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Density of Small Singular Values of the
Shifted Real Ginibre Ensemble

Giorgio Cipolloni , László Erdős and Dominik Schröder

Abstract. We derive a precise asymptotic formula for the density of the
small singular values of the real Ginibre matrix ensemble shifted by a com-
plex parameter z as the dimension tends to infinity. For z away from the
real axis the formula coincides with that for the complex Ginibre ensemble
we derived earlier in Cipolloni et al. (Prob Math Phys 1:101–146, 2020).
On the level of the one-point function of the low lying singular values we
thus confirm the transition from real to complex Ginibre ensembles as the
shift parameter z becomes genuinely complex; the analogous phenome-
non has been well known for eigenvalues. We use the superbosonization
formula (Littelmann et al. in Comm Math Phys 283:343–395, 2008) in
a regime where the main contribution comes from a three dimensional
saddle manifold.

Mathematics Subject Classification. 60B20, 15B52, 68W40.

1. Introduction

The universality paradigm in random matrix theory asserts that the local
eigenvalue statistics of large random matrices depend only on the basic sym-
metry class of the ensemble. In the Hermitian case, this dependence is usually
investigated for the k-point functions starting from k ≥ 2, while the one-point
function is largely insensitive to the symmetry class apart from finite-size cor-
rection terms (see, for example, [26] for GOE/GUE). For non-Hermitian ma-
trices; however, the real axis plays an interesting distinguishing role between
the real and complex ensembles already on the level of the one-point function.
In the simplest Gaussian case this phenomenon has been well known for the
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eigenvalues; in this paper we investigate it for singular values where no explicit
formulas are available.

We consider the real or complex Ginibre ensemble [20], i.e. large N ×
N random matrices X with independent identically distributed (i.i.d) real
or complex Gaussian entries xab. The customary normalization, Exab = 0,
E |xab|2 = N−1, guarantees that the density of eigenvalues of X converges
to the uniform measure on the complex unit disk {z||z| ≤ 1}, known as the
circular law, and that the spectral radius of X converges to 1 with very high
probability (these results also hold for general non-Gaussian matrix elements,
see, for example, [4–7,19,21,28]).

While the distribution of the complex Ginibre eigenvalues is clearly ro-
tationally invariant, the real axis plays a special role for the real Ginibre en-
semble, in particular there are typically ∼ √

N real eigenvalues [16] (see also
the exact formula for having precisely k real eigenvalues in [22]). In fact, all
correlation functions of the Ginibre eigenvalues are explicitly known see [20]
and [25] for the simpler complex case, and [8,15,17,23] for the more involved
real case. The precise formulas reveal a remarkable phenomenon [8, Theorem
11]: the local eigenvalue statistics for real Ginibre matrices coincide with those
for complex Ginibre matrices anywhere in the spectrum away from the real
axis (see also [2]).

To what extent does this phenomenon hold for low lying singular values of
X and their shifted version X −z with a complex parameter z? While singular
values may behave very differently than eigenvalues, intuitively the very small
singular values of X − z are still related to the eigenvalues of X near z, since
z is an eigenvalue of X if and only if X − z has a zero singular value. Hence,
we expect that these small singular values of X − z for z away from the real
axis behave in the same way for real and complex Ginibre matrices. This was
recently proven in [11, Theorem 2.8] for all k-point correlation functions and
even for any i.i.d. (i.e. not necessarily Gaussian) distributed matrix elements
but only in the regime |�z| ∼ 1. In this paper we prove that this phenomenon
holds down to very close to the imaginary axis, |�z| � N−1/2, on the level of
the density (or one-point function) of the singular values using supersymmetric
(SUSY) techniques.

Singular values of X − z coincide with the positive eigenvalues of

Hz :=
(

0 X − z
X∗ − z̄ 0

)
. (1)

Block matrix of this form with the same shift parameter z (interpreted as i-
times the chemical potential) in both off-diagonal blocks is called the chiral
random matrix ensemble [1] and is used to model massless Dirac operators in
Stephanov’s theory [27]. For real z the two models coincide; thus, the chiral
ensemble with very small �z can be considered as a non-Hermitian deforma-
tion of (1); thus, the density of eigenvalues of Hz is the starting point of a
perturbative analysis. We remark that, independently of physics connections,
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Figure 1. Histogram of rescaled smallest singular value
Nσmin(X − z) of X − z in the real (dark grey) and complex
(light grey case). For z = 0 the asymptotic densities 2xe−x2

and (1 + x)e−x2/2−x have been computed by Edelman [14]

in our related paper [12] we also explore the power of our approach in numer-
ical analysis by establishing new bounds on the eigenvector condition number
and on the eigenvector overlaps [9,10,18].

More precisely, we find that in the large N limit the density of the low
lying singular values of X − z for a real Ginibre matrix coincides with that of
the complex Ginibre matrix X as long as |�z| � N−1/2, while it is different
for |�z| ∼ N−1/2, c.f. Fig. 1.

This indicates a transition in the local singular value statistics of X − z
from real to complex as |�z| increases beyond N−1/2, similarly1 to the local
eigenvalue statistics of X.

Technically, we express the averaged trace of the resolvent of (X−z)(X−
z)∗ in terms of contour integrals using the superbosonization formula [24] and
perform the large N limit. This analysis has been carried out for the com-
plex case in [13], now we handle the considerably more involved real case. The
main additional complication stems from the structure of the superbosoniza-
tion formula: the contour integration in the real case involves three integration
variables, two of them are highly convolved and their contours cannot be de-
formed independently; while the complex case has only two variables and the
phase function is decoupled in them. The entire analysis is done at the bottom
of the spectrum of (X −z)(X −z)∗, at a distance comparable with the (square
of the) local spacing of the singular values; hence, our result directly gives
precise information on individual singular values. In this critical regime the
answer does not come simply from a saddle point, but from a genuine three-
fold integral even after the N → ∞ limit is taken. With a careful choice of
the interdependent deformations of the contours we achieve the negative sign
in the real part of the phase function; hence, we can rigorously estimate the
physically irrelevant highly oscillatory integration regimes. Note that the mere

1We remark that [8, Theorem 11] did not explicitly state that the transition takes place for

|�z| � N−1/2, but it can be concluded from its proof.
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existence of such deformation is not guaranteed by any physical principle, let
alone finding them explicitly—this is what we achieve here. A further feature
of our work is that we can handle the bulk, |z| < 1, as well as the edge regime,
|z| ≈ 1, where the scaling changes from N−1 to N−3/4.

Notations and Conventions

For positive quantities f, g we write f � g and f ∼ g if f ≤ Cg or cg ≤ f ≤ Cg,
respectively, for some constants c, C > 0 which are independent of the basic
parameters of the problem N,λ, η̃, δ̃ in (2). For any two positive, possibly N -
dependent, quantities f, g we write f � g to denote that f � N−εg, for some
small ε > 0 (however, this convention will be locally altered within the proof
of Lemma 3.1). We abbreviate the minimum and maximum of real numbers
by a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2. Main Results

We consider the ensemble Y z := (X − z)(X − z)∗ with X ∈ RN×N being
a real Ginibre matrix, i.e. its entries xab are such that

√
Nxab are i.i.d. real

standard Gaussian random variables, and z ∈ C is a fixed complex parameter
such that |z| ≤ 1. We compute the large N asymptotics for the spectral one-
point function ETr(Y z − w)−1, with w = E + i0. The energy E is chosen
to be comparable with the local eigenvalue spacing of Y z, i.e. we study the
small eigenvalues of Y z. The imaginary part of ETr(Y z − w)−1 is the density
of states at the energy E. In particular, we focus on the transitional regime
|�z| ∼ N−1/2 proving that ETr(Y z −w)−1 exhibits a one-parameter family of
behaviours depending on N1/2|�z|. Additionally, we prove that ETr(Y z−w)−1

behaves as in the case of complex Ginibre matrix X for |�z| � N−1/2.
In order to study the transitional regime |�z| ∼ N−1/2, we introduce the

rescaled variables

λ := N3/2(1 ∨ δ̃)E, η̃ := N1/2�z, δ̃ := N1/2δ, (2)

with δ := 1 − |z|2. By [3, Sect. 5] it is easy to see that the level spacing of the
eigenvalues of Y z close to zero is of order

c(N, δ̃) := N−3/2 · (1 ∧ δ̃−1),

i.e. for |z| < 1 is given by N−2δ−1 and for |z| = 1 by N−3/2, which explains the
scaling of λ. The unusual N−3/2 scaling in the edge regime |z| = 1 originates
from the fact that the density of eigenvalues of the Hermitized matrix Hz

in (1) features a cubic cusp singularity that has a natural eigenvalue spacing
N−3/4.

We now state the main technical result on the large N asymptotics of
the one-point function. The main conclusion of the paper will be given as its
Corollary 2.2 afterwards. Note that the formulas (5) are considerably simplified
when δ̃ = 0, i.e. |z| = 1, in particular, the spectral scaling factor becomes
c(N, δ̃ = 0) = N−3/2.
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Theorem 2.1. Let C0, C1 > 0 sufficiently large constants. For any C−1
0 ≤ λ ≤

C0, for η̃ = 0 or C−1
0 ≤ |η̃| ≤ C0, and for δ̃ = 0 or δ̃ ≥ C1 it holds

E
1
N

Tr(Y z − λc(N, δ̃) − i0)−1 = N1/2I(R)(λ, η̃, δ̃) + O
(
1 + δ̃

)
, (3)

where

I(R)(λ, η̃, δ̃) :=
1

4πi

∮
Γ

dξ

∫
Ω

dτ

∫
Λ

da
ξ2a

τ1/2
ef(ξ,λ,δ̃)−g(a,τ,η̃,λ,δ̃)G(a, τ, ξ, η̃, δ̃), (4)

with Γ any contour around 0 in a counter-clockwise direction, Λ any contour
going out from 0 in the direction of eiπ/6 for a while and then going to infinity
in the direction e3πi/5, and Ω any contour in the fourth quadrant going out
from zero in the direction e−iπ/3 and ending in one with an angle eiπ/3, see
Fig. 2. Here

f(ξ, λ, δ̃) := −(1 ∧ δ̃−1)λξ +
1

2ξ2
+

δ̃

ξ
,

g(a, τ, η̃, λ, δ̃) := −(1 ∧ δ̃−1)λa +
2η̃2(1 − τ)

τ
+

2 − τ

2a2τ2
+

δ̃

aτ
,

G(a, τ, ξ, η̃, δ̃) :=
1

a2τξ6
+

2
a3τ2ξ5

+
4 − τ

a4τ3ξ4

+
2

a5τ3ξ3
+

1
a6τ3ξ2

+
1

a2τξ4
+

2
a3τ2ξ3

+
1

a4τ2ξ2
+

2δ̃

a2τξ5
+

4δ̃

a3τ2ξ4
+

4δ̃

a4τ3ξ3

+
2δ̃

a5τ3ξ2
+

4η̃2

a2τ2ξ4
+

4η̃2

a3τ2ξ3

+
4η̃2

a4τ3ξ2
+

4η̃2δ̃

a2τ2ξ3
+

4η̃2δ̃

a3τ2ξ2
.

(5)

The implicit constant in O(·) depends on C0. Moreover, the integral I(R)(λ, η̃, δ̃)
is absolutely convergent and is bounded by C(1 + δ̃) with a constant that de-
pends only on C0 and C1.

In Corollary 2.2 below we study the behaviour of I(R)(λ, η̃, δ̃) in the large
|η̃| regime and we show that, in the large |η̃| limit, I(R)(λ, η̃, δ̃) agrees with the
limiting one-point function I(C)(λ, δ̃) of the complex Ginibre ensemble. We
recall from [13, Eq. (13a)] that the limit analogous to (3) for the complex case
is given by

I(C)(λ, δ̃) :=
1

2πi

∫
dx

∮
dy eh(y)−h(x)H(x, y) (6)

with

H(x, y) :=
1
x3

+
1

x2y
+

1
xy2

+
δ̃

xy
+

δ̃

x2
, h(x) := −(1 ∧ δ̃−1)λx +

δ̃

x
+

1
2x2

.

(7)
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Figure 2. Depiction of the chosen contours

The x-integration is over any contour from 0 to e3iπ/4∞, going out from 0
in the direction of the positive real axis, and the y-integration is over any
contour around 0 in a counter-clockwise direction. It is easy to see that along
such contours the integral is absolutely convergent. Note that the rhs. of (6)
exactly agrees with [13, Eqs. (13a)–(b)] after the change of variables z̃∗x → x
and z̃∗y → y, using the notation therein.

Corollary 2.2. Let I(R)(λ, η̃, δ̃) be defined as in (4), then it holds

lim
|η̃|→+∞

I(R)(λ, η̃, δ̃) = I(C)(λ, δ̃), (8)

for any fixed λ ∈ R+ and δ̃ = 0 or δ̃ ≥ C1.

Remark 2.3. From our analysis in Sect. 3.5 (see (37) later) it actually follows
that I(R)(λ, η̃, δ̃) converges to I(C)(λ, δ̃) with a rate |η̃|−1. Similarly to The-
orem 2.1, the convergence in (8) is uniform in the entire range λ ∈ [C−1

0 , C0]
and δ̃ ∈ {0} ∪ [C1,∞) of the other two parameters.

Remark 2.4. The limiting statement (8) follows by taking the η̃ limit within
the formula (4), i.e. after the N → ∞ limit is taken. However, we believe that
in the regime |η̃| ≥ C, using a computation similar to the ones in Sect. 3.5 and
to the bound [13, Lemmas 6.2–6.4], but this time on the contours Λ, Ω, one
may prove the following stronger result:

E
1
N

Tr(Y z − λ · c(N, δ̃) − i0)−1 = N1/2I(C)(λ, δ̃)

+ O
([

(1 ∨ δ̃) +
1
|η̃|

] (
1 + | log λ|)

)
.

(9)

3. Derivation of the 1-Point Function

Supersymmetric methods, especially the superbosonization formula (see, for
example, [24]), provide an explicit formula for ETr[Y z−w]−1. This was derived
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in [13, Eqs. (34)–(37)], and with the choice w = E + iε with 0 < ε � E � 1,
we have that

ETr[Y z − w]−1 =
N

4πi

∮
dξ

∫ i∞

0

da

∫ 1

0

dτ
ξ2a

τ1/2
eN [f(ξ,w)−g(a,τ,η,w)]GN (a, τ, ξ, η),

(10)

where the ξ-integration is over any counter-clockwise oriented contour around
0 that does not encircle −1, the a,τ -contours are straight lines, and, using the
notation η = �z, the functions f and g are defined by

f(ξ, w) := −wξ + log(1 + ξ) − log ξ − |z|2
1 + ξ

, (11)

g(a, τ, η, w) := −wa +
1
2

log[1 + 2a + a2τ ] − log a − 1
2

log τ

−|z|2(1 + a) − 2η2a2(1 − τ)
1 + 2a + a2τ

. (12)

The fact that the integral in (10) is absolutely convergent follows by the explicit
expressions of f and g in (11), (12). Note that ε in w = E + iε is introduced
only to make the a-integration on the imaginary axis absolutely convergent;
hence, after the contours deformations described in Sect. 3.1 below, for all the
practical purposes we can assume that ε = 0 and so w = E. Indeed, after
deforming the a-contour so that it ends in the second quadrant, i.e. in the
region {a ∈ C : �[a] < 0,�[a] > 0}, we can take the limit ε → 0+ since the
integral in (10) is absolutely convergent for ε = 0. Note that g(a, 1, η, w) =
f(a,w); in particular, we remark that g(a, 1, η, w) is independent of η for any
a ∈ C. Furthermore, the function

GN (a, τ, ξ, η) := G1,N (a, τ, ξ) + G2,N (a, τ, ξ, η) (13)

is given by

G1,N =
(
N2 p2,0,0

a2ξ2(ξ + 1)2τ
− N

p1,0,0

a2ξ2(ξ + 1)τ
+ δN2 p2,0,1

aξ(ξ + 1)2τ

− Nδ
p1,0,1

aξ(ξ + 1)τ
+ N2δ2 p2,0,2

(ξ + 1)2

)
×

(
(a2τ + 2a + 1)2(ξ + 1)2

)−1
,

G2,N =
(
N2η2 p2,2,0

aξ(ξ + 1)3τ
− Nη2 p1,2,0

aξτ
+ N2η2δ

p2,2,1

(ξ + 1)

)

×
(
(a2τ + 2a + 1)2(ξ + 1)2

)−1
,

(14)

where pi,j,k = pi,j,k(a, τ, ξ) are explicit polynomials in a, τ, ξ which we defer
to Appendix B.2 and δ := 1 − |z|2. The indices i, j, k in the definition of pi,j,k

denote the N , η and δ power, respectively. We split GN as the sum of G1,N

and G2,N since G1,N depends only on |z|, whilst G2,N depends explicitly on
η = �z, in particular G2,N = 0 if z ∈ R.

3.1. Choice of the Integration Contours

From now on we only focus on the regime δ̃ = 0, i.e. |z| = 1. The proof in the
case δ̃ ≥ C1 for some large C1 > 0 only requires slightly different choice of
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contours but otherwise the analysis of the integrals on them is analogous and
so we omit the details.

3.1.1. Geometry of {�g > 0} in the Regime |τ | � 1 (see Fig. 3). In the
regime |τ | � 1 there is a transition at |1−τ |η2 = E2/3. In the regime |1−τ |η2 �
E2/3 there is only one relevant length scale of E−1/3. On the contrary in
the regime |1 − τ |η2 � E2/3 there are two relevant length scales E−1/3 �
|1 − τ |η2E−1, the former describing the size of the two connected components
of {�g > 0} close to 0 and the latter describing the distance to the infinite
connected component of {�g > 0} in the direction +∞. In Fig. 3 we present
the level sets of �g for various sizes of |1 − τ | and η.

3.1.2. Geometry of {�g > 0} in the Regime |τ | � 1 for η̃ = 0 (see Fig. 4).
In the regime |τ | � 1 for η̃ = 0 there is a transitions around |τ | = E. For
|τ | � E there are two components of {�g < 0}, one unbounded at a distance
of E−1 to the right of the origin, and a bounded one at a distance of |τ |−1

below the origin. As |τ | approaches E the two components merge but remain
separated from the origin at a distance of |τ |−2/3

E−1/3, see Fig. 4 for an
illustration.

3.1.3. Geometry of {�g > 0} in the Regime |τ | � 1 for η̃ > 0 (see Fig. 5).
For |τ | � 1 and η̃ > 0 there are two components of {�g < 0}, one unbounded
one at a distance of |τ |−1

E−1/3 to the right of the origin, and a bounded one
at the bottom left of the origin. The bounded component is an approximate
disk of diameter |τ |−1 for |τ | � E2/3 and is transformed into a “lying eight”
of diameter |τ |−1/2

E−1/3 as |τ | � E2/3, see Fig. 5 for an illustration.

3.1.4. Deformation of Contours. Now we explain how the contours in (10)
can be deformed. The ξ-contour can be freely deformed as long as it does not
cross 0 and −1. We can deform the τ -contour as long as �[τ ] < 0, then the
a-contour has to be deformed accordingly to ensure the absolute convergence
of the integral. The a-contour at infinity can be freely deformed, independently
of τ , as long as it ends in the second quadrant; on the other hand the way
how it goes out from zero depends on τ . Moreover, along the deformation of
the a-contour we cannot cross the points (−1 ± √

1 − τ)τ−1 which are the
singularities of the term a2τ + 2a + 1 in g and GN . In particular, note that
the τ and a contours cannot be deformed independently: we first deform the
τ -contour and then we deform the a-contour accordingly. In the remainder of
this section we will always deform the integration contours as described above.

Next, we describe how we concretely deform the integration contours
in (10) in accordance with the rules just described. From now on we denote
the ξ-contour by Γ, the τ -contour by Ω, and the a-contour by Λ. In particular,
we choose
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|1 − τ | = 1/2 |1 − τ | = 1/10 |1 − τ | = 1/1000
η̃

�
1

η̃
=

1
η̃
=

1.
3

η̃
=

2

∼ η̃2|1 − τ |E−1/3

Figure 3. Contour plot of �g(·, τ, η̃E1/3, E) for E > 0 for
τ ∈ Ω with |1−τ | ≤ 1/2. The white lines represent the level set
�g(·, τ, η, E) = 0, while the black line represents the contour
rΛ for the a-integration. All figures are on the same scale
E−1/3, except for the bottom left figure which shows the larger
scale E−1/3η̃2|1 − τ |, in addition to the E−1/3 length scale
of the blue figure eight. The solid red colours are applied to
regions where �g > E2/3, while the solid blue colours are
applied to regions where �g < −E2/3
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|τ | = E/5 |τ | = E

∼ |τ |−1

∼ E−1

∼ E−1

|τ | = 10E |τ | � E

∼ |τ |−2/3E−1/3 ∼ |τ |−2/3E−1/3

Figure 4. Contour plot of �g(·, τ, 0, E) for E > 0 for τ ∈ Ω
with |τ | � 1. The solid white lines represent the level set
�g(·, τ, 0, E) = 0, while the solid black line represents the
contour rΛ for the a-integration. The solid red colours are
applied to regions where �g > 1, while the solid blue colours
are applied to regions where �g < −1

Γ := −1
2

+ E−1/3 + E−1/3∂D,

Ω :=
[
0,

1
3
√

3
− i

3

]
∪

( 1
3
√

3
− i

3
, 1 − 1

3
√

3
− i

3

]
∪

(
1 − 1

3
√

3
− i

3
, 1

]
,

Λ :=
[
0, z0

] ∪
(
z0, z0 + e3iπ/5∞

)
, z0 :=

sin(4π/15)
sin(17π/30)

eiπ/6,

(15)

and rescale rΛ with a parameter r > 0 chosen later depending on η̃, τ, E. Here
the interval (0, e3iπ/5∞) is understood as the open half-line going out to ∞ in
the e3iπ/5 direction. Note that the contour Λ is designed such that eiπ/3 ∈ Λ.
According to the geometry of {�g < 0} we choose the scaling parameter

r = r(η̃, E, τ) :=
1

E1/3

(
1
2

+
1

2(E ∨ |τ |)2/3
+

η̃2

|τ |
)

. (16)

We note there is a lot of freedom in the choice of contours. In particular, it
would not be necessary to choose the contour Γ mono-parametrically with a
scaling factor depending only on E, and similarly the contour rΛ with a single
scaling factor depending on E, τ, η̃. For example, in certain parameter regimes
it would be possible to have a Λ-contour going out from the origin directly
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|τ | � E2/3 |τ | = E2/3

|τ |−1

|τ |−1E−1/3

|τ |−1

|τ |−1E−1/3

|τ | = 100E2/3 1 � |τ | � E2/3

|τ |−1/2E−1/3

|τ |−1E−1/3

|τ |−1/2E−1/3

|τ |−1E−1/3

Figure 5. Contour plot of �g(·, τ, η̃E1/3, E) for 0 ≤ E � 1
and η̃ > 0 for τ ∈ Ω with |τ | � 1. The solid white lines
represent the level set �g(·, τ, η̃E1/3, E) = 0, while the solid
black line represents the contour rΛ for the a-integration. The
solid red colours are applied to regions where �g > 1, while
the solid blue colours are applied to regions where �g < −1

in a north-western direction without the first segment in the north-eastern
direction, c.f. Fig. 4. We nevertheless chose our contours in a mono-parametric
way as this makes it easier to check the fact that �g > 0 on the entire contours
by differentiation. We also note that there is some room in the chosen angles
and lengths with the only hard constraint being imposed by the saddle in the
right column of Fig. 3. The latter is ensured by the requirement that eiπ/3 ∈ Λ
which explains the seemingly complicated choice of z0 in (15).

We can thus rewrite (10) as

ETr[Y z − w]−1 =
N

4πi

∮
Γ

dξ

∫
Ω

dτ

∫
rΛ

da
ξ2a

τ1/2
eN [f(ξ,w)−g(a,τ,η,w)]GN (a, τ, ξ, η).

(17)

In the following we split the computation of the leading term of (17) into
two parts: (i) in Sect. 3.2 we deal with the regime when either |ξ| ≤ Nω or
|aτ | ≤ N2ω or |τ | ≤ N−ω, for some small fixed ω > 0, (ii) in Sect. 3.3 we deal
with the complementary regime when |ξ| and |aτ | are bigger than Nω and
|τ | > N−ω.
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3.2. Small |ξ| or small |aτ | or small |τ | regime

By the explicit form of the phase functions f(ξ, E) and g(a, τ, η, E) in (11),
(12) it follows that the contribution to (10) of the small |ξ| and |aτ | regimes is
negligible; in particular, the smallness comes from the logarithmic factors in
the phase functions. This is made rigorous in Lemma 3.1. For this purpose we
define the contours

Γ̃ : = {ξ ∈ Γ : |ξ| ≤ Nω},

Λ̃ : = {a ∈ rΛ : |a| ≤ N2ω|τ |−1},

Ω̃ : = {τ ∈ Ω : |τ | ≤ N−ω}, (18)

for some small fixed ω > 0. Note that rΛ \ Λ̃ is always connected.

Lemma 3.1. Let f, g,GN be defined in (11)–(14), and let Γ̃, Ω̃, Λ̃ be the con-
tours defined in (18), then for any large constant C4 > 0, for any E = λN−3/2,
with C−1

4 ≤ λ ≤ C4, and for any η̃ = 0 or C−1
4 ≤ |η̃| ≤ C4, we have that∣∣∣∣∣

(∮
Γ

dξ
∫

Ω

dτ
∫

rΛ

da −
∮

Γ\Γ̃

dξ
∫

Ω\Ω̃

dτ
∫

rΛ\Λ̃

da

)

[
eN [f(ξ,E)−g(a,τ,η,E)] aξ2

τ1/2
GN (a, τ, ξ, z)

]∣∣∣∣ ≤ Ce−Nω/10
.

(19)

The constant C > 0 only depends on C4.

Proof. The proof relies on two quantitative lower bounds on �g outlined in
the following lemmata, the proofs of which we defer to Appendix A. Within
these Lemmas and their proofs we deviate from our general convention and
the notation f � g means that f ≤ cg for a sufficiently small N -independent
constant c.

Lemma 3.2. For |τ | ≤ N−ε we have the following lower bound on �g which for
clarity we formulate separately depending on the relative sizes of τ, E, a and
whether η̃ = 0 or �= 0.

1. |τ | � E and η̃ = 0, hence r ∼ E−1.
a) |a| ≤ |τ |−1:�g � 1 − log |aτ |
b) |τ |−1

< |a| � E−1:�g � 1
c) |a| � E−1:�g � E|a|.

2. |τ | � E and η̃ �= 0, hence r ∼ E−1/3|τ |−1.
a) |a| � E−1 ∧ |τ |−1:�g � 1 − log |aτ |
b) E−1 ∧ |τ |−1 � |a| ≤ |τ |−1:�g � E2/3η̃2|a| − log |aτ |
c) |τ |−1

< |a| � |τ |−1
E−1/3:�g � E2/3η̃2|τ |−1

d) |a| � E−1/3|τ |−1:�g � E|a|.
3. E � |τ | ≤ N−ε and η̃ = 0, hence r ∼ E−1/3|τ |−2/3.

a) |a| � |τ |−1:�g � − log |aτ |
b) |τ |−1 � |a| � E−1/3|τ |−2/3:�g � E2/3|τ |−2/3

c) |a| � E−1/3|τ |−2/3:�g � E|a|.
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4. E � |τ | ≤ N−ε and η̃ �= 0, hence r ∼ E−1/3|τ |−1.
a) |a| � |τ |−1:�g � − log |aτ |
b) |τ |−1 � |a| � E−1/3|τ |−1:�g � E2/3η̃2|τ |−1

c) |a| � E−1/3|τ |−1:�g � E|a|.
Lemma 3.3. For any 1 ≥ |τ | � E with τ ∈ Ω the function

x �→ �g(xeiπ/6, τ, 0, E) (20)

is monotonically decreasing in x for 0 ≤ x � E−1/3. Moreover, for any η ≥ 0,
and any 1 ≥ |τ | � E, 0 ≤ x � E−1/3 we have

�g(xeiπ/6, τ, η, E) ≥ �g(xeiπ/6, τ, 0, E). (21)

We now split the proof of (19) into three parts, we first prove that the
contribution to (17) in the regime τ ∈ Ω̃ is exponentially small uniformly in ξ ∈
Γ and a ∈ rΛ. Then we prove that the regime a ∈ Λ̃ is also exponentially small
for any ξ ∈ Γ and τ ∈ Ω \ Ω̃. Finally, we conclude that also the contribution
for ξ ∈ Γ̃ is negligible.

We start with the regime τ ∈ Ω̃. Similarly to [13, Eq. (97)], using that
|1 + 2a + a2τ | � 1, we have that∣∣∣∣

∮
Γ

GN (a, τ, ξ, z)ξ2eNf(ξ) dξ

∣∣∣∣ � N3

(
1 +

1
|a| +

1
|a|2|τ |

)
. (22)

Then, given, the lower bounds for �g in 1.a–4.c by simple computations
we conclude the following lemma.

Lemma 3.4. For any α, γ ∈ R it holds∫
Ω̃

|dτ |
∫

rΛ

|da| |a|α|τ |−γe−�g(a,τ,η,E) ≤ NC(α,γ)e−Nω/10
, (23)

for some N -independent constant C(α, γ) > 0.

Using the bound in (23) we readily conclude that the contribution of the
regime τ ∈ Ω̃ is exponentially small and so negligible.

We now consider the regime a ∈ Λ̃. We split this regime into two cases:
(i) |a| ≥ N−10, (ii) |a| ≤ N−10. For |a| ≥ N−10, by (22) and Lemma 3.3, we
readily conclude that∫

Ω\Ω̃

|dτ |
∫

Λ̃

|da| |a|α|τ |−γe−�g(a,τ,η,E) ≤ NC(α,γ)e−N1−2ω

. (24)

In the regime |a| ≤ N−10 we conclude a bound as in (24) using the explicit
form of g in (12) and that |τ | ≤ 1. This proves that also the regime a ∈ Λ̃ is
negligible.

Finally, the fact that the regime ξ ∈ Γ̃ is exponentially small, given that
both the regimes τ ∈ Ω̃ and a ∈ Λ̃ are removed, follows exactly as in the proof
[13, Lemma 6.4]. �
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3.3. The regime where |ξ|, |aτ | and |τ | are all large

In the remainder of this section we focus on the regime when |ξ| ≥ Nω, |a| ≥
N2ω|τ |−1 and |τ | ≤ N−ω, and in this regime we expand f(·, E), g(·, τ, η, E), GN

similarly to Eq. (75)-(77) of [13]. By Taylor expansion for large |ξ| and large
|aτ | we have

f(ξ, E) =
[
−Eξ +

1
2ξ2

]
× (

1 + O(|ξ|−1
))

g(a, τ, η, E) =
[
−Ea − 2η2(τ − 1)

τ
+

δ

aτ
+

(2 − τ)
2a2τ2

+
2η2(τ − 5)

a2τ2

]
× (

1 + O (|aτ |−1
))

,

(25)

and2

G1,N (a, τ, ξ, |z|) =

[ ∑
a,β≥2, α+β=8,
γ=min{α−1,3}

c1,α,β,γN2

aατγξβ

− N

a4τ2ξ4
+

∑
α,β≥2, α+β=7,
γ=min{α−1,3}

c2,α,β,γN2δ

aατγξβ

+
∑

a,β≥2, α+β=6,
γ=min{α−1,2}

c3,α,β,γN

aατγξβ
+

∑
α,β≥2,α+β=6
γ=min{α−1,2}

c4,α,β,γN2δ2

aατγξβ

]

× [
1 + O(|aτ |−1 + |ξ|−1

)]
, (26)

G2,N (a, τ, ξ, z) =

[ ∑
α,β≥2, α+β=6,
γ=max{α−1,2}

4N2η2

aατγξβ
+

∑
α,β≥2,α+β=5,
γ=max{α−1,2}

4N2η2δ

aατγξβ

+
∑

α,β=2,3, α+β=5
γ=max{α−1,2}

4Nη2

aατγξβ

]
× [

1 + O(|aτ |−1 + |ξ|−1
)]

, (27)

where ci,α,β,γ ∈ R are defined as in Appendix B.1.

3.4. Proof of Theorem 2.1

We recall that we only prove the case δ̃ = 0; the case δ̃ ≥ C1 is completely
analogous and so omitted. By Lemma 3.1 and (17) we conclude that

E Tr [Y z − w]−1 = N
4πi

∮
Γ\Γ̃

dξ
∫
Ω\Ω̃

dτ∫
rΛ\Λ̃

da ξ2a
τ1/2 eN [f(ξ,w)−g(a,τ,η,w)]GN (a, τ, ξ, η) (28)

2Note that the term − N2

a4τ2ξ4 was erroneously missing in the expansion in [13, Eq. (76)].
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up to an exponentially small error that we will always ignore in the sequel. In
order to compute the leading order of (28) as N goes to infinity, we use the
change of variables

η̃ = N1/2η, λ = N3/2E, a′ = aN−1/2, ξ′ = ξN−1/2, (29)

where a′, ξ′ are the new integration variables. We get that (omitting the primes,
i.e. using the notation a, ξ for the new variables as well to make the notation
simpler)

E Tr [Y z − w]−1

=
N3/2

4πi

∫
N−1/2(Γ\Γ̃)

dξ
∫

Ω\Ω̃

dτ

∫
N−1/2(rΛ\Λ̃)

da
ξ2a

τ1/2
eN [f(ξ,w)−g(a,τ,η,w)]G(a, τ, ξ, η̃)

+ O(N).

(30)

Here we used the asymptotic relations

f(
√

Nξ, λ) = N−1f(ξ, λ)
(

1 + O
(

1
N1/2|ξ|

))
,

g(
√

Na, τ,
√

Nη̃, λ) = N−1g(a, τ, η̃, λ)
(

1 + O
(

1
N1/2|aτ |

))
,

(31)

with f, g, and G defined in (5). The pre-factor N3/2 in the leading term of (3)
follows by a simple power counting: a ∼ N1/2, ξ ∼ N1/2, η ∼ N−1/2, the
volume factor from the Jacobian of the change of variables (29) gives a factor
of N . In order to bound the error term in (31) we also used the following
lemma.

Lemma 3.5. Let f and g be the functions defined in (5). Then for any fixed
α, β, γ ∈ R it holds∫

N−1/2(Γ\Γ̃)

|dξ|
∫

Ω\Ω̃

|dτ |
∫

N−1/2(rΛ\Λ̃)

|da|
∣∣∣∣ 1
aατγξβ

ef(ξ,λ)−g(a,τ,η̃,λ)

∣∣∣∣ ≤ C,

(32)

for some constant C < ∞ which depends only on α, β, γ and on the control
parameters C0, C1 from Theorem 2.1.

Proof. The bound in (32) directly follows from the explicit form of f and g
in (5) and by the fact that on the chosen contours Γ, Ω, rΛ it holds �g > 0,
�f < 0. �

Using Lemma 3.1 once more, we can add back the regimes ξ ∈ N−1/2Γ̃,
τ ∈ Ω̃, a ∈ N−1/2Λ̃ to (31). Hence, using that we can deform the integration
contours by holomorphicity, we conclude (3), (4). The absolute convergence of
I(R)(λ, η̃) follows from Lemma 3.5.
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3.5. The limit |η̃| → +∞.

The main goal of this section is to study the asymptotic of I(R)(λ, η̃, δ̃), defined
in (4), in the limit |η̃| → +∞; in particular we prove that I(R)(λ, η̃, δ̃) converges
to the 1-point function of the shifted complex Ginibre ensemble I(C)(λ, δ̃),
which is defined in (6). To make the presentation clearer, also in this case we
present the proof only for the case δ̃ = 0 and denote I(R)(λ, η̃) := I(R)(λ, η̃, δ̃ =
0).

We recall that by Theorem 2.1 we have

I(R)(λ, η̃) =
1

4πi

∮
Γ

dξ

∫
Ω

dτ

∫
Λ

da
ξ2a

τ1/2
ef(ξ,λ)−f(a,λ)eg(a,1,η̃,λ)−g(a,τ,η̃,λ)G(a, τ, ξ, η̃),

(33)

with Γ, Ω, Λ from Theorem 2.1, where we used that g(a, 1, η̃, λ) = f(a, λ) for
any a ∈ C.

Proof of Corollary 2.2. In this proof we use the notation

Ω̃ := {τ ∈ Ω : |τ | ≤ C|η̃|−1/2}, Λ̃ := {a ∈ Λ : |a| ≤ |η̃|−1/2},

for some large constant C > 0 (note that Ω̃, Λ̃ have already been used in (18)
to denote different segments). Then, similarly to the proof of Lemma 3.1, it
is easy to see that the integral in the regime when either τ ∈ Ω̃ or a ∈ Λ̃ is
bounded by e−c|η̃|1/4

, for some small fixed c > 0. In particular, by (33) we get
that

I
(R)

(λ, η̃) =
1

4πi

∮
Γ

dξ

∫
Λ\Λ̃

da

∫
Ω\Ω̃

dτ
ξ2a

τ1/2
e

f(ξ,λ)−f(a,λ)
e
g(a,1,η̃,λ)−g(a,τ,η̃,λ)

G(a, τ, ξ, η̃)

+ O
(
e
−c|η̃|1/4

)
.

(34)

Note that by the definition of G in (5) the ξ-integral and the (a, τ)-integral
factorize; hence, from now on we will consider only the (a, τ)-integral.

Then, to prove (8), in the following lemma, whose proof is postponed to
the end of this section, we compute the leading order term of the τ -integral
in (34).

Lemma 3.6. For any large constant C0 > 0, and for any fix γ ∈ R, C−1
0 ≤

λ ≤ C0 it holds∫
Ω\Ω̃

τ−γeg(a,1,η̃,λ)−g(a,τ,η̃,λ) dτ =
1

2η̃2
+ O (|η̃|−3

)
, (35)

uniformly in a ∈ Λ \ Λ̃. The implicit constant in O(·) depends on C0.

Next, using (34) and Lemma 3.6, we conclude the proof of Corollary 2.2.
First of all we notice that the leading term in (35) does not depend on
γ, hence after performing the τ -integration the power of τ that appears in
G(a, τ, ξ, η̃) does not matter. For this reason after the τ -integration we con-
sider G(a, 1, ξ, η̃), i.e. for convenience we evaluate G at τ = 1. More precisely,
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by Lemma 3.6 it follows that∫
Ω\Ω̃

1
τ1/2

e−g(a,τ,η̃,λ)G(a, τ, ξ, η̃) dτ

= e−g(a,1,η̃,λ)G(a, 1, ξ, η̃)
(

1
2η̃2

+ O
(

1
|η̃|3

))
. (36)

Then, by (34) together with (36), it follows that

I(R)(λ, η̃) =
1

8πi

∮
Γ

dξ

∫
Λ\Λ̃

da
ξ2a

η̃2
ef(ξ,λ)−f(a,λ)G(a, 1, ξ, η̃) + O (|η̃|−1

)

=
1

2πi

∮
Γ

dξ

∫
Λ

da

(
1

aξ2
+

1
a2ξ

+
1
a3

)
ef(ξ,λ)−f(a,λ) + O (|η̃|−1

)
,

(37)

where in the second equality we used the explicit form of G from (5), and
that we can add back the regime a ∈ Λ̃ at the price of a negligible error. This
concludes the proof of (8). �

We now present the proof of Lemma 3.6.

Proof of Lemma 3.6. From now on we assume that |η̃| ≥ C, for some large
constant C > 0, since we are interested in the asymptotics for |η̃| → +∞.
Additionally, since

g(a, 1, η̃, λ) − g(a, τ, η̃, λ) = −2η̃2(1 − τ)
τ

+
τ2 + τ − 2

2a2τ2
(38)

depends only on η̃2, without loss of generality we assume that η̃ > 0.
Next we split the τ -integral in (35) into two parts: |τ | ∈ [0, 1 − η̃−3/2)

and |τ | ∈ [1 − η̃−3/2, 1], which we denote by Ω1 and Ω2, respectively. It is easy
to see that∣∣∣∣∣

∫
Ω1\Ω̃

τ−γeg(a,1,η̃,λ)−g(a,τ,η̃,λ) dτ

∣∣∣∣∣ �
∫

Ω1\Ω̃

e−cη̃1/2�[τ−1]

|τ |γ dτ � e−cη̃1/2
,

(39)

for some small fixed c > 0, where we used that by (38) we have

�[g(a, 1, η̃, λ) − g(a, τ, η̃, λ)] = −�
[
2η̃2(1 − τ)

τ

(
1 +

2 + τ

4a2τ η̃2

)]
≤ −c�

[
η̃1/2

τ

]
,

for any a ∈ Λ \ Λ̃ and τ ∈ Ω1 \ Ω̃. Hence, in order to conclude the proof, we
are left only with the regime τ ∈ Ω2 and a ∈ Λ \ Λ̃.

Define t(τ) := −e4iπ/32η̃2(1 − τ), hence τ = τ(t) = 1 + te−4iπ/3/(2η̃2),
then we have that

g(a, 1, η̃, λ) − g(a, τ(t), η̃, λ) = te−4iπ/3 + O
(

t

η̃2
+

t

|a|2η̃2

)
,
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and so that∫
Ω2

eg(a,1,η̃,λ)−g(a,τ,η̃,λ) dτ =
e−4iπ/3

2η̃2

∫ t(τ0)

0

ete−4iπ/3
[
1 +O

(
t

η̃2
+

t

|a|2η̃2

)]
dt

=
1

2η̃2
+O

(
1

|η̃|3
)

,

(40)

where τ0 := {|τ | = 1 − η̃−3/2} ∩ Ω, and in the last equality we used that
|a|−2 ≤ η̃. Combining (39), (40) we conclude (35). �
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Appendix A. Additional Technical Results

Proof of Lemma 3.2. The proofs of all lower bounds are similar, hence we will
not provide details for all of them. For definiteness we will prove cases 1.a 1.b
and 1.c since those already demonstrate the qualitatively different |aτ | � 1,
|aτ | ∼ 1 and |aτ | � 1 regimes.

Proof of 1.a-1.b. First consider the |a| � |τ |−1 case (note that this relation
is necessarily fulfilled if |τ | � E since then |a| � E−1 � |τ |−1). We have to
prove �g � − log |aτ | which follows from

�g ≈ −E�a + �
[1
2

log
1 + 2a
a2τ

− 1 + a

1 + 2a

]

� −E�a +
1
2

log
∣∣∣1 + 2a

a

∣∣∣ +
1
2

log
1

|aτ | − 1 � − log |aτ |.

Thus, we are only left with the |a|−1 ∼ |τ | ∼ E case in which we introduce
the parametrization τ = te−iπ/3E with a real t ∼ 1, so that

r =
1 ∧ t−2/3

2E

(
1 + O(E2/3)

)
.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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For |a| ≤ r we have arg(a) = π/6 and parametrize aτ = se−iπ/6 with

s ∈
[
0,

t ∧ t1/3

2
sin(4π/15)
sin(17π/30)

]
. (41)

Using that Ea = st−1eiπ/6 and that |a| � 1, the claim is thus equivalent to
showing

�g ≈ −s

t
�eiπ/6 + �

[1
2

log
2 + se−iπ/6

se−iπ/6
− 1

2 + se−iπ/6

]

=
1
52

(
−28 + 6

√
3 − 26

√
3s

t
+ 13 log

( 4
s2

+
2
√

3
s

+ 1
))

� 1 + (log s−1)+

where the last inequality is valid for s as in (41) and any t ≤ 100.
We turn to the case |a| > r, i.e. to the second segment of the contour rΛ

where we parametrize

a = E−1

(
1 ∧ t−2/3

2
sin(4π/15)
sin(17π/30)

eiπ/6 + se3iπ/5

)
=: E−1ã.

with s ∈ [0,∞). We express �g in terms of ã = ã(s) and differentiate it as a
function of s we see that that function

s �→ �
[
−ã − 1

2 + ãte−iπ/3
+

1
2

log
(
1 +

2eiπ/3

ãt

)]

has a local minimum of size ∼ t−2/3 at s ∼ t−2/3 and thus for t � 1 we obtain
�g � 1 + log(s−1)+ also in this final case, completing the proof. �

Proof of 1.c. For |a| � E−1 ∼ r it follows that −E�a ∼ E|a| by the choice of
contour Λ. Therefore it is sufficient to prove

�g = −E�a + �
[1
2

log
1 + 2a + a2τ

a2τ
− 1 + a

1 + 2a + a2τ

]
� E|a|. (42)

If |a| � |τ |−1 then we estimate

|�
[1
2

log
1 + 2a + a2τ

a2τ
− 1 + a

1 + 2a + a2τ

]
| ≈ |�

[1
2

log
2 + aτ

aτ
− 1

2 + aτ

]
|

� |�
[ 1
a2τ2

]
| ∼ 1

|aτ |2 � E|a|,

where in the first step we used that |a| � 1 and in the last step we used
|a| � |τ |−1 � |τ |−2/3

E−1/3, confirming (42). On the other hand, if |a| � |τ |−1

(but still |a| � 1) then by Taylor expansion in |aτ | � 1 we obtain

�
[1
2

log
1 + 2a + a2τ

a2τ
− 1 + a

1 + 2a + a2τ

]
� �1

2
log

1
aτ

> 0,

trivially confirming (42). �

The remaining cases 2.a–4.c may be estimated by similar elementary consid-
erations. �
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Proof of Lemma 3.3. The first assertion follows from elementary calculations
resulting in

d�g(xeiπ/6, τ, 0, E)
dx

� −� 1
xeiπ/6

< 0. (43)

and the second assertion from

�
[ x2eiπ/3(1 − τ)
1 + 2xeiπ/6 + x2eiπ/3τ

]
≥ 0 (44)

using the definition of the τ -contour Ω. �

B Lists of coefficients

B.1. Explicit coefficients for the real 1-point function integral representation

Here we collect the explicit coefficients in (26):
c1,2,6,1 = c1,6,2,3 = 1, c1,3,5,2 = c1,5,3,3 = 2, c1,4,4,3 = 4,

c2,2,5,1 = c2,5,2,3 = 2, c2,3,4,2 = c2,4,3,3 = 4,

c3,2,4,1 = c3,4,2,2 = 1, c3,3,3,2 = 2,

c4,2,4,1 = c4,4,2,2 = 1, c4,3,3,2 = 2.

B.2. Explicit formulas for the real symmetric integral representation

Here we collect the explicit formulas for the polynomials of a, ξ, τ in the defi-
nition of GN in (14).

p2,0,0 := a4τ2 + 2a3ξτ + 4a3τ − a2ξ2τ + 4a2ξ2 + 8a2ξ + 2a2τ

+ 4a2 + 2aξ3 + 8aξ2 + 10aξ + 4a + ξ4 + 4ξ3 + 6ξ2 + 4ξ + 1,

p1,0,0 := −a4ξτ2 + a4τ2 − 2a3ξ2τ − 2a3ξτ + 4a3τ − a2ξ3τ − 3a2ξ2τ

− 2a2ξτ + 4a2ξ + 2a2τ + 4a2 + 2aξ2 + 6aξ + 4a + ξ3 + 3ξ2 + 3ξ + 1,

p2,2,0 := 4(a + 1)
(
a2τ + aξτ + 2aτ + ξ2 + 2ξ + 1

)
,

p1,2,0 := 4(a + 1)
(
a2τ + aξτ + 2aτ + ξ + 1

)
,

p2,0,1 := 2
(
a3τ2 + 2a2ξτ + 4a2τ + 2aξ2 + 2aξτ

+ 4aξ + 3aτ + 2a + ξ3 + 4ξ2 + 5ξ + 2
)

p1,0,1 := 2
(
a3τ2 + 2a2ξτ + 4a2τ + aξ2τ + 3aξτ

+ 2aξ + 3aτ + 2a + ξ2 + 3ξ + 2
)
,

p2,2,1 := 4(a + 1)(a + ξ + 2),

p2,0,2 := a2τ + 2aξ + 4a + ξ2 + 4ξ + 4.
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