘 = 1 case) shows that��〈(𝐺 (𝑧) − 𝑚(𝑧))𝐴〉

�� ≤ 𝑁 𝜉

𝑁𝜂
|〈𝐴〉| + 𝑁

𝜉 𝜌1/2〈| �̊�|2〉1/2

𝑁
√
𝜂

, 𝜂 = |�𝑧 |, 𝜌 = |�𝑚(𝑧) | (1.4)

holds with very high probability, where �̊� := 𝐴 − 〈𝐴〉 is the traceless part of A. It is straightforward
to check that equation (1.4) implies equations (1.1), (1.2) and (1.3); moreover, it optimally interpolates
between full-rank and rank-one matrices A; hence we call equation (1.4) the rank-uniform local law
for Wigner matrices. Note that an optimal local law for matrices of intermediate rank was previously
unknown; indeed, the local laws given by equations (1.1) and (1.2) are optimal only for essentially full-
rank and essentially finite-rank observables, respectively. The proof of the optimality of equation (1.4)
follows from identifying the scale of the Gaussian fluctuation of its left-hand side. Its standard deviation
for traceless A is √

E |〈𝐺𝐴〉|2 ≈ |𝑚 |
√
�𝑚〈𝐴𝐴∗〉1/2

𝑁
√
𝜂

∼ 𝜌1/2〈𝐴𝐴∗〉1/2

𝑁
√
𝜂

; (1.5)

this relation was established for matrices with bounded norm ‖𝐴‖ � 1 in [16, 42].
The key observation that traceless A substantially improves the error term in equation (1.3) com-

pared with equation (1.1) was the conceptually new input behind our recent proof of the Eigenstate
Thermalisation Hypothesis in [15] followed by the proof of the normal fluctuation in the quantum
unique ergodicity for Wigner matrices in [17]. Both results concern the behaviour of the eigenvector
overlaps: that is, quantities of the form 〈𝒖𝑖 , 𝐴𝒖 𝑗〉, where {𝒖𝑖}𝑁

𝑖=1 are the normalised eigenvectors of W.
The former result stated that ��〈𝒖𝑖 , �̊�𝒖 𝑗〉

�� = ��〈𝒖𝑖 , 𝐴𝒖 𝑗〉 − 𝛿𝑖 𝑗 〈𝐴〉
�� ≤ 𝑁 𝜉 ‖ �̊�‖

√
𝑁

(1.6)

holds with very high probability for any 𝑖, 𝑗 and for any fixed 𝜉 > 0. The latter result established the
optimality of equation (1.6) for 𝑖 = 𝑗 by showing that

√
𝑁 〈𝒖𝑖 , �̊�𝒖𝑖〉 is asymptotically Gaussian when

the corresponding eigenvalue lies in the bulk of the spectrum. The variance of
√
𝑁 〈𝒖𝑖 , �̊�𝒖𝑖〉 was shown

to be 〈| �̊�|2〉 in [17], but we needed to assume that 〈| �̊�|2〉 ≥ 𝑐‖ �̊�‖2 with some fixed positive constant c:
that is, that the rank of �̊� was essentially macroscopic.

As the second main result of the current paper, we now remove this unnatural condition and show
the standard Gaussianity of the normalised overlaps [𝑁/〈| �̊�|2〉]1/2〈𝒖𝑖 , �̊�𝒖𝑖〉 for bulk indices under
the optimal and natural condition that 〈| �̊�|2〉 � 𝑁−1‖ �̊�‖2, which essentially ensures that �̊� is not
of finite rank. This improvement is possible thanks to improving the dependence of the error terms
in the local laws from ‖ �̊�‖ to 〈| �̊�|2〉1/2 similarly to the improvement in equation (1.4) over equation
(1.3). We will also need a multi-resolvent version of this improvement since off-diagonal overlaps
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〈𝒖𝑖 , 𝐴𝒖 𝑗〉 are not accessible via single-resolvent local laws; in fact, |〈𝒖𝑖 , 𝐴𝒖 𝑗〉|2 is intimately related
to 〈�𝐺 (𝑧)𝐴�𝐺 (𝑧′)𝐴∗〉 with two different spectral parameters 𝑧, 𝑧′, analysed in Theorem 2.2. As a
corollary, we will show the following improvement of equation (1.6) (see Theorem 2.6)��〈𝒖𝑖 , 𝐴𝒖 𝑗〉 − 𝛿𝑖 𝑗 〈𝐴〉

�� ≤ 𝑁 𝜉 〈| �̊�|2〉1/2
√
𝑁

(1.7)

for the bulk indices. The analysis at the edge is deferred to later work.
Gaussian fluctuation of diagonal overlaps with a special low rank observable has been proven earlier.

Right after [17] was posted on the arXiv, Benigni and Lopatto in an independent work [7] proved the
standard Gaussian fluctuation of [𝑁/|𝑆 |]1/2 [ ∑

𝑎∈𝑆 |𝑢𝑖 (𝑎) |2 − |𝑆 |/𝑁] whenever 1 � |𝑆 | � 𝑁: that is,
they considered 〈𝒖𝑖 , �̊�𝒖𝑖〉 for the special case when the matrix A is the projection on coordinates from
the set S. Their result also holds at the edge. The condition |𝑆 | � 𝑁 requires A to have small rank;
hence it is complementary to our old condition 〈| �̊�|2〉 ≥ 𝑐‖ �̊�‖2 from [17] for projection operators. The
natural condition |𝑆 | � 1 is the special case of our new improved condition 〈| �̊�|2〉 � 𝑁−1‖ �̊�‖2. In
particular, our new result covers [7] as a special case in the bulk, and it gives a uniform treatment of all
observables in full generality.

The methods of [7] and [17] are very different albeit they both rely on Dyson Brownian motion
(DBM), complemented by fairly standard Green function comparison (GFT) techniques. Benigni and
Lopatto focused on the joint Gaussianity of the individual eigenvector entries 𝑢𝑖 (𝑎) (or, more generally,
linear functionals 〈𝑞𝛼, 𝒖𝑖〉 with deterministic unit vectors 𝑞𝛼) in the spirit of the previous quantum
ergodicity results by Bourgade and Yau [10] operating with the so-called eigenvector moment flow from
[10] complemented by its ‘fermionic’ version by Benigni [9]. This approach becomes less effective when
more entries need to be controlled simultaneously, and it seems to have a natural limitation at |𝑆 | � 𝑁 .

Our method viewed the eigenvector overlap 〈𝒖𝑖 , �̊�𝒖𝑖〉 and its off-diagonal version 〈𝒖𝑖 , �̊�𝒖 𝑗〉 as
one unit without translating it into a sum of rank-one projections 〈𝒖𝑖 , 𝑞𝛼〉〈𝑞𝛼, 𝒖 𝑗〉 via the spectral
decomposition of �̊�. The corresponding flow for overlaps with arbitrary A, called the stochastic eigenstate
equation, was introduced by Bourgade, Yau and Yin in [12] (even though they applied it to the special case
when A is a projection, their formalism is general). The analysis of this new flow is more involved than
the eigenvector moment flow since it operates on a geometrically more complicated higher-dimensional
space. However, the substantial part of this analysis has been done by Marcinek and Yau [43], and we
heavily relied on their work in our proof [17].

We close this introduction by commenting on our methods. The main novelty of the current paper
is the proof of the rank-uniform local laws involving the Hilbert-Schmidt norm 〈| �̊�|2〉1/2 instead of the
Euclidean matrix norm ‖ �̊�‖. This is done in Section 3, and it will directly imply the improved overlap
estimate in equation (1.7). Once this estimate is available, both the DBM and the GFT parts of the proof
in the current paper are essentially the same as in [17]; hence we will not give all details but only point
out the differences. While this can be done very concisely for the GFT in Appendix B, for the DBM
part, we need to recall a large part of the necessary setup in Section 4 for the convenience of the reader.

As to our main result, the general scheme to prove single resolvent local laws has been well established,
and traditionally it consisted of two parts: (i) the derivation of an approximate self-consistent equation
that 𝐺 − 𝑚 satisfies and (ii) estimating the key fluctuation term in this equation. The proofs of the
multi-resolvent local laws follow the same scheme, but the self-consistent equation is considerably more
complicated, and its stability is more delicate; see, for example, [15, 19], where general multi-resolvent
local laws were proven. The main complication lies in part (ii), where a high moment estimate is needed
for the fluctuation term. The corresponding cumulant expansion results in many terms that have typically
been organised and estimated by a graphical Feynman diagrammatic scheme. A reasonably manageable
power counting handles all diagrams for the purpose of proving equations (1.1) and (1.2). However,
in the multi-resolvent setup, or if we aim at some improvement, the diagrammatic approach becomes
very involved since the right number of additional improvement factors needs to be gained from every
single graph. This was the case many times before: (i) when a small factor (so-called ‘sigma-cell’)
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was extracted at the cusp [25], (ii) when we proved that the correlation between the resolvents of the
Hermitization of an i.i.d. random matrix shifted by two different spectral parameters 𝑧1, 𝑧2 decays in
1/|𝑧1 − 𝑧2 | [14] and (iii) more recently when the gain of order √𝜂 due to the traceless A in equation
(1.3) was obtained in [15].

Extracting 〈| �̊�|2〉1/2 instead of ‖𝐴‖, especially in the multi-resolvent case, seems even more involved
in this way since estimating A simply by its norm appears everywhere in any diagrammatic expansion.
However, very recently in [18] we introduced a new method of a system of master inequalities that
circumvents the full diagrammatic expansion. The power of this method was demonstrated by fully
extracting the maximal √𝜂-gain from traceless A even in the multi-resolvent setup; the same result
seemed out of reach with the diagrammatic method used for the single-resolvent setup in [15]. In the
current paper, we extend this technique to obtain the optimal control in terms of 〈| �̊�|2〉1/2 instead of
‖ �̊�‖ for single resolvent local laws. However, the master inequalities in this paper are different from the
ones in [18]; in fact, they are much tighter since the effect we extract now is much more delicate. We
also obtain a similar optimal control for the multi-resolvent local laws needed to prove the Gaussianity
of the bulk eigenvector overlaps under the optimal condition on A.

Notations and conventions

We denote vectors by bold-faced lowercase Roman letters 𝒙, 𝒚 ∈ C𝑁 , for some 𝑁 ∈ N. Vector and
matrix norms, ‖𝒙‖ and ‖𝐴‖, indicate the usual Euclidean norm and the corresponding induced matrix
norm. For any 𝑁 × 𝑁 matrix A, we use the notation 〈𝐴〉 := 𝑁−1 Tr 𝐴 to denote the normalised trace of
A. Moreover, for vectors 𝒙, 𝒚 ∈ C𝑁 and matrices 𝐴 ∈ C𝑁×𝑁 , we define

〈𝒙, 𝒚〉 :=
𝑁∑
𝑖=1

𝑥𝑖𝑦𝑖 , 𝐴𝒙𝒚 := 〈𝒙, 𝐴𝒚〉.

We will use the concept of ‘with very high probability’, meaning that for any fixed 𝐷 > 0, the
probability of an N-dependent event is bigger than 1 − 𝑁−𝐷 if 𝑁 ≥ 𝑁0 (𝐷). We introduce the notion of
stochastic domination (see, for example, [24]): given two families of non-negative random variables

𝑋 =
(
𝑋 (𝑁 ) (𝑢)

��� 𝑁 ∈ N, 𝑢 ∈ 𝑈 (𝑁 )
)

and 𝑌 =
(
𝑌 (𝑁 ) (𝑢)

��� 𝑁 ∈ N, 𝑢 ∈ 𝑈 (𝑁 )
)

indexed by N (and possibly some parameter u in some parameter space 𝑈 (𝑁 ) ), we say that X is
stochastically dominated by Y, if for all 𝜉, 𝐷 > 0, we have

sup
𝑢∈𝑈 (𝑁 )

P
[
𝑋 (𝑁 ) (𝑢) > 𝑁 𝜉𝑌 (𝑁 ) (𝑢)

]
≤ 𝑁−𝐷 (1.8)

for large enough 𝑁 ≥ 𝑁0 (𝜉, 𝐷). In this case, we use the notation 𝑋 ≺ 𝑌 or 𝑋 = O≺(𝑌 ). We also use the
convention that 𝜉 > 0 denotes an arbitrary small constant that is independent of N.

Finally, for positive quantities 𝑓 , 𝑔we write 𝑓 � 𝑔 and 𝑓 ∼ 𝑔 if 𝑓 ≤ 𝐶𝑔 or 𝑐𝑔 ≤ 𝑓 ≤ 𝐶𝑔, respectively,
for some constants 𝑐, 𝐶 > 0 that depend only on the constants appearing in the moment condition; see
equation (2.2) later.

2. Main results

Assumption 1. We say that𝑊 = 𝑊∗ ∈ C𝑁×𝑁 is a real symmetric/complex hermitian Wigner-matrix if
the entries (𝑤𝑎𝑏)𝑎≤𝑏 in the upper triangular part are independent and satisfy

𝑤𝑎𝑏
d
= 𝑁−1/2 ×

{
𝜒od, 𝑎 ≠ 𝑏

𝜒d, 𝑎 = 𝑏
(2.1)
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for some real random variable 𝜒d and some real/complex random variable 𝜒od of mean E 𝜒d = E 𝜒od = 0
and variances E|𝜒od |2 = 1, E 𝜒2

od = 0, E 𝜒2
d = 1 in the complex, and E|𝜒od |2 = E 𝜒2

od = 1, E 𝜒2
d = 2 in

the real case.3 We furthermore assume that for every 𝑛 ≥ 3,

E|𝜒d |𝑛 + E|𝜒od |𝑛 ≤ 𝐶𝑛 (2.2)

for some constant 𝐶𝑛; in particular, all higher-order cumulants 𝜅d
𝑛, 𝜅

od
𝑛 of 𝜒d, 𝜒od are finite for any n.

Our results hold for both symmetry classes, but for definiteness, we prove the main results in the real
case, the changes for the complex case being minimal.

For a spectral parameter 𝑧 ∈ C with 𝜂 := |�𝑧 | � 𝑁−1, the resolvent 𝐺 = 𝐺 (𝑧) = (𝑊 − 𝑧)−1 of
a 𝑁 × 𝑁 Wigner matrix W is well approximated by a constant multiple 𝑚 · 𝐼 of the identity matrix,
where 𝑚 = 𝑚(𝑧) is the Stieltjes transform of the semicircular distribution

√
4 − 𝑥2/(2𝜋) and satisfies

the equation

− 1
𝑚

= 𝑚 + 𝑧, �𝑚�𝑧 > 0. (2.3)

We set 𝜌(𝑧) := |�𝑚(𝑧) |, which approximates the density of eigenvalues near �𝑧 in a window of size 𝜂.
We first recall the classical local law for Wigner matrices in both its tracial and isotropic forms [27,

29, 34, 38]:

Theorem 2.1. Fix any 𝜖 > 0; then it holds that

|〈𝐺 − 𝑚〉| ≺ 1
𝑁𝜂

, |〈𝒙, (𝐺 − 𝑚)𝒚〉| ≺ ‖𝒙‖‖𝒚‖
(√ 𝜌

𝑁𝜂
+ 1
𝑁𝜂

)
(2.4)

uniformly in any deterministic vectors 𝒙, 𝒚 and spectral parameter z with 𝜂 = |�𝑧 | ≥ 𝑁−1+𝜖 and
�𝑧 ∈ R, where 𝜌 = |�𝑚(𝑧) |.

Our main result is the following optimal multi-resolvent local law with Hilbert-Schmidt norm error
terms. Compared to Theorem 2.1, we formulate the bound only in an averaged sense since, due to the
Hilbert-Schmidt norm in the error term, the isotropic bound is a special case with one of the traceless
matrices being a centred rank-one matrix; see Corollary 2.4.

Theorem 2.2 (Averaged multi-resolvent local law). Fix 𝜖 > 0, let 𝑘 ≥ 1, and consider 𝑧1, . . . , 𝑧𝑘 ∈ C
with 𝑁𝜂𝜌 ≥ 𝑁 𝜖 , for 𝜂 := min𝑖 |�𝑧𝑖 |, 𝜌 := max𝑖 |�𝑚(𝑧𝑖) |, 𝑑 := min𝑖 dist(𝑧𝑖 , [−2, 2]), and let 𝐴1, . . . , 𝐴𝑘

be deterministic traceless matrices 〈𝐴𝑖〉 = 0. Set 𝐺𝑖 := 𝐺 (𝑧𝑖) and 𝑚𝑖 := 𝑚(𝑧𝑖) for all 𝑖 ≤ 𝑘 . Then we
have the local law on optimal scale4

|〈𝐺1𝐴1 · · ·𝐺𝑘𝐴𝑘 − 𝑚1 · · ·𝑚𝑘𝐴1 · · · 𝐴𝑘〉| ≺ 𝑁 𝑘/2−1
𝑘∏

𝑖=1
〈|𝐴𝑖 |2〉1/2 ×

⎧⎪⎪⎨⎪⎪⎩
√

𝜌
𝑁 𝜂 , 𝑑 < 10
1√

𝑁 𝑑𝑘+1 , 𝑑 ≥ 10.
(2.5)

Remark 2.3. We also obtain generalisations of Theorem 2.2, where each G may be replaced by a
product of Gs and |𝐺 | ′𝑠; see Lemma 3.1 later.

Due to the Hilbert-Schmidt sense of the error term, we obtain an isotropic variant of Theorem 2.2 as
an immediate corollary by choosing 𝐴𝑘 = 𝑁 𝒚𝒙∗ − 〈𝒙, 𝒚〉 in equation (2.5).

3We assumed that 𝜎 := E 𝜒2
od = 0, E 𝜒2

d = 1 in the complex case and that E 𝜒2
d = 2 in the real case only for notational

simplicity. All the results presented below hold under the more general assumption |𝜎 | < 1 and general variance for diagonal
entries. The necessary modifications in the proofs are straightforward and will be omitted.

4The constant 10 is arbitrary and can be replaced by any positive constant.
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Corollary 2.4 (Isotropic local law). Under the setup and conditions of Theorem 2.2, for any vectors
𝒙, 𝒚, it holds that

|〈𝒙, (𝐺1𝐴1 · · · 𝐴𝑘−1𝐺𝑘 − 𝑚1 · · ·𝑚𝑘𝐴1 · · · 𝐴𝑘−1)𝒚〉| ≺ ‖𝒙‖‖𝒚‖𝑁
𝑘−1

2

𝑘−1∏
𝑖=1

〈|𝐴𝑖 |2〉1/2 ×
⎧⎪⎪⎨⎪⎪⎩
√

𝜌
𝑁 𝜂 , 𝑑 < 10
1√

𝑁 𝑑𝑘+1 , 𝑑 ≥ 10.
(2.6)

We now compare Theorem 2.2 to the previous result [18, Theorem 2.5], where an error term
𝑁−1𝜂−𝑘/2 ∏

𝑖 ‖𝐴𝑖 ‖ was proven for equation (2.5). For clarity, we focus on the really interesting 𝑑 < 10
regime.
Remark 2.5. For 𝑘 = 1, our new estimate for traceless A,��〈(𝐺 − 𝑚)𝐴〉

�� = ��〈𝐺𝐴〉�� ≺ √
𝜌

𝑁
√
𝜂
〈|𝐴|2〉1/2, (2.7)

is strictly better than the one in [18, Theorem 2.5], since 〈|𝐴|2〉 ≤ ‖𝐴‖2 always holds, but 〈|𝐴|2〉 can
be much smaller than ‖𝐴‖2 for small rank A. In addition, equation (2.7) features an additional factor√
𝜌 � 1 that is considerably smaller than 1 near the spectral edges.
For larger 𝑘 ≥ 2, the relationship depends on the relative size of the Hilbert-Schmidt and operator

norm of the 𝐴𝑖s as well as on the size of 𝜂. We recall [46] that the numerical rank of A is defined as
𝑟 (𝐴) := 𝑁 〈|𝐴|2〉/‖𝐴‖2 ≤ rank(𝐴) and say that A is 𝛼-mesoscopic for some 𝛼 ∈ [0, 1] if 𝑟 (𝐴) = 𝑁𝛼. If
for some 𝑘 ≥ 2 all 𝐴𝑖 are 𝛼-mesoscopic, then Theorem 2.2 improves upon [18, Theorem 2.5] whenever
𝜂 � 𝑁 (1−𝛼𝑘)/(𝑘−1) .

Local laws on optimal scales can give certain information on eigenvectors as well. Let 𝜆1 ≤ 𝜆2 ≤
. . . ≤ 𝜆𝑁 denote the eigenvalues and {𝒖𝑖}𝑁

𝑖=1 the corresponding orthonormal eigenvectors of W. Already
the single-resolvent isotropic local law given by equation (2.4) implies the eigenvector delocalisation:
that is, that ‖𝒖𝑖 ‖∞ ≺ 𝑁−1/2. More generally,5 |〈𝒙, 𝒖𝑖〉| ≺ 𝑁−1/2‖𝒙‖: that is, eigenvectors behave as
completely random unit vectors in the sense of considering their rank-1 projections onto any deterministic
vector 𝒙. This concept can be greatly extended to arbitrary deterministic observable matrix A, leading
to the following results motivated both by thermalisation ideas from physics [21, 22, 23, 30] and by
quantum (unique) ergodicity (QUE) in mathematics [2, 3, 4, 5, 20, 41, 44, 47, 48, 49, 54, 55].
Theorem 2.6 (Eigenstate thermalisation hypothesis). Let W be a Wigner matrix satisfying Assumption 1,
and let 𝛿 > 0. Then for any deterministic matrix A and any bulk indices 𝑖, 𝑗 ∈ [𝛿𝑁, (1 − 𝛿)𝑁], it holds
that ��〈𝒖𝑖 , 𝐴𝒖 𝑗〉 − 𝛿𝑖 𝑗 〈𝐴〉

�� ≺ 〈| �̊�|2〉1/2

𝑁1/2 , (2.8)

where �̊� := 𝐴 − 〈𝐴〉 is the traceless part of A.
Remark 2.7.
1. The result given by equation (2.8) was established in [15] with 〈�̊��̊�∗〉1/2 replaced by ‖ �̊�‖ uniformly

in the spectrum (i.e., also for edge indices).
2. For rank-1 matrices 𝐴 = 𝒙𝒙∗, the bound given by equation (2.8) immediately implies the complete

delocalisation of eigenvectors in the form |〈𝒙, 𝒖𝑖〉| ≺ 𝑁−1/2‖𝒙‖.

5Under stronger decay conditions on the distribution of 𝜒d, 𝜒od, even the optimal bound ‖𝒖𝑖 ‖∞ ≤ 𝐶
√

log 𝑁 /𝑁 for the bulk
and ‖𝒖𝑖 ‖∞ ≤ 𝐶 log 𝑁 /

√
𝑁 for the edge eigenvectors has been proven [52]; see also [45] for a comprehensive summary of related

results. Very recently, even the optimal constant C has been identified [8].
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Theorem 2.6 directly follows from the bound

max
𝑖, 𝑗∈[𝛿𝑁 , (1−𝛿)𝑁 ]

𝑁
��〈𝒖𝑖 , �̊�𝒖 𝑗〉

��2 ≤ 𝐶𝛿 (𝑁𝜂)2 max
𝐸,𝐸′ ∈ [−2+𝜖 ,2−𝜖 ]

〈�𝐺 (𝐸 + i𝜂) �̊��𝐺 (𝐸 ′ + i𝜂) �̊�∗〉

that is obtained by the spectral decomposition of both resolvents and the well-known eigenvalue rigidity,
with some explicit 𝛿-dependent constants 𝐶𝛿 and 𝜖 = 𝜖 (𝛿) > 0 (see [15, Lemma 1] for more details).
The right-hand side can be directly estimated using equation (2.5); and finally, choosing 𝜂 = 𝑁−1+𝜉 for
any small 𝜉 > 0 gives equation (2.8) and thus proves Theorem 2.6.

The next question is to establish a central limit theorem for the diagonal overlap in equation (2.8).
Theorem 2.8 (Central limit theorem in the QUE). Let W be a real symmetric (𝛽 = 1) or complex
Hermitian (𝛽 = 2) Wigner matrix satisfying Assumption 1. Fix small 𝛿, 𝛿′ > 0, and let 𝐴 = 𝐴∗ be a
deterministic 𝑁 × 𝑁 matrix with 𝑁−1+𝛿′ ‖ �̊�‖2 � 〈�̊�2〉 � 1. In the real symmetric case, we also assume
that 𝐴 ∈ R𝑁×𝑁 is real. Then for any bulk index 𝑖 ∈ [𝛿𝑁, (1 − 𝛿)𝑁], we have a central limit theorem√

𝛽𝑁

2〈�̊�2〉
[
〈𝒖𝑖 , 𝐴𝒖𝑖〉 − 〈𝐴〉

]
⇒ N , as 𝑁 → ∞ (2.9)

with N being a standard real Gaussian random variable. Moreover, for any moment, the speed of
convergence is explicit (see equation (B.5)).

We require that 〈�̊�2〉 � 𝑁−1+𝛿′ ‖ �̊�‖2 in order to ensure that the spectral distribution of �̊� is not
concentrated to a finite number eigenvalues: that is, that �̊� has effective rank � 1. Indeed, the statement
in equation (2.9) does not hold for finite-rank As: for example, if 𝐴 = �̊� = |e𝑥〉〈𝒆𝑥 | − |𝒆𝑦〉〈e𝑦 |, for
some 𝑥 ≠ 𝑦 ∈ [𝑁], then 〈𝒖𝑖 , �̊�𝒖𝑖〉 = |𝒖𝑖 (𝑥) |2 − |𝒖𝑖 (𝑦) |2, which is the difference of two asymptotically
independent 𝜒2-distributed random variables (e.g., see [10, Theorem 1.2]). More generally, the joint
distribution of finitely many eigenvectors overlaps has been identified in [1, 10, 11, 43] for various
related ensembles.

3. Proof of Theorem 2.2

In this section, we prove Theorem 2.2 in the critical 𝑑 < 10 regime. The 𝑑 ≥ 10 regime is handled
similarly, but the estimates are much simpler; the necessary modifications are outlined in Appendix A.

In the subsequent proof, we will often assume that a priori bounds, with some control parameters
𝜓av/iso

𝐾 ≥ 1, of the form

Ψav
0 = Ψav

0 (𝑧1) := 𝑁𝜂 |〈𝐺1 − 𝑚1〉| ≺ 𝜓av
0 (3.1)

Ψav
𝐾 = Ψav

𝐾 (𝑨, 𝒛) :=
𝑁 (3−𝐾 )/2𝜂1/2

𝜌1/2 ∏
𝑖 〈|𝐴𝑖 |2〉1/2 |〈[𝐺1𝐴1 · · ·𝐺𝐾 𝐴𝐾 − 𝑚1 · · ·𝑚𝐾 𝐴1 · · · 𝐴𝐾 〉| ≺ 𝜓av

𝐾 , 𝐾 ≥ 1,

(3.2)

Ψiso
𝐾 = Ψiso

𝐾 (𝒙, 𝒚, 𝑨, 𝒛) :=
𝑁 (1−𝐾 )/2𝜂1/2𝜌−1/2

‖𝒙‖‖𝒚‖
∏

𝑖 〈|𝐴𝑖 |2〉1/2

× |〈𝒙, [𝐺1𝐴1 · · ·𝐺𝐾+1 − 𝑚1 · · ·𝑚𝐾+1𝐴1 · · · 𝐴𝐾 ]𝒚〉| ≺ 𝜓iso
𝐾 (3.3)

for certain indices 𝐾 ≥ 0 have been established uniformly6 in deterministic traceless matrices 𝑨 =
(𝐴1, . . . , 𝐴𝐾 ), deterministic vectors 𝒙, 𝒚 and spectral parameters 𝒛 = (𝑧1, . . . , 𝑧𝐾 ) with 𝑁𝜂𝜌 ≥ 𝑁 𝜖 .
We stress that we do not assume the estimates to be uniform in K. Note that 𝜓av

0 is defined somewhat
differently from 𝜓av

𝐾 , 𝐾 ≥ 1, but the definition of 𝜓iso
𝐾 is the same for all 𝐾 ≥ 0. For intuition, the reader

6In applications, the domain of uniformity may slightly change from 𝑁 𝜂𝜌 ≥ 𝑁 𝜖 to 𝑁 𝜂𝜌 ≥ ℓ𝑁 𝜖 with some fixed integer ℓ,
but for simplicity we ignore this subtlety.
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should think of the control parameters as essentially order-one quantities; in fact, our main goal will be
to prove this fact. Note that by Theorem 2.1, we may set 𝜓av/iso

0 = 1.
As a first step, we observe that equations (3.1), (3.2) and (3.3) immediately imply estimates on more

general averaged resolvent chains and isotropic variants.

Lemma 3.1. (i) Assuming equations (3.1) and (3.3) for 𝐾 = 0 holds uniformly in 𝑧1, then for any
𝑧1, . . . , 𝑧𝑙 with 𝑁𝜂𝜌 ≥ 𝑁 𝜖 , it holds that

|〈𝐺1𝐺2 · · ·𝐺𝑙 − 𝑚 [𝑧1, . . . , 𝑧𝑙]〉| ≺
𝜓av

0
𝑁𝜂𝑙

,

|〈𝒙, (𝐺1𝐺2 · · ·𝐺𝑙 − 𝑚 [𝑧1, . . . , 𝑧𝑙])𝒚〉| ≺
‖𝒙‖‖𝒚‖𝜓iso

0
𝜂𝑙−1

√
𝜌

𝑁𝜂
,

(3.4)

where 𝑚 [𝑧1, . . . , 𝑧𝑙] stands for the lth divided difference of the function 𝑚(𝑧) from equation (2.3),
explicitly

𝑚 [𝑧1, . . . , 𝑧𝑙] =
∫ 2

−2

√
4 − 𝑥2

2𝜋

𝑙∏
𝑖=1

1
𝑥 − 𝑧𝑖

d𝑥. (3.5)

(ii) Assuming for some 𝑘 ≥ 1 the estimates given by equations (3.2) and (3.3) for 𝐾 = 𝑘 have been
established uniformly, then for G 𝑗 := 𝐺 𝑗 ,1 · · ·𝐺 𝑗 ,𝑙 𝑗 with 𝐺 𝑗 ,𝑖 ∈ {𝐺 (𝑧 𝑗 ,𝑖), |𝐺 (𝑧 𝑗 ,𝑖) |}, traceless matrices
𝐴𝑖 and 𝜂 := min 𝑗 ,𝑖 |�𝑧 𝑗 ,𝑖 |, 𝜌 := max 𝑗 ,𝑖 𝜌(𝑧 𝑗 ,𝑖), it holds that���〈G1𝐴1 · · ·G𝑘𝐴𝑘 − 𝑚 (1) · · ·𝑚 (𝑘) 𝐴1 · · · 𝐴𝑘〉

��� ≺ 𝜓av
𝑘 𝑁

𝑘/2−1
√

𝜌

𝑁𝜂

∏
𝑗

〈|𝐴 𝑗 |2〉1/2

𝜂𝑙 𝑗−1 ,

���〈𝒙, [G1𝐴1 · · · 𝐴𝑘G𝑘+1 − 𝑚 (1) · · ·𝑚 (𝑘+1) 𝐴1 · · · 𝐴𝑘 ]𝒚〉
��� ≺ 𝜓iso

𝑘 ‖𝒙‖‖𝒚‖𝑁 𝑘/2
√

𝜌

𝑁𝜂

∏
𝑗

〈|𝐴 𝑗 |2〉1/2

𝜂𝑙 𝑗−1 ,

(3.6)

where

𝑚 ( 𝑗) :=
∫ 2

−2

√
4 − 𝑥2

2𝜋

∏
𝑖

𝑔 𝑗 ,𝑖 (𝑥) d𝑥 (3.7)

and 𝑔 𝑗 ,𝑖 (𝑥) = (𝑥 − 𝑧 𝑗 ,𝑖)−1 or 𝑔 𝑗 ,𝑖 (𝑥) = |𝑥 − 𝑧 𝑗 ,𝑖 |−1, depending on whether 𝐺 𝑗 ,𝑖 = 𝐺 (𝑧 𝑗 ,𝑖) or 𝐺 𝑗 ,𝑖 =
|𝐺 (𝑧 𝑗 ,𝑖) |.

Proof. Analogous to [18, Lemma 3.2]. �

The main result of this section is the following hierarchy of master inequalities.

Proposition 3.2 (Hierarchy of master inequalities). Fix 𝑘 ≥ 1, and assume that equations (3.2) and
(3.3) have been established uniformly in 𝑨 and 𝒛 with 𝑁𝜂𝜌 ≥ 𝑁 𝜖 for all 𝐾 ≤ 2𝑘 . Then it holds that

Ψav
𝑘 ≺ Φ𝑘 +

( 𝜓av
2𝑘√
𝑁𝜂𝜌

)1/2
+ 𝜓av

𝑘−1 +
𝜓av

𝑘√
𝑁𝜂

+ (𝜓iso
𝑘 )2/3Φ1/3

𝑘−1 +
𝑘−1∑
𝑗=1

√
𝜓iso

𝑗 Φ𝑘− 𝑗 (𝜓iso
𝑘 +Φ𝑘−1) (3.8)

+ 1
𝑁𝜂

𝑘−1∑
𝑗=1
𝜓av

𝑗

(
1 + 𝜓av

𝑘− 𝑗

√
𝜌

𝑁𝜂

)
Ψiso

𝑘 ≺ Φ𝑘 + 𝜓iso
𝑘−1 +

1
𝑁𝜂

[ 𝑘∑
𝑗=1
𝜓av

𝑗

(
1 +

√
𝜌

𝑁𝜂
𝜓iso

𝑘− 𝑗

)
+

2𝑘∑
𝑗=0

√
𝜓iso

𝑗 𝜓
iso
2𝑘− 𝑗 + 𝜓

iso
𝑘

]
(3.9)
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with the definition

Φ𝑘 :=
∑

𝑘1+𝑘2+···≤𝑘

(
1 +

𝜓iso
2𝑘1√
𝑁𝜂𝜌

)1/2 (
1 +

𝜓iso
2𝑘2√
𝑁𝜂𝜌

)1/2 ∏
𝑖≥3

(
1 + 𝜓iso

𝑘𝑖

√
𝜌

𝑁𝜂

)
, (3.10)

where the sum is taken over an arbitrary number of non-negative integers 𝑘𝑖 , with 𝑘𝑖 ≥ 1 for 𝑖 ≥ 3,
under the condition that their sum does not exceed k (in the case of only one nonzero 𝑘1, the second
factor and product in equation (3.10) are understood to be one and Φ0 = 1).

This hierarchy has the structure that each Ψav/iso
𝑘 is estimated partly by 𝜓s with an index higher than

k, which potentially is uncontrollable even if the coefficient of the higher-order terms is small (recall that
1/(𝑁𝜂) and 1/(𝑁𝜂𝜌) are small quantities). Thus the hierarchy must be complemented by another set
of inequalities that estimate higher-indexed Ψs with smaller-indexed ones even at the expense of a large
constant. The success of this scheme eventually depends on the relative size of these small and large
constants, so it is very delicate. We prove the following reduction inequalities to estimate the 𝜓av/iso

𝑙
terms with 𝑘 + 1 ≤ 𝑙 ≤ 2𝑘 in equations (3.8) and (3.9) by 𝜓s with indices smaller than or equal to k.

Lemma 3.3 (Reduction lemma). Fix 1 ≤ 𝑗 ≤ 𝑘 , and assume that equations (3.2) and (3.3) have been
established uniformly for 𝐾 ≤ 2𝑘 . Then it holds that

Ψav
2𝑘 �

√
𝑁𝜂

𝜌
+

⎧⎪⎪⎨⎪⎪⎩
√

𝜌
𝑁 𝜂 (𝜓

av
𝑘 )2 𝑘 even,

𝜓av
𝑘−1 + 𝜓

av
𝑘+1 +

√
𝜌

𝑁 𝜂𝜓
av
𝑘−1𝜓

av
𝑘+1 𝑘 odd,

(3.11)

and for even k also that

Ψiso
𝑘+ 𝑗 �

√
𝑁𝜂

𝜌
+

(
𝑁𝜂

𝜌

)1/4
(𝜓av

2 𝑗 )
1/2 + 𝜓iso

𝑘 +
(
𝜌

𝑁𝜂

)1/4
(𝜓av

2 𝑗 )
1/2𝜓iso

𝑘 . (3.12)

The rest of the present section is structured as follows: in Section 3.1, we prove equation (3.8),
and in Section 3.2, we prove equation (3.9). Then, in Section 3.3, we prove Lemma 3.3 and conclude
the proof of Theorem 2.2. Before starting the main proof, we collect some trivial estimates between
Hilbert-Schmidt and operator norms using matrix Hölder inequalities.

Lemma 3.4. For 𝑁 × 𝑁 matrices 𝐵1, . . . , 𝐵𝑘 and 𝑘 ≥ 2, it holds that�����
〈

𝑘∏
𝑖=1

𝐵𝑖

〉����� ≤ 𝑘∏
𝑖=1

〈|𝐵𝑖 |𝑘〉1/𝑘 ≤ 𝑁 𝑘/2−1
𝑘∏

𝑖=1
〈|𝐵𝑖 |2〉1/2 (3.13)

and

‖𝐵‖ =
√
𝜆max(|𝐵 |2) ≤ 𝑁1/2〈|𝐵 |2〉1/2. (3.14)

In the sequel, we often drop the indices from 𝐺, 𝐴; hence we write (𝐺𝐴)𝑘 for 𝐺1𝐴1 . . . 𝐺𝑘𝐴𝑘 and
assume without loss of generality that 𝐴𝑖 = 𝐴∗

𝑖 and 〈𝐴2
𝑖 〉 = 1. We also introduce the convention in this

paper that matrices denoted by capital A letters are always traceless.

3.1. Proof of averaged estimate given by equation (3.8) in Proposition 3.2

We now identify the leading contribution of 〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉. For any matrix-valued function 𝑓 (𝑊),
we define the second moment renormalisation, denoted by underlining, as

𝑊 𝑓 (𝑊) := 𝑊 𝑓 (𝑊) − ẼGUE𝑊 (𝜕𝑊 𝑓 ) (𝑊) (3.15)
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in terms of the directional derivative 𝜕𝑊 in the direction of an independent GUE-matrix 𝑊 . The
motivation for the second moment renormalisation is that by Gaussian integration by parts, it holds
that E𝑊 𝑓 (𝑊) = Ẽ𝑊 (𝜕𝑊 𝑓 ) (𝑊) whenever W is a Gaussian random matrix of zero mean and 𝑊 is an
independent copy of W. In particular, it holds that E𝑊 𝑓 (𝑊) = 0 whenever W is a GUE-matrix, while
E𝑊 𝑓 (𝑊) is small but nonzero for GOE or non-Gaussian matrices. By concentration and universality,
we expect that to leading order 𝑊 𝑓 (𝑊) may be approximated by Ẽ𝑊 (𝜕𝑊 𝑓 ) (𝑊). Here the directional
derivative 𝜕𝑊 𝑓 should be understood as

(𝜕𝑊 𝑓 ) (𝑊) := lim
𝜖→0

𝑓 (𝑊 + 𝜖𝑊) − 𝑓 (𝑊)
𝜖

.

In our application, the function 𝑓 (𝑊) is always a (product of) matrix resolvents𝐺 (𝑧) = (𝑊−𝑧)−1 and
possibly deterministic matrices 𝐴𝑖 . This time, we view the resolvent as a function of W,𝐺 (𝑊) = (𝑊−𝑧)−1

for any fixed z. By the resolvent identity, it follows that

(𝜕𝑊𝐺) (𝑊) = lim
𝜖→0

(𝑊 + 𝜖𝑊 − 𝑧)−1 − (𝑊 − 𝑧)−1

𝜖

= − lim
𝜖→0

(𝑊 + 𝜖𝑊 − 𝑧)−1𝑊 (𝑊 − 𝑧)−1 = −𝐺 (𝑊)𝑊𝐺 (𝑊), (3.16)

while the expectation of a product of GUE-matrices acts as an averaged trace in the sense

ẼGUE𝑊𝐴𝑊 =
1
𝑁

∑
𝑎𝑏

Δ𝑎𝑏𝐴Δ𝑏𝑎 = 〈𝐴〉𝐼,

where I denotes the identity matrix and (Δ𝑎𝑏)𝑐𝑑 := 𝛿𝑎𝑐𝛿𝑏𝑑 . Therefore, for instance, we have the
identities

𝑊𝐺 = 𝑊𝐺 + 〈𝐺〉𝐺, 𝑊𝐺𝐴𝐺 = 𝑊𝐺𝐴𝐺 + 〈𝐺〉𝐺𝐴𝐺 + 〈𝐺𝐴𝐺〉𝐺 = 𝑊𝐺𝐴𝐺 + 〈𝐺𝐴𝐺〉𝐺.

Finally, we want to comment on the choice of renormalising with respect to an independent GUE
rather than a GOE matrix. This is purely a matter of convenience, and we could equally have chosen the
GOE-renormalisation. Indeed, we have

ẼGOE𝑊𝐴𝑊 = 〈𝐴〉𝐼 + 𝐴𝑡

𝑁
,

and therefore, for instance,

𝑊𝐺GOE = 𝑊𝐺GUE + 𝐺
𝑡𝐺

𝑁
,

which is a negligible difference. Our formulas below will be slightly simpler with our choice in equation
(3.15), even though now 𝐸𝑊 𝑓 (𝑊) is not exactly zero even for𝑊 ∼ GOE.

Lemma 3.5. We have〈
𝑘∏

𝑖=1
(𝐺𝑖𝐴𝑖) −

𝑘∏
𝑖=1

𝑚𝑖𝐴𝑖

〉(
1 +O≺

(
𝜓av

0
𝑁𝜂

))
= −𝑚1〈𝑊𝐺1𝐴1 · · ·𝐺𝑘𝐴𝑘〉 +O≺

(
Eav

𝑘

)
, (3.17)
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where Eav
1 = 0 and

Eav
2 :=

√
𝜌

𝑁𝜂

(
𝜓av

1 +
𝜓av

0√
𝑁𝜂𝜌

+ 1
𝑁𝜂

√
𝜌

𝑁𝜂
(𝜓av

1 )2
)
,

Eav
𝑘 := 𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

(
𝜓av

𝑘−1 +
1
𝑁𝜂

𝑘−1∑
𝑗=1
𝜓av

𝑗

(
1 + 𝜓av

𝑘− 𝑗

√
𝜌

𝑁𝜂

)) (3.18)

for 𝑘 ≥ 3.

Proof. We start with the expansion(
1 +O≺

(
𝜓av

0
𝑁𝜂

))
〈𝐺1𝐴1 · · ·𝐺𝑘𝐴𝑘〉 = 𝑚1〈𝐺2 · · ·𝐺𝑘𝐴𝑘𝐴1〉 − 𝑚1〈𝑊𝐺1𝐴1𝐺2 · · ·𝐺𝑘𝐴𝑘〉

= 𝑚1〈𝐺2 · · ·𝐺𝑘𝐴𝑘𝐴1〉 + 𝑚1

𝑘∑
𝑗=2

〈𝐺1 · · ·𝐺 𝑗〉〈𝐺 𝑗 · · ·𝐺𝑘𝐴𝑘〉

− 𝑚1〈𝑊𝐺1𝐴1𝐺2 · · ·𝐺𝑘𝐴𝑘〉,

(3.19)

due to

𝐺 = 𝑚 − 𝑚𝑊𝐺 + 𝑚〈𝐺 − 𝑚〉𝐺, (3.20)

where for 𝑘 = 1 the first two terms in the right-hand side of equation (3.19) are not present. In the
second step, we extended the underline renormalisation to the entire product 𝑊𝐺1𝐴1𝐺2 · · ·𝐺𝑘𝐴𝑘 at
the expense of generating additional terms collected in the summation; this identity can be obtained
directly from the definition given by equation (3.15). Note that in the first line of equation (3.19), we
moved the term coming from 𝑚1〈𝐺1 −𝑚1〉𝐺1 of equation (3.20) to the left-hand side, causing the error
O≺(𝜓av

0 /(𝑁𝜂)). For 𝑘 ≥ 2, using Lemmas 3.1 and 3.4, we estimate the second term in the second line
of equation (3.19) by

|〈𝐺1 . . . 𝐺 𝑗〉〈𝐺 𝑗 . . . 𝐺𝑘𝐴𝑘〉|

≺
( 𝜌
𝜂
|〈𝐴1 · · · 𝐴 𝑗−1〉| +

𝜓av
𝑗−1𝜌

1/2𝑁 𝑗/2−2

𝜂3/2

) (
|〈𝐴 𝑗 · · · 𝐴𝑘〉| +

𝜓av
𝑘− 𝑗+1𝜌

1/2𝑁 (𝑘− 𝑗)/2−1

𝜂1/2

)
�
𝑁 𝑘/2−1𝜌

𝑁𝜂

(
1 +

𝜓av
𝑗−1√
𝑁𝜂𝜌

) (
1 + 𝜓av

𝑘− 𝑗+1

√
𝜌

𝑁𝜂

)
.

(3.21)

For the first term in the second line of equation (3.19), we distinguish the cases 𝑘 = 2 and 𝑘 ≥ 3. In the
former, we write

𝑚1〈𝐺2𝐴2𝐴1〉 = 𝑚1〈𝐺2〉〈𝐴2𝐴1〉 + 𝑚1〈𝐺2 (𝐴2𝐴1)◦〉 = 𝑚1〈𝐴1𝐴2〉
(
𝑚2 +O≺

(
𝜓av

0
𝑁𝜂

))
+O≺

(
𝜓av

1 𝜌
1/2

(𝑁𝜂)1/2

)
,

(3.22)

where we used Lemma 3.4 to estimate

〈|(𝐴2𝐴1)◦ |2〉1/2 =
(
〈|𝐴2𝐴1 |2〉 − |〈𝐴2𝐴1〉|2

)1/2
≤ 𝑁1/2. (3.23)

https://doi.org/10.1017/fms.2022.86 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.86


Forum of Mathematics, Sigma 13

In case 𝑘 ≥ 3, we estimate
𝑚1〈𝐺2 · · ·𝐺𝑘𝐴𝑘𝐴1〉 = 𝑚1〈𝐺2 · · ·𝐺𝑘 (𝐴𝑘𝐴1)◦〉 + 𝑚1〈𝐺2 · · ·𝐺𝑘〉〈𝐴𝑘𝐴1〉

= 𝑚1 · · ·𝑚𝑘 〈𝐴2 · · · 𝐴𝑘−1(𝐴𝑘𝐴1)◦〉

+O≺

(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

[
𝜓av

𝑘−1 +
√

𝜌

𝑁𝜂

(
1 +

𝜓av
𝑘−2√
𝑁𝜂𝜌

)] )
.

(3.24)

Note that the leading deterministic term of 〈𝐺2 · · ·𝐺𝑘〉 was simply estimated as�����𝑚 [𝑧2, 𝑧𝑘 ]𝑚3 · · ·𝑚𝑘−1

〈
𝑘−1∏
𝑖=2

𝐴𝑖

〉����� � 𝜌

𝜂
𝑁 𝑘/2−2. (3.25)

From equation (3.24), we write 〈𝐴2 · · · 𝐴𝑘−1(𝐴𝑘𝐴1)◦〉 = 〈𝐴1 · · · 𝐴𝑘〉 − 〈𝐴1𝐴𝑘〉〈𝐴2 · · · 𝐴𝑘−1〉, where
the second term can simply be estimated as |〈𝐴1𝐴𝑘〉〈𝐴2 · · · 𝐴𝑘−1〉| ≤ 𝑁 𝑘/2−2, due to Lemma 3.4,
and included in the error term. Collecting all other error terms from equations (3.21) and (3.24) and
recalling 𝜓av/iso

𝑗 ≥ 1 �
√
𝜌/(𝑁𝜂) for all j, we obtain equation (3.17) with the definition of E𝑘 from

equation (3.18). �

Lemma 3.5 reduces understanding the local law to the underlined term in equation (3.19) since Eav
𝑘

will be treated as an error term. For the underlined term, we use a cumulant expansion when calculating
the high moment E|〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉|𝑝 for any fixed integer p. Here we will again make a notational
simplification, ignoring different indices in G, A and m; in particular, we may write�����

〈
𝑘∏

𝑖=1
(𝐺𝑖𝐴𝑖) −

𝑘∏
𝑖=1

𝑚𝑖𝐴𝑖

〉�����𝑝 = 〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝 (3.26)

by choosing 𝐺 = 𝐺 (𝑧𝑖) for half of the factors.
We set 𝜕𝑎𝑏 := 𝜕/𝜕𝑤𝑎𝑏 as the derivative with respect to the (𝑎, 𝑏)-entry of W: that is, we consider

𝑤𝑎𝑏 and 𝑤𝑏𝑎 as independent variables in the following cumulant expansion (such expansion was first
used in the random matrix context in [35] and later revived in [33, 39]):

E𝑤𝑎𝑏 𝑓 (𝑊) =
∞∑
𝑗=1

1
𝑗!𝑁 ( 𝑗+1)/2

{
𝜅od

𝑗+1 E(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗 𝑓 (𝑊), 𝑎 ≠ 𝑏,

𝜅d
𝑗+1 E 𝜕 𝑗

𝑎𝑎 𝑓 (𝑊), 𝑎 = 𝑏.

Technically, we use a truncated version of the expansion above; see, for example, [26, 33]. We thus
compute7

E〈𝑊 (𝐺𝐴)𝑘〉〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

=
1
𝑁

E
∑
𝑎𝑏

[(𝐺𝐴)𝑘 ]𝑏𝑎

𝑁
(𝜕𝑎𝑏 + 𝜕𝑏𝑎)〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

+ E
∑
𝑎𝑏

𝜕𝑎𝑏 [((𝐺𝐴)𝑘 )𝑏𝑎]
𝑁2 〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

+
𝑅∑
𝑗=2

𝜅d
𝑗+1

𝑗!𝑁 ( 𝑗+3)/2 E
∑
𝑎

𝜕
𝑗
𝑎𝑎

(
[(𝐺𝐴)𝑘 ]𝑎𝑎〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

)
+

𝑅∑
𝑗=2

𝜅od
𝑗+1

𝑗!𝑁 ( 𝑗+3)/2 E
∑
𝑎≠𝑏

(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗
(
[(𝐺𝐴)𝑘 ]𝑏𝑎〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

)
+O≺(

(
𝑁 𝑘/2−3/2) 𝑝)

(3.27)

7The truncation error of the cumulant expansion after 𝑅 = (3+ 4𝑘) 𝑝 terms can be estimated trivially by the single-G local law
for resolvent entries and by norm for entries of 𝐺𝐴𝐺 · · · resolvent chains.
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recalling Assumption 1 for the diagonal and off-diagonal cumulants. The summation runs over all
indices 𝑎, 𝑏 ∈ [𝑁]. The second cumulant calculation in equation (3.27) used the fact that by definition
of the underline renormalisation the 𝜕𝑏𝑎-derivative in the first line may not act on its own (𝐺𝐴)𝑘 .

For the first term of equation (3.27), we use 𝜕𝑎𝑏 〈(𝐺𝐴)𝑘〉 = −𝑘𝑁−1 ((𝐺𝐴)𝑘𝐺)𝑏𝑎 due to equation
(3.16) with𝑊 = Δ𝑎𝑏 so that using 𝐺𝑡 = 𝐺, we can perform the summation and obtain����� 1
𝑁

∑
𝑎𝑏

[(𝐺𝐴)𝑘 ]𝑏𝑎

𝑁
(𝜕𝑎𝑏 + 𝜕𝑏𝑎)〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

�����
�

���� 〈(𝐺𝐴)2𝑘𝐺〉
𝑁2

����|〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉|𝑝−2 ≺
(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)2 (
1 +

𝜓av
2𝑘√
𝑁𝜂𝜌

)
|〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉|𝑝−2

(3.28)

from Lemma 3.1, estimating the deterministic leading term of 〈(𝐺𝐴)2𝑘𝐺〉 by |𝑚 (2)𝑚2𝑘−1〈𝐴2𝑘〉| ≤
𝑁 𝑘−1𝜌/𝜂 as in equation (3.25). The first prefactor in the right-hand side of equation (3.28) is already
written as the square of the target size 𝑁 𝑘/2−1

√
𝜌/(𝑁𝜂) for 〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉; see equation (2.5).

For the second term of equation (3.27), we estimate

∑
𝑎𝑏

𝜕𝑎𝑏 [((𝐺𝐴)𝑘 )𝑏𝑎]
𝑁2 = − 1

𝑁2

𝑘−1∑
𝑗=0

∑
𝑎𝑏

((𝐺𝐴) 𝑗𝐺)𝑏𝑎 ((𝐺𝐴)𝑘− 𝑗 )𝑏𝑎 = − 1
𝑁

𝑘−1∑
𝑗=0

〈(𝐺𝐴) 𝑗𝐺 (𝐴𝑡𝐺)𝑘− 𝑗〉

= O≺

(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

(√ 𝜌

𝑁𝜂
+
√
𝜌𝜓av

𝑘

𝑁𝜂

))
,

recalling that 𝐺 = 𝐺𝑡 since W is real symmetric.8
For the second line of equation (3.27), we define the set of multi-indices 𝒍 = (𝑙1, 𝑙2, . . . , 𝑙𝑛) with

arbitrary length n, denoted by | 𝒍 | := 𝑛 and total size 𝑘 =
∑

𝑖 𝑙𝑖 as

Id
𝑘 :=

{
𝒍 ∈ N𝑛

0

����� 𝑛 ≤ 𝑅,
∑

𝑖

𝑙𝑖 = 𝑘

}
, 𝑅 := (3 + 4𝑘)𝑝. (3.29)

Note that the set Id
𝑘 is a finite set with cardinality depending only on 𝑘, 𝑝. We distribute the derivatives

according to the product rule to estimate������∑𝑗≥2

𝜅d
𝑗+1

𝑗!𝑁 ( 𝑗+3)/2

∑
𝑎

𝜕
𝑗
𝑎𝑎

(
[(𝐺𝐴)𝑘 ]𝑎𝑎〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

)������
≤

∑
𝒍∈Id

𝑘
,𝐽 ⊂Id

𝑘
𝑙|𝒍 | ≥1, |𝒍 |+

∑
𝐽 ≥3

Ξd
𝑘 ( 𝒍, 𝐽) |〈(𝐺𝐴)

𝑘 − 𝑚𝑘𝐴𝑘〉|𝑝−1−|𝐽 | ,
(3.30)

where for the multiset J, we define
∑
𝐽 :=

∑
𝒋∈𝐽 | 𝒋 | and set

Ξd
𝑘 :=

𝑁− |𝒍 |+
∑

𝐽
2

𝑁1+|𝐽 |

������∑𝑎

[(𝐺𝐴)𝑙1𝐺]𝑎𝑎 · · · [(𝐺𝐴)𝑙|𝒍 |−1𝐺]𝑎𝑎 [(𝐺𝐴)𝑙|𝒍 | ]𝑎𝑎

∏
𝒋∈𝐽

[(𝐺𝐴) 𝑗1𝐺]𝑎𝑎 · · · [(𝐺𝐴) 𝑗| 𝒋 |𝐺]𝑎𝑎

������.
(3.31)

8We recall that we present the proof for the slightly more involved real symmetric case. In the complex Hermitian case, the
second term on the right-hand side of equation (3.27) would not be present.
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Here, for the multiset 𝐽 ⊂ Id
𝑘 , we defined its cardinality by |𝐽 | and set

∑
𝐽 :=

∑
𝒋∈𝐽 | 𝒋 |. Along the product

rule, the multi-index 𝒍 encodes how the first factor ([(𝐺𝐴)𝑘 ]𝑎𝑎 in equation (3.30) is differentiated, while
each element 𝒋 ∈ 𝐽 is a multi-index that encodes how another factor 〈(𝐺𝐴)𝑘 −𝑚𝑘𝐴𝑘〉 is differentiated.
Note that |𝐽 | is the number of such factors affected by derivatives; the remaining 𝑝 − 1 − |𝐽 | factors are
untouched.

For the third line of equation (3.27), we similarly define the appropriate index set that is needed to
encode the product rule9

Iod
𝑘 :=

{
( 𝒍,𝜶) ∈ N |𝒍 |

0 × {𝑎𝑏, 𝑏𝑎, 𝑎𝑎, 𝑏𝑏} |𝒍 |
����� | 𝒍 | ≤ 𝑅,

∑
𝑖

𝑙𝑖 = 𝑘, |{𝑖 | 𝛼𝑖 = 𝑎𝑎}| = |{𝑖 | 𝛼𝑖 = 𝑏𝑏}|
}
.

(3.32)

Note that in addition to the multi-index 𝒍 encoding the distribution of the derivatives after the Leibniz
rule similarly to the previous diagonal case, the second element 𝜶 of the new type of indices also
keeps track of whether, after the differentiations, the corresponding factor is evaluated at 𝑎𝑏, 𝑏𝑎, 𝑎𝑎 or
𝑏𝑏. While a single 𝜕𝑎𝑏 or 𝜕𝑏𝑎 acting on 〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉 results in an off-diagonal term of the form
[(𝐺𝐴)𝑘𝐺]𝑎𝑏 or [(𝐺𝐴)𝑘𝐺]𝑏𝑎, a second derivative also produces diagonal terms. The derivative action
on the first factor [(𝐺𝐴)𝑘 ]𝑏𝑎 in the third line of equation (3.27) produces diagonal factors already
after one derivative. The restriction in equation (3.31) that the number of 𝑎𝑎- and 𝑏𝑏-type diagonal
elements must coincide comes from a simple counting of diagonal indices along derivatives: when an
additional 𝜕𝑎𝑏 hits an off-diagonal term, then either one 𝑎𝑎 and one 𝑏𝑏 diagonal are created or none.
Similarly, when an additional 𝜕𝑎𝑏 hits a diagonal 𝑎𝑎 term, then one diagonal 𝑎𝑎 remains, along with a
new off-diagonal 𝑎𝑏. In any case, the difference between the 𝑎𝑎 and 𝑏𝑏 diagonals is unchanged.

Armed with this notation, similarly to equation (3.30), we estimate������∑𝑗≥2

𝜅od
𝑗+1

𝑗!𝑁 ( 𝑗+3)/2

∑
𝑎,𝑏

(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗
(
[(𝐺𝐴)𝑘 ]𝑏𝑎〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉𝑝−1

)������
≤

∑
(𝒍 ,𝜶) ∈Iod

𝑘
,𝐽 ⊂Iod

𝑘
𝑙|𝒍 | ≥1, |𝒍 |+

∑
𝐽 ≥3

Ξod
𝑘 (( 𝒍,𝜶), 𝐽) |〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉|𝑝−1−|𝐽 | ,

(3.33)

where for the multiset 𝐽 ⊂ Iod
𝑘 , we define

∑
𝐽 :=

∑
( 𝒋 ,𝜷) ∈𝐽 | 𝒋 | and set

Ξod
𝑘 :=

𝑁− |𝒍 |+
∑

𝐽
2

𝑁1+|𝐽 |

������∑𝑎𝑏

[(𝐺𝐴)𝑙1𝐺]𝛼1 · · · [(𝐺𝐴)𝑙|𝒍 | ]𝛼|𝒍 |

∏
( 𝒋 ,𝜷) ∈𝐽

[(𝐺𝐴) 𝑗1𝐺]𝛽1 · · · [(𝐺𝐴) 𝑗| 𝒋 |𝐺]𝛽| 𝒋 |

������. (3.34)

Note that equation (3.33) is an overestimate: not all indices ( 𝒋 , 𝜷) indicated in equation (3.34) can
actually occur after the Leibniz rule.

Lemma 3.6. For any 𝑘 ≥ 1, it holds that

Ξd
𝑘 + Ξod

𝑘 ≺
(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

(
Φ𝑘 + (𝜓iso

𝑘 )2/3Φ1/3
𝑘−1 +

𝑘−1∑
𝑗=1

√
(Φ𝑘−1 + 𝜓iso

𝑘 )𝜓iso
𝑗 Ω𝑘− 𝑗

))1+|𝐽 |

. (3.35)

9In the definition of Iod
𝑘

the indices 𝑎𝑏, 𝑏𝑎, 𝑎𝑎, 𝑏𝑏 should be understood symbolically, merely indicating the diago-
nal or off-diagonal character of the term. However, in equation (3.34) below, the concrete summation indices 𝑎, 𝑏 are
substituted for the symbolic expressions. Alternatively, we could have avoided this slight abuse of notation by defining
𝛼𝑖 ∈ {(1, 1) , (1, 2) , (2, 1) , (2, 2) }, sum over 𝑎1 , 𝑎2 = 1, . . . , 𝑁 in equation (3.34) and substituting 𝑎(𝛼𝑖 )1 , 𝑎(𝛼𝑖 )2 for 𝛼𝑖 ;
however, this would be an excessive pedantry.
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By combining Lemma 3.5 and equations (3.27), (3.28), (3.30) and (3.33) with Lemma 3.6 and using
a simple Hölder inequality, we obtain, for any fixed 𝜉 > 0, that(

E|〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉|𝑝
)1/𝑝

� 𝑁 𝜉𝑁 𝑘/2−1
√

𝜌

𝑁𝜂

(
Φ𝑘 +

( 𝜓av
2𝑘√
𝑁𝜂𝜌

)1/2
+ 𝜓av

𝑘−1 +
𝜓av

𝑘√
𝑁𝜂

+ (𝜓iso
𝑘 )2/3Φ1/3

𝑘−1

+
𝑘−1∑
𝑗=1

√
(Φ𝑘−1 + 𝜓iso

𝑘 )𝜓iso
𝑗 Ω𝑘− 𝑗 +

1
𝑁𝜂

𝑘−1∑
𝑗=1
𝜓av

𝑗

(
1 + 𝜓av

𝑘− 𝑗

√
𝜌

𝑁𝜂

))
,

(3.36)

where we used the Ξd
𝑘 term to add back the 𝑎 = 𝑏 part of the summation in equation (3.33) compared

to equation (3.27). By taking p large enough and 𝜉 arbitrarily small and using the definition of ≺ and
the fact that the bound given by equation (3.36) holds uniformly in the spectral parameters and the
deterministic matrices, we conclude the proof of equation (3.8).

Proof of Lemma 3.6. The proof repeatedly uses equation (3.3) in the form

((𝐺𝐴)𝑘𝐺)𝑎𝑏 ≺ 𝑁 𝑘/2−1/2
(
‖𝐴𝒆𝑎‖ ∧ ‖𝐴𝒆𝑏 ‖ + 𝜓iso

𝑘

√
𝜌

𝜂

)
� 𝑁 𝑘/2

(
1 + 𝜓iso

𝑘

√
𝜌

𝑁𝜂

)
, (3.37)

((𝐺𝐴)𝑘 )𝑎𝑏 ≺ 𝑁 𝑘/2−1/2‖𝐴𝒆𝑏 ‖
(
1 + 𝜓iso

𝑘−1

√
𝜌

𝑁𝜂

)
� 𝑁 𝑘/2

(
1 + 𝜓iso

𝑘−1

√
𝜌

𝑁𝜂

)
(3.38)

with 𝒆𝑏 being the bth coordinate vector, where we estimated the deterministic leading term 𝑚𝑘 (𝐴𝑘 )𝑎𝑏

by | (𝐴𝑘 )𝑎𝑏 | ≤ ‖𝐴‖𝑘−1‖𝐴𝒆𝑏 ‖ ≤ 𝑁 (𝑘−1)/2‖𝐴𝒆𝑏 ‖ using equation (3.14). Recalling the normalisation
〈|𝐴|2〉 = 1, the best available bound on ‖𝐴𝒆𝑏 ‖ is ‖𝐴𝒆𝑏 ‖ ≤ 𝑁1/2; however, this can be substantially
improved under a summation over the index b:∑

𝑏

‖𝐴𝒆𝑏 ‖2 = 𝑁 〈|𝐴|2〉 ≤ 𝑁,
∑
𝑏

‖𝐴𝒆𝑏 ‖ ≤
√
𝑁

√∑
𝑏

‖𝐴𝒆𝑏 ‖2 ≤ 𝑁. (3.39)

Using equations (3.37) and (3.38) for each entry of equations (3.31) and (3.34), we obtain the
following naive (or a priori) estimates on Ξd/od

𝑘

Ξd/od
𝑘 ≺

(
𝑁 𝑘/2−1 Ω𝑘√

𝑁

)1+|𝐽 |
𝑁1+1(od)+( |𝐽 |− |𝒍 |−

∑
𝐽 )/2, (3.40)

where we defined

Ω𝑘 :=
∑

𝑘1+𝑘2+···≤𝑘

∏
𝑖≥1

(
1 + 𝜓iso

𝑘𝑖

√
𝜌

𝑁𝜂

)
. (3.41)

Note that Ω𝑘 ≤ Φ𝑘 just by choosing 𝑘1 = 𝑘2 = 0 in the definition of Φ𝑘 , equation (3.10), and thus
Ω𝑘/

√
𝑁 � Φ𝑘

√
𝜌/(𝑁𝜂) since 1 � 𝜌/𝜂. Hence equation (3.35) follows trivially from equation (3.40) for

Ξd
𝑘 and Ξod

𝑘 whenever | 𝒍 | +
∑
𝐽 ≥ 2 + |𝐽 | or | 𝒍 | +

∑
𝐽 ≥ 4 + |𝐽 |, respectively: that is, when the exponent

of N in equation (3.40) is nonpositive.
In the rest of the proof, we consider the remaining diagonal D1 and off-diagonal cases O1–O3 that

we will define below. The cases are organised according to the quantity | 𝒍 | +
∑
𝐽 − |𝐽 | that captures by

how many factors of 𝑁1/2 the naive estimate given by equation (3.40) exceeds the target in equation
(3.35) when all Φs and 𝜓s are set to be order one. Within case O1, we further differentiate whether an
off-diagonal index pair 𝑎𝑏 or 𝑏𝑎 appears at least once in the tuple 𝜶 or in one of the tuples 𝜷. Within
case O2, we distinguish according to the length of | 𝒍 | and |𝐽 | as follows:
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D1 | 𝒍 | +
∑
𝐽 = |𝐽 | + 1

O1 | 𝒍 | +
∑
𝐽 = |𝐽 | + 3

Ola 𝑎𝑏 ∨ 𝑏𝑎 ∈ 𝜶 ∪
⋃

( 𝒋 ,𝜷) ∈𝐽 𝜷
Olb 𝐽 ∈ {{( 𝒋 , (𝑎𝑎, 𝑏𝑏))}, {( 𝒋 , (𝑏𝑏, 𝑎𝑎))}} and 𝜶 ∈ {(𝑎𝑎, 𝑏𝑏), (𝑏𝑏, 𝑎𝑎)}: that is,

∑
𝐽 =

| 𝒍 | = 2 and |𝐽 | = 1
O2 | 𝒍 | +

∑
𝐽 = |𝐽 | + 2

O2a | 𝒍 | = 1,
O2b | 𝒍 | = 2, |𝐽 | ≥ 2,
O2c | 𝒍 | = 2, |𝐽 | = 1, 𝑙1 ≥ 1,
O2d | 𝒍 | = 2, |𝐽 | = 1, 𝑙1 = 0.

O3 | 𝒍 | +
∑
𝐽 = |𝐽 | + 1

The list of four cases above is exhaustive since
∑
𝐽 + | 𝒍 | ≥ |𝐽 | + 1 by definition, and the subcases of

O2 are obviously exhaustive. Within case O1, either some off-diagonal element appears in 𝜶 or some 𝜷
(hence we are in case Ola), or the number of elements in 𝜶 and all 𝜷 is even; compare to the constraint
on the number of diagonal elements in equation (3.32). The latter case is only possible if |𝐽 | = 1,
| 𝒍 | =

∑
𝐽 = 2, which is case Olb (note that | 𝒍 | ≥ 2 implies |𝐽 | ≤ 1, and |𝐽 | = 0 is impossible as it would

imply | 𝒍 | = 3, the number of elements in 𝜶, is odd).
Now we give the estimates for each case separately. For case D1, using the restriction in the summation

in equation (3.33) to get 3 ≤ | 𝒍 | +
∑
𝐽 = 1 + |𝐽 |, we estimate

Ξd
𝑘 = 𝑁−3(1+|𝐽 |)/2

�����∑
𝑎

[(𝐺𝐴)𝑘 ]𝑎𝑎 [(𝐺𝐴)𝑘𝐺] |𝐽 |
𝑎𝑎

�����
≺ (𝑁 𝑘/2−1) |𝐽 |+1

𝑁 |𝐽 |/2+1 Ω |𝐽 |−1
𝑘 Ω𝑘−1

∑
𝑎

‖𝐴𝒆𝑎‖
( ‖𝐴𝒆𝑎‖
𝑁1/2 +

√
𝜌

𝑁𝜂
𝜓iso

𝑘

)
�

(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)1+|𝐽 |
Φ |𝐽 |−1

𝑘 Φ𝑘−1𝜓
iso
𝑘 ,

(3.42)

where we used the first inequalities of equations (3.37) and (3.38) for the (𝐺𝐴)𝑘 and one of the (𝐺𝐴)𝑘𝐺
factors and the second inequality of equation (3.37) for the remaining factors, and in the last step,
we used equation (3.39) and 𝜓iso

𝑘

√
𝜌/𝜂 � 1. Finally, we use Young’s inequality Φ |𝐽 |−1

𝑘 Φ𝑘−1𝜓
iso
𝑘 ≤

Φ |𝐽 |+1
𝑘 + (Φ𝑘−1𝜓

iso
𝑘 ) ( |𝐽 |+1)/2. This confirms equation (3.35) in case D1.

For the off-diagonal cases, we will use the following so-called Ward-improvements:
I1 Averaging over a or b in | ((𝐺𝐴)𝑘𝐺)𝑎𝑏 | gains a factor of

√
𝜌/(𝑁𝜂) compared to equation (3.37).

I2 Averaging over a in | ((𝐺𝐴)𝑘 )𝑎𝑏 | gains a factor of
√
𝜌/(𝑁𝜂) compared to equation (3.38),

at the expense of replacing a factor of (1 + 𝜓iso
𝑘

√
𝜌/(𝑁𝜂)) in the definition of Ω𝑘 by a factor of

(1 + 𝜓iso
2𝑘 /

√
𝑁𝜂𝜌)1/2. These latter replacements necessitate changing Ω𝑘 to the larger Φ𝑘 as a main

control parameter in the estimates after Ward improvements. Indeed, I1 and I2 follow directly from
equation (3.6) of Lemma 3.1 and |𝑚 (2) | � 𝜌/𝜂, more precisely

1
𝑁

∑
𝑎

| [(𝐺𝐴)𝑘𝐺]𝑎𝑏 | ≤
√
[(𝐺∗𝐴)𝑘𝐺∗𝐺 (𝐴𝐺)𝑘 ]𝑏𝑏√

𝑁
≺ 𝑁 𝑘/2

√
𝜌

𝑁𝜂

(
1 + 𝜓iso

2𝑘

√
1
𝑁𝜂𝜌

)1/2

1
𝑁

∑
𝑎

| [(𝐺𝐴)𝑘 ]𝑎𝑏 | ≤
√
[(𝐴𝐺∗)𝑘 (𝐺𝐴)𝑘 ]𝑏𝑏√

𝑁
≺ 𝑁 𝑘/2−1/2‖𝐴𝒆𝑏 ‖

√
𝜌

𝑁𝜂

(
1 + 𝜓iso

2(𝑘−1)

√
1
𝑁𝜂𝜌

)1/2

1
𝑁

∑
𝑎

| [(𝐺𝐴)𝑘 ]𝑎𝑏 |2 =
[(𝐴𝐺∗)𝑘 (𝐺𝐴)𝑘 ]𝑏𝑏

𝑁
≺ 𝑁 𝑘−1‖𝐴𝒆𝑏 ‖2 𝜌

𝑁𝜂

(
1 + 𝜓iso

2(𝑘−1)

√
1
𝑁𝜂𝜌

)
,

(3.43)
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where the first step in each case followed from a Schwarz inequality and summing up the indices
explicitly. This improvement is essentially equivalent to using the Ward-identity 𝐺𝐺∗ = �𝐺/𝜂 in
equation (3.43).

Now we collect these gains over the naive bound given in equation (3.40) for each case. Note that
whenever a factor

√
𝜌/(𝑁𝜂) is gained, the additional 1/

√
𝑁 is freed up along the second inequality in

equation (3.40) that can be used to compensate the positive N-powers.
For case O3, we have |𝐽 | ≥ 2 and estimate all but the first two ( 𝒋 , 𝜷) factors in equation (3.34)

trivially, using the last inequality in equation (3.37) to obtain

Ξod
𝑘 ≺ 𝑁−3(1+|𝐽 |)/2(𝑁 𝑘/2Ω𝑘 ) |𝐽 |−2

∑
𝑎𝑏

��[(𝐺𝐴)𝑘 ]𝑏𝑎

����[(𝐺𝐴)𝑘𝐺]𝑎𝑏

����[(𝐺𝐴)𝑘𝐺]𝑎𝑏

��. (3.44)

For the last two factors, we use the first inequality in equation (3.37) and then estimate as

∑
𝑎𝑏

��[(𝐺𝐴)𝑘 ]𝑏𝑎

����[(𝐺𝐴)𝑘𝐺]𝑎𝑏

����[(𝐺𝐴)𝑘𝐺]𝑎𝑏

��
� 𝑁 𝑘−1

∑
𝑎𝑏

��[(𝐺𝐴)𝑘 ]𝑏𝑎

��(‖𝐴𝒆𝑎‖‖𝐴𝒆𝑏 ‖ + (𝜓iso
𝑘 )2 𝜌

𝜂

)
≺

(
𝑁 𝑘/2

√
𝜌

𝜂

)3
Φ𝑘−1(𝜓iso

𝑘 )2,
(3.45)

where in the second step, we performed a Schwarz inequality for the double 𝑎, 𝑏 summation and used
the last bound in equations (3.43), (3.39) and 1 � 𝜓iso

𝑘

√
𝜌/𝜂. Thus, we conclude

Ξod
𝑘 ≺

(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

) |𝐽 |+1
Φ |𝐽 |−2

𝑘 Φ𝑘−1(𝜓iso
𝑘 )2. (3.46)

In case O2a, there exists some 𝒋 with | 𝒋 | = 2 (recall that
∑
𝐽 = |𝐽 | + 1). By estimating the remaining

J-terms trivially by equation (3.37), we obtain

Ξod
𝑘 ≺ 𝑁−3(1+|𝐽 |)/2−1/2(𝑁 𝑘/2Ω𝑘 ) |𝐽 |−1

∑
𝑎𝑏

| [(𝐺𝐴)𝑘 ]𝑎𝑏 | | [(𝐺𝐴) 𝑗1𝐺]𝛽1 | | [(𝐺𝐴) 𝑗2𝐺]𝛽2 |

≺ 𝑁−3(1+|𝐽 |)/2−1/2(𝑁 𝑘/2Ω𝑘 ) |𝐽 |−1𝑁 𝑘/2−1/2Ω 𝑗2

∑
𝑎𝑏

| [(𝐺𝐴)𝑘 ]𝑎𝑏 |
(
‖𝐴𝒆𝑎‖ + ‖𝐴𝒆𝑏 ‖ + 𝜓iso

𝑗1

√
𝜌

𝜂

)
�

(
𝑁 𝑘/2−1 Ω𝑘√

𝑁

) |𝐽 |−1 (
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)2
Φ𝑘−1𝜓

iso
𝑗1
Ω 𝑗2 (3.47)

for some 𝑗1 + 𝑗2 = 𝑘 and double indices 𝛽1, 𝛽2 ∈ {𝑎𝑎, 𝑏𝑏, 𝑎𝑏, 𝑏𝑎}. Here, in the second step, we
assumed without loss of generality 𝑗1 ≥ 1 (the case 𝑗2 ≥ 1 being completely analogous) and used the
first inequality in equation (3.37) for | [(𝐺𝐴) 𝑗1𝐺]𝛽1 | and the second inequality in equation (3.37) for
| [(𝐺𝐴) 𝑗2𝐺]𝛽2 |. Finally, in the last step, we performed an 𝑎, 𝑏-Schwarz inequality, using the last bound
in equations (3.43) and (3.39).

In case O2b, we have | 𝒋 | = 1 for all 𝒋 since
∑
𝐽 + | 𝒍 | = |𝐽 | + 2 implies

∑
𝐽 = |𝐽 |, and we estimate

all but two J-factors trivially by the last inequality in equation (3.37), the other two J-factors (which are
necessarily off-diagonal) by the first inequality in equation (3.37), the 𝑙1-factor by the last inequality in
equation (3.37) and the 𝑙2 factor by the first inequality in equation (3.38) (note that 𝑙2 ≥ 1) to obtain
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Ξod
𝑘 ≺ 𝑁−3(1+|𝐽 |)/2−1/2(𝑁 𝑘/2Ω𝑘 ) |𝐽 |−2

∑
𝑎𝑏

| [(𝐺𝐴)𝑙1𝐺]𝛼1 | | [(𝐺𝐴)𝑙2 ]𝛼2 | | [(𝐺𝐴)𝑘𝐺]𝑎𝑏 |2

≺ 𝑁−3(1+|𝐽 |)/2−1/2(𝑁 𝑘/2Ω𝑘 ) |𝐽 |−2𝑁3𝑘/2−3/2Ω𝑘−1
∑
𝑎𝑏

(‖𝐴𝒆𝑎‖ + ‖𝐴𝒆𝑏 ‖)
(
‖𝐴𝒆𝑎‖‖𝐴𝒆𝑏 ‖ +

𝜌

𝜂
(𝜓iso

𝑘 )2
)

�
(
𝑁 𝑘/2−1 Ω𝑘√

𝑁

) |𝐽 |−2
𝑁 𝑘/2−3/2

(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)2
Ω𝑘−1(𝜓iso

𝑘 )2, (3.48)

where the last step used equation (3.39) and 𝜓iso
𝑘

√
𝜌/𝜂 � 1.

In case O2c, we use the first inequalities of equations (3.37) and (3.38) for the 𝑙1, 𝑙2-terms (since
𝑙1, 𝑙2 ≥ 1) and the first inequality of equation (3.37) for the (𝐺𝐴)𝑘𝐺 factor to obtain

Ξod
𝑘 � 𝑁

−7/2
∑
𝑎𝑏

| [(𝐺𝐴)𝑙1𝐺]𝛼1 | | [(𝐺𝐴)𝑙2 ]𝛼2 | | [(𝐺𝐴)𝑘𝐺]𝑎𝑏 |

≺ 𝑁 𝑘−5Ω𝑙2−1
∑
𝑎𝑏

(
‖𝐴𝒆𝑏 ‖ + ‖𝐴𝒆𝑎‖ +

√
𝜌

𝜂
𝜓iso

𝑙1

)
(‖𝐴𝒆𝑎‖ + ‖𝐴𝒆𝑏 ‖)

(
‖𝐴𝒆𝑎‖ ∧ ‖𝐴𝒆𝑏 ‖ +

√
𝜌

𝜂
𝜓iso

𝑘

)
�

(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)2
Ω𝑙2−1𝜓

iso
𝑙1
𝜓iso

𝑘 (3.49)

by equation (3.39).
In case O2d, we write the single-𝐺 diagonal as 𝐺𝑎𝑎 = 𝑚 + O≺

(√
𝜌/(𝑁𝜂)

)
and use isotropic

resummation for the leading m term into the 1 = (1, 1, . . .) vector of norm ‖1‖ =
√
𝑁 , that is,∑

𝑎

𝐺𝑎𝑎 [(𝐺𝐴)𝑘𝐺]𝑎𝑏 = 𝑚 [(𝐺𝐴)𝑘𝐺]1𝑏 +O≺

(√
𝜌

𝑁𝜂

) ∑
𝑎

��[(𝐺𝐴)𝑘𝐺]𝑎𝑏

��,
and estimate

Ξod
𝑘 � 𝑁

−7/2

�����∑
𝑎𝑏

𝐺𝑎𝑎 [(𝐺𝐴)𝑘 ]𝑏𝑏 [(𝐺𝐴)𝑘𝐺]𝑎𝑏

����� + 𝑁−7/2
∑
𝑎𝑏

��𝐺𝑎𝑏 [(𝐺𝐴)𝑘 ]𝑎𝑏 [(𝐺𝐴)𝑘𝐺]𝑎𝑏

��
≺ 𝑁−7/2

�����∑
𝑏

[(𝐺𝐴)𝑘 ]𝑏𝑏 [(𝐺𝐴)𝑘𝐺]1𝑏

����� + 𝑁−7/2
√

𝜌

𝑁𝜂

∑
𝑎𝑏

��[(𝐺𝐴)𝑘 ]𝑏𝑏 [(𝐺𝐴)𝑘𝐺]𝑎𝑏

��
≺

√
𝜌

𝜂
𝑁 𝑘−4Ω𝑘−1

∑
𝑏

‖𝐴𝒆𝑏 ‖
(
‖𝐴𝒆𝑏 ‖ +

√
𝜌

𝜂
𝜓iso

𝑘

)
� (𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)2
Ω𝑘−1𝜓

iso
𝑘

(3.50)

using the first inequalities of equations (3.37) and (3.38).
In case Ola, we use either I1 or I2, depending on whether the off-diagonal matrix is of the form

(𝐺𝐴)𝑙𝐺 or (𝐺𝐴)𝑙 , to gain one factor of
√
𝜌/(𝑁𝜂) in either case and conclude equation (3.35).

Finally, we consider case Olb, where there is no off-diagonal element to perform Ward-improvement,
but for which, using equation (3.39), we estimate

𝑁−4

�����∑
𝑎𝑏

[(𝐺𝐴)𝑘1𝐺]𝑎𝑎 [(𝐺𝐴)𝑘2]𝑏𝑏 [(𝐺𝐴)𝑘3𝐺]𝑎𝑎 [(𝐺𝐴)𝑘4𝐺]𝑏𝑏

�����
≺ 𝑁 𝑘−5Ω𝑘−1Ω𝑘3

∑
𝑎𝑏

‖𝐴𝒆𝑏 ‖
(
‖𝐴𝒆𝑏 ‖ + 𝜓iso

𝑘4

√
𝜌

𝜂

)
≤ 𝑁 𝑘−3

√
𝜌

𝜂
Ω𝑘−1

(
1 + 𝜓iso

𝑘3

√
𝜌

𝑁𝜂

)
(𝜓iso

𝑘4
+ 1)

�
(
𝑁 𝑘/2−1

√
𝜌

𝑁𝜂

)2
Ω𝑘−1

𝑘∑
𝑗=0
𝜓iso

𝑗 Ω𝑘− 𝑗 (3.51)
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for any exponents with 𝑘1 + 𝑘2 = 𝑘3 + 𝑘4 = 𝑘 . Here, in case 𝑘4 > 0, we used the second inequalities of
equations (3.37) and (3.38) for the 𝑘2, 𝑘4 factors and the first inequality of equation (3.37) for the 𝑘1, 𝑘3
factors. The case 𝑘4 = 0 is handled similarly, with the same result, by estimating [(𝐺𝐴)𝑘3𝐺]𝑎𝑎 instead
of [(𝐺𝐴)𝑘4𝐺]𝑏𝑏 using the first inequality of equation (3.37). �

3.2. Proof of the isotropic estimate given by equation (3.9) in Proposition 3.2

First we state the isotropic version of Lemma 3.5:

Lemma 3.7. For any deterministic unit vectors 𝒙, 𝒚 and 𝑘 ≥ 0, we have

〈
𝒙, [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ]𝒚

〉 (
1 +O≺

(
𝜓av

0
𝑁𝜂

))
= −𝑚〈𝒙,𝑊 (𝐺𝐴)𝑘𝐺𝒚〉 +O≺

(
E iso

𝑘

)
, (3.52)

where E iso
0 = 0 and for 𝑘 ≥ 1

E iso
𝑘 := 𝑁 𝑘/2

√
𝜌

𝑁𝜂

(
𝜓iso

𝑘−1 +
1
𝑁𝜂

𝑘∑
𝑗=1

(
𝜓av

𝑗 + 𝜓iso
𝑘− 𝑗 +

√
𝜌

𝑁𝜂
𝜓av

𝑗 𝜓
iso
𝑘− 𝑗

))
. (3.53)

Proof. From equation (3.20) applied to the first factor 𝐺 = 𝐺1, similarly to equation (3.19), we obtain(
1 +O≺

(
𝜓av

0
𝑁𝜂

))
〈𝒙, (𝐺𝐴)𝑘𝐺𝒚〉 = 𝑚〈𝒙, (𝐴𝐺)𝑘 𝒚〉 − 𝑚〈𝒙,𝑊𝐺 (𝐴𝐺)𝑘 𝒚〉

= 𝑚𝑘+1〈𝒙, 𝐴𝑘 𝒚〉 − 𝑚〈𝒙,𝑊𝐺 (𝐴𝐺)𝑘 𝒚〉

+ 𝑚1

𝑘∑
𝑗=1

〈(𝐺𝐴) 𝑗𝐺〉〈𝒙, (𝐺𝐴)𝑘− 𝑗𝐺𝒚〉

+O≺

(
𝑁 (𝑘−1)/2

√
𝜌

𝑁𝜂
‖𝐴𝒙‖𝜓iso

𝑘−1

)
,

(3.54)

where we used the definition in equation (3.3) for the first term and the definition in equation (3.15).
An estimate analogous to equation (3.21) handles the sum and is incorporated in equation (3.53). This
concludes the proof together with Lemma 3.1 and ‖𝐴𝒙‖ ≤ ‖𝐴‖ ≤ 𝑁1/2. �

Exactly as in equation (3.27), we perform a cumulant expansion

E〈𝒙,𝑊 (𝐺𝐴)𝑘𝐺𝒚〉〈𝒙, [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ]𝒚〉𝑝−1

= E
∑
𝑎𝑏

𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑏𝒚
𝑁

(𝜕𝑎𝑏 + 𝜕𝑏𝑎) [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−1
𝒙𝒚

+ E
∑
𝑎𝑏

𝑥𝑎𝜕𝑎𝑏 [(𝐺𝐴)𝑘𝐺]𝑏𝒚
𝑁

[(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−1
𝒙𝒚

+
∑
𝑗≥2

𝜅d
𝑗+1

𝑗!𝑁 ( 𝑗+1)/2 E
∑
𝑎

𝜕
𝑗
𝑎𝑎

(
𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑎𝒚 [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−1

𝒙𝒚

)
+

∑
𝑗≥2

𝜅od
𝑗+1

𝑗!𝑁 ( 𝑗+1)/2 E
∑
𝑎≠𝑏

(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗
(
𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑏𝒚 [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−1

𝒙𝒚

)
,

(3.55)
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recalling Assumption 1 for the diagonal and off-diagonal cumulants. In fact, the formula in equation
(3.55) is identical to equation (3.27) for 𝑘 + 1 instead of k if the last 𝐴 = 𝐴𝑘+1 in the product
(𝐺𝐴)𝑘+1 = 𝐺1𝐴1𝐺2𝐴2 . . . 𝐺𝑘+1𝐴𝑘+1 is chosen specifically 𝐴𝑘+1 = 𝒚𝒙∗.

For the first line of equation (3.55), after performing the derivative, we can also perform the summa-
tions and estimate the resulting isotropic resolvent chains by using the last inequality of equation (3.37)
as well as Lemma 3.1 to obtain∑

𝑎𝑏

𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑏𝒚
𝑁

(𝜕𝑎𝑏 + 𝜕𝑏𝑎) [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−1
𝒙𝒚

=
2𝑘∑
𝑗=0

[(𝐺𝐴) 𝑗𝐺]𝒙𝒙 [(𝐺𝐴)𝑘𝐺 (𝐺𝐴)𝑘− 𝑗𝐺]𝒚𝒚 + [(𝐺𝐴) 𝑗𝐺 (𝐺𝐴)𝑘𝐺]𝒙𝒚 [(𝐺𝐴)𝑘− 𝑗𝐺]𝒙𝒚
𝑁

× [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−2
𝒙𝒚

≺
(
𝑁 𝑘/2

√
𝜌

𝑁𝜂

)2 (
1 +

2𝑘∑
𝑗=0

𝜓iso
𝑗√
𝑁𝜂𝜌

(
1 +

√
𝜌

𝑁𝜂
𝜓iso

2𝑘− 𝑗

))��[(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ]𝒙𝒚
��𝑝−2

.

(3.56)

For the second line of equation (3.55), we estimate

∑
𝑎𝑏

𝑥𝑎𝜕𝑎𝑏 [(𝐺𝐴)𝑘𝐺]𝑏𝒚
𝑁

= −
𝑘∑

𝑗=0

∑
𝑎𝑏

𝑥𝑎 [(𝐺𝐴) 𝑗𝐺]𝑏𝑎 [(𝐺𝐴)𝑘− 𝑗𝐺]𝑏𝒚
𝑁

= −
𝑘∑

𝑗=0

[(𝐺𝐴𝑡 ) 𝑗𝐺 (𝐺𝐴)𝑘− 𝑗𝐺]𝒙𝒚
𝑁

= O≺

(
𝑁 𝑘/2 𝜌

𝑁𝜂

(
1 +

𝜓iso
𝑘√
𝑁𝜂𝜌

))
.

For the third and fourth lines of equation (3.55), we distribute the derivatives according to the product
rule to estimate (with the absolute value inside the summation to address both diagonal and off-diagonal
terms) ∑

𝑗≥2

1
𝑁 ( 𝑗+1)/2

∑
𝑎,𝑏

���(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗
(
𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑏𝒚 [(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ] 𝑝−1

𝒙𝒚

)���
≤

∑
∑

𝒋≥2
1≤ | 𝒋 | ≤𝑝

Λ𝑘 ( 𝒋)
��[(𝐺𝐴)𝑘𝐺 − 𝑚𝑘+1𝐴𝑘 ]𝒙𝒚

��𝑝−| 𝒋 | (3.57)

where

Λ𝑘 ( 𝒋) := 𝑁 (𝑛−
∑

𝒋)/2
∑
𝑎𝑏

�����((𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗0
𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑏𝒚√

𝑁

) 𝑛∏
𝑖=1

(
(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗𝑖

[(𝐺𝐴)𝑘𝐺]𝒙𝒚√
𝑁

)����� (3.58)

and the summation in equation (3.57) is performed over all 𝒋 = ( 𝑗0, . . . , 𝑗𝑛) ∈ N𝑛
0 with 𝑗0 ≥ 0,

𝑗1, . . . , 𝑗𝑛 ≥ 1 and | 𝒋 | = 𝑛 + 1. Recall that
∑

𝒋 = 𝑗0 + 𝑗1 + 𝑗2 + . . . + 𝑗𝑛.

Lemma 3.8. For any admissible 𝒋 in the summation of equation (3.57), it holds that

Λ𝑘 ( 𝒋) ≺
(
𝑁 𝑘/2

√
𝜌

𝑁𝜂
Φ𝑘

) | 𝒋 |
. (3.59)
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By combining Lemmas 3.7 and 3.8 and equations (3.56), (3.57) and (3.58), we obtain��〈𝒙, [(𝐺𝐴)𝑘 − 𝑚𝑘+1𝐴𝑘 ]𝒚〉
�� ≺ E iso

𝑘 + 𝑁 𝑘/2
√

𝜌

𝑁𝜂

(
Φ𝑘 + 1

𝑁𝜂

2𝑘∑
𝑗=0

√
𝜓iso

𝑗 𝜓
iso
2𝑘− 𝑗 +

𝜓iso
𝑘

𝑁𝜂

)
, (3.60)

concluding the proof of equation (3.9).

Proof of Lemma 3.8. We recall the notations Ω𝑘 ,Φ𝑘 from equations (3.10) and (3.41). For a naive
bound, we estimate all but the first factor trivially in equation (3.58) with�����(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗𝑖

[(𝐺𝐴)𝑘𝐺]𝒙𝒚√
𝑁

����� ≺ 𝑁 𝑘/2

𝑁1/2 Ω𝑘 . (3.61)

Note that the estimate is independent of the number of derivatives. For the first factor in equation (3.58),
we estimate, after performing the derivatives, all but the last [(𝐺𝐴)𝑘𝑖𝐺]-factor (involving 𝒚) trivially
by equation (3.37) as�����(𝜕𝑎𝑏 + 𝜕𝑏𝑎) 𝑗0

𝑥𝑎 [(𝐺𝐴)𝑘𝐺]𝑏𝒚√
𝑁

����� ≺ 𝑘∑
𝑗=0

𝑁 (𝑘− 𝑗)/2Ω𝑘− 𝑗 |𝑥𝑎 |
| [(𝐺𝐴) 𝑗𝐺]𝑎𝒚 | + | [(𝐺𝐴) 𝑗𝐺]𝑏𝒚 |√

𝑁
. (3.62)

By combining equations (3.61) and (3.62) and the Schwarz-inequality∑
𝑎𝑏

|𝑥𝑎 |
| [(𝐺𝐴) 𝑗𝐺]𝑎𝒚 | + | [(𝐺𝐴) 𝑗𝐺]𝑏𝒚 |√

𝑁
≤
√
𝑁 ‖𝒙‖

√
[(𝐺∗𝐴) 𝑗𝐺∗𝐺 (𝐴𝐺) 𝑗 ]𝒚𝒚

≺ 𝑁 𝑗/2+1
√

𝜌

𝑁𝜂

(
1 +

𝜓iso
2 𝑗√
𝑁𝜂𝜌

)1/2
,

(3.63)

we conclude

Λ𝑘 ( 𝒋) ≺ 𝑁 (𝑛−
∑

𝒋)/2+1𝑁 𝑘/2
√

𝜌

𝑁𝜂
Φ𝑘

(
𝑁 𝑘/2 1

√
𝑁
Ω𝑘

) | 𝒋 |−1
, (3.64)

which implies equation (3.59) in the case when
∑

𝒋 ≥ 𝑛 + 2 using that Ω𝑘 ≤ Φ𝑘 and 𝜌/𝜂 � 1. It thus
only remains to consider the cases

∑
𝒋 = 𝑛 and

∑
𝒋 = 𝑛 + 1.

If
∑

𝒋 = 𝑛, then 𝑛 ≥ 2 and 𝑗0 = 0, 𝑗1 = 𝑗2 = · · · = 1. By estimating the 𝑗2, 𝑗3, . . . factors in equation
(3.58) using equation (3.61), we then bound

Λ𝑘 ( 𝒋) ≺
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2 ∑
𝑎𝑏

|𝑥𝑎 |
��[(𝐺𝐴)𝑘𝐺]𝑏𝒚 ��

√
𝑁

𝑘∑
𝑗=0

��[(𝐺𝐴) 𝑗𝐺]𝒙𝑎

����[(𝐺𝐴)𝑘− 𝑗𝐺]𝑏𝒚
��

√
𝑁

�
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2

√
[(𝐺∗𝐴)𝑘𝐺∗𝐺 (𝐴𝐺)𝑘 ]𝒚𝒚

√
𝑁

×
𝑘∑

𝑗=0

√
[(𝐺∗𝐴) 𝑗𝐺∗𝐺 (𝐴𝐺) 𝑗 ]𝒚𝒚 [(𝐺∗𝐴)𝑘− 𝑗𝐺∗𝐺 (𝐴𝐺)𝑘− 𝑗 ]𝒙𝒙

√
𝑁

≺
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2 (
𝑁 𝑘/2

√
𝜌

𝑁𝜂

)2
√
𝜌

𝜂
Φ𝑘

𝑘∑
𝑗=0

(
1 +

𝜓iso
2 𝑗√
𝑁𝜂𝜌

)1/2 (
1 +

𝜓iso
2(𝑘− 𝑗)√
𝑁𝜂𝜌

)1/2
�

(
𝑁 𝑘/2

√
𝜌

𝑁𝜂
Φ𝑘

) | 𝒋 |
(3.65)

using | 𝒋 | ≥ 3 and Ω𝑘 ≤ Φ𝑘 , 1 � 𝜌/𝜂 in the last step.
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Finally, if
∑

𝒋 = 𝑛 + 1, then 𝑛 ≥ 1 by admissibility and either 𝑗0 = 0 or 𝑗1 = 1. In the first case, we
estimate the 𝑗2, 𝑗3, . . . factors in equation (3.58) using equation (3.61) and all but the first [(𝐺𝐴) 𝑗𝐺]𝒙 ·
in the 𝑗1-factor after differentiation trivially to obtain

Λ𝑘 ( 𝒋) ≺ 𝑁−1/2
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2∑
𝑎𝑏

|𝑥𝑎 |
��[(𝐺𝐴)𝑘𝐺]𝑏𝒚 ��

√
𝑁

𝑘∑
𝑗=0
𝑁 (𝑘− 𝑗)/2Ω𝑘− 𝑗

��[(𝐺𝐴) 𝑗𝐺]𝒙𝑎

�� + ��[(𝐺𝐴) 𝑗𝐺]𝒙𝑏

��
√
𝑁

≺
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2 (
𝑁 𝑘/2

√
𝜌

𝑁𝜂
Φ𝑘

)2
, (3.66)

again using a Schwarz inequality. Finally, in the 𝑗1 = 1 case, we estimate two 𝑗0-factor using equation
(3.62), the 𝑗2, 𝑗3, . . . factors trivially and to bound

Λ𝑘 ( 𝒋) ≺ 𝑁−1/2
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2

×
∑
𝑎𝑏

𝑘∑
𝑗 ,𝑙=0

𝑁 (𝑘−𝑙)/2Ω𝑘−𝑙 |𝑥𝑎 |
| [(𝐺𝐴)𝑙𝐺]𝑎𝒚 | + | [(𝐺𝐴)𝑙𝐺]𝑏𝒚 |√

𝑁

��[(𝐺𝐴) 𝑗𝐺]𝒙𝑎

����[(𝐺𝐴)𝑘− 𝑗𝐺]𝑏𝒚
��

√
𝑁

≺
(
𝑁 𝑘/2 Ω𝑘√

𝑁

) | 𝒋 |−2 (
𝑁 𝑘/2

√
𝜌

𝑁𝜂
Φ𝑘

)2
, (3.67)

where we used the trivial bound for the
��[(𝐺𝐴) 𝑗𝐺]𝒙𝑎

�� in order to estimate the remaining terms by a
Schwarz inequality. This completes the proof of the lemma. �

3.3. Reduction inequalities and bootstrap

In this section, we prove the reduction inequalities in Lemma 3.3 and conclude the proof of our main
result Theorem 2.2 showing that 𝜓av/iso

𝑘 � 1 for any 𝑘 ≥ 0.

Proof of Lemma 3.3. The proof of this proposition is very similar to [18, Lemma 3.6]; we thus present
only the proof in the averaged case. Additionally, we only prove the case when k is even; if k is odd, the
proof is completely analogous.

Define 𝑇 = 𝑇𝑘 := 𝐴(𝐺𝐴)𝑘/2−1, write (𝐺𝐴)2𝑘 = 𝐺𝑇𝐺𝑇𝐺𝑇𝐺𝑇 , and use the spectral theorem for
these four intermediate resolvents. Then, using that |𝑚𝑖 | � 1 and that |〈𝐴𝑘〉| � 𝑁 𝑘/2−1〈|𝐴|2〉𝑘/2, after a
Schwarz inequality in the third line, we conclude that

Ψav
2𝑘 =

𝑁 (3−2𝑘)/2𝜂1/2

𝜌1/2〈|𝐴|2〉𝑘

��〈(𝐺𝐴)2𝑘 − 𝑚1 . . . 𝑚2𝑘𝐴
2𝑘〉

��
�

√
𝑁𝜂

𝜌
+ 𝑁

(3−2𝑘)/2𝜂1/2

𝑁𝜌1/2〈|𝐴|2〉𝑘

������∑𝑖 𝑗𝑚𝑙

〈𝒖𝑖 , 𝑇𝒖 𝑗〉〈𝒖 𝑗 , 𝑇𝒖𝑚〉〈𝒖𝑚, 𝑇𝒖𝑙〉〈𝒖𝑙 , 𝑇𝒖𝑖〉
(𝜆𝑖 − 𝑧1) (𝜆 𝑗 − 𝑧𝑘/2+1) (𝜆𝑚 − 𝑧𝑘+1) (𝜆𝑙 − 𝑧3𝑘/2+1)

������
�

√
𝑁𝜂

𝜌
+ 𝑁

(3−2𝑘)/2+1𝜂1/2

𝜌1/2〈|𝐴|2〉𝑘
〈|𝐺 |𝐴(𝐺𝐴)𝑘/2−1 |𝐺 |𝐴(𝐺∗𝐴)𝑘/2−1〉〈|𝐺 |𝐴(𝐺𝐴)𝑘/2−1 |𝐺 |𝐴(𝐺∗𝐴)𝑘/2−1〉
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�

√
𝑁𝜂

𝜌
+ 𝑁

(3−2𝑘)/2+1𝜂1/2

𝜌1/2〈|𝐴|2〉𝑘

(
𝑁 𝑘/2−1〈|𝐴|2〉𝑘/2 + 𝜌

1/2〈|𝐴|2〉𝑘/2

𝑁 (3−𝑘)/2𝜂1/2 𝜓
av
𝑘

)2

�

√
𝑁𝜂

𝜌
+

√
𝜌

𝑁𝜂
(𝜓av

𝑘 )2.

We remark that to bound 〈|𝐺 |𝐴(𝐺𝐴)𝑘/2−1 |𝐺 |𝐴(𝐺∗𝐴)𝑘/2−1〉 in terms of 𝜓av
𝑘 , we used (ii) of Lemma 3.1

together with 𝐺∗(𝑧) = 𝐺 (𝑧). �

We are now ready to conclude the proof of our main result.

Proof of Theorem 2.2. The proof repeatedly uses a simple argument called iteration. By this, we mean
the following observation: whenever we know that 𝑋 ≺ 𝑥 implies

𝑋 ≺ 𝐴 + 𝑥

𝐵
+ 𝑥1−𝛼𝐶𝛼 (3.68)

for some constants 𝐵 ≥ 𝑁 𝛿 , 𝐴,𝐶 > 0 and exponent 0 < 𝛼 < 1, and we know that 𝑋 ≺ 𝑁𝐷 initially
(here 𝛿, 𝛼 and D are N-independent positive constants; other quantities may depend on N), then we also
know that 𝑋 ≺ 𝑥 implies

𝑋 ≺ 𝐴 + 𝐶. (3.69)

The proof is simply to iterate equation (3.68) finitely many times (depending only on 𝛿, 𝛼 and D).
The fact that Ψav/iso

𝑘 ≺ 𝑁𝐷 follows by a simple norm bound on the resolvents and A, so the condition
𝑋 ≺ 𝑁𝐷 is always satisfied in our applications.

By the standard single resolvent local laws in equation (2.4), we know that 𝜓av
0 = 𝜓iso

0 = 1. Using the
master inequalities in Proposition 3.2 and the reduction bounds from Lemma 3.3, in the first step, we
will show that Ψav/iso

𝑘 ≺ 𝜌−𝑘/4 for any 𝑘 ≥ 1 as an a priori bound. Then, in the second step, we feed
this bound into the tandem of the master inequalities, and the reduction bounds to improve the estimate
to Ψav/iso

𝑘 ≺ 1. The first step is the critical stage of the proof; here we need to show that our bounds
are sufficiently strong to close the hierarchy of our estimates to yield a better bound on Ψav/iso

𝑘 than the
trivial Ψav/iso

𝑘 ≤ 𝑁 𝑘/2𝜂−𝑘−1 estimate obtained by using the norm bounds ‖𝐺‖ ≤ 𝜂−1 and ‖𝐴‖ ≤ 𝑁1/2.
Once some improvement is achieved, it can be relatively easily iterated.

The proof of Ψav/iso
𝑘 ≺ 𝜌−𝑘/4 proceeds by a step-two induction: we first prove that Ψav,iso

𝑘 ≺ 𝜌−𝑘/4

for 𝑘 = 1, 2 and then show that if Ψav/iso
𝑛 ≺ 𝜌−𝑛/4 holds for all 𝑛 ≤ 𝑘 − 2, for some 𝑘 ≥ 4, then it also

holds for Ψav/iso
𝑘−1 and Ψav/iso

𝑘 .
Using equations (3.8)–(3.9), we have

Ψav
1 ≺ 1 +

√
𝜓iso

2

(𝑁𝜂𝜌)1/4 +
√
𝜓av

2
(𝑁𝜂𝜌)1/4 + (𝜓iso

1 )2/3 + 𝜓iso
1

√
𝜌

𝑁𝜂
+
𝜓av

1√
𝑁𝜂

Ψiso
1 ≺ 1 +

√
𝜓iso

2

(𝑁𝜂𝜌)1/4 +
𝜓av

1
𝑁𝜂

+ 𝜓iso
1

√
𝜌

𝑁𝜂
+
𝜓iso

1
𝑁𝜂

(3.70)

for 𝑘 = 1, using

Φ1 � 1 + 𝜓iso
1

√
𝜌

𝑁𝜂
+

√
𝜓iso

2

(𝑁𝜂𝜌)1/4 .
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Similarly, for 𝑘 = 2, estimating explicitly

Φ2 � 1 + (𝜓iso
1 )2 𝜌

𝑁𝜂
+

𝜓iso
2

(𝑁𝜂𝜌)1/2 +
(𝜓iso

4 )1/2

(𝑁𝜂𝜌)1/4

by Schwarz inequalities and plugging it into equations (3.8)–(3.9), we have

Ψav
2 ≺ 1 + 𝜓av

1 +
𝜓iso

2
(𝑁𝜂𝜌)1/12 +

√
𝜓iso

4

(𝑁𝜂𝜌)1/4 +
√
𝜓av

4
(𝑁𝜂𝜌)1/4 + (𝜓iso

2 )2/3 +
√
𝜓iso

1 𝜓iso
2

+
(𝜓iso

2 )3/4(𝜓iso
1 )1/2

(𝑁𝜂𝜌)1/8 +
𝜌1/3(𝜓iso

2 )2/3(𝜓iso
1 )1/3

(𝑁𝜂𝜌)1/6 +
√
𝜌(𝜓av

1 )2

(𝑁𝜂)3/2 + (𝜓iso
1 )2 𝜌

𝑁𝜂

+ (𝜓iso
1 )3/2

√
𝜌

𝑁𝜂
+
𝜌1/2𝜓iso

1 (𝜓iso
2 )1/2

(𝑁𝜂𝜌)1/4 +
𝜓av

2√
𝑁𝜂

,

Ψiso
2 ≺ 1 + 𝜓iso

1 +
𝜓av

1
𝑁𝜂

+
𝜓iso

2 + 𝜓av
2

(𝑁𝜂𝜌)1/2 +

√
𝜓iso

4

(𝑁𝜂𝜌)1/4 +

√
𝜓iso

1 𝜓iso
3

𝑁𝜂
+
𝜓av

1 𝜓
iso
1

(𝑁𝜂)3/2 + (𝜓iso
1 )2 𝜌

𝑁𝜂
+
𝜓iso

2
𝑁𝜂

.

(3.71)

In these estimates, we frequently used that 𝜓av/iso
𝑘 ≥ 1, 𝜌 � 1, 𝜌/𝑁𝜂 ≤ 1 and 𝑁𝜂𝜌 ≥ 1 to simplify the

formulas.
By equations (3.70)–(3.71), using iteration for the sum Ψav

1 + Ψiso
1 , we readily conclude

Ψav
1 + Ψiso

1 ≺ 1 +

√
𝜓iso

2

(𝑁𝜂𝜌)1/4 +
√
𝜓av

2
(𝑁𝜂𝜌)1/4 . (3.72)

Note that since equation (3.72) holds uniformly in the hidden parameters 𝐴, 𝑧, 𝒙, 𝒚 in Ψav/iso
1 , this bound

serves as an upper bound on 𝜓av
1 + 𝜓iso

1 (in the sequel, we will frequently use an already proven upper
bound on Ψ𝑘 as an effective upper bound on 𝜓𝑘 in the next steps without explicitly mentioning it). Next,
using this upper bound together with an iteration for Ψav

2 + Ψiso
2 , we have from equation (3.71)

Ψav
2 + Ψiso

2 ≺ 1 +

√
𝜓iso

4

(𝑁𝜂𝜌)1/4 +
√
𝜓av

4
(𝑁𝜂𝜌)1/4 +

√
𝜓iso

1 𝜓iso
3

𝑁𝜂
, (3.73)

again after several simplifications by Young’s inequality and the basic inequalities 𝜓av/iso
𝑘 ≥ 1, 𝜌 � 1

and 𝑁𝜂𝜌 ≥ 1.
We now apply the reduction inequalities from Lemma 3.3 in the form

Ψav
4 ≺

√
𝑁𝜂

𝜌
+

√
𝜌

𝑁𝜂
(𝜓av

2 )2

Ψiso
4 ≺

√
𝑁𝜂

𝜌
+ 𝜓av

2 + 𝜓iso
2 +

√
𝜌

𝑁𝜂
𝜓av

2 𝜓
iso
2

Ψiso
3 ≺

√
𝑁𝜂

𝜌
+

(
𝑁𝜂

𝜌

)1/4√
𝜓av

2 + 𝜓iso
2 +

(
𝜌

𝑁𝜂

)1/4
𝜓iso

2

√
𝜓av

2 ,

(3.74)

where the first inequality was already inserted into the right-hand side of equation (3.12) to get the
second inequality in equation (3.74).
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Then, inserting equations (3.74) and (3.72) into equation (3.73) and using iteration, we conclude

Ψav
2 + Ψiso

2 ≺ 1
√
𝜌
+

√
𝜓iso

2 +
√
𝜓av

2

(𝑁𝜂𝜌)1/4 +
𝜓av

2 + 𝜓iso
2

(𝑁𝜂)1/2 , (3.75)

which together with equation (3.72) implies

Ψiso
1 + Ψav

1 ≺ 𝜌−1/4, Ψiso
2 + Ψav

2 ≺ 𝜌−1/2. (3.76)

We now proceed with a step-two induction on k. The initial step of the induction is equation (3.76).
Fix an even 𝑘 ≥ 4, and assume that Ψav/iso

𝑛 ≺ 𝜌−𝑛/4 holds for any 𝑛 ≤ 𝑘 − 2. In this case, by substituting
this bound for 𝜓av/iso

𝑛 whenever possible, for any even 𝑙 ≤ 𝑘 , we have the following upper bounds on Φ𝑙

and Φ𝑙−1:

Φ𝑙 � 𝔈𝑙 :=
1
𝜌𝑙/4 +

𝑙/2−1∑
𝑗=0

√
𝜓iso

2𝑙−2 𝑗

(𝑁𝜂𝜌)1/4

(
1 + 1

𝜌 𝑗/4(𝑁𝜂𝜌)1/4

)
+

√
𝜓iso

𝑙

(𝑁𝜂𝜌)1/4

(
1 + 1

𝜌𝑙/8(𝑁𝜂𝜌)1/4

)
1(𝑙 ≤ 𝑘 − 2)

+
[
𝜓iso

𝑘−1

√
𝜌

𝑁𝜂
+

𝜓iso
𝑘

(𝑁𝜂𝜌)1/2

]
1(𝑙 = 𝑘),

Φ𝑙−1 � 𝔈𝑙−1 :=
1

𝜌 (𝑙−1)/4 +
𝑙/2−1∑
𝑗=1

√
𝜓iso

2𝑙−2 𝑗

(𝑁𝜂𝜌)1/4

(
1 + 1

𝜌 ( 𝑗−1)/4(𝑁𝜂𝜌)1/4

)
+ 𝜓iso

𝑘−1

√
𝜌

𝑁𝜂
1(𝑙 = 𝑘).

(3.77)

We now plug equation (3.77) into equations (3.8) and (3.9) and, again using the boundΨav/iso
𝑛 ≺ 𝜌−𝑛/4,

𝑛 ≤ 𝑘 − 2, whenever possible, get

Ψav
𝑘−1 ≺ 1

𝜌 (𝑘−1)/4 +𝔈𝑘−1 +
√
𝜓av

2𝑘−2
(𝑁𝜂𝜌)1/4 + (𝜓iso

𝑘−1)
2/3𝔈1/3

𝑘−2 +
𝑘−2∑
𝑗=1

1
𝜌 𝑗/8

√
𝔈𝑘−1− 𝑗 (𝜓iso

𝑘−1 +𝔈𝑘−2)

+
𝜓av

𝑘−1
𝑁𝜂𝜌1/4 +

𝜓av
𝑘−1√
𝑁𝜂

,

Ψiso
𝑘−1 ≺ 1

𝜌 (𝑘−1)/4 +𝔈𝑘−1 +
𝜓av

𝑘−1 + 𝜓
iso
𝑘−1

𝑁𝜂
+ 1
𝑁𝜂

𝑘−2∑
𝑗=0

1
𝜌 𝑗/8

√
𝜓iso

2𝑘−2− 𝑗 +
𝜓iso

𝑘−1
𝑁𝜂

,

(3.78)

and

Ψav
𝑘 ≺ 1

𝜌𝑘/4 +𝔈𝑘 +
√
𝜓av

2𝑘

(𝑁𝜂𝜌)1/4 + 𝜓av
𝑘−1 + (𝜓iso

𝑘 )2/3𝔈1/3
𝑘−1 +

𝑘−2∑
𝑗=1

1
𝜌 𝑗/8

√
𝔈𝑘− 𝑗 (𝜓iso

𝑘 +𝔈𝑘−1)

+
√
𝜓iso

𝑘−1𝔈1(𝜓iso
𝑘 +𝔈𝑘−1) +

𝜓av
𝑘√
𝑁𝜂

,

Ψiso
𝑘 ≺ 1

𝜌𝑘/4 +𝔈𝑘 + 𝜓iso
𝑘−1 +

𝜓av
𝑘 + 𝜓iso

𝑘

𝑁𝜂
+
𝜓av

𝑘−1
𝑁𝜂

+ 1
𝑁𝜂

𝑘−2∑
𝑗=0

1
𝜌 𝑗/8

√
𝜓iso

2𝑘− 𝑗 +

√
𝜓iso

𝑘−1𝜓
iso
𝑘+1

𝑁𝜂
+
𝜓iso

𝑘

𝑁𝜂
.

(3.79)
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By iteration for Ψav
𝑘−1 + Ψiso

𝑘−1 from equation (3.78), we thus get

Ψav
𝑘−1 + Ψiso

𝑘−1 ≺
1

𝜌 (𝑘−1)/4 +𝔈𝑘−1 +
√
𝜓av

2𝑘−2
(𝑁𝜂𝜌)1/4 +

𝑘−2∑
𝑗=1

1
𝜌 𝑗/8

√
𝔈𝑘−1− 𝑗 (𝜓iso

𝑘−1 +𝔈𝑘−2) +
1
𝑁𝜂

𝑘−2∑
𝑗=1

1
𝜌 𝑗/8

√
𝜓iso

2𝑘− 𝑗 ,

(3.80)

where we used that 𝔈𝑘−2 ≤ 𝔈𝑘−1. Then using iteration for Ψav
𝑘 + Ψiso

𝑘 from equation (3.79), we have

Ψav
𝑘 + Ψiso

𝑘 ≺ 1
𝜌𝑘/4 +𝔈𝑘 +

√
𝜓av

2𝑘

(𝑁𝜂𝜌)1/4 +
𝑘−2∑
𝑗=1

1
𝜌 𝑗/8

√
𝔈𝑘− 𝑗 (𝜓iso

𝑘 +𝔈𝑘−1) +
1
𝑁𝜂

𝑘−2∑
𝑗=0

1
𝜌 𝑗/8

√
𝜓iso

2𝑘− 𝑗

+
√
𝜓iso

𝑘−1𝔈1 (𝜓iso
𝑘 +𝔈𝑘−1) + 𝜓av

𝑘−1 + 𝜓
iso
𝑘−1 +

√
𝜓iso

𝑘−1𝜓
iso
𝑘+1

𝑁𝜂
,

(3.81)

where we used that 𝔈𝑘−1 ≤ 𝔈𝑘 .
We will now use the reduction inequalities from Lemma 3.3 in the following form:

Ψav
2 𝑗 ≺

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
√

𝑁 𝜂
𝜌 +

√
𝜌

𝑁 𝜂 (𝜓
av
𝑘 )2 𝑗 = 𝑘,√

𝑁 𝜂
𝜌 + 𝜓av

𝑘 + 1
𝜌 (𝑘−2)/4 + 1

(𝑁 𝜂𝜌)1/2𝜌 (𝑘−6)/4𝜓
av
𝑘 𝑗 = 𝑘 − 1,√

𝑁 𝜂
𝜌 + 1

𝜌 ( 𝑗+1)/4 + 1
(𝑁 𝜂𝜌)1/2𝜌 ( 𝑗−2)/2 𝑗 ≤ 𝑘 − 2,

(3.82)

and

Ψiso
𝑙+(𝑙−2 𝑗) ≺

√
𝑁𝜂

𝜌

(
1 +

(
𝜌

𝑁𝜂

)1/4
(𝜓av

2(𝑙−2 𝑗) )
1/2

) (
1 +

√
𝜌

𝑁𝜂
𝜓iso

𝑙

)
�

(𝑁𝜂𝜌)1/2

𝜌 (𝑙− 𝑗)/2 (3.83)

for any 𝑗 ≤ 𝑙/2, where 𝑙 ≤ 𝑘 − 2 is even. In the last step, we also used the last line of equation (3.82) to
estimate 𝜓av

2(𝑙−2 𝑗) . Then by plugging equation (3.83) into equation (3.77), we readily conclude that

𝔈𝑟 �
1
𝜌𝑟/4 +

√
𝜓iso

2𝑘

(𝑁𝜂𝜌)1/4 1(𝑟 = 𝑘) (3.84)

for any 𝑟 ≤ 𝑘 .
Plugging equation (3.84) into equations (3.80) and (3.81) and using iteration, we conclude

Ψav
𝑘−1 + Ψiso

𝑘−1 ≺ 1
𝜌 (𝑘−1)/4 +

√
𝜓av

2𝑘−2
(𝑁𝜂𝜌)1/4 + 1

𝑁𝜂

𝑘−2∑
𝑗=1

1
𝜌 𝑗/8

√
𝜓iso

2𝑘− 𝑗

Ψav
𝑘 + Ψiso

𝑘 ≺ 1
𝜌𝑘/4 +

√
𝜓av

2𝑘 +
√
𝜓iso

2𝑘

(𝑁𝜂𝜌)1/4 + 1
𝑁𝜂

𝑘−2∑
𝑗=0

1
𝜌 𝑗/8

√
𝜓iso

2𝑘− 𝑗 +
1
𝜌1/8

√
𝜓iso

𝑘−1𝜓
iso
𝑘 + 𝜓av

𝑘−1 + 𝜓
iso
𝑘−1

+

√
𝜓iso

𝑘−1𝜓
iso
𝑘+1

𝑁𝜂
. (3.85)
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We will now additionally use that by equation (3.12) for any 𝑟 ∈ {𝑘 − 1, 𝑘}, we have

Ψiso
𝑘+𝑟 ≺

√
𝑁𝜂

𝜌

(
1 +

(
𝜌

𝑁𝜂

)1/4
(𝜓av

2𝑟 )
1/2

) (
1 +

√
𝜌

𝑁𝜂
𝜓iso

𝑘

)
�

(
𝑁𝜂

𝜌

)1/2 (
1 +

√
𝜌

𝑁𝜂
𝜓iso

𝑘

)
×

⎧⎪⎪⎨⎪⎪⎩
1 +

√
𝜌

𝑁 𝜂𝜓
av
𝑘 𝑟 = 𝑘,

1 +
(

𝜌
𝑁 𝜂

)1/4√
𝜓av

𝑘 + 1
𝜌 (𝑘−2)/8 + 1

(𝑁 𝜂𝜌)1/4𝜌 (𝑘−6)/8

√
𝜓av

𝑘 𝑟 = 𝑘 − 1,
(3.86)

and that

Ψiso
2𝑘− 𝑗 = Ψiso

𝑘+(𝑘− 𝑗) ≺ (𝑁𝜂𝜌)1/2 1
𝜌 (2𝑘− 𝑗)/4

for any 2 ≤ 𝑗 ≤ 𝑘 − 1.
Plugging these bounds, together with equation (3.82) for 𝑗 = 𝑘 − 1 and 𝑗 = 𝑘 , into equation (3.85),

and using iteration first for Ψav
𝑘−1 + Ψiso

𝑘−1 and then for Ψav
𝑘 + Ψiso

𝑘 , we conclude that Ψav/iso
𝑘−1 ≺ 𝜌−(𝑘−1)/4

and that Ψav/iso
𝑘 ≺ 𝜌−𝑘/4. This completes the step-two induction and hence the first and pivotal step of

the proof.
In the second step, we improve the bounds Ψav/iso

𝑘 ≺ 𝜌−𝑘/4 to Ψav/iso
𝑘 ≺ 1 for all k. Recall that the

definition of stochastic domination given by equation (1.8) involved an arbitrary small but fixed exponent
𝜉. Now we fix this 𝜉, a large exponent D, and fix an upper threshold K for the indices. Our goal is to
prove that

max
𝑘≤𝐾

sup
𝒙,𝒚,𝑨,𝒛

P
[
Ψav/iso

𝑘 (𝒙, 𝒚, 𝑨, 𝒛) > 𝑁 𝜉
]
≤ 𝑁−𝐷 , (3.87)

where the supremum over all indicated parameters are meant in the sense described below equation (3.3).
Now we distinguish two cases in the supremum over the collection of spectral parameters 𝒛 in

equation (3.87). In the regime where 𝜌 = 𝜌(𝒛) ≥ 𝑁−𝜉/𝐾 , the bounds Ψav/iso
𝑘 ≺ 𝜌−𝑘/4, already proven

for all k, imply equation (3.87). Hence we can work in the opposite regime where 𝜌 < 𝑁−𝜉/𝐾 , and from
now on, we restrict the supremum in equation (3.87) to this parameter regime. By plugging this bound
into the master inequalities in Proposition 3.2 and noticing that Φ𝑘 ≤ 1 + 𝜌−𝑘/4(𝑁𝜂𝜌)−1/4, we directly
conclude that

Ψav/iso
𝑘 ≺ 1 + 𝜌−𝑘/4 [𝜌1/4 + (𝑁𝜂𝜌)−1/12] ≤ 1 + 𝜌−𝑘/4 [𝑁−𝜉/4𝐾 + (𝑁𝜂𝜌)−1/12] (3.88)

for any 𝑘 ≥ 0. Now we can use this improved inequality by again plugging it into the master inequalities
to achieve

Ψav/iso
𝑘 ≺ 1 + 𝜌−𝑘/4 [𝑁−𝜉/4𝐾 + (𝑁𝜂𝜌)−1/12]2 (3.89)

and so on. Recalling the assumption that 𝑁𝜂𝜌 ≥ 𝑁 𝜖 and recalling that 𝜌 � 𝜂1/2 ≥ 𝑁−1/3, we need
to iterate this process finitely many times (depending on k, 𝜉, 𝐾, 𝜖) to also achieve Ψav/iso

𝑘 ≺ 1 in the
second regime. This concludes the proof of the theorem. �

4. Stochastic eigenstate equation and proof of Theorem 2.8

Armed with the new local law (Theorem 2.2) and its direct corollary on the eigenvector overlaps
(Theorem 2.6), the rest of the proof of Theorem 2.8 is very similar to the proof of [17, Theorem 2.2],
which is presented in [17, Sections 3 and 4]. For this reason, we only explain the differences and refer
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to [17] for a fully detailed proof. We mention that the proof in [17] relies heavily on the theory of the
stochastic eigenstate equation initiated in [10] and then further developed in [12, 43].

Similarly to [17, Sections 3-4], we present the proof only in the real case (the complex case is com-
pletely analogous and so omitted). We will prove Theorem 2.8 dynamically: that is, we consider the
Dyson Brownian motion (DBM) with initial condition W and show that the overlaps of the eigenvec-
tors have Gaussian fluctuations after a time t slightly bigger than 𝑁−1. With a separate argument in
Appendix B, we show that the (small) Gaussian component added along the DBM flow can be removed
at the price of a negligible error.

More precisely, we consider the matrix flow

d𝑊𝑡 =
d𝐵𝑡√
𝑁
, 𝑊0 = 𝑊, (4.1)

where 𝐵𝑡 is a standard real symmetric matrix Brownian motion (see, for example, [10, Definition 2.1]).
We denote the resolvent of 𝑊𝑡 by 𝐺 = 𝐺𝑡 (𝑧) := (𝑊𝑡 − 𝑧)−1, for 𝑧 ∈ C \ R. It is well known that in the
limit 𝑁 → ∞, the resolvent 𝐺𝑡 (𝑧) := (𝑊𝑡 − 𝑧)−1, for 𝑧 ∈ C \ R, becomes approximately deterministic
and that its deterministic approximation is given by the scalar matrix 𝑚𝑡 · 𝐼. The function 𝑚𝑡 = 𝑚𝑡 (𝑧)
is the unique solution of the complex Burgers equation

𝜕𝑡𝑚𝑡 (𝑧) = −𝑚𝑡𝜕𝑧𝑚𝑡 (𝑧), 𝑚0 (𝑧) = 𝑚(𝑧), (4.2)

with initial condition 𝑚(𝑧) = 𝑚sc (𝑧) being the Stieltjes transform of the semicircular law. Denote
𝜌𝑡 = 𝜌𝑡 (𝑧) := 𝜋−1�𝑚𝑡 (𝑧); then it is easy to see that 𝜌𝑡 (𝑥 + i0) is a rescaling of 𝜌0 = 𝜌sc by a factor 1+ 𝑡.
In fact, 𝑊𝑡 is a Wigner matrix itself, with a normalisation E | (𝑊𝑡 )𝑎𝑏 |2 = 𝑁−1(1 + 𝑡) with a Gaussian
component.

Denote by 𝜆1(𝑡) ≤ 𝜆2(𝑡) ≤ · · · ≤ 𝜆𝑁 (𝑡) the eigenvalues of 𝑊𝑡 , and let {𝒖𝑖 (𝑡)}𝑖∈[𝑁 ] be the
corresponding eigenvectors. Then it is known [10, Theorem 2.3] that 𝜆𝑖 = 𝜆𝑖 (𝑡), 𝒖𝑖 = 𝒖𝑖 (𝑡) are the
unique strong solutions of the following system of stochastic differential equations:

d𝜆𝑖 =
d𝐵𝑖𝑖√
𝑁

+ 1
𝑁

∑
𝑗≠𝑖

1
𝜆𝑖 − 𝜆 𝑗

d𝑡 (4.3)

d𝒖𝑖 =
1
√
𝑁

∑
𝑗≠𝑖

d𝐵𝑖 𝑗

𝜆𝑖 − 𝜆 𝑗
𝒖 𝑗 −

1
2𝑁

∑
𝑗≠𝑖

𝒖𝑖

(𝜆𝑖 − 𝜆 𝑗 )2 d𝑡, (4.4)

where 𝐵𝑡 = (𝐵𝑖 𝑗 )𝑖, 𝑗∈[𝑁 ] is a standard real symmetric matrix Brownian motion (see, for example, [10,
Definition 2.1]).

Note that the flow for the diagonal overlaps 〈𝒖𝑖 , 𝐴𝒖𝑖〉, by equation (4.4), naturally also depends on the
off-diagonal overlap 〈𝒖𝑖 , 𝐴𝒖 𝑗〉. Hence, even if we are only interested in diagonal overlaps, our analysis
must also handle off-diagonal overlaps. In particular, this implies that there is no closed differential
equation for only diagonal or only off-diagonal overlaps. However, in [12], Bourgade, Yau and Yin
proved that the perfect matching observable 𝑓𝝀,𝑡 , which is presented in equation (4.6) below, satisfies a
parabolic PDE (see equation (4.10) below). We now describe how the observable 𝑓𝝀,𝑡 is constructed.

4.1. Perfect matching observables

Without loss of generality for the rest of the paper, we assume that A is traceless, 〈𝐴〉 = 0: that is, 𝐴 = �̊�.
We introduce the shorthand notation for the eigenvector overlaps

𝑝𝑖 𝑗 = 𝑝𝑖 𝑗 (𝑡) := 〈𝒖𝑖 (𝑡), 𝐴𝒖 𝑗 (𝑡)〉, 𝑖, 𝑗 ∈ [𝑁] . (4.5)
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To compute the moments, we will consider monomials of eigenvector overlaps of the form
∏

𝑘 𝑝𝑖𝑘 𝑗𝑘 ,
where each index occurs an even number of times. We start by introducing a particle picture and a
certain graph that encode such monomials: each particle on the set of integers [𝑁] corresponds to two
occurrences of an index i in the monomial product. This particle picture was introduced in [10] and
heavily used in [12, 43]. Each particle configuration is encoded by a function 𝜼 : [𝑁] → N0, where
𝜂 𝑗 := 𝜼( 𝑗) denotes the number of particles at the site j and 𝑛(𝜼) :=

∑
𝑗 𝜂 𝑗 = 𝑛 is the total number

of particles. We denote the space of n-particle configurations by Ω𝑛. Moreover, for any index pair
𝑖 ≠ 𝑗 ∈ [𝑁], we define 𝜼𝑖 𝑗 to be the configuration obtained moving a particle from site i to site j; if
there is no particle in i, then 𝜼𝑖 𝑗 := 𝜼.

We now define the perfect matching observable (introduced in [12]) for any given configuration 𝜼:

𝑓𝝀,𝑡 (𝜼) :=
𝑁𝑛/2

[2〈𝐴2〉]𝑛/2
1

(𝑛 − 1)!!
1

M(𝜼) E
⎡⎢⎢⎢⎢⎣
∑

𝐺∈G𝜼

𝑃(𝐺)

�����𝝀⎤⎥⎥⎥⎥⎦ , M(𝜼) :=
𝑁∏
𝑖=1

(2𝜂𝑖 − 1)!!, (4.6)

with n being the number of particles in the configuration 𝜼. Here G𝜼 denotes the set of perfect matchings
on the complete graph with vertex set

V𝜼 := {(𝑖, 𝑎) : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑎 ≤ 2𝜂𝑖},

and

𝑃(𝐺) :=
∏

𝑒∈E (𝐺)
𝑝(𝑒), 𝑝(𝑒) := 𝑝𝑖1𝑖2 , (4.7)

where 𝑒 = {(𝑖1, 𝑎1), (𝑖2, 𝑎2)} ∈ V2
𝜼 , and E (𝐺) denotes the edges of G. Note that in equation (4.6), we

took the conditioning on the entire flow of eigenvalues, 𝝀 = {𝝀(𝑡)}𝑡 ∈[0,𝑇 ] for some fixed 𝑇 > 0. From
now on, we will always assume that 𝑇 � 1 (even if not stated explicitly).

We always assume that the entire eigenvalue trajectory {𝝀(𝑡)}𝑡 ∈[0,𝑇 ] satisfies the usual rigidity
estimate asserting that the eigenvalues are very close to the deterministic quantiles of the semicircle law
with very high probability. To formalise it, we define

Ω̃ = Ω̃𝜉 :=
{

sup
0≤𝑡≤𝑇

max
𝑖∈[𝑁 ]

𝑁2/3̂𝑖1/3 |𝜆𝑖 (𝑡) − 𝛾𝑖 (𝑡) | ≤ 𝑁 𝜉
}

(4.8)

for any 𝜉 > 0, where �̂� := 𝑖 ∧ (𝑁 + 1 − 𝑖). Here 𝛾𝑖 (𝑡) denote the quantiles of 𝜌𝑡 , defined by∫ 𝛾𝑖 (𝑡)

−∞
𝜌𝑡 (𝑥) d𝑥 =

𝑖

𝑁
, 𝑖 ∈ [𝑁], (4.9)

where 𝜌𝑡 (𝑥) = 1
2(1+𝑡) 𝜋

√
(4(1 + 𝑡)2 − 𝑥2)+ is the semicircle law corresponding to 𝑊𝑡 . Note that |𝛾𝑖 (𝑡) −

𝛾𝑖 (𝑠) | � |𝑡 − 𝑠 | for any bulk index i and any 𝑡, 𝑠 ≥ 0.
The well-known rigidity estimate (see, for example, [24, Theorem 7.6] or [29]) asserts that

P(Ω̃𝜉 ) ≥ 1 − 𝐶 (𝜉, 𝐷)𝑁−𝐷

for any (small) 𝜉 > 0 and (large)𝐷 > 0. This was proven for any fixed t: for example, in [24, Theorem 7.6]
or [29], the extension to all t follows by a grid argument together with the fact that 𝝀(𝑡) is stochastically
1/2-Hölder in t, which follows by Weyl’s inequality

‖𝝀(𝑡) − 𝝀(𝑠)‖∞ � ‖𝑊𝑡 −𝑊𝑠 ‖
d
= ‖𝑊 +

√
𝑠𝑈1 +

√
𝑡 − 𝑠𝑈2 −𝑊 −

√
𝑠𝑈1‖ �

√
𝑡 − 𝑠,

with 𝑠 ≤ 𝑡 and𝑈1,𝑈2 being independent GUE/GOE matrices that are also independent of W.
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By [12, Theorem 2.6], we know that the perfect matching observable 𝑓𝝀,𝑡 is a solution of the following
parabolic discrete PDE

𝜕𝑡 𝑓𝝀,𝑡 = B(𝑡) 𝑓𝝀,𝑡 , (4.10)

B(𝑡) 𝑓𝝀,𝑡 =
∑
𝑖≠ 𝑗

𝑐𝑖 𝑗 (𝑡)2𝜂𝑖 (1 + 2𝜂 𝑗 )
(
𝑓𝝀,𝑡 (𝜼𝑘𝑙) − 𝑓𝝀,𝑡 (𝜼)

)
, (4.11)

where

𝑐𝑖 𝑗 (𝑡) :=
1

𝑁 (𝜆𝑖 (𝑡) − 𝜆 𝑗 (𝑡))2 . (4.12)

Note that the number of particles 𝑛 = 𝑛(𝜼) is preserved under the flow of equation (4.10). The eigenvalue
trajectories are fixed in this proof; hence we will often omit 𝝀 from the notation: for example, we will
use 𝑓𝑡 = 𝑓𝝀,𝑡 , and so on.

The main technical input in the proof of Theorem 2.8 is the following result (compare to [17,
Proposition 3.2]):

Proposition 4.1. For any 𝑛 ∈ N, there exists 𝑐(𝑛) > 0 such that for any 𝜖 > 0, and for any 𝑇 ≥ 𝑁−1+𝜖 ,
it holds

sup
𝜼

�� 𝑓𝑇 (𝜼) − 1(𝑛 even)
�� � 𝑁−𝑐 (𝑛) , (4.13)

with very high probability, where the supremum is taken over configurations 𝜼 ∈ Ω𝑛 supported in the
bulk: that is, such that 𝜂𝑖 = 0 for 𝑖 ∉ [𝛿𝑁, (1−𝛿)𝑁], with 𝛿 > 0 from Theorem 2.8. The implicit constant
in equation (4.13) depends on n, 𝜖 , 𝛿.

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. Fix 𝑖 ∈ [𝛿𝑁, (1 − 𝛿)𝑁]. Then the convergence in equation (2.9) follows imme-
diately from equation (4.13), choosing 𝜼 to be the configuration with 𝜂𝑖 = 𝑛 and all other 𝜂 𝑗 = 0,
together with a standard application of the Green function comparison theorem (GFT), relating the
eigenvectors/eigenvalues of𝑊𝑇 to those of W; see Appendix B, where we recall the GFT argument for
completeness. We defer the interested reader to [17, Proof of Theorem 2.2] for a more detailed proof. �

4.2. DBM analysis

Since the current DBM analysis of equation (4.10) heavily relies on [17, Section 4], before starting it,
we introduce an equivalent representation of equation (4.6) used in [17] (which itself is based on the
particles representation from [43]).

Fix 𝑛 ∈ N, and consider configurations 𝜼 ∈ Ω𝑛: that is, such that
∑

𝑗 𝜂 𝑗 = 𝑛. We now give an
equivalent representation of equations (4.10) and (4.11) that is defined on the 2𝑛-dimensional lattice
[𝑁]2𝑛 instead of configurations of n particles (see [17, Section 4.1] for a more detailed description). Let
𝒙 ∈ [𝑁]2𝑛, and define the configuration space

Λ𝑛 := {𝒙 ∈ [𝑁]2𝑛 : 𝑛𝑖 (𝒙) is even for every 𝑖 ∈ [𝑁]
}
, (4.14)

where

𝑛𝑖 (𝒙) := |{𝑎 ∈ [2𝑛] : 𝑥𝑎 = 𝑖}| (4.15)

for all 𝑖 ∈ N.
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The correspondence between these two representations is given by

𝜼 ↔ 𝒙 𝜂𝑖 =
𝑛𝑖 (𝒙)

2
. (4.16)

Note that 𝒙 uniquely determines 𝜼, but 𝜼 determines only the coordinates of 𝒙 as a multiset and not
its ordering. Let 𝜙 : Λ𝑛 → Ω𝑛, 𝜙(𝒙) = 𝜼 be the projection from the 𝒙-configuration space to the
𝜼-configuration space using equation (4.16). We will then always consider functions g on [𝑁]2𝑛 that
are push-forwards of some function f on Ω𝑛, 𝑔 = 𝑓 ◦ 𝜙: that is, they correspond to functions on the
configurations

𝑓 (𝜼) = 𝑓 (𝜙(𝒙)) = 𝑔(𝒙).

In particular, g is supported on Λ𝑛, and it is equivariant under permutation of the arguments: that is, it
depends on 𝒙 only as a multiset. We thus consider the observable

𝑔𝑡 (𝒙) = 𝑔𝝀,𝑡 (𝒙) := 𝑓𝝀,𝑡 (𝜙(𝒙)), (4.17)

where 𝑓𝝀,𝑡 was defined in equation (4.6).
Using the 𝒙-representation space, we can now write the flow of equations (4.10) and (4.11) as follows:

𝜕𝑡𝑔𝑡 (𝒙) = L(𝑡)𝑔𝑡 (𝒙) (4.18)

L(𝑡) :=
∑
𝑗≠𝑖

L𝑖 𝑗 (𝑡), L𝑖 𝑗 (𝑡)𝑔(𝒙) : = 𝑐𝑖 𝑗 (𝑡)
𝑛 𝑗 (𝒙) + 1
𝑛𝑖 (𝒙) − 1

∑
𝑎≠𝑏∈[2𝑛]

(
𝑔(𝒙𝑖 𝑗

𝑎𝑏) − 𝑔(𝒙)
)
, (4.19)

where

𝒙𝑖 𝑗
𝑎𝑏 := 𝒙 + 𝛿𝑥𝑎𝑖𝛿𝑥𝑏𝑖 ( 𝑗 − 𝑖) (𝒆𝑎 + 𝒆𝑏), (4.20)

with 𝒆𝑎 (𝑐) = 𝛿𝑎𝑐 , 𝑎, 𝑐 ∈ [2𝑛]. This flow is a map of functions defined on Λ𝑛 ⊂ [𝑁]2𝑛, and it preserves
equivariance.

We now define the scalar product and the natural measure on Λ𝑛:

〈 𝑓 , 𝑔〉Λ𝑛 = 〈 𝑓 , 𝑔〉Λ𝑛 , 𝜋 :=
∑
𝒙∈Λ𝑛

𝜋(𝒙) 𝑓 (𝒙)𝑔(𝒙), 𝜋(𝒙) :=
𝑁∏
𝑖=1

((𝑛𝑖 (𝒙) − 1)!!)2, (4.21)

as well as the norm on 𝐿𝑝 (Λ𝑛):

‖ 𝑓 ‖𝑝 = ‖ 𝑓 ‖𝐿𝑝 (Λ𝑛 , 𝜋) :=

( ∑
𝒙∈Λ𝑛

𝜋(𝒙) | 𝑓 (𝒙) |𝑝
)1/𝑝

. (4.22)

By [43, Appendix A.2], it follows that the operator L = L(𝑡) is symmetric with respect to the measure
𝜋, and it is a negative operator on 𝐿2 (Λ𝑛) with Dirichlet form

𝐷 (𝑔) = 〈𝑔, (−L)𝑔〉Λ𝑛 =
1
2

∑
𝒙∈Λ𝑛

𝜋(𝒙)
∑
𝑖≠ 𝑗

𝑐𝑖 𝑗 (𝑡)
𝑛 𝑗 (𝒙) + 1
𝑛𝑖 (𝒙) − 1

∑
𝑎≠𝑏∈[2𝑛]

��𝑔(𝒙𝑖 𝑗
𝑎𝑏) − 𝑔(𝒙)

��2.
Let U (𝑠, 𝑡) be the semigroup associated to L: that is, for any 0 ≤ 𝑠 ≤ 𝑡, it holds

𝜕𝑡U (𝑠, 𝑡) = L(𝑡)U (𝑠, 𝑡), U (𝑠, 𝑠) = 𝐼 .
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4.2.1. Short-range approximation
Most of our DBM analysis will be completely local; hence we will introduce a short-range approximation
ℎ𝑡 (see its definition in equation (4.26) below) of 𝑔𝑡 that will be exponentially small, evaluated on 𝒙s
that are not fully supported in the bulk.

Recall the definition of the quantiles 𝛾𝑖 (0) from equation (4.9). Then we define the sets

J = J𝛿 := {𝑖 ∈ [𝑁] : 𝛾𝑖 (0) ∈ I𝛿}, I𝛿 := (−2 + 𝛿, 2 − 𝛿), (4.23)

which correspond to indices and spectral range in the bulk, respectively. From now on, we fix a point
𝒚 ∈ J and an N-dependent parameter K such that 1 � 𝐾 ≤

√
𝑁 . Next, we define the averaging operator

as a simple multiplication operator by a ‘smooth’ cut-off function:

Av(𝐾, 𝒚)ℎ(𝒙) := Av(𝒙;𝐾, 𝒚)ℎ(𝒙), Av(𝒙;𝐾, 𝒚) :=
1
𝐾

2𝐾−1∑
𝑗=𝐾

1(‖𝒙 − 𝒚‖1 < 𝑗), (4.24)

with ‖𝒙 − 𝒚‖1 :=
∑2𝑛

𝑎=1 |𝑥𝑎 − 𝑦𝑎 |. Additionally, fix an integer ℓ with 1 � ℓ � 𝐾 , and define the short-
range coefficients

𝑐S𝑖 𝑗 (𝑡) :=

{
𝑐𝑖 𝑗 (𝑡) if 𝑖, 𝑗 ∈ J and |𝑖 − 𝑗 | ≤ ℓ
0 otherwise,

(4.25)

where 𝑐𝑖 𝑗 (𝑡) is defined in equation (4.12). The parameter ℓ is the length of the short-range interaction.
The short-range approximation ℎ𝑡 = ℎ𝑡 (𝒙) of 𝑔𝑡 is defined as the unique solution of the parabolic

equation

𝜕𝑡ℎ𝑡 (𝒙; ℓ, 𝐾, 𝒚) = S (𝑡)ℎ𝑡 (𝒙; ℓ, 𝐾, 𝒚)
ℎ0 (𝒙; ℓ, 𝐾, 𝒚) = ℎ0 (𝒙;𝐾, 𝒚) : = Av(𝒙;𝐾, 𝒚) (𝑔0(𝒙) − 1(𝑛 even)),

(4.26)

where

S (𝑡) :=
∑
𝑗≠𝑖

S𝑖 𝑗 (𝑡), S𝑖 𝑗 (𝑡)ℎ(𝒙) := 𝑐S𝑖 𝑗 (𝑡)
𝑛 𝑗 (𝒙) + 1
𝑛𝑖 (𝒙) − 1

∑
𝑎≠𝑏∈[2𝑛]

(
ℎ(𝒙𝑖 𝑗

𝑎𝑏) − ℎ(𝒙)
)
. (4.27)

Since K, 𝒚 and ℓ are fixed for the rest of this section, we will often omit them from the notation. We
conclude this section defining the transition semigroup US (𝑠, 𝑡) = US (𝑠, 𝑡; ℓ) associated to the short-
range generator S (𝑡).

4.2.2. 𝐿2-bound
By standard finite speed propagation estimates (see [17, Proposition 4.2, Lemmata 4.3–4.4]), we con-
clude that

Lemma 4.2. Let 0 ≤ 𝑠1 ≤ 𝑠2 ≤ 𝑠1 + ℓ𝑁−1 and f be a function on Λ𝑛. Then for any 𝒙 ∈ Λ𝑛 supported
on J , it holds ���(U (𝑠1, 𝑠2) − US (𝑠1, 𝑠2; ℓ)) 𝑓 (𝒙)

��� � 𝑁1+𝑛𝜉 𝑠2 − 𝑠1
ℓ

‖ 𝑓 ‖∞ (4.28)

for any small 𝜉 > 0. The implicit constant in equation (4.13) depends on n, 𝜖 , 𝛿.

In particular, this lemma shows that the observable 𝑔𝑡 and its short-range approximation ℎ𝑡 are close
to each other up to times 𝑡 � ℓ/𝑁; hence to prove Proposition 4.1 will be enough to estimate ℎ𝑡 . First
in Proposition 4.4 below we will prove a bound in the 𝐿2-sense that will be enhanced to an 𝐿∞ bound
by standard parabolic regularity arguments.
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Define the event Ω̂ on which the local laws for certain products of resolvents and traceless matrices
A hold: that is, for a small 𝜔 > 2𝜉 > 0, we define

Ω̂ = Ω̂𝜔,𝜉

: =
⋂

𝑧𝑖 :�𝑧𝑖 ∈[−3,3],
|�𝑧𝑖 | ∈ [𝑁 −1+𝜔 ,10]

[
𝑛⋂

𝑘=2

{
sup

0≤𝑡≤𝑇
(𝜌∗𝑡 )−1/2

�����〈𝐺𝑡 (𝑧1)𝐴 . . . 𝐺𝑡 (𝑧𝑘 )𝐴〉 − 〈𝐴𝑘〉
𝑘∏

𝑖=1
𝑚𝑡 (𝑧𝑖)

�����
≤ 𝑁 𝜉+𝑘/2−1〈𝐴2〉𝑘/2

√
𝑁𝜂∗

}
∩

{
sup

0≤𝑡≤𝑇
(𝜌1,𝑡 )−1/2��〈𝐺𝑡 (𝑧1)𝐴〉

�� ≤ 𝑁 𝜉 〈𝐴2〉1/2

𝑁
√
|�𝑧1 |

}]
,

(4.29)

where 𝜂∗ := min
{
|�𝑧𝑖 |

�� 𝑖 ∈ [𝑘]
}
, 𝜌𝑖,𝑡 := |�𝑚𝑡 (𝑧𝑖) | and 𝜌∗𝑡 := max𝑖 𝜌𝑖,𝑡 . Theorem 2.2 shows that Ω̂ is a

very high-probability event by using a standard grid argument for the spectral parameters and stochastic
continuity in the time parameter. Note that by the rigidity given by equation (4.8) and the spectral
theorem, we have (recall the definition of 𝛾𝑖 (0) from equation (4.9))

(𝜌∗𝑡 )−1〈�𝐺𝑡 (𝛾𝑖1 (𝑡) + i𝜂1)𝐴�𝐺𝑡 (𝛾𝑖2 (𝑡) + i𝜂2)𝐴〉

=
1
𝑁𝜌∗𝑡

𝑁∑
𝑖, 𝑗=1

𝜂2 |〈𝒖𝑖 (𝑡), 𝐴𝒖 𝑗 (𝑡)〉|2

((𝜆𝑖 (𝑡) − 𝛾𝑖1 (𝑡))2 + 𝜂2
1) ((𝜆𝑖 (𝑡) − 𝛾𝑖2 (𝑡))2 + 𝜂2

2)

≥
|〈𝒖𝑖1 (𝑡), 𝐴𝒖𝑖2 (𝑡)〉|2

𝑁𝜂1𝜂2𝜌
∗
𝑡

=
𝑁

[
𝜌(𝛾𝑖1 (𝑡) + i𝑁−2/3) ∧ 𝜌(𝛾𝑖2 (𝑡) + i𝑁−2/3)

]
· |〈𝒖𝑖1 (𝑡), 𝐴𝒖𝑖2 (𝑡)〉|2

𝑁2𝜂1𝜂2𝜌
∗
𝑡

[
𝜌(𝛾𝑖1 (𝑡) + i𝑁−2/3) ∧ 𝜌(𝛾𝑖2 (𝑡) + i𝑁−2/3)

]
= 𝑁1−2𝜔

[
𝜌(𝛾𝑖1 (𝑡) + i𝑁−2/3) ∧ 𝜌(𝛾𝑖2 (𝑡) + i𝑁−2/3)

]
· |〈𝒖𝑖1 (𝑡), 𝐴𝒖𝑖2 (𝑡)〉|2

(4.30)

with 𝜂𝑘 = 𝜂𝑘 (𝑡) defined by 𝑁𝜂𝑘 𝜌(𝛾𝑖𝑘 (𝑡) + i𝑁−2/3) = 𝑁𝜔 . In particular, since |�𝑚𝑡 (𝑧1)�𝑚𝑡 (𝑧2) | �
𝜌(𝑧1)𝜌(𝑧2), by the first line of equation (4.29) for 𝑘 = 2, we have

sup
0≤𝑡≤𝑇

sup
𝑧1 ,𝑧2

(𝜌∗𝑡 )−1〈�𝐺𝑡 (𝑧1)𝐴�𝐺𝑡 (𝑧2)𝐴〉 � 〈𝐴2〉

on Ω̂𝜔,𝜉 , which by equation (4.30), choosing 𝑧𝑘 = 𝛾𝑖𝑘 (𝑡) + i𝜂, implies

|〈𝒖𝑖 (𝑡), 𝐴𝒖 𝑗 (𝑡)〉|2 ≤ 𝑁2𝜔 〈𝐴2〉
𝑁 [𝜌(𝛾𝑖 (𝑡) + i𝑁−2/3) ∧ 𝜌(𝛾 𝑗 (𝑡) + i𝑁−2/3)]

on Ω̂𝜔,𝜉 ∩ Ω̃𝜉 (4.31)

simultaneously for all 𝑖, 𝑗 ∈ [𝑁] and 0 ≤ 𝑡 ≤ 𝑇 . We recall that the quantiles 𝛾𝑖 (𝑡) are defined in equation
(4.9).
Remark 4.3. The set Ω̂ defined in equation (4.29) is slightly different from its analogue10 in [17,
Eq. (4.20)]. First, all the error terms now explicitly depend on 〈𝐴2〉, whilst in [17, Eq. (4.20)],
we just bounded the error terms using the operator norm of A (which was smaller than 1 in
[17, Eq. (4.20)]). Second, we have a slightly weaker bound (compared to [17, Eq. (4.20)]) for
〈�𝐺𝑡 (𝑧1)𝐴�𝐺𝑡 (𝑧2)𝐴〉 −�𝑚𝑡 (𝑧1)�𝑚𝑡 (𝑧2)〈𝐴2〉, since we now do not carry the dependence on the 𝜌𝑖,𝑡s

10The definition of Ω̂ in the published version of [17, Equation (4.20)] contained a small error; the constraints were formally
restricted only to spectral parameters in the bulk, even though the necessary bounds were directly available at the edge as well.
This slightly imprecise formulation is corrected in the latest arXiv version of [17]; Remark 4.3 refers to the corrected version.
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optimally. As a consequence of this slightly worse bound close to the edges, we get the overlap bound
in equation (4.31) instead of the optimal bound [17, Equation (4.21)]; however, this difference will not
cause any change in the result. We remark that the bound in equation (4.31) is optimal for bulk indices.

Proposition 4.4. For any parameters satisfying 𝑁−1 � 𝜂 � 𝑇1 � ℓ𝑁−1 � 𝐾𝑁−1 and any small
𝜖, 𝜉 > 0, it holds

‖ℎ𝑇1 (·; ℓ, 𝐾, 𝒚)‖2 � 𝐾𝑛/2E , (4.32)

with

E := 𝑁𝑛𝜉

(
𝑁 𝜖 ℓ

𝐾
+ 𝑁𝑇1

ℓ
+ 𝑁𝜂

ℓ
+ 𝑁 𝜖

√
𝑁𝜂

+ 1
√
𝐾

)
(4.33)

uniformly for particle configuration 𝒚 ∈ Λ𝑛 supported on J and eigenvalue trajectory 𝝀 in the high-
probability event Ω̃𝜉 ∩ Ω̂𝜔,𝜉 .

Proof. This proof is very similar to that of [17, Proposition 4.5]; hence we will only explain the main
differences. The reader should consult [17] for a fully detailed proof. The key idea is to replace the
operator S (𝑡) in equations (4.26) and (4.27) by the following operator

A(𝑡) :=
∗∑

𝒊, 𝒋∈[𝑁 ]𝑛
A𝒊 𝒋 (𝑡), A𝒊 𝒋 (𝑡)ℎ(𝒙) :=

1
𝜂

(
𝑛∏

𝑟=1
𝑎S𝑖𝑟 , 𝑗𝑟

(𝑡)
) ∗∑
𝒂,𝒃∈[2𝑛]𝑛

(ℎ(𝒙𝒊 𝒋
𝒂𝒃
) − ℎ(𝒙)), (4.34)

where

𝑎𝑖 𝑗 = 𝑎𝑖 𝑗 (𝑡) :=
𝜂

𝑁 ((𝜆𝑖 (𝑡) − 𝜆 𝑗 (𝑡))2 + 𝜂2)
(4.35)

and 𝑎S𝑖 𝑗 are their short-range version defined as in equation (4.25) and

𝒙𝒊 𝒋
𝒂𝒃

:= 𝒙 +
(

𝑛∏
𝑟=1

𝛿𝑥𝑎𝑟 𝑖𝑟 𝛿𝑥𝑏𝑟 𝑖𝑟

)
𝑛∑

𝑟=1
( 𝑗𝑟 − 𝑖𝑟 ) (𝒆𝑎𝑟 + 𝒆𝑏𝑟 ). (4.36)

We remark that 𝒙𝑖 𝑗
𝑎𝑏 from equation (4.20) changes two entries of 𝒙 per time; instead, 𝒙𝒊 𝒋

𝒂𝒃
changes all

the coordinates of 𝒙 at the same time: that is, let 𝒊 := (𝑖1, . . . , 𝑖𝑛), 𝒋 := ( 𝑗1, . . . , 𝑗𝑛) ∈ [𝑁]𝑛, with
{𝑖1, . . . , 𝑖𝑛} ∩ { 𝑗1, . . . , 𝑗𝑛} = ∅; then 𝒙𝒊 𝒋

𝒂𝒃
≠ 𝒙 iff for all 𝑟 ∈ [𝑛], it holds that 𝑥𝑎𝑟 = 𝑥𝑏𝑟 = 𝑖𝑟 . This means

S (𝑡) makes a jump only in one direction at a time, while A(𝑡) jumps in all directions simultaneously.
Technically, the replacement of S (𝑡) by A(𝑡) is done on the level of Dirichlet forms:

Lemma 4.5 (Lemma 4.6 of [17]). Let S (𝑡), A(𝑡) be the generators defined in equations (4.27) and
(4.34), respectively, and let 𝜇 denote the uniform measure on Λ𝑛 for which A(𝑡) is reversible. Then
there exists a constant 𝐶 (𝑛) > 0 such that

〈ℎ,S (𝑡)ℎ〉Λ𝑛 , 𝜋 ≤ 𝐶 (𝑛)〈ℎ,A(𝑡)ℎ〉Λ𝑛 ,𝜇 ≤ 0 (4.37)

for any ℎ ∈ 𝐿2 (Λ𝑛) on the very-high-probability set Ω̃𝜉 ∩ Ω̂𝜔,𝜉 .
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Next, combining

𝜕𝑡 ‖ℎ𝑡 ‖2
2 = 2〈ℎ𝑡 ,S (𝑡)ℎ𝑡 〉Λ𝑛 , (4.38)

which follows from equation (4.26), with equation (4.37), and using that 𝒙𝒊 𝒋
𝒂𝒃

= 𝒙 unless 𝒙𝑎𝑟 = 𝒙𝑏𝑟 = 𝑖𝑟
for all 𝑟 ∈ [𝑛], we conclude that

𝜕𝑡 ‖ℎ𝑡 ‖2
2 ≤ 𝐶 (𝑛)〈ℎ𝑡 ,A(𝑡)ℎ𝑡 〉Λ𝑛 ,𝜇

=
𝐶 (𝑛)

2𝜂

∑
𝒙∈Λ𝑛

∗∑
𝒊, 𝒋∈[𝑁 ]𝑛

(
𝑛∏

𝑟=1
𝑎S𝑖𝑟 𝑗𝑟

(𝑡)
) ∗∑
𝒂,𝒃∈[2𝑛]𝑛

ℎ𝑡 (𝒙)
(
ℎ𝑡 (𝒙𝒊 𝒋𝒂𝒃) − ℎ𝑡 (𝒙)

) ( 𝑛∏
𝑟=1

𝛿𝑥𝑎𝑟 𝑖𝑟 𝛿𝑥𝑏𝑟 𝑖𝑟

)
.

(4.39)

The star over
∑

means summation over two n-tuples of fully distinct indices. Then proceeding as in the
proof of [17, Proposition 4.5], we conclude that

𝜕𝑡 ‖ℎ𝑡 ‖2
2 ≤ −𝐶1 (𝑛)

2𝜂
‖ℎ𝑡 ‖2

2 + 𝐶3 (𝑛)
𝜂

E2𝐾𝑛, (4.40)

which implies ‖ℎ𝑇1 ‖2
2 ≤ 𝐶 (𝑛)E2𝐾𝑛, by a simple Gronwall inequality, using that 𝑇1 � 𝜂.

We point out that to go from equation (4.39) to equation (4.40), we proceed exactly
as in the proof of [17, Proposition 4.5] (with the additional 〈𝐴2〉𝑘/2, 〈𝐴2〉𝑛/2 factors in
[17, Equation (4.47)] and [17, Equation (4.48)], respectively) except for the estimate in
[17, Equation (4.43)]. The error terms in this estimate used that |𝑃(𝐺) | ≤ 𝑁𝑛𝜉−𝑛/2 uniformly in the
spectrum, a fact that we cannot establish near the edges as a consequence of the weaker bound in equa-
tion (4.31). We now explain how we can still prove [17, Equation (4.43)] in the current case. The main
mechanism is that the strong bound |𝑃(𝐺) | ≤ 𝑁𝑛𝜉−𝑛/2〈𝐴2〉𝑛/2 holds for bulk indices, and when an edge
index j is involved together with a bulk index i, then the kernel 𝑎𝑖 𝑗 � 𝜂/𝑁 is very small, which balances
the weaker estimate on the overlap. Note that equation (4.31) still provides a nontrivial bound of order
𝑁−1/3 for |〈𝒖𝑖 , 𝐴𝒖 𝑗〉| since 𝜌(𝛾𝑖 (𝑡) + i𝑁−2/3) � 𝑁−1/3 uniformly in 0 ≤ 𝑡 ≤ 𝑇 .

We start with removing the short-range cutoff from the kernel 𝑎S𝑖 𝑗 (𝑡) in the left-hand side of
[17, Equation (4.43)]:

∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎S𝑖𝑟 𝑗𝑟

(𝑡)
) (
𝑔𝑡 (𝒙𝒊 𝒋𝒂𝒃) − 1(𝑛 even)

)
=

∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎𝑖𝑟 𝑗𝑟 (𝑡)

)456 𝑁𝑛/2

〈𝐴2〉𝑛/22𝑛/2 (𝑛 − 1)!!

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺) − 1(𝑛 even)
7889

−
∗∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎𝑖𝑟 𝑗𝑟 (𝑡)

)456 𝑁𝑛/2

〈𝐴2〉𝑛/22𝑛/2 (𝑛 − 1)!!

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺) − 1(𝑛 even)
7889.

(4.41)

Here
∑∗∗

𝒋 denotes the sum over distinct 𝑗1, . . . , 𝑗𝑛 such that at least one |𝑖𝑟 − 𝑗𝑟 | is bigger than ℓ.
Here the indices 𝑖1, . . . , 𝑖𝑛 are fixed and such that 𝑖𝑙 ∈ [𝛿𝑁, (1 − 𝛿)𝑁] for any 𝑙 ∈ [𝑛]. We will

now show that the second line in equation (4.41) is estimated by 𝑁1+𝑛𝜉𝜂ℓ−1. This is clear for the terms
containing 1(𝑛 even); hence we now show that this bound is also valid for the terms containing 𝑃(𝐺).
We present this bound only for the case when | 𝑗1 − 𝑖1 | > ℓ and | 𝑗𝑟 − 𝑖𝑟 | ≤ ℓ for any 𝑟 ∈ {2, . . . , 𝑛}. The
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proof in the other cases is completely analogous and so omitted. Additionally, to make our presentation
easier, we assume that 𝑛 = 2:

∑
| 𝑗1−𝑖1 |>ℓ, | 𝑗2−𝑖2 |≤ℓ,

𝑗1≠ 𝑗2

𝑎𝑖1 𝑗2 (𝑡)𝑎𝑖1 𝑗2 (𝑡)
456 𝑁

2〈𝐴2〉

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺)
7889

=
4556

∑
𝑐𝑁≥| 𝑗1−𝑖1 |>ℓ, | 𝑗2−𝑖2 |≤ℓ,

𝑗1≠ 𝑗2

+
∑

| 𝑗1−𝑖1 |>𝑐𝑁 , | 𝑗2−𝑖2 |≤ℓ,
𝑗1≠ 𝑗2

7889𝑎𝑖1 𝑗2 (𝑡)𝑎𝑖1 𝑗2 (𝑡)
456 𝑁

2〈𝐴2〉

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺)
7889.

(4.42)

Here 𝑐 ≤ 𝛿/2 is a small fixed constant so that 𝑗1 is still a bulk index if |𝑖1 − 𝑗1 | ≤ 𝑐𝑁 . The fact that the
first summation in the second line of equation (4.42) is bounded by 𝑁1+𝑛𝜉𝜂ℓ−1 follows from equation
(4.31): that is, that |〈𝒖𝑖 , 𝐴𝒖 𝑗〉| ≤ 𝑁−1/2+𝜔 〈𝐴2〉1/2, with very high probability, for any bulk indices 𝑖, 𝑗
– in particular, the bound |𝑃(𝐺) | ≤ 𝑁𝑛𝜉−𝑛/2〈𝐴2〉𝑛/2 holds for this term. For the second summation, we
have that

∑
| 𝑗1−𝑖1 |>𝑐𝑁 , | 𝑗2−𝑖2 |≤ℓ,

𝑗1≠ 𝑗2

𝑎𝑖1 𝑗1 (𝑡)𝑎𝑖2 𝑗2 (𝑡)
456 𝑁

2〈𝐴2〉

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺)
7889 �

𝑁1+𝜉𝜂

𝑁2/3

∑
| 𝑗2−𝑖2 | ≤ℓ

𝑎𝑖2 𝑗2 (𝑡)

�
𝑁1+𝜉𝜂

𝑁2/3 ≤ 𝑁𝜂

ℓ
,

(4.43)

where we used that 𝑎𝑖1 𝑗1 (𝑡) � 𝜂𝑁−1, ℓ � 𝐾 �
√
𝑁 and that

|𝑃(𝐺) | =
��〈𝒖 𝑗1 , 𝐴𝒖 𝑗1〉〈𝒖 𝑗2 , 𝐴𝒖 𝑗2〉 + 2|〈𝒖 𝑗1 , 𝐴𝒖 𝑗2〉|2

�� � 𝑁 𝜉

𝑁2/3 〈𝐴
2〉

by equation (4.31). We point out that to go from the first to the second line of equation (4.43), we also
used that

∑
𝑗2 𝑎𝑖2 𝑗2 (𝑡) � 1 on Ω̂. This concludes the proof that the last line of equation (4.41) is bounded

by 𝑁1+𝑛𝜉𝜂ℓ−1. We thus conclude that

∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎S𝑖𝑟 𝑗𝑟

(𝑡)
) (
𝑔𝑡 (𝒙𝒊 𝒋𝒂𝒃) − 1(𝑛 even)

)
=

∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎𝑖𝑟 𝑗𝑟 (𝑡)

)456 𝑁𝑛/2

〈𝐴2〉𝑛/22𝑛/2 (𝑛 − 1)!!

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺) − 1(𝑛 even)
7889 +O

(
𝑁1+𝑛𝜉𝜂

ℓ

)
.

(4.44)

Proceeding in a similar way – that is, splitting bulk and edge regimes and using the corresponding
bounds for the overlaps – we then add back the missing indices in the summation in the second line of
equation (4.44):

∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎𝑖𝑟 𝑗𝑟 (𝑡)

)456 𝑁𝑛/2

〈𝐴2〉𝑛/22𝑛/2 (𝑛 − 1)!!

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺) − 1(𝑛 even)
7889

=
∑
𝒋

(
𝑛∏

𝑟=1
𝑎𝑖𝑟 𝑗𝑟 (𝑡)

)456 𝑁𝑛/2

〈𝐴2〉𝑛/22𝑛/2 (𝑛 − 1)!!

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺) − 1(𝑛 even)
7889 +O

(
𝑁𝑛𝜉

𝑁𝜂

)
.

(4.45)
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Finally, by equations (4.44) and (4.45), we conclude

∗∑
𝒋

(
𝑛∏

𝑟=1
𝑎S𝑖𝑟 𝑗𝑟

(𝑡)
) (
𝑔𝑡 (𝒙𝒊 𝒋𝒂𝒃) − 1(𝑛 even)

)
=

∑
𝒋

(
𝑛∏

𝑟=1
𝑎𝑖𝑟 𝑗𝑟 (𝑡)

)456 𝑁𝑛/2

〈𝐴2〉𝑛/22𝑛/2 (𝑛 − 1)!!

∑
𝐺∈G

𝜼𝒋

𝑃(𝐺) − 1(𝑛 even)
7889 +O

(
𝑁𝑛𝜉

𝑁𝜂
+ 𝑁

1+𝑛𝜉𝜂

ℓ

)
,

(4.46)

which is exactly the same as [17, Equation (4.43)]. Given equation (4.46), the remaining part of the proof
of this proposition is completely analogous to the proof of [17, Proposition 4.5]; the only difference is
that now in [17, Eq. (4.48)], using that |𝑚𝑡 (𝑧𝑖) | � 1 uniformly in 0 ≤ 𝑡 ≤ 𝑇 , we will have an additional
error term

𝑁𝑛/2

〈𝐴2〉𝑛/2

𝑛∑
𝑟=1

∗∑
𝑘1+···+𝑘𝑟=𝑛

𝑟∏
𝑖=1

𝑁1−𝑘𝑖 〈𝐴𝑘𝑖 〉 � 𝑁𝑛/2

〈𝐴2〉𝑛/2

𝑛∑
𝑟=1

∗∑
𝑘1+···+𝑘𝑟=𝑛

𝑟∏
𝑖=1

𝑁−𝑘𝑖/2𝑁−𝛿′ (𝑘𝑖/2−1) 〈𝐴2〉𝑘𝑖/2 � 𝑁−𝛿′

coming from the deterministic term in equation (4.29) (the mixed terms when we use the error term in
equation (4.29) for some terms and the leading term for the remaining terms are estimated in the same
way). We remark that in the first inequality, we used that

〈𝐴𝑘𝑖 〉 ≤ ‖𝐴‖𝑘𝑖−2〈𝐴2〉 �
(
𝑁1−𝛿′ ) (𝑘𝑖−2)/2〈𝐴2〉𝑘𝑖/2

by our assumption 〈𝐴2〉 � 𝑁−1+𝛿′ ‖𝐴‖2 from Theorem 2.8. Here
∑∗

𝑘1+···+𝑘𝑟=𝑛 denotes the summation
over all 𝑘1, . . . , 𝑘𝑟 ≥ 2 such that there exists at least one 𝑟0 such that 𝑘𝑟0 ≥ 3. �

4.2.3. Proof of Proposition 4.1
Given the finite speed of propagation estimates in Lemma 4.2 and the 𝐿2-bound on ℎ𝑡 from Proposition
4.4 as an input, enhancing this bound to an 𝐿∞-bound and hence proving Proposition 4.1 is completely
analogous to the proof of [17, Proposition 3.2] presented in [17, Section 4.4] and so omitted.

A. Proof of Theorem 2.2 in the large d regime

The 𝑑 ≥ 10 regime is much simpler mainly because the trivial norm bound ‖𝐺 (𝑧)‖ ≤ 1/𝑑 on every
resolvent is affordable. In particular, no system of master inequalities and their meticulously bootstrapped
analysis are necessary; a simple induction on k is sufficient. We remark that the argument using these
drastic simplifications is completely analogous11 to [18, Appendix B]; hence we will be very brief.

We now assume that equation (2.5) has been proven up to some 𝑘 − 1 in the 𝑑 ≥ 10 regime. Using
equation (3.19) and estimating all resolvent chains in the right-hand side of equation (3.19) by the
induction hypotheses (after splitting 𝐴𝑘𝐴1 = 〈𝐴𝑘𝐴1〉 + (𝐴𝑘𝐴1)◦), using the analogue of Lemma 3.1 to
estimate 〈(𝐺𝐴) 𝑗−1𝐺〉 in terms of the induction hypothesis, we easily obtain

〈(𝐺𝐴)𝑘 − 𝑚𝑘𝐴𝑘〉
(
1 +O≺

(
1
𝑁𝑑2

))
= −𝑚〈𝑊 (𝐺𝐴)𝑘〉 +O≺

(
𝑁 𝑘/2−1

𝑑𝑘

1
𝑁𝑑2

)
(A.1)

in place of Lemma 3.5. In estimating the leading terms in equation (3.19), we used that |𝑚 [𝑧1, 𝑧𝑘 ] −
𝑚(𝑧1)𝑚(𝑧𝑘 ) | � 𝑑−4. Note that 𝑁 𝑘/2−1/𝑑𝑘 is the natural size of the leading deterministic term 〈𝑚𝑘𝐴𝑘〉
under the normalisation 〈|𝐴|2〉 = 1, and the small factor 1/𝑁𝑑2 represents the smallness of the negligible

11We point out that the N-scaling here is naturally different from that in [18, Appendix B] simply due to the fact that here we
chose the normalisation 〈 |𝐴𝑖 |2 〉 = 1 instead of ‖𝐴𝑖 ‖ = 1.
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error term. We now follow the argument in Section 3 starting from equation (3.26). For the Gaussian
term in equation (3.28), we simply bound����𝑚 〈(𝐺𝐴)2𝑘𝐺〉

𝑁2

���� ≺ 𝑁 𝑘−3

𝑑2𝑘+2 =
(𝑁 𝑘/2−1

𝑑𝑘

1
√
𝑁𝑑

)2
, (A.2)

indicating a gain of order 1/(
√
𝑁𝑑) over the natural size of the leading term in equation (A.1); this gives

the main error term in equation (2.5). The modifications to the non-Gaussian terms in equation (3.27) –
that is, the estimates of equations (3.30) and (3.33) – are similarly straightforward and left to the reader.
This completes the proof in the remaining 𝑑 ≥ 10 regime.

B. Green function comparison

The Green function comparison argument is very similar to the one presented in [17, Appendix A];
hence we only explain the minor differences.

Consider the Ornstein-Uhlenbeck flow

d𝑊𝑡 = −1
2
𝑊𝑡 d𝑡 + d𝐵𝑡√

𝑁
, 𝑊0 = 𝑊, (B.1)

with 𝐵𝑡 a real symmetric Brownian motion. Along the OU-flow in equation (B.1), the moments of the
entries of𝑊𝑡 remain constant. Additionally, this flow adds a small Gaussian component to W so that for
any fixed T, we have

𝑊𝑇
d
=
√

1 − 𝑐𝑇𝑊 +
√
𝑐𝑇𝑈, (B.2)

with 𝑐 = 𝑐(𝑇) > 0 a constant very close to one as long as𝑇 � 1 and𝑈,𝑊 are independent GOE/Wigner
matrices. Now consider the solution of the flow in equation (4.1) 𝑊𝑡 with initial condition 𝑊0 =√

1 − 𝑐𝑇𝑊 , so that

𝑊𝑐𝑇
d
= 𝑊𝑇 . (B.3)

Lemma B.1. Let 𝑊𝑡 be the solution of equation (B.1), and let �̂�𝑖 (𝑡) be its eigenvectors. Then for
any smooth test function 𝜃 of at most polynomial growth and any fixed 𝜖 ∈ (0, 1/2), there exists an
𝜔 = 𝜔(𝜃, 𝜖) > 0 such that for any bulk index 𝑖 ∈ [𝛿𝑁, (1 − 𝛿)𝑁] (with 𝛿 > 0 from Theorem 2.8) and
𝑡 = 𝑁−1+𝜖 , it holds that

E 𝜃
(√

𝑁

2〈𝐴2〉
〈�̂�𝑖 (𝑡), 𝐴�̂�𝑖 (𝑡)〉

)
= E 𝜃

(√
𝑁

2〈𝐴2〉
〈�̂�𝑖 (0), 𝐴�̂�𝑖 (0)〉

)
+O(𝑁−𝜔). (B.4)

We now show how to conclude Theorem 2.8 using the GFT result from Lemma B.1. Choose
𝑇 = 𝑁−1+𝜖 and 𝜃 (𝑥) = 𝑥𝑛 for some integer 𝑛 ∈ N. Then we have

E
[√

𝑁

2〈𝐴2〉
〈𝒖𝑖 , 𝐴𝒖𝑖〉

]𝑛

= E
[√

𝑁

2〈𝐴2〉
〈�̂�𝑖 (𝑇), 𝐴�̂�𝑖 (𝑇)〉

]𝑛

+O(𝑁−𝑐)

= E
[√

𝑁

2〈𝐴2〉
〈𝒖𝑖 (𝑐𝑇), 𝐴𝒖𝑖 (𝑐𝑇)〉

]𝑛

+O(𝑁−𝑐)

= 1(𝑛 even) (𝑛 − 1)!! +O(𝑁−𝑐)

(B.5)
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for some small 𝑐 = 𝑐(𝑛, 𝜖) > 0, with 𝒖𝑖 , �̂�𝑖 (𝑡), 𝒖𝑖 (𝑡) being the eigenvectors of 𝑊,𝑊𝑡 ,𝑊𝑡 , respectively.
This concludes the proof of Theorem 2.8. Note that in equation (B.5), we used Lemma B.1 in the first
step, equation (B.3) in the second step and equation (4.13) for 𝜼 such that 𝜂𝑖 = 𝑛 and 𝜂 𝑗 = 0 for any 𝑗 ≠ 𝑖
in the third step, using that in distribution the eigenvectors of 𝑊𝑐𝑇 are equal to those of 𝑊𝑐𝑇 /(1−𝑐𝑇 ) ,
with𝑊𝑡 being the solution to the DBM flow with initial condition𝑊0 = 𝑊 .

Proof of Lemma B.1. The proof of this lemma is very similar to the proof of [17, Appendix A]. The
differences come from the somewhat different local law. First, we now systematically carry the factor
〈𝐴2〉 instead of ‖𝐴‖2 = 1 as in [17, Appendix A], but this is automatic. Second, since the current
overlap bound in equation (4.31) is somewhat weaker near the edge, we need to check that for resolvents
with spectral parameters in the bulk, this will make no essential difference. This is the main purpose of
repeating the standard proof from [17, Appendix A] in some detail.

As a consequence of the repulsion of the eigenvalues (level repulsion), as in [37, Lemma 5.2], to under-
stand the overlap

√
𝑁 〈𝐴2〉−1/2〈𝒖𝑖 , 𝐴𝒖𝑖〉, it is enough to understand functions of

√
𝑁 〈𝐴2〉−1/2〈�𝐺 (𝑧)𝐴〉

with �𝑧 slightly below 𝑁−1: that is, the local eigenvalue spacing. In particular, to prove equation (B.4),
it is enough to show that

sup
𝐸 ∈(−2+𝛿,2−𝛿)

���E 𝜃 (√𝑁 〈𝐴2〉−1/2〈�𝐺𝑡 (𝑧)𝐴〉) − E 𝜃 (
√
𝑁 〈𝐴2〉−1/2〈�𝐺0 (𝑧)𝐴〉)

��� � 𝑁−𝜔 (B.6)

for 𝑡 = 𝑁−1+𝜖 , 𝑧 = 𝐸 + i𝜂 for some 𝜁 > 0, 𝜔 > 0 and all 𝜂 ≥ 𝑁−1−𝜁 ; compare to [6, Section 4] and [10,
Appendix A].

To prove this, we define

𝑅𝑡 := 𝜃 (
√
𝑁 〈𝐴2〉−1/2〈�𝐺𝑡 (𝑧)𝐴〉) (B.7)

and then use Itô’s formula:

E d𝑅𝑡

d𝑡
= E

[
−1

2

∑
𝛼

𝑤𝛼 (𝑡)𝜕𝛼𝑅𝑡 +
1
2

∑
𝛼,𝛽

𝜅𝑡 (𝛼, 𝛽)𝜕𝛼𝜕𝛽𝑅𝑡

]
, (B.8)

where 𝛼, 𝛽 ∈ [𝑁]2 are double indices, 𝑤𝛼 (𝑡) are the entries of𝑊𝑡 , and 𝜕𝛼 := 𝜕𝑤𝛼 . Here,

𝜅𝑡 (𝛼1, . . . , 𝛼𝑙) := 𝜅(𝑤𝛼1 (𝑡), . . . , 𝑤𝛼𝑙 (𝑡)) (B.9)

denotes the joint cumulant of 𝑤𝛼1 (𝑡), . . . , 𝑤𝛼𝑙 (𝑡), with 𝑙 ∈ N. Note that by equation (2.2), it follows that
|𝜅𝑡 (𝛼1, . . . , 𝛼𝑙) | � 𝑁−𝑙/2 uniformly in 𝑡 ≥ 0.

By cumulant expansion, we get

E d𝑅𝑡

d𝑡
=

𝑅∑
𝑙=3

∑
𝛼1 ,...,𝛼𝑙

𝜅𝑡 (𝛼1, . . . , 𝛼𝑙) E[𝜕𝛼1 · · · 𝜕𝛼𝑙𝑅𝑡 ] +Ω(𝑅), (B.10)

where Ω(𝑅) is an error term, easily seen to be negligible as every additional derivative gains a further
factor of 𝑁−1/2. Then to estimate equation (B.10), we realise that 𝜕𝑎𝑏-derivatives of 〈�𝐺𝐴〉 result in
factors of the form (𝐺𝐴𝐺)𝑎𝑏 , (𝐺𝐴𝐺)𝑎𝑎. For such factors, we use that
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��(𝐺𝑡 (𝑧1)𝐴𝐺𝑡 (𝑧2))𝑎𝑏

�� = �����∑
𝑖 𝑗

𝒖𝑖 (𝑎)〈𝒖𝑖 , 𝐴𝒖 𝑗〉𝒖 𝑗 (𝑏)
(𝜆𝑖 − 𝑧1) (𝜆 𝑗 − 𝑧2)

�����
� 𝑁2/3+𝜉 〈𝐴2〉1/2

(
1
𝑁

∑
𝑖

1
|𝜆𝑖 − 𝑧1 |

) (
1
𝑁

∑
𝑖

1
|𝜆𝑖 − 𝑧2 |

)
� 𝑁2/3+𝜉+2𝜁 〈𝐴2〉1/2,

(B.11)

where we used that ‖𝒖𝑖 ‖∞ � 𝑁−1/2+𝜉 , |〈𝒖𝑖 , 𝐴𝒖 𝑗〉| ≤ 𝑁−1/3+𝜉 , for any 𝜉 > 0, uniformly in the spectrum
by [29] and Theorem 2.6, respectively. We remark that in [17, Equation (A.11)], we could bound
(𝐺𝑡 (𝑧1)𝐴𝐺𝑡 (𝑧2))𝑎𝑏 by 𝑁1/2+𝜉+2𝜁 as a consequence of the better bound on |〈𝒖𝑖 , 𝐴𝒖 𝑗〉| for indices
close to the edge (however, in [17, Equation (A.11)], we did not have 〈𝐴2〉1/2). While our estimate
on (𝐺𝐴𝐺)𝑎𝑏 is now weaker by a factor 𝑁1/6, this is still sufficient to complete the Green function
comparison argument.

Indeed, using equation (B.11) and that | (𝐺𝑡 )𝑎𝑏 | ≤ 𝑁 𝜁 , for any 𝜁 > 0, we conclude that�����𝜕𝛼1 . . . 𝜕𝛼𝑙

√
𝑁

〈𝐴2〉
〈�𝐺𝑡 𝐴〉

����� ≤ 𝑁1/3+(𝑙+3) (𝜁+𝜉 ) , (B.12)

and so, together with ∑
𝛼1 ,...,𝛼𝑙

|𝜅𝑡 (𝛼1, . . . , 𝛼𝑙) | � 𝑁2−𝑙/2,

by equation (B.10), we conclude equation (B.6). �
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