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Ongoing development of quantum simulators allows for a progressively finer degree of control of quan-
tum many-body systems. This motivates the development of efficient approaches to facilitate the control
of such systems and enable the preparation of nontrivial quantum states. Here we formulate an approach
to control quantum systems based on matrix product states (MPSs). We compare counterdiabatic and
leakage minimization approaches to the so-called local steering problem that consists in finding the best
value of the control parameters for generating a unitary evolution of the specific MPS in a given direction.
In order to benchmark the different approaches, we apply them to the generalization of the PXP model
known to exhibit coherent quantum dynamics due to quantum many-body scars. We find that the leakage-
based approach generally outperforms the counterdiabatic framework and use it to construct a Floquet
model with quantum scars. We perform the first steps towards global trajectory optimization and demon-
strate entanglement steering capabilities in the generalized PXP model. Finally, we apply our leakage
minimization approach to construct quantum scars in the periodically driven nonintegrable Ising model.
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I. INTRODUCTION

Robust manipulation and preparation of quantum states
in isolated interacting quantum systems remains an out-
standing problem. Numerous platforms such as supercon-
ducting qubits [1,2], nitrogen-vacancy centers [3], cold
atomic systems [4,5], trapped ions [6], and Rydberg atom
arrays [7–10] provide access to nonequilibrium quantum
dynamics governed by a known (effective) Hamiltonian
with a handful of experimentally controllable parameters.
Despite a number of successful examples [11–13], our
understanding of optimal ways for preparing potentially
useful quantum states in these platforms remains limited.

Indeed, even numerical simulation of nonequilibrium
dynamics of quantum many-body systems represents a
challenge due to a Hilbert space dimension that grows
exponentially with the number of degrees of freedom.
The challenge related to the exponential resources needed
to store the many-body wave function can be mitigated
by tensor-network-based approaches. For one-dimensional
systems, matrix product states (MPSs) provide an efficient
representation of quantum states that have area-law scaling
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of entanglement entropy [14,15]. The MPS representation
was employed in numerical approaches to optimize state
preparation in quantum systems; see Ref. [16] along with
review [17] and tutorial [18]. Typically, in such numerical
setups one optimizes the fidelity of the state prepara-
tion over the trajectory in the multidimensional space of
control parameters using gradient-free [19] or gradient-
based routines [20–23]. In addition, machine-learning-
based approaches to this problem were also considered
[24,25].

An alternative approach to state manipulation is pro-
vided by the adiabatic state preparation procedure and
its modification. This procedure relies on the adiabatic
theorem [26] that guarantees that a system remains in its
ground state under a sufficiently slow change of Hamil-
tonian parameters, provided the system remains gapped.
Several approaches aimed at speeding up the adiabatic pro-
cedure without loosing performance, known as “shortcuts
to adiabaticity” were proposed [27–36]. These approaches
either allow one to create and then coherently remove
excitations during state preparation, or use additional con-
trol fields to implement the so-called counterdiabatic (CD)
terms [27,35], which ensure the absence of excitations at
each point in time. We note that these adiabatic approaches
and their extensions typically deal with finding the optimal
control along a fixed trajectory in the parameter space.

Both numerical optimization and adiabaticity-based
approaches discussed above come with their own chal-
lenges. On the one hand, the physics behind the optimal
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solution provided by the purely numerical approaches
often remains unclear. On the other hand, approaches that
build upon modification of adiabatic state preparation are
typically variational and often lack an efficient imple-
mentation. Furthermore, it is difficult to quantify their
performance.

In this work we provide an alternative approach to the
problem of quantum state control that resolves some of the
above issues. Similarly to the numerical approaches [16],
we use the manifold of MPSs for efficient representation of
wave functions and the desired trajectory of quantum state
evolution. We provide an efficient solution to the prob-
lem of “optimal steering of states within a MPS manifold”:
given a fixed MPS, a desired direction of unitary evolution
in its tangent space, and an available set of control param-
eters, we find the optimal values of control parameters for
steering the many-body wave function along the desired
direction. This solution is obtained by minimizing a quan-
tum leakage that allows us to quantify the efficiency of the
control locally at each point of the trajectory. Moreover, we
discuss the relation between our approach and counterdia-
batic driving, demonstrating that the latter can be related to
the leakage minimization procedure with a modified cost
function.

In order to illustrate and compare our approach to coun-
terdiabatic driving [35], we consider a generalization of the
so-called PXP model [8,37,38] that provides an approxi-
mate description for dynamics of Rydberg atom arrays [8].
The PXP model is known to exhibit many-body revivals
that were attributed to the existence of nonthermal “quan-
tum scarred” eigenstates [38]. In addition, the dynamics
of this model for some initial states can be efficiently
described by a low bond dimension MPS manifold [39,40],
thus providing a natural model to test our control proto-
col.

We find that our leakage-based approach to optimal
steering of the generalized PXP model typically outper-
forms counterdiabatic driving. We introduce the notion of
leakage landscape and optimal direction for unitary evolu-
tion. These concepts are used to demonstrate entanglement
control in the generalized PXP model and may be viewed
as steps towards the complete optimization of the trajectory
in the parameter space using our method.

Effectively, our approach maps a quantum control prob-
lem onto a classical one, thus enabling a broad range of
applications. In the context of the generalized PXP model,
we construct continuously driven Floquet-type models
with quantum many-body scars. Although scars in con-
tinuously driven Rydberg arrays were observed experi-
mentally [10], their theoretical explanation uses Floquet
models with pulsed driving [41]. Our work introduces a
framework for the systematic construction of Floquet mod-
els with continuous driving. This opens the door to real-
izations of quantum scars using quantum simulation plat-
forms beyond Rydberg arrays [42–45], as we demonstrate

by constructing a Floquet scar in the Ising model with
transverse and longitudinal fields.

The remainder of the paper is structured as follows.
In Sec. II we formulate the local steering problem and
discuss a generalization of the PXP model that will be
used for benchmarking the different approaches. Next,
Sec. III introduces the CD-based and leakage minimiza-
tion approaches for the local steering problem. In this
section we show that our leakage-based approach outper-
forms the CD approaches when applied to the generalized
PXP model. Section IV focuses on the leakage-based
approach and studies the efficiency of the steering of the
quantum system depending on the direction and posi-
tion within the MPS manifold. The leakage landscape
obtained in this section provides an intuition for the trajec-
tory optimization, allowing us to control the entanglement
during coherent quantum evolution. In Sec. V we apply
our approach to improve periodic revivals in the driven
Ising model with transverse and longitudinal fields, effec-
tively constructing a Floquet scar that we further stabilize
by including additional terms in the Hamiltonian. Finally,
in Sec. VI we summarize our findings and discuss the
most promising directions for future research. The paper
is concluded by Appendices A–G that present details of
analytical calculations and additional numerical data.

II. CONTROL PROBLEM AND SPECIFIC MODEL

In this section we first provide a general formulation
of the control problem that is addressed within our work.
Afterwards we provide an example of such a control
problem using a generalization of the PXP model.

A. Optimal evolution of the state along a trajectory

In this work we address the problem of optimally steer-
ing a quantum many-body system along a certain trajec-
tory. We start by specifying a manifold of many-body wave
functions � and a desired wave function trajectory |ψ(t)〉;
see Fig. 1. We assume that the many-body wave function
is subject to unitary evolution generated by the operator A,

∂t|ψQ(t)〉 = −iA(t)|ψQ(t)〉, A(t) =
∑

η

cη(t)Aη, (1)

where A depends on some control parameters c1, c2, . . .
and may be viewed as a time-dependent Hamiltonian of
the system. The wave function with index Q, |ψQ(t)〉, in
what follows will be used to distinguish the exact unitary
evolution from the desired MPS trajectory |ψ(t)〉. Given
a trajectory |ψ(t)〉 and a set of control parameters cη, we
seek to find the values of these control parameters such that
the full quantum unitary evolution |ψQ(t)〉 generated by
operator A is as close as possible to the desired evolution.

The formulation of the optimal control problem pro-
vided above bears similarity to the variational principle
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FIG. 1. Schematic representation of the desired trajectory
|ψ(t)〉 connecting two points |ψ(0)〉 and |ψ(τ)〉 within the MPS
manifold �. For the MPS manifold, one can define a family of
parent Hamiltonians Hp(t) that have a state |ψ(t)〉 as their zero
energy ground state. The unitary dynamics is generated by the
operator A that depends on the control parameters. We seek to
identify the optimal value of the control parameters at each point
on the trajectory, such that the exact unitary dynamics generated
by Aopt is closest to the desired direction of evolution ∂t|ψ(t)〉.

for quantum dynamics [46]. The variational approach to
quantum dynamics solves the problem of finding the opti-
mal direction in the variational manifold that provides the
best approximation to a unitary dynamics generated by a
fixed operator A. In the case when the manifold of quan-
tum states is represented as a MPS, the solution to this
problem is provided by the so-called time-dependent vari-
ational principle for MPS manifolds (abbreviated as TDVP
in what follows) [47]. Here we consider an inverse prob-
lem: we fix the desired direction of unitary evolution to a
tangent vector ∂t|ψ(t)〉 (see Fig. 1) and search for the best
generator that approximates such unitary dynamics. Out of
the linear space of all possible directions that can be gen-
erated by varying values of parameters cη, schematically
shown as a shaded cone in Fig. 1, we choose the values of
cη such that the corresponding generator of dynamics, Aopt,
steers the quantum system in the direction that is closest to
the desired tangent vector.

This optimal control problem can be solved in several
ways discussed in Sec. III below. However, before review-
ing the existing recipes and presenting our approach, we
specify a particular example of the operator A and the
variational manifold.

B. Generalized PXP model and variational manifold

We illustrate different approaches to the optimal control
problem using the generalization of the PXP model, which
provides an approximate description of dynamics in the
Rydberg atom quantum simulator [8,37,38]. This model is
defined on a one-dimensional chain of effective spin-1/2
degrees of freedom. The PXP Hamiltonian reads

H =
l∑

i=1

σ̃ x
i , σ̃ x

i = Pi−1σ
x
i Pi+1, (2)

where σαi is the corresponding Pauli matrix acting on the
spin on site i, whereas σ̃ αi is shorthand notation for this
matrix dressed by projector operators on two adjacent sites,
Pi±1 = |↓〉i±1〈↓|i±1. This projector enforces the constraint
that prevents two neighboring sites being simultaneously
in the ↑ state, which naturally arises due to the Rydberg
blockade [48].

The PXP model is characterized by an unusual dynam-
ics for certain initial states, notably the Néel initial state,
|Z2〉 = |↑↓↑ · · · 〉. Although the initial |Z2〉 state corre-
sponds to a highly excited state of the PXP Hamil-
tonian [38], the dynamics under the PXP Hamiltonian
leads to coherent oscillations between the |Z2〉 state and
its translated version |Z′

2〉 = |↓↑↓ · · · 〉. This dynamics
was attributed to the existence of nonthermal eigenstates
embedded throughout the otherwise thermal spectrum,
known as quantum many-body scars [38].

Motivated by the scar dynamics that requires a two-site
unit cell to describe oscillations between the |Z2〉 and |Z ′

2〉
states, we consider the generator of dynamics

A =
l/2−1∑

i=0

(
c1(t)σ̃ x

2i+1 + c2(t)σ̃ x
2i+2

)
, (3)

where we have used the definition of Pauli matrices
dressed by projectors from Eq. (2). This generator can
be viewed as a generalization of the PXP Hamiltonian
that now depends on two control parameters c1,2, which
are proportional to the Rabi frequency on the odd and
even sites of the lattice. While such control of the Rabi
frequency is not available in the existing experimental
setups [10], these capabilities may be feasible in the future.

The second component required to fully specify the con-
trol problem is a variational manifold of states �, here
chosen to be a MPS manifold,

� =
{
|ψ(x1, . . . )〉 = Tr

[ l∏

i=1

Mi(x1, . . . )
]

; xj ∈ R

}
, (4)

where the Mi are the matrices defining the MPS and the xj
are some real parameters. Consistent with the choice of our
generator of dynamics, A, we choose a MPS that has a two-
site unit cell. A natural choice is provided by the following
bond dimension χ = 2 ansatz [8,39,40]:

Mi =
(

cos θi|↓〉i i sin θi|↑〉i
|↓〉i 0

)
(5)

with θ1 and θ2 the two free real parameters corresponding
to odd and even sites, respectively. Defining a trajectory
within the MPS manifold is then equivalent to defining
θi ≡ θi(t).

This ansatz suffices for an accurate description of the
dynamics generated by the PXP model starting from the
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|Z2〉 state. In particular, the TDVP projection [47] of
the PXP model dynamics onto this manifold yields a
nearly circular periodic trajectory that connects the |Z2〉
and |Z′

2〉 states [8,39] that correspond to values of angles
(θ1, θ2) = (π/2 + kπ ,ϑ) and (ϑ ,π/2 + kπ), respectively.
Here ϑ is a free parameter that can take any real value
except for ϑ = π/2 + mπ , which represents the singular
state (|Z2〉 + |Z ′

2〉)/
√

2 disconnected from the rest of the
manifold.

Finally, the above choice of MPS will allow us to define
a relatively simple parent Hamiltonian [37], which we use
for the CD approaches below. This parent Hamiltonian can
be conveniently written via a local Hamiltonian density
operator that depends on two coupling constants, hp(a, b),

h p
i (a, b) = aσ̃ y

i + bP̃i + a2

b
ñi, (6)

where the operator ni = 1 − Pi = |↑〉i〈↑|i is the projector
complementary to Pi, and the tilde above operators denotes
dressing them with projectors as in Eq. (2): for exam-
ple, P̃i = Pi−1PiPi+1. Written in this notation, the parent
Hamiltonian for the MPS (4)–(5) takes the form

Hp =
l/2−1∑

i=0

[
h p

2i+1(a1, b1)+ h p
2i(a2, b2)

]
. (7)

The parameters a1,2 and b1,2 that specify the Hamilto-
nian density on odd and even lattice sites depend on the
values of angles θ1,2 as b1,2 = ±a1,2(tan θ1,2)/(cos θ2,1).
This Hamiltonian is frustration free, which implies that
the ground state of Hp is simultaneously also the ground
state of all hp

i . For our MPS to be the ground state of this
Hamiltonian, we must have bi > 0, whereas for bi < 0, the
MPS becomes the highest excited state. In practice, we can
fix a1,2 = 1 for simplicity, since the absolute value of a is
not relevant for the structure of the ground state, merely
representing an overall scale in the system.

III. COUNTERDIABATIC AND LEAKAGE
APPROACHES TO QUANTUM CONTROL

In this section we review the variational counterdiabatic
approach [35] and apply this approach to the problem of
steering a many-body quantum system along a given tra-
jectory. Afterwards, we formulate an alternative approach
that, similar to TDVP, relies on the concept of leakage
minimization. Finally, in Sec. III C we compare different
approaches using the generalized PXP model introduced
in the previous section.

A. Counterdiabatic driving

The CD approach aims to minimize transitions from
the ground state to the excited states of a time-dependent

Hamiltonian. The idea is to add additional terms A(t),
called the adiabatic gauge potential, to the time-dependent
Hamiltonian Hp(t) that depend on variational parameters
as defined in Eq. (1). The CD approach of Ref. [35] pro-
vides a specific recipe for determining the optimal values
of parameters cη at each point in time.

We extend the CD approach to the control problem
over a MPS manifold using two observations. First, for
any MPS, there exists a local parent Hamiltonian [14,50].
Hence, the trajectory in Fig. 1, |ψ(t)〉, specifies a time-
dependent parent Hamiltonian Hp(t). Second, the condi-
tion that the parent Hamiltonian has a MPS as its zero
energy ground state, Hp(t)|ψ(t)〉 = 0, that can be addi-
tionally imposed allows us to eliminate the parent Hamil-
tonian from the unitary dynamics [51], leaving only A
in the time-dependent Schrödinger equation, ∂t|ψQ(t)〉 =
−iA(t)|ψQ(t)〉, that thus becomes equivalent to Eq. (1).

The above observations allow us to apply the CD
approach to our control problem. Using the parent Hamil-
tonian for each point in the MPS manifold of states, we
define an operator

G(t) = ∂tHp(t)+ i[A(t), Hp(t)] (8)

that can be viewed as a “force” that causes the transitions
between the instantaneous eigenstates of Hp(t) in the pro-
cess of the time evolution. The essence of the CD approach
is to find the best values of parameters cη(t) in the opera-
tor A, such that transitions described by operator G(t) are
minimized.

If the ground state of Hamiltonian Hp(t) is not known,
it is natural to resort to the minimization of the operator
norm of G(t), an approach that we call “trace CD” [35]. In
the trace-CD approach the trace of the square of G(t) gives
a cost function,

S(t) = Tr[G(t)2], (9)

that is minimized at each point in time. Minimizing the
trace of the operator G(t) treats all the states in the many-
body spectrum on equal footing, corresponding to an
infinite-temperature density matrix of the system. While
this approach offers analytic tractability for local controls,
the infinite-temperature optimization does not yield the
best results for the fidelity of remaining in the target state.

To apply the trace-CD approach to the PXP model, we
calculate operator G(t) explicitly, using Eq. (3) and the
expressions of the parent Hamiltonian (6)–(7). Writing this
operator as a sum of local terms,

G(t) =
l/2∑

i=1

(G(1)
i (t)+ G(2)

i (t)), (10)
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we obtain

G(1)
i (t) =

(
2a1a′

2

b1
− 2a1c1 − a2

1b′
1

b2
1

)
1̃2i

+
(

4a1c1 − 2a1a′
1

b1
+ b′

1 + a2
1b′

1

b2
1

)
P̃2i

+
(

a2
1 + b2

1

b1
c1 + a′

1

)
σ̃

y
2i

− b1c2(σ̃
y
2i−1P2i+1 + P2i−1σ̃

y
2i+1)

− (a1c2 + a2c1)(P2i−2σ
+
2i−1σ

−
2i P2i+1 + H.c.).

(11)

We obtain G(2)
i (t) by changing 1 ↔ 2 for all a, b, c and

shifting all positions by 1. Here Õ represents an opera-
tor O dressed by projectors P on the left and right and
a′ and b′ are the derivatives of a and b with respect to
time. The cost function S(t) can be calculated using the
values of the traces of Pauli matrices calculated over the
constrained Hilbert space (see Appendix A 1 b for details).
This cost function is a quadratic polynomial in c1,2(t)
whose minimization is straightforward.

We consider a circular trajectory from Fig. 2(a),
defined as

θ1(t) = π

2
(sinπT(t)− 1), θ2(t) = π

2
(cosπT(t)+ 1),

(12)

which is close to the scarred trajectory of the PXP
model [8,39]. Here T(t) is a function with T(0) = 0 and
T(τ ) = 1 that specifies both the time taken by the whole
procedure and the instantaneous velocity at which we
travel along the trajectory at each point in time, which

we choose to be T(t) = t/τ [52]. The optimal values of
the parameters c1,2 resulting from the minimization of S(t)
along the circle trajectory are illustrated in Fig. 2(b) (blue
color).

Alternatively, knowledge of the desired state |ψ(t)〉 in
the MPS form allows us to define the cost function using
the expectation value over the state |ψ(t)〉, instead of a
trace,

S(t) = 〈ψ(t)|G(t)2|ψ(t)〉 − 〈ψ(t)|G(t)|ψ(t)〉2, (13)

where in Appendix A 2 we show that the contribution from
the second term vanishes when the energy of |ψ(t)〉 is cho-
sen to be zero at all times, Hp(t)|ψ(t)〉 = 0. We refer to this
method as the “ground-state CD” approach, which can be
viewed as performing the same calculation as before using
a density matrix corresponding to the pure state |ψ(t)〉.
Importantly, one can view this approach as only minimiz-
ing transitions from the ground state as opposed to all states
in the trace-CD approach [35], naturally leading to better
performance.

In general, the ground-state CD approach requires more
involved calculations compared to the trace-CD approach.
Naively, Eq. (13) includes the expectation values of prod-
ucts of up to four different local operators over a given
MPS. While such four-point correlation functions can be
computed efficiently, below we formulate specific condi-
tions that greatly simplify the evaluation of Eq. (13). When
both the parent Hamiltonian and gauge potential can be
represented as a sum of local operators [i.e., local energy
density like in Eq. (6)], it can be shown that it is sufficient
to evaluate a simple expectation value of these operators
(one-point correlation functions). While higher correlation
functions still enter the expression for the cost function,
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FIG. 2. We compare different approaches to the control problem shown in Fig. 1. Panel (a) shows the desired trajectory in the plane
of angles θ1, θ2 that parameterize the MPS, which closely resembles the scarred trajectory [8,39]. Panel (b) shows the optimal value
of driving parameters obtained from trace-CD (blue), ground-state CD (red), and leakage-based (green) optimization. Full and dashed
lines correspond to c1 and c2, respectively. The leakage approach yields a nearly constant value of driving parameters along the full
trajectory. Finally, panel (c) shows the time dependence of the logarithm of fidelity [Ft = |〈ψ(t)|ψQ(t)〉|2] per site computed using the
infinite TEBD approach [49], illustrating that the leakage approach outperforms CD-based approaches. All data shown are computed
using a bond dimension of χ = 64 and a time step δt = 10−5.
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Eq. (13), they do not contribute to the optimization with
respect to cη(t).

In Appendix A 2 we present the details for the ground-
state CD approach applied to the generalized PXP model.
In our example, the analytic expressions for c1,2(t) found
within this approach are cumbersome and are listed in
Ref. [53]. The resulting behavior of c1,2(t) for the circular
trajectory in Fig. 2(b) (red lines) differs significantly from
the case of trace-CD optimization. Remarkably, the coeffi-
cients c1,2(t) obtained from the ground-state CD approach
reveal much weaker dependence on the position within
the trajectory, changing by less than 20% along the full
trajectory.

B. Leakage minimization

After reviewing solutions provided by the CD appro-
aches, we formulate an alternative framework inspired by
TDVP. The TDVP is obtained by minimization of the dis-
agreement between the exact quantum evolution and its
projection onto the variational manifold. This disagree-
ment is quantified by the so-called leakage—the norm of
the vector given by the difference between the exact quan-
tum evolution −iA(t)|ψ(t)〉 and its projection onto the
variational manifold ∂t|ψ(t)〉. This leads to the following
definition of the leakage:

δ2(t) = 1
l

∣∣∂t|ψ(t)〉 + iA(t)|ψ(t)〉∣∣2. (14)

Here we have included an additional factor of system size,
l, to make this quantity well behaved in the thermodynamic
limit l → ∞. The standard TDVP equations are obtained
from minimizing δ2(t) over ∂t|ψ(t)〉 [47].

Our key insight is that minimizing the leakage over
parameters in A(t) provides an efficient solution to the con-
trol problem specified in Sec. II. When A(t) is given by
Eq. (1), δ2(t) becomes a quadratic polynomial in cη,

δ2(t) = cηDηρcρ + eηcη + const., (15)

Dηρ = 〈ψ(t)|{Aη, Aρ}|ψ(t)〉c, (16)

eη = 2Im〈ψ(t)|Aη∂t|ψ(t)〉c, (17)

where summation over repeated indices is implied
and connected correlation functions are defined in a
standard way, 〈ψ(t)|O1O2|ψ(t)〉c = 〈ψ(t)|O1O2|ψ(t)〉 −
〈ψ(t)|O1|ψ(t)〉〈ψ(t)|O2|ψ(t)〉. Minimization of the
quadratic polynomial can be easily performed analytically,
yielding an explicit answer for the optimal value of driving
parameters,

cη = −D−1
ηρ eρ , (18)

where D−1 is the pseudoinverse of the matrix D, defined
such that the kernels of D and D−1 are the same.

We note that TDVP minimization and the present mini-
mization of leakage can be related to each other. We defer
the detailed comparison between these to Appendix D, and
mention only their qualitative difference. Qualitatively, in
the TDVP approach one finds the optimal projection of
the unitary evolution onto the tangent space; thus, TDVP
leakage penalizes only components of −iA|ψ(t)〉 that are
orthogonal to the tangent space. Instead, our approach
minimizes the leakage over all possible generators of the
unitary dynamics, thus effectively penalizing any compo-
nents −iA|ψ(t)〉 (including those that belong to the tangent
space of the MPS manifold) that are orthogonal to the
desired direction of evolution, ∂t|ψ(t)〉.

Finally, before applying this framework to the PXP
model, we discuss its relation to the CD approach from
Sec. III A. The trace-CD approach deals with the entire
Hilbert space and thus cannot be immediately related
to the present procedure. However, the ground-state CD
approach can be viewed as an optimization of the weighted
leakage. Specifically, in Appendix C we show that ground-
state CD can be viewed as a minimization of the cost
function S(t) = ∣∣Hp(t)[∂t + iA(t)]|ψ(t)〉∣∣2. This cost func-
tion represents the leakage vector that is multiplied by
the instantaneous frustration-free parent Hamiltonian. The
application of a parent Hamiltonian penalizes leakage to
different excited states with a different weight: the closer
the state is to the ground state, the smaller the penalty.
While weighting of the leakage with the parent Hamilto-
nian could be physically motivated, we believe that the
leakage minimization approach is more natural since it
does not require the notion of a parent Hamiltonian, which
need not be unique.

Applying the leakage approach to the optimal control
problem of the generalized PXP model requires explicit
evaluation of one- and two-point correlation functions that
is described in Appendix B. This calculation leads to the
following explicit form for the values of couplings c1,2(t):

c1,2 = n1,2θ
′
1,2(t)− m1,2θ

′
2,1(t)

f1,2
. (19)

The constants f1,2, n1,2, and m1,2 are complex trigonometric
expressions related to the expectation values of different
operators over MPS (5). Specifically, they read

n1 = 2(9 + 6 cos 2θ1 + cos 4θ1) cos θ2

+ 8 cos 2θ1 cos 3θ2 sin2 θ1,

m1 = (2 sin 2θ1 + 7 sin 4θ1) sin θ2 + 8 cos θ1 sin3 θ1 sin 3θ2,

f1 = −(29 + 3 cos 4θ1 + 32 cos 2θ1 cos 2θ2

+ 6 cos 4θ2 sin2 2θ1)/2

with constants n2, m2, and f2 obtained by swapping indices
1 ↔ 2.
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An example of these solutions for the circular trajec-
tory used before is shown in Fig. 2(b) by the green line.
Note that the resulting driving parameters are nearly flat
in the vicinity of the scar trajectory. Indeed, one could
also use this approach to look for scars in other Hamilto-
nian models, since nearly constant-in-time ratios of driving
parameters might signify the presence of a scar [54]. This
implies that the PXP model, where values c1,2(t) are fixed
to be constants, may be potentially viewed as a small defor-
mation of a nearby Floquet model with an exact eigenstate
corresponding to the scar trajectory.

Finally, we define a natural geometric quantity that can
be viewed as a properly normalized leakage,

�2 = 1
l

∣∣∂t|ψ(t)〉 + iA(t)|ψ(t)〉∣∣2
∣∣∂t|ψ(t)〉

∣∣2
, (20)

and corresponds to sin2 α, where α is the angle between
the optimal direction −iA(t)|ψ(t)〉 in the manifold spanned
by −iA({cj })|ψ(t)〉 and the desired trajectory ∂t|ψ(t)〉; see
Fig. 1. This quantity assumes values between 0 and 1, with
zero corresponding to the absence of any leakage, and one
corresponding to the case when the “optimal” direction is
nevertheless fully orthogonal to the desired direction. This
normalized leakage will be used when determining an opti-
mal trajectory between two points in the MPS manifold in
Sec. IV.

C. Comparing different approaches

Thus far, we have formulated two CD-based approaches
and the leakage minimization approach to the control
problem. All these approaches are variational, and in
this section we benchmark their efficiency. To this end,
we simulate the exact quantum dynamics, |ψQ(t)〉 =
T e−i

∫ t
0 dt′ A(t′)|ψ(0)〉, induced by the time dependent A(t)

found by each of the approaches above. In order to com-
pare the results, we look at the fidelity density

f (t) = −1
l

log
∣∣〈ψ(t)|ψQ(t)〉

∣∣2 , (21)

which provides a system-size-independent measure of how
close to the desired state we are at any point in time. Here
|ψ(t)〉 is again our chosen trajectory and |ψQ(t)〉 is the state
obtained from infinite TEBD [49] simulations.

We show the results of one such simulation in Fig. 2(c),
where we compare the fidelity density of the three
approaches in driving the state around a circular trajec-
tory defined by Eq. (12). We observe that the leakage
minimization approach outperforms both CD approaches.
We find that the best performance of the leakage-based
approach consistently holds across several tested trajecto-
ries, although in some cases the ground-state CD approach

offers comparable fidelity. Nevertheless, given the addi-
tional requirement of finding a parent Hamiltonian, there
is no advantage to using it instead of the leakage approach.
The trace-CD approach is by far the worst of the three.
While in the example shown in Fig. 2(c) it is able to follow
the trajectory with some success, for trajectories farther
from the scar trajectory, the trace-CD approach fails com-
pletely (see Appendix E). Hence, in the remainder of this
work we focus only on the leakage-based approach that
provides the optimal driving parameters for a certain fixed
trajectory.

The example we have chosen can also be viewed as
related to scar stabilization through periodic driving that
was recently explored both experimentally and theoreti-
cally [10,41]. Essentially, we are able to construct Floquet
scars in an arbitrary model, provided a good solution exists
within the constraints — the choice of MPS manifold �
and control operators Aη. In the particular case of the PXP
model this yields a stabilization of the PXP scar by means
of weak periodic driving.

Our construction of the leakage-based approach to opti-
mal control suggests a natural next step: to optimize over
all possible trajectories connecting given final and initial
states, |ψ(0)〉 and |ψ(τ)〉. This is equivalent to the com-
mon formulation of the state preparation problem. While a
complete solution to this problem is beyond the scope of
the present work, in the next section we visualize the cost
function (leakage) landscape in a simple case and illustrate
trajectory optimization over the variational parameters.

IV. LEAKAGE LANDSCAPE AND
ENTANGLEMENT STEERING

In this section we go beyond the local leakage minimiza-
tion framework constructed in Sec. III. First, we study how
the efficiency of steering of the quantum system depends
on the chosen direction of the unitary evolution in the tan-
gent space of the MPS manifold specified by ∂t|ψ〉. This
leads to the definition of the optimal direction, where the
rescaled leakage � is minimal. We then apply this to the
generalized PXP model in order to find a trajectory with
minimal leakage. In addition, we demonstrate the opti-
mization of the scarred trajectory in the generalized PXP
model that allows us to control the amount of entangle-
ment generated during the evolution without degrading the
fidelity.

A. Optimal direction and minimal leakage

When a trajectory is fixed, the leakage minimization dis-
cussed above provides a specific solution for the optimal
Aopt that generates dynamics closest to the particular target
direction, ∂t|ψ(t)〉. In addition, the dimensionless leakage
�2 introduced in Eq. (20) allows us to quantify how well
we are able to steer the quantum system along the chosen
tangent vector. Given such a solution to the optimal control

030343-7



MARKO LJUBOTINA et al. PRX QUANTUM 3, 030343 (2022)

problem for a fixed tangent vector, it is natural to consider
how the generator of the unitary evolution and the resulting
dimensionless leakage �2 depend on the chosen direction
within the tangent plane of the MPS manifold.

Since dimensionless leakage�2 is a continuous function
of the direction within the tangent plane bounded between
0 and 1, it achieves a minimum at a certain point. We call
the direction of evolution that minimizes �2 the optimal
direction, since it intuitively corresponds to the direction
where the steering of the quantum state is most efficiently
implemented using the allowed set of control parameters.

Having discussed the existence of an optimal direction
with minimal leakage, we illustrate these notions using
the generalized PXP model. The chosen MPS manifold
is parameterized by two angles θ1 and θ2, with its tan-
gent plane being spanned by two vectors ∂θ1,2 |ψ〉 at each
point. In other words, the different directions of evolution
in the tangent plane of the MPS manifold correspond to
the different directions of the trajectory in the (θ1, θ2) plane
passing through a particular point. For instance, Fig. 3(a)
illustrates these concepts for the particular point (θ1, θ2) =
(−0.5, 2.0) of the variational manifold. The direction of
the trajectory φ defines values of derivatives as θ ′

1(t) =
r cosφ and θ ′

2(t) = r sinφ. We note that the velocity in the
parameter space r has only a trivial effect of proportionally
rescaling the driving parameters cη ∝ r; see, e.g., Eq. (19).
From this, it is easy to see that the rescaled leakage � is
independent of this velocity.

In the top panel of Fig. 3(a) we observe that the opti-
mal values of parameters c1,2 that specify the operator A
strongly depend on the angle φ that specifies the direction
of the evolution in the tangent plane. The bottom panel
shows that�2 changes depending on the direction, assum-
ing a minimal value for φ ≈ π/4, which corresponds to
the optimal direction of evolution at the chosen point of the
variational manifold. This represents the direction in which

we can move with the lowest leakage by using an opera-
tor from the chosen set of driving operators A. Similarly,
we can also identify the worst direction where leakage is
largest. Note that the optimal and worst directions are typ-
ically not orthogonal. Furthermore, leakage stays invariant
under replacement φ → φ + π , as moving backwards or
forwards is equivalent in terms of leakage (the expression
for the optimal driving parameters changes sign when the
direction of evolution is flipped).

After illustrating the concepts of optimal direction and
associated minimal leakage at a particular point of the
variational MPS manifold, we continue with the study
of these concepts throughout the entire manifold. Impor-
tantly, looking at the best (worst) direction and correspond-
ing leakage should provide us with sufficient information
to chart a relatively good course between specific states in
the MPS manifold. Figures 3(b) and 3(c) show such infor-
mation for the particular example of the generalized PXP
model and the two-parameter MPS defined in Sec. II.

Focusing on the optimal direction and associated min-
imal value of the leakage in Fig. 3(b), we observe that
minimal leakage is small far away from the point (θ1, θ2) =
(−π/2,π/2) and increases upon approaching this point.
Such behavior of the leakage may be attributed to the fact
that the point (−π/2,π/2) corresponds to the superposi-
tion of two macroscopically distinct states, as discussed in
Sec. II. The value of minimal leakage approaches one in
the vicinity of this point, suggesting that all directions of
unitary evolution are nearly orthogonal to the MPS tan-
gent plane, irrespective of the chosen values of the driving
parameters c1,2 in A. This implies that one should avoid
that area of the MPS manifold, as the available controls
become inefficient.

Additional information is revealed by comparing
Fig. 3(b) with Fig. 3(c) that shows the worst possible driv-
ing direction and associated leakage. At the top and right
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FIG. 3. (a) The dependence of driving parameters c1,2 (solid and dashed lines respectivelly) and rescaled leakage � with respect
to the desired direction of travel φ at the point (θ1, θ2) = (−0.5, 2.0) [marked by a light blue point in panels (b) and (c)]. The lowest
value of � determines the optimal direction. (b) The heat map shows the value of minimal leakage, and contour lines indicate the
optimal direction in the parameter space of the MPS. Panel (c) illustrates the maximal possible magnitude of the leakage along with
the direction where it is highest.
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edges of the chosen parameter region, both minimal and
maximal leakage are small, indicating that in this area
one can very efficiently manipulate the state of the sys-
tem with the available controls. This can be explained
by the fact that line θ1 = 0 (θ2 = π ) corresponds to the
product state of the system where all odd (even) sites
of the chain are in the ↓ state. Thus, moving along two
segments (−π/2,π) → (0,π) → (0,π/2) one can very
efficiently drive the system between |Z2〉 and |Z ′

2〉 product
states as |Z2〉 → |↓↓↓ · · · 〉 → |Z ′

2〉 without creating any
entanglement.

In contrast to the behavior discussed above, the center
of the parameter region, (θ1, θ2) ≈ (−π/4, 3π/4), is char-
acterized by strong anisotropy of � with respect to the
chosen direction of the trajectory. While moving along
one of the diagonal directions can be performed reason-
ably efficiently, the motion along the orthogonal diagonal
causes large leakage that approaches one. This implies that
controlling the quantum many-body state in that parame-
ter region near the point (θ1, θ2) ≈ (−π/4, 3π/4) is more
challenging. At the same time, in this parameter region
the MPS has a nontrivial pattern of entanglement. Thus, in
order to illustrate entanglement steering [10], we optimize
trajectories passing through this region, which is presented
in the following section.

B. Entanglement steering and trajectory optimization

In order to illustrate the trajectory optimization, we
introduce a two-parameter family deformation of the circle
trajectory considered in Fig. 2 from Sec. III. This family is
defined as

θ1(t) = π

2
[d(t) sinπ t − 1],

θ2(t) = π

2
[d(t) cosπ t + 1],

(22)

d(t) = 1 − ε1(1 − cos 2π t)− ε2(1 − cos 4π t), (23)

where deformation parameters ε1 and ε2 modify the local
radius of the circle. For ε1,2 = 0, the trajectory is the unde-
formed segment of the circle. The ε1 parameter can be used
to determine the intersection point with the diagonal line
θ1 = θ2 − π . By pushing the point of intersection with the
diagonal towards the bottom left corner (−π/2,π/2) one
can increase the maximal amount of bipartite entanglement
entropy St = −trρA(t) log ρA(t) reached in the dynamics
along the trajectory, where ρA is the reduced density matrix
of one-half of the system. The parameter ε2 deforms the
trajectory between the times t = {0, τ/2, τ } and can be
used to optimize the trajectory once ε1 has been fixed.

The parametrization (22)–(23) makes the trajectory opti-
mization problem finite dimensional. While this is not
guaranteed to provide the best possible solution for the tra-
jectory connecting the |Z2〉 state to the given point on the
diagonal, it allows for an efficient optimization, illustrating
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FIG. 4. (a) The dependence of entanglement entropy at t =
τ/2 and fidelity at t = τ with respect to a single trajec-
tory deformation parameter ε1 at ε2 = 0. The inset shows
example optimized trajectories at ε1 = −0.05, 0, 0.05 and ε2 =
−0.02, −0.05, −0.08 (green, blue, and red, respectively); the
increase in fidelity is related to these trajectories avoiding the
high-leakage areas depicted in Fig. 3. We observe that at ε =
−0.05 we can obtain relatively high fidelity when driving the
state from a product state to an entangled one at t = τ/2 and
back. In panel (b) we show the overlaps with the Z2/Z ′

2 states for
these trajectories [color coded as in panel (a)] as well as the scar
trajectory (orange).

the capabilities of our approach for controlling entangle-
ment. First, in Fig. 4(a) we show how the entanglement at
the middle point of the trajectory depends on the parameter
ε1. Negative values of ε1 push the trajectory towards the
region of small entanglement, whereas positive ε1 ≈ 0.1
brings entanglement close to the value of log 2. Since the
value of ε1 sets the amount of entanglement to be achieved
within the course of dynamics, we illustrate the trajectory
optimization for three different values of this parameter,
ε1 = −0.05, 0, and 0.05.

The value of ε1 = −0.05 corresponds to the deformation
of the original scar trajectory that decreases entanglement
in the course of quantum evolution [green line and point
in Fig. 4(a)]. Since the trajectory passes relatively far from
the dangerous high leakage region, the optimization over
parameter ε2 does not improve fidelity visibly. Next, we
consider the value of ε1 = 0 that is close to the origi-
nal scar trajectory and corresponds to an approximately
twice larger value of the bipartite entanglement reached
in the evolution. The optimization of the trajectory using
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parameter ε2 allows us to improve the fidelity of revivals,
as is shown by the blue dot in Fig. 4(a). Not surprisingly,
the inset illustrates that the effect of the optimization is to
push the trajectory towards the lower leakage regions at the
top and right edges of the parameter region, which agrees
with the intuition provided by Fig. 3.

Finally, at ε1 = 0.05 we reach even higher entangle-
ment, which comes with degraded fidelity. Optimization
over ε2 increases associated fidelity that at the first revival
in Fig. 4(b) reaches a better value compared to the unop-
timized trajectory with ε2 = 0 at fixed ε1. The general
trend that emerges from our optimization is that increasing
the amount of entanglement encountered during evolution
leads to lower fidelity. This may be attributed to the very
limited amount of controls available in the present exam-
ple: we only allow the values of the Rabi frequency to
change on two sublattices controlled by parameters c1,2
in Eq. (3). We expect that one should be able to increase
the fidelity with which we can reach the higher entangled
states by adding additional control parameters, thus allow-
ing more efficient exploration of larger parts of the MPS
manifold.

V. FLOQUET SCARS IN THE TRANSVERSE AND
LONGITUDINAL FIELD ISING MODEL

We now apply our approach to the transverse and
longitudinal field Ising model (TLFIM) defined by the
Hamiltonian

ATLFIM =
∑

i

(Jσ z
i σ

z
i+1 + hzσ

z
i + hxσ

x
i ). (24)

We limit the dynamics to a simple bond dimension 2
manifold defined by

M =
(

cos d cos beia/2|↑〉 cos d sin be−ia/2|↑〉
sin d sin bei(c−a/2)|↓〉 sin d cos bei(c+a/2)|↓〉

)
,

(25)

which was proposed in Ref. [40]. Unlike in the PXP model,
we consider states with one-site translational invariance.

Using a TDVP projection of the dynamics on MPS (25),
Michailidis et al. [40] found a periodic trajectory for
fixed values of couplings J = 1, hz = 0.4, and hx =
1. This trajectory, for instance, can be identified by
the particular value of MPS parameters (a, b, c, d) =
(0.2607, 0.9, 4.888, 0.4308) and has a period of t0 =
2.097 [40] (see Appendix G for details on the trajec-
tory). However, TDVP dynamics on this trajectory encoun-
ters regions with large leakage, thus not giving rise to
significant fidelity revivals, nor to nonergodic “scarred”
eigenstates in the spectrum of Ising model (24). Below
we use the optimal steering approach to find the optimal
time-dependent values of couplings in the Ising model for
steering the system along the periodic trajectory.

First we treat three couplings in Ising model (24) as vari-
ational parameters c1,2,3. Using Eqs. (16)–(18), we obtain
values of the Ising model parameters J , hz, and hx which
are shown in Fig. 5(a) by solid lines. Since we consider a
closed trajectory, the time-dependent values of couplings
obtained from our steering approach effectively define a
Floquet model. We observe that the values of couplings
agree with their “static” values for particular sections of the
trajectory. This can be attributed to the overall low leak-
age in those areas, hence suggesting that constant values
of couplings J = 1, hz = 0.4, and hx = 1 are nearly opti-
mal in that region. Outside of the regions where couplings
are close to their static values, the optimization gives large
peaks in the driving parameters. These peaks are the result
of a large derivative of the state at that point along the
trajectory and can be readily eliminated by modifying the
velocity for a particular region of the trajectory.

Comparing exact unitary dynamics generated by the
operator ATLFIM with constant (Hamiltonian TLFIM) and
time-dependent couplings (Floquet TLFIM), we observe
a significant improvement in fidelity in Fig. 5(b). Since
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FIG. 5. (a) The time dependence of the optimal values of the parameters for the TLFIM (full lines) and the perturbed TLFIM (dotted
lines). The dashed lines show the values of the parameters in the time-independent case used to generated the trajectory. (b) The
logarithm of fidelity density obtained from infinite TEBD simulations [49], where Ft = |〈ψ(t)|ψQ(t)〉|2 measures how close exact
unitary evolution |ψQ(t)〉 is to the desired MPS |ψ(t)〉. We observe a significant improvement of fidelity for Floquet TLFIM, and
nearly perfect fidelity for TLFIM supplemented by additional terms (denoted as TLFIM+ZY). (c) In line with the behavior of fidelity,
the bipartite entanglement grows much slower for Floquet TLFIM, and its growth is hardly noticeable for extended Floquet driving.
All data shown are computed with χ = 64 and δt = 10−5.
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the motion is occurring on the periodic trajectory in the
MPS manifold, the system will exhibit periodic revivals
of the fidelity of the initial state, characteristic of quantum
many-body scars. We note that the fidelity of the revival
can be further improved by either modifying the trajectory,
as we did in the previous section, or by adding additional
driving parameters that would allow us to follow the fixed
trajectory with greater precision.

Among all possible two-site operators, the best addi-
tional term to the operator ATLFIM turns out to be

δA = 1
2
ζ
∑

i

(σ z
i σ

y
i+1 + σ

y
i σ

z
i+1), (26)

such that the full generator of unitary dynamics becomes
A = ATLFIM + δA. As can be seen in Fig. 5(a) such an
addition leads to a minor change in the other driving
parameters, and at the same time yields a nontrivial time
dependence for ζ , whose average across the entire trajec-
tory is exactly zero. In Fig. 5(b) we see that this term allows
us to reach near-perfect fidelity on the desired trajectory.

Finally, in Fig. 5(c), we study the dynamics of the
bipartite entanglement entropy. In the case of Hamilto-
nian dynamics (constant couplings) we observe generic
linear growth of the entanglement entropy. Conversely, our
attempt to stabilize the dynamics on the MPS trajectory
using the Floquet TLFIM model alone immediately yields
a notable slowdown in the rate of growth of the entangle-
ment entropy [solid line in Fig. 5(c)]. Finally, the Floquet
dynamics generated by the operator ATLFIM + δA nearly
completely halts entanglement growth, leading to periodic
oscillation of entanglement akin to those observed in the
PXP model [40].

VI. DISCUSSION

In this work we considered the problem of steering a
quantum many-body system along a certain path in the
MPS manifold. We introduced the leakage minimization
approach as the most promising and efficient general solu-
tion for this problem. In order to illustrate this approach,
we considered the generalized PXP model where we allow
for time-dependent control of the Rabi frequency on even
and odd sites of the chain. This additional control was used
to improve the fidelity of revivals in the unitary dynamics
generated by our time-dependent Hamiltonian. In addition,
we demonstrated how one can control the amount of quan-
tum entanglement encountered in such unitary dynamics,
and showed that one may perform entanglement steer-
ing [10] using a limited set of controls. Finally, we applied
our approach to the nonintegrable transverse and longitudi-
nal field Ising model. We found the time-dependent values
of couplings in this model that give rise to fidelity revivals
characteristic of quantum many-body scars.

Earlier works used MPS encoding of the quantum state
for more efficient numerical evaluation of the cost func-
tion in the optimal control approaches [16]. In contrast, our
method finds the optimal controls for steering the system
along a given direction in the MPS tangent space, and is
capable of determining efficient and inefficient directions
of propagation given a certain set of control parameters.
Thus, our approach intrinsically relies on the MPS rep-
resentation of the quantum many-body wave function to
map the quantum control problem to a classical one in
an efficient way. Although we focused on an analytical
demonstration of this method using a small number of
parameters and a bond dimension 2 MPS, it can be straight-
forwardly extended to the case of larger bond dimensions
and more control parameters by performing the calcula-
tions numerically. While our approach is naturally formu-
lated in the thermodynamic limit, similarly to the TDVP
method [47], thus providing an efficient solution for the
problem of locally steering of quantum many-body system
dynamics, the generalization to finite-size systems is also
straightforward.

Moreover, our approach can be extended beyond the
MPS representation to other variational manifolds of
states. The framework proposed in our work remains
efficient and avoids complexity related to the full many-
body Hilbert space, provided that the variational manifold
allows for an efficient parametrization of the tangent vec-
tors and for an efficient calculation of two-point correla-
tion functions. Prospective extensions of our framework
are provided by two-dimensional projected entangled pair
states (PEPSs), and also variational states where observ-
ables can be calculated with Monte Carlo sampling. An
example of a specific extension of our approach could be
the optimal state preparation of spin-liquid-type resonant
valence bond states in two-dimensional Rydberg arrays,
recently implemented experimentally [55] and studied the-
oretically using a few-parameter PEPS ansatz [56].

Pairing the efficient solution of the local steering prob-
lem constructed in this work with the global trajectory
optimization within a given MPS variational manifold is
expected to lead to a new approach to the quantum con-
trol problem (see Appendix F for the formulation of the
trajectory optimization problem). Although MPS represen-
tation is limited in its capabilities of representing strongly
entangled states, this restriction can be practically avoided
by choosing a sufficiently large bond dimension. For
instance, numerical MPS-based trajectory optimizations of
the state preparation across a superfluid-insulator phase
transition in the Bose-Hubbard model is reported to be
converged for a bond dimension of χ = 200 [22]. In addi-
tion, many interesting states that have a nontrivial global
entanglement pattern, such as the celebrated Greenberger-
Horne-Zeilinger state, are naturally encoded as a MPS of
a low bond dimension. Hence, it is interesting to under-
stand how our framework will perform in preparing the
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globally entangled states and facilitate the state preparation
in quantum simulators.

Finally, the problem of the steering of quantum states
has potentially fruitful connections with quasiadiabatic
continuity results [57,58]. The latter guarantee that two
many-body states, connected by a trajectory along which
the system remains gapped, can be transformed into each
other by an evolution with a fictitious quasilocal Hamilto-
nian over a finite time. This Hamiltonian is expressed via
spectral properties and eigenstates, and therefore is gener-
ally difficult to implements in experiments. Our approach
provides a practical recipe to constructing approximate
quasiadiabatic evolution protocols, given a finite number
of controls. Theorems of Refs. [57,58] ensure that if a
set of controls is sufficiently large, the desired state can
be prepared with desired accuracy. In the future, it would
be interesting to investigate the minimum set of controls
required to drive a quantum state between two quantum
states.

On a more practical note, our application of the leak-
age minimization control framework to the generalized
PXP model reveals a new perspective on quantum many-
body scars [45,59]. Our results show that a weak time-
dependent modulation of Rabi frequencies on different
sublattices allows one to make the characteristic quantum
scarred dynamics more coherent. Such a modulation of
Rabi frequencies effectively leads to a Floquet model with
scars characterized by a smooth dependence of Hamilto-
nian parameters. Although Floquet scars in models with
pulsed driving received significant attention [41,60–62],
our work invites the study of Floquet many-body scars
with continuous driving.

More broadly, our approach may be used to construct
new models with Floquet scars, as we explicitly demon-
strated using the Floquet TLFIM. We expect that this
will enable realization of quantum many-body scars using
other quantum simulator platforms, and can reveal addi-
tional insights into a general mechanism for the appearance
of scars [45,59]. Natural candidate models for the con-
struction of Floquet scars include the PXP model with
time-dependent chemical potential [10,41], and other lat-
tice models that have a known frustration-free MPS ground
state, such as Affleck-Kennedy-Lieb-Tasaki spin chains
[63,64], Hubbard-type models [65], and others [66] that
are also known to have quantum many-body scars.
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APPENDIX A: CD APPROACH

1. Trace minimization

In this section we briefly discuss the calculation of the
trace-CD approach in general and in the PXP model.

a. General expression for the cost function

We begin with the expression for the cost function

S(t) = Tr[G(t)2]. (A1)

Typically, we assume a translational invariance with possi-
bly large but finite unit cell (this is required for calculations
in the thermodynamic limit l → ∞). In such cases it is
possible to expand the expression for the cost function,

S(t) = Tr
[∑

i,j

Gi(t)Gj (t)
]

, (A2)

where we have introduced the density Gj (t) as

Gj (t) = ∂tHj (t)+ i
∑

j ′
[Aj ′(t), Hj (t)]. (A3)

Provided both Aj (t) and Hj (t) are local operators, the sum
over j ′ has a finite number of nonzero terms. There will
always exist an integer l+ such that [Aj +l(t), Hj (t)] = 0 for
all l ≥ l+. Similarly, there will be an integer l− such that
[Aj −l(t), Hj (t)] = 0 for all l ≥ l−. Hence we can rewrite
Eq. (A3) as

Gj (t) = ∂tHj (t)+ i
l+−1∑

j ′=−l−+1

[Aj +j ′(t), Hj (t)], (A4)

where l+ ≤ lH and l− ≤ lA, with lA and lH the supports of
Aj and Hj , respectively (the densities are taken over trans-
lationally invariant unit cells). From here, it follows that
Gj (t) is a local operator with support on most 2lA + lH − 2
consecutive sites.

Let us now define a density of the cost function as

Si,j (t) = Tr[Gi,j (t)], Gi,j (t) = Gi(t)Gj (t). (A5)

Using this definition, the full cost function can be
expressed as

S(t) = l
lU

lU∑

i=1

∑

j

Si,i+j (t), (A6)

where lU is the size of the unit cell (i.e., we have transla-
tional invariance with respect to shifting the system by lU)
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and l is the size of our system. Finally, since Aj is linear
in cη(t), it follows that S(t) will be a quadratic polynomial
in cη(t). We can then write the cost function in a generic
form as

S(t) =
∑

η,η′
Cη,η′(t)cη(t)cη′(t)+

∑

η

Cη(t)cη(t)+ C(t).

(A7)

Here Cη,η′(t), Cη(t), and C(t) do not depend on cη(t).
Clearly, the value of the optimal parameters cη will not
depend on C(t), so we can simply omit the contribution
from terms of the form Tr(∂tHi(t)∂tHj (t)). This is prac-
tical, since it will allow us to truncate the sum in j in
Eq. (A6) to some finite range, which we can do since
A and H are both Hermitian. For Cη,η′ , this can be seen
by looking at terms of the form Tr([Ai+j , Hi][Ai′+j ′ , Hi′])
that appear when in Eq. (A5) one takes two terms that
both contain commutators. Such contributions will cancel
out with Tr([Ai′+j ′ , Hi′][Ai+j , Hi]) when the two commu-
tators commute (for instance, when the supports of the
resulting local operators do not overlap). A similar obser-
vation can be made for Cη with Tr((∂tHi(t))[Ai′+j ′ , Hi′])
and Tr((∂tHi′(t))[Ai+j , Hi]). From this, we can see that it is
sufficient to evaluate the expression

S =
lU∑

i=1

l++l−−2∑

j =−l+−l−+2

Tr[Si,i+j ] + const, (A8)

where we ignore parts of the term constant in cη that does
not impact minimization over cη.

b. Calculation for the PXP model

When applying the above approach to the PXP model,
we only need to evaluate the expression

S = l
2

2∑

i=1

2∑

j =−2

Si,i+j + const. (A9)

An important detail here is that the trace in Si,j (t) [defined
in Eq. (A5)] is taken only with respect to the constrained
subspace (i.e., excluding states where two neighboring
sites are occupied). As a result, if one works with the basis
of Pauli matrices, the σ x and σ y matrices remain traceless
while strings of operators containing σ z may have nonzero
trace in this projected subspace. To compute the trace in
the constrained subspace, let us expand the trace as a sum
over all basis vectors (in the σ z computational basis) in the
subspace

Si,j = Tr[Gi(t)Gj (t)] =
∑

{|ξ 〉}
〈ξ |Gi(t)Gj (t)|ξ〉. (A10)

Additionally, we can expand the operators themselves in
terms of Pauli strings

Gi(t)Gj (t) =
∑

α

gα
⊗

i

σ
αi
i , (A11)

where α = {α1,α2, . . . ,αl} and αi ∈ 0, x, y, z. Clearly, any
strings containing σ x or σ y will not contribute, since those
are purely off diagonal in the computational basis. What
is left is to compute an overlap of some string of σ z or 1
operators with all basis states (trace)

tα = 1
D

∑

{|ξ 〉}
〈ξ |
⊗

i

σ
αi
i |ξ〉, (A12)

in the thermodynamic limit l → ∞. Here D is the dimen-
sion of the constrained subspace that also depends on l. To
do this, let us first look at a chain of length l with periodic
boundary conditions. In this case, one can construct the
sum of all basis states spanning the constrained subspace
using MPS formalism as

∑

{|ξ 〉}
|ξ〉 = Tr[T l

0], T0 =
(|↓〉 |↓〉

|↑〉 0

)
. (A13)

Applying σ z
i to such a MPS, a specific site i simply requires

replacing the ith transfer matrix T0 with

Tz =
(−|↓〉 −|↓〉

|↑〉 0

)
. (A14)

Obtaining an expectation value for a string of 1 and σ z

matrices is then simply expressed as

tα = 1
D
(Tr[T l

0])†Tr
[ l∏

i=1

Tαi

]
. (A15)

The scalar factors in front of each basis state |ξ〉 are simply
(−1)n↓ , where n↓ is the number of |↓〉 in state |ξ〉. This
allows us to further simplify the expression as

tα = 1
D

Tr
[ l∏

i=1

T̃αi

]
. (A16)

Here we have introduced new transfer matrices as

T̃0 =
(

1 1
1 0

)
, T̃z =

(−1 −1
1 0

)
, (A17)

which now already include the overlap with 〈ψ | and can
be obtained from Tα by simply replacing |↑〉 → 1 and
|↓〉 → 1.
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Taking the thermodynamic limit of this expression in
our case is relatively straightforward, since all our oper-
ators are local (i.e., αi = 0 outside some fixed interval).
When that is the case, we can rewrite the expression as

tα = lim
l→∞

1
D

Tr
[

T̃ lleft
0

( ∏

i∈center

T̃αi

)
T̃

lright
0

]
, (A18)

where lleft and lright are the lengths of the strings of iden-
tities to the left and right of the nontrivial local operator,
respectively. We also require lleft and lright to both diverge
as we take l → ∞, which we can always choose due to
translational invariance in the system. When T has a single
dominant eigenvalue, which is also the case here, we have

lim
n→∞ T̃ n

0 = lim
n→∞ λ

n
max|emax〉〈emax|, (A19)

where λmax is the largest (by absolute value) eigenvalue
and |emax〉 is the corresponding eigenvector. Note that
the left and right eigenvectors are the same in this case.
Replacing this in the trace we obtain

tα = lim
l→∞

1
D
λl−lcenter

max 〈emax|
∏

i∈center

T̃αi |emax〉. (A20)

Finally, observe that replacing the string α with identi-
ties should yield g1,1,... = 1, by definition. From this we
obtain the well-known result liml→∞ D ≈ liml→∞ λl

max =
ϕl, which can be used to obtain the final form for the
expression of tα:

tα = 1

λ
lcentre
max

〈emax|
∏

i∈center

T̃αi |emax〉. (A21)

In case of the PXP model we have, for the largest eigen-
value of the transfer matrix T̃0, λmax = (1 + √

5)/2 = ϕ,
which is the golden ratio. We find the dominant eigenvec-
tor to take the form |emax〉 = |ϕ/√2 + ϕ, 1/

√
2 + ϕ〉. For

example, for the trace of the 12i ⊗ σ z
2i+1 ⊗ 12i+2 ⊗ σ z

2i+3
operator, we get

g0,z,0,z = 〈emax |̃T0T̃zT̃0T̃z|emax〉
λ4

max
= 3 − 6√

5
. (A22)

For the calculation of the cost function, it is sufficient
to consider ten spins for the center region in Eq. (A21).
Strictly speaking, one could also get away with eight by
making use of translational invariance, since at worst the
operator Gi,j (t) that contributes to S extends across four
unit cells.

We now have all the necessary components to compute
the relevant contributions of the cost function S (recall that
we neglect terms that do not depend on cη, since they are
irrelevant to the calculation of the optimal values of cη).

The S obtained in this way is a function of the parent
Hamiltonian parameters a1, a2, b1, b2 and their derivatives
with respect to time, as well as the driving Hamiltonian
parameters c1 and c2. One must then find the minimum of
S with respect to c1 and c2. As we already mentioned, S
is a quadratic polynomial in cη, so this is trivial to obtain.
The resulting solutions can be found in Ref. [53].

2. Ground-state minimization

In this section we briefly discuss the derivation of the
ground-state CD approach from the full deviation form
suggested by Sels and Polkovnikov [35]. We then discuss
when this can reduce to a simple one-point function and
finally describe the calculation for our example where we
know the ground state in terms of a MPS representation.
Finally, we show some details of the calculation in the PXP
model.

a. Simplifying the cost function in the general case

We begin with the expression for the cost function in the
zero-temperature CD approach

S = 〈ψ(t)|G(t)2|ψ(t)〉 − 〈ψ(t)|G(t)|ψ(t)〉2. (A23)

In this section we show that the second term always
vanishes.

Expanding the original expression,

〈ψ(t)|G(t)|ψ(t)〉
= 〈ψ(t)|∂tHp(t)+ iA(t)Hp(t)− iHp(t)A(t)|ψ(t)〉,

(A24)

it is immediately clear that the last two terms in the expec-
tation value vanish due to the choice Hp(t)|ψ(t)〉 = 0. This
leaves the first term that can be simplified using the relation

∂t(Hp(t)|ψ(t)〉) = (∂tHp(t))|ψ(t)〉 + Hp(t)(∂t|ψ(t)〉) = 0,
(A25)

from which one obtains the relation (∂tHp(t))|ψ(t)〉 =
−Hp(t)(∂t|ψ(t)〉). Substituting this into our expression and
again accounting for Hp(t)|ψ(t)〉 = 0, we obtain our result,

〈ψ(t)|G(t)|ψ(t)〉 = 0. (A26)

Thus we need to compute only the first term in the cost
function

S = 〈ψ(t)|G(t)2|ψ(t)〉. (A27)

We proceed to further simplify the expression for the
zero temperature CD cost function by using the local struc-
ture of the parent Hamiltonian and driving operator A. We
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note that this simplification omits the part of the expecta-
tion value that does not depend on cη, similarly to what
we did for the trace CD. To simplify the cost function,
one has to explicitly write the terms entering the prod-
uct of operators Gi(t)Gj (t), and simplify them individually
using the property Hp(t)|ψ(t)〉 = 0 and the fact that dif-
ferent local density operators commute with each other if
|i − j | is sufficiently large. This procedure results in the
following expression for the cost function, which is similar
to Eq. (A5):

S =
∑

j

l++l−−2∑

k=−l+−l−+2

〈ψ(t)|Gj (t)Gj +k(t)|ψ(t)〉. (A28)

The summation limit depends on l±, which are defined
after Eq. (A4). Using translational invariance with a unit
cell of size lU, the cost function can be further written as

S = l
lU

lU∑

j =1

l++l−−2∑

k=−l+−l−+2

〈ψ(t)|Gj (t)Gj +k(t)|ψ(t)〉. (A29)

b. Calculation for the PXP model

In the case of the PXP model with a two-site unit cell
used throughout this paper we can then write

S = l
2
〈ψ |Õ|ψ〉, (A30)

where we have defined

Õ =
2∑

j =1

2∑

k=−2

Gj (t)Gj +k(t), (A31)

as the operator whose expectation value we must evalu-
ate. Since we are working in the thermodynamic limit, this
means that we must simply find the contraction

(A32)

where M1 and M2 are the MPS tensors, Õ is the operator
in question, and |L) and |R) are the left and right dom-
inant eigenvectors of the transfer matrix T, respectively,
which we define in the next paragraph. Note that here
all vertical legs correspond to physical spin indices, while
the horizontal legs identify the auxiliary spaces—in terms
of the representation of the MPS in Eq. (5) the physical
dimensions are those corresponding to |↑〉 and |↓〉 and the
row and column indices of the matrix correspond to the
auxiliary dimensions of the MPS.

Because of translational invariance, one can perform
the calculation on only four unit cells as opposed to the
five shown here by translating some terms by one unit
cell, which may in some cases make the computation
faster. Similarly to the case of the trace-CD calculation,
this expression can be used in the thermodynamic limit
where only dominant eigenvectors contribute. Here we
have defined the transfer matrix to move us by one unit
cell as

T =
2∏

i=1

(
M↑

i ⊗ M↑
i + M↓

i ⊗ M↓
i

)
, (A33)

where the M↑/↓
i are the corresponding matrices of tensor

Mi at the respective physical indices. Note also that this
takes the form of a matrix once the two auxiliary indices
on each side are merged. For the transfer matrix, we obtain

T =

⎛

⎜⎜⎝

cos2 θ1 cos2 θ2 + sin2 θ1 0 0 cos2 θ1 sin2 θ2

cos θ1 cos2 θ2 0 0 cos θ1 sin2 θ2

cos θ1 cos2 θ2 0 0 cos θ1 sin2 θ2

cos2 θ2 0 0 sin2 θ2

⎞

⎟⎟⎠ .

(A34)

Eigenvectors |L) and |R) are then the left and right eigen-
vectors with eigenvalue 1, (L|T = (L| and T|R) = |R).
Their explicit forms read

|L) = 1√
sin4 θ1 sin4 θ2 + cos4 θ2

⎛

⎜⎜⎝

cos2 θ2
0
0

sin2 θ1 sin2 θ2

⎞

⎟⎟⎠ ,

(A35)

|R) = 1√
3 + cos 2θ1

⎛

⎜⎝

1
cos θ1
cos θ1

1

⎞

⎟⎠ . (A36)

Note that there exist isolated points θ1 = π/2 + kπ and
θ2 = π/2 + kπ when the dominant eigenvalue becomes
degenerate; however, since that point is disconnected from
the rest of the MPS manifold, we do not discuss it further.

Using this, one must simply perform the contraction
depicted in Eq. (A32) and minimize the result with respect
to the driving parameters cη in order to obtain the driving
parameters from the ground-state CD approach. The result-
ing expressions for the driving parameters can be found in
Ref. [54].
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APPENDIX B: CALCULATION WITH THE
LEAKAGE APPROACH IN THE PXP MODEL

A natural extension of the ground-state CD approach
is leakage minimization, which is closely related. In this
approach we must minimize the cost function defined as
S = δ2 from Eq. (14). Here the leakage δ represents the
norm of the vector pointing away from our MPS trajectory.
Unlike what we observed in the ground-state CD approach,
this does not reduce to a one-point function. Nevertheless,
the expression can still be computed exactly.

Expanding the equation for the leakage we get

S = 1
l

[Re〈∂tψ(t)|∂tψ(t)〉c − 2Im〈∂tψ(t)|A(t)|ψ(t)〉c

+ 〈ψ(t)|A(t)2|ψ(t)〉c], (B1)

where we have introduced the shorthand notation
|∂tψ(t)〉 = ∂t|ψ(t)〉. Note that the use of connected corre-
lations in the above expression is the result of requiring
the metric to be invariant under multiplication by a global
phase, which we discuss in a bit more detail in the next
section. As we will see, this will also exactly cancel all
terms proportional to l2, leaving only terms proportional to
l in the correlations themselves.

To reduce the number of terms in the calcu-
lation, we introduce two-site tensors (M12)al,s1,s2,ar =∑

am
(M1)al,s1,am(M2)am,s2,ar , where am traces out the auxil-

iary space between M1 and M2. The remaining indices are
s1 and s2 for the physical degree of freedom on sites 1 and
2, respectively, al for the auxiliary link to the left of site 1,
and ar for the auxiliary link to the right of site 2. In this
formulation our problem has a unit cell size of 1, greatly
simplifying all following expressions. Let us first look at
the first term Re(〈∂tψ(t)|∂tψ(t)〉). Using the chain rule for
the derivatives, this can be expressed using a MPS as

(B2)

Here we have introduced the derivative terms as

(∂tM12)al,s1,s2,ar =
∑

am

[(∂tM1)al,s1,am(M2)am,s2,ar

+ (M1)al,s1,am(∂tM2)am,s2,ar]. (B3)

We can already see that the sum in j resembles a geometric
series in the transfer matrix T defined in Eq. (A33). Since
the transfer matrix has an eigenvalue equal to 1, this series
is divergent. We can circumvent this issue by projecting
out the divergent part and treating it separately, i.e.,

lim
l→∞

l∑

n=0

T
n = lim

l→∞
lP + Q(1 − QTQ)−1Q︸ ︷︷ ︸

T −1

, (B4)

where we define the projectors to the dominant subspace
P = |R)(L|/(R|L) and it’s complement Q = 1 − P . Here
|L) and |R) are the left and right dominant eigenvectors
of our transfer matrix defined in Eqs. (A35)–(A36). Using
this, it is clear we must compute the following expression,
represented in terms of tensors:

(B5)

Here the terms crossed out in red cancel out with the disconnected correlators and the prefactor (l/2 − 1) can be replaced
by l/2 in the thermodynamic limit. To express this in a more concise form, let us define several matrices

(B6)
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where all left-facing and right-facing legs are merged into
a single row or column index, respectively. Using this, we
can write the expression as

〈∂tψ(t)|∂tψ(t)〉c

= − l
2
(L|T∂t |R)(L|T∂t |R)

(L|R)2

+ l
2

(L|T∂t
∂t

+ T∂tT −1
T
∂t + T

∂tT −1
T∂t |R)

(L|R) . (B7)

We can now apply the same approach to the other con-
nected correlation functions in the expression for the leak-
age. Defining the density of the driving Hamiltonian A
with respect to the unit cell, Ã, which, after merging the
auxiliary indices, can be written as

Ã = c1P ⊗ σ x ⊗ P ⊗ 1 + c21 ⊗ P ⊗ σ x ⊗ P, (B8)

we introduce several auxiliary matrices (again merging the
left and right auxiliary indices as was done previously)

(B9)

(B10)

.

(B11)

Using this, one may then obtain the expressions for the
other two connected correlators in the thermodynamic
limit:

〈∂tψ(t)|A(t)|ψ(t)〉c

= −2
l
2
(L|A|R)(L|T∂t |R)

(L|R)2

+ l
2
(L|A∂t + T∂tT −1

A + AT −1
T∂t |R)

(L|R) , (B12)

〈ψ(t)|A(t)2|ψ(t)〉c = −3
l
2
(L|A|R)2
(L|R)2

+ l
2
(L|A2 + 2AT −1

A|R)
(L|R) . (B13)

The factor in the first term of each equation, 2 and 3, rep-
resent the number of unit cells where the two operators,
∂tM12 and Ã in Eq. (B12), and Ã and Ã in Eq. (B13), would
overlap and must be subtracted.

In our example all these correlation functions can be obtained analytically and then combined to find the analytical
expression for the cost function S = δ2:

S = [c2(t)2(7 + 8 cos 2θ1(t)+ 2 cos 4θ1(t) cos2 θ2(t)− cos 2θ2(t))+ c1(t)2(7 + 8 cos 2θ2(t)

+ 2 cos 4θ2(t) cos2 θ1(t)− cos 2θ1(t))+ 64c1(t)c2(t) cos2 θ1 cos2 θ2 sin θ1 sin θ2

+ 32c2(t) cos2 θ1(t)(θ ′
2(t) cos θ1(t)+ θ ′

1(t) cos θ2(t) sin θ1(t) sin θ2(t))+ 32c1(t) cos2 θ2(t)(θ ′
1(t) cos θ2(t)

+ θ ′
2(t) cos θ1(t) sin θ2(t) sin θ1(t))+ 8(θ ′

1(t)
2(1 + cos 2θ2)+ θ ′

2(t)
2(1 + cos 2θ1))]/[8(3 + cos 2θ1(t)

+ 2 cos 2θ2(t) sin2 θ1(t))]. (B14)

From this we can obtain the solution for the driving parameters c1(t) and c2(t) for an arbitrary trajectory in the MPS
manifold, defined by (θ1(t), θ2(t)) by minimizing the above cost function with respect to the driving parameters:

c1,2(t) = 2[−2θ ′
1,2(t)(9 + 6 cos 2θ1,2(t)+ cos 4θ1,2(t)) cos θ2,1(t)− 8θ ′

1,2(t) cos 2θ1,2(t) cos 3θ2,1(t) sin2 θ1,2(t)

+ θ ′
2,1(t)(2 sin 2θ1,2(t)+ 7 sin 4θ1,2(t)) sin θ2,1(t)+ 8θ ′

2,1(t) cos θ1,2(t) sin3 θ1,2(t) sin 3θ2,1(t)]

× [29 + 3 cos 4θ1,2(t)+ 32 cos 2θ1,2(t) cos 2θ2,1(t)+ 6 cos 4θ2,1(t) sin2 2θ1,2(t)]−1. (B15)
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Although the cost function can be computed analytically in
the present example, such a calculation will very quickly
become infeasible upon increasing the bond dimension.
The particularly problematic parts are finding the pseu-
doinverse of the transfer matrix T −1 and the left and
right eigenvectors (L| and |R) of the transfer matrix T.
Importantly, even when analytic calculation is infeasible,
one can perform our procedure at any point in the phase
space numerically. As a result, this approach can be eas-
ily applied to MPSs with large bond dimension and/or unit
cells.

APPENDIX C: RELATION BETWEEN LEAKAGE
MINIMIZATION AND GROUND-STATE CD

Recall that the ground-state CD approach amounts to
minimizing the cost function defined in Eq. (A27). Since
G(t) is Hermitian, this can then be rewritten as

S = ∣∣(∂tHp(t)+ i[A(t), Hp(t)])|ψ(t)〉
∣∣2 . (C1)

Expanding the commutator we find that one of the
contributions vanishes, iA(t)Hp(t)|ψ(t)〉 = 0, due to
Hp(t)|ψ(t)〉 = 0. We are then left with

S = ∣∣(∂tHp(t)− iHp(t)A(t))|ψ(t)〉
∣∣2 . (C2)

Finally, recall from Eq. (A25) that we have ∂tHp(t)|ψ(t)〉
= −Hp(t)∂t|ψ(t)〉. Using this, we rewrite the ground-state
CD cost function as

S = ∣∣Hp(t)[∂t|ψ(t)〉 + iA(t)|ψ(t)〉]∣∣2 , (C3)

where the minus sign is absorbed by the absolute value.
Comparing this with the expression for the leakage, δ2

δ2 = 1
l
|∂t|ψ(t)〉 + iA|ψ(t)〉|2.

This reveals that the ground-state CD cost function coin-
cides with the leakage weighted by the parent Hamiltonian
(the missing 1/l factor is not relevant to the optimization).

APPENDIX D: TDVP, LEAKAGE, AND RESCALED
LEAKAGE

Both TDVP and our leakage-based optimization rely on
the minimization of leakage and a MPS formulation. Let
us define the MPS as |ψ(t)〉 = |ψ({xj (t)})〉, with the xj
being the real parameters of the MPS ansatz. In the TDVP
approach, we take the Hamiltonian H that generates the
dynamics and find the vector in the tangent space of the
MPS manifold, spanned by the vectors ∂xj |ψ(t)〉, which
gives rise to the lowest leakage. This is done by simply

projecting −iA|ψ(t)〉 to the tangent space and requiring
that the projection is described exactly, i.e.,

Re〈∂xjψ(t)|∂tψ(t)〉c + Re[i〈∂xjψ(t)|A(t)|ψ(t)〉c] = 0.
(D1)

Substituting |∂tψ(t)〉 =∑j ẋj ∂xj |ψ(t)〉, one can invert the
system of equations to obtain expressions for ẋj . Simi-
larly, our leakage approach simply inverts the roles: we
now minimize the distance between the desired direction
in the MPS manifold |∂tψ(t)〉 and the space spanned by
−iAj |ψ(t)〉. While we formulate this as a direct minimiza-
tion of leakage

min
cη

[
1
l
|∂t|ψ(t)〉 + iA(t)|ψ(t)〉|2

]
, (D2)

it is easy to see that the minimization of this expression is
equivalent to

Re[i〈ψ(t)|Aj |∂tψ(t)〉c] − 〈ψ(t)|Aj A(t)|ψ(t)〉c = 0. (D3)

This of course is nothing but the projection of |∂tψ(t)〉 to
the manifold spanned by −iAj |ψ(t)〉, where we fix cη such
that the difference between the projection and our solution
in the manifold is zero. This suggests a simple geometric
description presented in Fig. 6.

This gives rise to an interesting question: is it possible
to choose cη such that the projection to the trajectory man-
ifold would be exact (see the left schematic in Fig. 5 with
H ≡ A) and thus the dynamics within that manifold would
be exact at the expense of higher overall leakage? Here

TDVP and “rescaled leakage”

∑
a ẋa∂xa |ψ〉

−iH
|ψ〉

γ

Leakage optimization

∑
a ẋa∂xa |ψ〉

−iA
|ψ〉

δ

FIG. 6. Schematic representation of the difference between
TDVP and leakage minimization. Because of the similar nature
of optimization in both cases, one gets a right angle opposite to
the side that is fixed; the difference is only in the side that is fixed.
In the case of TDVP we optimize

∑
a ẋa∂xa |ψ〉 while keeping

−iA|ψ〉 fixed, whereas in our leakage minimization approach the
two swap roles. This suggests that there is an alternative formula-
tion (dubbed “rescaled leakage” in what follows), where instead
of minimizing leakage we choose ci such that the projection of
iA′|ψ〉 to ∂t|ψ〉 would have the exact same norm as ∂t|ψ〉. In
this way the dynamics in the trajectory manifold would be exact,
when possible.
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the trajectory manifold corresponds to the one-dimensional
submanifold of states defined by |ψ(t)〉 within the full
MPS manifold.

In order to explore this idea, let us first briefly dis-
cuss the various spaces involved here. Firstly, let us define
the Hilbert space spanning all states H with the inner
product 〈α,β〉 = 〈β|α〉. This of course is nothing but C

n

for finite systems, but naturally remains a Hilbert space
when n tends to infinity. Here n is the dimensionality of
our system—for a spin-1/2 chain of length l, this is sim-
ply n = 2l. Note however that this space is not ideal for
our approaches, as has been noted in the original time-
dependent variational principle works and in the geometric
formulation of quantum mechanics [68–70]. In order to
show the issue, let us consider the following expression:
|ψ〉 − e−iϕ|ψ〉; physically, these are the same state which
implies that the norm of this expression should be zero.
In fact, quantum states “live” in the complex projected
space CPn−1 (note that, for instance, CP1 is just the Bloch
sphere). Indeed, this space is simply the quotient of a
unit sphere under the action of U(1), such that CPn−1 =
S2n/U(1), the sphere coming from normalization and the
U(1) from invariance of states with respect to a global
phase.

In the complex projected space CPn−1 we can define the
Fubini-Study metric [68,69]

γ (ψ ,φ) = arccos

√
〈ψ |φ〉〈φ|ψ〉
〈φ|φ〉〈ψ |ψ〉 , (D4)

where the normalization terms can of course be omitted.
One may then assign a tangent space T|ψ〉CPn−1 to each
point |ψ〉 of the complex projected space with a metric
tensor

g|ψ〉(|α〉, |β〉) = Re[〈α|β〉 − 〈α|ψ〉〈ψ |β〉]. (D5)

Here |α〉 and |β〉 are vectors in the tangent space
T|ψ〉CPn−1. Clearly, this metric tensor is nothing but a
connected correlation function, so we generally use the
notation g|ψ〉(|α〉, |β〉) = Re〈β|α〉c. Importantly, the metric
tensor gives rise to an inner product, which in turn allows
for the definitions of angles and distances in the tangent
space. Additionally, since the tangent space T|ψ〉CPn−1 is
complete, it follows that it is a Hilbert space. This property
will prove useful since it allows us to use simple geometric
arguments to obtain cη such that the dynamics within the
trajectory manifold are accurate.

Indeed, since both the tangent space of the MPS mani-
fold (T|ψ〉�) spanned by ∂xj |ψ〉 and the driving manifold A
spanned by −iAj |ψ〉 are subspaces of T|ψ〉CPn−1, we can
make some simple observations. Firstly, we can decom-
pose any vector in this space into length r and direction
�e components. From this, since both subspaces are vector

spaces themselves, it is clear that, for any direction �eT|ψ〉�
in the tangent space of the MPS manifold, there is a cor-
responding direction �eA in the driving subspace, which is
nothing but the projection of �eT|ψ〉� onto A. This means
that in order to obtain the driving parameters with cor-
rect projection on the trajectory manifold, we can sim-
ply rescale the solution from the leakage minimization
approach. Taking the solution for leakage minimization, it
follows from Eq. (D3) that

〈ψ(t)|A(t)A(t)|ψ(t)〉c = −Im〈ψ(t)|A(t)|∂tψ(t)〉c. (D6)

Using this and basic calculus, we obtain the rescaling
factor

ω = 〈∂tψ(t)|∂tψ(t)〉c

〈ψ(t)|A(t)A(t)|ψ(t)〉c
, (D7)

which we can use to obtain the rescaled coefficients cη,P =
ωcη. In this expression A(t) represents the solution from
leakage minimization, which is used to obtain the rescaled
driving Hamiltonian AP(t). Note that cases where the two
subspaces are orthogonal to one another are not considered
here, since no reasonable optimization is possible in such
cases. In the following, we mark this approach as rescaled
leakage.

Naturally, this is not equivalent to applying standard
TDVP to the problem and then attempting to solve the
minimization. Such an approach would underestimate the
leakage, since we would essentially only be minimizing
the leakage within the tangent space of the MPS manifold.
Additionally, there may be dimensions in A orthogonal to
T|ψ〉�, which would simply be projected out, leaving free
parameters in the solutions. Indeed, we can easily create
such a TDVP approach, which would give, for the cost
function,

S = 2Im〈AP(t)
−→
∂t 〉c + 〈AP(t)AP(t)〉c + const, (D8)

where AP(t) = PT|ψ〉�A(t)PT|ψ〉� is nothing but A(t) pro-
jected to the tangent space of the MPS manifold.
Here the projector to the tangent space is defined
as PT|ψ〉� =∑i,j (G

−1)i,j |∂xiψ(t)〉〈∂xjψ(t)| with Gi,j =
〈∂xiψ(t)|∂xjψ(t)〉 the Gram matrix and G−1 a pseudoin-
verse. Note that PT|ψ〉� |ψ(t)〉 = |ψ(t)〉 since |ψ(t)〉 is the
point of the MPS manifold at which the tangent space is
taken. Similarly, all derivatives |∂xiψ(t)〉 are also vectors in
the tangent space and hence one also has PT|ψ〉� |∂xiψ(t)〉 =
|∂xiψ(t)〉. It is of course clear that this is not equivalent to
the approach described before and one would expect it to
perform worse on account of projecting operator A(t) to
the tangent space.
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APPENDIX E: ADDITIONAL TRAJECTORY
DEFORMATIONS

In this section we present several additional examples of
trajectories described by Eqs. (22)–(23) in the main text.

To this end, Fig. 7 compares different approaches for the
trajectory with large leakage in panel (a) and for the tra-
jectory with small leakage in panel (b). We emphasize that
in Fig. 7(a) fidelity is low at all times t � 1. Indeed, to put
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FIG. 7. We compare the performance of different approaches for the deformations of the circular trajectory marked in Fig. 4 with
ε1 = +0.05 in panel (a) and ε1 = −0.05 in panel (b), and ε2 = 0 in both cases. In both examples, the leakage-based approaches
outperform ground-state CD that in turn outperforms trace CD. We observe that, when leakage, and in turn − log F/l, are small [see
(b)], leakage minimization is the better approach. However, when this is not the case, as is shown in panel (a), the rescaled leakage
approach appears to perform somewhat better. All data are obtained with infinite TEBD using a maximal bond dimension of χ = 512
and a time step of δt = 10−5.
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things into perspective, at − log F/l = 0.05 the fidelity at
l = 16 is only F ≈ 0.45.

In both panels of Fig. 7 we can observe that the leakage
approach consistently outperforms trace and ground-state
CD approaches. Among the two CD approaches, ground-
state CD has better performance, which is in line with
expectations. Surprisingly, we observe that the rescaled
leakage approach, which we describe in Appendix D, may
outperform the leakage approach.

Since the rescaled leakage approach generally has
higher instantaneous leakage, the fact that it performs bet-
ter compared to the leakage approach is surprising. We
note that this happens only once fidelity degrades suf-
ficiently. In other words, as long as the quantum wave
function follows the desired trajectory with high fidelity,
leakage minimization is the best approach. However, if
the wave function deviates sufficiently from the trajec-
tory (even within the trajectory submanifold), the rescaled
approach starts performing somewhat better. One possible
explanation of such better performance is the better syn-
chronization of the assumed dynamics within the trajectory
manifold with those that actually take place in the quan-
tum evolution with our driving parameters. Put differently,
at least the projection of the state to the trajectory manifold
is correct and hence our driving, which is calculated using
that state, could be more trustworthy.

APPENDIX F: GLOBAL TRAJECTORY
OPTIMIZATION AND EULER-LAGRANGE

EQUATIONS

In this work we have mostly shown how to find the opti-
mal driving parameters once a trajectory has been fixed,
which was simply done by solving the system of equations

∂cηS = 0, for all η ∈ {1, . . . , n}, (F1)

where n is the number of driving parameters (in our exam-
ple this was 2). If instead we wish to find the optimal
trajectory from some point in the MPS manifold |ψ(0)〉 to
some other point in the MPS manifold |ψ(τ)〉, we would
have to optimize

S[cη(t), xk(t)] =
∫ τ

0
dtS (F2)

with respect to both the driving parameters cη and MPS
parameters xk. This can be done using Euler-Lagrange
equations since S is a functional depending on all cη(t)
and xk(t):

∂cηS = 0 for all η ∈ {1, . . . , n},

∂xk S − d
dt
∂ẋk S = 0 for all k ∈ {1, . . . , N },

(F3)

with N the number of MPS parameters xk (again, in our
example this is 2). Here ẋk = ∂txk is the derivative with

respect to time. Note that S does not depend on ċη and,
as a result, that part yields the same equations that we
had already seen in the case of time-local optimization.
Because of this, all results for cη as a function of MPS
parameters obtained analytically can also be applied to
global trajectory optimization. This of course still requires
finding the solution to the second set of equations. Of
course, since we pick the initial and final points, we know
the initial and final values of the MPS parameters [xk(0)
and xk(τ ), respectively]. Still, solving the resulting bound-
ary value problem exactly is generally not feasible, even
numerically. This is particularly true for cases where N
is relatively large; cases where N is small can be treated
numerically using finite elements or similar methods.

Alternatively, one can use the approach we introduced
in this work, namely we can optimize the trajectory with
respect to a much smaller number of parameters. One way
to achieve this is by expanding the trajectory in some func-
tional basis and then truncating that basis to a finite set
of functions, as we had done. Essentially, we optimize in
some finite space rather than the infinite space of all func-
tions. Even in this case however, when the dimensionality
of the space is large enough, it may be difficult to find
the global minimum; nevertheless, we can find local mini-
mums through various methods, such as gradient descent.
This may be sufficient to find reasonably good trajecto-
ries, depending on the choice of MPS manifold, driving
operators, and trajectory parametrization. Importantly, one
can use the integrated leakage for the cost function that is
considerably computationally cheaper to calculate than the
full quantum evolution, even when using MPS algorithms,
since no singular value decompositions are computed.

APPENDIX G: FLOQUET SCARS IN THE ISING
MODEL

In this section we provide additional details regarding
the calculation for the TLFIM.

In order to obtain the periodic trajectory we use operator
ATLFIM defined in Eq. (24) and the MPS manifold defined
in Eq. (25), choose an initial position listed in Sec. V,
and apply TDVP in order to obtain the projection of the
unitary dynamics onto the MPS manifold when using time-
independent parameters J = 1, hx = 1, and hz = 0.4. In
this sense we follow the procedure from Ref. [40], who
already performed TDVP for this model. Doing so we
obtain the values of the four MPS parameters a, b, c, and
d as functions of time that we show in Fig. 8. Note that the
period of the trajectory in this case is t0 ≈ 2.097.

We compare the performance of the leakage minimiza-
tion approach to that of trace-CD and ground-state CD
approaches. The application of the CD approach requires
the parent Hamiltonian for our MPS. Constructing the par-
ent Hamiltonian is relatively straightforward [14,50]. We
first choose the support of the local Hamiltonian density;
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FIG. 8. Time dependence of the MPS parameters that define
the trajectory within the MPS manifold as computed from TDVP
for the TLFIM model with J = 1, hx = 1, and hz = 0.4. Note that
the quick change in parameters a and c at t ≈ 0.25 + kt0 ; k ∈ Z

corresponds to the peaks in the driving parameters observed in
Fig. 5(a) in the main text.

generally, it is guaranteed that a solution will exist as long
as χ2 < dls , where χ is the bond dimension of the MPS, d
is the local Hilbert space dimension, and ls is the support of
the Hamiltonian density. In some cases one may find solu-
tions for smaller supports, but that is not the case in our
example, so we choose ls = 3, which is the first integer
that satisfies the inequality.

We then construct a set of vectors

V =
{∑

s

(
Tr
[

X
ls∏

i=1

M si

]
|s〉
)

; X ∈ {Rχ×χ }
}

, (G1)

where s is the string of physical states of the ls sites and the
sum runs over all possible configurations and X runs over
the basis of χ × χ matrices. We now find the complement
of the linear space spanned by elements of V with respect
to the full Hilbert space of the ls sites, which we denote W.
Constructing the local Hamiltonian density is then accom-
plished by simply reorganizing the vectors from W into a
matrix W′ such that the individual rows correspond to the
elements of the complement W and computing

hdensity = W′†�W′. (G2)

Here � is a diagonal square matrix of dimension equal to
|W| (the cardinality of set W) with elements λi > 0. In this
way we construct a projector that projects away from the
MPS (i.e., the state of the MPS is in the kernel of hdensity).
The parameters λ are free parameters in the parent Hamil-
tonian that can be changed while keeping a desired MPS a
ground state of the Hamiltonian. Such a local Hamiltonian
density is guaranteed to have the MPS as a unique zero
energy ground state with a spectral gap [14,50], yielding

a parent Hamiltonian. Unfortunately, the resulting expres-
sions are too bulky to be included here, but we note that
it is a combination of terms of the form ei−1 ⊗ fi ⊗ gi+1,
where ei, gi ∈ {1i, σ z

i } and fi ∈ {1i, σ x
i , σ y

i , σ z
i }.

Using the parent Hamiltonian, we perform the calcula-
tion for both CD approaches following a similar procedure
as for the PXP model. The only difference is that we have a
full translational invariance in the problem, corresponding
to a single-site unit cell. At this point it is worth emphasiz-
ing again that the presence of free parameters λi leads to
ambiguity, as the results depend on the choices of these
parameters. Furthermore, choosing a larger support will
naturally increase the number of these free parameters that
at present can be considered to be equal to zero.

In Fig. 9 we show the performance of the different
approaches for two fixed choices of free parameters λ =
{1, 2, 3, 4} (dashed lines) and λ = {1, 1, 1, 16} (full lines).
We note here that the leakage-based approach is locally
optimal, and hence it is guaranteed to perform the best
at early times, as we see from the plot. Later, the CD
approach may lead to better performance; however, such
instances are atypical as they rely on the fact that exact
quantum dynamics returns to the MPS manifold, featuring
nonmonotonic dependence of fidelity. It is worth noting
that the CD approaches are local in time and thus do not
predict these spontaneous returns to the MPS trajectory.
Different CD behavior can be illustrated by choosing dif-
ferent values for the� parameters. The solid lines in Fig. 9
show more typical CD performance behavior, whereas the
dashed lines illustrate the choice of � that features such
an accidental (i.e., not guaranteed by any symmetries or
physical principles) return to the MPS trajectory.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
10– 4

0.001

0.010

0.100

FIG. 9. The logarithm of the fidelity for the Hamiltonian
TLFIM dynamics (black) and the three optimization approaches
(colored). For the CD approaches, the solid lines correspond to
a choice of free parameters � = {1, 1, 1, 16}, while the dashed
lines correspond to� = {1, 2, 3, 4}. We observe that there is con-
siderable difference between the two choices, and, in line with
expectations, the leakage approach outperforms CD approaches
at early times.
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