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EFFECTIVE CONTRACTION OF SKINNING MAPS

TOMMASO CREMASCHI AND LORENZO DELLO SCHIAVO

Abstract. Using elementary hyperbolic geometry, we give an explicit for-
mula for the contraction constant of the skinning map over moduli spaces of
relatively acylindrical hyperbolic manifolds.

1. Introduction

Let M1, M2 be hyperbolic manifolds of finite-type, i.e. the interior of compact
3-manifolds, with incompressible boundary, and homeomorphic geometrically finite
ends E1 ⊂ M1 and E2 ⊂ M2. From a topological point of view, since M1 and M2

are tame, [1, 4], the surfaces Si corresponding to the boundary of the ends Ei are
naturally homeomorphic. We can thus glue the two manifolds via an orientation-
reversing homeomorphism τ , and obtain a new topological 3-manifold M = M1 ∪τ

M2. Usually, one seeks sufficient conditions for M to admit a complete hyperbolic
metric, which is relevant, for example, in the proof of geometrization for hyperbolic
manifolds, [11]. We call this the glueing problem for M . The skinning map, de-
scribed below, was first introduced by W. P. Thurston, exactly to study this glueing
problem, [14].

The moduli space GF (M,P) of all hyperbolic metrics on M with geometrically
finite ends and parabolic locus P is parameterised by the Teichmüller space T (∂0M)
with ∂0M the closure in ∂M of the complement Pc of P, viz. GF (M,P) = T (∂0M).
For simplicity, let us here assume that P only contains toroidal boundary compo-
nents of M . Now, let N ∈ GF (M,P) be a uniformization, and S ∈ π0(∂0M) be
a (non-toroidal) boundary component. The cover of N associated to π1(S) is a
quasi-Fuchsian manifold NS . The manifold NS has two ends, A and B, of which A
is isometric to the end of M corresponding to S. One defines the skinning map σM

at N as the conformal structure of the new end B. As it turns out, the skinning map
is an analytic map σM : T (∂0M) → T (∂0M), where the bar denotes opposite ori-
entation. The glueing instruction determines an isometry τ∗ : T (∂0M) → T (∂0M),
and any fixed point of τ∗◦σM gives a solution to the glueing problem by the Maskit
Combination Theorem, e.g. [11].
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Given a covering map between Riemann surfaces π : Y → X the Poincaré series
operator is a push-forward operator ΘY/X : Q(Y ) → Q(X), similar to the push-
forward of measures, pushing quadrating differentials on Y to quadratic differentials
on X.

In [12], C. McMullen showed that the skinning map of an acylindrical manifold N
is contracting, with contraction constant only depending on the topology of ∂0M .
Furthermore, he related the skinning map to the Poincaré series operator Θ by the
following formula:

(1.1) dσ∗
M (ϕ) =

∑
U∈BN

ΘU/X (ϕ|U ) ,

where BN is a collection of sub-surfaces of im(σ). When M is acylindrical and P =
∅, we have that BN is just a collection of disks, the leopard spots of [12]. If P �= ∅

and M is relatively acylindrical, then we can also have punctured disks coming
from peripheral cylinders of M .

As a consequence of (1.1), one can estimate the operator norm of the co-
derivative dσ∗

M of the skinning map by bounding the Poincaré series operator of
the corresponding surfaces. Using such estimate, we provide here effective bounds,
in terms of the topology of ∂0M , on the contraction of the skinning map in the
acylindrical case. This builds on previous work [2] of D. E. Barret and J. Diller,
who gave an alternative proof of McMullen’s estimates on the norm of the Poincaré
operator, [12].

Improving on the main result of [2] (Theorem 3.1), we show:

Theorem 1.1. Suppose X is a Riemann surface of finite-type and let Y be a disk
or a punctured disk. Further let π : Y → X be a holomorphic covering map. Then,
the norm of the corresponding Poincaré series operator satisfies:

‖Θ‖op <
1

1 + Cg,n,�
< 1

for some constant Cg,n,� > 0 depending only on the topology of X ∼= Sg,n and the
injectivity radius � of X.

In contrast with [2], we compute the contraction constant Cg,n,� in a completely
explicit way and in the case under examination without any extra assumptions
on ‖Θ‖op. The constant Cg,n,� only depends on: the genus g of X, the number
of punctures n of X, the length � of the shortest closed geodesic in X. So, we
obtain an explicit bound over the moduli space of geometrically finite hyperbolic
manifolds.

Furthermore, Cg,n,� is continuous and decreasing as a function of �, in fact it is
linear in �, and satisfies the following asymptotic expansion for g, n 
 1. Let χ :=
2g− 2+ n be the Euler characteristic, and κ := 3g− 3+ n be the complexity of X.
Then,

log log
(

�
Cg,n,�

)
� 4

arcsinh(1) χ
2 + coth

(
π
12

)
χ+ π sinh

(
1
2 arcsinh

(
tanh(π/12)

))
κ.

An application to infinite-type 3-manifolds. In [6] the first author studied the class
MB of infinite-type 3-manifolds M admitting an exhaustion M = ∪iMi by hy-
perbolizable 3-manifolds Mi with incompressible boundary and with uniformly
bounded genus.
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One can use skinning maps to study the space of hyperbolic metrics on the
manifolds in MB that admit hyperbolic structures. Indeed, consider all mani-
folds M ∈ MB such that for all i ∈ N every component Ui := Mi \Mi−1 is
acylindrical. By the main results of [6] this guarantees that M is in fact hyperbolic,
which is in general not the case, see [5,7], or [8,9] for other examples of infinite-type
hyperbolic 3-manifolds. We can thus think of a (hyperbolic) metric g on M as a
gluing of (hyperbolic) metrics gi on the Ui’s and so it makes sense to investigate
the glueing of pairs Ui, Ui+1 via skinning maps.

In order to approach the construction of g in this way, it is helpful to know that
the contraction factor of the skinning maps over the Teichmüller spaces relative
to Ui stays well below 1 uniformly in i. The latter fact follows from Theorem 1.1,
in view of the uniform bound on the genus of the Mi’s.

2. Notation

Throughout the work, X is a hyperbolic Riemann surface of finite-type. Let X
be the compact Riemannian surface obtained by adding a single point to each end
of X. We indicate by

• g the genus of X;
• n the cardinality of the set of punctures P := X \X.

We may thus regard X as an element of the moduli space M(Sg,n) of the n-
punctured Riemann surface of genus g. Further let

• χ := 2g − 2 + n be the Euler characteristic of X;
• κ := 3g−3+n be the complexity ofX, with the exception of the surface S0,2

for which κ := 0.

We say that a curve in X is a short geodesic if it is a closed geodesic of length less
than 2 arcsinh(1), and we define

• Γ the set of short geodesics on X;
• � := minγ∈Γ �(γ) (twice) the injectivity radius of X.

For any A ⊂ X, denote by |A| the number of connected components of A, and
indicate by U ∈ π0(A) any of such connected components. Let d be the intrinsic
distance of X and further set

(A)s := {x ∈ X : dist(x,A) ≤ s} , s > 0.

Regions. Denote by D the Poincaré disk, and set D∗ := D \ {0}. The cusp Cp
about p ∈ P is the image of the punctured disk {0 < |z| < e−π} under the holo-
morphic cover πp : D

∗ → X about p.
We start by recalling the following well-known fact.

Lemma 2.1 ([3, Thm. 4.1.1]). Let γ be a short closed geodesic in X of length �(γ),

and set w := arcsinh
(

1
sinh(�(γ)/2)

)
. The collar Cγ around γ is isometric to [−w,w]×

S1 with the metric dρ2 + �(γ)2 cosh2(ρ) dt2.

Note that in the previous statement the local metric, in Fermi coordinates, is
parametrised with � speed hence the �2 factor.

We define:

• the cusp part Xcusps of X as Xcusps := ∪p∈P Cp;
• the core Xcore of X as Xcore := X \Xcusps;
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• the thick part Xthick of X as Xthick := Xcore \ ∪γ∈Γ Cγ ;
• the thin part Xthin of X as Xthin := X \Xthick.

Quadratic differentials. Let T ∗
1,0X be the holomorphic cotangent bundle of X. A

quadratic differential on X is any section ψ of T ∗
1,0X ⊗ T ∗

1,0X, satisfying, in local

coordinates, ψ = ψ(z) dz2. A quadratic differential ψ is holomorphic if its local
trivializations ψ(z) are holomorphic. To each holomorphic quadratic differential ψ

we can associate a measure |ψ| on X defined by |ψ| := |ψ(z)| · |dz|2. We denote
by 〈ψ( · )〉 the density of the measure |ψ| with respect to the Riemannian volume
of X.

We say that any ψ as above is integrable if ‖ψ‖ := |ψ|(X) is finite, and we
denote byQ(X) the space of all integrable holomorphic quadratic differentials onX,
endowed with the norm ‖ · ‖. When X has finite topological type, Q(X) is finite-
dimensional, its dimension depending only on g and n.

Constants. Everywhere in this work, r, s, t, w and ε are free parameters. We shall
make use of the following universal constants:

• ε0 := arcsinh(1) ≈ 0.8813 the two-dimensional Margulis constant;
• c1 := coth(π/12) ≈ 3.9065;
• c2 := arcsinh

(
tanh(π/12)

)
≈ 0.2532;

• c3 :=
π sinh

(
1
2 arcsinh

(
tanh(π/12)

))
arcsinh(tanh(π/12)) ≈ 1.5750;

• c4 :=
(
1− tanh2(1/2)

)2 ≈ 0.6185;

• c5 := 4π
(
1 + sinh(1)

)
≈ 27.3343;

• c6 := (ec4)
e2c3+2 ≈ 76.5904;

• c7 := maxx x · arcsinh
(
csch(x/2)

)
≈ 1.5536.

Finally, for simplicity of notation, we shall make use of the following auxiliary
constants, also depending on X:

• a1 := 4 |χ|2 /ε+ 2κ log c1 + 2 c2 c3;
• a2 := log(e c4) e

a1+2(1+c3).

We denote by a ∧ b the minimum between two quantities a, b ∈ R.

3. Outline

We start by recalling the results of D. E. Barret and J. Diller [2] that we make
explicit using classic hyperbolic geometry. The main result of [2] is:

Theorem 3.1 ([2, Thm. 1.1]). Suppose X, Y are Riemman surfaces of finite-
type and let π : Y → X be a holomorphic covering map. Then, the norm of the
corresponding Poincaré operator satisfies:

‖Θ‖op := sup
ϕ∈Q(Y )
‖ϕ‖=1

‖Θϕ‖ < 1− k < 1.

Furthermore, k > 0 may be taken to depend only on the topology of X, Y , and the
length � of the shortest closed geodesic on X. As a function of �, the number k may
be taken to be continuous and increasing.

In order to prove the above theorem, consider a unit-norm quadratic differential
ϕ ∈ Q(Y ) such that Θϕ �= 0. In [2], the authors estimate

1− ‖Θϕ‖
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as follows. Let K ⊂ X be any compact set containing the set Z of zeroes of Θϕ
and the punctures of X, viz. Z ∪ P ⊂ K, and such that ∂K is smooth. Further let

(3.1) m(r) := min
p∈∂(K)r

〈Θϕ〉 .

Then, for every t > 1 and every r0 > 0, [2, Lem. 3.2] proves the following estimate

(3.2) 1− ‖Θϕ‖ ≥
∫ r0

0

m(r)
[
t−1 area(X \ (K)r)− length(∂ (K)r)

]
dr.

In general the t in the above estimate will depend on the geometry and topology
of the covering surface Y . In the case at hand however, Y is either the Poincaré
disk or a punctured disk and, by work of J. Diller [10], we can assume that t = 1.
It is likely that the constants of Diller can be made explicit as well and so that one
could have a version of Theorem 3.1 were the constants are explicit in the topology
of X, Y and their injectivity radii.

In the following sections, we give effective estimates for m(r), area(X \ (K)r),
and length(∂ (K)r). In order to estimate m(r) we will need the following result
from [2].

Theorem 3.2 ([2, Thm. 4.4]). Let ψ ∈ Q(X) with zero set Z. Suppose W ⊂ X\Z is
a domain such that 〈ψ(p)〉 ≤ L for all p ∈ W , and set ρ(p) := min {1, dist(p, ∂W )}.

Then, if γ ⊂ W is a path connecting p1 and p2 we have:

〈ψ(p1)〉
〈ψ(p2)〉

≥
(
〈ψ(p2)〉
c4L

)−1+exp(
∫
γ

ds
tanh(ρ/2) )

.

4. Effective computations

The following is an easy lemma bounding the diameter of components of (Xthick)ε
or (Xcore)ε.

Lemma 4.1. Let X ∈ M(Sg,n). Then,

(i) any pair of points in the same connected component of (Xthick)ε is joined
by a path of length at most 4 |χ| /ε;

(ii) any pair of points in (Xcore)ε is joined by a path γ in (Xcore)ε satisfying

�(γ) ≤ 4 |χ|2 /ε+ 2κ arcsinh
(
csch(�/2)

)
.(4.1)

Proof. Assertion (i) is a consequence of the Bounded Diameter Lemma [13].
(ii) Using the fact that each component of (Xthick)ε contains an essential pair of

pants and that the maximal number of pairwise disjoint short curves is κ we have:

Claim. |(Xthick)ε| ≤ |χ| and |(Xthin)ε| ≤ κ.
By short-cutting in the region we obtain:

Claim. A length-minimizing γ enters each U ∈ π0

(
(Xcore)ε

)
, resp. U ∈ π0

(
(Xthin)ε

)
at most once.

Let γ be length-minimizing. By (i) we have length(γ ∩ U) ≤ 4 |χ| /ε. By the
Collar Lemma [3],

length(γ ∩ U) ≤ diam(U) ≤ 2 arcsinh
(
csch(�/2)

)
.

The conclusion follows combining the previous estimates with the two claims. �

The next lemma is [2, Lem. 4.6]. We just work out the constant explicitly.
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Lemma 4.2. Let L(s) := max
p∈(Xthick)s

〈ψ(p)〉. Then,

(i) L(0) ≥ �∧1
16 |χ| ‖ψ‖;

(ii) for all 0 ≤ s ≤ t, we have L(s) ≥ es−tL(t).

Proof. (i) Firstly assume that at most half the mass of ψ is concentrated inside the
collars of short geodesics. As in [2, Lem. 4.6(i)], it follows that

(4.2) 〈ψ〉 ≥ ‖ψ‖
2 area(X)

=
‖ψ‖
4π |χ| ≥

‖ψ‖
16 |χ| .

Assume now that at least half the mass of ψ is concentrated inside collars of
short geodesics. Let γ be any such geodesic and let C := Cγ be the collar around γ.
For r ≤ R := π2/�(γ) and r satisfying tan

(
πr/(2R)

)
= csch

(
�(γ)/2

)
, we have that

1

2 area(X)
‖ψ‖ ≤

∫
C
|ψ| =

∫ 2π

0

∫ er

e−r

|f(z)|
|z|2

r dr dθ

≤
∫ 2π

0

∫ er

e−r

Lr−1 dr dθ = 4πLr,

hence that

‖ψ‖
2πr area(X)

≤ 4L.

Computing both r and R in terms of �(γ),

L(0) ≥ max
∂C

〈ψ〉 = 4LR2

π2
cos2

πr

2R

≥ ‖ψ‖
2 area(X)

R2

2R arctan
(
csch

(
�(γ)/2

)) cos2 (arctan (csch (�(γ)/2))) .
Now, since cos2 (arctan (csch(t))) = tanh2(t), and substituting R := 2π/�(γ),

L(0) ≥ ‖ψ‖
4 area(X)

R tanh2
(
�(γ)/2

)
arctan

(
csch

(
�(γ)/2

))

=
π2 ‖ψ‖

4 area(X)

tanh2
(
�(γ)/2

)
�(γ)2 · arctan

(
csch(�(γ)/2)

) · �(γ).

Since t �→ tanh2(t/2)/
(
t2 arctan(csch(t/2))

)
has global minimum 1

2π at t = 0, we
have that

L(0) ≥ π �(γ)

8 area(X)
‖ψ‖ ≥ �

16 |χ| ‖ψ‖ .

Combining the above inequality with (4.2) yields the assertion.
(ii) is [2, Lem. 4.6]. �

Let log+(x) := max {0, log(x)}. We start with some estimates towards establish-
ing (3.2).

Lemma 4.3. For each connected component U ∈ π0

(
(Xthick)s

)
, letting s =

log+(c1t)

(i) area(U)− t length(∂U) ≥ π/3;
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(ii) for all p ∈ U : injp ≥ c2/t;
(iii) given p1, p2 ∈ U there exists γ ⊂ U connecting p1 and p2 such that

�(γ) ≤ 4 |χ|2

ε
+ 2κ log t+ 2κ log c1.

Proof. (i) Let gU and nU respectively denote the genus of U and the number of
boundary components of U . Further let A1, . . . , AnU

denote the embedded annuli
bounded by short closed geodesics on one side and by connected components of ∂U
on the other side. We allow for Aj being part of a cusp, in which case, on one side,
it is bounded by a puncture rather than by a short geodesic.

By the Gauss–Bonnet Theorem,

area(U) = 2π(2gU + nU − 2)−
∑

area(Aj).

If nU = 0 then U = X, which yields area(U) − t length(∂U) = 2π |χ|. Thus, in
the following we may assume without loss of generality that nU ≥ 1. In this case,
either gU ≥ 1 and nU ≥ 1, or gU = 0 and nU ≥ 3. Thus,

area(U) ≥ 2π
nU

3
−
∑
j

area(Aj).

Let �j denote the length of the geodesic component of ∂Aj and Lj denote the
length of the other component. Then,

area(U)− t length(∂U) ≥ 2π
nU

3
+
∑
j

(
(t− 1) area(Aj)− t(area(Aj) + Lj)

)
.

By Lemma 2.1, setting

(4.3) wj := arcsinh

(
1

sinh(�j/2)

)
,

we have that

area(Aj) =

∫ wj−s

0

∫ 1

0

�j cosh(ρ) dρ dt = �j sinh(wj − s)

and

Lj = �j cosh(wj − s).

We see that

area(Aj) + Lj = �j
(
sinh(wj − s) + cosh(wj)

)
=

e−s�j
tanh(�j/4)

is monotone increasing in �j (e.g. by differentiating w.r.t. �j). Thus it achieves its
minimum when the two boundary components of Aj coincide, in which case �j = Aj

and area(Aj) = 0. In this case, s measures the distance from the geodesic to the
edge of the collar containing Aj . Therefore, by the Collar Lemma, sin(�j/2) =
csch(s), hence

area(U)− t length(∂U) ≥ 2nU

(
π/3− t arcsinh

(
csch(s)

))
≥ 2

(
π/3− t arcsinh

(
csch(s)

))
.

Letting the right-hand side above be larger than π/3 we get

s ≥ arcsinh
(
csch(π/(6t))

)
, t > 1, s = log

(
coth

(
π
12

)
t
)
.
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(ii) Let C be a short collar in X. For p ∈ (Xthick)ε+s ∩ C, by the Collar Lemma
we have that

injp ≥ arcsinh
(
edist(p,∂C)

)
= arcsinh

(
e−s

)
= arcsinh

(
1
c1t

)
≥ c2

t

with c2 := arcsinh(1/c1), and where the last inequality is sharp by a direct compu-
tation.

(iii) Let p1, p2 ∈ U . Then we can find a rectifiable curve γ, connecting p1 to p2,
and enjoying the following properties:

(a) if γ ∩ C �= ∅, then γ ∩ ∂C consists of two points belonging to distinct
connected components of ∂C, and length(γ

∣∣
C) ≤ 2s;

(b) in each connected component of (Xthick)ε, the curve γ is a shortest path
between its endpoints.

See Figure 1.

γ2

γ1

C

C

p2

p1

Figure 1. The piecewise geodesic curve γ connecting p1 to p2
and C, shaded, are collars around short geodesics.

We can decompose γ into its components in

X1 := (Xthick)ε and X2 := (Xthick)ε+s \ (Xthick)ε ⊂ (Xthin)ε .

By the Bounded Diameter Lemma [13], the length of each component of γ in X1 is
bounded by 4 |χ| /ε, and we have at most |χ| such components. In each connected
component of X2 ⊂ (Xthin)ε the length of γ is at most 2s, and there are at most κ
such components. Thus, for s = log(c1t) we get

�(γ) ≤ 4 |χ|2

ε
+ 2sκ =

4 |χ|2

ε
+ 2κ log(c1t). �

We now show how to estimate the quantities related to (K)r in Equation (3.2).
Let Z be the zeroes of a given quadratic differential ψ.



EFFECTIVE CONTRACTION OF SKINNING MAPS 453

Lemma 4.4. Let U ∈ π0

(
(Xthick)s

)
and K := X \ U ∪ Z. Then, for r ∈ (0, 1),

t > 1, and s = log+(c1t)

area
(
X \ (K)r

)
− t length

(
∂ (K)r

)
≥ π/3− κrt

[
c7 − s+ 4π

(
1 + sinh(1)

) |χ|
κ

]

≥ π/3− κrt
[
4π

(
1 + sinh(1)

)
+ c7

]
= π/3− κrt(c5 + c7).

Proof. Since |Z| ≤ 2 |χ| and r < 1, we have that

length
(
∂ (K)r

)
≤ length(∂U) + length

(
∂ (Z)r

)
≤ length(∂U) + 2π |Z| sinh(r)

≤ length(∂U) + 4π |χ| sinh(1) r.(4.4)

Furthermore,

area
(
X \ (K)r

)
= area(X)− area

(
(K)r

)
≥ area(X)−

(
area

(
X \ U

)
+ area

((
∂U+

)
r

)
+ area

(
(Z)r

))

≥ area(U)− area
((
∂U+

)
r

)
− 4π |χ|

(
cosh(r)− 1

)
≥ area(U)− area

((
∂U+

)
r

)
− 4π |χ| r

≥ area(U)− t area
((
∂U+

)
r

)
− 4π |χ| tr

since t > 1. We can estimate area
(
(∂U+)r

)
by assuming that (∂U+)r is isometri-

cally embedded, so that, by Lemma 2.1,

area
((
∂U+

)
r

)
=

∑
j

�(γj)
(
sinh(wj − s+ r)− sinh(wj − s)

)
.

Repeat the construction of the annuli Aj in Lemma 4.3, and let wj be defined
as in (4.3). By Taylor expansion of sinh around wj − s > 0, we have that

area(U)− t area
((
∂U+

)
r

)
≥ area(U)− rt

∑
j

�(γj)(wj − s)

≥ area(U)− rt
∑
j

�(γj) arcsinh
(
csch(�(γj)/2)

)

+ rt log(c1t)
∑
j

�(γj)

≥ area(U)− c7κrt+ rt log(c1t)
∑
j

�(γj).

As a function of the metric, the summation
∑

j �(γj) attains its maximum over

the moduli space M(Sg,n) when �(γj) = ε0 for each j, thus its maximum is κε0.
Therefore,

area
(
X \ (K)r

)
≥ area(U)− rtκ c7 + rtκε0 log(c1t)− 4π |χ| tr.(4.5)

Multiplying (4.4) by −t and adding (4.5), together with Lemma 4.3(i), yields
the conclusion. �

Let U be the component of (Xthick)ε+s containing pmax(s), where s = log(c1t)

and pmax satisfies Lemma 4.2. Set K ′ := X \ U and let K := K ′ ∪ Z. This is
a slight refinement of the previous K, in which we chose a specific component U



454 T. CREMASCHI AND L. DELLO SCHIAVO

and a slightly larger neighbourhood of U . The next lemma will deal with paths in
X \ (K)r. When r = 0, the set X \K = U \ Z looks as Figure 2.

Figure 2. The set X \K = int(U)\Z is greyed out and the white
points are zeroes of the quadratic differential.

Lemma 4.5. Fix t > 1. If r < c2/(|χ| t), then any two points in X \ (K)r can be
joined by a rectifiable curve in X \ (K)r/2.

Proof. We start with the following claim.

Claim. Let V ∈ π0

(
(K)r/2

)
. If V ∩ (K ′)r/2 �= ∅, then V ⊂ (K ′)r.

Indeed, for c > 0 to be fixed later, let V ∈ π0

(
(K)cr

)
with V ∩ (K ′)cr �= ∅.

We need to show that if V is such component it does not separate X \ (K)r.
Fix p ∈ V \ (K ′)cr. Since V is connected and contained in (K)cr, then p is
joined to (K ′)cr by a chain of disks of radius cr centered at points in Z. There-
fore dist(p, (K ′)cr) ≤ 2c |Z| r. Choosing c < (2 |Z|+ 1)−1, e.g. c := 1

2 (2 |Z|+ 1)−1,
proves that dist(p, (K ′)cr) ≤ r/2 and so that:

dist(p,K ′) ≤ dist(p, (K ′)cr) + cr = 2c |Z| r + cr ≤ (2 |Z|+ 1)cr ≤ r/2,

proving that V ⊂ (K ′)r. This concludes the proof of the claim.

Thus, we need to show that for r < c2/t and for all p0, p1 ∈ X \ (K)r ⊂ (U)s
there exists a rectifiable curve γ ⊂ X \ (K)c2r connecting p0 to p1. By the Collar
Lemma,

inj(U)s
:= min

p∈(U)s

injp ≥ arcsinh(e−s) = arcsinh

(
1

c1t

)
≥ c2

t
,

similarly to the proof of Lemma 4.3(ii).
Now, argue by contradiction and assume that there exists no rectifiable curve as

in the assertion. Then, there exists a rectifiable loop α in (Z)r/2 separating X \
(K)r ⊂ (U)s into connected components so that p0 and p1 belong to two distinct
such components. See the picture in Figure 3.
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p0

p1α

p1

p0

α

Figure 3. The two cases for the loop α separating p1 to p2. The
shaded regions are part of (K)r/2 and the grey dots are zeroes of

the quadratic differential.

For any such α,

length(α) ≤ r |Z| < |Z| c2
|χ| t ≤ c2

t
≤ inj(U)s

.

As a consequence, α ⊂ (U)s is null-homotopic and so we must be on the right side
of Figure 3. Therefore, there exists L ∈ R

+ such that α ⊂ BL(q) for q ∈ (U)s
and L ≤ �(α)/2 < r/2. Thus, the component W ⊂ X \ (K)r containing, say, p1,
lies in BL(q) ⊂ Br(q) and note that by construction its distance from any zero is
at least r. Therefore, W is at distance r/2 + L < r from a zero. However, since
d(W,Z) ≥ r we have a contradiction. �

We now state the main lemma we will use in our estimate of (3.2).

Lemma 4.6. Let r < c2/(|χ| t), and set a1 := 4 |χ|2 /ε+ 2κ log c1 + 2 c2 c3. Then,

any two points in X \ (K)r are joined by a rectifiable curve γ ⊂ X \ (K)r/2 with

the following properties:

(i) γ consists of length-minimising geodesic segments and of at most one arc
in each of the components of ∂ (K)r/2;

(ii) �(γ) ≤ a1 + 2κ log t;
(iii) for z ∈ Z: length

(
γ ∩Bw(z)

)
≤ 2(1 + c3)w for all w > 0 such that Bw(z)

is embedded.

Proof. (i)–(ii) Fix points p0, p1 ∈ X \ (K)r. By Lemma 4.3 there exists a rectifi-
able γ ⊂ U connecting them, with

�(γ) ≤ 4 |χ|2

ε
+ 2κ log c1 + 2κ log t.

The curve γ intersects (K)r/2 in at most 2 |χ| components (i.e. balls around

zeroes of ψ). In each such component V = Br/2(z) (for some z ∈ Z) we can

replace γ
∣∣
V

by a shortest path on ∂V as the one in Lemma 4.3 (iii).

Since V is a ball, the length of γ
∣∣
V

is bounded by half the length of the circum-
ference of a great circle on V , i.e.

(4.6) π sinh(r/2) ≤ π sinh(r) ≤ c3 r, r <
c2
|χ| t <

c2
|χ| .
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By repeating this reasoning on each component V as above, we obtain a path
γ′ : p0 → p1 satisfying (i) and such that:

length(γ′) ≤ �(γ) + 2 |χ| c3 r

≤ 4 |χ|2

ε
+ 2κ log c1 + 2κ log t+ 2

c2c3
t

(t > 1)

≤ 4 |χ|2

ε
+ 2κ log c1 + 2 c2 c3 + 2κ log t.

(iii) Let z ∈ Z be a zero of ψ and fix w > 0. Each component α of γ in ∂ (K)c2r
has length at most c3 r and each geodesic arc of γ connecting an endpoint of α
to ∂Bw(z) has length at most w. We now estimate

∣∣∣π0

(
γ ∩Bw(z)

)∣∣∣ ≤
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 w < r/2

1 p1, p2 ∈ Bw(z)

1 p1 ∈ Bw(z), p2 �∈ Bw(z)

1 p1, p2 �∈ Bw(z).

The first bound holds by definition. The second holds by the convexity of hyper-
bolic balls: if p1, p2 ∈ Bw(z) then we can choose γ ⊂ Bw(z). The third and fourth
one follow from the fact that if γ has more than one component in Bw(z), then we
can shortcut γ inside the ball.

If w = r/2, then γ
∣∣
Bw(z)

⊂ ∂Bw(z), and we may choose γ
∣∣
Bw(z)

to be a circum-

ference arc, so that length
(
γ
∣∣
Br/2(z)

)
≤ π sinh(r/2) ≤ c3r by (4.6).

If instead w > a1r, then we may choose γ to be either a geodesic segment,
or a union γ1 ∪ γ2 ∪ γ3, where γ1 and γ2 are geodesic segments each connect-
ing ∂Bw(z) to ∂Br/2(z), and γ3 is a circumference arc on ∂Br/2(z). In the first

case, length(γ
∣∣
Bw(z)

) ≤ 2w. In the second case,

length
(
γ
∣∣
Bw(z)

)
≤ 2w + π sinh(a1r) ≤ 2w + c3r ≤ 2w + c3r.

Thus, we obtain that:

length
(
γ ∩Bw(z)

)
≤

⎧⎪⎨
⎪⎩
0 if w < r/2

2c3w if w = r/2

2w + c3w if w ≥ r/2

≤ 2(1 + c3)w,

which concludes the proof. �

With m(r) as in (3.1) we can now estimate (3.2) and show our final result.

Proof of Theorem 1.1. Let r < c2/ |χ| ≤ 2. Let s be as in Lemma 4.4 and choose
U to be the component of Xthick(s) containing the point pmax(s) as in Lemma

4.2. Let Z be the set of zeroes of ψ, K := X \ U ∪ Z, and K ′ := X \ U . Let
W := (Xthick)s+1 \Z, p1 ∈ ∂ (K)r, and p2 = pmax(s) ∈ (Xthick)s \Z. Therefore, we
have that 〈ψ(p2)〉 = L(s). Moreover, let γ ⊂ W be a path from p1 to p2 satisfying
the conditions of Lemma 4.6 and note that

dist(p, ∂W ) ≥ min {1, dist(p, Z)} , p ∈ γ.

By Lemma 4.2(ii) we have that:

L(s+ 1) ≤ e · L(s).
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By Theorem [2, 4.4], we have that:

〈ψ(p1)〉 ≥ 〈ψ(p2)〉
(

〈ψ(p2)〉
c4 · L(s+ 1)

)−1+exp(
∫
γ

ds
tanh(1∧dist(γs,Z)) )

≥ L(s)

(
1

e c4

)−1+exp
(∫

γ
coth

(
1∧dist(γs,Z)

)
ds

)

≥ e c4 L(0) ·
(

1

e c4

)exp
(∫

γ
coth

(
1∧dist(γs,Z)

)
ds

)

,

where we can estimate L(0) by Lemma 4.2(i),

≥ e c4 �

16 |χ| ‖ψ‖
(

1

e c4

)exp
(∫

γ
coth

(
1∧dist(γs,Z)

)
ds

)

=
e c4 �

16 |χ| ‖ψ‖ exp
(
− log(e c4) exp

(∫
γ

coth
(
1 ∧ dist(γs, Z)

)
ds

))
.

We now estimate
∫
γ
coth(1 ∧ dist(γs, Z)) ds from above by breaking it into two

terms: ∫
γ

ds

tanh
(
1 ∧ dist(γs, Z)

) ≤
∫
γ\Z(1)

ds+

∫
γ∩Z(1)

ds

dist(γs, Z)
.

The first term is bounded by �(γ) while for the second term we have by Lemma 4.6(i)∫
γ∩Z(1)

ds

dist(γs, Z)
≤
∫ 2

r

1

length
(
γ ∩ (Z)1/u

)
du

≤
∫ 2

r

1

2(1 + c3)

u2
du = 2(1 + c3)(1− r/2)

since r ≤ 2.
By Lemma 4.6(i) we have that:

�(γ) ≤ a1 + 2κ log t.

Thus: ∫
γ

ds

tanh
(
1 ∧ dist(γs, Z)

) ≤ a1 + 2κ log t+ 2(1 + c3)(1− r/2)

= a1 + 2(1 + c3) + 2κ log t− (1 + c3)r.

Therefore, since log(e c4) > 0, for all p1 ∈ ∂ (K)r we get:

〈ψ(p1)〉 ≥
e c4 �

16 |χ| ‖ψ‖ exp
(
− log(e c4) exp

(
a1 + 2(1 + c3) + 2κ log t− (1 + c3)r

))
.

Thus, by minimizing over p1 ∈ ∂ (K)r we obtain:

m(r) ≥ e c4 �

16 |χ| ‖ψ‖ exp
(
− log(e c4) exp

(
a1 + 2(1 + c3) + 2κ log t− (1 + c3)r

))

which for a2 := log(e c4) e
a1+2(1+c3) > 0 can be rewritten as:

m(r) ≥ e c4
�

16 |χ| ‖ψ‖ exp
(
−a2t

2κe−(1+c3)r
)
.

Then, Equation (3.2) with K := W becomes, for r0 < 1
4t ,
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1− ‖ψ‖ ≥
∫ r0

0

m(r)
(
t−1 area

(
X \ (K)r

)
− length

(
∂ (K)r

))
dr.

By Lemma 4.4 we thus have that, for every r0 < 1
4t ,

1− ‖ψ‖ ≥ e c4 �

16 |χ| t ‖ψ‖
∫ r0

0

exp
(
−a2t

2κe−(1+c3)r
) (

π/3− κrt(c5 + c7)
)
dr

≥ e c4 � e
−a2t

2κ

16 |χ| t ‖ψ‖
∫ r0

0

(
π/3− κrt(c5 + c7)

)
dr.

Maximizing over r0 ∈
(
0, 1

4t

)
additionally so that the integrand is non-negative, we

have therefore that

1− ‖ψ‖ ≥ e c4 � e
−a2t

2κ

16 |χ| t ‖ψ‖
∫ 1

4t∧
π

3κt(c5+c7)

0

(
π/3− κrt(c5 + c7)

)
dr

=
e π2 c4

288κ(c5 + c7)

� e−a2t
2κ

|χ| t2 ‖ψ‖ ,

and maximizing the right-hand side over t > 1, i.e. choosing t = 1, we conclude
that

‖ψ‖ ≤ 1

1 +
C � e−a2

κ |χ|

, C :=
e π2 c4

288 (c5 + c7)
. �

Contraction factors of skinning maps. We now apply our explicit bounds from
Theorem 1.1 to get effective bounds on the contraction factor of the skinning map.

Let N ∈ AH(M,P) 1 be a pared acylindrical manifold so that

• P ⊂ ∂M is a collection of pairwise disjoint closed annuli and tori;
• P contains all tori components of M and M is acylindrical relative to P.

Let ∂0M := ∂M \ P. By [12, p. 443] we have that, for every such N ,

|dσ| = |dσ∗| .

By Theorem 1.1,

dσ∗(ϕ) =
∑

U∈BN

ΘU/X (ϕ|U ) ≤ max
X∈∂0M

1

1 + Cg,n,�
‖ϕ‖ ,

where � is the injectivity radius of the conformal boundary ∂∞N , and Cg,n,�. Thus,
we obtain Corollary 4.7.

Corollary 4.7. Let (M,P) be a pared acylindrical hyperbolic manifold. Then, the
skinning map at N ∈ AH(M,P) has contraction factor bounded by

|dσ| ≤ max
X∈∂0M

1

1 + Cg,n,�
.

1For AH(M,P) the set of hyperbolic 3-manifolds homotopy equivalent to M with P parabolic.
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