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Cell migration in confining physiological environments relies on the concerted dynamics of several
cellular components, including protrusions, adhesions with the environment, and the cell nucleus.
However, it remains poorly understood how the dynamic interplay of these components and the cell
polarity determine the emergent migration behavior at the cellular scale. Here, we combine data-driven
inference with a mechanistic bottom-up approach to develop a model for protrusion and polarity dynamics
in confined cell migration, revealing how the cellular dynamics adapt to confining geometries. Specifically,
we use experimental data of joint protrusion-nucleus migration trajectories of cells on confining
micropatterns to systematically determine a mechanistic model linking the stochastic dynamics of cell
polarity, protrusions, and nucleus. This model indicates that the cellular dynamics adapt to confining
constrictions through a switch in the polarity dynamics from a negative to a positive self-reinforcing
feedback loop. Our model further reveals how this feedback loop leads to stereotypical cycles of protrusion-
nucleus dynamics that drive the migration of the cell through constrictions. These cycles are disrupted upon
perturbation of cytoskeletal components, indicating that the positive feedback is controlled by cellular
migration mechanisms. Our data-driven theoretical approach therefore identifies polarity feedback
adaptation as a key mechanism in confined cell migration.
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I. INTRODUCTION

The ability of cells to migrate is essential for many
physiological processes, including embryogenesis, immune
response, and cancer [1–4]. In all these processes, cell
migration relies on the interplay of several cellular compo-
nents, including the formation of cell protrusions [5,6],
adhesive connections to the environment [7,8], and the
positioning of the cell nucleus [9–11]. These components
are coupled by the polarizable active cytoskeleton and
together play the dual role of sensing the cell’s local
microenvironment and driving its net motion. At the cellular
scale, this machinery leads to coordinated, functional

migration, which manifests as persistent random motion
on uniform two-dimensional substrates [12,13]. However, in
physiologically relevant contexts, cells must navigate com-
plex, structured extracellular environments [6,14], featuring
obstacles such as thin constrictions [4,15]. Thus, migrating
cells may adapt their migration strategy, and the underlying
protrusion and polarity dynamics, by responding to the
structure of their local microenvironment.
At the scale of whole-cell trajectories, confined cells

exhibit intricate stochastic nonlinear dynamics in position-
velocity phase space, such as limit cycles and bistability
[16]. These findings and other studies [10,17–28] indicate
that the migratory dynamics of cells are strongly affected
by the presence of a confinement. However, the underlying
physical principles and mechanisms that determine these
dynamics remain elusive. Specifically, it remains unclear if
the dynamics of cells actively adapt to external confinement
or whether confinements simply serve as passive bounda-
ries. The search for such adaptive mechanisms is compli-
cated by the intertwined behavior of the various cellular
components and features, such as cell shape, protrusions,
polarity, and nucleus, which could factor into this problem.
Achieving a mechanistic understanding of protrusion and
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polarity dynamics in confined cell migration could yield
key insights into both the underlying molecular mecha-
nisms and the biological functions associated with these
dynamics.
To connect underlying mechanisms to the emergent

behavior of migrating cells, bottom-up mechanistic
approaches are a promising avenue. These include complex
computational models for polarity processes and protrusion
formation, including phase-field [29–31] and cellular Potts
models [32–35]. More coarse-grained models include active
particle models [36], active gel theories [37,38], molecular
clutch models [39,40], and models coupling actin flow,
polarity cues, and focal adhesion dynamics [26,41–45].
Orthogonal avenues to these bottom-upmodels are top-down
approaches that infer cellular dynamics directly from
observed trajectories [13,16,25,46,47]. However, a direct
connection of mechanistic bottom-up models to the data-
driven top-down perspective has remained difficult for two
main reasons. First, mechanistic models often contain many
parameters that are hard to constrain experimentally. Thus, a
crucial challenge is to reduce a mechanistic description
to a level that can be constrained by data while

still capturing key behaviors of the important cellular
components. The second challenge is to obtain large,
experimentally measured, trajectory data sets of cellular
features that allow us to infer such a minimal description.
Here, we develop a hybrid data-driven and mechanistic

approach, where we use experimental data to systematically
constrain a minimal mechanistic model for confined cell
migration postulated on the basis of physical principles and
known cellular processes. To constrain this model, we
experimentally study cells confined to a controlled micro-
patterned environment, allowing us to systematically vary
the degree of confinement [Fig. 1(a)i]. By observing the
cell shapes in these experiments, we generate a large data
set of joint nucleus and protrusion trajectories [Fig. 1(a)ii].
Interestingly, under strong confinement, we find that cells
exhibit a stereotypical migration pattern, which we term
“protrusion-nucleus cycling” [Fig. 1(a)iii]. Using a data-
driven approach, we constrain a mechanistic description of
the nucleus and protrusion dynamics by systematically
increasing model complexity [Fig. 1(a)iv]. This approach
reveals two key insights into the confined migration
dynamics: First, we find that the average dynamics of
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FIG. 1. Data-driven development of a mechanistic model for confined cell migration. (a) Schematic of our approach. We generate a
large data set of joint protrusion-nucleus trajectories in a confined migration experiment (i,ii), and develop a data-driven approach by
inferring model terms in the phase space of protrusion and nucleus positions (iii). White arrows in (iii) indicate the stereotypical
protrusion-nucleus cycling observed experimentally. Based on this inference, we systematically constrain a mechanistic model for the
coupled dynamics of cell nucleus, protrusion, and the polarity driving force acting on the protrusion (iv). We test this model on a set of
independent experiments and by predicting the emergent long timescale dynamics of the system (v). (b) Three stages of protrusion-
nucleus cycling. In the joint position probability distribution of nucleus xn and protrusion xp [panel (a)iii, same color code as in
Fig. 2(f)], we indicate the typical evolution of the system with white arrows and identify three distinct stages of the process. Typical
brightfield microscopy images with overlaid protrusive areas, and the positions xn and xp, are shown for each of the three stages.
Schematics indicate the physical mechanisms that determine each phase according to our model.
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the nucleus are determined by an adhesion landscape
describing the locally available adhesive area. Second,
the cell polarity, which drives the protrusions, couples to
the local confining geometry by switching from a negative to
a positive self-reinforcing feedback loop under strong con-
finement. Importantly, this mechanistic model accurately
predicts cellular dynamics in systems with varying con-
striction width and length [Fig. 1(a)v]. Thus, by systemati-
cally disentangling the contributions of nucleus, protrusions,
and polarity to the cellular dynamics, we identify a mecha-
nism of polarity adaptation to confinements, which plays a
key role in the behavioral dynamics of confined cells.

II. RESULTS

A. Protrusion dynamics drive confined cell migration

To investigate the dynamics of cell shapes, protrusions,
and the nucleus in confined migration, we study the
migration dynamics of single MDA-MB-231 breast carci-
noma cells confined to two-state micropatterns [Fig. 2(a)].
These patterns consist of two adhesive islands connected by
a thin adhesive bridge, allowing us to study how migrating
cells respond to constrictions in the extracellular environ-
ment. We use time-lapse phase-contrast microscopy and
fluorescent staining of the cell nuclei to investigate the joint
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FIG. 2. Extracting protrusion-nucleus dynamics from confined migration experiments. (a) Exemplary brightfield microscopy image
series of an MDA-MB-231 breast cancer cell migrating in a two-state micropattern with constriction width W ¼ 7 μm and length
L ¼ 35 μm, indicated by arrows. Images are inverted for better visibility of cell shapes. Tracked cell shapes are shown as pink outlines.
Blue dots indicate tracked nucleus position xn. (b) Same time series as in (a), with protrusive areas marked in green; the blue dot
indicates the nucleus position xn, and the green dot is the effective protrusion position xp. Green and blue lines indicate the trajectories of
these two coordinates. (c) Example image showing how protrusion areas are calculated. The solid pink line shows the current boundary
of the cell area at time t, and the dashed line is the boundary at tþ Δt. The protrusive area is shown in green. (d) Kymograph of the
brightfield microscopy images, with superimposed protrusion trajectory xpðtÞ in green. (e) Joint trajectory of nucleus xnðtÞ (blue) and
protrusion xpðtÞ (green). (f) Joint probability distribution pðxn; xpÞ of the x positions of the nucleus and protrusion, plotted
logarithmically and interpolated. Dotted lines indicate the boundaries of the adhesive islands. (g) Position cross-correlations between the
nucleus and protrusion hxnðtÞxpðtþ TÞi (green) and the nucleus and retraction hxnðtÞxrðtþ TÞi (red). The nucleus-protrusion
correlation exhibits a peak at negative time shifts, indicating that the protrusion leads the nucleus by a typical time shift Tnp ≈ 0.6 h. The
retraction position xr is determined in a similar way to the protrusion (Appendix B). The blue line shows the nucleus position
autocorrelation, hxnðtÞxnðtþ TÞi. All scale bars are 25 μm.
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dynamics of the cell shape and nucleus motion. We find
that the motion of the nucleus is correlated with the growth
of a protrusion across the constriction of the pattern,
suggesting that the protrusion dynamics of these cells
are key to understanding cell migration dynamics.
To quantify these protrusive dynamics, we first isolate

cell shapes from brightfield microscopy image stacks using
a convolutional neural network with a U-Net architecture
[48] (Appendix B 1). This segmentation procedure allows
us to accurately determine the 2D shape of the cells as a
function of time [Fig. 2(a)]. To identify protrusions, we
classify those components of the cell shape added in each
time step as protrusive areas [Figs. 2(b) and 2(c),
Appendix B 2, Movie S3 in Ref. [49] ] [50]. During the
traversal of cells across the constriction, large protrusive
areas are formed at the leading edge of the cell. Importantly,
due to the micropattern geometry, most protrusive activity
is in the x direction along the long axis of the pattern
(Appendix B). Thus, to provide a low-dimensional repre-
sentation of the protrusion dynamics, we define the
effective protrusion position xpðtÞ as the x component of
the geometric center of protrusive area [Fig. 2(c)], referred
to as the protrusion from here on. Indeed, the protrusion
trajectories serve as an indicator of the protrusive dynamics
of the cells, as shown by an overlay with the kymograph of
the microscopy images [Fig. 2(d), and Movie S3 in
Ref. [49] ]. In addition, we track the trajectories of the
cell nucleus xnðtÞ. While the cells also perform retractions
at the trailing edge, we find that these are strongly
correlated with the motion of the nucleus with near-zero
time lag and therefore do not contain significant additional
information [Fig. 2(g), Appendix B]. Thus, we restrict our
analysis to the nucleus-protrusion dynamics. This analysis
pipeline gives access to a large data set of low-dimensional
trajectories of cell nucleus and protrusion dynamics (1400
trajectory pairs with duration up to 50 h), allowing an in-
depth statistical analysis of the cellular dynamics.
The joint nucleus and protrusion trajectories reveal that

these cells tend to migrate across the constriction in a
stereotypical manner: First, the protrusion grows slowly
across the constriction, after which the nucleus rapidly
follows [Fig. 2(e)]. The nucleus motion exhibits weaker
fluctuations than the protrusions and responds to the
protrusions with a time delay, as quantified by the cross-
correlation function hxnðtÞxpðtþ TÞi [Fig. 2(g)]. The
stereotypical migration pattern is reflected as a ringlike
structure in the joint probability distribution of nucleus and
protrusion positions pðxn; xpÞ [Fig. 2(f)]. While the most
likely states are where both the nucleus and protrusion
occupy one island, there is significant probability along the
path where the protrusion first crosses the constriction and
reaches the other island, followed by the traversal of the
nucleus. In contrast, there is low probability of observing
both the protrusion and nucleus in the constriction.
Together, these results indicate that the confined migration

dynamics exhibit a stereotypical “protrusion-nucleus
cycling” represented as paths in xnxp space.

B. Confined cells migrate in an adhesion landscape

We aim to develop a mechanistic theory to describe how
the coupled stochastic dynamics of the cell nucleus and
protrusion determine the confined migration of cells. Our
strategy will be to postulate simple model candidates based
on known cellular processes, physical principles, and
symmetry arguments, which we systematically and quan-
titatively validate with experimental data. This approach
allows us to rule out a whole range of possible alternative
models and identify a promising mechanistic model with
predictive power for the protrusion-nucleus dynamics of
confined cells.
Experimentally, we find that fluctuations in the nucleus

velocities _xn are small compared to the average components.
By comparison, the fluctuations in the protrusion velocities
_xp are much larger and dominate over deterministic con-
tributions to the protrusion velocities (Appendix D). Thus,
we consider a model in which the intrinsic stochasticity
of the system stems from the polarity dynamics driving the
protrusion. We expect forces on the nucleus to arise due to
two main contributions: coupling to the cell protrusion
[6,10,11,51] and the effect of the confining micropattern.
Similarly, protrusions couple to the cell nucleus [6] and may
be sensitive to the external environment. Taken together,
considering force balance at xn and xp [Fig. 3(a)], we obtain

ζn _xn ¼ fcðxn; xpÞ þ fnðxnÞ; ð1Þ

ζp _xp ¼ −fcðxn; xpÞ þ fpðxpÞ þ PðtÞ; ð2Þ

where ζn and ζp are the friction coefficients of the nucleus
and protrusion, respectively, fc is the coupling between the
nucleus and protrusion, and fn;p are additional forces acting
on each nucleus and protrusion due to the confinement.
Additionally, we assume the protrusion to be driven by a
stochastic active force PðtÞ, which serves as a minimal
implementation of the time-dependent forces driving pro-
trusion formation, such as the active pushing force due to
actin polymerization [5,42]. This active force determines the
instantaneous direction of polarization in which protrusions
are generated, and we therefore refer to it as the cell polarity.
To constrain our model step by step, we start with the

dynamics of the cell nucleus. In migrating cells, the motion
of the nucleus is coupled to the dynamics of the leading
edge, for example, through material stresses in the cytos-
keleton connecting the protrusion and nucleus [6,10,11,51],
or through mechanical feedback processes coupling the
leading and trailing edges of the cell [52]. As a minimal
model for this coupling, we consider a linear elastic spring,
similar to previous work [26,43].
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It is less clear, however, how to incorporate the effect of the
confining micropattern on the dynamics. Physically, we
consider two distinct ways to couple the cell dynamics to
geometry. First, a conservative force, corresponding to a
double-well potential WðxnÞ, with minima on the adhesive
islands and a barrier around the constriction [Fig. 3(c)], can
provide amodel for the contribution due to cell deformations
during the transition. Such deformation dynamics of cells are
frequently modeled using effective Hamiltonians, including
the surface and line tension of the cell [33,35,53–55], which
would suggest that the deformed state of the cell in the
constriction is associated with an increased energy. Second,

the difference in adhesive area available to the cell on the
island and in the constriction could lead to a dissipative force
corresponding to a spatially variable friction coefficient
[56,57]. Mesenchymal migration exhibits mature focal
adhesions at the cell rear, where the nucleus typically resides
[58,59]. These adhesions can only form within the micro-
patterned area, and we therefore expect the adhesiveness to
be largest on the islands and smallest at the center of the
constriction.
To test the energy potential contribution, we consider the

equation of motion for the cell nucleus

ζn _xn ¼ kðxp − xnÞ − ∂xnWðxnÞ: ð3Þ

This equation makes a concrete prediction for how the
nucleus velocity _xn varies with the positions of the nucleus
and protrusion. To test this prediction directly on the
experimental data, we determine the average velocity of
the cell nucleus as a function of xn and xp, h_xnjxn; xpi,
which we term the nucleus velocity map (NVM)
[Fig. 3(b)]. Importantly, with this approach based purely
on the nucleus velocities, we can determine the determin-
istic nucleus dynamics [Eq. (1)] without making assump-
tions about the protrusion and polarity dynamics [Eq. (2)].
However, we find that the NVM predicted by the energy
potential fails to capture the experimental data, as it does
not predict the characteristic acceleration of the nucleus in
the constriction [Figs. 3(d) and 3(e)]. This approach
similarly fails for more general nonlinear elastic couplings
between the nucleus and protrusion (Appendix E).
Therefore, we conclude that such potential energy models
alone are not able to recover the cellular dynamics in
this setup.
To test the possible contribution of differences in local

adhesion, a simple model is a spatially variable friction
coefficient:

ζnγðxnÞ_xn ¼ kðxp − xnÞ; ð4Þ

where γðxnÞ ensures lower friction in the constriction
[Fig. 3(f)]. This model provides an excellent fit to our
data and captures the characteristic increase in nucleus
speeds during traversal [Figs. 3(g) and 3(h)]. The resulting
fit parameters give a typical timescale for the nucleus
motion ζn=k ≈ 1.7 h, which is in approximate agreement
with known turnover times of focal adhesions [60,61]. This
timescale is reduced in the constriction due to the reduced
number of adhesions formed by the cell body around the
nucleus when it is in the constriction, causing the accel-
eration of the nucleus during traversal. Taken together,
these results indicate that a dissipative force arising from a
spatially variable adhesion landscape is a key component of
the effect of the confining constriction on migration
dynamics, which, in our setup, appears to dominate over
possible contributions due to cellular deformations.

FIG. 3. Nucleus velocity maps constraining model candidates.
(a) Schematic of the model. Arrows indicate the forces acting on
the cell at positions xn and xp. (b) Experimental nucleus velocity
map (NVM), calculated as the conditional average of the nucleus
velocity as a function of nucleus and protrusion positions,
h_xnjxn; xpi, shown with interpolation. (c) Double-well potential
WðxnÞ ¼ Qð1 − ðxn=x0Þ2Þ2, where Q determines the height of
the energy barrier and x0 the positions of the minima. The image
indicates the dimensions of the micropattern and shows a
fluorescence microscopy image of the actin cytoskeleton of a
confined cell (LifeAct-GFP-transfection). (d) NVM predicted by
the energy potential. Parameters are determined by a best fit to the
experimental NVM with two free fit parameters k=ζn and Q
(Appendix C). (e) Cuts of the NVM along the horizontal lines
indicated in panel (d), showing _xp as a function of xn for different
xp. Dots are for the experiment, and solid lines show the
deformation model prediction. (f) Spatially variable friction
γðxnÞ ¼ γmin þ 1

2
ð1 − γminÞ(1 − cos ðxnπ=LsystemÞ) used in the

adhesion landscape model, where γmin is the friction at the center
of the constriction and Lsystem is the total length of the micro-
pattern. (g) NVM predicted by the adhesion landscape model
with two free fit parameters, k=ζn and γmin. (h) Same plot as in
panel (e) for the adhesion landscape model.
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C. Adhesion landscape model captures dependence of
nucleus dynamics on constriction width

The adhesion landscape model [Eq. (4)] makes a simple,
intuitive prediction. As we widen the constricting bridge of
the micropattern, more adhesive area becomes available,
thereby reducing the variations in the friction profile
[Fig. 4(a)]. In the limit where the constriction has the same
width as the islands, we expect a uniform adhesiveness
profile. Accordingly, we predict the acceleration of the cell
nucleus observed on thin bridges (Fig. 3) to decreasewith the
increasing adhesiveness of a wider bridge and to completely
disappear for constant adhesiveness [Figs. 4(c) and 4(d)]. In
this limiting case, we expect migration dynamics that are
completely determined by the linear elastic coupling between
the nucleus and protrusion [last panel in Fig. 4(d)].
To challenge the predictive power of the adhesion

landscape model, we perform experiments with varying
bridge width [Fig. 4(b)]. Importantly, the nucleus velocity

maps inferred from these experiments are well predicted by
the model and exhibit the predicted decreasing maximum
nucleus speed in the constriction [Figs. 4(c) and 4(d)]. On
the rectangular micropattern without constriction, we find
an almost linear profile of the nucleus speed with position,
as predicted theoretically. This further supports our model
of a linear elastic nucleus-protrusion coupling. In summary,
the adhesion landscape model has predictive power for
confining geometries with varying constriction width.

D. Protrusions driven by time-correlated polarity

Having determined how the dynamics of the nucleus
couples to the confinement and protrusion, we next inves-
tigate the dynamics of the protrusion itself [Eq. (2)]. As a
minimal model for the protrusion dynamics, we postulate a
coupling to the cell nucleus equal and opposite to the
coupling introduced in the nucleus dynamics [Eq. (4)]. In
addition, we enforce a potential VðxpÞ ¼ ðx=xboundaryÞ8 to
confine the protrusion between the boundaries of the
micropattern (Appendix C):

ζp _xp ¼ −kðxp − xnÞ − ∂xpVðxpÞ þ PðtÞ: ð5Þ

Thus, we assume that both the friction and the potential
term of the protrusion are insensitive to the presence of the
constriction. Importantly, however, we anticipate that the
polarity P may couple to the confinement, as it models
the active driving of the protrusion by the migration
machinery, including actin polymerization and the diffu-
sion of polarity cues [5,42], which may be sensitive to the
geometry of the confinement.
Similar to our approach to the nucleus dynamics, this

protrusion model provides a prediction for the average
protrusion velocity as a function of xn and xp, h_xpjxn; xpi,
which we term the protrusion velocity map (PVM).
According to our general model ansatz [Eq. (2)], unlike
the NVM, the PVM consists of several components, includ-
ing the polarity dynamics:

h_xpjxn; xpi ¼ −fcðxn; xpÞ þ fpðxpÞ þ hPjxn; xpi: ð6Þ

Since the polarity term hPjxn; xpi does not average to zero for
time-correlated polarities, we cannot, in general, disentangle
the contributions to the protrusion dynamics based on the
PVM [62,63]. Instead, we constrain the polarity dynamics by
systematically testing models of increasing complexity.
We first show that the data cannot be captured by the

simplest possible stochastic polarity dynamics: a Gaussian
white-noise (WN) processPWN¼ σξðtÞ, with hξðtÞi ¼ 0 and
hξðtÞξðt0Þi ¼ δðt − t0Þ. In this case, hPWNjxn; xpi ¼ 0 [inset
of Fig. 5(a)], andwe directly recover the expected contractile
elastic coupling [Eq. (5)] in the PVM [Fig. 5(a)]. In clear
contrast to this prediction, the PVM inferred from experi-
ments shows an intricate dependence of the protrusion
velocities as a function of xn and xp [Fig. 5(c)]. These results
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FIG. 4. Adhesion landscape model predicting dynamics with
varying constriction width. (a) Friction profiles γðxnÞ with
increasing γmin as a model for increasing bridge width. The
value of γmin is fitted for the narrowest bridge (W ¼ 4 μm;
γmin ≈ 0.2; k=ζn ≈ 0.6 h−1). For the widest system without con-
striction, we take a flat profile as well as intermediate values of
γmin for intermediate widths, such that γmin scales linearly with the
available area (Appendix C). (b) Sketch of confinement geom-
etries with increasing bridge widthsW ¼ 4, 7, 12, 22, and 35 μm
(from left to right); brightfield microscopy images of MDA-MB-
231 cells migrating in these geometries with the cell outline in
pink, the nucleus position in blue, and geometry in white. Scale
bar: 25 μm. (c) Predicted and experimental NVM h_xnjxn; xpi,
plotted with the same color axis as shown in Fig. 3. (d) Predicted
and experimental cuts of the NVM, showing _xp as a function of xn
for different xp as described in Fig. 3.
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indicate that to account for the experimentally observed
dynamics, we need to account for time correlations in the
polarity.
The overall structure of the experimental PVM is in line

with a contractile coupling between the nucleus and
protrusion: It exhibits negative velocities for xp > xn and
positive velocities for xp < xn. These features correspond to
the protrusion being pulled back towards the nucleus.

However, when the protrusion extends into the constriction,
the protrusion velocity switches sign, corresponding to an
unexpected driving force pushing the protrusion away from
the nucleus. This “polarity driving” cannot be accounted for
even by a nonlinear contractile coupling to the nucleus in our
model with awhite-noise polarity. Instead, we expect that the
polarity may exhibit time correlations to account for the
spatiotemporal dynamics of the migration machinery.
To investigate how time-correlated polarity dynamics

affect the migration behavior, we consider the simplest
choice of a persistent, exponentially correlated polarity

_Pper ¼ −α0Pper þ σξðtÞ ð7Þ

with α0 > 0. In this case, the polarity experiences negative
feedback, _Pper ∝ −Pper, and exhibits time correlations
hPperð0ÞPperðtÞi decaying exponentially on a persistence
timescale α−10 . These polarity dynamics have significant
correlations with the state of the system: hPperjxn; xpi ≠ 0

[inset of Fig. 5(b)]; thus, unlike in the white-noise case, the
polarity contributes to the PVM [Eq. (6)]. Specifically, the
persistent polarity exhibits a polarity driving similar to
the experimental PVM [Figs. 5(b) and 5(c)]. Taken together,
these results indicate that cell protrusions are driven by time-
correlated polarity dynamics.

E. Confinement triggers polarity self-reinforcement

While the persistent polarity [Eq. (7)] describes the
qualitative features of the protrusion velocities [Figs. 5(b)
and 5(c)], it predicts stochastic dynamics that do not capture
the key features of the experiment. Specifically, it fails to
capture the stereotypical protrusion-nucleus cycling indi-
cated by the ring structure in the experimental probability
distribution pðxn; xpÞ [Fig. 17(a)]. The persistent polarity
relies on several simplifying assumptions. First, it assumes
the polarity to be insensitive to the local confinement, as the
polarity dynamics do not explicitly depend on the position of
the protrusion. Second, it assumes negative feedback,
_Pper ∝ −Pper. This means that the polarity is effectively
confined to a harmonic potential UðPperÞ ¼ α0P2

per=2 and
thus always driven back towards zero [Fig. 5(d)].
To relax these assumptions, we propose a geometry

adaptation (GA) model, where the strength and sign of the
polarity feedback depend on the local geometry of the
confinement. Thus, the feedback may vary with the position
of the protrusion, α ¼ αðxpÞ. Physically, we expect that the
polarity may become more persistent when the protrusion is
in the constriction. Such an increase in persistence could be
due to increased alignment of actin fibers [64–67] or more
stable polarity cue gradients [42,68,69] when the protrusion
is confined to a narrow constriction. To ensure that the
polarity remains bounded, we include the next-order term
allowedby symmetry,−βP3,withβ > 0, and allowingα < 0
locally:

(d)

Negative spatial
feedback

Positive spatial
feedback

Persistent polarity

Feedback

(a) White noise
Persistent

Experimentpolarity

(g)

(f)

(e)

FIG. 5. Protrusion velocity maps and the geometry adaptation
model. (a,b) Protrusion velocity maps h_xpjxn; xpi predicted by the
white-noise model, and the persistent polarity model. In both
models, we use a potential to enforce the overall system
boundaries, VðxpÞ ¼ ðx=xboundaryÞ8 (Appendix C). Inset: polarity
contribution to the PVM, given by hPjxn; xpi. (c) PVM inferred
from experiments with bridge width W ¼ 7 μm. (d) Schematic
illustration of the polarity models. The persistent polarity corre-
sponds to a flat feedback profile, αðxpÞ ¼ α0, where the polarity is
effectively confined to a constant harmonic potentialUðPÞ (left). In
the geometry adaptation model [Eq. (8)], αmin controls the sign of
the feedback. For αmin > 0, the feedback is negative, and the
polarity is confined to harmonic potentials with spatially varying
stiffness (left). Forαmin < 0, the feedback locally becomespositive,
leading to two stable fixed points (right). (e) From left to right, we
vary the value of αmin ¼ f6; 4; 0;−4;−6g h−1. The joint proba-
bility distribution of protrusion position and polarity pðxp; PÞ is
shown. Solid red lines indicate the position of the stable fixedpoints
in the polarity dynamics; dashed red lines indicate unstable fixed
points. (f) Joint probability distributions pðxn; xpÞ predicted by the
geometry adaptation model with varying αmin. (g) Probability
distribution of the dwell times τ predicted by the model (red) and
observed experimentally (W ¼ 7 μm, blue).
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_PGA ¼ −αðxpÞPGA − βP3
GA þ σξðtÞ: ð8Þ

To account for larger persistence in the constriction, we
choose a feedback function αðxpÞ with a minimal value αmin

in the center of the constriction [Fig. 5(d)]. If αmin > 0, the
polarity dynamics exhibits a stable fixed point at PGA ¼ 0
everywhere [Fig. 5(d)]. In contrast, ifαmin < 0, the polarity is
still driven back to PGA ¼ 0 on the islands, but in the
constriction, two stable fixed points P�

GA ¼ � ffiffiffiffiffiffiffiffiffiffiffijαj=βp
appear. Consequently, when the protrusion is in the con-
striction and the polarity is small (jPGAj < jP�

GAj), a positive
feedback mechanism _PGA ∝ PGA is activated, leading to a
self-reinforcement of the polarity in the current direction of
polarization, breaking the symmetry of the dynamics.
We now explore the predictions of the geometry adapta-

tion model by varying αmin [Fig. 5(e)]. As expected, for
negative polarity feedback (αmin > 0), we find a polarity
distribution pðxp; PÞ with polarities centered around P ¼ 0

at all positions xp. In contrast, for positive feedback,
polarities preferentially take finite values in the constriction,
yielding a ring structure in the polarity distribution pðxp; PÞ
[Fig. 5(e)]. The model then predicts protrusion-nucleus
cycling in pðxn; xpÞ and a marked peak in the dwell-time
distribution, defined as the time between subsequent tran-
sitions of the cell nucleus across the bridge center, both in line
with the experiment [Figs. 5(f) and 5(g)].
Up to this order of description, there are two possible

alternative models allowed by symmetry, which couple the
polarity to the state of the system. First, instead of coupling
the polarity feedback to the geometry, the overall amplitude
of the polarity could depend on position. Second, instead of
a position-dependent feedback, one could consider feed-
back that depends on the cell’s extension jxn − xpj.
However, these alternatives fail to capture our experimental
observations (Appendix E). Taken together, these results
suggest that to capture the stereotypical protrusion-nucleus
cycling, we require a geometry-sensitive polarity feedback.

F. Geometry adaptation model correctly predicts
response to varying constriction dimensions

Having constrained the model based on a single confining
geometry, we challenge the predictive power of our approach
by investigating the full stochastic trajectory dynamics of
cells in micropatterns with varying constriction geometry.
Specifically, we have fully constrained themodel parameters
for the adhesion landscape model for the nucleus [Eq. (4);
Fig. 3] and the geometry adaptationmodel for protrusion and
polarity [Eqs. (5) and (8); Fig. 5]. The increasing constriction
width has a clear implication for this model: In addition to a
flattening adhesiveness profile γðxnÞ [Fig. 4(a)], we also
expect the positive polarity feedback to diminish. The model
predicts that the protrusion-nucleus cycling should disappear
with increasing constriction width: The ring structure of the
position distribution pðxn; xpÞ gradually closes [Fig. 6(b)],

and the typical transition timescale, indicated by the peak in
the dwell-time distribution, disappears [Fig. 6(d)]. All these
predicted features of the dynamics are quantitatively con-
firmed experimentally [Figs. 6(b)–6(d)]. Importantly, these
predictions involve no further fitting: The key parameters
fkn; γmin; kp; α0;αming for a thin constriction are completely
determined in Figs. 3 and 5, and the variation of γmin and αmin
with increasing width is determined by the micropattern
geometry (Appendix C, Table I).
The predictions of the model can be understood by

examining the protrusion dynamics in the model: We find
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FIG. 6. Geometry adaptation model predicting dynamics with
varying constriction width. (a) Stochastic trajectories xnðtÞ (blue),
xpðtÞ (green), and PGAðtÞ (pink) predicted by our mechanistic
model, which combines the adhesion landscape and geometry
adaptation [Eqs. (4), (5), and (8)]. To predict dynamics with
increasing bridge width, we simultaneously increase γmin and
αmin while leaving all other parameters fixed (AppendixC, Table I).
(b) Joint probability distributions pðxn; xpÞ. (c) Protrusion velocity
maps h_xpjxn; xpi. The top row corresponds to themodel prediction,
the bottom row to experimental observations. (d) Predicted (red)
and experimental (blue) dwell-time distributions pðτÞ. (e) Flow
field ð_xn; _vnÞ ¼ ðvn; Fðxn; vnÞÞ indicated by arrows [16]. The
arrow color indicates the direction of the local flow: Acceleration
is orange, and deceleration is blue. (f) Predicted (red) and
experimental (blue) effective friction at the bridge center
Fðxn → 0; vnÞ. In all panels, experimental observations correspond
to W ¼ 4, 7, 12, 22, and 35 μm (from left to right).
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that the predicted PVM exhibits a polarity driving of
decreasing magnitude with increasing bridge width
[Fig. 6(c)]. Notably, the driving disappears in the widest
system with no constriction, where the protrusion velocities
are thus determined by the protrusion-nucleus coupling.
This coupling pulls the protrusion and nucleus together,
inhibiting the stereotypical cycle. The model therefore
suggests that these stereotypical cycles rely on the adapta-
tion of the cell polarity dynamics to its local environment.
Furthermore, our mechanistic model explains the non-

linear dynamics of the cell nucleus motion, which can be
described by an underdamped stochastic equation ofmotion:
_vn ¼ Fðxn; vnÞ þ σðxn; vnÞηðtÞ, where ηðtÞ is Gaussian
white noise [16]. This underdamped equation of motion
represents an effective description of the cellular dynamics,
with no direct connection to cellular degrees of freedom such
as the protrusion and polarity, which we consider here. The
deterministic contribution Fðxn; vnÞ exhibits intricate
nonlinear dynamics, depicted in a phase-space portrait
[Fig. 6(e)]. This phase-space portrait reveals that the nucleus
deterministically accelerates into the thin constriction
[orange arrows in Fig. 6(e)], which manifests as an effective
“negative friction” at the center of the constriction [Fig. 6(f)].
Our mechanistic model correctly predicts nonlinear nucleus
dynamics [Figs. 6(e) and 6(f)] and reveals that the observed
deterministic acceleration is a consequence of two combined
effects: lower adhesiveness and enhanced polarity persist-
ence in the constriction (Appendix G).
We further challenge our model by exploring geometries

with varying constriction length L and the inclusion of

multiple adhesive islands to create multistate micropatterns
(Movie S8 in Ref. [49]). We find that the model also
captures the changes in dynamics observed in these
systems (Appendix F). Taken together, these results indi-
cate that our mechanistic model has predictive power
beyond the specific confinement geometry that we used
to constrain it.

G. Geometry adaptation depends on cell polarity,
contractility, and actin polymerization

Key processes that affect the state of cell polarization
are the structure and contractility of the actin network
[66,67,70–72], as well as diffusable polarity cues
[42,73,74], includingRhoGTPase. To test whether geometry
adaptation depends on these cellular components, we phar-
macologically interfere with cell polarity, contractility, and
protrusion formation. Specifically, we use inhibitors of Rho-
associated protein kinase (ROCK) (Y-27632), myosin-II
(blebbistatin), and actin polymerization (latrunculin)
[Fig. 7(f), and Movies S9–S11 in Ref. [49] ]. Interestingly,
in the case of ROCK and myosin inhibition, we observe
increased probability in the center of the ringlike probability
distribution pðxn; xpÞ, a disappearance of the peak in the
dwell-time distribution, and a reduction of the negative
friction in the nonlinear nucleus dynamics [Figs. 7(g)–7
(i)]. The effects of actin polymerization inhibition are less
pronounced but qualitatively similar. This set of observed
changes to the dynamics is in congruencewith the predictions
of our model following a reduction of the feedback strength
αmin [Figs. 7(a)–7(e)]. Importantly, changing other aspects of

27632 Blebbistatin LatrunculinControl
Theory Experiment

(a)

(c)

(b)

(d) (e)

(f)

(g)

(h) (i)

FIG. 7. Geometry adaptation model capturing the response to pharmacological perturbation of polarity, contractility, and actin
polymerization. (a) Feedback profiles αðxpÞ for varying strengths of the positive feedback, showing αmin ¼ f−6;−4;−2; 0g. (b) Model
trajectories of xnðtÞ; xpðtÞ for the standard value αmin ¼ −6, corresponding to blue curves in panels (a,d,e), and αmin ¼ −2, which
provides a model for reduced polarity feedback. The adhesion profile is held constant, corresponding to no changes in the confinement
geometry. (c) Corresponding probability distributions pðxn; xpÞ. (d) Dwell-time distributions pðτÞ. (e) Effective friction at the bridge
center Fðxn → 0; vnÞ. (f) Experimental trajectories of xnðtÞ; xpðtÞ on micropatterns with constriction width W ¼ 7 μm, for the control
condition, treatment with the ROCK-inhibitor Y-27632, blebbistatin, and latrunculin. (g) Corresponding probability distributions
pðxn; xpÞ. (h) Dwell-time distributions pðτÞ. (i) Effective friction at the bridge center Fðxn → 0; vnÞ.
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the model, such as the adhesion landscape, cannot capture
this set of trends (Fig. 20). Thus, these results suggest that
perturbation of cell polarity, myosin contractility, and actin
polymerization reduces the strength of the geometry adapta-
tion, indicating that the geometry adaptation mechanism
depends on these cellular components.

III. DISCUSSION

In this work, we develop a theoretical framework to
describe the joint stochastic dynamics of the cell nucleus,
protrusion, and polarity, and their coupling to the extrac-
ellular microenvironment. Experimentally, we find that
cells migrating in confinements with a thin constriction
exhibit a stereotypical protrusion-nucleus cycling, with
characteristic protrusion growth followed by a rapid tran-
sition of the nucleus across the bridge. Using a large
experimental data set of joint protrusion and nucleus
trajectories, we systematically constrain a mechanistic
model for confined cell migration.
In our model, we identify three distinct stages of the

protrusion-nucleus cycling (Fig. 1). First, we observe an
initial exploration phase, where both the nucleus and
protrusion are located on the same island (stage I). At this
stage, the polarity is subject to negative feedback, causing
the protrusion to frequently change direction and explore its
surroundings. Stochastic polarity excitations can trigger the
protrusion to enter the constriction. Within the constriction,
the protrusion becomes highly confined, causing the polar-
ity dynamics to switch from a negative to a positive
feedback loop. This positive feedback reinforces the polar-
ity, driving the protrusion growth into the constriction
(stage II). At the same time, tension builds up due to the
coupling to the nucleus, which is held back on the island
due to the enhanced adhesion with the substrate. Once the
protrusion reaches the other end of the system, the nucleus
is pulled across the constriction, relaxing the tension in the
elastic coupling, reminiscent of a slingshot (stage III). The
three stages of the transition process arise as a consequence
of the interplay of the three key physical mechanisms in the
system: the adhesion landscape, the nucleus-protrusion
coupling, and the polarity self-reinforcement.
To develop this theoretical approach, we separately

constrain the dynamics of the nucleus and the protrusion
and systematically consider model terms of increasing
complexity (Table II). We first study the stochastic dynam-
ics of the cell nucleus. Interestingly, the nucleus dynamics
are inconsistent with movement in a simple double-well
potential, as might be expected, for example, from cellular
deformation arguments [33,35,53–55]. Indeed, active par-
ticles confined to double-well potentials can exhibit excit-
able dynamics similar to those observed in the experimental
trajectories of the nucleus alone [75], making the double
well a promising model candidate. However, based on the
observed joint dynamics of the nucleus and protrusion, we

find that this energy barrier model is unable to capture our
experiments.
Instead, our model suggests that the movement of the

nucleus is determined by the locally available adhesive area,
manifesting as an adhesion landscape with a spatially
variable friction coefficient. Thus, as the protrusion explores
the environment, the back of the cell “sticks” due to the high
adhesiveness on the island. This is in line with experimental
observations showing that in mesenchymal migration, the
movement of the cell rear, where the nucleus is typically
located, is limited by the unbinding of mature adhesions
[76,77]. In the constriction, the cell polarity actively drives
the protrusion away from the nucleus, causing mechanical
stress to build up in the protrusion-nucleus coupling. This
“self-loading” of the coupling eventually causes a contrac-
tion stage, where the cell quickly contracts and the nucleus
rapidly moves across the constriction. In the model, the
tension in the elastic coupling rapidly relaxes during the slip
phase, similar to a slingshot. Such “slingshot” dynamics have
also been observed in confined 3D migration in fibrous
matrices [78].
The adhesion-limited nucleus motion is reminiscent of

stick-slip processes that have been observed in cell migra-
tion on 1D lines [26,44,79] due to the mechanosensitive
binding and unbinding dynamics of adhesions [26,43]. In
contrast, our work suggests that a key determinant for stick-
slip dynamics in confined systems is the interplay of the
geometry-sensitive polarity dynamics with the elastic
protrusion-nucleus coupling, leading to the self-loading
of the coupling. Specifically, the model indicates that the
polarity dynamics adapts to the presence of the constricting
geometry by activating a self-reinforcing positive feedback
loop. This positive feedback leads to a broken-symmetry
state, in which there is a nonzero preferred polarity.
Symmetry breaking in polarity dynamics has been consid-
ered in previous models, including unconfined 2D migra-
tion [41], chemotaxis [80], and protrusion growth in
left-right decisions [81]. However, in these cases, this
state emerged for fixed cell parameters, as a response to
chemical concentration, or to resolve competition between
protrusions, respectively. In contrast, our work suggests
that such states may also arise as a consequence of
adaptation to a confinement.
We were able to rule out an alternative model to the

position-dependent feedback where the polarity dynamics
do not depend explicitly on external geometry but on the
extension of the cell (Appendix E). Interesting aspects of
comparing these two models are their conceptually distinct
implications. The position-dependent feedback implies a
direct coupling to the external environment, where the cell
may sense and adapt to the external geometry. In contrast,
an extension-dependent feedback is translationally invari-
ant and only depends on the internal state of the cell. Such a
mechanism has recently been suggested to be decisive
for protrusion growth in keratocytes [82]. In contrast,
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our findings suggest that the positive feedback loop in the
polarity is a response to the geometry of the local micro-
environment rather than to the overall extension of the cell.
We demonstrate that the geometry adaptation of pro-

trusion and polarity dynamics suggested by our model
depends on several underlying biological mechanisms,
including ROCK, myosin contractility, and actin polym-
erization. This observation suggests that geometry adapta-
tion may be controlled by the underlying polarization
mechanisms of the cell. There are several ways these
mechanisms could contribute to the geometry adaptation
of cell polarity dynamics. First, based on the physics of
active gels, which describe, for example, the actomyosin
cortex in the protrusion, we expect a greater degree of
alignment of actin fibers in a narrow constriction [64,65].
Increased alignment of actin is associated with higher
myosin contractility [83,84] and the emergence of sponta-
neous cell polarization [66,67,70–72]. Further key deter-
minants of cell polarization are diffusable polarity cues,
such as Rho GTPase [42,73,74], whose spatiotemporal
organization may couple to external geometries, for exam-
ple, through focal adhesions [85], or the cell shape itself
[68,69]. By combining the data-driven mechanistic model-
ing developed in this work with cytoskeletal perturbations
and imaging, the biological and molecular underpinnings
of geometry adaptation could be further elucidated in
future work.
To make the connection from our model to these

molecular processes, microscopic mechanistic models for
cell migration could play a key role [26,38,41–45]. It
remains challenging to constrain these models with exper-
imental data. Here, our mesoscopic mechanistic approach
could provide a way to bridge this gap. Furthermore,
building on these microscopic models could help advance
the generalizability of our model by making predictions for
more complex confinements, other molecular perturba-
tions, and different cell types. Based on experiments in
which we varied the dimensions of the constriction as well
as the number of adhesive islands to create multistate
micropatterns (Appendix F), we found that our model
already has predictive power beyond the specific confine-
ment geometry used to constrain it. However, determining
the adhesion γðxÞ and polarity feedback landscapes αðxÞ in
more general settings—such as complex geometries, vary-
ing protein concentrations, or mechanical constraints—
may be challenging. These predictions could be compli-
cated by the complex responses of cells to sensory inputs,
such as the nonmonotonic dependence of cell speed on
fibronectin density [76]. Furthermore, we reduce the
cellular dynamics to a one-dimensional description, while
the effective dimensionality of the dynamics may vary as a
function of position in the micropatterns. Generalizing this
model to a two-dimensional description could give further
insights into how these dynamics are affected by local
dimensionality.

Thus, future research is needed to investigate how our
model can be generalized and connected with microscopic
models to make predictions for new experiments, such as
cell migration on patterned lines [19,20,45,86], in 3D
confinements [10,87], or at junctions in a maze [28].
Previous work has investigated the effect of asymmetric,
periodic ratchet patterns, which led to a rectification of cell
migration in one direction [18–20]. This rectification has
been interpreted to be a consequence of the asymmetry in
the locally available adhesive area [21], consistent with our
adhesion landscape model. Our work suggests that the
adaptation of cell polarity in response to confinements may
also play an important role in such processes. Finally,
protrusion and polarity dynamics are critical in migration in
3D extracellular matrices [4,6,88], as well as in pairwise
interactions of cells [46,47,89–92], which in turn control
the collective dynamics of cells [93]. The geometry
adaptation dynamics we have identified here could there-
fore play an important role in these more complex
processes and provide a new framework for physical
models of cell migration in confining systems.
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APPENDIX A: EXPERIMENTAL METHODS

1. Sample preparation

Fibronectinmicropatterns aremade bymicroscale plasma-
initiated protein patterning as described previously [16]. All
two-state micropatterns are designed to have an adhesive
island with square dimensions ½ð36.7� 0.6Þ2 μm2�. For
patterns with varying bridge width, we use a standard bridge
length L ¼ 35.3� 0.5 μm and widths W ¼ 3.9� 0.5;
6.9� 0.6; 12.4� 0.5; 21.7� 0.5, and 34.8� 0.2 μm. For
patterns with varying bridge length, we use the standard
bridge width W ¼ 6.9� 0.6 and lengths L ¼ 6.4� 0.3;
9.2� 0.3; 23.7� 0.4; 46.2� 0.4, and 56.0� 0.3 μm. For
three-state patterns, a bridge length L ¼ 24.7� 0.5 μm and
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width W ¼ 6.9� 0.6 are used. We refer to the rounded
values for W and L throughout the text.

2. Cell culture and microscopy

MDA-MB-231 cells (DSMZ) are cultured in minimum
essential medium (MEM, c.c. pro), containing 10% FBS
(Gibco) and 2 mM L-Glutamine (c.c. pro). Cells are grown
in a 5% CO2 atmosphere at 37 °C. For passaging and
experiments, cells are washed once with PBS and trypsi-
nized for 3 min. This cell solution is centrifuged at 1000 rcf
for 3 min. The cell pellet is resuspended in MEM, and 10
000 cells are added per μ dish and left to adhere in the
incubator for 4 h. The medium is then exchanged to L-15
medium containing L-glutamine (Gibco, supplemented
with 10% FCS) and 25 nM Hoechst 33342 (Invitrogen)
for staining cell nuclei. Experiments are performed at 37 °C
without CO2. All measurements are performed in time-
lapse mode for up to 50 h on an IMIC digital microscope
(TILL Photonics) or on a Nikon Eclipse Ti microscope
using a 10× objective. The samples are kept in a heated
chamber (ibidi GmbH or Okolab) at 37 °C throughout the
measurements. Images (brightfield and DAPI) are acquired
every 10 mins.

3. Drug treatments

To perturb the cells with inhibitor drugs, the correspond-
ing agent is added to the cell culture medium in the usual
experimental setup. Y-27632 (Calbiochem/Sigma Aldrich)
was added at 2 μg=ml, blebbistatin (Cayman Chemical) at
10 μM and latrunculin (Merck) at 0.1 μM. Blebbistatin and
latrunculin concentrations were taken from Ref. [45]. The
cells are incubated in the drug-containing medium for 2–3 h
before the start of the measurement to allow the treatment to
take effect. The medium is not changed again during the
time of measurement.

APPENDIX B: IMAGE ANALYSIS

1. Cell segmentation

The trajectories of the cell nuclei are obtained by
applying a bandpass filter to the images of the nuclei,
binarizing, and tracking the binarized images using
ImageJ’s Analyze Particle plugin [94]. To obtain cell
shapes, we find that attempts to segment the cell images
using traditional methods of image binarization failed; thus,
we turn to more advanced machine learning techniques.
Specifically, we utilize convolutional neural networks,
which allow for high-pixel classification accuracy by
accounting for local properties of the image. In particular,
we use a U-Net architecture, which combines an encoder-
decoder structure with skip connections across the latent
layers. The encoder-decoder structure allows for efficient
recognition of large-scale features in the image, while the
skip connections effectively propagate local, low-level
information forward in the network. The encoder and

decoder branches of our network are three layers deep,
with 64 channels in the first layer, which are doubled after
every max-pool layer, similar to previous implementa-
tions [48].
For training, the network is fed augmented data that have

undergone random rotations, shifts, shears, zooms, and
reflections. We use 80% of the original labeled data set of
(N ¼ 372) images for training and withhold 20% for
validation. Each epoch then consists of 2000 steps of batch
size 16, and training is stopped after 20 epochs to prevent
overfitting. Gradient updates are performed using the Adam
optimizer [95] with a constant learning rate of 10−4. We use
the binary cross-entropy as a loss function to optimize the
pixel classification accuracy. For videos with low contrast
between the cells and the background, resulting from the
use of a different microscope, we adjust the loss function
throughout the training to increase the focus on the cell
edges, improving the segmentation quality, which has been
found to have a similar effect in previous work [96].
Specifically, we use the total loss function

L ¼ αLBCE þ ð1 − αÞLBCE;edge: ðB1Þ

Here, LBCE is the binary cross-entropy loss for the entire
image, and LBCE;edge is the binary cross-entropy only
applied to pixels near the edge of the cell. The factor α
is deterministically reduced in each epoch to force the
network to specialize and focus on the cell boundary in the
later phase of the training, which makes up a comparatively
small number of pixels compared to the cell as a whole. The
parameter α is initialized to 1 and then gradually reduced by
0.05 with each epoch, which we find improves training
compared to a fixed alpha.
Training according to the above protocol results in a

pixel classification accuracy of 96.5% for videos with high
contrast and 96.1% for videos with low contrast on the
validation data set. We note an apparent slight overfitting,
with predictions on the training set achieving a slightly
higher accuracy of 96.6% for both high- and low-contrast
videos (Fig. 8).
Finally, the predicted segmentations are converted to

binary images by applying a threshold. Consequently,
pixels with predicted values above 0.12 are mapped to 1
or 0. This pipeline yields an accurate segmentation of the
cell shape for the vast majority of frames (Fig. 9).

2. Protrusion tracking

To quantify the joint dynamics of the nucleus and
protrusion motion, we seek a minimal, low-dimensional
representation of the cell protrusions. Our image segmen-
tation pipeline gives access to the 2D shape of the cells SðtÞ
as a function of time. To identify protrusions, we classify
the positive contributions to the shape velocities VðtÞ ¼
Sðtþ ΔtÞ − SðtÞ as the shape of the protrusion PðtÞ (green
areas in Fig. 10).
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As a low-dimensional representation of the protrusive
dynamics, we define an effective position of the protrusion
xp as the geometric center of the protrusive shape xpðtÞ ¼R
xPðtÞdx (green dot in Fig. 10). The two-state micro-

pattern is designed in such a way that most of the behavior
occurs in the x direction along the long axis of the
micropattern. Indeed, we find that, similar to the nucleus
dynamics, most of the protrusive behavior is captured by
the x component of xp (Fig. 11): The variance in the y
motion is small [Fig. 11(a)], and the joint probability
distribution pðyn; ypÞ is peaked around (0, 0) and exhibits
no special structure, unlike the probability distribution for x
components pðxn; xpÞ [Figs. 11(b) and 11(c)]. In the
following, we therefore take the x component xp as a
minimal representation of the protrusive dynamics in this
system.
We find that this definition captures the characteristic

features of the protrusive dynamics during the cell-hopping
process: As the protrusion grows into the constriction, the
effective protrusion position also moves into the channel

[Figs. 12 and 2(d)]. Thus, xp typically precedes xn in the
constriction, as expected from the experimental observa-
tions [Movies S1–S3 in Ref. [49] and Fig. 2(d)].
Furthermore, we find that when protrusions form randomly
and uniformly around the cell boundary, xp is located near
the cell centroid (Fig. 10).
In addition to the protrusive dynamics, the cell also

performs retractions, corresponding to the negative compo-
nents of the shape velocities, RðtÞ [Fig. 13(a)]. However,
using a similar analysis of the retractive dynamics by
defining the effective position of the retractions, xrðtÞ ¼R
xRðtÞdx, we find that the retractions are well correlated

with the position of the nucleus,which typically resides at the
rear end of the cell [Fig. 13(b)]. Specifically, the cross-
correlation of the nucleus and retraction positions exhibits
almost no time lag, in contrast to the correlation between the
nucleus and protrusion [Fig. 13(c)]. Furthermore, the cross-
correlation between the nucleus and retractions is similar in

(a) (b)

FIG. 8. Accuracy and loss curves of the training process for
videos with (a) high and (b) low contrast. The network for high-
contrast videos is trained with constant α ¼ 1, while the network
for low-contrast videos is trained with varying α.

FIG. 9. Exemplary brightfield time series, with segmented cell
shapes shown in pink. Each image is a frame from a video that is
sampled everyΔt ¼ 10 min; time flows from the left to the right,
and each row is the continuation of the row above it. Brightfield
images are inverted for better visibility. Scale bar: 25 μm.

(b)(a)

FIG. 10. (a,b) Dynamics of protrusive areas in two frame
sequences. The solid pink line shows the current boundary of
the cell area SðtÞ, and the dashed line is the boundary of
Sðtþ ΔtÞ. The protrusive shape (green) is the area that is added
between these two frames, PðtÞ. The geometric center of the
protrusive area xp is shown as a green dot. Scale bars: 25 μm.

(a) (b)

(c)

FIG. 11. Two-dimensional motion of the nucleus and protru-
sions. (a) Several examples of 2D trajectories. Left: xy trajectories
plotted on top of themicropattern dimension (shown in gray). Axis
limits are −50 μm < x < 50 μm and −20 μm < y < 20 μm;
ðx ¼ 0; y ¼ 0Þ corresponds to the center of the constriction.
Middle: x trajectories as a function of time t. Axis limits are
−50 μm < x < 50 μm and 0 < t < 30 h. Right: y trajectories as a
function of time t. Axis limits are −50 μm < y < 50 μm and
0 < t < 30 h, to allow direct comparison with the x trajectories.
Blue is for the nucleus, and green shows the protrusion. (b) Joint
probability distribution pðxn; xpÞ of the x positions, plotted
logarithmically, shown without the Gaussian interpolation em-
ployed in Fig. 2. (c) Joint probability distributionpðyn; ypÞ of the y
positions, plotted logarithmically. Note the smaller axis range
compared to panel (b).
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magnitude and shape to the nucleus position autocorrelation,
indicating that the retraction trajectories do not contain
significant additional information compared to the nucleus
trajectories. Furthermore, the joint probability distribution of
the nucleus and retraction positions has maximal probability
around the diagonal, with little additional structure, in

contrast to the distribution of the nucleus and protrusion
positions [Figs. 13(d) and 13(e)]. Therefore, to achieve a
minimal, low-dimensional description for the coupled
dynamics of shape and nucleus motion, we restrict our
analysis to the protrusions.

APPENDIX C: MODEL IMPLEMENTATION AND
PARAMETER INFERENCE

We implement the spatially variable adhesiveness of the
nucleus dynamics [Eq. (4)], suggested by the nucleus
velocity maps (Fig. 3), using the dimensionless adhesive-
ness profile

γðxnÞ ¼
1 − γmin

2

�
1 − cos

�
xnπ

Lsystem

��
þ γmin: ðC1Þ

Thus, γðxnÞ varies between γ ¼ γmin at xn ¼ 0 and γ ¼ 1 on
the islands (Table I). The magnitude of the adhesiveness is
accounted for by the parameter ζn. For all length-scale
parameters, we use the known dimension of the experimental
confinement, i.e.,Lsystem ¼ aþ L=2 ¼ 52.5 μm, where a is
the island side length and L the bridge length (see
Appendix A 1). Thus, Eq. (4) has only two free parameters:
kn and γmin. We determine these parameters by fitting Eq. (4)
to the experimentally observed NVM (Fig. 4). To constrain
the parameters used for all constriction widths throughout,
we first fit the thinnest constriction width W ¼ 4 μm and
obtain kn ≈ 0.6 h−1; γmin ≈ 0.2. The fitted value is close to
that expected based on purely geometrical arguments:
Assuming the local friction is proportional to the width of
the pattern at that point, we would expect γmin ≈W=a ≈ 0.1.
The larger actual value could be due to the spatially extended
shape of the cell, leading to additional contributions to the
adhesive area that are not only determined by the local width
of the pattern.
For the protrusion dynamics [Eq. (5)], we use soft-wall

boundary conditions at the system boundaries, using the
potential VðxpÞ ¼ ðxp=xboundaryÞ2n. Within a reasonable
range, the boundary potential parameters do not strongly
affect the results; we take n ¼ 4 and xboundary ¼ 0.4 � Lsystem

throughout. Similarly, we find that the choice of kp ¼ k=ζp
does not strongly affect the results. Physically, we expect the
friction on the nucleus to be larger than on the protrusion, i.e.,
ζp < ζn, and thus kp > kn. Fitting the PVM inferred from
systems without constrictions, which is dominated by the
elastic coupling, we find kp ¼ 1.2 h−1, which we assume to
be constant across geometries.
In the geometry adaptation model for the cell polarity

[Eq. (8)], we use a spatial profile of αðxpÞ with a minimal
value αmin at xp ¼ 0 and a maximal value α0 on the
adhesive islands:

αðxpÞ ¼
α0 − αmin

2

�
1þ cos

�
xpπ

Lsystem

��
: ðC2Þ

FIG. 12. Time series of xp dynamics overlaid on images of cells
with protrusions. Each image is a frame from a video that is
sampled every 10 minutes; time flows from the left to the right,
and each row is the continuation of the row above it. The time-
series curve is an interpolation of the circular points to serve as a
guide for the eye. Scale bar: 25 μm.

(c)

(e)

(a)

(b)

(d)

FIG. 13. Dynamics of cell retractions. (a) Exemplary brightfield
microscopy image series with protrusive shape velocity compo-
nents PðtÞ indicated in green and retraction components RðtÞ in
red. (b) Trajectories of the protrusion xpðtÞ ¼

R
xPðtÞdx (green),

retraction xrðtÞ ¼
R
xRðtÞdx (red), and the cell nucleus xnðtÞ

(blue). (c) Position cross-correlations between the nucleus and
protrusion hxnðtÞxpðtþ TÞi (green), between the nucleus and
retraction hxnðtÞxrðtþ TÞi (red), and the nucleus position auto-
correlation, hxnðtÞxnðtþ TÞi (blue). (d) Joint probability distri-
bution pðxn; xpÞ of the x positions of the nucleus and protrusion,
plotted logarithmically, shown without the Gaussian interpolation
employed in Fig. 2. The dashed line indicates the diagonal; the
dotted lines indicate the boundaries of the adhesive islands.
(e) Joint probability distribution pðxn; xrÞ of the x positions of the
nucleus and retraction, plotted logarithmically.
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The polarity description has four parameters:
fα0; αmin; β; σg. For positions where αðxpÞ < 0, the pre-

ferred polarity is P0 ¼ � ffiffiffiffiffiffiffiffiffiffiffijαj=βp
. Based on this, we take

β ¼ 10−4 μm−2 h throughout, which gives a reasonable
order of magnitude of the preferred polarity compared to
the typical order of magnitude of the protrusion velocities.
On the islands, we assume low protrusion persistence
(Movie S1 in Ref. [49]) and therefore take α0 ¼ 10 h−1.
This choice yields accurate results for the PVM in systems
with no constriction, where we take αmin ¼ α0, correspond-
ing to a flat profile. Taking smaller values of α0 leads to
active driving in the PVM for the system with no con-
striction, which is not observed experimentally. To con-
strain αmin, we find that a negative αmin is required to
capture the effective antifriction in the nucleus dynamics
(see Fig. 21 for a parameter sweep). Fitting the antifriction
and dwell-time distribution of the thinnest constriction, we
obtain αmin ¼ −6.5 h−1. We test the model by increasing
αmin with bridge width, up to αmin ¼ α0 for the system
without constriction (Fig. 6, Table I). Finally, the model
predictions do not sensitively depend on the choice of the
noise amplitude; we take σ ¼ 100 μmh−3=2 throughout.
All parameters are summarized in Table I.

APPENDIX D: INFERRED WHITE-NOISE
MODEL DOES NOT CAPTURE EXPERIMENTAL

DYNAMICS

In this section, we show that a model with a general
protrusion term and a white-noise polarity dynamics is
unable to capture the experimental dynamics. Specifically,
we consider a model of the form

_xn ¼ fnðxn; xpÞ þ σnðxn; xpÞξðtÞ; ðD1Þ

_xp ¼ fpðxn; xpÞ þ σpðxn; xpÞξðtÞ: ðD2Þ

Here, we assume that ξðtÞ is a white noise with hξðtÞi ¼ 0
and hξðtÞξðt0Þi ¼ δðt − t0Þ. Under this assumption, we can
infer the terms fn;p and σn;p directly from the observed data.
Specifically, we use the estimators fnðxn; xpÞ ≈ h_xnjxn; xpi
and σ2nðxn; xpÞ ≈ Δth½_xn − fnðxn; xpÞ�2jxn; xpi and similarly
for the protrusion terms. These inferred terms provide the
best-fit estimates for a general model inferred under the
white-noise assumption. In this case, the inferred functions
fn and fp are given by the NVM and the PVM by definition
[shown in Figs. 3(b) and 5(c)].
The noise on the protrusion significantly exceeds that on

the nucleus [Figs. 14(a) and 14(b)]. Specifically, the average
estimated noise magnitudes are σ̂n ≈ 8.4 μmh−1=2 and
σ̂p ≈ 33 μmh−1=2. Accordingly, we find that the nucleus
dynamics is dominated by its deterministic component, with

TABLE I. Model parameters for varying bridge widths and lengths used throughout the paper.

L (μm) W (μm) Lsys (μm) kn (h−1) γmin kp (h−1) α0 (h−1) αmin (h−1) β (μm−2 h) σ (μmh−3=2)

35

4

52.5

0.6

0.2

1.2 10

−6.5

10−4 100

7 0.23 −6

12 0.42 −4

22 0.66 1

35 1 10

6

7

38

0.23 −6

9 40

24 47

46 58

56 63

(a) (c)

(b) (d)

(e)

FIG. 14. Inferred model terms based on white-noise assumption.
(a) Inferred multiplicative noise term on the nucleus σnðxn; xpÞ ≈
ðΔth½_xn − fnðxn; xpÞ�2jxn; xpiÞ1=2 in units of μmh−1=2. (b) Inferred
multiplicative noise term on the protrusion. (c) Relative magnitude
of the deterministic and stochastic contributions to the nucleus
velocities, for an increment in a time step Δt, given by
jfnðxn; xpÞj

ffiffiffiffiffi
Δt

p
=σnðxn; xpÞ. (d) Relative magnitude of the deter-

ministic and stochastic contributions to the protrusion velocities.
(e) Experimental (blue) and predicted (red) dwell-time distribution.
(f) Experimental (blue) and predicted (red) effective friction
relation Fðxn → 0; vnÞ.
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deterministic contributions exceeding stochastic fluctuations
everywhere in phase space except where the nucleus and
protrusion arevery close together [Fig. 14(c)]. In contrast, the
protrusion dynamics are dominated by the stochastic fluc-
tuations [Fig. 14(d)]. In the mechanistic model introduced in
themain text,weassume that the source of stochasticity in the
system acts on the protrusion, which is further supported by
these observations.
The validity of the model postulated by Eqs. (D1) and

(D2) can be tested by performing simulations using the
inferred terms fn;p and σn;p. However, we find that this
model fails to predict key experimental observations,
including the peak in the dwell-time distribution and the
effective friction [Figs. 14(e) and 14(f)]. Taken together,
these results indicate that the model postulated in Eqs. (D1)
and (D2) does not provide a good representation of the
experimental dynamics, ruling out the white-noise protru-
sion model for all fn;p.

APPENDIX E: RULING OUT ALTERNATIVE
MODEL CANDIDATES

To develop a mechanistic model for the joint dynamics of
the nucleus and protrusion, we systematically constrain the
model defined by Eqs. (1) and (2). By employing a data-
driven approach based on the conditional averages of the
nucleus and protrusion velocities (NVM and PVM, respec-
tively), we can independently determine the dynamics of
the nucleus and the protrusion. For each of these two
components, we systematically increase the model com-
plexity step by step until we reach a model that captures the
data (Table II).

1. Nonlinear nucleus-protrusion couplings

We additionally test if a possible nonlinearity in the
nucleus-protrusion coupling could provide better

predictions with the double-well potential. To this end,
we consider the next-order coupling term allowed by
symmetry in the potential model:

_xn ¼ kð1Þn ðxp − xnÞ þ kð2Þn ðxp − xnÞ3 − ∂xnWðxnÞ: ðE1Þ
However, this model is unable to capture the NVM
features, unlike the adhesion model with the first-order
coupling [Figs. 15(g) and 15(h)]. Furthermore, we show
that a nonlinear coupling does not add significant explana-
tory power to the adhesion model and is therefore not
required to capture our data [Figs. 15(a)–15(d)].

2. Amplitude-adapting persistent polarity

In the geometry adaptation model, we assume that the
feedback on the polarity couples to the external geometry,
which therefore makes the time correlations of the polarity
geometry sensitive. An alternative way to introduce a
coupling to the external geometry is a spatially variable
overall amplitude ϵðxpÞ. Thus, the time correlations of this
amplitude-adapting polarity PAA remain unaffected by the
geometry, and only the overall amplitude of the driving
force of the protrusion changes. Such a model is described
by the equations

_xp ¼ −kpðxp − xnÞ − ∂xpVðxpÞ þ ϵðxpÞPAAðtÞ; ðE2Þ
_PAA ¼ −α0PAA þ σξðtÞ: ðE3Þ

Physically, we expect larger polarities in the constrictions
and therefore employ a generic function ϵðxpÞ, which takes
value 1 on the islands and ϵmax > 1 in the center of the
constriction:

ϵðxpÞ ¼
ϵmax − 1

2
cos

�
xpπ

Lsystem

�
þ ϵmax þ 1

2
: ðE4Þ

TABLE II. Overview of model candidates.

Model Coupling Equation Reference

Nucleus

Conservative force
(double-well 
potential)

First order Figs. 3(d) and 3(e)

Third order Fig. 15

Dissipative 
component
(spatially variable 
friction)

Figs. 3(g) and 3(h)

no improvement cf 
1st order 

Model Coupling Equation Reference

Protrusion
and

Polarity

White noise Appendix G

General white noise General Eqs. (D1), (D2) Appendix D

Persistent polarity Fig. 17(a)

Amplitude-adapting 
persistent polarity

Fig. 17(b)

Extension 
adaptation model

Fig. 17(c)

Geometry 
adaptation model

Figs. 5, 6

Model works Model fails

Third order

First order

First order

First order

First order

First order

First order

(c) (d)

(g) (h)

(a) (b)

(e) (f)
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FIG. 15. Fitting to the NVM with linear vs nonlinear nucleus-
protrusion coupling models. (a,c,e,g) NVM as a function of xn for
different xp. Dots are for the experiment, and the line is for the
fitted linear (a,e) or nonlinear (c,g) coupling model. (b,d,f,h)
NVM as a function of xp for different xn. Dots are for the
experiment, and the line is the fitted linear (b,f) or nonlinear (d,h)
coupling model. Top row: adhesion landscape model. Here, we

infer coupling constants jkð2Þn j=jkð1Þn j ≈ 10−6, indicating that the
third-order term is negligible compared to the first-order term.
Bottom row: energy potential.
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Using this implementation, we expect a depletion of
probability in the center of the probability distribution
pðxn; xpÞ for large ϵmax, making it a promising candidate to
capture the key features of the protrusion nucleus cycling.
To test the model, we screen model predictions across the
parameters fα0; σ; ϵmaxg. Importantly, we find that this
model does not capture the experimental observation,
including the peaked dwell-time distribution for any
combination of parameters [Fig. 17(b)].

3. Extension adaptation polarity

In this section, we show that an alternative model in
which the polarity feedback is sensitive to Δx ¼ jxp − xnj
instead of the absolute position of the protrusion xp is
unable to capture our experimental observations. Such a
model can be formulated by writing an extension-adapting
polarity PEA governed by

_PEA ¼ −αðΔxÞPEA − βP3
EA þ σξðtÞ: ðE5Þ

We expect the polarity to become more persistent for
stretched states, with a possible switch to positive feedback
at large extensions. As a simple implementation of this
dependence, we take α to be a linear function of Δx:

αðΔxÞ ¼ α0 − α1Δx: ðE6Þ

A switch to positive feedback therefore occurs at a critical
extension Δxcritical ¼ α0=α1. Note that since this model
does not couple to geometry, α0 and α1 are assumed to be
intrinsic cell parameters, which do not adapt to the
environment. Therefore, in this model, the bridge width
is implemented only through the adhesiveness profile. By
contrasting these models, we do not seek to rule out that the
cell polarity could couple to the extension of the cell, but
we investigate whether geometry-sensitive or extension-
dependent polarity dynamics dominate the behavior in
confined cell migration.
In this model, the polarity dynamics has four parameters:

fα0; α1; β; σg. We take β¼ 10−4 μm−2h, σ ¼ 100 μmh−3=2,

and α0 ¼ 10 h−1, to be consistent with the geometry adap-
tation model at small extensions (which we have shown to
successfully capture the dynamics), and α1 ¼ 1 h−1 μm−1,
such that the critical extension is Δxcritical ¼ 10 μm, a
realistic value given the typical protrusion extensions
(Fig. 16). Interestingly, we find experimentally that the
distribution of cell extensions pðΔxÞ does not change
significantly with bridge width (Fig. 16). This suggests that
based on the extension feedback model, we expect similar
polarity dynamics for all bridge widths, including positive
feedback states on all bridge widths, which is in contrast to
our observed nucleus-protrusion dynamics (Fig. 6). Indeed,
we find that in the parameter regimes where the behavior in
thin constrictions is well captured, the model predictions
qualitatively fail to capture the behavior on wide bridges.
This is summarized most clearly in the protrusion velocities
as a function of cell extension, which arewell captured by the
geometry adaptation model but not by the extension adapta-
tion model [Fig. 17(c)]. Together, these results rule out the
extension adaptation model.

FIG. 16. Experimental probability distributions of protrusion-
nucleus extension for all bridge widths.
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FIG. 17. Predictions of ruled-out model candidates. (a) Predic-
tions of the persistent polarity with varying noise amplitude σ and
persistence times α−10 for the probability distribution pðxn; xpÞ.
(b) Predictions of the amplitude-adapting, persistent polarity
model with varying polarity amplitude factor ϵmax and persistence
times α−10 for the dwell-time distribution. In panels a, b, we use
γmin ¼ 0.23 and compare to the experimental data for bridge
width W ¼ 7 μm. c. Protrusion velocities as a function of xp and
xp − xn for two model candidates. The conditional average
h_xpjxp − xn; xpi is shown for the geometry adaptation model
[Eq. (8), top row], the extension feedback model [Eq. (E5), center
row], and the experiment (bottom row), as a function of
increasing bridge width from left to right.
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APPENDIX F: MODEL PREDICTIONS FOR
VARYING CONFINEMENT GEOMETRY AND

DRUG PERTURBATIONS

To further demonstrate the generality of the model
approach, we show how the model can be extended to
make predictions for confinement geometries that were not
used to constrain the parameters. First, we vary the length L
of the constriction [Fig. 18(a)]. We find that the model
captures the main qualitative changes observed in the
experiment [Figs. 18(b)–18(e)], with a polarity driving

that becomes more strongly pronounced in the longest
constrictions in both the model and experiment [Fig. 18(c)].
Second, we test confinements featuring arrays of constric-
tions, which we term multistate micropatterns. For such
systems, the spatial variations of the adhesion landscape
γðxnÞ [Eq. (C1)] and the feedback strength αðxpÞ [Eq. (E4)]
are simply extended to periodic functions [Fig. 19(a)].
Using the model parameters constrained for two-state
micropatterns, the model then predicts trajectories that
oscillate within two-state subsets of the multistate micro-
patterns [Fig. 19(b)]. These dynamics lead to probability
distributionspðxn; xpÞ that feature concatenations of the two-
state probability distributions, with connected ringlike prob-
ability distributions [Fig. 19(c)]. To test these predictions, we
perform experiments on three-state micropatterns [Movie S8
in Ref. [49] and Fig. 19(d)]. We observe trajectories with a
similar phenomenology as predicted by the model and a
matching probability distribution pðxn; xpÞ.
As a consistency check of our model predictions for

perturbations of the geometry adaptation (Fig. 7), we also
make predictions for the consequences of a perturbation of
the adhesion landscape. We find that perturbing the
adhesion landscape alone cannot capture the effects of
the pharmacological perturbations that we tested exper-
imentally (Fig. 20).

APPENDIX G: CONNECTING THE
MECHANISTIC MODEL TO EMERGENT
STOCHASTIC NONLINEAR DYNAMICS

A central challenge for our mechanistic approach is to
capture the emergent, long timescale, stochastic dynamics
of the system. In previous work [16], we showed that the
stochastic dynamics of the nucleus trajectories xnðtÞ of
these cells can be described by an equation of motion for
the velocity of the cell nucleus vn of the form

_vn ¼ Fðxn; vnÞ þ σðxn; vnÞηðtÞ; ðG1Þ

where ηðtÞ is Gaussian white noise, with hηðtÞi ¼ 0 and
hηðtÞηðt0Þi ¼ δðt − t0Þ. This is an effective description of
the dynamics of the nucleus alone, with unobserved
degrees of freedom, such as the protrusion and polarity,
integrated out. Thus, in contrast to our mechanistic model
[Eqs. (1) and (2)], the dynamics of the nucleus trajectories
alone are described by a second-order equation of motion
with the velocity vn as an additional degree of freedom.
Here, we provide a direct mapping between these two
descriptions, with the aim to gain insight into how features
of the mechanistic dynamics determine the emergent non-
linear dynamics of the nucleus motion. Specifically, rewrit-
ing Eqs. (1) and (2) as

_xn ¼ Gnðxn; xpÞ; ðG2Þ
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FIG. 18. Geometry adaptation model predicting dynamics with
varying constriction length. (a) Brightfield microscopy images of
MDA-MB-231 cells migrating in geometries with varying con-
striction length, with the cell outline in pink, the nucleus position
in blue, and the geometry in white. Bottom: stochastic trajectories
xnðtÞ (blue), xpðtÞ (green), and PGAðtÞ (pink) predicted by the
geometry adaptation model. (b) Joint probability distributions
pðxn; xpÞ. (c) Protrusion velocity maps h_xpjxn; xpi. The top row
corresponds to the model prediction, the bottom row to exper-
imental observations. (d) Predicted (red) and experimental
(blue) dwell-time distributions pðτÞ. (e) Flow field ð_xn; _vnÞ ¼
(vn; Fðxn; vnÞ) indicated by arrows [16]. The arrow color
indicates the direction of the local flow: Acceleration is shown
in orange, and deceleration is shown in blue. (f) Predicted (red)
and experimental (blue) effective friction at the bridge center
Fðxn → 0; vnÞ. In all panels, experimental observations corre-
spond to L ¼ 6, 9, 24, 46, and 56 μm (from left to right).
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_xp ¼ Gpðxn; xpÞ þ PðtÞ; ðG3Þ

we can recast these equations into a single differential
equation for vn by differentiation of Eq. (G2). Then, using
the definition Fðxn; vnÞ ¼ h_vnjxn; vni, we find

Fðxn; vnÞ ¼ Gp
∂Gn

∂xp
þ vn

∂Gn

∂xn|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fccðxn;vnÞ

þ ∂Gn

∂xp
hPjxn; vni|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Fpolðxn;vnÞ

: ðG4Þ

Here, the right-hand side can be turned into an equation of
xn; vn only by replacing xp with the inverse of Eq. (G2).
Thus, we expect the deterministic dynamics of the nucleus
to be determined by two components: a component
Fccðxn; vnÞ determined by the confinement and coupling
dynamics, and a component Fpolðxn; vnÞ determined by the
polarity dynamics.
For white-noise polarities, the second term vanishes, as

hPjxn; vni ¼ 0 [insets of Fig. 22(a)], and thus the phase-

FIG. 21. Effective antifriction for positive feedback polarities.
We vary the parameters γmin and αmin and determine the effec-
tive friction relationship at the center of the constriction
Fðxn → 0; vnÞ. The gradient of the effective friction at vn → 0
is indicated by the color. The red arrow corresponds to simulta-
neously increasing γmin and αmin, which we do as a model of
increasing bridge width. Insets: effective friction relationships at
the indicated locations.
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FIG. 19. Multistate micropatterns. (a) Sketch of a multistate micropattern with the corresponding functional form of γðxnÞ and αðxpÞ.
(b)Model trajectory in a three-state micropattern. Constrictions are marked by gray shades. (c) Probability distributionpðxn; xpÞ for three-,
four-, and five-statemicropatterns. (d)Microscopy image of anMDA-MB-231 cell migrating in a three-statemicropattern, with the nucleus
and protrusion marked by blue and green dots, respectively. The green area indicates the protrusion area. (e) Experimental trajectory in a
three-state micropattern. Constrictions are marked by gray. (f) Probability distribution pðxn; xpÞ for a three-state micropattern.

(a) (b)

(c) (d)

FIG. 20. Changes in the adhesion profile upon drug perturbation,
which cannot capture observed changes in nucleus-protrusion
dynamics. (a)Adhesion landscape profiles γðxnÞ for varying γmin ¼
f0.2; 0.3; 0.4; 0.5; 0.6g while keeping the polarity feedback adap-
tation αmin constant. (b) Corresponding probability distributions
pðxn; xpÞ. The simulations do not predict the closing of the ringlike
structure in the probability distribution, as observed experimen-
tally. (c) Dwell-time distributions pðτÞ. No significant reduction
of the peak in the dwell-time distributions is observed, contrary
to experiments. (d) Effective friction at the bridge center
Fðxn → 0; vnÞ. The effective friction exhibits a significant change
but different from the experiments: Here, the friction switches from
a local “negative” friction coefficient in the center of the con-
striction to a global regular friction F ∼ −v (dark green line). In
contrast, both the experiments with drug perturbations and the
model with reduced geometry adaptation predict a nonlinear
effective friction with a flat dependence in the constriction center
[Fig. 7(i)].
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space flow is due to the combined effects of nucleus-
protrusion coupling and the space-dependent adhesiveness
acting on the nucleus. Interestingly, for the white-noise
model, we find a small region of deterministic amplification
where the nucleus enters the constriction—however, the
amplification only sets in at high speeds, while there is no
amplification for low speeds [Fig. 22(a)]. This amplification
in the flow is due to the differential adhesiveness, as it
vanishes for a flat adhesiveness profile. In contrast, in the
experiments, we find that the excitable amplification
regime sets in already at low speeds. Furthermore, the
effective friction acting on the nucleus in the white-noise
model is a simple linear friction, Fðxn → 0; vnÞ ∝ −vn, in
contrast to the nonlinear antifriction observed experimen-
tally [Fig. 22(b)].
Persistence of the polarity leads to a significant con-

tribution to the deterministic dynamics, with hPjxn; vni,
leading to amplification even at small velocities. However,
while the persistent polarity model predicts a nonlinear
effective friction relation Fðxn → 0; vnÞ, it does not predict
a sign change, corresponding to antifriction, in any param-
eter regime we investigated [Fig. 22(c)]. In contrast, we find
that the geometry adaptation model captures the effective
antifriction at the center of the constriction. In the param-
eter regime relevant to the experiments, we find that the
effective antifriction emerges for αmin < 0 and γmin ≲ 0.3
(Fig. 21). To model the effects of increasing constriction
width, we simultaneously increase γmin and αmin (red arrow
in Fig. 21). We observe that this leads to the disappearance
of the effective antifriction, first giving rise to a flat
nonlinear friction, and finally an almost linear regular
friction (insets in Fig. 21). We observe very similar changes
in the effective friction in the experiment (Fig. 6).
In summary, the effective nonlinear dynamics of the

nucleus trajectories put strong constraints on the mecha-
nistic model, and in contrast to the white-noise and
persistent polarity models, the geometry adaptation model

is able to capture the experimentally observed dynamics.
The mechanistic approach furthermore gives insight into
the origin of the nonlinear dynamics: Fðxn; vnÞ is com-
posed of a confinement coupling and a polarity component.
The effective antifriction exhibited by the inferred dynam-
ics is reproduced for parameters corresponding to positive
polarity feedback, indicating that such a feedback mecha-
nism may be required to explain the emergence of effective
antifriction in the underdamped nuclear dynamics.
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