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Abstract
In this paper we consider the stochastic primitive equation for geophysical flows
subject to transport noise and turbulent pressure. Admitting very rough noise terms,
the global existence and uniqueness of solutions to this stochastic partial differential
equation are proven using stochastic maximal L2-regularity, the theory of critical
spaces for stochastic evolution equations, and global a priori bounds. Compared to
other results in this direction,we do not need any smallness assumption on the transport
noise which acts directly on the velocity field and we also allow rougher noise terms.
The adaptation to Stratonovich type noise and, more generally, to variable viscosity
and/or conductivity are discussed as well.
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1 Introduction

In this paper we study the stochastic primitive equation with transport noise and
turbulent pressure. The primitive equations are one of the fundamental models for geo-
physical flows used to describe oceanic and atmospheric dynamics. They are derived
from the Navier-Stokes equations in domains where the vertical scale is much smaller
than the horizontal scale by the small aspect ratio limit. Detailed information on the
geophysical background for the various versions of the deterministic primitive equa-
tions are given e.g. in [46, 48]. The introduction of additive and multiplicative noise
intomodels for geophysical flows can be used on the one hand to account for numerical
and empirical uncertainties and errors and on the other hand as subgrid-scale param-
eterizations for data assimilation, and ensemble prediction as described in the review
articles [13, 20, 45].

In this paper we are mainly concerned with stochastic perturbations of transport
type. In the study of turbulent flows, transport noise has been introduced byKraichanan
in [35, 36] and has been widely studied in the context of stochastic Navier-Stokes
equations, see [42, 43] for a physical justification and also [1, 5, 6, 17, 44] and the
references therein for related mathematical results. The aim of this paper is to give
a systematic and detailed treatment of transport noise in the context of the primitive
equations.

Here, we consider the following stochastic primitive equations on the cylindrical
domain O = T

2 × (−h, 0), where h > 0, T
2 is the two-dimensional torus, and we

denote the coordinates by (xH, x3) ∈ T
2 × (−h, 0) with the horizontal part xH =

(x1, x2) ∈ T
2, divH = ∂1 + ∂2 and ∇H = (∂1, ∂2), i.e., the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �v dt =
[

− ∇HP − (v · ∇H)v − w∂3v + Fv + ∂γ P̃
]
dt

+
∑

n≥1

[
(φn · ∇)v − ∇H P̃n + Gv,n

]
dβn

t , on O,

dθ − �θ dt =
[

− (v · ∇H)θ − w∂3θ + Fθ

]
dt

+
∑

n≥1

[
(ψn · ∇)θ + Gθ,n

]
dβn

t , on O,

∂3P + κθ = 0, on O,

∂3 P̃n = 0, on O,

divHv + ∂3w = 0, on O,

v(·, 0) = v0, θ(·, 0) = θ0, on O.

(1.1)
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In the system (1.1) the unknowns are: the velocity field u = (v,w) : [0,∞)×
×O →
R
3 where v = (vk)2k=1 : [0,∞) × 
 ×O → R

2 is the horizontal part of the velocity,
the pressure P : [0,∞) × 
 × O → R, the components of the turbulent pressure
P̃n : [0,∞) × 
 × T

2 → R and the temperature θ : [0,∞) × 
 × O → R. The
driving processes (βn

t : t ≥ 0)n≥1 are given by a sequence of independent standard
Brownian motions on some filtered probability space (
,A, (Ft )t≥0, P). Moreover,
φn = (φ

j
n )3j=1, ψn = (ψ

j
n )3j=1 : [0,∞) × 
 × O → R

3, κ : [0,∞) × 
 × O → R

and γn = (γ
�,m
n )2�,m=1 : [0,∞) × 
 × O → R

2×2 are given functions and

∂γ P̃ :=
⎛

⎝
∑

n≥1

2∑

m=1

γ �,m
n ∂m P̃n

⎞

⎠

2

�=1

describe the deterministic effect of the turbulent pressure. Finally, Fv, Fθ , Gv,n and
Gθ,n are given maps depending on v, θ,∇v and ∇θ describing deterministic and
stochastic forces also taking into account lower order effects like the Coriolis force.
For a physical justificationof the occurrenceof the turbulent pressure P̃n , i.e., a pressure
term within the stochastic integral and for the related deterministic contribution ∂γ P̃ ,
we refer to [42] and [43, Example 1].

The system (1.1) is supplemented with Neumann boundary conditions for the hori-
zontal velocity v and mixed Neumann-Robin boundary conditions for the temperature
θ on the top T

2 × {0} and the bottom T
2 × {−h} of the domain O, i.e.,

∂3v(·,−h) = ∂3v(·, 0) = 0 on T
2,

∂3θ(·,−h) = ∂3θ(·, 0) + αθ(·, 0) = 0 on T
2,

(1.2)

where the parameter α ∈ R is a given constant, and for the vertical velocity

w(·,−h) = w(·, 0) = 0 on T
2. (1.3)

In the horizontal directions periodicity is assumed. The results of the current paper also
hold in case (1.2) are replaced by periodic boundary conditions, see Remark 3.7(c).
Whenmodeling the ocean, the system (1.1) is expanded by an equation for the salinity.
This leads to terms resembling the ones for the temperature, and this does not lead
to additional mathematical difficulties or more restrictive assumptions. Therefore we
omit this coupling here to concentrate on the main features.

The mathematical analysis of the deterministic primitive equations (i.e., βn
t = 0 in

(1.1)) has been pioneered by Lions, Teman and Wang in a series of articles [39–41].
There the existence of a global, weak solution to the primitive equations is proven for
initial data in v0 ∈ L2(O) and θ0 ∈ L2(O). The uniqueness of these weak solutions
remains an open problem until today, and only under additional regularity assumptions
in the vertical direction they are known to be unique (see e.g. [33]).

A landmark result on the global strongwell-posedness of the deterministic primitive
equations subject to homogeneous Neumann conditions on top and bottom for initial
data in H1(O) was shown first by Cao and Titi in [8], and independently by Kobelkov
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[34], via L∞(0, T ; H1(O)) a priori energy estimates. For mixed Dirchlet-Neumann
conditions see also [37]. A different approach to the deterministic primitive equations
based on evolution equations has been introduced in [23, 30]. This approach is based
on the analysis of the hydrostatic Stokes operator and the corresponding hydrostatic
Stokes semigroup. For a survey on results concerning the deterministic primitive equa-
tions using energy estimates, we refer to [38] and for a survey concerning the approach
based on evolution equations to [29].

Stochastic versions of the primitive equations have been studied by several authors.
A global well-posedness result for pathwise strong solutions is established for multi-
plicative white noise in time by Debussche, Glatt-Holtz and Temam in [10] and the
same authors with Ziane in [11]. There, a Galerkin approach is used to first show the
existence of martingale solutions, and then a pathwise uniqueness result is deduced
which leads together with a Yamada-Watanabe type result to the existence of a local
pathwise solutions. The global existences of solutions is then shown by energy esti-
mates where the noise is seen as a perturbation of the linear system. There, one of the
difficulties is the handling of the pressure when proving L p-estimates for p > 2. This
is overcome by considering the corresponding Stokes problemwith the noise term and
then proving estimates for the difference of the solution of the full non-linear prob-
lem and the solution of that Stokes problem. This difference solves a random partial
differential equation where analytic tools can be used to estimate the pressure term.
A disadvantage of this approach is that it requires the solution of the Stokes problem
to be rather smooth and transport noise cannot be included for this reason.

In the recent work [7] by Brzeźniak and Slavík a similar approach is used for the
local existence, but instead of considering the Stokes problem, they impose conditions
on the noise such that it does not act directly on the pressure when turning to the
question of global existence. Hence, by using a hydrostatic version of the Helmholtz
projection, they can apply deterministic estimates to the pressure. Transport noise
acting on the full velocity field is therefore not included, only the vertical average of
v can be transported by the noise. By our approach we can overcome both drawbacks
at once, we can handle full transport noise acting directly on the pressure.

Let us mention some further results on the stochastic primitive equations. For addi-
tive noise there is a transformation such that the probabilistic dependence turns into
a parameter for a deterministic system. For this case also the existence of a random
pull-back attractor is known (see e.g. [28]). Logarithmic moment bounds in H2(O)

are obtained in [24] and used to prove the existence of ergodic invariant measures
in H1(O). A construction of weak-martingale solutions, that means martingale solu-
tions the regularity of which in space and time is the one of a weak solution, by an
implicit Euler scheme is given in [26]. Large deviation principles are known for small
multiplicative noise (see e.g. [14]) and small times (see e.g. [16]), for an extension to
transport noise and moderate deviation principles see [47]. The existence of a Markov
selection is proven in [15] for additive noise. For results in two dimensions we refer
to [25] and the references therein.

Aiming for noise as rough as possible we will first consider a strong-weak setting
when investigating the system (1.1), meaning that the equations for v hold in the strong
PDE sense and the one for θ in a weak sense, for the precise definitions of strong-
weak solutions see Definition 3.3. Probabilistically, we are concerned with strong
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solutions. The reason for not considering both equations in the weak sense is that
already in the deterministic case the uniqueness issue for the weak velocity equation
is unsolved. We also investigate the strong-strong setting, see Definition 6.3 for this
notion of solution, since this setting is the one forwhichmost deterministic results have
been proven. The main result is the global existence of solutions, see Theorem 3.6
for the strong-weak setting and Theorem 6.7 for the strong-strong setting. For the
readers convenience we state here a simplified version. We write φ j := (φ

j
n )n≥1,

ψ j := (ψ
j

n )n≥1, γ �,m := (γ
�,m
n )n≥1 and R+ = (0,∞).

Main Result (Simplified version) Let κ be constant, Gk
v,n = Gθ,n = 0, Fθ = 0, and

Fv = k0(v2,−v1) for k0 ∈ R be the Coriolis force. For all n ≥ 1 let the maps

φn, ψn : R+ × 
 × O → R
3 and γn : R+ × 
 × T

2 → R
2×2

be P ⊗B-measurable, and let for some δ > 0 and all j ∈ {1, 2, 3}, �, m ∈ {1, 2} be

φ j ∈ L∞(R+ × 
; H1,3+δ(O; �2)), ψ j ∈ L∞(R+ × 
 × O; �2),

and γ �,m ∈ L∞(R+ × 
; L3+δ(T2; �2)),

where φ1
n and φ2

n are assumed to be independent of x3. Furthermore, assume that there
exists ν ∈ (0, 2) such that, almost surely (a.s.) for all t ∈ R+, x ∈ O and ξ ∈ R

3 the
parabolicity conditions

∑

n≥1

⎛

⎝
3∑

j=1

φ
j
n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2 and
∑

n≥1

⎛

⎝
3∑

j=1

ψ
j

n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2

hold. Then for each

v0 ∈ L0
F0

(

; H

1(O)
)

and θ0 ∈ L0
F0

(

; L2(O)

)

there exists a unique global strong-weak solution (v, θ) to (1.1)–(1.3), in particular

(v, θ) ∈ L2
loc([0,∞); H

2
N(O) × H1(O)) ∩ C([0,∞); H

1(O) × L2(O)) a.s.

For the definition ofP⊗B-measurable, L0
F0

(
; X), and the notation for the function

spaces see Sect. 2. In the above, we have not specified the unknowns w, P and P̃n as
they are uniquely determined by v and θ due to the divergence free condition and the
hydrostatic Helmholtz projection. Moreover, replacing the regularity assumption on
ψ j by ψ j ∈ L∞(R+ × 
; H1,3+δ(O; �2)) and considering θ0 ∈ L0

F0
(
; H1(O))

we obtain the analogous result in the strong-strong setting.
Let us compare our resultwith the abovementionedKraichanan’s turbulence theory.

There one usually assumes that, for some (typically small) γ > 0,

φ
j
n ∈ H3/2+γ (O) for all j ∈ {1, 2, 3} and n ≥ 1, (1.4)
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cf. e.g. [44, Eq. (1.3)]. Since H3/2+γ (O) ↪→ H1,3+δ(O) for some δ > 0 by Sobolev
embedding, our noise is consistent with the regularity of the reproducing kernel Hilbert
space of the Kraichanan noise. However, taking into account the summability in n ≥ 1
required in ourmain results, we can cover only the case of regular Krainchan noise.We
refer to [22, Sect. 5] and the references therein for the terminology. For the relevance
of Kraichnan’s noise in the context of geophysics we refer to [13].

To prove our main results we take another point of view on the problem than in [7]
and [11]. Here, we interpret the transport part of the noise as a part of the linearized
system, and we only need to impose conditions guaranteeing that this linearization is
parabolic. Compared to [7, 11], this makes it possible to consider noise that transports
the full velocity field, and moreover this leads even to weaker assumptions than in
[7] and [11] in the setting where the noise is such that their results apply. The only
smallness condition in our result is the parabolicity condition, which is optimal in the
sense that when dropping it the system is not parabolic any more and thus loosens
its smoothing properties. This condition origins already in the local existence theory
and is by far weaker than the smallness conditions in [7, 11], where the noise is
handled as a nonlinear perturbation of the deterministic system. Also, to deduce the
global existence of solutions in our case, no additional smallness has to be assumed
compared to the local existence.

The proof of the local existence in Theorem 3.4 is based on the theory of critical
spaces for stochastic evolution equations developed by the Veraar and the first author
in [2, 3]. To apply these results, we need to study the stochastic maximal L2-regularity
estimates for the linearized problem elaborated in Sect. 4. The global existence result
Theorem 3.6 is then obtained from the blow-up criteria of Theorem 3.4(2) and suitable
energy estimates obtained in the spirit of Cao and Titi [8]. Here we actually follow the
approach taken by the Kashiwabara and the second author in [30] (see also [29]) where
the L6-estimates proven in [8] are replaced by the (apparently) weaker L4-estimates.
The deterministic estimates are proven by splitting the velocity field into its vertical
average v and the remainder ṽ = v − v. A crucial observation is that the deterministic
part of the turbulent pressure ∂γ P̃ does not appear in the equations for ṽ since it is
x3-independent in case that γ

�,m
n is also x3-independent. Otherwise, the L4-estimate

for ṽ could not be shown in this way since ∂γ P̃ is a non-local operator in v.
Our noise and the corresponding stochastic integrals are in Itô-form, but in fluid

mechanics, and in particular for geophysical flows, also the Stratonovich formulation is
relevant, and it is seen as amore realisticmodel see e.g. [4, 20, 31, 49] and the references
therein, and in [12, 19] transport noise of Stratonovich type in fluid dynamical models
has been rigorously justified from additive noise by multiscale arguments. Also the
modelling in [42] and [43] is based on a Stratonovich type of noise to describe the
turbulent part of the velocity field which is then translated into an Itô formulation.
To include such types of noise directly, we will consider the primitive equations with
Stratonovich noise, see system (8.1). In a preparatory step we first extend our result
on the Itô system (1.1) to the case of non-homogeneous viscosity and conductivity
in Theorems 7.3 and 7.5. Based on a Stratonovich to Itô transformation we then can
use these results to infer the local and global existence of the primitive equations with
Stratonovich type noise in Theorems 8.3 and 8.5, respectively.
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Overview

This paper is organized as follows. In Sect. 2 the notation is fixed and a reformulated
version of the stochastic primitive equations is given. In Sect. 3 we give the precise
notion of solution in the strong-weak setting and present the main result for this
case. In Sect. 4 we consider a linearized system for the turbulent hydrostatic Stokes
system with temperature, and show that it admits stochastic maximal L2-regularity.
The proofs of the theorems from Sect. 3 are carried out in Sect. 5. The strong-strong
setting is investigated in Sect. 6. In Sect. 7 we generalize our results to the case of
non-homogeneous viscosity and conductivity. Finally, in Sect. 8 we show how our
results imply also the well-posedness of the primitive equations with Stratonovich
noise.

2 Preliminaries

2.1 Notation and deterministic function spaces

Here we collect the main notation which will be used through the paper. We often use
universal constants C , and we write �C or just � for ≤ C . For any integer k ≥ 1,
and p ∈ (1,∞), L p(O; R

k) = (L p(O))k denotes the usual Lebesgue space and
Hs,p(O; R

k) the corresponding Sobolev space for s ∈ (0,∞). In the paper we also
use the common abbreviation Hs(O; R

k) := Hs,2(O; R
k).

Since O = T
2 × (−h, 0), we employ the natural splitting x 
→ (xH, x3) where

xH = (x1, x2) ∈ T
2, x3 ∈ (−h, 0) and the subscript H stands for horizontal. Similarly,

we define

divH := ∂1 + ∂2, ∇H := (∂1, ∂2), �H := divH∇H.

We also use the standard notations

(v · ∇H) v :=
⎛

⎝
2∑

j=1

v j∂ jv
k

⎞

⎠

2

k=1

, (φn · ∇)v :=
⎛

⎝
3∑

j=1

φ
j
n∂ jv

k

⎞

⎠

2

k=1

,

(v · ∇H)θ :=
2∑

j=1

v j∂ jθ, (ψn · ∇)θ :=
3∑

j=1

ψ
j

n ∂ jθ.

Next we introduce the function spaces for the velocity field. As a first step we
introduce the two-dimensional Helmholtz projection denoted by PH acting on the hor-
izontal variables xH ∈ T

2. Let f ∈ L2(O; R
2) and set QH f := ∇H� f ∈ L2(T2; R

2)

where � f ∈ H1(T2) is the unique solution to the problem

�H� f = divH f on T
2 with

∫

T2
� f dx = 0.
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Then the Helmholtz projection is given by

PH f := f − QH f for f ∈ L2
(
T
2; R

2
)

.

The hydrostatic Helmholtz projection P : L2(O; R
2) → L2(O; R

2) is defined as

P f := f − QH

[
1

h

∫ 0

−h
f (·, ζ ) dζ

]

for all f ∈ L2
(
O; R

2
)

, (2.1)

and its complementary projection is given by Q f := QH

[
1
h

∫ 0
−h f (·, ζ ) dζ

]
. One

can check that P is an orthonormal projection on L2(O; R
2), and by construction,

divH
∫ 0
−h(P f (·, z))dz = 0 holds in the distributional sense for all f ∈ L2(O; R

2).
Let

L
2(O) :=

{

f ∈ L2(O; R
2) : divH

(∫ 0

−h
f (·, z)dz

)

= 0 on T
2
}

,

be endowed with the norm ‖ f ‖L2(O) := ‖ f ‖L2(O;R2) and for all k ≥ 1 we set

H
k(O) := Hk(O; R

2) ∩ L
2(O), ‖ f ‖Hk (O) := ‖ f ‖Hk (O;R2).

If no confusion seems likely,wewrite simply L2, Hk ,Hk , L2(�2) and Hk(�2) insteadof
L2(O; R

m), Hk(O; R
m), Hk(O), L2(O; �2(N; R

m)) and Hk(O; �2(N; R
m)), where,

we use the short hand notation �2 for �2(N; R
m) or l2(N). The dual space of H1(O)

is denoted by (H1(O))∗.

2.2 Probabilistic notation and function spaces

Here we collect the main probabilistic notation. Throughout the paper we fix a filtered
probability space

(
,A, (Ft )t≥0, P) and we set E[·] :=
∫




· dP.

Moreover, (βn)n≥1 = (βn
t : t ≥ 0)n≥1 denotes a sequence of standard independent

Brownian motions on the above mentioned probability space. We will denote by B�2

the �2-cylindrical Brownian motion uniquely induced by (βn)n≥1 via

B�2( f ) :=
∑

n≥1

∫

R+
〈 f (t), en〉 dβn

t , with en = (δ jn) j≥1, f ∈ L2(
R+; �2

)
, (2.2)

and Kronecker’s δ jn , cf. e.g. [2, Example 2.12]. For a stopping time τ , we set

[0, τ ] × 
 := {(t, ω) : 0 ≤ τ(ω) ≤ t}

and use analogous definitions for [0, τ ) × 
 etc.
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By P and B we denote the progressive and the Borel σ -algebra, respectively.
Moreover, we say that a map � : R+ × 
 × R

m → R isP ⊗ B-measurable if � is
P ⊗B(O)⊗B(Rm)-measurable, where m ≥ 1 is an integer. By L0

F0
(
) we denote

the space of F0-measureable functions and by L2
P the L2-space with respect to the

progressive σ -algebra.

2.3 Reformulation of the primitive equations

As it is well-known the primitive equations can be formulated equivalently in terms of
the unknown v = (vk)2k=1 : [0,∞) × 
 ×O → R

2 which contains only the first two
components of the unknown velocity field u. Indeed, the divergence-free condition
and (1.3) are equivalent to setting w = w(v) where

(
w(v)

)
(t, x) := −

∫ x3

−h
divHv(t, xH, ζ ) dζ, (2.3)

a.s. for all t ∈ R+ and x = (xH, x3) ∈ T
2 × (−h, 0) = O and imposing

∫ 0

−h
divHv(t, xH, ζ ) dζ = 0,

a.s. for all t ∈ R+ and xH ∈ T
2. Moreover, we get by integrating the third equation in

(1.1), a.s. for all t ∈ R+ and x = (xH, x3) ∈ O,

P(t, x) = p(t, xH) −
∫ x3

−h
κ(t, xH, ζ )θ(t, xH, ζ )dζ.

Thus the pressure depends linearly on the temperature θ . In the physical literature p
is usually called the surface pressure. Hence, (1.1)–(1.3) turns into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �v dt =
[

− (v · ∇H)v − w(v)∂3v − ∇H p + ∂γ P̃

+∇H

∫ ·

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(·, v, θ)

]
dt

+
∑

n≥1

[
(φn · ∇)v − ∇H P̃n + Gv,n(·, v, θ)

]
dβn

t , on O,

dθ − �θ dt =
[

− (v · ∇H)θ − w(v)∂3θ + Fθ (·, v, θ)
]
dt

+
∑

n≥1

[
(ψn · ∇)θ + Gθ,n(·, v, θ)

]
dβn

t , on O,

∂3 p = ∂3 P̃n = 0, on O,
∫ 0

−h
divHv(·, ζ ) dζ = 0, on T

2,

v(·, 0) = v0, θ(·, 0) = θ0, on O,

(2.4)
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where w(v) is given by (2.3) and complemented with the boundary conditions (1.2).

3 Local and global existence in the strong-weak setting

In this section we study the stochastic primitive equations in the strong-weak setting,
i.e. in case the equation for v is understood in the strong setting and the one for θ in
the weak one. The latter means that equation for θ will be formulated in its natural
weak (analytic) form. In Sect. 6, we also consider the case where both equations are
understood in the strong setting (referred here as the strong-strong setting). Compared
to the strong-strong setting, the choice made in this section has two basic advantage.
Firstly, the energy estimates needed in our main global existence result are simpler,
and secondly, we can allow a rougher noise in the equation for the temperature θ .

We begin by reformulating the problem. Applying the hydrostatic Helmholtz pro-
jection P to the first equation in (2.4) it is, at least formally, equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �v dt = P

[
− (v · ∇H)v − w(v)∂3v + Pγ (·, v)

+∇H

∫ x3

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(·, v, θ,∇v)

]
dt

+
∑

n≥1

P

[
(φn · ∇)v + Gv,n(·, v)

]
dβn

t ,

dθ − �θ dt =
[

− (v · ∇H)θ − w(v)∂3θ + Fθ (·, v, θ,∇v)
]
dt

+
∑

n≥1

[
(ψn · ∇)θ + Gθ,n(·, v, θ,∇v)

]
dβn

t ,

v(·, 0) = v0, θ(·, 0) = θ0,

(3.1)

on O = T
2 × (−h, 0) complemented with the following boundary conditions

∂3v(·,−h) = ∂3v(·, 0) = 0 on T
2,

∂3θ(·,−h) = ∂3θ(·, 0) + αθ(·, 0) = 0 on T
2.

(3.2)

here α ∈ R is given, w(v) is as in (2.3) and a.s. for all t ∈ R+,

Pγ (t, v) :=
⎛

⎝
∑

n≥1

2∑

m=1

γ �,m
n (t, x)

(
Q[(φn · ∇)v + Gv,n(·, v)])m

⎞

⎠

2

�=1

, (3.3)

where
(
Q[·])m denotes the m-th component of the vectorQ[ f ]. To see thatPγ in (3.3)

coincides with ∂γ P̃ in (2.4) it is enough to recall that, by the hydrostatic Helmholtz
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decomposition in (2.1), it follows that

∇H P̃n = Q[(φn · ∇)v + Gv,n(·, v)].

Finally, let us note that in the stochastic part of the equation for the velocity field v,
(in general) the operator P cannot be removed since it may happen that divH

∫ 0
−h[(φn ·

∇)v + Gv,n(v)] dζ �= 0. For instance this is the case if φn is x3-dependent and
Gv,n ≡ 0.

3.1 Main assumptions and definitions

We begin by listing the main assumptions which are in force in this section.

Assumption 3.1 There exist M, δ > 0 for which the following hold.

(1) For all n ≥ 1 and j ∈ {1, 2, 3}, the maps

φ
j
n , ψ

j
n , κ : R+ × 
 × O → R

are P ⊗ B-measurable;
(2) a.s. for all t ∈ R+, j, k ∈ {1, 2, 3} and �, m ∈ {1, 2},

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

n≥1

∣
∣
∣φ

j
n (t, ·)

∣
∣
∣
2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

L3+δ(O)

+

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

n≥1

∣
∣
∣∂kφ

j
n (t, ·)

∣
∣
∣
2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

L3+δ(O)

≤ M,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

n≥1

∣
∣
∣γ

�,m
n (t, ·)

∣
∣
∣
2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

L3+δ(O)

≤ M;

(3) a.s. for all t ∈ R+, x ∈ O and j ∈ {1, 2, 3},
⎛

⎝
∑

n≥1

∣
∣
∣ψ

j
n (t, x)

∣
∣
∣
2

⎞

⎠

1/2

≤ M;

(4) a.s. for all t ∈ R+, xH ∈ T
2, j ∈ {1, 2, 3} and i ∈ {1, 2},

‖κ(t, xH, ·)‖L2(−h,0) + ‖∂iκ(t, ·)‖L2+δ(T2;L2(−h,0)) ≤ M;

(5) There exist ν ∈ (0, 2) such that, a.s. for all t ∈ R+, x ∈ O and ξ ∈ R
3,

∑

n≥1

⎛

⎝
3∑

j=1

φ
j
n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2, and
∑

n≥1

⎛

⎝
3∑

j=1

ψ
j

n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2;
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(6) For all n ≥ 1, the maps

Fv : R+ × 
 × R
2 × R

6 × R → R
2, Fθ : R+ × 
 × R

2 × R
6 × R → R,

Gv,n : R+ × 
 × R → R
2, and Gθ,n : R+ × 
 × R

2 × R
6 × R → R

are P ⊗ B-measurable;
(7) For all T ∈ (0,∞) and i ∈ {1, 2},

Fi
v(·, 0), Fθ (·, 0) ∈ L2((0, T ) × 
 × O),

(Gi
v,n(·, 0))n≥1 ∈ L2((0, T ) × 
; H1(O; �2)) and

(Gθ,n(·, 0))n≥1 ∈ L2((0, T ) × 
 × O; �2).

Moreover, for all n ≥ 1, t ∈ R+, x ∈ O, y, y′ ∈ R
2, Y , Y ′ ∈ R

6 and z, z′ ∈ R,

∣
∣Fv(t, x, y, z, Y ) − Fv

(
t, x, y′, z′, Y ′)∣∣+ ∣

∣Fθ (t, x, y, z, Y ) − Fθ

(
t, x, y′, z′, Y ′)∣∣

+
∥
∥
∥
(
Gθ,n(t, x, y, z, Y ) − Gθ,n

(
t, x, y′, z′, Y ′))

n≥1

∥
∥
∥

�2

�
(
1 + |y|4 + |y′|4

)
|y − y′| +

(
1 + |z|2/3 + |z′|2/3

)
|z − z′|

+
(
1 + |Y |2/3 + |Y ′|2/3

)
|Y − Y ′|.

Finally, a.s. for all t ∈ R+, O × R
2 � (x, y) 
→ Gv,n(t, x, y) is continuously

differentiable and for all k ∈ {0, 1}, j ∈ {1, 2, 3}, x ∈ O, and y, y′ ∈ O a.s.

∥
∥
∥
∥

(
∂k

x j
Gv,n(t, x, y) − ∂k

x j
Gv,n(t, x, y′)

)

n≥1

∥
∥
∥
∥

�2
�
(
1 + |y|4 + |y′|4

)
|y − y′|,

∥
∥
∥
(
∂yGv,n(t, x, y) − ∂yGv,n(t, x, y′)

)

n≥1

∥
∥
∥

�2
�
(
1 + |y|2 + |y′|2

)
|y − y′|.

Remark 3.2 (a) In Assumption 3.1(2) the derivatives are taken in the distributional
sense. The Sobolev embedding H1,3+δ(O; �2) ↪→ Cα(O; �2) where α = δ

3+δ
∈

(0, 1) and (2) yield

∥
∥
∥
∥

(
φ

j
n (t, ·)

)

n≥1

∥
∥
∥
∥

Cα(O;�2)
�δ M, a.s. for all t ∈ R+.

(b) Since H3/2+γ (O) ↪→ H1,3+δ(O)where δ = 3γ
1−γ

> 0 for all γ ∈ (0, 1), Assump-
tion 3.1(2) fits the scaling of the Kraichnan’s noise discussed in the introduction,
cf. (1.4).

(c) Assumption 3.1(5) is equivalent to the stochastic parabolicity: for all t ∈ R+,
x ∈ O, ξ ∈ R

3 and a.s.

|ξ |2 − 1

2

3∑

i, j=1

∑

n≥1

φ
j
n (t, x)φi

n(t, x)ξiξ j ≥
(
1 − ν

2

)
|ξ |2.
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A similar reformulation holds for the condition on ψ . In particular, (5) is optimal
in the parabolic setting.

(d) Assumption 3.1(7) contains the optimal growth assumptions on the nonlinearities
which ensure existence and uniqueness of (local) solutions for data (v0, θ0) ∈
H

1(O) × L2(O), cf. the proof of Theorem 3.4 in Sect. 5.1.

To formulate (3.1)–(3.2) in the strong-weak setting, we regard the equation for θ

in its natural weak analytic formulation on the dual space (H1(O))∗. To this end, the
basic observation is given by the following formal integration by parts

∫

O

(
(v · ∇Hv)θ + w(v)∂3θ

)
ϕ dx = −

∫

O

(
vθ · ∇Hϕ + w(v)θ · ∂3ϕ

)
dx (3.4)

for all ϕ ∈ H1(O). Note that the volume and boundary integrals disappear since
divHv + ∂3w = 0 and w(·, 0) = w(·,−h) = 0 on T

2, respectively. The right hand
side in (3.4) naturally defines an element in (H1(O))∗ by setting

H1(O) � ϕ 
→ −
∫

O

(
θv · ∇Hϕ + θw(v)∂3ϕ

)
dx =: Tθ (ϕ). (3.5)

Below, we will use the more suggestive notation divH(vθ) + ∂3(w(v)θ) = Tθ . To
complete the reformulation of the equation for θ it remains to replace the Laplace
operator � by its weak formulation �w

R in case of Robin boundary conditions, i.e.

�w
R : H1(O) ⊆ (

H1(O))∗ → (
H1(O))∗,

〈ϕ,�w
Rθ〉 := −

∫

O
∇ϕ · ∇θ dx − α

∫

T2
ϕ(·, 0)θ(·, 0) dxH,

(3.6)

where 〈·, ·〉 denotes the duality pairing for H1(O) and (H1(O))∗. Note that the above
definition is consistent with a formal integration by parts using the Robin boundary
conditions for θ in (3.2). Since the trace operator f 
→ f |T2×{0} is bounded on H1(O)

with values in L2(T2), the previous definition in (3.6) makes sense.
With these preparations, we are now in the position to define solutions to (3.1)–(3.2)

in the strong-weak setting. For notational convenience, we set

H
2
N(O) := {

v ∈ H
2(O) : ∂3v(·,−h) = ∂3v(·, 0) = 0 on T

2}. (3.7)

Recall that the embedding L2(O) ↪→ (H1(O))∗ is given by 〈ϕ, f 〉 := ∫

O f ϕ dx
where ϕ ∈ H1(O) and B�2 is the �2-cylindrical Brownian motion induced by the
sequence (βn)n≥1, compare Eq. (2.2).

Definition 3.3 (L2-strong-weak solutions) Let Assumption 3.1 be satisfied.

(1) Let τ be a stopping time, v : [0, τ ) × 
 → H
2
N(O) and θ : [0, τ ) × 
 → H1(O)

be stochastic processes.We say that ((v, θ), τ ) is an L2-local strong-weak solution
to (3.1)–(3.2) if there exists a sequence of stopping times (τk)k≥1 for which the
following hold:

123



66 Stoch PDE: Anal Comp (2024) 12:53–133

• τk ≤ τ a.s. for all k ≥ 1 and limk→∞ τk = τ a.s.;
• a.s. we have (v, θ) ∈ L2(0, τk; H

2
N(O) × H1(O)) and

(v · ∇H)v + w(v)∂3v + Fv(v, θ,∇v) + Pγ (·, v) ∈ L2(0, τk; L2(O; R
2)),

−divH(vθ) − ∂3(w(v)θ) ∈ L2(0, τk; (H1(O))∗),
Fθ (v, θ,∇v) ∈ L2(0, τk; L2(O)),

(Gv,n(v))n≥1 ∈ L2(0, τk; H1(O; �2(N; R
2))),

(Gθ,n(v, θ,∇v))n≥1 ∈ L2(0, τk; L2(O; �2));
(3.8)

• a.s. for all k ≥ 1 the following equality holds for all t ∈ [0, τk]:

v(t) − v0 =
∫ t

0

(
�v(s) + P

[
∇H

∫ x3

−h
(κ(·, ζ )θ(·, ζ )) dζ

− (v · ∇H)v − w(v)∂3v + Fv(v, θ,∇v) + Pγ (·, v)
])

ds

+
∫ t

0

(
1[0,τk ]P[(φn · ∇)v + Gv,n(v)]

)

n≥1
dB�2(s),

θ(t) − θ0 =
∫ t

0

[
�w

Rθ − divH(vθ) − ∂3(w(v)θ) + Fθ (v, θ,∇v)
]

ds

+
∫ t

0

(
1[0,τk ][(ψn · ∇)θ + Gθ,n(v, θ,∇v)]

)

n≥1
dB�2(s).

(2) An L2-local strong-weak solution ((v, θ), τ ) to (3.1)–(3.2) is said to be an
L2-maximal strong-weak solution to (3.1)–(3.2) if for any other local solution
((v′, θ ′), τ ′) we have

τ ′ ≤ τ a.s. and (v, θ) = (v′, θ ′) a.e. on [0, τ ′) × 
.

Note that L2-maximal strong-weak solution are unique in the class of L2-local
strong-weak solutions by definition. By (3.8), the deterministic integrals and the
stochastic integrals in the above definition are well-defined as Bochner and L2-valued
Itô integrals, respectively.

3.2 Statement of themain results

We begin this subsection by stating a local existence result for (3.1)–(3.2). To econo-
mize the notation, for k ≥ 0, m ≥ 1, f : [0, t) → Hk+1(O; R

m), we set

Nk(t; f ) := sup
s∈[0,t)

‖ f (s)‖2Hk (O;Rm )
+
∫ t

0
‖ f (s)‖2Hk+1(O;Rm )

ds. (3.9)
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Theorem 3.4 (Local existence) Let Assumption 3.1 be satisfied. Then for each

v0 ∈ L0
F0

(

; H

1(O)
)
, and θ0 ∈ L0

F0

(

; L2(O)

)
,

there exists an L2-maximal strong-weak solution ((v, θ), τ ) to (3.1)–(3.2) where τ > 0
a.s. Moreover, we have

(1) (Pathwise regularity) there exists a sequence of stopping times (τk)k≥1 such that
a.s. for all k ≥ 1 one has 0 ≤ τk ≤ τ , limk→∞ τk = τ and

(v, θ) ∈ L2(0, τk; H
2
N(O) × H1(O)

) ∩ C
([0, τk]; H

1(O) × L2(O)
);

(2) (Blow-up criterion) for all T ∈ (0,∞)

P
(
τ < T , N1(τ ; v) + N0(τ ; θ) < ∞

)
= 0.

Nextwe state ourmain result of this section concerning global existence of solutions
to (3.1)–(3.2). To this end, we also need the following assumptions.

Assumption 3.5 Let Assumption 3.1 be satisfied and assume the following

(1) For all n ≥ 1, x = (xH, x3) ∈ T
2 × (−h, 0) = O, t ∈ R+, j, k ∈ {1, 2} and a.s.

φ
j
n (t, x) and γ

j,k
n (t, x) are independent of x3;

(2) There exist C > 0 and � ∈ L0
P (
; L2

loc([0,∞); L2(O))) such that, a.s. for all
t ∈ R+, j ∈ {1, 2, 3}, x ∈ O, y ∈ R

2, z ∈ R and Y ∈ R
6,

|Fv(t, x, y, z, Y )| ≤ C(�(t, x) + |y| + |z| + |Y |),
|Fθ (t, x, y, z, Y )| ≤ C(�(t, x) + |y| + |z| + |Y |),

‖(Gv,n(t, x, y))n≥1‖�2 + ‖(∂x j Gv,n(t, x, y))n≥1‖�2 ≤ C(�(t, x) + |y|),
‖(∂y Gv,n(t, x, y))n≥1‖�2 ≤ C,

‖(Gθ,n(t, x, y, z, Y ))n≥1‖�2 ≤ C(�(t, x) + |y| + |z| + |Y |).

Theorem 3.6 (Global existence) Let Assumption 3.5 be satisfied, and let

v0 ∈ L0
F0

(
; H
1(O)), and θ0 ∈ L0

F0
(
; L2(O)).

Then the L2-maximal strong-weak solution ((v, θ), τ ) to (3.1)–(3.2) provided by The-
orem 3.4 is global in time, i.e. τ = ∞ a.s. In particular

(v, θ) ∈ L2
loc

([0,∞); H
2
N(O) × H1(O)

) ∩ C
([0,∞); H

1(O) × L2(O)
)

a.s.

The proof of Theorems 3.4 and 3.6 will be given in Sects. 5.1 and 5.2, respectively.
As a key tool in the proofs, we need suitable estimates for the linearized problem of
(3.1)–(3.2) which will be proven in Sect. 4. Before giving the proofs, below we collect
some comments on Assumption 3.5.
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Remark 3.7 (a) Assumption 3.5(1) contains additional assumptions on φ1
n , φ2

n but not
on φ3

n as compared to Assumption 3.1. Roughly speaking, this means that the
transport noise can be very rough in the vertical direction while the horizontal part
is two-dimensional.

(b) Taking ξ = (ξ1, ξ2, 0) in Assumption 3.1(5) we also have that there exists ν ∈
(0, 2) such that, a.s. for all x ∈ O, t ∈ R+ and ξ ∈ R

2,

∑

n≥1

⎛

⎝
2∑

j=1

φ
j
n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2.

This implies thatwe also have parabolicity for the subsystem (5.21) belowobtained
from the first equation in (3.1) after averaging in the x3-variable.

(c) Periodic boundary conditions The results of Theorems 3.4 and 3.6 also hold in
case the boundary conditions (3.2) are replaced by the periodic ones. To see this
it is enough to ignore the boundary terms appearing in the integration by part
arguments in the proofs below. The same applies to the results of Sects. 6–8. For
brevity, we do not repeat this observation in the following.

4 L2–estimates for the linearized problem

4.1 L2-stochastic maximal regularity

In this sectionwededuces an L2–estimate for the linear part of the problem (3.1),which
is central to our approach. Here we consider the following turbulent hydrostatic Stokes
system with temperature

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv −
[
�v + P[Pγ,φv + Jκθ ]

]
dt = fvdt +

∑

n≥1

[
P[(φn · ∇)v] + gn,v

]
dβn

t onO,

dθ − �w
Rθdt = fθ dt +

∑

n≥1

[
(ψn · ∇)θ + gn,θ

]
dβn

t onO,

∂3v(·, 0) = ∂3v(·,−h) = 0 on T
2,

v(0) = 0, θ(0) = 0 onO,

(4.1)

where �w
R is the weak Laplacian with Robin boundary conditions (see (3.6)), and for

all t ∈ R+, x = (xH, x3) ∈ O and θ ∈ H1(O),

(Pγ,φv)(t, x) :=
(∑

n≥1

2∑

m=1

γ �,m
n (t, x)

(
Q[(φn · ∇)v])m

)2

�=1
, (4.2)

(Jκθ)(t, x) := ∇H

∫ x3

−h
(κ(t, xH, ζ )θ(xH, ζ ))dζ. (4.3)
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Let τ : 
 → [0, T ] be a stopping time and let

( fv, fθ ) ∈ L2
P ((0, T ) × 
; L

2 × (H1)∗),
((gn,v)n≥1, (gn,θ )n≥1) ∈ L2

P ((0, T ) × 
; H
1(�2) × L2(�2)).

(4.4)

Recall that H
2
N is defined in (3.7) and B�2 in (2.2). We say that

(v, θ) ∈ L2
P ((0, τ ) × 
; H

2
N × H1)

is an L2-strong-weak solution to (4.1) on [0, τ ] × 
 if a.s. for all t ∈ [0, τ ]

v(t) =
∫ t

0

[
�v(s) + P

[
Pγ,φv + Jκθ ] + fv

]
ds

+
∫ t

0

(
1[0,τ ]

[
P[(φn · ∇)v] + gv,n

])

n≥1
dB�2(s),

θ(t) =
∫ t

0

[
�w

Rθ + fθ
]

ds +
∫ t

0

(
1[0,τ ][(ψn · ∇)θ + gn,θ ]

)

n≥1
dB�2(s).

Proposition 4.1 (Stochastic maximal L2-regularity) Let T ∈ (0,∞) and Assump-
tion 3.1(1)–(5) be satisfied. Assume that fv, fθ , gv,n, gθ,n satisfy (4.4). Then for any
stopping time τ : 
 → [0, T ] there exists a unique L2-strong-weak solution to (4.1)
on [0, τ ] × 
 such that

(v, θ) ∈ L2((0, τ ) × 
; H
2
N × H1) ∩ L2(
; C([0, τ ]; H

1 × L2)
)
,

and moreover for any L2-strong-weak solution (v, θ) to (4.1) on [0, τ ] × 
 we have

‖(v, θ)‖L2((0,τ )×
;H2×H1) + ‖(v, θ)‖L2(
;C([0,τ ];H1×L2))

� ‖( fv, fθ )‖L2((0,τ )×
;L2×(H1)∗)
+ ‖((gn,v)n≥1, (gn,θ )n≥1)‖L2((0,τ )×
;H1(�2)×L2(�2))

(4.5)

where the implicit constant is independent of fv, fθ , (gn,v)n≥1, (gn,θ )n≥1 and τ .

The proof of Proposition 4.1 will be given in Sect. 4.2 below.

Remark 4.2 (a) For all U = (v, θ) ∈ H
2
N × H1, we set

A(·)U :=
[−�v − P

[
Pγ,φv + Jκθ

]

−�w
Rθ

]

, and Bn(·)U :=
[
P
[
(φn(·) · ∇)v

]

(ψn(·) · ∇)θ

]

,

a.e. on R+ × 
. Then using the notation introduced in [2, Section 3 in particular
Definition 3.5], Proposition 4.1 shows that (A, (Bn)n≥1) ∈ SMR•

2(T ).
(b) By [3, Proposition 3.9 and 3.12], Proposition 4.1 also yields stochastic maximal

L2-estimates where in (4.1) the starting time 0 is replaced by any stopping time τ :

 → [0, T ] and non-trivial initial data from the space (v0, θ0) ∈ L0

Fτ
(
; H

1×L2)

where Fτ is the σ -algebra of the τ -past.
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4.2 Proof of Proposition 4.1

Here we prove Proposition 4.1. To focus on the main difficulties, we only discuss
the case γ

�,m
n ≡ 0 since the operator Pγ,φv can be shown to be of lower order type

provided Assumption 3.1(2) holds. For details, we refer to Remark 4.3 below.
Proof of Proposition 4.1 – Case γ

�,m
n ≡ 0

Let us set

X0 = L2 × (
H1)∗ and X1 = H

2
N × H1.

To prove the claim, we employ the method of continuity as in [3, Proposition 3.13].
Let us denote the strong Neumann Laplacian by

�N : H
2
N(O) ⊆ L

2 → L
2, where �Nv = �v. (4.6)

Here we use that P�N = �NP = �N. It is well-known that �N is self-adjoint.
Similarly, by formmethods, one can check that the weak Robin Laplacian�w

R defined
in (3.6) is self-adjoint as well. Thus, it is well-established that ((−�N,−�w

R), 0) ∈
SMR•

2(T ), see e.g. [9, Theorem 6.14] which applies up to a shift, and compare also
with [2, Section 3.2].

For all λ ∈ [0, 1] and U = (v, θ) ∈ X1, we set

AλU :=
[−�Nv − λP

[
Jκθ

]

−�w
Rθ

]

, and Bn,λU := λ

[
P
[
(φn · ∇)v

]

(ψn · ∇)θ

]

. (4.7)

Let L2(�
2, X1/2) be the space of all Hilbert-Schmidt operators endowed with its

natural norm. By the previous considerations and the method of continuity in [3,
Proposition 3.13 and Remark 3.14], it remains to prove the existence of C > 0 such
that, for each stopping time τ : 
 → [0, T ], each

f = ( fv, fθ ) ∈ L2
P ((0, T ) × 
; X0),

g = (gv, gθ ) = ((gn,v)n≥1, (gn,θ )n≥1) ∈ L2
P ((0, T ) × 
;L2(�

2, X1/2)),

and each L2-strong-weak solution

(v, θ) ∈ L2
P ((0, τ ) × 
; X1) ∩ L2

P (
; C([0, τ ]; X1/2))

on [0, τ ] to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dv −
[
�v − λP[Jκθ ]

]
dt = fvdt +

∑

n≥1

[
λP[(φn · ∇)v] + gn,v

]
dβn

t , on O,

dθ − �θdt = fθ dt +
∑

n≥1

[
λ(ψn · ∇)θ + gn,θ

]
dβn

t , on O,

∂3v(·, 0) = ∂3v(·,−h) = 0, on T
2,

v(0) = 0, θ(0) = 0, on O,

(4.8)
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we have

‖v‖L2((0,τ )×
;H2) + ‖θ‖L2((0,τ )×
;H1)

≤ C‖ f ‖L2((0,τ )×
;X0)
+ C‖g‖L2((0,τ )×
;L2(�2,X1/2))

.
(4.9)

We split the proof of (4.9) into two steps. The key observation is that v does not
appear in the equation for θ . Thus, first we prove an estimate for θ and then we use
the latter to obtain the estimate for v.

Step 1: Estimate on θ . To show the maximal regularity estimate

‖θ‖L2((0,τ )×
;H1) ≤ C
(‖ fθ‖L2((0,τ )×
;(H1)∗) + ‖gθ‖L2((0,τ )×
;L2(�2))

)
,

the idea is to apply Itô’s formula to θ 
→ ‖θ‖2
L2 . To this end we use an approximation

argument. Recall that, by definition of L2-strong-weak solution to (4.8), θ satisfies,
a.s. for all t ∈ [0, τ ],

θ(t) =
∫ t

0
1[0,τ ]�w

Rθ(s) ds +
∫ t

0
1[0,τ ] fθ (s)ds

+
∑

n≥1

∫ t

0
1[0,τ ]

[
λ(ψn(s) · ∇)θ(s) + gn,θ (s)

]
dβn

s .

(4.10)

For technical reasons, it is convenient to work with processes defined on [0, T ] rather
than on the stochastic interval [0, τ ]. Thus we set θτ (t) := θ(t ∧ τ) for t ∈ [0, T ].
Note that θτ = θ a.e. on [0, τ ], and for each t ∈ [0, T ], θτ (t) is equal to the right
hand side in (4.10).

Since 1+�w
R is a sectorial operator (see e.g. [32, Definition 10.1.1] for the definition

of this notion),

lim
t→∞ t(t + 1 + �w

R)−1 = I strongly in (H1)∗, (4.11)

where I is the identity operator. Since D(�w
R) = H1 and D((�w

R)1/2) = L2, (4.11)
also holds with (H1)∗ replaced by either H1 or L2. For each k ≥ 1, let

Ek := k(k + 1 + �w
R)−1, θτ

k := Ekθ
τ , and θk := Ekθ. (4.12)

Note that Ek and �w
R commute on (H1)∗. Thus, applying Ek to (4.10) we have, a.s. for

all t ∈ [0, τ ],

θτ
k (t) −

∫ t

0
1[0,τ ]�w

Rθk(s) ds =
∫ t

0
1[0,τ ]Ek fθ (s)ds

+
∑

n≥1

∫ t

0
1[0,τ ]Ek

[
(ψn(s) · ∇)θ(s) + gn,θ (s)

]
dβn

s .

(4.13)
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Since θk ∈ L2((0, τ ) × 
; H2) by the regularity of the strong Robin Laplacian, we
have �w

Rθk = �θk in the strong sense and we may apply Itô’s formula to compute
‖θk‖2L2 . Hence, a.s. for all t ∈ [0, T ],

‖θτ
k (t)‖2L2 + 2

∫ t

0
1[0,τ ]‖∇θk‖2L2ds + 2α

∫ t

0
1[0,τ ]‖θk(·, 0)‖2L2(T2)

ds

=
∫ t

0
1[0,τ ]2(Ek fθ (s), θk(s))L2 ds

+
∫ t

0
1[0,τ ]

∑

n≥1

(∥
∥
(
Ek[λ(ψn · ∇)θ + gn,θ ]

)

n≥1

∥
∥2

L2

)
ds

+ 2
∑

n≥1

∫ t

0
1[0,τ ]

[(
Ek[λ(ψn(s) · ∇)θ(s) + gθ,n(s)], θk(s)

)

L2

]
dβn

s ,

where we also integrated by parts and used that ∂3θk(·,−h) = 0 and ∂3θk(·, 0) =
−αθk(·, 0) on T

2.
Recall that θ ∈ L2(
; C([0, τ ]; L2)) and hence θτ ∈ L2(
; C([0, T ]; L2)).More-

over, the trace map H1/2+r � f 
→ f (·, x3 = 0) ∈ L2(T2) is bounded for all r > 0
and therefore θ(·, x3 = 0) ∈ L2((0, τ ) × 
; L2(T2)). Thus, we may take k → ∞ in
the previous identity, and obtain a.s. for all t ∈ [0, T ],

‖θτ (t)‖2L2 + 2
∫ t

0
1[0,τ ]‖∇θ‖2L2ds + 2α

∫ t

0
1[0,τ ]‖θ(·, 0)‖2L2(T2)

ds

= 2
∫ t

0
1[0,τ ]〈 fθ , θ〉 ds +

∫ t

0
1[0,τ ]

∑

n≥1

(∥
∥λ(ψn · ∇)θ + gn,θ

∥
∥2

L2

)
ds

+ 2
∑

n≥1

∫ t

0
1[0,τ ]

(
λ(ψn(s) · ∇)θ(s) + gθ,n(s), θ(s)

)

L2
dβn

s

=: It + I It + I I It ,

(4.14)

where as above, 〈·, ·〉 denotes the duality pairing for H1 and (H1)∗.
Let 0 ≤ s ≤ t ≤ T . Note that for all r ∈ (0, 1

2 ) by the continuity of the trace map,
we have

E
∫ t

0
1[0,τ ]‖θ(·, 0)‖2L2(T2)

ds � E
∫ t

0
1[0,τ ]‖θ‖2

H
1
2 +r

ds,

E

[

sup
s∈[0,t]

|Is |
]

≤ 2
(
E‖ fθ‖2L2(0,τ ;(H1)∗)

)1/2 (
E‖θ‖2L2(0,τ ;H1)

)1/2
.

(4.15)

Let ν be as in Assumption 3.1 and fix ν′ ∈ (ν, 2). Thus, for some cν > 0,

E
[

sup
s∈[0,t]

|I Is |
]
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≤ E
∑

n≥1

∫ t

0
1[0,τ ]

∥
∥
(
λ(ψn · ∇)θ + gn,θ

)

n≥1

∥
∥2

L2ds

≤ ν′

ν
E
∑

n≥1

∫ t

0
1[0,τ ]

∥
∥
(
(ψn · ∇)θ

)

n≥1

∥
∥2

L2ds + cνE
∫ t

0
1[0,τ ]‖(gn,θ )n≥1‖2L2(�2)

ds

= ν′

ν
E
∑

n≥1

∫ t

0
1[0,τ ]

∫

O
(

3∑

j=1

ψ
j

n ∂ jθ
)2

dxds + cνE
∫ t

0
1[0,τ ]‖(gn,θ )n≥1‖2L2(�2)

ds

≤ ν′E
∫ t

0
1[0,τ ]‖∇θ‖2L2ds + cνE

∫ t

0
1[0,τ ]‖(gn,θ )n≥1‖2L2(�2)

ds.

Since ν′ < 2 and E[I I IT ] = 0, taking the expectation in (4.14) and using standard
interpolation inequalities, one has

E
∫ τ

0
‖∇θ‖2L2 ds ≤ C0E‖θ‖2L2(0,τ ;L2)

+ C0E‖ fθ‖2L2(0,τ ;(H1)∗) + C0E‖(gn,θ )n≥1‖2L2(0,τ ;L2(�2))

(4.16)

where C0 > 0 is independent of τ, fθ , gθ and λ.
The Burkholder-Davis-Gundy inequality implies

E
[

sup
s∈[0,t]

|I I It |
]

� E
[ ∫ t

0
1[0,τ ]

∑

n≥1

∣
∣
∣

(
λ(ψn · ∇)θ + gθ,n, θ

)

L2

∣
∣
∣
2
ds
]1/2

� E
[(

sup
s∈[0,t∧τ ]

‖θ(s)‖2L2

)1/2(
∫ t

0
1[0,τ ]

∑

n≥1

∥
∥
∥λ(ψn · ∇)θ + gθ,n

∥
∥
∥
2

L2
ds
)1/2]

≤ 1

2
E
[

sup
s∈[0,t∧τ ]

‖θ(s)‖2L2

]
+ CE

∫ t

0
1[0,τ ]

(
‖∇θ‖2L2 + ‖(gθ,n)n≥1‖2L2(�2)

)
ds

(4.16)≤ 1

2
E
[

sup
s∈[0,t∧τ ]

‖θ(s)‖2L2

]
+ C1E

∫ t

0
1[0,τ ]

(
‖θ‖2L2 + ‖(gθ,n)n≥1‖2L2(�2)

)
ds.

Note that E
[
sups∈[0,t∧τ ] ‖θ(s)‖2

L2

] ≤ E
[
sups∈[0,t] ‖θτ (s)‖2

L2

]
since θτ = θ a.e.

on [0, τ ]. Thus, taking E
[
sups∈[0,t] ·

]
in (4.14) and using the above estimates on

It , I It , I I It and (4.16) to estimate E‖∇θ‖2
L2(0,τ ;L2)

, one gets

E
[

sup
s∈[0,t∧τ ]

‖θ(s)‖2L2

]
� E

∫ t

0
1[0,τ ]‖θ(s)‖2L2 ds + N θ

f ,g(t). (4.17)

where N θ
f ,g(t) := E‖ fθ‖2L2(0,t∧τ ;(H1)∗) + E‖gθ‖2L2(0,t∧τ ;L2(�2))

and the implicit con-

stant is independent of λ, θ, fθ and gθ . Set y(t) := E
[
sups∈[0,t∧τ ] ‖θ(s)‖2

L2

]
for
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t ∈ [0, T ]. By (4.17) we have y(t) �
∫ t
0 y(s)ds + N f ,g(t). Thus by Gronwall’s

inequality, we have

E

[

sup
s∈[0,τ ]

‖θ(s)‖2L2(O)

]

� N θ
f ,g(T ).

Combining the previous and (4.16) one obtains the claimed estimate in Step 1.
Step 2: Estimate on v. To prove of (4.9), let us begin by collecting some useful

facts. Firstly, for all f ∈ H1(O; R
2),

‖∂ j P f ‖L2 ≤ ‖∂ j f ‖L2 for all j ∈ {1, 2, 3}. (4.18)

Since ∂3P f = ∂3 f , (4.18) follows trivially in case j = 3. For i ∈ {1, 2}, note
that ∂i (P f ) = P(∂i f ). Since P is an orthogonal projection on L2(O; R

2), (4.18) for
j ∈ {1, 2} follows from the previous identities.
Let r ∈ (1,∞) be such that 1

2+δ
+ 1

r = 1
2 , where δ is as in Assumption 3.1. Note

that by Assumption 3.1(4), a.s. for all t ∈ R+ and ϕ ∈ H1, by Cauchy-Schwartz
inequality,

‖P[Jκϕ]‖L2 � ‖Jκϕ‖L2

�M sup
i∈{1,2}

‖∂iϕ‖L2 +
∥
∥
∥xH 
→ ‖∂iκ(t, xH, ·)‖L2(−h,0)‖ϕ(xH, ·)‖L2(−h,0)

∥
∥
∥

L2(T2)

�M,δ ‖ϕ‖H1 + ‖ϕ‖Lr (T2;L2(−h,0))

(∗)

�δ ‖ϕ‖H1

(4.19)

where in (∗) we used that H1 = H1(O) ↪→ H1(T2; L2(−h, 0)) ↪→ Lr (T2; L2

(−h, 0)).
The previous estimate and Step 1 yield

E‖P[Jκθ ]‖2L2(0,τ ;L2)
� E‖ fθ‖2L2(0,τ ;(H1)∗) + E‖gθ‖2L2(0,τ ;L2(�2))

(4.20)

with implicit constant independent of λ, θ, fθ and gθ .
Applying Itô’s formula to v 
→ ‖v‖2

L2 (since v ∈ L2(0, τ ; H2) a.s., there is no
need for an approximation argument), an integration by parts and using the argument
performed in Step 1 and (4.20), one can check that,

E

[

sup
t∈[0,τ )

‖v(t)‖2L2

]

+ E
∫ τ

0
‖∇v(t)‖2L2 dt � N f ,g, (4.21)

where

N f ,g := E‖ fθ‖2L2(0,τ ;(H1)∗) + E‖gθ‖2L2(0,τ ;L2(�2))

+ E‖ fv‖2L2(0,τ ;L2)
+ E‖gv‖2L2(0,τ ;H1(�2))

,
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and the implicit constant in (4.21) is independent of λ, θ, fv, fθ , gv and gθ .
To complete the proof of this step, it remains to show

E
∫ τ

0
‖�v‖2L2 ds � N f ,g, (4.22)

where as above, the implicit constant in (4.21) is independent of λ, θ, fv, fθ , gv and
gθ . To this end, we apply Itô’s formula to v 
→ ‖∇v‖2

L2 . Set v
τ (t) := v(t ∧ τ). Using

an approximation argument similar to Step 1 and an integration by parts, one has a.s.
for all t ∈ [0, T ],

‖∇vτ (t)‖2L2 + 2
∫ t

0
1[0,τ ]‖�v‖2L2 ds = −2

∫ t

0
1[0,τ ]( fv + λP[Jκθ ],�v)L2 ds

+
∫ t

0
1[0,τ ]

∑

n≥1

∥
∥λ∇P[(φn · ∇)v] + ∇gn,v

∥
∥2

L2 ds

+ 2
∑

n≥1

∫ t

0
1[0,τ ]

(
λ∇P[(φn · ∇)v] + ∇gv,n,∇v

)

L2 dβn
s

=: I Vt + Vt + V It .

Note that E[V IT ] = E[V I0] = 0. Thus, taking t = T and the expected value in the
previous formula we have

2E
∫ τ

0
‖�v‖2L2ds ≤ E[I VT ] + E[VT ]. (4.23)

By (4.20) and the Cauchy-Schwartz inequality we have, for all ε > 0,

E[I VT ] ≤ εE
∫ τ

0
‖�v‖2L2 ds + CεE

∫ τ

0

(
‖ fv‖2L2 + ‖λP[Jκθ ]∥∥2L2

)
ds

≤ εE
∫ τ

0
‖�v‖2L2 ds + Cε N f ,g

(4.24)

where Cε is independent of λ, fv, fθ , gv, gθ and N f ,g is as below (4.21).
We claim that, for some c < 2 and C > 0 (both independent of λ, fv, fθ , gv, gθ ),

E[VT ] ≤ cE
∫ τ

0
‖�v‖2L2 ds + CE

∫ τ

0

(
‖v‖2L2 + ‖gv‖2H1(�2)

)
ds. (4.25)

It is easy to see that, if (4.25) holds, then (4.22) follows by combining (4.21), (4.23)
and (4.24) with ε ∈ (0, 2 − c).

To prove (4.25), we begin with a pointwise bound. Fix ν < ν′ < ν′′ < 2 and let
� ∈ (2, 6) be such that 1

3+δ
+ 1

�
= 1

2 . Here δ and ν are as in Assumption 3.1(2) and

(5). Since ∂ j [(φn · ∇)v] = ∑3
k=1

(
φk

n ∂2k, jv + ∂kv ∂ jφ
k
n

)
, one has

∑

n≥1

‖∇P[(φn · ∇)v]‖2L2 =
3∑

j=1

∑

n≥1

‖∂ j P[(φn · ∇)v]‖2L2
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(4.18)≤
3∑

j=1

∑

n≥1

‖∂ j [(φn · ∇)v]‖2L2

≤
3∑

j=1

2∑

h=1

∑

n≥1

(
ν′

ν

∫

O

∣
∣
∣

3∑

k=1

φk
n∂ j,kv

h
∣
∣
∣
2

dx + cν

∫

O

∣
∣
∣∂kv

h
3∑

k=1

∂ j φ
k
n

∣
∣
∣
2

dx

)

≤ ν′
⎛

⎝
2∑

h=1

3∑

k, j=1

∫

O
|∂ j,kv

h |2 dx

⎞

⎠

+ c′
ν max

h,k

(∥
∥(∂hφk

n )n≥1
∥
∥2

L3+α(�2)
‖∇v‖2L�

)

(i)= ν′‖�v‖2L2 + cν M‖∇v‖2L�

where M is as in Assumption 3.1 and in (i) we used the Kadlec’s formula (see
Lemma A.1 with β = 0) as well as the boundary conditions in (4.8).

Since � < 6, by the Sobolev embedding H1 ↪→ L6 and standard interpolation
theory, there exists θ ∈ (0, 1) such that ‖∇v‖L� � (‖�v‖L2 + ‖v‖L2)1−θ‖v‖θ

L2 . In

particular, ‖∇v‖2L� ≤ (ν′′ − ν′)‖�v‖2
L2 + Cν′,ν′′ ‖v‖2

L2 and therefore

∑

n≥1

‖∇P[(φn · ∇)v]‖2L2 ≤ ν′′‖�v‖2L2 + cν′Cν′,ν′′ M‖v‖2L2 . (4.26)

By (4.26),λ ∈ [0, 1] and theYoung inequality, one can readily check that the pointwise
estimate (4.26) implies (4.25). Thus as explained above, the latter yields (4.22) as
desired. ��

Remark 4.3 (Proof of Proposition 4.1—Case γ
�,m
n �= 0) If γ

�,m
n �= 0, then one can

repeat the argument in Step 2 of the above proofs recalling that, for �, m ∈ {1, 2},
∥
∥
∥(γ

�,m
n f )n≥1

∥
∥
∥

L2(�2)
≤
∥
∥
∥(γ

�,m
n )n≥1

∥
∥
∥

L3+δ(�2)
‖ f ‖L� ≤ ε‖∇ f ‖L2 + Cε,M‖ f ‖L2 ,

(4.27)

where 1
�

+ 1
3+δ

= 1
2 and we used the interpolation argument which also yield (4.26).

Let us note that (4.27) has to be used twice. First to show that

∣
∣
∣

∫

O
Pγ,φv v dx

∣
∣
∣ � ‖∇v‖L2

∥
∥
∥
∥

(
γ �,m

n v
)

n≥1

∥
∥
∥
∥

L2(�2)

≤ ε‖∇v‖2L2 + Cε,M‖v‖2L2 ,

for �, m ∈ {1, 2}, which provides (4.21) and the second one to show that

‖Pγ,φv‖L2 � ε max
1≤i, j≤3

∥
∥
∥∂

2
i, jv

∥
∥
∥
2

L2
+ Cε,M‖v‖2L2

� ε max
1≤i, j≤3

∥
∥
∥∂

2
i, jv

∥
∥
∥
2

L2
+ Cε,M‖v‖2L2 ,
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which in combination with the Kadlec formula of Lemma A.1, yields (4.25). In both
cases, one chooses ε > 0 small enough to absorb the leading terms in the LHS of the
corresponding estimate.

5 Proof of themain results in the strong-weak setting

In this section we have collected the proofs of our main results in the strong-weak
setting. Namely, the proofs of Theorems 3.4 and 3.6 are given in Sects. 5.1 and 5.2,
respectively.

5.1 Proof of Theorem 3.4

To prove Theorem 3.4 we employ the results in [2, 3], and therefore we reformulate
(3.1) as a semilinear stochastic evolution equation. To this end, let

X0 = L
2 × (H1)∗ and X1 = H

2
N × H1,

the linear operators (A, B) = (A, (Bn)n≥1) be as in Remark 4.2(a) and for all U :=
(v, θ) ∈ X1 we set for the non-linearities

F(·, U ) :=
[
P[(v · ∇H)v + w(v) · ∂3v + Fv(·, v, θ,∇v) + Pγ,G(·, v)]

divH(vθ) + ∂3(w(v)θ)Fθ (·, v, θ,∇v)

]

,

G(·, U ) :=
[
(P[Gv,n(·, v)])n≥1
(Gθ,n(·, v, θ))n≥1

]

,

where w(v) is as in (2.3) and

Pγ,G(·, v) :=
⎛

⎝
∑

n≥1

2∑

m=1

γ �,m
n (t, x)

(
Q[Gv,n(·, v)])m

⎞

⎠

2

�=1

,

cf. (3.3). With the above notation, (3.1)–(3.2) can be reformulated as a stochastic
evolution equation on X0 of the form

{
dU + A(·)U dt = F(·, U )dt + (B(·)U + G(·, U ))dB�2(t),

U (0) = (v0, θ0),
(5.1)

where B�2 is the �2-cylindrical Brownian motion induced by (βn)n≥1, see (2.2). It
is straightforward to see that ((v, θ), τ ) is an L2-maximal (resp. -local) solution to
(3.1)–(3.2) in the sense of Definition 3.3 if and only if U = (v, θ) is an L2-maximal
(resp. -local) solution to (5.1) in the sense of [2, Definition 4.4]. With this preparation
we can prove Theorem 3.4.
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Proof of Theorem 3.4 Let us begin by proving the existence of maximal L2-strong-
weak solutions and Theorem 3.4(1). To this end, by the above discussion and
Proposition 4.1, the existence of an L2-maximal solution to (3.1)–(3.2) satisfying
(1) follows from [2, Theorem 4.8] provided assumptions (HF) and (HG) in [2, Section
4] hold. To check these assumptions, we need to estimate the nonlinearities F and G.

For notational convenience, for U = (v, θ) ∈ X1, we let

F1(·, U ) :=
[
P
[
(v · ∇H)v + w(v)∂3v

]

divH(vθ) + ∂3(w(v)θ)

]

, F2(·, U ) :=
[
P[Fv(·, v, θ,∇v)]

Fθ (·, v, θ,∇v)

]

,

and F3(·, U ) := [
Pγ,G(·, v), 0

]T. Finally, set Xβ := [X0, X1]β where β ∈ (0, 1).
Here [·, ·]β denotes the complex interpolation functor.

Step 1 For all U = (v, θ), U ′ = (v′, θ ′) ∈ X1,

‖F1(·, U ) − F1(·, U ′)‖X0 �
(‖(v, θ)‖X3/4 + ‖(v′, θ ′)‖X3/4

)‖(v, θ) − (v′, θ ′)‖X3/4 .

(5.2)

Let us begin by noticing that F1 is a bilinear map, and therefore to prove (5.2) it is
enough to consider the case (v′, θ ′) = 0. To this end, we note that

X3/4 ↪→ [X0, H2 × H1]3/4 ↪→ H3/2 × H1/2. (5.3)

Moreover,

∥
∥
∥

[
P[(v · ∇H)v]
divH(vθ)

] ∥
∥
∥

X0
� ‖(v · ∇H)v‖L2 + ‖vθ‖L2

≤ ‖v‖L6
(‖v‖W 1,3 + ‖θ‖L3

)

� ‖v‖H3/2
(‖v‖H3/2 + ‖θ‖H1/2

)
,

where in the last step we used Sobolev embeddings. The remaining terms in F1 can be
estimated as in [30, Lemma 5.1] for p = 2. For the reader’s convenience we include
some details. Note that, for all v ∈ H2,

‖w(v)‖L∞(−h,0;L4(T2)) � ‖w(v)‖W 1,2(−h,0;L4(T2))

� ‖divHv‖L2(−h,0;L4(T2))

� ‖v‖L2(−h,0;W 1,4(T2))

� ‖v‖L2(−h,0;H3/2(T2)) � ‖v‖H3/2

(5.4)

and

‖∂3v‖L2(−h,0;L4(T2)) � ‖∂3v‖L2(−h,0;H1/2(T2))

� ‖v‖L2(−h,0;H3/2(T2)) � ‖v‖H3/2 .
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Analogously, one can check that ‖θ‖L2(−h,0;L4(T2)) � ‖θ‖H1/2 for all θ ∈ H1. Thus,
using the previous estimates, we get

∥
∥
∥
∥

[
P[w(v)∂3v]
∂3(w(v)θ)

]∥
∥
∥
∥

X0

� ‖w(v)∂3v‖L2 + ‖w(v)θ‖L2

≤ ‖w(v)‖L∞(−h,0;L4(T2))

[‖∂3v‖L2(−h,0;L4(T2)) + ‖θ‖L2(−h,0;L4(T2))

]

� ‖v‖H3/2
(‖v‖H3/2 + ‖θ‖H1/2

)
.

By (5.3), the previous estimates yield (5.2).

Step 2 For all U = (v, θ), U ′ = (v′, θ ′) ∈ X1,

‖F2(·, U ) − F2(·, U ′)‖X0 �
(
1 + ‖(v, θ)‖4X3/5

+ ‖(v′, θ ′)‖4X3/5

) ∥
∥(v, θ) − (

v′, θ ′)∥∥
X3/5

+
(
1 + ‖(v, θ)‖2/3X4/5

+ ‖(v′, θ ′)‖2/3X4/5

) ∥
∥(v, θ) − (

v′, θ ′)∥∥
X4/5

.

By Assumption 3.1(7) and the Cauchy-Schwartz inequality, for all (v, θ), (v′, θ ′) ∈
X1, ‖F2(·, U ) − F2(·, U ′)‖X0 can be estimated by

(
1 + ‖v‖4L10 + ‖v′‖4L10

) ‖v − v′‖L10 +
(
1 + ‖z‖2/3

L10/3 + ‖θ ′‖2/3
L10/3

)
‖θ − θ ′‖L10/3

+
(
1 + ‖v‖2/3

W 1,10/3 + ‖v′‖2/3
W 1,10/3

)
‖v − v′‖2/3

W 1,10/3

�
(
1 + ‖v‖4H6/5 + ‖v′‖4H6/5

) ‖v − v′‖H6/5 +
(
1 + ‖z‖2/3

H3/5 + ‖θ ′‖2/3
H3/5

)
‖θ − θ ′‖H3/5

+
(
1 + ‖v‖2/3

H8/5 + ‖v′‖2/3
H8/5

)
‖v − v′‖2/3

H8/5

where in the last equality we have used Sobolev embeddings. To obtain the claimed
estimate it is enough to note that

X3/5 ↪→ H6/5 × H1/5 and X4/5 ↪→ H8/5 × H3/5.

Step 3 For all U = (v, θ), U ′ = (v′, θ ′) ∈ X1,

‖F3(·, U ) − F3(·, U ′)‖X0 + ‖G(·, U ) − G(·, U ′)‖X1/2(�2)

�
(
1 + ‖(v, θ)‖4X3/5

+ ‖(v′, θ ′)‖4X3/5

)
‖(v, θ) − (v′, θ ′)‖X3/5

+
(
1 + ‖(v, θ)‖2X2/3

+ ‖(v′, θ ′)‖2X2/3

)
‖(v, θ) − (v′, θ ′)‖X2/3

where X1/2(�
2) := H1(�2) × L2(�2).

Note that, by Assumption 3.1(2) and the Hölder inequality,

‖F3(·, U ) − F3(·, U ′)‖X0 � max
�,m∈{1,2}

∥
∥
∥
∑

n≥1

γ �,m
n

(
Q[Gv,n(·, v) − Gv,n(·, v′)])m

∥
∥
∥

L2

�M ‖(Gv,n(·, v) − Gv,n(·, v′))n≥1‖L6(�2).
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By the Sobolev embedding H1(�2) ↪→ L6(�2), it is enough to prove the estimate for
‖G(·, U ) − G(·, U ′)‖X1/2(�2)

which will be given below.
Since ‖(Gθ,n(·, v, θ) − Gθ,n(·, v′, θ ′))≥1‖L2(�2) can be estimated as in Step 2, we

only consider the Gv,n-term. By the chain rule

∂ j (Gv,n(·, v)) = ∂x j Gv,n(·, v) + ∂yGv,n(·, v)∂ jv for all j ∈ {1, 2, 3}.

Arguing as inStep2, one can check that to estimate
∥
∥
∥
(
Gv,n(·, v)−Gv,n(·, v′)

)

≥1

∥
∥
∥

H1(�2)

it is enough to bound the term

‖(∂yGv,n(·, v)∂ jv − ∂yGv,n(·, v′)∂ jv
′)n≥1‖L2(�2) =: I (v, v′).

By Assumption 3.1(7) and the Hölder inequality, for all v, v′ ∈ H2, I (v, v′) is less or
equal than

∥
∥
∥(∂y Gv,n(·, v)

(
∂ j v − ∂ j v

′)
n≥1

∥
∥
∥

L2(�2)
+ ‖ (∂y Gv,n(·, v) − ∂y Gv,n(·, v′)

)
∂ j v

′)n≥1‖L2(�2)

�
(
1 + ‖|v − v′|2‖L9

) ‖∂ j v‖L18/7 + (
1 + ‖|v′|2‖L9

) ‖∂ j v
′‖L18/7

�
(
1 + ‖v − v′‖2H4/3

) ‖v‖H4/3 + (
1 + ‖v′‖2H4/3

) ‖v′‖H4/3 ;

where in the last estimate we have used Sobolev embeddings. Since X2/3 ↪→ H4/3 ×
H1/3, the claim of this step follows.

Step 4 Conclusion. Due to Steps 1–3 and Proposition 4.1, the existence of an L2-
maximal strong-weak solution to (3.1) and Theorem 3.4(1) follow from [2, Theorem
4.8], where we set m F = 3 and mG = 2 which correspond the to number of different
terms on the right hand side when estimating F and G, respectively, as done in Steps
1-3. Moreover, each of these five terms involves numbers ρ j describing the power in
the estimates of the non-linearities, and β j , ϕ j indicating the order in the estimates of
the non-linearities in terms of interpolation spaces Xβ j and Xϕ j , respectively. Here,
by Steps 1–3 we can chose in [2, Theorem 4.8]

ρ1 = 1, ρ2 = ρ4 = 4, ρ3 = 2/3, ρ5 = 2, and

β1 = ϕ1 = 3/4, ϕ2 = ϕ4 = β2 = β4 = 3/5, ϕ3 = β3 = 4/5, ϕ5 = β5 = 2/3,

where one also uses that

ρ j

(

ϕ j − 1 + 1

2

)

+ β j = 1 for all j ∈ {1, . . . , 5}.

Theorem 3.4(2) follows from [3, Theorem 4.11] and Proposition 4.1. ��
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5.2 Proof of Theorem 3.6

The key ingredient in the proof is the following energy estimate. Recall that Nk has
been defined in (3.9).

Proposition 5.1 (Energy estimate) Let Assumption 3.5 be satisfied, and T ∈ (0,∞).
Assume that v0 ∈ L∞

F0
(
; H

1) and θ0 ∈ L∞
F0

(
; L2), and let ((v, θ), τ ) be the L2-
maximal strong-weak solution to (3.1)–(3.2) provided by Theorem 3.4. Then there
exists a sequence of stopping times (μk)k≥1 with values in [0, T ] such that μk ≤ τ

a.s. for all k ≥ 1 and the following hold:

(1) P(μk = τ ∧ T ) → 1 as k → ∞;
(2) For each k ≥ 1 there exists Ck,T > 0 (possibly depending on v0, v) such that

E[N1(μk; v)] + E[N0(μk; θ)] ≤ Ck,T

(
1 + E‖v0‖2H1 + E‖θ0‖2L2

)
.

Let us first show how Proposition 5.1 yields Theorem 3.6.

Proof of Theorem 3.6 By [3, Proposition 4.13] it is enough to consider v0 ∈
L∞(
; H

1) and θ0 ∈ L∞(
; L2). Fix T ∈ (0,∞) and let (μk)k≥1 be as in Proposi-
tion 5.1. In particular,

N1(μk; v) + N0(μk; θ) < ∞ a.s. for all k ≥ 1. (5.5)

Since limk→∞ P(μk = τ ∧ T ) = 1,

P(τ < T ) = lim
k→∞ P({τ < T } ∩ {μk = τ })

(5.5)= lim
k→∞ P

(
{τ < T } ∩ {μk = τ } ∩

{
N1(τ ; v) + N0(τ ; θ) < ∞

})

≤ P
(
τ < T , N1(τ ; v) + N0(τ ; θ) < ∞

)
= 0

where the last equality follows from Theorem 3.4(2). The arbitrariness of T yields
P(τ < ∞) = 0. Hence τ = ∞ a.s. as desired. ��

The proof of Proposition 5.1 will be divided into two parts. Firstly, in Sect. 5.2.1
we prove a standard L2-energy estimate for L2-maximal strong-weak solutions to
(3.1)–(3.2) and in Sect. 5.2.2 we prove Proposition 5.1.

5.2.1 An L2-energy estimate

The aim of this subsection is to prove the following result. Recall thatNk is as in (3.9).

Lemma 5.2 (L2-energy estimate) Let the assumptions of Proposition 5.1 be satisfied.
Let ((v, θ), τ ) be the L2-maximal strong-weak solution to (3.1)–(3.2) provided by
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Theorem 3.4. Then for each T ∈ (0,∞) there exists cT > 0 independent of v0, v, θ0, θ

such that

E[N0(τ ∧ T ; v)] + E[N0(τ ∧ T ; θ)] ≤ cT

(
1 + E‖v0‖2L2 + E‖θ0‖2L2

)
. (5.6)

Proof For the reader’s convenience we split the proof into several steps. Below T ∈
(0,∞) is fixed and 〈·, ·〉 denotes the duality pairing for H1 and (H1)∗. Recall that
L2 ↪→ (H1)∗ and the embedding is given by 〈ϕ, f 〉 := ∫

O f ϕ dx for ϕ ∈ H1.
For each k ≥ 1, let us set

τk := inf
{
t ∈ [0, τ ) : ‖v(t)‖H1 + ‖v‖L2(0,t;H2)

+ ‖θ(t)‖L2 + ‖∇θ‖L2(0,t;L2) ≥ k
} ∧ T ,

(5.7)

where inf ∅ := τ . By progressive measurability of (v, θ) (see Definition 3.3) and
Theorem 3.4(1), for each k ≥ 1, τk is a stopping time and limk→∞ P(τk = τ) = 1.
Therefore, by Fatou’s lemma, it is enough to prove (5.6) for τ replaced by τk provided
cT is independent of k ≥ 1. Note that

v

∣
∣
∣[0,τk ]×
 ∈ C

(
[0, τk]; H

1
)

∩ L2
(
0, τk; H

2
)
and

θ |[0,τk ]×
 ∈ C
(
[0, τk]; L2

)
∩ L2

(
0, τk; H1

)

uniformly in 
. In particular, all the integrals appearing below are finite.
By Gronwall’s and Fatou’s lemma, it is enough to prove the existence of cT inde-

pendent of k ≥ 1 such that, for all t ∈ [0, T ],

E

[

sup
s∈[0,τk∧t)

(
‖v(s)‖2L2 + ‖θ(s)‖2L2

)
]

+ E
∫ τk∧t

0

(
‖∇v(s)‖2L2 + ‖∇θ(s)‖2L2

)
ds

≤ cT

(
1 + E‖v0‖2L2 + E‖θ0‖2L2

)
+ cT E

∫ τk∧t

0

(
‖v(s)‖2L2 + ‖θ(s)‖2L2

)
ds. (5.8)

To shorten the notation, in the following steps, we set σ := τk .

Step 1 L∞(L2)- and L2(H1)-estimate for θ , see (5.10) below. The idea is to apply
Itô’s formula to θ 
→ ‖θ‖2

L2 and use an argument similar to the one used in the proof

of Proposition 4.1. Recall that, by integration by parts, one has for all v ∈ H
2
N and

θ ∈ H1 (cf. (3.5) and the text below it)

〈divH(v θ) + ∂3(w(v) θ), θ〉 =
∫

O
θ(v · ∇Hθ + w(v)∂3θ)dx = 0 (5.9)

since divHv + ∂3[w(v)] = 0 a.e. on [0, σ ] × 
.
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Reasoning as in Step 1 of Proposition 4.1, we set θσ := θ(·∧σ) and applying Itô’s
formula and (5.9) we get, a.s. for all t ∈ [0, T ],

‖θσ (t)‖2L2 + 2
∫ t

0
1[0,σ ]‖∇θ(s)‖2L2 ds − ‖θ0‖2L2

= 2
∫ t

0
1[0,σ ]

∫

O
Fθ (v, θ)θ dxds +

∫ t

0
1[0,σ ]

∑

n≥1

‖(ψn · ∇)θ + Gθ,n(v)‖2L2 ds

+ 2
∑

n≥1

∫ t

0
1[0,σ ]

(
(ψn · ∇)v + Gθ,n(v, θ), θ

)

L2
dβn

s ,

where, for brevity, we set Fθ (v, θ) = Fθ (·, v, θ,∇v), Gθ,n(v, θ) = Gθ,n(·, v, θ,∇v)

and (·, ·)L2 denotes the scalar product in L2 = L2(O).
By Assumption 3.5(2), we have a.e. on [0, σ ] × 


∣
∣
∣

∫

O
Fθ (v, θ)θ dx

∣
∣
∣ ≤ C(�2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖θ‖2L2 + ‖θ‖2L2),

‖(Gθ,n(v, θ))n≥1‖2L2(�2)
≤ C(�2 + ‖v‖2L2 + ‖∇v‖2L2 + ‖θ‖2L2).

By using the argument in Step 1 of Proposition 4.1, one can check that the above
estimates ensure that, for all t ∈ [0, T ],

E

[

sup
s∈[0,σ∧t]

‖θ(s)‖2L2

]

+ E
∫ σ∧t

0
‖∇θ(s)‖2L2 ds ≤ CT ,θE‖θ0‖2L2

+ CT ,θE
∫ σ∧t

0

(
‖θ(s)‖2L2 + ‖v(s)‖2L2 + ‖∇v(s)‖2L2

)
ds

(5.10)

where CT ,θ > 0 is independent of θ, θ0, v, v0 and k ≥ 1.

Step 2 L∞(L2)- and L2(H1)-estimate for v, see (5.12). As in Step 1, the idea is
to apply Itô’s formula to v 
→ ‖v‖2

L2 and use an argument similar to the one used in
Step 1 of Proposition 4.1. As in (5.9) we have the following cancellation

∫

O
(v · ∇Hv + w(v)∂3v) · v dx = 0, for all v ∈ H

2
N, (5.11)

since divHv + ∂3w(v) = 0 a.e. on [0, σ ] × 
. Reasoning as in Step 1, we set vσ :=
v(· ∧ σ) and apply Itô’s formula and (5.11) to get, a.s. for all t ∈ [0, T ],

‖vσ (t)‖2L2 + 2
∫ t

0
1[0,σ ]‖∇v(s)‖2L2 ds − ‖v0‖2L2

≤ 2
∫ t

0
1[0,σ ]

∫

O

(
Fv(v, θ,∇v) + Pγ (·, v) − Jκθ

)
· v dxds
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+
∫ t

0
1[0,σ ]

∑

n≥1

‖(φn · ∇)v + Gθ,n(v)‖2L2 ds

+ 2
∑

n≥1

∫ t

0
1[0,σ ]

(
(φn · ∇)v + Gθ,n(v), v

)

L2
dβn

s ,

where Jκ is as in (4.3), and where we use that the hydrostatic Helmholtz projection P

is orthogonal on L2(O; R
2), in particular ‖P‖L (L2) = 1.

Integrating by parts, we have a.e. on [0, σ ] × 
 for all ε ∈ (0, 1) and some Cε > 0

∣
∣
∣

∫

O
Jκθ · v dx

∣
∣
∣ =

∣
∣
∣

∫

O

[ ∫ x3

−h
(κ(·, xH, ζ )θ(·, xH, ζ ))dζ

]
divHv dx

∣
∣
∣

≤ ε‖∇v‖2L2 + Cε‖θ‖2L2 .

Next we consider the Pγ (·, v)-part. To this end, recall that

∇ P̃n = Q[(φn · ∇)v + Gv,n(·, v)].

Let δ > 0 be as in Assumption 3.1(2) and let � ∈ (1, 6) such that 1
�

+ 1
3+δ

= 1
2 . Note

that, by (3.3) we have, a.e. on [0, σ ] × 
,

∣
∣
∣

∫

O
Pγ (·, v) · v dx

∣
∣
∣ ≤

2∑

m,�=1

∑

n≥1

∫

O

∣
∣∂m P̃n

∣
∣
∣
∣
∣γ

�,m
n

∣
∣
∣ |v| dx

≤
2∑

m,�=1

∥
∥
∥
(
∂m P̃n

)

n≥1

∥
∥
∥

L2(�2)

∥
∥
∥
∥

∥
∥
∥
∥

(
γ �,m

n

)

n≥1

∥
∥
∥
∥

�2
|v|
∥
∥
∥
∥

L2

(i)
�M max

m∈{1,2}

∥
∥
∥
(
∂m P̃n

)

n≥1

∥
∥
∥

L2
‖v‖L�

(i i)
�
(
� + ‖v‖L2 + ‖∇v‖L2

) ‖v‖L�

(i i i)≤ ε‖∇v‖2L2 + Cε

(‖v‖2L2 + �
)
,

where in (i) we applied the Hölder inequality, in (i i) the boundeedness of Q and in
(i i i) the Young’s and standard interpolation inequalities.

The remaining terms can be estimated as in Step 1. Thus, choosing ε small enough,
one can check that Assumption 3.5(2) yields, for all t ∈ [0, T ],

E

[

sup
s∈[0,σ∧t]

‖v(s)‖2L2

]

+ E
∫ σ∧t

0
‖∇v(s)‖2L2 ds

≤ CT ,v

(

E‖v0‖2L2 + E
∫ σ∧t

0

(
‖θ(s)‖2L2 + ‖v(s)‖2L2

)
ds

)

.

(5.12)

where CT ,v > 0 is independent of θ, θ0, v, v0 and k ≥ 1.
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Step 3 Proof of (5.8). Let CT ,θ and CT ,v be as in (5.10) and (5.12), respectively.
Without loss of generality we may assume that CT ,θ , CT ,v ≥ 1. The claimed
inequality follows by noticing that

(5.10)

2CT ,θ

+ (5.12) �⇒ (5.8).

More precisely, the abovemeans that (5.8) follows bymultiplying (5.10) by (2CT ,θ )
−1

and then adding the estimate with (5.12). On the RHS of the resulting estimate the
term 1

2E
∫ σ∧t
0 ‖∇v(s)‖2

L2ds appears and can be adsorbed into the LHS since σ = τk

and therefore E
∫ σ∧t
0 ‖∇v(s)‖2

L2ds ≤ k a.s. by (5.7). ��

5.2.2 Higher order energy estimates and proof of Proposition 5.1

Through this subsection, we assume that the assumptions of Proposition 5.1 holds,
and in particular T ∈ (0,∞) is fixed.

Let ((v, θ), τ ) be the L2-maximal strong-weak solution to (3.1)–(3.2) provided by
Theorem 3.4. For each k ≥ 1 we set

�k := inf
{
t ∈ [0, τ ) : ‖v(t)‖L2 + ‖v‖L2(0,t;H1)

+ ‖θ(t)‖L2 + ‖θ‖L2(0,t;H1) + ‖�‖L2(0,t :L2) ≥ k
} ∧ T ,

(5.13)

where inf ∅ := τ and � is as in Assumption 3.5(2).
By Lemma 5.2 and � ∈ L2

loc([0,∞); L2) a.s. we have limk→∞ P(�k = τ) = 1.
Note that

N0(�k; θ) + N0(�k; v) ≤ k, a.s. for all k ≥ 1, (5.14)

where N0 is as in (3.9). To prove Proposition 5.1, it remains to find stopping times
(μk)k≥1 such that, a.s. for all k ≥ 1, one has μk ≤ �k , limk→∞ P(μk = �k) = 1 and

E[N1(μk; v)] ≤ Ck,T
(
1 + E‖v0‖2H1

)
, (5.15)

where (Ck,T )k≥1 are constants possibly depending on v0, v and k ≥ 1.
Let us recall that, for all k ≥ 1, (v, �k) is a L2-local solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �v dt =
(
P

[
− (v · ∇H)v − w(v)∂3v + f + Pγ,φ

])
dt

+
∑

n≥1

P

[
(φn · ∇)v + gn

]
dβn

t , on O,

∂3v(·,−h) = ∂3v(·, 0) = 0, on T
2,

v(·, 0) = v0, on O,

(5.16)
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where, for notational convenience, we set on [0, τ ) × 
,

gn := Gv,n(·, v), for n ≥ 1, Pγ,φ :=
∑

n≥1

2∑

m=1

γ ·,m
n

(
Q[(φn · ∇)v])m

,

f := ∇H

∫ ·

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(·, v, θ,∇v) +

∑

n≥1

2∑

m=1

γ ·,m
n

(
Q[gn]

)m
,

(5.17)

where Q is as in Sect. 2.1. Finally, we set

Nv,θ (t) := ‖ f ‖2L2(0,t∧τ ;L2)
+ ‖(gn)n≥1‖2L2(0,t∧τ ;H1(�2))

a.s. for all t ∈ [0, τ ).

(5.18)

Let us first show that Nv,θ is bounded on the stochastic interval [0, �k] × 


for all k ≥ 1. To this end, note that, by Assumption 3.5(2) and (5.14), we have
‖(gn)n≥1‖2L2(0,�k ;H1(�2))

≤ Cg,k a.s. for some Cg,k > 0 independent of v0, v. The
previous estimate and Assumption 3.1(2) yield a.s.

∥
∥
∥
∥
∥
∥

∑

n≥1

2∑

m=1

γ ·,m
n (Q[gn])m

∥
∥
∥
∥
∥
∥

2

L2(0,�k ;L2)

(i)≤ Ch M‖(gn)n≥1‖2L2(0,�k ;L6(�2))

(i i)≤ Ch Mk,

where in (i) we used the Hölder inequality, in (i i) the embedding H1(�2) ↪→ L6(�2)

and (5.14). Thus the previous estimates, Assumption 3.5(2) and (5.13) ensure that, for
some Ck independent of v0, v,

Nv,θ (�k) = ‖ f ‖2L2(0,�k ;L2)
+ ‖(gn)n≥1‖2L2(0,�k ;H1(�2))

≤ Ck a.s. (5.19)

Following [8], we derive from (3.1) a coupled system of SPDEs for the unknowns

v(t, xH) := 1

h

∫ 0

−h
v(t, xH, ζ )dζ, and ṽ(t, x) := v(t, x) − v(t, xH), (5.20)

where x = (xH, x3) ∈ T
2 × (−h, 0) = O and t ∈ R+.

Recall that PH denotes the Helmholtz projection on L2(T2; R
2) which acts on the

horizontal variable xH ∈ T
2 where x = (xH, x3) ∈ O, see Sect. 2.1. Since Pv = PHv,

applying the vertical avarage in (3.1) and using Assumption 3.5(1), for all k ≥ 1,
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(v, �k) is an L2-local strong solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �Hv dt =
(
PH

[
− (v · ∇H)v − F (̃v) + f + Pγ,φ

])
dt

+
∑

n≥1

PH

[
(φn,H · ∇H)v + φ3

n∂3v + gn

]
dβn

t , on T
2,

F (̃v) = 1

h

∫ 0

−h

[
(̃v · ∇H )̃v + ṽ(divHṽ)

]
dζ, on T

2,

v(·, 0) = v0, on T
2,

(5.21)

where φn,H := (φ1
n , φ2

n). Here we also used that

(v · ∇H)v + w(v)∂3v = (v · ∇H)v + (̃v · ∇H )̃v + (divHṽ) ṽ

which follows from ṽ = 0, (2.3) and an integration by parts, and byAssumption 3.5(1),

Pγ,φ =
∑

n≥1

2∑

m=1

γ
·,m
n

(
QH

[
(φn · ∇)v

])m

=
∑

n≥1

2∑

m=1

γ ·,m
n

(
QH

[
(φn · ∇)v

])m = Pγ,φ. (5.22)

Let us also note that the first equation in (5.21) and v0 ∈ H
1 imply divHv = 0.

Here, by L2-local strong solution to (5.21) we understand that (v, �k) solves (5.21)
in its natural integral form, cf. Definition 3.3.

Analogously, noticing that Pz − PHz = z − z for all z ∈ L2, one can readily check
that (̃v, �k) is an L2-local strong solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ṽ − �ṽ dt =
[

− (̃v · ∇H )̃v + E (̃v, v) + f̃
]
dt

+
∑

n≥1

[
(φn · ∇ )̃v − φ3

n∂3v + g̃n

]
dβn

t , on O,

E (̃v, v) = −w(v)∂3ṽ − (̃v · ∇H)v − (v · ∇H )̃v + F (̃v), on O,

∂3ṽ(·,−h) = ∂3ṽ(·, 0) = 0, on T
2,

ṽ(·, 0) = ṽ0 := v0 − v0, on O.

(5.23)

Here we used that ∂3v = ∂3ṽ. Note also that w(v) = w(̃v) since divHv = 0. This fact
will be used frequently in the following.

With this preparation we can prove an intermediate estimate which is the key ingre-
dient in the proof of Proposition 5.1.
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Lemma 5.3 (An intermediate estimate) Let the assumptions of Proposition 5.1 be
satisfied. Let �k be as in (5.13) and let ((v, θ), τ ) be the L2-maximal strong-weak
solution to (3.1)–(3.2). Then there exists a sequence of constants (Ck)k≥1 such that

E

[

sup
t∈[0,�k )

Xt

]

+ E
∫ �k

0
Yt dt ≤ Ck

(
1 + E‖v0‖4H1

)
(5.24)

where, for each t ∈ [0, τ ),

Xt := ‖v(t)‖2H1(T2)
+ ‖∂3v(t)‖2L2 + ‖̃v(t)‖4L4 ,

Yt := ‖v(t)‖2H2(T2)
+ ‖∇∂3v(t)‖2L2 +

∥
∥
∥|̃v(t)||∇ṽ(t)|

∥
∥
∥
2

L2
.

(5.25)

In (5.25), with a slight abuse of notation, we wrote Hk(T2) instead of Hk(T2; R
2).

We will use the same notation also below if no confusion seems likely.

Proof of Lemma 5.3 We begin by collecting some useful facts. By Definition 3.3, for
each j ≥ 1, the following is a stopping time

τ j := inf
{
t ∈ [0, τ ) : ‖v‖L2(0,t;H2) + ‖v(t)‖H1 ≥ j

} ∧ T , where inf ∅ := τ.

(5.26)

Note that, by Definition 3.3 and the definition of the τ j ’s,

‖v‖L2(0,τ j ;H2) + sup
s∈[0,τ j ]

‖v(s)‖H1 ≤ j and lim
j→∞ τ j = τ a.s. (5.27)

To prove (5.24), it is enough to show that for each k ≥ 1 there exists C0,k > 0
independent of j and v, v0 such that, for each j ≥ 1 and any stopping times 0 ≤ η ≤
ξ ≤ τ j ∧ �k ,

E

[

sup
s∈[η,ξ ]

Xs

]

+ E
∫ T

0
1[η,ξ ]Ys ds ≤ C0,k + C0,kE[Xη]

+ C0,kE
[∫ T

0
1[η,ξ ]

(
1 + ‖v‖2L2

) (
1 + Nv,θ + ‖v‖2H1

)
Xs ds

]

,

(5.28)

where Nv,θ is as in (5.18). Recall the Sobolev embedding H1 ↪→ L6. Thus all the
integrals in (5.28) are finite due to ξ ≤ τ j and (5.27).

Let us first prove the sufficiency of (5.28). Due to (5.14), for each j, k ≥ 1,

∫ �k∧τ j

0

(
1 + ‖v‖2L2

) (
1 + Nv,θ + ‖v‖2H1

)
ds

≤
(

1 + sup
s∈[0,�k ]

‖v(s)‖2L2

)∫ �k

0

(
1 + Nv,θ + ‖v‖2H1

)
ds ≤ (k + T )(k + T + Ck).
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Therefore the stochastic Gronwall’s lemma in [27, Lemma 5.3] with τ = �k ∧ τ j

applies to (5.28), and it ensures the existence of C(k, T , C0,k) > 0 independent of
j, v, v0 such that

E

[

sup
s∈[0,�k∧τ j ]

Xs

]

+ E
∫ t

0
1[0,�k∧τ j ]Ys ds ≤ C

(
1 + E‖v0‖4H1

)
, (5.29)

where we also used that E[X0] � 1 + E‖v0‖4H1 by Sobolev embeddings. Recall that
�k ≤ τ a.s. for all k ≥ 1. Thus the claimed estimate follows by taking j → ∞ in
(5.29) using that C in (5.29) is independent of j ≥ 1 and the second in (5.27).

The proof of (5.28) will be divided into several steps. The argument is an extension
of the one in [29, Subsection 1.4.3] for the deterministic case. Recall that η, ξ are
stopping times such that 0 ≤ η ≤ ξ ≤ τ j ∧ �k a.s. for some j, k ≥ 1.

Step 1 L∞
t (H1

x )- and L2
t (H2

x )-estimates for v, see (5.38) below. By repeating the
argument of Step 2 of Proposition 4.1 where one uses the parabolicity condition in
Remark 3.7(b), one can show that

(
− �H, PH[(φn,H · ∇H)])n≥1

)
∈ SMR•

2(T ), (5.30)

with X0 = L
2
H(T2) and X1 = H

2
H(T2), where L

2
H(T2) is the space of divergence

free vector field on T
2 and H

2
H(T2) := L

2
H(T2) ∩ H2(T2; R

2). Here SMR•
2(T )

denotes for the set of couples having stochastic maximal L2-regularity on (X0, X1),
cf. Remark 4.2(a) and [2, Definitions 3.5–3.6]. Since (v, ξ) is a L2-strong solution to
(5.21), by (5.30) there exists C > 0 independent of v, v0, η, ξ, j, k such that

E

[

sup
s∈[η,ξ ]

‖v(s)‖2H1(T2)

]

+ E
∫ ξ

η

‖v‖2H2(T2)
ds ≤ C

⎛

⎝E‖v(η)‖2H1 +
4∑

j=1

I j

⎞

⎠ ,

(5.31)

where

I 1 := E‖ f ‖2L2(η,ξ ;L2(T2))
+ E‖(gn)n≥1‖2L2(η,ξ ;H1(T2;�2)),

I 2 := E‖F (̃v)‖2L2(η,ξ ;L2(T2))
,

I 3 := E‖(φ3
n∂3v)n≥1‖2L2(η,ξ ;H1(T2;�2)),

I 4 := E‖Pγ,φ‖L2(η,ξ ;L2(T2)),

I 5 := E‖v · ∇Hv‖2L2(η,ξ ;L2(T2))
,

and Pγ,φ and F are as in (3.3) and (5.21), respectively.
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Below we consider each term separately. By Hölder inequality and (5.19),

I 1 ≤ ChCk,T , (5.32)

where Ch depends only on h. Similarly,

I 2 ≤ ChE
∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2(η,ξ ;L2)
. (5.33)

Next we estimate I 3. To this end, note that I 3 ≤ I 3,0 + I 3,1 + I 3,2 where

I 3,0 := E
∥
∥(φ3

n∂3v)n≥1
∥
∥2

L2(η,ξ ;L2(T2;�2)),

I 3,1 := max
j∈{1,2} E

∥
∥(∂ jφ3

n∂3v)n≥1
∥
∥2

L2(η,ξ ;L2(T2;�2)),

I 3,2 := max
j∈{1,2} E

∥
∥(φ3

n∂ j∂3v)n≥1
∥
∥2

L2(η,ξ ;L2(T2;�2)).

By Assumption 3.1(2) we have ‖(φn(t, x))n≥1‖�2 ≤ Cδ M a.s. for all t ∈ R+ and
x ∈ O by Sobolev embeddings (cf. Remark 3.2(a)) and therefore I 3,0 ≤ Ck by (5.14)
and ξ ≤ �k . Since (∂ jφn)n≥1 ∈ L3+δ(O; �2) also by Assumption 3.1(2), by a standard
interpolation inequality we get

I 3,1 + I 3,2 ≤ C
(
E‖∇∂3v‖2L2(η,ξ ;L2)

+ E‖∂3v‖2L2(η,ξ ;L2)

) (5.14)≤ CE‖∇∂3v‖2L2(η,ξ ;L2)
+ Ck .

In turn, we have proved

I 3 ≤ CE‖∇∂3v‖2L2(η,ξ ;L2)
+ Ck . (5.34)

To estimate I 4, note that by Assumption 3.5(1),

Q[(φn · ∇)v] = QH

[
(φn · ∇)v

]
= QH

[
(φn,H · ∇)v

]
+ QH

[
φ3

n∂3v
]
.

Since (γ
i, j
n (t, ω, ·))n≥1 ∈ L3(O; �2) uniformly w.r.t. (t, ω) by Assumption 3.1(2),

the Hölder inequality yields

I 4 � E
∥
∥
∥
(
(φn,H · ∇)v

)

n≥1

∥
∥
∥
2

L2(η,ξ ;L6(�2))
+ E

∥
∥
∥
(
(φ3

n∂3v
)

n≥1

∥
∥
∥
2

L2(η,ξ ;L6(�2))

�M E ‖∇v‖2L2(η,ξ ;L6(T2))
+ E‖∂3v‖2L2(η,ξ ;L6)

≤ 1

4C
E ‖v‖2L2(η,ξ ;H2(T2))

+ CM

(
E‖v‖2L2(η,ξ ;H1(T2))

+ E‖∂3v‖2L2(η,ξ ;L6)

)

where C is as in (5.31) and in the last inequality we used that v is two-dimensional
and ‖ f ‖L6(T2) ≤ ε‖ f ‖H1(T2) + Cε‖ f ‖L2(T2) by Young’s and standard interpolation
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inequalities. By (5.14), the above displayed estimate and the Sobolev embedding
H1 ↪→ L6, we get

I 4 ≤ 1

4C
E‖v‖2L2(η,ξ ;H2(T2))

+ Ck + CME‖∂3v‖2L2(η,ξ ;L6(�2))

≤ 1

4C
E‖v‖2L2(η,ξ ;H2(T2))

+ Ck + CME‖∇∂3v‖2L2(η,ξ ;L2(�2))
.

(5.35)

It remains to estimate I 5. Recall that, by standard interpolation inequalities and
Sobolev embeddings,

‖ f ‖L4(T2) � ‖ f ‖H1/2(T2) � ‖ f ‖1/2
H1(T2)

‖ f ‖1/2
H1(T2)

(5.36)

where t > 0. Applying (5.36) to v and ∇Hv, we get

E
∥
∥
∥|v||∇Hv|

∥
∥
∥
2

L2(η,ξ ;L2(T2))
≤ E

∫ ξ

η

[
‖v‖2L4(T2)

‖∇Hv‖2L4(T2)

]
ds

(5.14)

� E
∫ ξ

η

[
k‖v‖2H1(T2)

‖v‖H2(T2)

]
ds.

Since ‖v‖H1(T2) �h ‖v‖H1 , the Young’s inequality yields

E
∥
∥
∥|v||∇v|

∥
∥
∥
2

L2(η,ξ ;L2(T2))

≤ CkE
∫ ξ

η

‖v‖2H1‖v‖2H1(T2))
ds + 1

4C
E‖v‖2L2(η,ξ ;H2(T2))

. (5.37)

Using (5.32), (5.33), (5.34), (5.35) and (5.37) in (5.31) we get

E
[

sup
s∈[η,ξ ]

‖v(s)‖2H1(T2)

]
+ E

∫ ξ

η

‖v‖2H2(T2)
ds

≤ C (1)
k,T

[

1 + ‖v(η)‖2H1(T2)
+ E

∫ ξ

η

(
1 + ‖v‖2H1

)
‖v‖2H1(T2)

ds

+E
∫ ξ

η

∥
∥|̃v||∇ṽ|∥∥2L2 ds + E

∫ ξ

η

‖∇∂3v‖2L2 ds

]

(5.38)

where C (1)
k,T is a constant independent of v, v0, η, ξ and j ≥ 1. Note that the term

1
2E‖v̄‖2

L2(η,ξ ;H2)
on the right hand side of (5.37) has been absorbed in the left

hand side of (5.54). This is possible since ξ ≤ τ j and therefore ‖v‖L2(η,ξ ;H2) �h

‖v‖L2(η,ξ ;H2) ≤ j a.s.

Step 2 L∞
t (L2

x )- and L2
t (H1

x )-estimates for v3 := ∂3v, see (5.44) below. Let us set

v
η,ξ
3 := v3((· ∨ η) ∧ ξ). Note that vη,ξ

3 ∈ C([0, T ]; L2) a.s. and ‖vη,ξ
3 ‖C([0,T ];L2) ≤ j
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a.s. since ξ ≤ τ j by assumption. Using an approximation argument similar to the
one used in Step 2 of Proposition 4.1, we may apply the Itô’s formula applied to
v 
→ ‖v3‖2L2 and an integration by parts argument yield, a.s. for all t ∈ [0, T ],

∥
∥
∥v

η,ξ
3 (t)

∥
∥
∥
2

L2
− ‖v3(η)‖2L2 + 2

∫ t

0
1[η,ξ ]

∫

O
|∇v3|2 dxds =

4∑

j=1

I j (t), (5.39)

where

I1(t) := 2
∫ t

0
1[η,ξ ]

(
− (v · ∇H)v − w(v)∂3v, ∂3v3

)

L2
ds,

I2(t) := 2
∫ t

0
1[η,ξ ]( f , ∂3v3)L2ds,

I3(t) :=
∑

n≥1

∫ t

0
1[η,ξ ]

∥
∥
∥∂3[(φn · ∇)v] + ∂3gn]

∥
∥
∥
2

L2
ds,

I4(t) := 2
∑

n≥1

∫ t

0
1[η,ξ ]

(
∂3[(φn · ∇)v] + ∂3gn, ∂3v3

)

L2dβn
s ,

andwherewe used that ∂3P f = f and (P f , ∂3v3)L2 = ( f , P(∂3v3))L2 = ( f , ∂3v3)L2

and (Pγ,φ, ∂3v3) = 0 for all f ∈ L2 since v3(·,−h) = v3(·, 0) = 0 on T
2 due to (3.2)

and to the fact that Pγ,φ is x3-independent (cf. (5.22)).
Fix ν1 ∈ (0, 2 − ν) where ν < 2 is as in Assumption 3.1(5). By repeating the

argument in [29, Step 2, p. 24] one can check that, a.s. for all t ∈ [0, T ],

E

[

sup
t∈[0,T ]

|I1(t)|
]

≤ CE
∫ ξ

η

[(
1 + ‖v‖2H1

)
‖v3‖2L2 + ‖|̃v(s)||∇ṽ(s)|‖2L2

]
ds

+ ν1E
∫ ξ

η

‖∇v3‖2L2 ds.

(5.40)

Moreover, by (5.19), for all ν2 ∈ (0, 2 − ν − ν1) we have a.s.

E

[

sup
t∈[0,T ]

|I2(t)|
]

≤ Ck + ν2E‖∇v3‖2L2(η,ξ ;L2)
. (5.41)

Next we estimate I3(t). To this end, let us fix ν′
2 ∈ (ν, 2− ν1 − ν2). Note that such

choice is always possible since ν < 2 − ν1 − ν2. As in the proof of (4.26), using
Assumption 3.1(2) and (5) one gets

sup
t∈[0,T ]

∑

n≥1

∫ ξ

η

∥
∥
∥∂3[(φn · ∇)v]

∥
∥
∥
2

L2
ds ≤ ν′

2‖∇v3‖2L2 + cν′ ‖v‖2L2 .
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By (5.19) and the Young’s inequality we have, for all ν3 ∈ (ν′
2, 2 − ν1 − ν2),

E

[

sup
t∈[0,T ]

|I3(t)|
]

≤ ν3E‖∇v3‖2L2(η,ξ ;L2)
+ Ck,ν2,ν3 . (5.42)

Taking E in (5.39), using that E[I4(t)] = 0 and 2 −∑3
j=1 ν j > 0, one infers

E
∫ ξ

η

‖∇v3(s)‖2L2 ds ≤ E‖v3(η)‖2L2 + C ′
k

+ CE
∫ ξ

η

[∥
∥|̃v||∇ṽ|∥∥2L2 + (

1 + ‖v‖2H1

)‖v3‖2L2

]
ds

(5.43)

where C ′
k and C are independent of η, ξ and j ≥ 1.

Next we apply E
[
sups∈[0,T ] | · |] to (5.39). To this end, it remains to estimate I4.

For notational convenience, we write I4 = I4,1 + I4,2 where

I4,1(t) :=
∑

n≥1

∫ t

0
1[η,ξ ]

(
∂3[(φn · ∇)v], ∂3v3

)

L2dβn
s ,

I4,2(t) :=
∑

n≥1

∫ t

0
1[η,ξ ]

(
∂3[Gv,n(v)], ∂3v3

)

L2dβn
s .

As above, E
∫ ξ

η
‖(gn)n≥1‖2L2 � k by (5.19). Thus, the estimate (5.43) and Burkholder-

Gundy-Davis inequality yield

E
[

sup
t∈[0,T ]

|I4,2(t)|
]

≤ C ′
k + CE

∫ ξ

η

[∥
∥|̃v||∇ṽ|∥∥2L2 + (

1 + ‖v‖2H1

)‖v3‖2L2

]
ds.

Again, by the Burkholder-Gundy-Davis inequality,

E

[

sup
s∈[0,T ]

∣
∣I4,1(t)

∣
∣

]

≤ CE

⎡

⎣

∫ ξ

η

∣
∣
∣

∫

O

∑

n≥1

[
∂3((φn · ∇)v)

] · v3 dx
∣
∣
∣
2

ds

⎤

⎦

1/2

≤ CE
[∫ ξ

η

(
1 + ‖∇v3(s)‖2L2

) ‖v3(s)‖2L2 ds

]1/2

≤ CE

⎡

⎣

(

sup
s∈[η,ξ ]

‖v3(s)‖2L2

)1/2 (∫ ξ

η

(
1 + ‖∇v3(s)‖2L2

)
ds

)1/2
⎤

⎦

(i)≤ 1

2
E

[

sup
s∈[0,T ]

‖vη,ξ
3 (s)‖2L2

]

+ CE
∫ ξ

η

(
1 + ‖∇v3(s)‖2L2

)
ds
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(i i)≤ 1

2
E

[

sup
s∈[0,T ]

‖vη,ξ
3 (s)‖2L2

]

+ C ′
k + E

∫ ξ

η

[∥
∥|̃v||∇ṽ|∥∥2L2 + C

(
1 + ‖v‖2H1

)‖v3‖2L2

]
ds

where in (i) we used v
η,ξ
3 = v3((· ∨ η) ∧ ξ) and in (i i) (5.43).

Applying E
[
sups∈[0,T ] | · |

]
to (5.39) and using that (5.40), (5.41), (5.42), (5.43) as

well as the previous on I4,1 and I4,2, we have

E

[

sup
s∈[η,ξ ]

‖v3(t)‖2L2

]

+ E
∫ ξ

η

‖∇v3‖2L2 ds ≤ C (2)
k,T

[
1 + E‖v3(η)‖2L2

+E
∫ ξ

η

((
1 + ‖v‖2H1

)
‖v3‖2L2 + ∥

∥|̃v||∇ṽ|∥∥2L2

)
ds

] (5.44)

where C (2)
k,T is a constant independent of η, ξ and j ≥ 1. Let us remark that the term

1
2E[sups∈[0,T ] ‖vη,ξ

3 (s)‖2
L2 ] appearing in the estimate of I4,1 has been absorbed in the

left hand side of the previous estimate.

Step 3 An L∞
t (L4

x )–estimate for ṽ, see (5.54) below. As in the previous step we set
ṽη,ξ := ṽ((· ∨ η) ∧ ξ). By the Sobolev embedding H1 ↪→ L4 and ξ ≤ τ j , we have
ṽη,ξ ∈ C([0, T ]; L4) a.s. and ‖̃vη,ξ‖C([0,T ];L4) ≤ j a.s.

The Itô’s formula applied to ṽ 
→ ‖̃v‖4
L4 , gives a.s. for all t ∈ [0, T ],

‖̃vη,ξ (t)‖4L4 − ‖̃v(η)‖4L4 + 2
∫ t

0
1[η,ξ ]

∥
∥
∥∇[|̃v|2]

∥
∥
∥
2

L2
ds

+ 4
∫ t

0
1[η,ξ ]

∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2
ds =

5∑

j=1

J j (t),
(5.45)

where

J1(t) := −4
∫ t

0
1[η,ξ ]

∫

O
[(̃v · ∇Hv)] · ṽ|̃v|2 dxds

−4

h

∫ t

0
1[η,ξ ]

∫

O

( ∫ 0

−h

[
(̃v · ∇Hṽ) + ṽ(divHṽ)

]
dζ
)

· ṽ|̃v|2 dxds

+4
∫ t

0
1[η,ξ ]

∫

O
f̃ · ṽ|̃v|2 dxds,

J2(t) := 2
∫ t

0
1[η,ξ ]

∫

O
|̃v|2

∑

n≥1

∣
∣
∣(φn · ∇ )̃v + φ3

n∂3v + g̃n

∣
∣
∣
2

dxds

+4
∫ t

0
1[η,ξ ]

∫

O

∑

n≥1

∣
∣
∣̃v ·

[
(φn · ∇ )̃v + φ3

n∂3v + g̃n

]∣
∣
∣
2

dxds,

J3(t) := 4
∫ t

0
1[η,ξ ]

∫

O

∑

n≥1

|̃v|2ṽ · [(φn · ∇ )̃v + φ3
n∂3v + g̃n

]
dxdβn

s ,
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and we used that integrating by parts (cf. [29, Lemma 2a), p. 21])

∫

O
[
(v · ∇H )̃v

] · ṽ|̃v|2 dx =
∫

O
[
(̃v · ∇H )̃v + w(v)∂3ṽ

] · ṽ|̃v|2 dx = 0,

since divHṽ + ∂3(w(v)) = divHv = 0 a.e. on [η, ξ ] × 
.
Let us remark that, to justify the above identity, one needs a standard approxi-

mation argument. More precisely to prove (5.45), one applies the Itô’s formula to
ṽ 
→ ∫

O Mm(Rm (̃v)) dx where

Mm(y) :=
{

|y|4, on |y| ≤ m,

m2
(
6|y|2 − 8m|y| + 3m2), on |y| > m,

for all y ∈ R, m ≥ 1,

and Rm := m(m + 1 + �N)−1 (here �N denotes the Neumann Laplacian on L2)
and then taking the limit as m → ∞ in the obtained equality. Since Mm ∈ C2

b (R
2),

Mm has quadratic growth at infinity, Rm → I strongly in Hk for k ∈ {0, 1} and
D(�N) ↪→ H2 ↪→ L∞, the Itô’s formula can be applied. By (5.26) and the fact that
ξ ≤ τ j a.s., the limit as m → ∞ can be justified by recalling that H1 ↪→ L6 and
noticing that, for all y = (y1, y2) ∈ R

2, i, j ∈ {1, 2},

Mm(y) → |y|4, ∂y j Mm(y) → 4y j |y|3, ∂yi ,y j Mm(y) → 4|y|2δi, j + 8y j yi , as m → ∞,

|Mm(y)| ≤ C |y|4, |∂y j Mm(y)| ≤ C |y|3, |∂yi ,y j Mm(y)| ≤ C |y|2, for all m ≥ 1,

where C > 0 is independent of m ≥ 1 and δi, j is the Kronecker’s delta.
Let us turn to the proof of the main estimate. Fix ν′ ∈ (ν, 2). Reasoning as in [29,

Step 3, p. 26], we have

sup
s∈[0,t]

|J1(t)| ≤ Ck

[
1 +

∫ ξ

η

(
1 + Nv,θ + ‖v‖2H1

)‖̃v‖4L4 ds
]

+2 − ν′

2

∫ ξ

η

∥
∥
∥∇[|̃v|2]

∥
∥
∥
2

L2
ds. (5.46)

Next we analyse J2. Note that, a.s. for all t ∈ [0, T ],

J2(t) ≤ ν′

ν
J2,1(t) + Cν,ν′(J2,2(t) + J2,3(t)), (5.47)

where

J2,1(t) :=
∑

n≥1

∫ t

0
1[η,ξ ]

∫

O

[
2|̃v|2∣∣(φn · ∇ )̃v

∣
∣2 + 4

∣
∣̃v · [(φn · ∇ )̃v

]∣
∣2
]

dxds,

J2,2(t) :=
∫ t

0
1[η,ξ ]

∫

O
|̃v|2

∑

n≥1

∣
∣φ3

n∂3v
∣
∣2 dxds,
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J2,3(t) :=
∫ t

0
1[η,ξ ]

∫

O
|̃v|2

∑

n≥1

|g̃n|2 dxds.

Next we estimate J2,1, J2,2 and J2,3, separately. Let us begin by looking at J2,1. Note
that

ṽ · [(φn · ∇ )̃v] = 1

2
(φn · ∇)|̃v|2.

Thus, by Assumption 3.1(5) applied twice, a.s. for all t ∈ [0, T ],

J2,1(t) =
∑

n≥1

∫ t

0
1[η,ξ ]

∫

O

[
2|̃v|2|(φn · ∇ )̃v|2 + ∣

∣(φn · ∇)|̃v|2∣∣2
]

dxds

≤ ν

∫ t

0
1[η,ξ ]

∫

O

[
2|̃v|2|∇ṽ|2 + ∣

∣∇|̃v|2∣∣2
]

dxds.

Nextwe estimate J2,2. Set F := (
∑

n≥1 |φ3
n∂3v|2)1/2. ByCauchy-Schwartz inequality,

a.s. for all t ∈ [η, ξ ],
∫

O
|̃v|2

∑

n≥1

∣
∣φ3

n∂3v
∣
∣2 dx ≤ ∥

∥|F |2∥∥L2

∥
∥|̃v|2∥∥L2 = ‖F‖2L4 ‖̃v‖2L4 . (5.48)

Since F is x3-independent, ‖F‖2
L4 �h ‖F‖2

L4(T2)
. Thus, reasoning as in the proof of

(5.34), by Assumption 3.1(2) and (5.36), we get

‖F‖2L4(T2)
� ‖F‖L2(T2)‖F‖H1(T2) �M,δ ‖v‖2H1 + ‖v‖H1‖∇∂3v‖L2 . (5.49)

Let ε > 0 be chosen later. By (5.48)–(5.49) we get, a.s.

sup
t∈[0,T ]

|J2,2(t)| �
∫ ξ

η

(‖v‖2H1 + ‖v‖H1‖∇∂3v‖L2)‖v‖2L4 ds

≤ ε

∫ ξ

η

‖∇∂3v‖2L2 ds + Cε

∫ ξ

η

(1 + ‖v‖2H1)‖v‖4L4 ds.

(5.50)

Similarly we estimate J2,3. Set G̃ := (
∑

n≥1 |g̃n|2)1/2. By Sobolev embeddings and
(5.19), we have ‖G̃‖L2(η,ξ ;L4) �h ‖g‖L2(0,�k ;H1(�2)) a.s. Thus, a.s.

sup
t∈[0,T ]

|J2,3(t)| �
∫ ξ

η

∥
∥G̃2

∥
∥

L2

∥
∥|̃v|2∥∥L2 ds

�h

∫ ξ

η

‖g‖2L2(0,�k ;H1(�2))
‖̃v‖2L4 ds ≤ Ck +

∫ ξ

η

Nv,θ ‖̃v‖4L4 ds

(5.51)

where in the last inequality we used (5.18), (5.19) and ξ ≤ �k a.s.
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Using the previous estimates in (5.47), we have a.s.

sup
t∈[0,T ]

|J2(t)| ≤ Cε

[
1 +

∫ ξ

η

(1 + Nv,θ + ‖v‖2H1)‖̃v‖4L4 ds
]

+ε

∫ ξ

η

‖∇∂3v‖2L2 ds + 2ν′
∫ ξ

η

∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2
ds + ν′

∫ ξ

η

‖∇∂3v‖2L2 ds.

(5.52)

Recall that ν′ < 2. Take expectations in (5.45), using that (5.46), (5.52) and using that
E[J3(T )] = 0,

∫ ξ

η

∥
∥|̃v||∇ṽ|∥∥2L2 ds ≤ C

[
1 + E‖̃v(η)‖4L4

]

+ CεE
∫ ξ

η

(
1 + Nv,θ + ‖v‖2H1

)
‖̃v‖4L4 ds + εE

∫ ξ

η

‖∇|̃v|2‖L2 ds.

(5.53)

Let F = (
∑

n≥1 |φ3
n∂3vn|2)1/2 and G̃ = (

∑
n≥1 |̃gn|2)1/2 be as above. Reasoning

as in the previous step, we use the Burkholder-Davis-Gundy inequality to handle the
martingale part J3:

E

[

sup
t∈[0,T ]

|J3(t)|
]

� E

⎡

⎣

∫ ξ

η

∣
∣
∣

∫

O
|̃v|2

∑

n≥1

[
(φn · ∇ )̃v + F + g̃n

] · ṽ dx
∣
∣
∣
2
ds

⎤

⎦

1/2

� E
[∫ ξ

η

∣
∣
∣

∫

O
|̃v|3(|∇ṽ| + |F | + |G̃|) dx

∣
∣
∣
2

ds

]1/2

� E

⎡

⎣

(

sup
s∈[η,ξ ]

‖̃v(s)‖4L4

)1/2 (∫ ξ

η

∫

O
|̃v|2 (|∇ṽ|2 + |F |2 + |G̃|2) dxds

)1/2
⎤

⎦

≤ 1

2
E

[

sup
s∈[η,ξ ]

‖̃v(s)‖4L4

]

+ CE
∫ ξ

η

(∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2
+
∥
∥
∥|̃v||F |

∥
∥
∥
2

L2
+
∥
∥
∥|̃v||G̃|

∥
∥
∥
2

L2

)

ds

≤ 1

2
E

[

sup
s∈[η,ξ ]

‖̃vη,ξ (s)‖4L4

]

+ CJ3 (1 + E‖̃v0‖4L4 )

+ CJ3E
∫ ξ

η

[(
1 + Nv,θ + ‖v‖2H1

)
‖̃v‖4L4

]
ds + CJ3ε

∫ ξ

η

‖∇∂3v‖2L2 ds

where in the last inequality we used (5.50), (5.51) and (5.53). Note that CJ3 ≥ 1 is a
constant independent of η, ξ and j ≥ 1.
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For future convenience, we choose ε = 1/(16(1 + CJ3)(C
(2)
k,T ∨ 1)) where C (2)

k,T is
as in (5.44). Then by taking E

[
sups∈[0,T ] | · |

]
in (5.45) and using the above inequalities

we have

E

[

sup
t∈[η,ξ ]

‖̃v‖4L4

]

+ E
∫ ξ

η

∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2
ds ≤ C (3)

k,T

[
1 + E‖̃v0‖4L4

]

+ C (3)
k,T E

∫ ξ

η

(
1 + Nv,θ + ‖v‖2H1

) ‖̃v‖4L4 ds + 1

16
(

C (2)
k,T ∨ 1

)E
∫ ξ

η

‖∇∂3v‖2L2 ds

(5.54)

where C (3)
k,T > 0 is independent of η, ξ and j ≥ 1.

Step 4 Proof of (5.28). Let C (1)
k,T , C (2)

k,T and C (3)
k,T be as in (5.38), (5.44) and (5.54),

respectively.Without loss of generality wemay assume thatC (i)
k,T ≥ 1 for i ∈ {1, 2, 3}.

This claim of this step follows by noticing that

(5.38)

8C (1)
k,T C (2)

k,T

+ (5.44)

4C (2)
k,T

+ (5.54) �⇒ (5.28).

More precisely, the above means that (5.28) follows by multiplying (5.38) with
(8C (1)

k,T C (2)
k,T )−1, (5.44) with (4C (2)

k,T )−1 and then adding the resulting estimates with
(5.54).

Note that, on the RHS of the resulting estimate, the following terms appear:

(
1

8C (2)
k,T

+ 1

16C (2)
k,T

)

E‖∇∂3v‖2L2(η,ξ ;L2)
, and

(
1

8C (2)
k,T

+ 1

4

)

E
∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2(η,ξ ;L2)
.

(5.55)

The first term follows from the RHS of (5.38) and the RHS of (5.54) and the second
one from the RHS of (5.38) and the RHS of (5.44). However, in the LHS of the

resulting estimate we get 1
4C(2)

k,T

E‖∇∂3v‖2
L2(η,ξ ;L2)

by (5.44)

4C(2)
k,T

and E
∥
∥|̃v||∇ṽ|∥∥2L2(η,ξ ;L2)

by (5.54). Since C (i)
k,T ≥ 1, the terms in (5.55) can be adsorbed in the LHS of the

resulting estimate since ξ ≤ τ j and therefore a.s.

E‖∇v3‖2L2(η,ξ ;L2)
≤ E

∫ ξ

η

‖v‖2H2 ds ≤ j,

E
∥
∥
∥|̃v||∇ṽ|

∥
∥
∥
2

L2(η,ξ ;L2)
≤ E

[
‖̃v‖2L∞(η,ξ ;L6)

‖̃v‖2L2(η,ξ ;H1,3)

]
� j2,

by (5.26) and Sobolev embeddings. ��
We are now in the position to prove Proposition 5.1.
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Proof of Proposition 5.1 Let �k and Xt , Yt be as in (5.13) and (5.25), respectively.
Recall that limk→∞ P(�k = τ) = 1. By Lemma 5.3, for each k ≥ 1 there exists
Rk > 0 for which the stopping times

μk := inf
{

t ∈ [0, �k) : Xt +
∫ t

0
Ys ds ≥ Rk

}
, where inf ∅ := �k, (5.56)

satisfy

lim
k→∞ P(μk = τ) = 1.

As explained at the beginning of this subsection it is sufficient to prove (5.15). The
idea is to use the stochastic Gronwall’s lemma as in the proof of Lemma 5.3. To this
end, we need a localization argument. For any j ≥ 1, let τ j be the stopping time
defined as

τ j := inf
{
t ∈ [0, τ ) : ‖v(t)‖H1 + ‖v‖L2(0,t;H2) ≥ j

} ∧ T , where inf ∅ := τ.

Reasoning as in the proof of Lemma 5.3, by the stochastic Gronwall’s lemma [27,
Lemma 5.3] and (5.56), it is enough to show the existence of C0,k > 0 such that for
each j ≥ 1 and each stopping times 0 ≤ η ≤ ξ ≤ τ j ∧ μk ,

E

[

sup
t∈[η,ξ ]

‖v(t)‖2L2

]

+ E
∫ ξ

η

‖v(s)‖2H2 ds ≤ C0,k[1 + E‖v(η)‖2H1 ]

+ C0,k

[

E
∫ ξ

η

(
1 + ‖v(s)‖2L2 + Xs

) (
1 + ‖v(s)‖2H1 + Ys

)
‖v(s)‖2L2 ds

]

.

(5.57)

Let η, ξ be stopping time such that 0 ≤ η ≤ ξ ≤ τ j ∧ μk . Recall that (v, ξ) is an
L2-local solution to (5.16) (see also the text below it). Thus, by Proposition 4.1 (cf.
Remark 4.2(b)), there is a constant C0 > 0 independent of η, ξ, j, k such that

E

[

sup
t∈[η,ξ ]

‖v(t)‖2L2

]

+ E
∫ ξ

η

‖v‖2H2 ds

≤ C0

(
E‖v(η)‖2H1 + E‖(v · ∇H)v‖2L2(η,ξ ;L2)

+ E‖w(v)∂3v‖2L2(η,ξ ;L2)

)

+ C0

(
E‖ f ‖2L2(η,ξ ;L2)

+ E‖(gn)n≥1‖2L2(η,ξ ;H1(�2))

)

(5.58)

where f and gn are as in (5.17). Note that the last two terms on the right hand side of
(5.58) are finite due to (5.19). It remains to estimate the second and the third term on
the RHS of (5.58).

Writing v = ṽ + v, we have

(v · ∇H)v = (v · ∇H)v + (̃v · ∇H)v + (v · ∇H )̃v + (̃v · ∇H )̃v. (5.59)
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Reasoning as in Step 1 of Lemma 5.3 (see (5.37)), one has E‖(v ·∇H)v‖2
L2(η,ξ ;L2(T2))

≤
R2

k . Moreover, by Sobolev embeddings,

E‖(̃v · ∇H)v‖2L2(η,ξ ;L2)
≤ E

[(

sup
t∈[η,ξ ]

‖̃v(t)‖2L4

)
(
‖∇Hv‖2L2(η,ξ ;L4(T2))

)
]

≤ RkE
[
‖∇Hv‖2L2(η,ξ ;L4(T2))

]
� R2

k ,

and

E‖(v · ∇H )̃v‖2L2(η,ξ ;L2)
≤ E

[(
sup

t∈[η,ξ ]
‖v(t)‖2L6

)(
‖∇Hṽ‖2L2(η,ξ ;L3)

)]

(5.56)≤ RkE‖∇Hv‖2L2(η,ξ ;L3)

(i)≤ 1

4C0
E‖v‖2L2(η,ξ ;H2)

+ CkE‖v‖2L2(η,ξ ;H1)
,

where in (i)we used the interpolation inequality ‖ f ‖L3 � ‖ f ‖1/2
L2 ‖ f ‖1/2

H1 andYoung’s
inequality.

Since E‖(̃v · ∇H )̃v‖2
L2(η,ξ ;L2)

≤ Rk by definition of Yt in (5.25), (5.59) and the
previous estimates yield

E‖(v · ∇H)v‖2L2(η,ξ ;L2)
≤ Ck + 1

4C0
E‖v‖2L2(η,ξ ;H2)

+ CkE‖v‖2L2(η,ξ ;H1)
. (5.60)

It remains to estimate w(v)∂3v. Applying the interpolation inequality ‖ f ‖L4(T2) �
‖ f ‖1/2

L2(T2)
‖ f ‖1/2

H1(T2)
twice, we have, a.e. on [η, ξ ] × 
,

‖w(v)∂3v‖2L2 � ‖w(v)‖2L∞(−h,0;L4(T2))
‖∂3v‖2L2(−h,0;L4(T2))

� ‖divHv‖2L2(−h,0;L4(T2))
‖∂3v‖2L2(−h,0;L4(T2))

� ‖v‖H1‖v‖H2‖∂3v‖L2‖∂3v‖H1

≤ C‖v‖2H1‖∂3v‖2L2‖∂3v‖2H1 + 1

4C0
‖v‖2H2 .

In particular,

E‖w(v)∂3v‖2L2(η,ξ ;L2)
≤ CE

∫ ξ

η

‖∂3v‖2L2‖∂3v‖2H1‖v‖2H1 ds + 1

4C0
E‖v‖2L2(η,ξ ;H2)

.

(5.61)

Using the estimates (5.60) and (5.61) in (5.58), one obtains (5.57) as desired. Let
us remark that the term 1

2C0
‖v‖2

L2(η,ξ ;H2)
can be absorbed in the left hand side of the

resulting estimate since ξ ≤ τ j and therefore ‖v‖2
L2(η,ξ ;H2)

≤ j a.s. ��
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6 Local and global existence in the strong-strong setting

In this section we study (2.4) in the strong-strong, i.e. in case the equations for v

and θ both are understood in the strong setting. Compared to the strong-weak setting
analyzed in Sect. 3, we need additional assumptions on ψ . However, we can allow Fv

and Gv,n to depend on ∇θ and θ , respectively.
As in Sect. 3, we begin by reformulating the problem (2.4). To this end, we apply the

hydrostatic Helmholtz projection P to (2.4), and at least formally, (2.4) is equivalent
to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �v dt = P

[
− (v · ∇H)v − w(v)∂3v + Pγ (·, v, θ)

+∇H

∫ ·

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(v, θ,∇v,∇θ)

]
dt

+
∑

n≥1

P

[
(φn · ∇)v + Gv,n(v, θ)

]
dβn

t , on O,

dθ − �θ dt =
[

− (v · ∇H)θ − w(v)∂3θ + Fθ (v, θ,∇v,∇θ)
]
dt

+
∑

n≥1

[
(ψn · ∇)θ + Gθ,n(v, θ)

]
dβn

t , on O,

v(·, 0) = v0, θ(·, 0) = θ0, on O,

(6.1)

complemented with the following boundary conditions

∂3v(·,−h) = ∂3v(·, 0) = 0 on T
2,

∂3θ(·,−h) = ∂3θ(·, 0) + αθ(·, 0) = 0 on T
2.

(6.2)

here α ∈ R is given, the subscript H stands for the horizontal part (see Sect. 2.1) and
a.s. for all t ∈ R+ and x = (xH, x3) ∈ T

2 × (−h, 0) = O

Pγ (·, v, θ) :=
⎛

⎝
∑

n≥1

2∑

m=1

γ �,m
n (t, x)

(
Q[(φn · ∇)v + Gv,n(·, v, θ)])m

⎞

⎠

2

�=1

, (6.3)

w(v) := −
∫ x3

−h
divHv(t, xH, ζ ) dζ. (6.4)

As in Sect. 3, in the stochastic part of the equation for the velocity field v, the operator
P cannot be (in general) removed and the term Pγ defined in (6.3) coincides with
∂γ P̃n in (2.4) since Q[(φn · ∇)v + Gv,n(·, v, θ)] = ∇ P̃n .
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6.1 Main assumptions and definitions

Webegin by listing themain assumption of this section. Belowwe employ the notation
introduced in Sect. 2.1.

Assumption 6.1 There exist M, δ > 0 for which the following hold.

(1) For all j ∈ {1, 2, 3} and n ≥ 1, the maps

φ
j
n , ψ

j
n , κ : R+ × 
 × O → R

are P ⊗ B-measurable;
(2) a.s. for all t ∈ R+, j, k ∈ {1, 2, 3}, �, m ∈ {1, 2},

∥
∥
∥

(∑

n≥1

|φ j
n (t, ·)|2

)1/2∥∥
∥

L3+δ(O)
+
∥
∥
∥

(∑

n≥1

|∂kφ
j
n (t, ·)|2

)1/2∥∥
∥

L3+δ(O)
≤ M,

∥
∥
∥

(∑

n≥1

|ψ j
n (t, ·)|2

)1/2∥∥
∥

L3+δ(O)
+
∥
∥
∥

(∑

n≥1

|∂kψ
j

n (t, ·)|2
)1/2∥∥

∥
L3+δ(O)

≤ M,

∥
∥
∥

(∑

n≥1

|γ �,m
n (t, ·)|2

)1/2∥∥
∥

L3+δ(O)
≤ M;

(3) a.s. for all t ∈ R+, xH ∈ T
2, j ∈ {1, 2, 3} and i ∈ {1, 2},

‖κ(t, xH, ·)‖L2(−h,0) + ‖∂iκ(t, ·)‖L2+δ(T2;L2(−h,0)) ≤ M;

(4) There exists ν ∈ (0, 2) such that, a.s. for all t ∈ R+, x ∈ O and ξ ∈ R
d ,

∑

n≥1

⎛

⎝
3∑

j=1

φ
j
n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2, and
∑

n≥1

⎛

⎝
3∑

j=1

ψ
j

n (t, x)ξ j

⎞

⎠

2

≤ ν|ξ |2;

(5) For all n ≥ 1, the maps

Fv : R+ × 
 × R
2 × R

6 × R → R
2, Fθ : R+ × 
 × R

2 × R
6 × R → R,

Gv,n : R+ × 
 × R → R
2, and Gθ,n : R+ × 
 × R

2 × R
6 × R → R

are P ⊗ B-measurable;
(6) For all T ∈ (0,∞) and i ∈ {1, 2},

Fi
v(·, 0), Fθ (·, 0) ∈ L2((0, T ) × 
 × O),

(Gi
v,n(·, 0))n≥1, (Gθ,n(·, 0))n≥1 ∈ L2((0, T ) × 
; H1(O; �2)).

Moreover, for all n ≥ 1, t ∈ R+, x ∈ O, y, y′ ∈ R
2, Y , Y ′ ∈ R

6 and z, z′ ∈ R,

|Fv(t, x, y, z, Y , Z) − Fv(t, x, y′, z′, Y ′, Z ′)|
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+ |Fθ (t, x, y, z, Y , Z) − Fθ (t, x, y′, z′, Y ′, Z ′)|
� (1 + |y|4 + |y′|4)|y − y′| + (1 + |z|4 + |z′|4)|z − z′|

+ (1 + |Y |2/3 + |Y ′|2/3)|Y − Y ′| + (1 + |Y |2/3 + |Y ′|2/3)|Y − Y ′|.

Finally, a.s. for all t ∈ R+, n ≥ 1, the mapping

O × R
2 × R � (x, y, z) 
→ (Gv,n(t, x, y, z), Gθ,n(t, x, y, z))

is continuously differentiable, and a.s. for all k ∈ {0, 1}, j ∈ {1, 2, 3}, x ∈ O,
y, y′ ∈ R

2 and z, z′ ∈ R,

∥
∥
∥
∥

(
∂k

x j
Gv,n(t, x, y, z) − ∂k

x j
Gv,n(t, x, y′, z′)

)

n≥1

∥
∥
∥
∥

�2

+
∥
∥
∥
∥

(
∂k

x j
Gθ,n(t, x, y, z) − ∂k

x j
Gθ,n(t, x, y′, z′)

)

n≥1

∥
∥
∥
∥

�2

�
(
1 + |y|4 + |y′|4

)
|y − y′| +

(
1 + |z|4 + |z′|4

)
|z − z′|,

∥
∥(∂yGv,n(t, x, y) − ∂yGv,n(t, x, y′))n≥1

∥
∥

�2

+
∥
∥
∥
(
∂yGθ,n(t, x, y) − ∂yGθ,n(t, x, y′)

)

n≥1

∥
∥
∥

�2

�
(
1 + |y|2 + |y′|2

)
|y − y′| +

(
1 + |z|2 + |z′|2

)
|z − z′|.

Some remarks on Assumption 6.1 may be in order.

Remark 6.2 (1) As in Remark 3.2(a), Assumption 6.1(2) and Sobolev embeddings it
follows that (φ j

n (t, ·))n≥1, (ψ
j

n (t, ·))n≥1 ∈ Cδ/(3+δ)(O; �2) uniformly w.r.t. (t, ω).
(2) As in Remark 3.2(c), Assumption 6.1(4) is equivalent to the usual stochastic

parabolicity and therefore (4) is optimal in the parabolic setting.
(3) Assumption 6.1(6) contains the optimal growth assumptions on the nonlinearities

which allows to prove local existence for data in H
1(O) × H1(O), cf. the proof

of Theorem 6.4 below.

We are in position to define L2-strong–strong solutions to (6.1)–(6.2). Recall that
B�2 is as in Sect. 2.1. For notational convenience, we set

H
2
N(O) :=

{
v ∈ H2(O; R

2) ∩ L
2(O) : ∂3v(·,−h) = ∂3v(·, 0) = 0 on T

2
}
,

H2
R(O) :=

{
θ ∈ H2(O) : ∂3θ(·, 0) + αθ(·, 0) = ∂3θ(·,−h) = 0 on T

2
}
.

(6.5)

Definition 6.3 (L2-strong-strong solutions) Let Assumption 6.1 be satisfied.

(1) Let τ be a stopping time, v : [0, τ ) × 
 → H
2
N(O) and θ : [0, τ ) × 
 → H2

R(O)

be stochastic processes. We say that ((v, θ), τ ) is called an L2-local strong-strong
solution to (6.1)–(6.2) if there exists a sequence of stopping times (τk)k≥1 for
which the following hold.
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• τk ≤ τ a.s. for all k ≥ 1 and limk→∞ τk = τ a.s.;
• a.s. we have (v, θ) ∈ L2(0, τk; H

2
N(O) × H2

R(O)) and

(v · ∇H)v + w(v)∂3v + Fv(v, θ, ∇v,∇θ) + Pγ (·, v, θ) ∈ L2(0, τk ; L2(O; R
2)),

(v · ∇H)θ + w(v)∂3θ + Fθ (v, θ, ∇v,∇θ) ∈ L2(0, τk ; L2(O)),

(Gv,n(v, θ))n≥1 ∈ L2(0, τk ; H1(O; �2(N; R
2))),

(Gθ,n(v, θ))n≥1 ∈ L2(0, τk ; H1(O; �2)).

(6.6)

• a.s. for all k ≥ 1 the following equality holds for all t ∈ [0, τk]:

v(t) − v0 =
∫ t

0
�v(s) + P

[
∇H

∫ x3

−h
(κ(·, ζ )θ(·, ζ )) dζ

− (v · ∇H)v − w(v)∂3v + Fv(v, θ,∇v,∇θ) + Pγ (·, v, θ)
]

ds

+
∫ t

0

(
1[0,τk ]P[(φn · ∇)v + Gv,n(v, θ)]

)

n≥1
dB�2(s),

θ(t) − θ0 =
∫ t

0

[
�θ − (v · ∇H)θ − w(v)∂3θ + Fθ (v, θ,∇v,∇θ)

]
ds

+
∫ t

0

(
1[0,τk ][(ψn · ∇)θ + Gθ,n(v, θ)]

)

n≥1
dB�2(s).

(2) An L2-local strong-strong solution ((v, θ), τ ) to (6.1)–(6.2) is said to be an
L2-maximal strong-strong solution to (6.1)–(6.2) if for any other local solution
((v′, θ ′), τ ′) we have

τ ′ ≤ τ a.s. and (v, θ) = (v′, θ ′) a.e. on [0, τ ′) × 
.

Note that L2-maximal strong-strong solution are unique in the class of L2-local
strong-strong solutions by definition. By (6.6), the deterministic integrals and the
stochastic integrals in the above definition are well-defined as Bochner and H1-valued
Itô’s integrals, respectively.

6.2 Statement of themain results

We begin this subsection by stating our local existence result for (6.1)–(6.2). To econ-
omize the notation, for k ≥ 0, m ≥ 1 and a map f : [0, t) → Hk+1(O; R

m), we
set

Nk(t; f ) := sup
s∈[0,t)

‖ f (s)‖2Hk (O;Rm )
+
∫ t

0
‖ f (s)‖2Hk+1(O;Rm )

ds. (6.7)

Theorem 6.4 (Local existence) Let Assumption 6.1 be satisfied. Then for each

v0 ∈ L0
F0

(
; H
1(O)), and θ0 ∈ L0

F0
(
; H1(O)),
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there exist an L2-maximal strong-strong solution ((v, θ), τ ) to (6.1)–(6.2) such that
τ > 0 a.s. Moreover the following hold.

(1) (Pathwise regularity) There exists a sequence of stopping times (τk)k≥1 such that,
a.s. for all k ≥ 1, one has 0 ≤ τk ≤ τ , limk→∞ τk = τ and

(v, θ) ∈ L2(0, τk; H
2
N(O) × H2

R(O)) ∩ C([0, τk]; H
1(O) × H1(O)).

(2) (Blow-up criterion) For all T ∈ (0,∞),

P
(
τ < T , N1(τ ; v) + N1(τ ; θ) < ∞

)
= 0.

Finally, we turn our attention to the existence of global strong-strong solutions to
(6.1)–(6.2). To formulate our global existence result, we need the following

Assumption 6.5 Let Assumption 6.1 be satisfied.

(1) For all n ≥ 1, x = (xH, x3) ∈ T
2 × (−h, 0) = O, t ∈ R+, j, k ∈ {1, 2} and a.s.

φ
j
n (t, x) and γ

j,k
n (t, x) are independent of x3.

(2) There exist C > 0 and � ∈ L0
P (
; L2

loc([0,∞); L2(O))) such that, a.s. for all
t ∈ R+, j ∈ {1, 2, 3}, x ∈ O, y ∈ R

2, z ∈ R, Y ∈ R
6 and Z ∈ R

3,

|Fv(t, x, y, z, Y , Z)| + |Fθ (t, x, y, z, Y , Z)| ≤ C(�(t, x) + |y| + |z|
+ |Y | + |Z |),

‖(Gv,n(t, x, y, z))n≥1‖�2 + ‖(∂x j Gv,n(t, x, y, z))n≥1‖�2 ≤ C(�(t, x) + |y| + |z|),
‖(Gθ,n(t, x, y, z))n≥1‖�2 + ‖(∂x j Gθ,n(t, x, y, z))n≥1‖�2 ≤ C(�(t, x) + |y| + |z|),

‖(∂y Gv,n(t, x, y, z))n≥1‖�2 + ‖(∂y Gθ,n(t, x, y, z))n≥1‖�2 ≤ C .

Remark 6.6 Assumption 6.5 should be compared with Assumption 3.5. Note that has
already been discussed in Remark 3.7 below Assumption 3.5 and that Assumption
6.5(2) is symmetricw.r.t. v and θ . As beforeAssumption 6.1(4) implies the parabolicity
condition from Remark 3.7(b).

Next we state our main result on global existence to (6.1)–(6.2) in the strong-strong
setting. Recall that H

2
N and H2

R have been defined in (6.5).

Theorem 6.7 (Global existence) Let Assumption 6.5 be satisfied, and let

v0 ∈ L0
F0

(
; H
1(O)), and θ0 ∈ L0

F0
(
; H1(O)).

Then the L2-maximal strong-strong solution ((v, θ), τ ) to (6.1)–(6.2) provided by
Theorem 6.4 is global in time, i.e. τ = ∞ a.s. In particular

(v, θ) ∈ L2
loc([0,∞); H

2
N(O) × H2

R(O)) ∩ C([0,∞); H
1(O) × H1(O)) a.s.
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The proofs of Theorems 6.4 and 6.7 follow the strategy used in the proof of The-
orems 3.4 and 3.6. As in the proof of Theorem 3.4, to show Theorem 6.4 we employ
the results in [2, 3]. In particular, we need to prove stochastic maximal L2-regularity
estimates for the linearization of (6.1)–(6.2). Such estimates will be proven in Sub-
section 6.3. The proof of Theorem 6.7 is similar to the one of Theorem 3.6 where we
have followed the arguments in [8, 30]. In the present case, we need to prove also
L2

t (H2
x )- and L∞

t (H1
x )-estimates for the temperature θ to apply the blow-up criteria

of Theorem 6.4(2).

6.3 Stochastic maximal L2-regularity

In this subsectionwe studymaximal L2-regularity estimates for the linearized problem
of (6.1)–(6.2), see [2, Sect. 3] and the references therein for the general theory of
stochastic maximal L p-regularity.

Here, we study maximal L2-regularity estimates for

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv −
[
�v + P[Pγ,φv + Jκθ ]

]
dt = fvdt +

∑

n≥1

[
P[(φn · ∇)v] + gn,v

]
dβn

t , on O,

dθ − �θdt = fθ dt +
∑

n≥1

[
(ψn · ∇)θ + gn,θ

]
dβn

t , on O,

∂3v(·, 0) = ∂3v(·, −h) = 0, on T
2,

∂3θ(·, 0) + αθ(·, 0) = ∂3θ(·,−h) = 0, on T
2,

v(0) = 0, θ(0) = 0, on O,

(6.8)

where Pγ,φ and Jκ are as in (4.2) and (4.3), respectively. Moreover

( fv, fθ ) ∈ L2
P ((0, T ) × 
; L

2 × L2),

((gn,v)n≥1, (gn,θ )n≥1) ∈ L2
P ((0, T ) × 
; H

1(�2) × H1(�2)).
(6.9)

Let τ be a stopping time. Recall that H
2
N and H2

R are as in (6.5). We say that (v, θ) ∈
L2
P ((0, τ ) × 
; H

2
N × H2

R) is an L2-strong solution to (6.8) on [0, τ ] × 
 if

v(t) =
∫ t

0

[
�v(s) + P

[
Pγ,φv − Jκθ ] + fv

]
ds

+
∫ t

0

(
1[0,τ ]

[
P[(φn · ∇)v] + gv,n

])

n≥1
dB�2(s),

θ(t) =
∫ t

0

[
�θ + fθ

]
ds +

∫ t

0

(
1[0,τ ][(ψn · ∇)θ + gn,θ ]

)

n≥1
dB�2(s),

a.s. for all t ∈ [0, τ ]. Here B�2 is as in equation (2.2).
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Proposition 6.8 (Stochastic maximal L2-regularity) Let Assumption 6.1(1)–(4) be
satisfied and let T ∈ (0,∞). Let fv, fθ , gv,n, gθ,n be as in (6.9). Then for any stopping
time τ : 
 → [0, T ] there exists a unique L2-strong solution to (6.8) on [0, τ ] × 


such that

(v, θ) ∈ L2
P

(
(0, τ ) × 
; H

2
N × H2

R

) ∩ L2
P

(

; C

([0, τ ]; H
1 × H1))

and moreover for any L2-strong solution (v, θ) to (4.1) on [0, τ ] × 
 we have

‖(v, θ)‖L2((0,τ )×
;H2×H2) + ‖(v, θ)‖L2(
;C([0,τ ];H1×H1))

� ‖( fv, fθ )‖L2((0,τ )×
;L2×L2)

+ ‖((gn,v)n≥1, (gn,θ )n≥1)‖L2((0,τ )×
;H1(�2)×H1(�2))

(6.10)

where the implicit constant is independent of fv, fθ , (gn,v)n≥1, (gn,θ )n≥1 and τ .

By [3, Proposition 3.9 and 3.12], Proposition 6.8 also proves maximal L2-estimates
with non-trivial initial data and also the starting time 0 can be replaced by any stopping
time τ with values in [0, T ] where T ∈ (0,∞).

For all U = (v, θ) ∈ H
2
N × H2

R, we set a.s. for all t ∈ R+,

A(t)U :=
[−�v − P

[
Pγ,φv + Jκθ

]

−�θ

]

, and Bn(t)U :=
[
P
[
(φn(t) · ∇)v

]

(ψn(t) · ∇)θ

]

.

(6.11)

Then using the notation introduced in [2, Section 3], Proposition 4.1 shows
(A, (Bn)n≥1) ∈ SMR•

2(T ).

Proof of Proposition 6.8 The proof is similar to the one of Proposition 4.1. As in the
latter case we only consider the case γ

�,m
n ≡ 0. Thus, it is enough to prove a priori

estimates (uniform in λ ∈ [0, 1]) for strong solutions of the following problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dv −
[
�v + λP[Jκθ ]

]
dt = fvdt +

∑

n≥1

P

[
λ(φn · ∇)v + gn,v

]
dβn, on O,

dθ − �θdt = fθ dt +
∑

n≥1

[
λ(ψn · ∇)θ + gn,θ

]
dβn

t , on O,

v(0) = 0, θ(0) = 0, on O.

As in the proof of Proposition 4.1, we first estimate the temperature θ and then we
use this estimate for estimating v. Using also (4.19) one can see that the argument in
Step 2 of Proposition 4.1 can be reproduced almost verbatim to get an estimate for v.
Thus it remains to prove the estimate for the temperature. Let us remark that, if α = 0
in (6.2) (i.e. θ also satisfied Neumann boundary conditions), then the estimate for the
temperature can be performed again as in Step 2 Proposition 4.1. In the case α �= 0,
we slightly modify that argument.
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Let τ : 
 → [0, T ] be a stopping time where T ∈ (0,∞). It remains to show
the existence of C0 > 0 independent of (λ, fθ , gθ , τ ) such that any strong solution
θ ∈ L2

P ((0, τ ) × 
; H2
R) ∩ L2

P (
; C([0, τ ]; H1)) to

⎧
⎪⎨

⎪⎩

dθ − �θdt = fθ dt +
∑

n≥1

[
λ(ψn · ∇)θ + gn,θ

]
dβn

t , on O,

θ(0) = 0, on O,

(6.12)

satisfies the estimate

E‖θ‖2L2(0,τ ;H2)
≤ C0E‖ fθ‖2L2(0,τ ;L2)

+ C0E‖gθ‖2L2(0,τ ;H1(�2))
. (6.13)

Let us begin by noticing that, due to Step 1 of Proposition 4.1, there exists C ′
0 > 0

independent of (λ, f , g, τ ) such that

E
[

sup
t∈[0,τ ]

‖θ(t)‖2L2

]
+ E‖θ‖2L2(0,τ ;H1)

≤ C ′
0E‖ fθ‖2L2(0,τ ;L2)

+ C0E‖gθ‖2L2(0,τ ;H1(�2))
.

(6.14)

FollowingStep1ofProposition4.1we set θτ := θ(τ∧·) andweneed an approximation
argument to estimate the gradient of θ . For k ≥ 1, we set Ek := k(1 + k + �R)−1 as
in (4.12) where �R : H2

R ⊆ L2 → L2 is the Laplace operator with Robin boundary
conditions. Set θk := Ekθ and θτ

k := Ekθ
τ . By (6.12), θτ

k is given by

θτ
k (t) =

∫ t

0
1[0,τ ](�θk + Ek fθ )ds +

∑

n≥1

∫ t

0
1[0,τ ]Ek

[
λ(ψn · ∇)θ + gn,θ

]
dβn

s ,

a.s. for all t ∈ [0, T ]. Here we also used that Ek and � commute on H2
R(O).

Set fk := Ek fθ and gn,k := Ek gθ,n . The idea is to apply Itô’s formula to the
functional θk 
→ Fα(ϕ) := ‖∇ϕ‖2

L2(O)
+ α‖ϕ(·, 0)‖2

L2(T2)
. Note that

F′
α(ϕ)ψ = 2

∫

O
∇ϕ · ∇ψ dx + 2α

∫

T2
ϕ(·, 0)ψ(·, 0) dx, for all u, v ∈ H1.

By Itô’s formula applied to Fα , we have a.s. for all t ∈ [0, T ] and k ≥ 1,

Fα

(
θτ

k (t)
) = 2

∫ t

0
1[0,τ ]F′

α(�θk + fk)θk ds

+
∑

n≥1

∫ t

0
1[0,τ ]Fα(Ek [λ(ψ · ∇)θ ] + gn,k) ds

+ 2
∑

n≥1

∫ t

0
1[0,τ ]F′

α(Ek [λ(ψ · ∇)θ ] + gn,k)θk dwn
s =: I k

t + I I k
t + I I I k

t .

(6.15)
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Next, we want to take k → ∞ in the previous identity. To this end, let us recall that
the trace operator H1/2+s � f 
→ f (·, 0) ∈ L2(T2) is bounded for all s > 0. Since
θ ∈ L2((0, τ ) × 
; H2) and Ek → I strongly in H1 = D(�

1/2
R ), it follows that, as

k → ∞,

I I k
t →

∑

n≥1

∫ t

0
1[0,τ ]Fα(λ(ψ · ∇)θ + gn) ds =: I It ,

I I I k
t → 2

∑

n≥1

∫ t

0
1[0,τ ]F′

α(λ(ψ · ∇)θ + gn)θ dwn
s =: I I It ,

where both limits take place in L1(
; C([0, T ])). To analyze I k
t , note that �θk + fk

and θk ∈ H2
R. In particular ∂3θk(·, 0) = −αθk(·, 0) and ∂3θk(·,−h) = 0 both on T

2.
Integrating by parts, one gets a.s. for all t ∈ [0, T ],

I k
t = −2

∫ t

0
1[0,τ ]

∫

O
(�θk + fk)�θk dxds.

Since θ ∈ L2((0, τ ) × 
; H2) and f ∈ L2((0, T ) × 
; L2), as k → ∞

I k
t → −2

∫ t

0
1[0,τ ]

∫

O

(
|�θ |2 + f �θ

)
dxds =: It in L1(
; C([0, T ])).

Taking k → ∞ and afterwards expectations in (6.15), we have

E‖∇θτ (T , ·)‖2L2 + 2E
∫ τ

0
‖�θ‖2L2 ds

≤ 2E
∫ τ

0

∫

O
|�θ f | dxds + |α|E‖θτ (T , ·, 0)‖2L2(T2)

+
∑

n≥1

E
∫ τ

0
‖λ(ψn · ∇)θ + gn‖2L2 ds

+ |α|
∑

n≥1

E
∫ τ

0

∥
∥
∥λ[(ψn · ∇)θ ](·, 0) + gn(·, 0)

∥
∥
∥
2

L2(T2)
ds

(6.16)

where we used that τ ≤ T a.s. and E[I I IT ] = E[I I I0] = 0.
Let us estimate each term on the right hand side of (6.16) separately. Fix ν < ν′ < 2

and let ε > 0 tobe chosen later.Hereν is as inAssumption6.1(5).ByCauchy-Schwartz
and Young’s inequality

E
∫ τ

0

∫

O
|�θ f | dxds ≤ εE

∫ τ

0
‖�θ‖2L2 ds + CεE

∫ τ

0
‖ f ‖2L2 ds.
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Repeating the argument in (4.26), one can check that, for all λ ∈ [0, 1],

E
∫ τ

0

∑

n≥1

‖∇[λ(ψn · ∇)θ + gn]‖2L2 ds

≤ E
∫ τ

0

(
ν′‖�θ‖2L2 + Cν‖gn‖2H1(�2)

)
ds, (6.17)

where one also uses Lemma A.1 with β = α. Thus, by the above mentioned bound-
edness of the trace operator H1/2+s � f 
→ f (·, 0) ∈ L2(T2) for s > 0 and (6.17),

∑

n≥1

E
∫ τ

0

∥
∥
∥λ[(ψn · ∇)θ ](·, 0) + gn(·, 0)

∥
∥
∥
2

L2(T2)
ds

≤ εE
∫ τ

0
‖�θ‖2L2 ds + Cε,ν′E

∫ τ

0

(
‖g‖2H1(�2)

+ ‖θ‖2L2

)
ds.

Analogously, E‖θτ (T , ·, 0)‖2
L2(T2)

≤ εE‖∇θτ (T , ·)‖2
L2 + CεE‖θτ (T , ·)‖2

L2 .
Let ε > 0 be such that ν +2ε(1+|α|) < 2. Using the previous estimates in (6.16),

E
∫ τ

0
‖�θ‖2L2 ds � E

∫ τ

0

(
‖ f ‖2L2 + ‖g‖2H1(�2)

)
ds + E

[

sup
t∈[0,τ ]

‖θ(t)‖2L2

]

where we used that θτ = θ(· ∧ τ) and the implicit constant is independent of
(λ, f , g, τ ). By (6.14), the previous inequality yields (6.13) as desired. ��

6.4 Proof of Theorem 6.4

As in Subsection 5.1, the proof is based on the results in [2, 3], and we reformulate
(6.1)–(6.2) as a stochastic evolution equation on X0 of the form

{
dU + A(·)U dt = F(·, U )dt + (B(·)U + G(·, U ))dB�2(t),

U (0) = (v0, θ0).
(6.18)

Here X0 = L
2 × L2, X1 = H

2
N × H2

R (see (6.5)), B�2 is the �2-cylindrical Brownian
motion associated to (βn)n≥1 (see Eq. (2.2)), (A, B) are as in (6.11) and for U =
(v, θ) ∈ X1

F(·, U ) :=
[
P[(v · ∇H)v + w(v) · ∂3v + Fv(·, v, θ,∇v,∇θ) + Pγ,G(·, v, θ)]

(v · ∇H)θ + w(v)∂3θ + Fθ (·, v, θ)

]

,

G(·, U ) :=
[
(P[Gv,n(·, v)])n≥1
(Gθ,n(·, v, θ))n≥1

]

,
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where w(v) is as in (6.4) and

Pγ,G(·, v) :=
⎛

⎝
∑

n≥1

2∑

m=1

γ �,m
n (t, x)

(
Q[Gv,n(·, v, θ)])m

⎞

⎠

2

�=1

.

It is easy to see that ((v, θ), τ ) is an L2-maximal (resp. -local) solution to (6.1)–
(6.2) (see Definition 6.3) if and only if (U , τ ) where U := (v, θ) is an L2-maximal
(resp. -local) solution to (6.18) in the sense of [2, Definition 4.4].

Theorem 6.4 can be proven as Theorem 3.4 and therefore we only give a sketch of
its proof.

Proof of Theorem 6.4—Sketch By the above discussion and Proposition 6.8, the exis-
tence of an L2-maximal solution to (6.1)–(6.2) satisfying (1) follows from [2, Theorem
4.8] provided assumptions (HF) and (HG) in [2, Sect. 4] hold. To check those assump-
tions, one can argue as in Steps 1–3 of Theorem 3.4.

Finally, (2) follows from [3, Theorem 4.11] and Proposition 6.8. ��

6.5 Proof of Theorem 6.7

The strategy of the proof is similar to the one used for Theorem 3.6. As in the proof
of Theorem 3.6, the global existence result of Theorem 6.7 is a consequence of the
blow-up criterion in Theorem 6.4(2) and the following energy estimate. Recall that
Nk has been defined in (6.7).

Proposition 6.9 (Energy estimate) Let Assumptions 6.1 and 6.5 be satisfied. Let T ∈
(0,∞). Assume that v0 ∈ L∞

F0
(
; H

1) and θ0 ∈ L∞
F0

(
; H1). Let ((v, θ), τ ) be the

L2-maximal strong-strong solution to (6.1) provided by Theorem 6.4. Then there exists
a sequence of stopping times (μk)k≥1 with values in [0, T ] such that μn ≤ τ a.s. for
all k ≥ 1 and for which the following hold.

(1) P(μk = τ ∧ T ) → 1 as k → ∞;
(2) For each k ≥ 1 there exists Ck,T > 0 (possibly depending on v0, v, θ0, θ ) such

that

E[N1(μk; v)] + E[N1(μk; θ)] ≤ Ck,T

(
1 + E‖v0‖2H1 + E‖θ0‖2H1

)
.

Theorem 6.7 follows from Proposition 6.9 in the same way as Theorem 3.6 follows
from Proposition 5.1. To avoid repetitions, we only give a sketch of the proof of
Proposition 6.9, since it is an easy extension of the one given for Proposition 5.1.

Proof of Proposition 6.9—Sketch Let T ∈ (0,∞) be fixed. Reasoning as in the proof
of Lemma 5.2, one can check that there exists CT > 0 independent of v0, v, θ0, θ such
that

E[N0(τ ; v)] + E[N0(τ ; θ)] ≤ CT

(
1 + E‖v0‖2L2 + E‖θ0‖2L2

)
. (6.19)
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The estimate (6.19) and Assumption 6.5(2) yield

∇H

∫ ·

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(·, v, θ,∇v,∇θ) ∈ L2((0, τ ) × 
; L2),

(Gv,n(·, v, θ))n≥1 ∈ L2((0, τ ) × 
; H1(�2)).

(6.20)

Due to (6.20), one can check that the proof of Proposition 5.1 can be repeated also in the
strong-strong setting. In particular, there exists a sequence of stopping times (μ′

k)k≥1
with values in [0, T ] such that, a.s. for all k ≥ 1, one has μ′

k ≤ τ , limk→∞ P(μ′
k =

τ) = 1 and

E[N1(μ
′
k; v)] + E[N0(μ

′
k; θ)] ≤ ck,T

(
1 + E‖v0‖2H1 + E‖θ0‖2L2

)
. (6.21)

where ck,T is a constant (possibly) depending on v0, v and k ≥ 1.
It remains to prove the estimate for N1(τ ; θ). By (6.21) and the above choice

of (μ′
k)k≥1, there exists a sequence of constants (Rk)k≥1 for which the sequence of

stopping times (μk)k≥1 defined as

μk := inf
{
t ∈ [0, μ′

k) : ‖v(t)‖H1 + ‖v‖L2(0,t;H2)

+ ‖θ(t)‖L2 + ‖θ‖L2(0,t;H1) + ‖�‖L2(0,t;L2) ≥ Rk
} ∧ T ,

where inf ∅ := μ′
k and � is as in Assumption 6.5(2), satisfies

lim
k→∞ P(μk = τ) = 1.

By (6.21) and μ′
k ≤ μk , to conclude the proof, it remains to prove that for each k ≥ 1

there exists Ck,T > 0 such that

E[N1(μk; θ)] ≤ Ck,T

(
1 + E‖θ0‖2L2

)
. (6.22)

As usual, to prove (6.22) we employ a localization argument. For each j ≥ 1, let

τ j := inf
{
t ∈ [0, τ ) : ‖θ(t)‖H1 + ‖θ‖L2(0,t;H2) ≥ j

} ∧ T , where inf ∅ := τ.

By the stochastic Gronwall’s lemma [27, Lemma 5.3], to prove (6.22) it remains to
show that there exists Ck > 0 such that for any j ≥ 1 and any stopping times η, ξ

satisfying 0 ≤ η ≤ ξ ≤ τ j ∧ μk a.s. one has

E

[

sup
t∈[η,ξ ]

‖θ(t)‖2H1

]

+ E‖θ‖2L2(η,ξ ;H2)

≤ Ck

(

1 + E‖θ(η)‖2H1 + E
∫ ξ

η

(
1 + ‖v‖2H2

)
‖θ(s)‖2H1 ds

)

.

(6.23)
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Note that [27, Lemma 5.3] is applicable since
∫ μk
0 ‖v‖2

H2 ds ≤ Rk a.s.
To prove (6.23), we collect some useful facts. By Proposition 6.8 and (6.1), there

exists a constant C0 independent of v0, v, θ, θ0, η, ξ, j, k such that

E

[

sup
t∈[η,ξ ]

‖θ(t)‖2H1

]

+ E‖θ‖L2(η,ξ ;H2) ≤ C0E‖θ(η)‖2L2

+ C0E‖Fθ (·, v, θ,∇v,∇θ)‖2L2(η,ξ ;L2)

+ C0E‖(Gθ,n(·, v, θ))n≥1‖2L2(η,ξ ;H1(�2))

+ C0

(
E‖w(v)∂3θ‖2L2(η,ξ ;L2)

+ E‖(v · ∇H)θ‖2L2(η,ξ ;L2)

)
.

(6.24)

It remains to estimate each term on the right hand side of the previous inequality. Let
us begin by noticing that (6.19) and Assumption 6.5(2) imply

‖Fθ (·, v, θ,∇v,∇θ)‖L2((0,τ )×
;L2) ≤ Ck,

‖(Gθ,n(·, v, θ))n≥1‖L2((0,τ )×
;H1(�2)) ≤ Ck,
(6.25)

where Ck is independent of η, ξ and j ≥ 1.
Thus it remains to estimate the last two terms on the RHS of (6.24). To this end,

note that by (5.4) and the fact that ξ ≤ μk a.s.,

‖w(v)‖L∞(−h,0;L4(T2)) � ‖v‖H3/2

� ‖v‖1/2
H1 ‖v‖1/2

H2 ≤ R1/2
k ‖v‖1/2

H2 , a.e. on [η, ξ ] × 
.
(6.26)

Moreover, by the Sobolev embedding H1 ↪→ L6, we get

sup
t∈[0,μk ]

‖v(t)‖L6 � Rk a.s. (6.27)

Using the interpolation inequality ‖∇θ‖L2(−h,0;L4(T2)) � ‖θ‖H3/2 � ‖θ‖1/2
H1 ‖θ‖1/2

H2 ,
we have

E‖w(v)∂3θ‖2L2(η,ξ ;L2)

(6.26)

�Rk E
∫ ξ

η

‖v‖H2‖∇θ‖2L2(−h,0;L4(T2))
ds

≤ CkE
∫ ξ

η

‖v‖2H2‖θ‖2H1 ds + 1

4C0
E‖θ‖2L2(η,ξ ;H2)

.

(6.28)

Finally, by (6.27) and the interpolation inequality ‖∇θ‖L3 � ‖θ‖1/2
H1 ‖θ‖1/2

H2 , we have

E‖(v · ∇H)θ‖2L2(η,ξ ;L2)
≤ E

∫ ξ

η

‖v‖2L6‖θ‖2H1,3 ds

≤ CkE
∫ ξ

η

‖θ‖2H1 ds + 1

4C0
E‖θ‖2L2(η,ξ ;H2)

.

(6.29)
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Using the estimates (6.25), (6.28) and (6.29) in (6.24), one sees that (6.23) follows. As
mentioned above, one can check that the stochastic Gronwall’s lemma in [27, Lemma
5.3] and (6.23) already imply (6.22). ��

7 Inhomogeneous viscosity and conductivity

In this section we show how the results of the Sects. 3 and 6 can be extended to the
case where the Laplacians � appearing in the first two equations in (2.4) are replaced
by elliptic second order differential operators with (t, ω, x)-dependent coefficients
which will be denoted by Lv and Lθ , respectively. In the strong-weak setting, to
accommodate the weak setting for the θ -equation, Lθ is chosen to be a differential
operator in divergence form.

Differential operators with (t, ω, x)-dependent coefficients can be useful to model
inhomogeneous viscosity of the fluid and/or thermal conductivity. Moreover, if one
considers the stochastic primitive equations with transport noise in Stratonovich form
(see Sect. 8 below), then differential operators with (t, ω, x)-dependent coefficients
appears naturally, and the principal part of such operators have coefficients

ai, j
φ := δi, j + 1

2

∑

n≥1

φ
j
nφi

n, and ai, j
ψ := δi, j + 1

2

∑

n≥1

ψ
j

n ψ i
n, (7.1)

respectively. Here δi, j is Kronecker’s delta and i, j ∈ {1, 2, 3}. Let us stress that the
Stratonovich formulation is often used in the physical literature (see e.g. [20, 31, 49])
and can be studied using Itô’s calculus by translating the Strotonivch integration into
an Itô’s ones plus additional correction terms. Such correction terms lead to consider
the system (2.4) modified to include variable viscosity and conductivity given by (7.1).

This section is organized as follows. In Sect. 7.1 we state our main results on the
stochastic primitive equations in the strong-weak setting and in Sect. 7.2 we provide
the corresponding proofs. For brevity, we do not state any result in the strong-strong
setting. However, the latter situation can be handled by extending the estimates for
the strong-weak setting as we shown in Sect. 6 for the case of homogeneous viscosity
and/or conductivity, see Remark 7.6 below for more comments.

7.1 The strong-weak setting

Here we extend the results of Sect. 3 to the case of variable viscosity and/or conduc-
tivity. More precisely, here we consider the primitive equations with transport noise
in the strong-weak setting:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − P[Lvv] dt = P

[
− (v · ∇H)v − w(v)∂3v + Pγ (·, v)

+∇H

∫ ·

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(·, v, θ,∇v)

]
dt

+
∑

n≥1

P

[
(φn · ∇)v + Gv,n(·, v)

]
dβn

t ,

dθ − Lθ θ dt =
[

− (v · ∇H)θ − w(v)∂3θ + Fθ (·, v, θ,∇v)
]
dt

+
∑

n≥1

[
(ψn · ∇)θ + Gθ,n(·, v, θ,∇v)

]
dβn

t ,

v(·, 0) = v0, θ(·, 0) = θ0,

(7.2)

on O = T
2 × (−h, 0) complemented with the following boundary conditions

∂3v(·,−h) = ∂3v(·, 0) = 0 on T
2,

∂3θ(·,−h) = ∂3θ(·, 0) + αθ(·, 0) = 0 on T
2.

(7.3)

Here Pγ (·, v) and w(v) are as in (3.3) and (2.3), respectively, and

Lvv =
3∑

i, j=1

ai, j
v ∂2i, jv +

3∑

j=1

b j
v∂ jv, Lθ θ =

3∑

i, j=1

∂i (a
i, j
θ ∂ jθ) +

3∑

j=1

b j
θ ∂ jθ.

(7.4)

here 0-th order terms in (7.4) can be added as well under suitable integrability con-
ditions on the coefficients. Since it turns out not to be useful when dealing with the
primitive equations with Stratonovich noise (see Sect. 8), we will not consider such
terms.

To show local existence for (7.2)–(7.3) we employ the following

Assumption 7.1 Let Assumption 3.1(1)–(4) and (6)–(7) be satisfied. Suppose that
there exist K , η > 0 for which the following hold.

(1) For all i, j ∈ {1, 2, 3},

ai, j
v , ai, j

θ : R+ × 
 × O → R

are P ⊗ B-measurable. Moreover, ai, j
v = a j,i

v for all i, j ∈ {1, 2, 3};
(2) a.s. for all t ∈ R and i, j ∈ {1, 2, 3},

∥
∥
∥ai, j

v (t, ·)
∥
∥
∥

H1,3+η(O)
+
∥
∥
∥ai, j

θ (t, ·)
∥
∥
∥

C(O)
≤ K ,
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∥
∥
∥b j

v(t, ·)
∥
∥
∥

L3+η(O)
+
∥
∥
∥b j

θ (t, ·)
∥
∥
∥

L3+η(O)
≤ K ;

(3) a.s. for all t ∈ R+, xH ∈ T
2 and j ∈ {1, 2},

∥
∥
∥a3, j

v (t, ·, 0)
∥
∥
∥

H
1
2+η

(T2)
≤ K , and a3, j

θ (t, xH, 0) = a3, j
θ (t, xH,−h) = 0;

(4) There exists ν > 0 such that, a.s. for all t ∈ R, x ∈ O and ξ ∈ R
d ,

3∑

i, j=1

⎛

⎝ai, j
v (t, x) − 1

2

∑

n≥1

φ
j
n (t, x)φi

n(t, x)

⎞

⎠ ξiξ j ≥ ν|ξ |2,

3∑

i, j=1

⎛

⎝ai, j
θ (t, x) − 1

2

∑

n≥1

ψ
j

n (t, x)ψ i
n(t, x)

⎞

⎠ ξiξ j ≥ ν|ξ |2.

Comments onAssumption 3.1 can be found inRemark 3.2. Let us collect some remarks
on Assumption 7.1 in the following

Remark 7.2 (a) ByAssumption 7.1(2) and Sobolev embeddings, for all i, j ∈ {1, 2, 3}
we have

‖ai, j
v (t, ·)‖

C
(
O
) �η K , a.s. for all t ∈ R+;

(b) The regularity assumption on the trace ai, j
v (t, ·, 0) in Assumption 7.1(3) is moti-

vated by Lemma A.2 which will be needed in the proofs of the results below;
(c) Assumption 7.1(4) is the usual stochastic parabolicity condition, cf. Remark 3.2(c).

The notion of L2-maximal strong-weak solution to (7.2)–(7.3) can be defined as in
Definition 3.3 where the weak Robin Laplacian �w

R has to be substitute by the weak
formulation of Lθ , which will be denoted by Lw

θ and it is defined as

〈Lw
θ (t)θ, ϕ〉 := −

∫

O

⎛

⎝
3∑

i, j=1

ai, j (t, ·)∂ jθ∂iϕ +
3∑

j=1

b j
θ (t, ·)(∂ jθ) ϕ

⎞

⎠ dx

− α

∫

T2
a3,3(t, ·, 0)θ(·, 0)ϕ(·, 0) dxH,

(7.5)

for all θ, ϕ ∈ H1(O) and t ∈ R+. Here 〈·, ·〉 denotes the pairing in the duality
(H1(O))∗×H1(O). Note that the above formula is consistentwith a formal integration
by part using (7.3) and the second statement in Assumption 7.1(3).

The following is an extension of Theorem 3.4. Recall that H
2
N and Nk are as in

(3.7) and (3.9), respectively.
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Theorem 7.3 (Local existence - Inhomogeneous viscosity and/or conductivity) Let
Assumption 7.1 be satisfied. Then for each

v0 ∈ L0
F0

(
; H
1(O)), and θ0 ∈ L0

F0
(
; L2(O)), (7.6)

there exists an L2-maximal strong-weak solution ((v, θ), τ ) to (7.2)–(7.3) such that
τ > 0 a.s. Moreover:

(1) (v, θ) ∈ L2
loc([0, τ ); H

2
N(O) × H1(O)) ∩ C([0, τ ); H

1(O) × L2(O)) a.s.;

(2) P
(
τ < T , N1(τ ; v) + N0(τ ; θ) < ∞) = 0 for all T ∈ (0,∞).

As in Sect. 3.2, for global existence we need additional assumptions.

Assumption 7.4 Let Assumption 3.5 be satisfied. Suppose that

(1) a.s. for all n ≥ 1, x = (xH, x3) ∈ T
2 × (−h, 0) = O and t ∈ R+,

ai, j
v (t, x), b j

v(t, x) are independent of x3 where i, j ∈ {1, 2}.

(2) a.s. for all n ≥ 1, xH ∈ T
2 and t ∈ R+,

a3, j
v (t, xH, 0) = a3, j

v (t, xH,−h) = 0, where j ∈ {1, 2}.

Remarks on Assumption 3.5 can be found in Remark 3.7. Note that Assumption
7.4(1) is the analogue of Assumption 3.5(1). Note that Assumption 7.4(2) implies the
first condition in Assumption 7.1(3), and it will be needed to extend the L2-estimate
of Lemma 5.2 to the case of inhomogeneous viscosity and/or conductivity.

The following is an extension of Theorem 3.6.

Theorem 7.5 (Global existence—Inhomogeneous viscosity and/or conductivity) Let
Assumptions 7.1 and 7.4 be satisfied. Let (v0, θ0) be as in (7.6). Then the L2-maximal
strong-weak solution ((v, θ), τ ) to (7.2)–(7.3) provided by Theorem 7.3 is global in
time, i.e. τ = ∞ a.s.

The proofs of Theorems 7.3 and 7.5 are given in Subsection 7.2 below and consist of
a variation of the one in Sect. 5 given for Theorems 3.4 and 3.6. The major difference
is that we will use the Kaldec’s formula in Lemma A.2 instead of the one in Lemma
A.1.

Remark 7.6 (Inhomogeneous viscosity and/or conductivity—Strong-strong setting)
As in Sect. 6, one sees that the results of Theorems 7.3 and 7.5 extend to the strong-
strong setting under the following minor modifications:

(a) The local existence result of Theorem 7.3 holds provided we take into account the
following modifications.

• The symmetry assumption ai, j
θ = a j,i

θ for all i, j ∈ {1, 2, 3} is added.
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• The regularity assumptions on ψn and a3, j
θ in Assumptions 3.1(2) and 7.1(2)

are strengthened to, a.s. for all t ∈ R+ and j, k ∈ {1, 2, 3},

∥
∥
∥ai, j

θ (t, ·)
∥
∥
∥

H1,3+η(O)
+
∥
∥
∥(ψ

j
n (t, ·))n≥1

∥
∥
∥

H1,3+η(O;�2) ≤ K . (7.7)

• The second condition in Assumption 7.1(3) is replaced by, a.s. for all t ∈ R+
and j ∈ {1, 2},

∥
∥
∥a3, j

θ (t, ·, 0)
∥
∥
∥

H
1
2+η

(T2)
+
∥
∥
∥a3, j

θ (t, ·,−h)

∥
∥
∥

H
1
2+η

(T2)
≤ K . (7.8)

• Assumption 3.1(6)–(7) has to be replaced by Assumption 6.1(5)–(6).

Note that (7.7) (resp. (7.8)) is stronger (resp. weaker) than the corresponding
assumption in the strong-weak setting. Let us stress that (7.8) is enough in the
strong setting for the local existence to hold due to the modified Kadlec’s formula
of Lemma A.2 below, cf. the proof of Theorem 7.3;

(b) The global existence results of Theorem 7.5 also holds for (7.2)–(7.3) provided
Assumptions 7.1 and 7.4 are satisfied, Assumption 3.5(2) is replaced by Assump-
tion 6.5(2), and also (7.7) holds.

7.2 Proof of Theorems 7.3 and 7.5

In this subsection we collect the proofs of Theorems 7.3 and 7.5. As the arguments are
similar to the one used for Theorems 3.4 and 3.6, respectively, we only give a sketch.

Proof of Theorem 7.3—Sketch To prove Theorem 7.3 one can follow verbatim the one
of Theorem 3.4 using the results in [2, 3] once the stochastic maximal L2-regularity
result of Proposition 4.1 holds in the present case, namely where �w

R and � are
replaced by Lw

θ and Lv respectively. Let us note that, in the proof of Proposition
4.1, the structure of the operators plays a role in the integration by parts arguments
used. Below, we provide some comments which allows one to extend the argument
given in Proposition 4.1 for the case of homogeneous viscosity and/or conductivity.
In particular, as in Proposition 4.1, we will assume that

(v, θ) ∈ L2
(
(0, τ ) × 
; H

2
N × H1

)
∩ L2

(

; C

(
[0, τ ]; H

1 × L2
))

,

where τ : 
 → [0, T ] is a stopping time and T ∈ (0,∞) is fixed. To begin we
comment how to extend Step 1 in Proposition 4.1. Let Ek be as in (4.12). Note that Ek
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is symmetric since �w
R is self-adjoint. Thus, a.e. on [0, τ ] × 
,

∫

O
Ek[Lw

θ (t)θ(t, ·)]θ(t, x) dx = 〈Lw
θ (t)θ, Ekθ(t, ·)〉

= −α

∫

T2
a3,3(t, xH, 0)θ(xH, 0)(Ekθ)(xH, 0) dxH

−
3∑

i, j=1

∫

O
ai, j (t, x)∂ jθ(t, x)∂i (Ekθ)(t, x) dx

+
3∑

j=1

∫

O
b j
θ (t, x)∂ jθ(t, x) (Ekθ)(t, x) dx

k→∞→ 〈Lw
θ (t)θ, θ(t, ·)〉.

(7.9)

The above estimate and theLebesgue dominated convergence theoremyield an identity
similar to the one in (4.14). Note that, in all the remaining terms in (4.14), the Lebesgue
dominated convergence theorem can be applied since θ ∈ L2((0, τ ) × 
; H1) ∩
L2(
; C([0, τ ]; L2)) by assumption.

Considering the estimate I It in (4.14) (see the estimate before (4.16)), note that,
by Assumption 3.1(3),

∣
∣
∑

n≥1
∑3

i, j=1 ψ
j

n (t, x)ψ i
n(t, x)ξiξ j

∣
∣ ≤ 9M2|ξ |2 a.s. for all

t ∈ R+, x ∈ O and ξ ∈ R
d . Let Rθ := 1+ ν

18M2 > 1. Thus the parabolicity condition
of Assumption 7.1(4) yields, a.s. for all t ∈ R+ and x ∈ O,

Rθ

2

∑

n≥1

ψ
j

n (t, x)ψ i
n(t, x)ξiξ j ≤

3∑

i, j=1

ai, j
θ (t, x)ξiξ j − ν

2
|ξ |2. (7.10)

By (7.9)–(7.10), one can check that (4.16) also holds in the present case where in the
estimates leading to (4.16) one uses (7.10) and Rθ instead of Assumption 3.1(5) and
ν′
ν
, respectively.
Next we give some comments which are useful to extend Step 2 of Proposition

4.1 to the present case. Let us begin by checking that the argument in (7.9) can be
performed also for the v-equation. LetRk := k(k +1+�N)−1 where�N is the strong
Neumann Laplacian on L

2, see (4.6). To this end, note that, integrating by parts, we
have

∫

O
(∇Rk[P(Lvv)]) · ∇v dx

(i)= −
∫

O
Rk[P(Lvv)] · �v dx

k→∞→ −
∫

O
[P(Lvv)] · �v dx

(i i)= −
∫

O
Lvv · �v dx

(7.11)
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a.e. on [0, τ ] × 
. Here in (i) we used the boundary conditions ∂3v(·, 0) =
∂3v(·,−h) = 0 on T

2 and in (i i) we have used that P is self-adjoint and � commutes
with P since v ∈ H

2(O) on [0, τ ] × 
 and satisfies the above mentioned homoge-
neous Neumann boundary conditions. As for (7.9), the limit in (7.11) as k → ∞ holds
a.e. on [0, τ ) × 
 by Lebesgue’s dominated convergence theorem and the fact that
v ∈ L2((0, τ ) × 
; H2) ∩ L2(
; C([0, τ ]; H1)) by assumption.

To extend the estimate in (4.26) similarly as for the θ -equation, note that, by
Assumption 3.1(2) (see Remark 3.2(a)), one sees that (7.10) holds for ψ, aθ replaced
by φ, av with Rv > 1 depending only on K , δ. Thus, one obtains the estimate,

∑

n≥1

‖∇P[(φn · ∇)v]‖2L2 ≤ 2

Rv

3∑

i, j,k=1

∫

O
ai, j
v ∂2i,kv · ∂2j,kv dx + cRv,M‖v‖2L2 .

(7.12)

By the modified Kadlec’s formula of Lemma A.2, one can estimate the first term on
the RHS of (7.12) by 2

R′
v

∫

O Lvv ·�v dx +CK ,η

∫

O |v|2 dx for any 1 < R′
v < Rv and

it can be adsorbed in the LHS of the modified Itô’s identity for ∇vτ due to (7.11) and
that R′

v > 1. ��
Proof of Theorem 7.5—Sketch ToproveTheorem7.5 one can follow the argument used
in Sect. 5.2. Indeed, since the blow-up criteria in Theorem 7.3(2) holds, it remains to
show that the energy estimate of Proposition 5.1 also holds in the case of inhomoge-
neous viscosity and/or conductivity.

Note that the L2-estimate of Lemma 5.2 follows similarly where one also need to
use Assumption 7.4(2) to integrate by parts in the v-equation, cf. (7.5).

Also the content of Lemma 5.3 holds in this case. For simplicity, we consider the
case b j

v ≡ 0, the general case is analogous. To see that Lemma 5.3 also holds in this
case, note that, Assumption 7.4(1) is needed to obtain an equation for v similar to
(5.21) and also in Step 3 where we estimate v3 = ∂3v to get

∫

O
P[Lvv] · ∂23,3v dx

(i)=
∫

O
Lvv · ∂23,3v

(i i)=
3∑

i, j=1

∫

O
ai, j∂ jv3 · ∂iv3 −

2∑

i, j=1

∫

O
(∂ j a

i, j )∂ jv3 · v3 dx,

(7.13)

where in (i) we used that P[Lvv] = Lvv − Q[Lvv] and ∫O Q[Lvv]∂23,3v dx = 0
since Q[Lvv] is independent of x3 and ∂3v(·,−h) = ∂3v(·, 0) = 0 on T

2. While
(i i) follows by the symmetry of the matrix a = (ai, j )3i, j=1 and the fact that, for all

f ∈ C3(O) such that ∂3 f (·,−h) = ∂3 f (·, 0) = 0 on T
2,

∫

O
ai, j∂2i, j f · ∂23,3 f dx = −

∫

O
ai, j∂2i, j,3 f · f3 dx

=
∫

O
ai, j∂2i, j f3 · f3 dx
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= −
∫

O
ai, j∂i f3 · ∂ j f3 −

∫

O
(∂ j a

i, j )∂i f3 · f3 dx

where f3 := ∂3 f and we have used Assumption 7.4(1) in the first integration by part.
As a concluding remark, let us stress that the last terms in (7.13) are of lower-order
type. Indeed, ∂ j ai, j ∈ H1,3+η(O) by Assumption 7.1(2), and one can reason as in the
proof of (4.26) to get, for each ε > 0,

∣
∣
∣

∫

O
(∂ j a

i, j )∂ jv3 · v3 dx
∣
∣
∣ ≤ ε‖∇v3‖2L2 + Cε,K ,η‖v3‖2L2 ,

where K is as in Assumption 7.4(2).
Having extended Lemmas 5.2 and 5.3, the extension of the Proposition 5.1 in the

present case follows verbatim from the one given in Sect. 5.2 since Proposition 4.1
holds also in the case of inhomogeneous viscosity and/or conductivity (cf. the proof
of Theorem 7.3). ��

8 Transport noise of Stratonovich type

In this section we show how the results of the previous section also covers the situation
where the primitive equations are perturbed by a transport noise in Stratonovich form.
More precisely, here we consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv − �v dt = P

[
− (v · ∇H)v − w(v)∂3v+∇H

∫ ·

−h
(κ(·, ζ )θ(·, ζ )) dζ + Fv(·, v, θ)

]
dt

+
∑

n≥1

P[(φn · ∇)v] ◦ dβn
t , on O,

dθ − �θ dt =
[

− (v · ∇H)θ − w(v)∂3θ + Fθ (·, v, θ)
]
dt+

∑

n≥1

(ψn · ∇)θ ◦ dβn
t , on O,

v(·, 0) = v0, θ(·, 0) = θ0, on O,

(8.1)

where ◦ denotes the Stratonovich integration (see e.g. [21]) and, as above, (8.1) is
complemented with the following boundary conditions

∂3v(·,−h) = ∂3v(·, 0) = 0 on T
2,

∂3θ(·,−h) = ∂3θ(·, 0) + αθ(·, 0) = 0 on T
2.

(8.2)

In order to make this section as clear as possible, in contrast to Sects. 3, 6 and 7, in
(8.1) we do not consider lower order terms in the stochastic part keeping only the
transport terms (φn ·∇)v ◦dβn

t and (ψn ·∇)θ ◦dβn
t which are the most relevant from a

physical point of view (see [4, 42, 43] and the references therein) and mathematically
the lower order terms are easier to handle. However, our methods can be also extended
to the case of lower-order stochastic perturbations.

As common in SPDEs, the Stratonovich integration in P[(φn · ∇)v] ◦ dβn
t and

(ψn · ∇)θ ◦ dβn
t will be understood as an Itô’s ones plus some correction terms.
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As remarked at the beginning of Sect. 7 latter terms yield (in general) non-constant
viscosity and/or conductivity and therefore (8.1) fits into the scheme of such section.

This section is organized as follows. In Sect. 8.1 we study the equations (8.1)–(8.2)
in the strong-weak setting and in Subsection 8.2 we provide the corresponding proofs.
For brevity, we do not give the explicit statements in the strong-strong setting. The
modifications needed in the latter situation is commented on in Remark 8.7 below.

8.1 The strong-weak setting in the Stratonovich case

Here we analyze (8.1)–(8.2) in the strong-weak setting under the following

Assumption 8.1 There exists M, δ > 0 for which the following hold.

(1) For all n ≥ 1 and j ∈ {1, 2, 3}, φ j
n , ψ

j
n : 
 ×O → R and κ : R+ × 
 ×O → R

are F0 ⊗ B-measurable and P ⊗ B-measurable, respectively;
(2) a.s. for all t ∈ R+, x ∈ O and j, k ∈ {1, 2, 3},

∥
∥
∥

(∑

n≥1

|φ j
n |2
)1/2∥∥

∥
L3+δ(O)

+
∥
∥
∥

(∑

n≥1

|∂kφ
j
n |2
)1/2∥∥

∥
L3+δ(O)

≤ M,

(∑

n≥1

|ψ j
n (x)|2

)1/2 +
∥
∥
∥

(∑

n≥1

|divψn|2
)1/2∥∥

∥
L3+δ(O)

≤ M,

where divψn = ∑3
j=1 ∂ jψ

j
n ;

(3) a.s. for all t ∈ R+, xH ∈ T
2, j ∈ {1, 2, 3} and i ∈ {1, 2},

‖κ(t, xH, ·)‖L2(−h,0) + ‖∂iκ(t, ·)‖L2+δ(T2;L2(−h,0)) ≤ M;

(4) a.s. for all n ≥ 1, x = (xH, x3) ∈ T
2 × (−h, 0) = O and j ∈ {1, 2},

φ
j
n (x) is independent of x3.

(5) a.s. for all n ≥ 1 and j ∈ {1, 2},
∥
∥
∥
∑

n≥1

φ
j
n (·, 0)φ3

n(·, 0)
∥
∥
∥

H
1
2+δ

(T2)
+
∥
∥
∥
∑

n≥1

φ
j
n (·,−h)φ3

n(·,−h)

∥
∥
∥

H
1
2+δ

(T2)
≤ M;

(6) a.s. for all n ≥ 1 and xH ∈ T
2,

ψ3
n (xH, 0) = ψ3

n (xH,−h) = 0;

(7) the maps

Fv : R+ × 
 × R
2 × R

6 × R → R
2,

Fθ : R+ × 
 × R
2 × R

6 × R → R
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are P ⊗ B-measurable. For all T ∈ (0,∞) and i ∈ {1, 2},

Fi
v(·, 0), Fθ (·, 0) ∈ L2((0, T ) × 
 × O).

Finally, for all n ≥ 1, t ∈ R+, x ∈ O, y, y′ ∈ R
2, Y , Y ′ ∈ R

6 and z, z′ ∈ R,

∣
∣Fv(t, x, y, z, Y ) − Fv

(
t, x, y′, z′, Y ′)∣∣+ ∣

∣Fθ (t, x, y, z, Y ) − Fθ

(
t, x, y′, z′, Y ′)∣∣

�
(
1 + |y|4 + |y′|4

)
|y − y′| +

(
1 + |z|2/3 + |z′|2/3

)
|z − z′|

+ (1 + |Y |2/3 + |Y ′|2/3)|Y − Y ′|.

Remark 8.2 Some remark on Assumption 8.1 may be in order.

(a) (1)–(3) should be compared with Assumption 3.1(1)–(4). Note that in (2) a regu-
larity assumption on divψn has been added;

(b) (4) coincide with Assumption 3.5(1) (see also (8.9) below for the choice of γ
�,m
n ).

As explained at the beginning of Sect. 7, the Stratonovich problem (8.1)–(8.2) will
be viewed in the form (7.2)–(7.3) where inhomogeneous viscosity and/or conductivity
is considered. To this end, set aφ = (ai, j

φ )3i, j=1 and aψ = (ai, j
ψ )3i, j=1, where a.s. for

all x ∈ O,

ai, j
φ (x) := δi, j + 1

2

∑

n≥1

φi
n(x)φ

j
n (x), and ai, j

ψ (x) := δi, j + 1

2

∑

n≥1

ψ i
n(x)ψ

j
n (x).

(8.3)

If Assumption 8.1(4) holds, then at least formally one has,

(ψn · ∇)θ ◦ dβn
t = Lψθ dt + (ψn · ∇)θ dβn

t , (8.4)

P[(φn · ∇)v] ◦ dβn
t = P

[
Lφv + Pφv

]
dt + P[(φn · ∇)v] dβn

t , (8.5)

where

Lψθ := div(aψ · ∇θ) dt − 1

2

∑

n≥1

(divψn)[(ψn · ∇)θ ], (8.6)

Lφv :=
3∑

i, j=1

⎛

⎝ai, j
φ ∂2i, jv + 1

2

∑

n≥1

(
∂iφ

j
n

)
φi

n∂ jv

⎞

⎠ , (8.7)

Pφv :=
⎛

⎝
∑

n≥1

2∑

i=1

∂ jφ
i
n(Q[(φn · ∇)v])i

⎞

⎠

2

j=1

, (8.8)

where (Q[(φn · ∇)v])i denotes the i-th component of Q[(φn · ∇)v]. We postpone the
proof of (8.4)–(8.5) to the beginning of Sect. 8.2 below.
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By (8.4)–(8.8), the problem (8.1)–(8.2) is (formally) equivalent to (7.2)–(7.3) with

Gv,n ≡ 0, Gθ,n ≡ 0, a = aφ, a = aψ, γ �,m
n = ∂�φ

m
n ,

b j
v =

∑

n≥1

3∑

i=1

1

2
(∂iφ

j
n )φi

n, and b j
θ = −1

2

∑

n≥1

(divψn)ψ
j

n .
(8.9)

Since (8.1)–(8.2) is in the form (7.2)–(7.3) with the above choice, the notion of L2-
maximal strong-weak solution corresponds to the one of (7.2)–(7.3). In the following
H

2
N and Nk are as in (3.7) and (3.9), respectively.

Theorem 8.3 (Local existence—Stratonovich case) Let Assumption 8.1 be satisfied.
Then for each

v0 ∈ L0
F0

(
; H
1(O)), and θ0 ∈ L0

F0
(
; L2(O)), (8.10)

there exists an L2-maximal strong-weak solution ((v, θ), τ ) to (8.1)–(8.2) such that
τ > 0 a.s. Moreover:

(1) (v, θ) ∈ L2
loc([0, τ ); H

2
N(O) × H1(O)) ∩ C([0, τ ); H

1(O) × L2(O)) a.s.;

(2) P
(
τ < T , N1(τ ; v) + N0(τ ; θ) < ∞

)
= 0 for all T ∈ (0,∞).

As usual, under additional assumptions we obtain a global existence result.

Assumption 8.4 (1) a.s. for all n ≥ 1 and xH ∈ T
2,

φ3
n(xH, 0) = φ3

n(xH,−h) = 0;

(2) There exist C > 0 and � ∈ L0
P (
; L2

loc([0,∞); L2(O))) such that, a.s. for all
t ∈ R+, j ∈ {1, 2, 3}, x ∈ O, y ∈ R

2, z ∈ R and Y ∈ R
6,

|Fv(t, x, y, z, Y )| + |Fθ (t, x, y, z, Y )| ≤ C(�(t, x) + |y| + |z| + |Y |).

Theorem 8.5 (Global existence—Stratonovich case) Let Assumptions 8.1 and 8.4
be satisfied. Let (v0, θ0) be as in (8.10). Then the L2-maximal strong-weak solution
((v, θ), τ ) to (8.1)–(8.2) provided by Theorem 8.3 is global in time, i.e. τ = ∞ a.s.

The proofs of Theorems 8.3 and 8.5 as well as (8.4)–(8.5) will be given in Sect. 8.2
below. We conclude this subsection with a few remarks.

Remark 8.6 Assumption 8.4(1) ensures that φ3
n does not interact with the boundary.

Such assumption will be used to ensure that a3, j
φ (xH, 0) = a3, j

φ (xH,−h) = 0 for all

j ∈ {1, 2} and xH ∈ T
2, cf. Assumption 7.4(2).

Remark 8.7 (The strong-strong setting for (8.1)) By Remark 7.6 in the strong-strong
setting (cf. Sect. 6 for the Itô’s case) the following hold for (8.1)–(8.2):
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(a) The local existence results of Theorem 8.3 also holds for (8.1)–(8.2) also holds in
the strong-strong setting provided Assumptions 8.1 and 8.4 hold and we add the
following modifications:

• The regularity assumptions on ψn in Assumption 8.1(2) are replaced by

‖(ψ j
n )n≥1‖H1,3+δ(O;�2) ≤ M, for all j ∈ {1, 2, 3}; (8.11)

• Assumption 8.1(6) is replaced by, for all j ∈ {1, 2},
∥
∥
∥
∑

n≥1

ψ
j

n (·, 0)ψ3
n (·, 0)

∥
∥
∥

H
1
2+δ

(T2)
+
∥
∥
∥
∑

n≥1

ψ
j

n (·,−h)ψ3
n (·,−h)

∥
∥
∥

H
1
2+δ

(T2)
≤ M .

(8.12)

Note that (8.11) (resp. (8.12)) is stronger (resp. weaker) than the corresponding
assumption in the strong-weak setting;

(b) The global existence results of Theorem 8.5 also holds for (8.1)–(8.2) provided
Assumptions 8.1 and 8.4 are satisfied and also (8.11) holds.

8.2 Proofs of (8.4)–(8.5) and Theorems 8.3 and 8.5

Formal proof of (8.4)–(8.5) To motivate (8.4), recall that

(ψn · ∇)θ ◦ dβn
t = 1

2
(ψn · ∇)[(ψn · ∇)θ ] dt + (ψn · ∇)θ dβn

t . (8.13)

Thus (8.5) follows by noticing that (ψn · ∇) f = div(ψn f ) − (divψ) f for all suffi-
ciently smooth function f .

To motivate (8.5), reasoning as in (8.13) (cf. [18, Chapter 3]), we have

P[(φn · ∇)v] ◦ dβn
t = P[(φn · ∇)v] dβn

t + 1

2
P

[
(φn · ∇)

(
P[(φn · ∇)v])

]
dt .

(8.14)

Next, we rewrite the last term appearing in the RHS of (8.14). To this end, recall that
∇H P̃n = Q[(φn · ∇)v] and P = I − Q (here I denotes the identity operator), cf.
Sect. 2.1. Thus

P

[
(φn · ∇)P[(φn · ∇)v]

]
= P

[
(φn · ∇)[(φn · ∇)v]

]
− P

[
(φn · ∇)∇H P̃n

]
. (8.15)

By the product rule the first term on the right hand side of (8.15) is equivalent to
P[Lφv] dt . It remains to show that the second term on the right hand side of (8.14) is
equivalent to P[Pφv] dt . For j ∈ {1, 2}, note that

(φn · ∇)∂ j P̃n
(i)= (φn,H · ∇H)∂ j P̃n = ∂ j

[
(φn,H · ∇H)P̃n

]−
2∑

i=1

(∂ jφ
i
n)∂i P̃n,
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whereφn,H = (φ1
n , φ2

n) and in (i)we used that P̃n is independent of x3. ByAssumption

8.1(4), one has P

[
∇H[(φn,H · ∇H)P̃n]

]
= PH

[
∇H[(φn,H · ∇H)P̃n]

]
= 0 and therefore

P

[
(φn · ∇)

[∇H P̃n
]] = −

2∑

i=1

P

[
(∇Hφi

n)∂i P̃n

]
.

Since ∂i P̃n = (Q[(φn · ∇)v])i , the previous identity shows that the second term on
the RHS of (8.14) is equivalent to P[Pφv] dt as desired. ��

It remains to prove Theorems 8.3 and 8.5.

Proof of Theorem 8.3 The claim follows from Theorem 7.3 noticing that Assumption
8.1 yield Assumption 7.1 with the choice (8.9). Among others, note that (γ �,m

n )n≥1 =
(∂�φ

m
n )n≥1 ∈ L3+δ(O; �2) by Assumption 8.1(2). ��

Proof of Theorem 8.5 The claim follows from Theorem 7.5 noticing that Assumption
7.4 are satisfied with the choice (8.9) due to Assumption 8.4. In particular, note that
Assumption 8.1(4) and 8.4(1) ensure that Assumption 7.4(1) and (2) hold, respectively.
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Appendix A. Kadlec’s formulas

The following was used to prove Propositions 4.1 and 6.8. Below ∇H = (∂1, ∂2).

Lemma A.1 (Kadlec’s formula) Let O = T
2 × (−h, 0) for some h > 0. Let β ∈ R

and f ∈ H2(O) be such that ∂3 f (·,−h) = ∂3 f (·, 0) + β f (·, 0) = 0 on T
2. Then

3∑

i, j=1

∫

O
|∂2i, j f |2 dx =

∫

O
|� f |2 dx − 2β

∫

T2
|∇H f (·, 0)|2 dx .
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In particular, for all ε ∈ (0, 1) there exists C(ε) > 0 independent of f such that

3∑

i, j=1

∫

O

∣
∣
∣∂

2
i, j f

∣
∣
∣
2

dx ≤ (1 + ε)

∫

O
|� f |2 dx + Cε

∫

O
| f |2 dx .

LemmaA.1 iswell-known to experts and actually holds undermore general assump-
tion on the domain. For the sake of completeness we provide a proof.

Proof of LemmaA.1 SinceO is a smoothmanifoldwith boundary, by a standard density
argument we may assume f ∈ C3(O). Note that, for i, j ∈ {1, 2}, integrating by parts
we have due to the periodicity in the horizontal directions that

∫

O
∂2i, j f ∂2i, j f dx = −

∫

O
∂3i, j, j f ∂i f dx =

∫

O
∂2i,i f ∂2j, j f dx,

and using that ∂3 f (·,−h) = ∂3 f (·, 0) + β f (·, 0) = 0 on T
2,

∫

O
∂23, j f ∂23, j f dx = −

∫

O
∂33, j, j f ∂3 f dx

= −
∫

T2

[
∂2j, j f ∂3 f

]x3=0

x3=−h
dxH +

∫

O
∂2j, j f ∂23,3 f dx

= β

∫

T2
∂2j j f (·, 0) f (·, 0) dxH +

∫

O
∂2j, j f ∂23,3 f dx

= −β

∫

T2
|∂ j f (·, 0)|2 dxH +

∫

O
∂2j, j f ∂23,3 f dx .

Thus

3∑

i, j=1

‖∂2i, j f ‖2L2(O)

=
2∑

i, j=1

‖∂2i, j f ‖2L2(O)
+ 2

2∑

j=1

‖∂23, j f ‖2L2(O)
+ ‖∂23,3 f ‖2L2(O)

=
∫

O

⎛

⎝
2∑

i, j=1

∂2i,i f ∂2j, j f + 2
2∑

j=1

∂23,3 f ∂2j, j f + |∂23,3 f |2
⎞

⎠ dx − 2β
∫

T2
|∇H f (·, 0)|2 dxH

=
∫

O
|� f |2 dx − 2β

∫

T2
|∇H f (·, 0)|2 dxH.

Recalling that ‖∇H f (·, 0)‖L2(T2) � ‖ f ‖H1+s (O) for any s > 1
2 , the last inequality

follows from a standard interpolation argument. ��
The above argument can be easily extended to prove the following
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Lemma A.2 (Kadlec’s formula II) Let O = T
2 × (−h, 0) for some h > 0. Assume

that there are ai, j : O → R for i, j ∈ {1, 2, 3} and some δ, ν ∈ (0, 1) and M ≥ 1
such that

ai, j = a j,i , ‖ai, j‖H1,3+δ(O) ≤ M, for all i, j ∈ {1, 2, 3}, (A.1)

‖a3, j (·, 0)‖
H

1
2+δ

(T2)
≤ M, for all j ∈ {1, 2}, (A.2)

3∑

i, j=1

ai, jξiξ j ≥ ν|ξ |2, for all ξ ∈ R
d . (A.3)

Let β ∈ R and f ∈ H2(O) be such that ∂3 f (·,−h) = ∂3 f (·, 0) + β f (·, 0) = 0 on
T
2. Then for all ε ∈ (0, 1) there exists C(ε, ν, δ, M) > 0 independent of f such that

3∑

i, j,k=1

∫

O
ai, j∂2i,k f ∂2j,k f dx ≤ (1 + ε)

3∑

i, j=1

∫

O
ai, j∂2i, j f � f dx + C

∫

O
| f |2 dx .

(A.4)

The integrals in (A.4) are well-defined since, by (A.1) and Sobolev embeddings,

‖ai, j‖L∞(O) �δ M . (A.5)

The trace ai, j (·, 0) is well-defined since ai, j ∈ H1,3+δ(O) but the latter only implies
ai, j (·, 0) ∈ H1/2,3+δ(T2) which is not enough for (A.4) to hold.

Proof The proof follows from the argument used in LemmaA.1. As above it is enough
to consider the case f ∈ C3(O). Without loss of generality we assume that δ ∈ (0, 1

4 ).
Step 1: For all η > 0 there exists C1(δ, M, η) > 0 such that for all i, j, k ∈ {1, 2, 3}

∫

O
ai, j∂2i,k f ∂2j,k f dx ≤

(∫

O
ai, j∂2i, j f ∂2k,k f dx + η

∫

O
|D2 f |2 dx

)

+ C1

∫

O
| f |2 dx,

where D2 f := (∂2i, j f )3i, j=1 and |D2 f |2 := ∑3
i, j=1 |∂2i, j f |2.

Let us divide the proof of this step into three sub-steps. Note that in case i = j = k
the claim of Step 1 follows. Hence we will assume either i �= j or j �= k.

Sub-step 1a: Step 1 holds in case k = 3. Since either i �= 3 or j �= 3, without loss of
generality we may assume i �= 3. Integrating by parts and using that ∂3 f (·,−h) = 0,

∫

O
ai, j∂2i, j f ∂23,3 f dx =

∫

T2
ai, j (·, 0)∂2i, j f (·, 0)∂3 f (·, 0) dxH

−
∫

O
∂3ai, j∂2i, j f ∂3 f dx −

∫

O
ai, j∂3i, j,3 f ∂3 f dx .
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Since ∂3 f (·, 0) = −β f (·, 0),
∫

T2
ai, j (·, 0)∂2i, j f (·, 0)∂3 f (·, 0) dxH = −β

∫

T2
ai, j (·, 0)∂2i, j f (·, 0) f (·, 0) dxH,

and by i �= 3,

−
∫

O
ai, j∂3i, j,3 f ∂3 f dx =

∫

O
∂i a

i, j∂2j,3 f ∂3 f +
∫

O
ai, j∂2j,3 f ∂2i,3 f dx .

Thus the above equalities yield

∫

O
ai, j∂2i, j f ∂23,3 f dx = −β

∫

T2
ai, j (·, 0)∂2i, j f (·, 0) f (·, 0) dxH

−
∫

O
∂3ai, j∂2i, j f ∂3 f dx +

∫

O
∂i a

i, j∂2j,3 f ∂3 f

+
∫

O
ai, j∂2j,3 f ∂2i,3 f dx

=: I1 + I2 + I3 +
∫

O
ai, j∂2j,3 f ∂2i,3 f dx .

Let us show that the additional term in the previous estimate are of lower order.

Recall that the trace operator Hs+ 1
2 (O) � f 
→ f (·, 0) ∈ Hs(T2) is bounded for all

s > 0. Thus, the boundary term is lower order since

|I1| �β ‖ai, j (·, 0) f (·, 0)‖
H

1
2+δ

(T2)
‖∂2i, j f (·, 0)‖

H− 1
2−δ

(T2)

�δ ‖ai, j (·, 0) f (·, 0)‖
H

1
2+δ

(T2)
‖ f (·, 0)‖

H
3
2−δ

(T2)

�δ

(
‖ai, j (·, 0)‖

H
1
2+δ

(T2)
‖ f (·, 0)‖L∞(T2)

+ ‖ai, j (·, 0)‖L∞(T2)‖ f (·, 0)‖
H

1
2+δ

(T2)

)
‖ f (·, 0)‖

H
3
2−δ

(T2)
�δ,M ‖ f ‖2H2−δ ,

where in the last inequality we used (A.2), (A.5) and that

‖ f (·, 0)‖L∞(T2) �δ ‖ f (·, 0)‖H1+δ(T2) � ‖ f ‖
H

3
2+δ

(δ< 1
4 )

� ‖ f ‖H2−δ .

Let � ∈ (2, 6) be such that 1
3+δ

+ 1
�

= 1
2 . Then there exists δ′ > 0 such that

H1−δ′
(O) ↪→ L�(O), and by Hölder inequality,

|I2|+|I3|�
∥
∥|∇ai, j ||∇ f |∥∥L2‖D2 f ‖L2 � ‖∇ai, j‖L3+δ‖ f ‖H2−δ′ ‖D2 f ‖L2 . (A.6)

The previous estimates show that I1, I2 and I3 are lower order terms w.r.t. ‖ f ‖H2 .
Thus the claim of Step 1a follows from interpolation and Young inequalities.
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Sub-step 1b: Step 1 holds in case i = j = 3 and k ∈ {1, 2}. Integrating by parts
we have
∫

O
a3,3∂23,3 f ∂2k,k f dx = −

∫

O
a3,3∂33,3,k f ∂k f dx −

∫

O
∂ka3,3∂23,3 f ∂k f dx

(i)= −
∫

T2
a3,3(·, 0)∂23,k f (·, 0)∂k f (·, 0) dxH +

∫

O
∂3a3,3∂23,k f ∂k f dx

+
∫

O
a3,3|∂23,k f |2 dx −

∫

O
∂ka3,3∂23,3 f ∂k f dx

(i i)= −β

∫

O
a3,3(·, 0)|∂k f (·, 0)|2 dxH +

∫

O
∂3a3,3∂23,k f ∂k f dx

+
∫

O
a3,3|∂23,k f |2 dx −

∫

O
∂ka3,3∂23,3 f ∂k f dx

where in (i) and (i i) we used that ∂3,k f (·,−h) = 0 and ∂23,k f (·, 0) = −β∂k f (·, 0)
on T

2, respectively.
Note that, by (A.5), for all s ∈ (0, 1

2 ),

∣
∣
∣

∫

O
a3,3(·, 0)|∂k f (·, 0)|2 dxH

∣
∣
∣ ≤ ‖ai, j‖L∞‖∇ f (·, 0)‖2L2(T2)

�δ M‖ f ‖2H3/2+s

Now, the claim follows from the previous inequalities by repeating the argument in
(A.6) to estimate the remaining terms.

Sub-step 1c: Step 1 holds in case k ∈ {1, 2} and either i �= 3 or j �= 3. Without
loss of generality we assume i �= 3. In the latter case, one can integrate by parts on the
k- and i-coordinates and therefore no boundary terms appear. The claim of Substep
1c follows by repeating the estimates in (A.6).

Step 2: Proof of (A.4). Fix ε ∈ (0, 1) and choose η > 0 such that 1 + ε =
(
1 − 27η

ν

)−1. By ellipticity (A.3),

η

∫

O
|D f |2 dx ≤ η

ν

3∑

i, j,k=1

∫

O
ai, j∂2i,k f ∂2j,k f dx .

Thus, by Step 1 and summing over i, j, k ∈ {1, 2, 3}, we have
(
1 − 27η

ν

) 3∑

i, j,k=1

∫

O
ai, j∂2i,k f ∂2j,k f dx ≤

3∑

i, j=1

∫

O
ai, j∂2i, j f � f dx + C2

∫

O
| f |2 dx

where C2 := 27C1. The above choice of η yields (A.4) with C := C2
(
1 − 27η

ν

)−1. ��
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