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Abstract
Inspired by the study of loose cycles in hypergraphs, we define the loose core

in hypergraphs as a structure which mirrors the close relationship between cycles
and 2-cores in graphs. We prove that in the r-uniform binomial random hypergraph
Hr(n, p), the order of the loose core undergoes a phase transition at a certain critical
threshold and determine this order, as well as the number of edges, asymptotically
in the subcritical and supercritical regimes.

Our main tool is an algorithm called CoreConstruct, which enables us to analyse
a peeling process for the loose core. By analysing this algorithm we determine the
asymptotic degree distribution of vertices in the loose core and in particular how
many vertices and edges the loose core contains. As a corollary we obtain an
improved upper bound on the length of the longest loose cycle in Hr(n, p).
Mathematics Subject Classifications: 05C38, 05C65

1 Introduction

1.1 Motivation

One of the first phase transition results for random graphs is the celebrated result of
Erdős and Rényi [16] on the emergence of a giant component of linear order when the
number of edges passes n

2 , or from the viewpoint that is now more common, when the edge
∗Supported by Austrian Science Fund (FWF): I3747, W1230.
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probability passes 1
n
. This result has since been strengthened and generalised in a number

of directions. In particular in hypergraphs it has been extended to vertex-components
(e.g. [4–7,24,33,36]) as well as to high-order components (e.g. [9, 11–13]).

The k-core of a graph G, defined as the maximal subgraph of minimum degree at
least k, has been studied extensively in the literature (e.g. [14,20,26,28,32]). In random
graphs, the k-core may be seen as a natural generalisation of the largest component: in the
case k = 2, whp1 a linear-sized 2-core emerges at the same time as the giant component,
and indeed lies almost entirely within the giant component, while for k > 3, whp the k-core
is identical to the largest k-connected subgraph [28,29]. In [28] Łuczak estimated the order
of (i.e. the number of vertices in) the k-core of G(n, p) and the asymptotic probability that
the k-core is k-connected. Łuczak also showed in [29] that in the random graph process,
in which edges are added to an empty graph one by one in a uniformly random order,
whp at the moment the k-core first becomes non-empty, its order is already linear in n.
A crucial milestone was achieved by Pittel, Spencer and Wormald [32], who for k > 3
determined the threshold probability at which the non-empty k-core appears whp and
determined its asymptotic order and size (i.e. number of edges). This was strengthened by
Janson and Luczak [21], who proved a bivariate central limit theorem for the order and
size of the k-core. Cain and Wormald [8] determined the asymptotic distribution of vertex
degrees within the k-core. Further research has focussed for example on the robustness
of the core against edge deletion [35] and how quickly the peeling process arrives at the
core [1, 18, 19, 23]. There are many more results in the literature for cores in random
graphs, see e.g. [14,20,26].

Paths and cycles in random graphs have been investigated at least since 1979 by de la
Vega [17] and somewhat later by Ajtai, Komlós, and Szemerédi [2]. Regarding the length
of the longest path in the random graph G(n, p), a standard “sprinkling” argument (see
Lemma 22 with r = 2) shows that in the supercritical regime the length of the longest
path and cycle are very similar. Thus it follows from the results of Łuczak [27] on the
length of the longest cycle that for ε = ε(n) = o(1) and p = 1+ε

n
(i.e. shortly after the

phase transition), under the assumption ε5n→∞ whp the longest path has length Θ(ε2n),
where explicit constants can be given. The best-known upper bounds derive from a careful
analysis of the 2-core and the simple observation that any cycle must lie within the 2-core.

There are many different ways of generalising the concept of a k-core to hypergraphs;
some results for these cores can be found in e.g. Molloy [31] and Kim [26]. However, in
the case k = 2, all k-cores which have been studied so far do not fully capture the nice
connection between the 2-core and cycles in graphs. In [31] Molloy determined the threshold
for the appearance of a non-trivial k-core (in that paper defined as a subhypergraph where
every vertex has degree at least k) in the r-uniform binomial random hypergraph Hr(n, p)
for all r, k > 2 such that r + k > 5. The proof relied on a clever heuristic argument which
was first introduced by Pittel, Spencer and Wormald in [32] and has been adapted by many
other authors, see e.g. [20,26,34,37]. It turns out that the proofs in [31] can be extended
to a wide range of core-type structures. In the case k = 2, Dembo and Montanari [15]
strengthened this by determining the width of, and examining the behaviour within, the

1short for with high probability, i.e. with probability tending to one as the number of vertices n→∞.
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critical window.
One of the most natural concepts of paths and cycles in hypergraphs is loose paths

and loose cycles (see Definition 3). A special case of a recent result of Cooley, Garbe,
Hng, Kang, Sanhueza-Matamala and Zalla [10] shows that the length of the longest loose
path in an r-uniform binomial random hypergraph undergoes a phase transition from
logarithmic length to linear, and they also determined the critical threshold, as well as
proving upper and lower bounds on the length in the subcritical and supercritical ranges.

Inspired by the substantial body of research on loose cycles, in this paper we introduce
the loose core (see Definition 2), a structure which does indeed capture the connection
between cores and cycles in hypergraphs. Our first main result concerns the degree
distribution of vertices in the loose core (see Theorem 4). In fact we prove a stronger
result regarding degree distributions of both vertices and edges (see Theorem 21). As a
consequence we can deduce both the asymptotic numbers of vertices and edges in the
loose core (see Theorem 5) and an improved upper bound on the length of the longest
loose cycle in an r-uniform binomial random hypergraph (see Theorem 6).

Before stating our main results, in the next section we introduce some definitions and
notations which we will use throughout the paper.

1.2 Setup

Given a natural number r > 3, an r-uniform hypergraph consists of a vertex set V and an
edge set E ⊂

(
V
r

)
, where

(
V
r

)
denotes the set of all r-element subsets of V . Let Hr(n, p)

denote the r-uniform binomial random hypergraph on vertex set [n] in which each set of r
distinct vertices forms an edge with probability p independently. For any positive integer
k we write [k] := {1, . . . , k} and [k]0 := {0, . . . , k}. We also include 0 in the natural
numbers, so we write N = {0, 1, . . .} and N>k := {k, k + 1, . . .}. Throughout the paper,
unless otherwise stated any asymptotics are taken as n→∞. In particular, we use the
standard Landau notations o(·), O(·),Θ(·), ω(·) with respect to these asymptotics.

The loose core will be defined in terms of two parameters, namely the standard notion
of (vertex-)degree and a notion we call the connection number.

Definition 1. Let H be an r-uniform hypergraph. Let dH(v) be the degree of a vertex
v in H (i.e. the number of edges which contain it) and let δ(H) denote the minimum
(vertex-)degree of H, i.e. the smallest degree of any vertex of H. For any edge e ∈ E(H),
define the connection number κ(e) ∈ [r]0 of e as

κ(e) = κH(e) := |{v ∈ e : dH(v) > 2}|

and let κ(H) := min
e∈E(H)

κ(e).

We are now ready to define the loose core.
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Definition 2 (Loose core). The loose core of an r-uniform hypergraph H is the maximal
subhypergraph H ′ of H such that

(C1) δ(H ′) > 1,

(C2) κ(H ′) > 2.

If such a subhypergraph does not exist, then we define the loose core to be the empty
hypergraph (i.e. the hypergraph with no vertices and no edges).

Note that the loose core is unique, since the union of two hypergraphs each with
properties (C1) and (C2) again has these properties. The first condition in Definition 2
simply states that the loose core contains no isolated vertices and the second condition
specifies how edges are connected to each other in the loose core. Note that for r > 3 the
loose core might contain vertices of degree 1, in contrast to the graph case. For r = 2,
Definition 2 coincides with the 2-core of a graph.

Our motivation to study loose cores arises from the study of loose cycles in hypergraphs
which are closely related to loose paths.

Definition 3 (Loose path/cycle). A loose path of length ` in an r-uniform hypergraph is
a sequence of distinct vertices v1, . . . , v`(r−1)+1 and a sequence of edges e1, . . . , e`, where
ei = {v(i−1)(r−1)+1, . . . , v(i−1)(r−1)+r} for i ∈ [`]. A loose cycle of length ` in an r-uniform
hypergraph is defined similarly except that v`(r−1)+1 = v1 (and otherwise all vertices are
distinct).

Note that for i ∈ [`− 1] we have ei∩ ei+1 = {vi(r−1)+1} (and in the case of a loose cycle,
e` ∩ e1 = {v1}), so in particular two consecutive edges intersect in precisely one vertex.
Observe that a loose cycle satisfies conditions (C1) and (C2) of a loose core (Definition 2)
and hence it must be contained in the maximal subhypergraph with these properties, i.e.
in the loose core.

1.3 Important parameters

We will now define various parameters which will occur often in this paper. Some of these
definitions may seem arbitrary and unmotivated initially, but their meaning will become
clearer over the course of the paper.

Given d > 0, consider a sequence (dn)n∈N of real numbers such that dn → d. Then for
r ∈ N>3 and n ∈ N, set

p = p(r, n) := dn(
n−1
r−1

) , d∗ = d∗(r) := 1
r − 1 .

In addition we define a function F : [0,∞)→ R by setting

F (x) = Fr,d(x) := exp
(
−d

(
1− xr−1

))
(1)
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and let ρ∗ = ρ∗(r, d) be the largest solution2 of the fixed-point equation

1− ρ = F (1− ρ). (2)

Since the function F is dependent on d, so too are the solutions to this equation. It turns
out that d∗ is a threshold at which the solution set changes its behaviour from containing
only the trivial solution 0 to also containing a unique positive solution (see Claim 10).

We define
ρ̂∗ = ρ̂∗(r, d) := 1− (1− ρ∗)r−1 (3)

and
η = η(r, d) := 1− (r − 1)ρ∗(1− ρ∗)r−2

ρ̂∗
. (4)

Furthermore let
α = α(r, d) := ρ∗

(
1− d(r − 1)(1− ρ∗)r−1

)
,

β = β(r, d) := d

r

(
1− (1− ρ∗)r − rρ∗(1− ρ∗)r−1

)
, (5)

and
γ = γ(r, d) := 1− exp(−dρ̂∗)− dρ̂∗ exp(−dρ̂∗). (6)

1.4 Main results: loose cores and cycles in hypergraphs

For any j ∈ N>1, let vj(CH) be the number of vertices of H = Hr(n, p) with degree j in
the loose core CH of H and let

µj := vj(CH) · n−1.

Let v(CH) = ∑
j>1 vj(CH) denote the number of vertices and e(CH) the number of edges

in the loose core CH in H. We also define v0(CH) to be the number of vertices of H which
are not in the loose core of H (so v0(CH) = n− v(CH)), and µ0 := v0(CH) · n−1. (Observe
that this notation is consistent if, with a slight abuse of terminology, we view vertices
which are not in the loose core as having degree 0 in the loose core.)

We use the notation Po(λ),Ber(q),Bi(N, q) to denote Poisson, Bernoulli and Binomial
random variables, respectively, with the given parameters. We interpret a Po(0) variable
as being deterministically 0.

Our first main result describes the asymptotic degree distribution of vertices in the
loose core CH of H = Hr(n, p).
Theorem 4. Let r, d, p, ρ̂∗ and η be as in Section 1.3 and let H = Hr(n, p). Let Y be a
random variable with distribution Po(dρ̂∗) and define

Z :=
{
Y if Y 6= 1,
Ber (η) if Y = 1.

Then there exists ε = ε(n) = o(1) such that whp for any constant j ∈ N we have

µj = P(Z = j)± ε.
2ρ∗ is well-defined since 0 is certainly a solution and the set of solutions is closed by continuity.
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Our second main result describes the asymptotic numbers of vertices and edges in the
loose core CH of H = Hr(n, p).

Theorem 5. Let r, p, α and β be as in Section 1.3 and let H = Hr(n, p). Then whp

v(CH) = (α + o(1))n

and
e(CH) = (β + o(1))n.

By analysing the loose core we obtain an upper bound on the length of the longest
loose cycle in Hr(n, p).

Theorem 6. Let r, p, β and γ be as in Section 1.3 and let H = Hr(n, p). Let LC be the
length of the longest loose cycle in H. Then whp

LC 6 (min{β, γ}+ o(1)) · n.

In fact, a standard “sprinkling” argument shows that whp the longest loose path in
Hr(n, p) is not significantly longer than the longest loose cycle and therefore we obtain
the following corollary.

Corollary 7. Let r, p, β and γ be as in Section 1.3 and let H = Hr(n, p). Let LP be the
length of the longest loose path in H. Then whp

LP 6 (min{β, γ}+ o(1)) · n.

As mentioned previously, Claim 10 will state that d∗ = 1
r−1 is a threshold at which

the solution set of (2) changes its behaviour from containing only 0 to also containing a
unique positive solution. Together with Theorem 6 and Corollary 7 (and recalling the
definitions of β, γ in (5) and (6)) this implies that d∗ = 1

r−1 is a threshold for the existence
of a loose path/cycle of linear order, and it is interesting in particular to examine the
behaviour shortly after the phase transition.

Corollary 8. Let r ∈ N>3, let ε > 0 be constant and let p = 1+ε

(r−1)(n−1
r−1)

. Let LC and LP be
the length of the longest loose cycle and the longest loose path in Hr(n, p). Then whp

LC 6 LP + 1 6

(
2ε2

(r − 1)2 +O(ε3)
)
· n.

In other words, we have an upper bound on LC and LP in the barely supercritical
regime. For a corresponding lower bound, we will quote (a special case of) a result from [10]
(which we later state formally as Theorem 25) which gives a lower bound on LP . By
applying the sprinkling argument again we also obtain a lower bound on LC , and together
with Corollary 8 we obtain the following.
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Theorem 9. Let r ∈ N>3, let ε > 0 be constant and let p = 1+ε

(r−1)(n−1
r−1)

. Let LC and LP be
the length of the longest loose cycle and the longest loose path in Hr(n, p). Then whp(

ε2

4(r − 1)2 +O(ε3)
)
· n 6 LC 6 LP + 1 6

(
2ε2

(r − 1)2 +O(ε3)
)
· n.

Theorem 9 provides the best known upper and lower bounds on LP , LC in the regime
when p = 1+ε

(r−1)(n−1
r−1)

, but there is a multiplicative factor of 8 between these two bounds
and the correct asymptotic value is still unknown. Indeed it is not even clear that the
random variables LP , LC are concentrated around a single value.

We note that even for cycles in G(n, p) in the barely supercritical regime the correct
asymptotic value is not known despite considerable efforts in this direction. In particular,
the best known bounds when 0 < ε = ε(n) = o(1) satisfies ε3n→∞ and p = 1+ε

n
are due

to Łuczak [27] (lower bound) and Kemkes and Wormald [25] (upper bound), and state
that whp the length LC of the longest cycle satisfies(4

3 + o(1)
)
ε2n 6 LC 6 (1.7395 + o(1))ε2n.

Very recently, Anastos [3] announced an improvement of the lower bound.
The proofs of all the results of this section appear in Section 4 as a consequence of a

single, more general result (Theorem 21).

1.5 Key proof techniques

In order to prove our main results, we transfer the problem from Hr(n, p) to the factor
graph G := G(Hr(n, p)) which will be formally defined in Section 3. In the factor graph we
define the reduced core RG, which is closely related to the 2-core of G and from which we
can reconstruct the loose core of Hr(n, p), but which is easier to analyse. We use a peeling
process (Definition 26) and an auxiliary algorithm called CoreConstruct to determine
the asymptotic proportion of variable and factor nodes of G with fixed degree in the
reduced core (Theorem 21). We also need martingale techniques, in particular an Azuma-
Hoeffding inequality and an associated edge-exposure martingale to show concentration of
the numbers of vertices and edges of fixed degree around the respective expectations.

1.6 Paper overview

The rest of the paper is structured as follows.
In Section 2 we set basic notation and state some standard probabilistic lemmas which

we will use later. In Section 3 we switch our focus to factor graphs, define the reduced
core and state Theorem 21 which describes degree distributions in the reduced core and
which implies all of our main results, as we prove in Section 4.

Subsequently, Section 5 describes a standard peeling process to obtain the reduced
core and contains two main lemmas which together imply Theorem 21. The first of these
(Lemma 27) describes the degree distribution after a sufficiently large number of steps of

the electronic journal of combinatorics 29(4) (2022), #P4.13 7



the peeling process, and will be proved in Section 6. The second main lemma (Lemma 28)
states that subsequently, very few further vertices will be deleted in the remainder of the
peeling process, and therefore this degree distribution is also a good approximation for the
degree distribution in the reduced core. Lemma 28 will be proved in Section 7.

In Section 8, we conclude with some discussion and open questions. We omit from
the main body of the paper many proofs which simply involve technical calculations or
standard applications of common methods, but include some of them in the appendices
for completeness. Appendix A contains an analysis of the fixed-point equation (2), while
Appendix B contains the proofs of some basic probabilistic lemmas which are needed
throughout the paper. Finally, Appendix C and Appendix D constitute the proofs of
Lemma 32 and Lemma 41, respectively.

2 Preliminaries and Notation

For the rest of the paper, r ∈ N>3 and d > 0 will be fixed. In particular, we consider
these to be constant, so if we say, for example, that x = O(n), we mean that there exists
a constant C = C(r, d) such that x 6 Cn. By the notation x = a ± b we mean that
a− b 6 x 6 a+ b. Similarly, the notation x = (a± b)c means that (a− b)c 6 x 6 (a+ b)c.
We will omit floors and ceilings whenever these do not significantly affect the argument.

As mentioned in Section 1.3, the solution set of the fixed-point equation (2) changes
its behaviour at d = d∗. More precisely we have the following.

Claim 10.

(F1) If d < d∗, then ρ∗ = 0.

(F2) If d > d∗, then there is a unique positive solution to (2).

We defer the (elementary, but rather technical) proof of this claim to Appendix A.
Furthermore we will often use the following alternative relation between ρ∗ and ρ̂∗.

1− ρ∗
(2)= F (1− ρ∗) = exp

(
−d

(
1− (1− ρ∗)r−1

))
(3)= exp(−dρ̂∗). (7)

2.1 Large deviation bounds

In this section, we collect some standard large deviation results which will be needed later.
We will use the following Chernoff bound (see e.g. [22, Theorem 2.1]).

Lemma 11 (Chernoff). If X ∼ Bi(N, p), then for any s > 0

P(|X −Np| > s) 6 2 · exp
− s2

2
(
Np+ s

3

)
 .

This bound is less precise than the form in [22] since we have combined the upper and
lower tail bounds for simplicity.
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We will also use a variant of the Azuma-Hoeffding inequality due to Warnke [38], in
which the standard Lipschitz condition requirement is weakened by requiring only that it
“usually” holds. The following is a simplified form of [38, Theorem 1.3].

Lemma 12. Suppose X = (X1, . . . , XN) is a sequence of independent Bernoulli(p) vari-
ables and Γ ⊂ {0, 1}N is an event. Suppose that a function f : {0, 1}N → R satisfies the
following condition.

(∗) There are real numbers c 6 d such that for any x, x̃ ∈ {0, 1}N which differ in only
one co-ordinate, we have

|f(x)− f(x̃)| 6
c if x ∈ Γ,
d otherwise.

Then setting e := 1
n
(d− c), we have

P
(∣∣∣f(X)− E(f(X))

∣∣∣ > t
)
6 2 exp

(
− t2

2Np(c+ e)2 + 2(c+ e)t/3

)
+ nNP(X /∈ Γ).

Proof. We briefly describe how this lemma is indeed implied by [38, Theorem 1.3]. We
have applied that theorem in a symmetric setting where pk = p, where ck = c, where
dk = d and where γk = 1

n
for every k ∈ [N ]. Then we also obtain ek := γk(dk − ck) = e for

every k ∈ [N ], and C := maxk∈[N ](ck + ek) = c+ e.
While [38, Theorem 1.3] only gives an upper-tail bound (involving the event

f(X) > E(f(X)) + t rather than |f(X) − E(f(X))
∣∣∣ > t), as remarked in that paper,

applying the same theorem to −f(X) gives the corresponding lower-tail bound; a union
bound on the error probabilities leads to the factor of 2 before the exponential above.

Finally, we have also used the fact that

P
(∣∣∣f(X)− E(f(X))

∣∣∣ > t
)
6 P

(∣∣∣f(X)− E(f(X))
∣∣∣ > t and ¬B

)
+ P(B)

for any event B, and [38, Theorem 1.3] guarantees the existence of an appropriate event B
with P(B) 6

(∑
k∈N γ

−1
k

)
P(X /∈ Γ) = nNP(X /∈ Γ).

3 Factor graphs

There is a natural representation of a hypergraph as a bipartite graph known as a factor
graph, which is a well-known concept in literature (see e.g. [30]). Although any hypergraph
can be represented as a factor graph, for the purposes of this paper we only need and define
the notion for r-uniform hypergraphs. In particular, with a slight abuse of terminology,
whenever we refer to a “factor graph”, we implicitly mean the factor graph of an r-uniform
hypergraph.
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Definition 13 (Factor graph). Given an r-uniform hypergraph H, the factor graph
G = G(H) of H is a bipartite graph on vertex classes V := V (H) and F := E(H), where
v ∈ V and a ∈ F are joined by an edge in G if and only if v ∈ a. In other words, the
vertices of G are the vertices and edges of H, and the edges of G represent incidences.

To avoid confusion, we refer to the vertices of a factor graph as nodes. In particular,
the nodes in V are called variable nodes and the nodes in F are called factor nodes.3 We
define

Gr(n, p) := G(Hr(n, p)),
i.e. the factor graph of the r-uniform binomial random hypergraph Hr(n, p).

Note that if H is an r-uniform hypergraph, then the factor nodes of G(H) all have
degree r. We will need the following basic fact about the number of factor nodes in Gr(n, p).
We omit the proof, which is a simple application of a Chernoff bound (Lemma 11).

Proposition 14. Let d > 0 be a constant and let p = (1+o(1))d
( n

r−1)
. Then there exists a

function ω0 = ω0(n) with ω0
n→∞−−−→ ∞ such that whp the number m of factor nodes in

Gr(n, p) satisfies
m =

(
1± 1

ω0

)
dn

r
.

It will be more convenient to study the factor graph than the original hypergraph—in
order to do this, we need to understand what the structure corresponding to the loose
core looks like in the factor graph. We first define the loose core of a factor graph and
subsequently observe that it does indeed correspond to the loose core of the hypergraph
(Definition 2).

Definition 15 (Loose core). The loose core C = CG of a factor graph G is the maximal
subgraph of G such that each factor node of C has degree r in C and furthermore:

(C1’) C contains no isolated variable nodes;

(C2’) Each factor node in C is adjacent to at least two variable nodes of degree at least
two in C.

Proposition 16. Given an r-uniform hypergraph H, the loose core CG of the factor graph
G = G(H) of H is identical to the factor graph of the loose core CH of H.

Proof. The condition that each factor node of C = CG has degree r in C means that
C corresponds to a subhypergraph of H (i.e. no edge of H has a vertex removed from
it without itself being removed). Since variable nodes of G correspond to vertices of H,
condition (C1’) in Definition 15 corresponds precisely to (C1) in Definition 2. Furthermore,
condition (C2’) in Definition 15 is directly analogous to condition (C2) in Definition 2.

3In some contexts in the literature, factor nodes may be called functional nodes or constraint nodes.
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In view of Proposition 16, rather than studying the loose core of the hypergraph, we
can study the loose core of the corresponding factor graph instead. In fact, even more
convenient than this is a slightly different structure.

Definition 17 (Reduced core). The reduced core R = RG of a factor graph G is the
maximal subgraph of G with no nodes of degree 1.

Note that the reduced core is very similar to the 2-core of G—the only difference is
that we do not delete isolated nodes, so all original nodes are still present. This will be
convenient since it means that all nodes have a well-defined degree within the reduced
core (and have degree zero if and only if they are not in the 2-core of G). Similarly we
will want to describe degree distributions within the loose core, but also incorporating
nodes which are in fact not contained in the loose core. To avoid confusion and abuse of
terminology, we define the padded core.

Definition 18 (Padded core). The padded core P = PG of a factor graph G is the subgraph
of G whose nodes are the nodes of G and whose edges are the edges of CG.

In other words, the padded core PG is identical to the loose core CG except that all
nodes of G are still present. Equivalently, PG is the maximal subgraph of G in which each
non-isolated factor node has degree r and is adjacent to at least two variable nodes of
degree at least 2. The following observation motivates both our definition of the padded
core and the interpretation of µ0 as the proportion of vertices of Hr(n, p) which do not lie
in the loose core.
Remark 19. For each j ∈ N, the proportion of variable nodes of G = Gr(n, p) which have
degree j in the padded core PG is µj.

It is important to observe that, if we have found the reduced core, it is very easy
to reconstruct the padded core, and hence also the loose core. Let FR be the set of
non-isolated factor nodes of the reduced core RG and let P ′G be the factor graph whose
nodes are the nodes of G and whose edges are all edges of G incident to FR. In other
words, P ′G is the factor graph obtained from RG by adding back in all edges of G attached
to non-isolated factor nodes of RG.

Proposition 20. Let G be the factor graph of an r-uniform hypergraph. Then P ′G = PG.

Proof. Let R1 denote the graph obtained from the padded core PG of G by removing all
edges incident to leaves (which must be variable nodes). Note that, since any non-isolated
factor node in PG has at least two neighbours of degree at least two, the same is still true
in R1. For the sake of intuitive notation, we also denote

R2 := RG, P1 := PG, P2 := P
′

G.

Our goal is to show that P1 = P2.
Let us observe that P1 can be obtained from R1 by the same operation with which P2

is obtained from R2, namely by adding in edges of G incident to non-isolated factor nodes.
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We next observe that R1 is a subgraph of G with no nodes of degree 1, and therefore
R1 ⊆ R2 = RG, by the maximality of RG. Since the operation constructing Pi from Ri is
inclusion-preserving, R1 ⊆ R2 implies that P1 ⊆ P2.

It therefore remains to prove that P2 ⊆ P1. To this end, we observe that certainly
P2 = P

′
G is a subgraph of G in which each non-isolated factor node is in the 2-core of G,

and therefore adjacent to at least two variable nodes of degree at least two. Furthermore
each non-isolated factor node of P2 has degree r in C2, and since P1 = PG is the maximal
subgraph with these two properties, we have P2 ⊆ P1, as required.

Let us observe one further fact about the transformation from the reduced core RG

to the padded core PG = P
′
G: although this seemed to be dependent on the initial factor

graph G, in fact the operation simply involves connecting non-isolated factor nodes of RG

to (distinct) isolated variable nodes until each factor node has degree precisely r. This
means that given RG, by Proposition 20 we can describe PG (and therefore also the loose
core CG) entirely, up to the assignment of which nodes are leaves. In other words, RG

already contains all of the “essential” information of both PG and CG. It will therefore be
enough to study RG rather than PG or CG, and this turns out to be simpler.

Now the main results of this paper are implied by the following theorem about the
reduced core RG of the factor graph G = Gr(n, p) of the r-uniform binomial random
hypergraph.

For a non-negative real number λ, let us denote by P̃o(λ) the distribution of a random
variable X satisfying

P(X = j) =


P(Po(λ) 6 1) if j = 0,
0 if j = 1,
P(Po(λ) = j) if j > 2.

In other words, the P̃o distribution is identical to the Po distribution except that values of
1 are replaced by 0. We define the B̃i distribution analogously.
Theorem 21. Let r, d, p, ρ∗, ρ̂∗ be as in Section 1.3 and let G = Gr(n, p), i.e. the factor
graph of Hr(n, p). For each j ∈ N, let ξj and ξ̂j be the proportion of variable nodes and
factor nodes of G respectively which have degree j in the reduced core RG of G. Then there
exists a function ε = ε(n) = o(1) such that whp for any constant j ∈ N we have

ξj = P(P̃o(dρ̂∗) = j)± ε
and

ξ̂j = P(B̃i(r, ρ∗) = j)± ε.
In other words, within RG, variable nodes and factor nodes have degree distributions

which are asymptotically those of a P̃o(dρ̂∗) and a B̃i(r, ρ∗) distribution respectively.
The proof of this theorem will form the main body of the paper. In Section 5 we will

prove how Theorem 21 follows from two auxiliary statements, stating that for some large
integer ` the proportions of variable and factor nodes of degree j in the graph obtained
after ` rounds of a peeling process are approximately the values given in Theorem 21
(Lemma 27), and furthermore not many nodes are deleted after round ` (Lemma 28).
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4 Back to hypergraphs: Proofs of main results

We now show how all of the results of Section 1.4 follow from Theorem 21. First we deduce
our result on the asymptotic degree distribution of vertices in the loose core of Hr(n, p).

Proof of Theorem 4. We will apply Theorem 21 to provide us with a function ε, and we
will prove Theorem 4 with ε′ :=

√
ε + 1√

ω0
, where ω0 = ω0(n) is the function given by

Proposition 14.
For convenience, for any j ∈ N, let us define

µ′j :=


P(Po(dρ̂∗) = j) if j > 2;
η · P(Po(dρ̂∗) = j) if j = 1;
P(Po(dρ̂∗) = 0) + (1− η) · P(Po(dρ̂∗) = 1) if j = 0.

In other words, µ′j is the “idealised version” of µj, and our goal is simply to prove that
whp, for each j ∈ N we have µj = µ′j ± ε. Similarly we also define

ξ′j := P(P̃o(dρ̂∗) = j),

so by Theorem 21 we have ξj = ξ′j ± ε whp for each j ∈ N. The proof of Theorem 4
now simply consists of relating the µj to the ξj, relating the µ′j to the ξ′j and applying
Theorem 21. Note that it follows instantly from the definitions that µ′j = ξ′j for j ∈ N>2.
We will split the proof into three cases.
Case 1: j > 2.
We start by showing that µj = ξj . Observe that by Remark 19, µj is simply the proportion
of variable nodes with degree j in the padded core PG of G = Gr(n, p). Theorem 21 tells
us the degrees of variable and factor nodes in the reduced core RG of G. By Proposition 20,
moving from RG to PG means that we connect all non-isolated factor nodes of RG to
their original neighbours in G, and any variable nodes which receive additional incident
edges in this process have their degrees changed from 0 to 1. It follows that for j > 2,
the proportion µj of variable nodes in G with degree j in the padded core PG is precisely
equal to ξj, the proportion of variable nodes in G with degree j in the reduced core RG.
Therefore

µj = ξj
Th. 21= ξ′j ± ε = µ′j ± ε,

and the statement of Theorem 4 is certainly true for j > 2 (indeed, we have proved
something stronger since ε < ε′).
Case 2: j = 1.
To prove the case j = 1, we need to consider how many isolated variable nodes become
leaves when moving from RG to PG. Since by Proposition 20 every factor node of RG with
degree j > 2 has r− j leaves connected to it, and since whp the number m of factor nodes
in total is m =

(
1± 1

ω0

)
dn
r

for some growing function ω0
n→∞−−−→∞ by Proposition 14, whp
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the number of leaves added, which is simply µ1n, satisfies

µ1n =
r∑

j=2
(r − j)ξ̂jm =

(
1± 1

ω0

)
dn

r

r∑
j=2

(r − j)
(
P(B̃i(r, ρ∗) = j)± ε

)

= dn

r

r∑
j=2

(r − j)P(B̃i(r, ρ∗) = j)± ε′n

2 , (8)

where the last line follows since 1
ω0
, ε = o

(√
ε+ 1√

ω0

)
= o(ε′). The sum can be estimated

using the definition of the B̃i distribution and equations (3) and (7):∑r

j=2(r − j)P(B̃i(r, ρ∗) = j)

=
∑r

j=0(r − j)P(Bi(r, ρ∗) = j)− r(1− ρ∗)r − (r − 1)rρ∗(1− ρ∗)r−1

= r(1− ρ∗)
(
1− (1− ρ∗)r−1 − (r − 1)ρ∗(1− ρ∗)r−2

)
(3),(7)= r exp(−dρ̂∗)

(
ρ̂∗ − (r − 1)ρ∗(1− ρ∗)r−2

)
.

Substituting this into (8) gives

µ1 = d exp(−dρ̂∗)
(
ρ̂∗ − (r − 1)ρ∗(1− ρ∗)r−2

)
± ε′/2. (9)

On the other hand, we have

µ′1 = η · P(Po(dρ̂∗) = 1) =
(

1− (r − 1)ρ∗(1− ρ∗)r−2

ρ̂∗

)
dρ̂∗ exp(−dρ̂∗)

= d exp(−dρ̂∗)
(
ρ̂∗ − (r − 1)ρ∗(1− ρ∗)r−2

)
,

which combined with (9) tells us that

µ1 = µ′1 ± ε′/2, (10)

which is in fact slightly stronger than required.
Case 3: j = 0.
Finally to prove the statement for j = 0, note that µ0 = ξ0 − µ1 (deterministically).
Furthermore, we have ∑∞j=0 µ

′
j = ∑∞

j=0 ξ
′
j = 1, and we have already observed that µ′j = ξ′j

if j > 2, and therefore µ′0 + µ′1 = ξ′0 + ξ′1. Observing also that ξ′1 = 0, we deduce that
µ′0 = ξ′0 − µ′1. Therefore, applying Theorem 21 (for j = 0) and (10), we obtain

µ0 = ξ0 − µ1 = ξ′0 ± ε− (µ′1 ± ε′/2) = µ′0 ± ε′

as required.

With a little more calculation we can also determine the number of vertices and edges
in the loose core, and therefore also prove Theorem 5.
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Proof of Theorem 5. Observe that the number of vertices in the loose core of H = Hr(n, p)
is simply the number of variable nodes of G = G(H) which have degree at least one in the
padded core of G, and thus the proportion of such vertices is 1− µ0 (see Remark 19). By
Theorem 4, whp

1− µ0 = 1− exp(−dρ̂∗)− dρ̂∗ exp(−dρ̂∗)(1− η) + o(1)
(3),(4),(7)= ρ∗ − d(1− ρ∗)(r − 1)ρ∗(1− ρ∗)r−2 + o(1)

= ρ∗(1− d(r − 1)(1− ρ∗)r−1) + o(1) = α + o(1),

precisely as stated in Theorem 5.
The number of edges in the loose core of H is the number of factor nodes with degree

at least 1 in RG, which is (1 − ξ̂0)m, where recall that m denotes the total number of
factor nodes of G. Applying Theorem 21 to estimate ξ̂0 and Proposition 14 to estimate m,
we deduce that whp the number of edges in the loose core is

(
1− ξ̂0

)
m =

(
1− (1− ρ∗)r − rρ∗(1− ρ∗)r−1 ± o(1)

) (1 + o(1))dn
r

(5)= (β + o(1))n,

as claimed.

Now we can also prove the bound on the length of the longest loose cycle in Theorem 6.

Proof of Theorem 6. Let us observe that for any loose cycle in H = Hr(n, p), the edges
and the vertices which lie in two edges form a cycle in the factor graph G = G(H),
which must clearly lie within the reduced core RG of G. Thus the length of the loose
cycle is bounded both by the number of variable nodes and the number of factor nodes
which are not isolated in RG. In other words, the length LC of the longest loose cycle
(deterministically) satisfies

LC 6 min
{

(1− ξ0)n , (1− ξ̂0)m
}
. (11)

By Proposition 14 we have that whp m = (1 + o(1)) dn
r
. Observe also that by Theorem 21,

whp ξ0 is asymptotically

P(P̃o(dρ̂∗) = 0) = P(Po(dρ̂∗) 6 1) = exp(−dρ̂∗)(1 + dρ̂∗) = 1− γ,

while whp ξ̂0 is asymptotically

P(B̃i(r, ρ∗) = 0) = P(Bi(r, ρ∗) 6 1) = (1− ρ∗)r + rρ∗(1− ρ∗)r−1 = 1− βr

d
.

Substituting these values into (11) gives the bound in Theorem 6.

Our next goal is to prove the remaining results of Section 1.4, for which we will need
to relate LP and LC . To do this, we use a standard sprinkling argument.
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Lemma 22. Let ω = ω(n) be any function and p1 = p1(n) and p2 = p2(n) be any
probabilities satisfying

1. p1 6
(
1 + 1

ω

)
p1 6 p2;

2. p1n
r/ω →∞.

Suppose that H1 ∼ Hr(n, p1) and H2 ∼ Hr(n, p2) are coupled in such a way that H1 ⊂ H2.
For i = 1, 2, let L(i)

P , L
(i)
C denote the length of the longest loose path and loose cycle,

respectively, in Hi. Then whp
L

(2)
C > L

(1)
P + o(n).

We defer the proof of this lemma to Appendix B.1. The following slightly different
form will be a little more convenient to apply. We omit the proof, which is elementary
given Lemma 22.

Corollary 23. Given the setup of Lemma 22, the following hold.

1. If there exists a constant ζ1 such that whp L
(1)
P > (ζ1 + o(1))n, then whp L

(2)
C >

(ζ1 + o(1))n.

2. If there exists a constant ζ2 such that whp L
(2)
C 6 (ζ2 + o(1))n, then whp L

(1)
P 6

(ζ2 + o(1))n.

We also need a further technical result which states that the parameters β, γ, with which
we bound LC in Theorem 6, are continuous in p (except at the threshold p = d∗/

(
n−1
r−1

)
).

Let r, d, p be as in Section 1.3. Let p′ = (1 + 1/ω)p for a function ω = ω(n) → ∞ but
ω = o(log n). The following lemma shows that if we replace p by p′, the parameters β, γ
remain essentially the same. The (technical) proof can be found in Appendix A.

Lemma 24. Let β, γ be defined as in (5) and (6), and let β′, γ′ be defined similarly but
with p′ in place of p. If d 6= d∗, then

min{β′, γ′} = min{β, γ}+ o(1).

We can now bound the length of the longest loose path in Hr(n, p).

Proof of Corollary 7. Let us set ω = 1/(log n), set p1 = p and set p2 =
(
1 + 1

ω

)
p1. It is

easy to check that these parameters satisfy the assumptions of Lemma 22, and therefore
also of Corollary 23. Theorem 6 applied to H2 ∼ Hr(n, p2) implies that whp L

(2)
C 6

(min{β2, γ2}+o(1))n, where β2, γ2 are defined analogously to β, γ, but with p2 = (1+1/ω)p
in place of p. Furthermore, Lemma 24 implies that min{β2, γ2} = min{β, γ}+ o(1), so we
deduce that whp L(2)

C 6 (min{β, γ}+ o(1))n. Finally, Corollary 23 then implies that whp
LP = L

(1)
P 6 (min{β, γ}+ o(1))n, as required.

By applying Corollary 7 shortly beyond the phase transition threshold, we are able to
prove Corollary 8.
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Proof of Corollary 8. Since min{β, γ} 6 γ it suffices to show that

γ = 2ε2

(r − 1)2 +O(ε3).

(In fact a similar computation for β gives exactly the same result.) By definition

γ
(6)= 1− exp(−dρ̂∗)− dρ̂∗ exp(−dρ̂∗)

= 1−
(

1− dρ̂∗ + d2ρ̂2
∗

2 +O
(
ρ̂3
∗

))
− dρ̂∗

(
1− dρ̂∗ +O

(
ρ̂2
∗

))
= d2ρ̂2

∗
2 +O

(
ρ̂3
∗

)
(12)

Recall from (3) that ρ̂∗ was defined as a function of ρ∗, which itself was defined as the
largest solution of the fixed-point equation (2). We therefore need to estimate ρ∗. From (2)
we obtain

ρ = −d(r − 1) + 1
(−1

2 −
d
2(r − 1)(r − 2))

+O
(
ρ2
)
.

Substituting d = 1+ε
r−1 gives

ρ = 2ε
1 + (1 + ε)(r − 2) +O

(
ρ2
)

= 2ε
r − 1 +O(ε) +O

(
ρ2
)

= 2ε
r − 1 +O

(
ρ2
)
.

In particular this implies that there exists a solution ρ = 2ε
r−1 + O(ε2) of the fixed

point equation (2), and by Claim 10 this is the unique positive solution and therefore
ρ∗ = 2ε

r−1 +O(ε2). Substituting this into (3) we obtain

ρ̂∗ = 1−
(

1− 2ε
r − 1 +O(ε2)

)r−1
= 2ε+O(ε2).

Substituting this into (12), we obtain

γ = 2ε2

(r − 1)2 +O
(
ε3
)
.

In order to prove Theorem 9, we also need a lower bound on LC . We will use a result
of [10], which provides a lower bound on LP together with Lemma 22 to relate LP and LC .
More precisely, one special case (the supercritical regime for j = 1) of [10, Theorem 4] can
be reformulated (in a slightly weakened but much simplified way) as follows.

Theorem 25 ([10]). Let LP denote the length of the longest loose path in Hr(n, p). For
all r ∈ N>3 there exists ε0 ∈ (0, 1] such that for any function ε = ε(n) < ε0 which satisfies
ε5n

n→∞−−−→∞, setting δ = ε/
√
ε0 the following holds. If p = 1+ε

(r−1)(n−1
r−1)

, then whp

(1− δ) ε2n

4(r − 1)2 6 LP 6 (1 + δ) 2εn
(r − 1)2 .
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Note that Theorem 25 allows for a wider range of ε than we consider in this paper, in
particular allowing ε to tend to zero sufficiently slowly. However, there is a Θ(1/ε) gap
between the upper and lower bounds. Theorem 9 improves the upper bound and thus
narrows the gap to just a constant factor.

Proof of Theorem 9. The second and third inequalities are simply the statement of Corol-
lary 7, so it remains to show that whp(

ε2

4(r − 1)2 +O(ε3)
)
· n 6 LC .

Note that we may assume that ε < ε0, where ε0 is the parameter from Theorem 25, since
otherwise the O(ε3) error term may in fact be the dominant term, and the result is trivial.

Let us set p2 = p and p1 =
(
1− 1

log n

)
p. It is easy to check that these parameters

satsify the assumptions of Lemma 22, and therefore also of Corollary 23.
It is also clear that p1 = 1+ε1

(r−1)(n−1
r−1)

, where ε1 = ε− 1
log n
− ε

log n
= ε+O(ε2), and therefore

the lower bound in Theorem 25 (together with the observation that ε1/
√
ε0 = O(ε1))

states that whp

L
(1)
P >

(
ε2

1
4(r − 1)2 +O(ε3

1)
)
· n =

(
ε2

4(r − 1)2 +O(ε3)
)
· n,

and an application of Corollary 23 completes the proof.

5 Peeling process

Recall that for a given hypergraph H the reduced core of the factor graph G = G(H) is
defined as the maximum subgraph with no nodes of degree one, which is similar to the
2-core of G except that isolated nodes are not deleted. There is a simple peeling process
to obtain the 2-core of G which is a standard procedure and has been used and analysed
extensively in the literature. We will consider the obvious adaptation of this process which
obtains the reduced core rather than the 2-core.

Definition 26 (Peeling Process). In every round we check whether the factor graph has
any nodes of degree one and delete edges incident to such nodes. More precisely, we
recursively define a sequence of graphs (Gi)i∈N where G0 is the input graph and for i ∈ N>1,
Gi is the graph obtained from Gi−1 by removing all edges incident to nodes of degree one.
We say that we disable a node if we delete its incident edges.

In the remainder of the paper, whenever we consider G` the associated input graph G0
will be Gr(n, p).

Note that deterministically there exists an i0 such that Gi0 = Gi0+k = RG0 for any
k ∈ N. We recall the definition of ξj and ξ̂j in Theorem 21 and observe that

ξj := lim
`→∞

ξ
(`)
j and ξ̂j := lim

`→∞
ξ̂

(`)
j ,
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where ξ(`)
j , ξ̂

(`)
j are the proportions of variable nodes and factor nodes respectively which

have degree j in G` for ` ∈ N. These limits exist since both
(
ξ

(`)
j

)
`
and

(
ξ̂

(`)
j

)
`
remain

constant after a finite number of steps. We will prove Theorem 21 with the help of two
lemmas. The first describes the asymptotic distribution of ξ(`)

j and ξ̂(`)
j for large `.

Lemma 27. Let r, d, ρ∗, ρ̂∗ be as in Section 1.3. There exist an integer ` = `(n) ∈ N and
a real number ε1 = ε1(n) = o(1) such that whp, for any constant j ∈ N

ξ
(`)
j = P(P̃o(dρ̂∗) = j)± ε1

and
ξ̂

(`)
j = P(B̃i(r, ρ∗) = j)± ε1.

The second lemma states that ξ(`)
j and ξ̂(`)

j approximate ξj and ξ̂j, respectively.

Lemma 28. Let r, d be as in Section 1.3. For each j ∈ N, let ξj, ξ̂j be as defined in
Theorem 21, let `, ε1 be as in Lemma 27 and set ε2 := √ε1. Then whp the peeling process
will disable at most ε2n nodes after round `. In particular whp, for any constant j ∈ N

ξj = ξ
(`)
j ± ε2

and
ξ̂j = ξ̂

(`)
j ±

2ε2r

d
.

Before proving these two lemmas, we show how together they imply our main result.

Proof of Theorem 21. Let `, ε1, ε2 be as in Lemmas 27 and 28. Applying these two lemmas,
whp we have

ξj
L.28= ξ

(`)
j ± ε2

L.27= P(P̃o(dρ̂∗) = j)± (ε1 + ε2).
Similarly, whp we have

ξ̂j
L.28= ξ̂

(`)
j ±

2ε2r

d
L.27= P(B̃i(r, ρ∗ ) = j)±

(
ε1 + 2ε2r

d

)
.

The statement of Theorem 21 follows by setting ε = ε1 + ε2 max{1, 2r/d}.

6 CoreConstruct Algorithm: Proof of Lemma 27

6.1 Main algorithm

In this section we will introduce the CoreConstruct algorithm, which is related to the
peeling process. To do so, we need to define some notation—this notation could apply to
any graph, but since we will need it specifically for factor graphs, we introduce it in this
(slightly restrictive) setting for clarity.
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Definition 29. Let G be a factor graph with variable node set V and factor node set F .
We denote by dG(u, v) the distance between two nodes u, v ∈ V ∪ F , i.e. the number of
edges in a shortest path between them. For each ` ∈ N and each w ∈ V ∪ F , we define

D`(w) := {u ∈ V ∪ F : dG(w, u) = `}

and
d`(w) := |D`(w)|.

Let
D6`(w) =

⋃̀
i=0

Di(w)

and
N6`(w) := G[D6`(w)],

i.e. the subgraph of G induced on D6`(w).

We consider a procedure called CoreConstruct. Given a factor graph G on node set
V ∪ F and a node w ∈ V ∪ F , we consider the factor graph as being rooted at w. In
particular, neighbours of a node v which are at distance dG(v, w) + 1 from w are called
children of v. Starting at distance ` ∈ N and moving up towards the root w, we recursively
delete any node with no (remaining) children; Algorithm 1 gives a formal description of
this procedure. We will denote by D∗`−i(w) the set of nodes in D`−i(w) which survive
round i and let d∗i (w) := |D∗i (w)|.

Algorithm 1: CoreConstruct
Input: Integer ` ∈ N, node w ∈ V ∪ F , factor graph N6`+1(w)
Output: d∗1(w)

1 D∗`+1(w) = D`+1(w)
2 for 1 6 i 6 ` do
3 D∗`−i+1(w)← D`−i+1(w) \

{
v : N(v) ∩D∗`−i+2(w) = ∅

}
4 d∗`−i+1(w)← |D∗`−i+1(w)|

It is rather difficult to analyse the peeling process directly and it turns out that
CoreConstruct is easier to analyse while also being closely related. CoreConstruct is
intended to model the effect of the peeling process on the degree of w after ` steps (although
note that CoreConstruct does delete nodes rather than merely disabling them). Note,
however, that it does not mirror the peeling process precisely; some nodes may be disabled
in the peeling process much earlier than they are deleted in CoreConstruct, and some
nodes may be deleted in CoreConstruct even though they are actually in the reduced
core, and are therefore never disabled in the peeling process. Nevertheless, we obtain the
following important relation. Recall that G` is the graph obtained after the `-th round of
the peeling process (see Definition 26) and that dG`

(w) is the degree of the node w in G`.
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Lemma 30. Let ` ∈ N>1 and w ∈ V ∪ F . If there are no cycles in N6`+1(w), then the
output d∗1(w) of CoreConstruct with input `, w and N6`+1(w) satisfies

dG`
(w)

= d∗1(w) if d∗1(w) 6= 1,
6 d∗1(w) if d∗1(w) = 1.

Proof. For an upper bound, we will show that if a given node v ∈ V ∪F is deleted in round
i of CoreConstruct, it must have been disabled at some round i′ 6 i in the peeling process
for the reduced core. In particular, by setting i = ` we immediately obtain dG`

(w) 6 d∗1(w).
We prove the statement by induction on i.

For i = 1, if a node v is deleted in round one of CoreConstruct, then v had no children,
and therefore it has only one neighbour in G = G0 (its unique parent in N6`+1(w)). Thus
v will be disabled in round one of the peeling process. Now suppose v is deleted in round
i > 2 of CoreConstruct, which must mean that all its children (if it had any) are deleted
in step i− 1 of CoreConstruct. By the induction hypothesis, all its children are disabled
by step at most i − 1 of the peeling process and so have degree 0 in Gi−1. Therefore v
itself has degree at most one in Gi−1 (from its unique parent) and so will be disabled in
round i of the peeling process if it has not been disabled already.

It remains to prove that dG`
(w) > d∗1(w) if d∗1(w) > 2. Let j := d∗1(w) > 2 be the

number of children of the root w which survive CoreConstruct. Each such child must
have a descendant in D`+1(w), otherwise it would not survive CoreConstruct. Thus we
have j paths of length `+ 1 which all meet at w, but are otherwise disjoint (since N6`+1(w)
contains no cycles). By induction on i, we deduce that after i rounds of the peeling process,
there are j paths of length `+ 1− i which meet only in w, and in particular after ` rounds
of the peeling process, dG`

(w) > j, as required.

From now on for the rest of this section, we will always have G = Gr(n, p). Observe
that if dG`

(w) ∈ {0, 1}, then dRG
(w) = 0. However, if ` is sufficiently large we can even

say that in G` the degree will almost always be 0.

Proposition 31. For any integer-valued function ` = `(n) n→∞−−−→∞ and node w we have
P (dG`

(w) = 1) = o(1).

Proof. Let us first assume that w is a variable node. For any integer i > 1, let Vi and Fi

be the set of variable nodes and factor nodes respectively which are disabled in round i of
the peeling process. It is an elementary fact about the peeling process that for any integer
i > 2 we have |Vi| 6 |Fi−1| and |Fi| 6 |Vi−1| (deterministically), from which it follows
that |Vi| 6 |Vi−2| for i > 3. Therefore we have

|V`| 6 |V`−2| 6 . . . 6 |V`−2b `−1
2 c
|.

Furthermore, the Vi are all disjoint, and so we have

|V`| 6
n

1 + b `−1
2 c

= O(n`−1) = o(n)
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deterministically. Therefore for large enough n we have |V`| ∈ K :=
[
n/
√
`
]

0
and so by

symmetry we have

P (w ∈ V`) =
∑
k∈K

(
P (|V`| = k) · k

n

)
6

1√
`
·
∑
k∈K

P (|V`| = k) = o(1),

as required. The proof when w is a factor node is essentially identical.

6.2 Analysis of CoreConstruct

We proceed with the analysis of CoreConstruct and we will choose the parity of ` such
that D`+1(w) consists of variable nodes, i.e. if w ∈ V, then we will choose ` odd, and if
w ∈ F we will choose ` to be even. This convention is merely for technical convenience
since it ensures that we know which type of nodes are being considered in round i of
CoreConstruct and thus avoid a case distinction.

Let w ∈ V ∪ F and ` ∈ N>1 be given. We say the event Ew(`) holds if neither of the
following two events occur.

(E1) |D6`+1(w)| > (log n)2;

(E2) D6`+1(w) contains a node which lies on a cycle of length at most 2`.

We will later condition on the event Ew(`) holding, and therefore need to know that it is
very likely.

Lemma 32. For any function ` = o(log log n) and node w ∈ V ∪ F ,

P (Ew(`)) > 1− exp
(
−Θ

(√
log n

))
.

Furthermore, whp all but o(n) nodes w ∈ V ∪ F satisfy Ew(`).

The (standard) proof appears in Appendix C.
Now let us define

d̃1(w) :=
d∗1(w) if d∗1(w) 6= 1

0 if d∗1(w) = 1.

In other words, d̃1(w) is identical to d∗1(w) except that values of 1 are replaced by 0 (similar
to the P̃o and B̃i distributions compared to the Po and Bi distributions). We can combine
Lemmas 32 and 30 and Proposition 31 to obtain the following.

Corollary 33. For any integer-valued function ` = `(n) n→∞−−−→ ∞ which also satisfies
` = o(log log n) and any node w we have

P
(
dG`

(w) 6= d̃1(w)
)

= o(1).
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Proof. By Lemma 30, the only cases in which dG`
(w) and d̃1(w) can differ are if Ew(`)

does not hold or if dG`
(w) = 1. Thus by applying Lemma 32 and Proposition 31, we obtain

P
(
dG`

(w) 6= d̃1(w)
)
6 P

(
Ēw(`)

)
+ P (dG`

(w) = 1)

6 exp
(
−Θ

(√
log n

))
+ o(1) = o(1).

We next describe the survival probabilities of internal (i.e. non-root) variable and factor
nodes in each round of CoreConstruct. Recall that for any i ∈ [`] the set D∗`+1−i(w)
consists of nodes within D`+1−i(w) which survive the i-th round of CoreConstruct. We
define the recursions

ρ0 = 1,
ρ̂t = P(Bi(r − 1, ρt−1) > 1), (13)
ρt = P(Po(dρ̂t) > 1). (14)

Lemma 34. Let w ∈ V ∪ F and ` be odd if w ∈ V and even if w ∈ F . Let t ∈ N with
0 6 t 6 `+1

2 be given. Conditioned on the event Ew(`):

1. For each u ∈ D`+1−2t(w) independently of each other we have

P[u ∈ D∗`+1−2t(w)] = ρt + o(1);

2. For each a ∈ D`−2t(w) independently of each other we have

P[a ∈ D∗`−2t(w)] = ρ̂t+1 + o(1).

In particular:

(i) If w ∈ F and t1 = `/2, then for each u ∈ D1(w) independently of each other,

P[u ∈ D∗1(w)] = ρt1 + o(1);

(ii) If w ∈ V and t2 = (`+ 1)/2, then for each a ∈ D1(w) independently of each other,

P[a ∈ D∗1(w)] = ρ̂t2 + o(1).

To prove this lemma, we will need the asymptotic degree distribution of a variable
node in N6`(w), which is a standard result.

Proposition 35. Let w ∈ V ∪F and an integer ` = o(log log n) be given. Conditioned on
the event Ew(`), for each u ∈ D6`(w) ∩ V independently, the number of children of u in
N6`+1(w) is asymptotically distributed as Po(d).

We defer the proof to Appendix B.2. We can now prove Lemma 34.
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Proof of Lemma 34. We will prove both statements (1) and (2) by a common induction
on t. For t = 0 the statements are clear since we have ρ0 = 1, which corresponds to the
fact that nothing ever gets deleted from D`+1(w), while ρ̂1 = P(Bi(r − 1, 1) > 1) = 1,
corresponding to the fact that internal factor nodes have r − 1 > 1 children in the input
graph and therefore also no nodes of D`(w) will be deleted.

We assume both statements are true for t− 1 and aim to prove that they also hold
for t. We first consider u ∈ D`+1−2t and let Xu be the number of children of u in D∗`+2−2t.
Observe that the probability that u survives in CoreConstruct is simply P(Xu > 1).

By Proposition 35, the number of children of u is asymptotically Po(d), and by the
induction hypothesis each child survives with probability ρ̂t + o(1) independently of each
other. Therefore the asymptotic survival probability of u is given by

P (Bi(Po(d), ρ̂t + o(1)) > 1) = P (Po(d(ρ̂t + o(1))) > 1) = ρt + o(1),

by definition of ρt, as required for statement (1). Independence simply follows from the
conditioning on Ew(`), which in particular means that N6`+1(w) is a tree.

Similarly for a ∈ D`−2t(w) we define Xa to be the number of children of a which survive.
Since a is an internal factor node it has precisely r− 1 children, and by statement 1 which
we have just proved, each child survives with probability ρt +o(1) independently. Therefore
the probability that a survives the CoreConstruct is

P(Bi(r − 1, ρt + o(1)) > 1) = ρ̂t+1 + o(1),

as required for statement (2). Again, independence simply follows from the conditioning
on Ew(`).

A consequence of Lemma 34 is that, if ` is large, the distribution of the number of
children of the root w which survive CoreConstruct is almost identical to the claimed
distributions in Theorem 21. In order to quantify this, for two discrete random variables
X, Y taking values in N we use the standard notion of the total variation distance, defined
as

dTV(X, Y ) :=
∑

m∈N

∣∣∣∣P(X = m)− P(Y = m)
∣∣∣∣.

Corollary 36. There exist ε = o(1) and ` = `(ε) such that if we run CoreConstruct with
input ` and root w ∈ V ∪ F , then:

1. If w ∈ V, then

dTV
(
d̃1(w), P̃o(dρ̂∗)

)
6 dTV (d∗1(w),Po(dρ̂∗)) < ε;

2. If w ∈ F , then

dTV
(
d̃1(w), B̃i(r, ρ∗)

)
6 dTV (d∗1(w),Bi(r, ρ∗)) < ε.
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Let us note that the second statement involves the Bi(r, ρ∗) distribution rather than
Bi(r − 1, ρ∗) since w is the root, and therefore all r of its neighbours are children rather
than just r − 1 children and one parent.

Proof. We will prove only the first statement; the proof of the second is very similar.
Note that the first inequality follows directly from the definitions of d∗1(w) and the P̃o

distributions. There are 2 reasons why the second inequality is not quite immediate from
Lemma 34:

(R1) Lemma 34 has the conditioning on the event Ew(`);

(R2) ρ̂(`+1)/2 in Lemma 34 has been replaced by ρ̂∗.

To overcome (R1), for ease of notation for each j ∈ N we set qj := P (d∗1(w) = j) and
q′j := P (d∗1(w) = j|Ew(`)), and define

J+ :=
{
j : qj > q′j

}
and J− :=

{
j : qj < q′j

}
.

Since for any w ∈ V ∪ F we have
∞∑

j=0
(qj − q′j) =

∞∑
j=0

qj −
∞∑

j=0
q′j = 1− 1 = 0,

we deduce that
∞∑

j=0

∣∣∣qj − q′j
∣∣∣ =

∑
j∈J+

(
qj − q′j

)
−
∑

j∈J−

(
qj − q′j

)
= 2

∑
j∈J+

(
qj − q′j

)
.

Therefore we have

dTV
(
d∗1(w), d∗1(w)|Ew(`)

)
= 2

∑
j∈J+

(
qj − q′j

)
6 2 ·

∑
j∈J+

P (d∗1(w) = j)− P ((d∗1(w) = j) ∩ Ew(`))

6 2 · P
(
Ew(`)

)
6 2 exp

(
−Θ

(√
log n

))
6 ε/3, (15)

where we applied Lemma 32 in the penultimate line, and where the last line holds for ε
tending to 0 sufficiently slowly.

To address (R2) we first claim that

ρ̂t
t→∞−−−→ ρ̂∗ (16)
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holds. To see this, observe that

1− ρt
(14)= exp(−dρ̂t)

(13)= exp
(
−d (1− (1− ρt−1)r−1

)
(1)= F (1− ρt−1)

for all t ∈ N>1. Since 1 − ρ0 = 0 it follows by elementary analytic arguments that as t
tends to infinity, 1− ρt converges to the smallest fixed point of the function F and thus ρt

converges to the largest solution of the fixed-point equation (2), which we defined as ρ∗
(see (1)). Then (16) follows immediately from (3), (13) by continuity.

As a consequence of (16), if ` = `(ε) is sufficiently large, then

dTV
(
Po(dρ̂(`+1)/2),Po(dρ̂∗)

)
< ε/3. (17)

To complete the proof, observe that Lemma 34 (ii) implies that

dTV
(
d∗1(w)|Ew(`) , Po(dρ̂(`+1)/2)

)
= dTV

(
d∗1(w)|Ew(`) , Bi

(
Po(d), ρ̂(`+1)/2

))
6 ε/3,

and combining this with (15) and (17), we obtain

dTV (d∗1(w),Po(dρ̂∗)) 6 dTV
(
d∗1(w), d∗1(w)|Ew(`)

)
+ dTV

(
d∗1(w)|Ew(`),Po(dρ̂(`+1)/2)

)
+ dTV

(
Po(dρ̂(`+1)/2,Po(dρ̂∗)

)
6 ε

as required.

As a further consequence of Corollary 36, we can asymptotically determine the expected
degree distribution in G`.

Corollary 37. There exist ε = o(1) and ` = `(ε) such that for all j ∈ N,

E
(
ξ

(`)
j

)
= P

(
P̃o(dρ̂∗) = j

)
± ε,

and
E
(
ξ̂

(`)
j

)
= P

(
B̃i(r, ρ∗) = j

)
± ε.

Proof. Observe that for any j ∈ N and any variable node w, by linearity of expectation
and Corollary 33, for some ε1 = o(1) we have

E
(
ξ

(`)
j

)
= E

(
1
n

∑
w∈V

1{dG`
(w)=j}

)
= P(dG`

(w) = j) = P
(
d̃1(w) = j

)
± ε1

Furthermore, Corollary 36 implies that for some ε2 = o(1) we have

P
(
d̃1(w) = j

)
= P

(
P̃o(dρ̂∗) = j

)
± ε2.

Combining these two approximations and setting ε = ε1 + ε2 = o(1) completes the proof
of the first statement. The second statement is proven similarly.
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Now for j, ` ∈ N, let us define the events Bj = Bj(`) :=
{∣∣∣ξ(`)

j − E
(
ξ

(`)
j

)∣∣∣ > n−1/3
}
and

B̂j = B̂j(`) :=
{∣∣∣ξ̂(`)

j − E
(
ξ̂

(`)
j

)∣∣∣ > n−1/3
}
. We can apply Lemma 12 to prove the following.

Lemma 38. Let G = Gr(n, p) be a random factor graph and ` = o(log log n). Then

P

⋃
j∈N

(
Bj ∪ B̂j

) = o(1).

Proof. We will model the factor graph G = Gr(n, p) as a subgraph of a larger factor graph
G̃ = G̃r(n, p), which is obtained from G by adding some additional isolated factor nodes,
which represent the non-edges of Hr(n, p), such that the total number of factor nodes is
precisely

(
n
r

)
. Thus each factor node comes with a set of r associated variable nodes, these

sets all being distinct, and a factor node is adjacent to its r associated variable nodes
(and no others) whenever the corresponding edge is present in Hr(n, p), and otherwise
it is isolated. (Note, however, that these extra factor nodes are not considered for the
calculation of ξ̂(`)

j .)
Now set N :=

(
n
r

)
and for some arbitrary order of the factor nodes, let Xk denote

the indicator function of the event that the k-th factor node is not isolated, i.e. that
the corresponding edge is present in Hr(n, p). (This simply describes the standard edge-
exposure process, but rephrased in the language of factor graphs.) Clearly there is a
one-to-one correspondence between sequences in {0, 1}N and possible instances of the
graph G̃, and in what follows we will identify a sequence with its associated factor graph.

We let f describe the function on {0, 1}N corresponding to ξ(`)
j or ξ̂(`)

j as appropriate.
We need to check that f satisfies (∗), the typical Lipschitz condition (to borrow the
terminology of [38]) required in Lemma 12, for an appropriate choice of the parameters
c, d and event Γ.

We define Γ to be the event that ∆(G) 6 log n and that G contains Θ(n) factor nodes.
We claim that P(Γ) > 1− n−ω(1). This can be proved by a union bound on the two bad
events. The probability that the number of factor nodes is not Θ(n) is exponentially
small in n by a Chernoff bound. (This is similar to Proposition 14, but with a larger
deviation and a correspondingly smaller error probability.) Meanwhile, the probability
that a variable node has degree at least log n can be approximated by

P
(

Bi
((

n− 1
r − 1

)
, p

)
> log n

)
6

((n−1
r−1

)
log n

)
plog n =

(
Θ(1)
log n

)log n

= n−ω(1).

It follows that the expected number of vertices of degree at least log n is at most n ·n−ω(1) =
n−ω(1), and Markov’s inequality implies that the probability that there is at least one such
vertex is at most n−ω(1), as required.

Now if x ∈ Γ and x̃ ∈ {0, 1}N is a sequence which differs from x in only one co-ordinate,
this corresponds to adding or removing r edges incident to a single factor node in a factor
graph of maximum degree at most log n. Let R be the set of r variable nodes incident to
these edges. In the peeling process up to step `, this change can only affect those variable
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nodes at distance at most ` from R, of which, due to the maximum degree condition, there
are at most r∑`

i=0(log n)i 6 (log n)`+1, and therefore can change ξ(`)
j by at most (log n)`+1

n
.

When considering ξ̂(`)
j the argument is similar, but we use the fact that since x ∈ Γ there

are Θ(n) factor nodes in the corresponding graphs G, G̃, and so we can change ξ̂(`)
j by at

most (log n)`+1

Θ(n) 6 (log n)`+2

n
. In either case we have |f(x) − f(x̃)| 6 (log n)`+2

n
=: c. For the

worst case, we simply use the trivial upper bound |f(x)− f(x̃)| 6 1 =: d. Then the typical
Lipschitz condition (∗) is indeed satisfied.

Now Lemma 12 tells us (using the simplification c+ e 6 2c) that

P
(∣∣∣f(X)− E(f(X))

∣∣∣ > t
)
6 2 exp

− t2

2
(

n
r

)
p · 4c2 + 4ct/3

+ n

(
n

r

)
n−ω(1)

6 2 exp
− t2

Θ
(

(log n)2`+4

n

)
+ Θ

(
t(log n)`+2

n

)
+ o(1).

Setting t = n−1/3, this last expression is certainly o(1), so we deduce that whp

|f(X)− E(f(X))
∣∣∣ 6 n−1/3,

as required.

We are now able to give the proof of Lemma 27.

Proof of Lemma 27. By Corollary 37 (with ε/2 in place of ε), if ` = `(ε) is sufficiently
large we have

E
(
ξ

(`)
j

)
= P

(
P̃o (dρ̂∗) = j

)
± ε/2

for any j ∈ N. Furthermore, by Lemma 38, we have that whp for all j ∈ N

ξ
(`)
j = E

(
ξ

(`)
j

)
+ o(1) = E

(
ξ

(`)
j

)
± ε/2

for ε tending to 0 sufficiently slowly, and combining these two facts proves the lemma for
variable nodes. The proof for factor nodes is essentially identical.

7 Subcriticality: Proof of Lemma 28

Our goal in this section is to show that after some large number ` rounds of the peeling
process on Gr(n, p) have been completed, whp very few nodes will be disabled in subsequent
rounds (at most εn for some ε = ε(n) = o(1)), thus proving Lemma 28.

Let us fix `, ε1 as in Lemma 27, and for the rest of this section we will assume that
the high probability events of Lemma 27 and Proposition 14 both hold.

To help intuitively describe the argument, let us suppose for simplicity that in round `
exactly one node x0 is disabled and we consider the future effects of such a disabling. Since
x0 was disabled, it had degree at most one, and therefore there is at most one neighbour
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x1 whose degree is decreased as a result. If x1 originally had degree two, it now has degree
one and will therefore be disabled in round `+ 1. Continuing in this way, we observe that
we will never be disabling more than one node in any subsequent round. Furthermore, if
we reach a node xi whose original degree was not exactly two, the peeling process stops
(either without disabling this node, or once it has been disabled and no further nodes’
degrees are decreased). Heuristically, it will not take long before we reach a node whose
original degree was not exactly two—this is because Lemma 27 implies in particular that
a constant proportion of the nodes have degree at least three.

Of course, in reality there may be more than one node disabled in round `. This slightly
complicates matters because some node may receive the knock-on effects of more than one
disabling in round `, and therefore have its degree decreased by more than one. However,
this will turn out to be no more than a technical nuisance.

We first need a result which states that almost any graph with a fixed (reasonable) degree
sequence is approximately equally likely to be G`, the graph obtained from G = Gr(n, p)
after ` rounds of the peeling process. To introduce this result, we need some definitions.

Definition 39. An r-duplicate in a factor graph consists of two factor nodes and r variable
nodes which together form a copy of K2,r.

Observe that an r-duplicate would correspond to a double-edge in an r-uniform
hypergraph, which in our model cannot occur since the hypergraph must be simple.
Therefore our factor graphs may not contain any r-duplicates. On the other hand, a
“loop”, in the sense of an edge which contains the same vertex more than once, must involve
a double-edge in the corresponding factor graph. This motivates the following definition,
which (roughly) describes when a factor graph corresponds to a simple hypergraph.

Definition 40. We say that a factor graph is r-plain if:

1. it contains no double-edge, i.e. two edges between the same variable node and factor
node;

2. it contains no r-duplicates.

Claim 41. Suppose H1, H2 are two r-plain factor graphs with common variable node set
V = V(H1) = V(H2) = [n] and with factor node sets F1 = F(H1) and F2 = F(H2).
Suppose further that there is a bijection φ : V ∪ F(H1)→ V ∪ F(H2) such that

• φ(V) = V;

• dH2(φ(v)) = dH1(v) for all v ∈ V ∪ F(H1).

Let G = Gr(n, p). Then
P (G` = H1) = P (G` = H2) .

This claim is very similar to standard results for simple graphs or hypergraphs (see
e.g. [31]) and we defer the proof to Appendix D. However, we note that in our setting there
is one subtle technical difficulty to overcome which does not appear in many other cases,
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namely that given a factor graph G such that G` = H1, if we transform G by changing H1
to H2 but otherwise leaving G unchanged, we need to show that the resulting graph is
indeed the factor graph of an r-uniform hypergraph, and in particular is r-plain.

Claim 41 tells us that the factor graph G` after ` rounds of the peeling process is
uniformly random conditioned on its degree sequence and being r-plain. Since Lemma 27
tells us the degree sequence quite precisely, this is very helpful. We can change our point
of view by saying that we first reveal the degree sequence of G` without revealing any of
its edges, and subsequently we reveal edges only as required. More precisely, we consider
the configuration model, in which each node is given half-edges based on its degree, and
we generate a uniformly random perfect matching between the two classes of half-edges
(at variable and factor nodes) conditioned on the resulting factor graph being r-plain. We
need to know that this conditioning is not too restrictive, i.e. that the probability that the
resulting factor graph is r-plain is not too small. This will be stated in Proposition 44,
for which we first need some preliminaries. We begin by observing that Gr(n, p) does not
have too many nodes of high degree.

Definition 42. Given a function ω = ω(n) → ∞, we say that a factor graph H has
property D̃ = D̃(ω, n) if ∑

v∈V(H): d(v)>ω

d(v)2 = o(n).

Furthermore given ε > 0 we say that H has property D = D(ε, ω, n) if it satisfies property
D̃(ω, n) and also satisfies the conclusion of Lemma 27 (with this ε).

Claim 43. For any ω n→∞−−−→∞, with high probability Gr(n, p) has property D̃(ω, n).

Proof. For k ∈ N, let us define Xk to be the number of variable nodes of degree k and
X>k := ∑

j∈N>k
Xj . Observe that the expected degree of a vertex is

(
n−1
r−1

)
p = (1+o(1))d. It

is a standard fact that the degrees of vertices are approximately distributed as independent
Po(d) variables. More formally (though much weaker), it is an easy exercise in the second-
moment method to prove that whp, for any k ∈ N we have X>k 6 n · P(Po(2d) > k) (we
omit the details). We therefore have

∑
v∈V(H):d(v)>ω

d(v)2 =
∑
k>ω

k2Xk 6 n
∑
k>ω

k2 e
−2d(2d)k

k! = n · (1 + o(1))ω2 e
−2d(2d)ω

ω! = o(n),

as required.

Note that if D̃ holds in a factor graph G, then it also holds in any subgraph of G, and
in particular in G`, the factor graph obtained after ` steps of the peeling process. Together
with Lemma 27, this shows that, with ` and ε as in given in that lemma and any ω →∞,
setting G = Gr(n, p), with high probability G` satisfies D(ε, ω, n).

Let us observe further that D is a property that depends only on the degree sequences
of variable and factor nodes of the graph, and therefore with a slight abuse of terminology
we may also say that it holds in a factor graph with half-edges, where we have not yet
determined which half-edges will be matched together.
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Proposition 44. Let ε = o(1) and suppose that n variable nodes and m = (1 + o(1))dn
r

factor nodes are given half-edges in such a way that property D(ε, ε−1/4, n) holds. Suppose
also that the total numbers of half-edges at factor nodes and at variable nodes are equal, and
that we construct a uniformly random perfect matching between these two sets of half-edges.
Then there exists a constant c0 > 0 (independent of ε, n) such that for sufficiently large n
the probability that the resulting factor graph is r-plain is at least c0.

The proof of Proposition 44 is a standard exercise in applying the method of moments
to determine the asymptotic distribution of the number of double edges and r-duplicates
– we omit the details. The proposition states in particular that we may condition on
the resulting graph being r-plain without skewing the distribution of the matching too
much. More precisely, any statements that are true with high probability for the uniformly
random perfect matching are also true with high probability under the condition that the
resulting graph is simple. Therefore in what follows, for simplicity we will suppress this
conditioning.

Definition 45 (Change process). We will track the changes that the peeling process
makes after reaching round ` by revealing information a little at a time as follows.

• Reveal the degrees of all nodes.

• While there are still nodes of degree one, pick one such node x0.

– Reveal its neighbour x1, delete the edge x0x1 and update the degrees of x0, x1.
– If x1 now has degree one, continue from x1; otherwise find a new x0 (if there is

one).

In other words, we track the changes in a depth-first search manner (rather than the
breadth-first view of considering rounds of the peeling process). We call this the change
process.

Observe that we only reveal edges one at a time (just before deleting them). The
following claim is simple given Lemma 27, but is the essential heart of our proof. Recall
that ε2 := √ε1 as defined in Lemma 28.

Claim 46. Let G′ be any graph obtained from G` by deleting at most ε2n edges. Then
when revealing the second endpoint of any half-edge, the probability of revealing a node of
degree at least three is at least

min
{

(dρ̂∗)2 exp(−dρ̂∗)
2 ,

(r − 1)(r − 2)ρ2
∗(1− ρ∗)r−3

2

}
− 20ε2.

In particular there exists a constant c = c(r, d) > 0 such that this probability is at least c.

We defer the proof to Appendix B.3.
This claim tells us that, provided we have not deleted too many edges so far, there is
a reasonable probability of revealing a node of degree at least three, which blocks the
continued propagation of any deletions.
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Let c = c(r, d) be as in Claim 46 and let us set δ1 := ε
3/4
1 . We now define an abstract

branching process which will provide an upper coupling on the change process starting
from G`.

Definition 47. Let T be a branching process which begins with δ1n vertices in generation 0,
and in which each vertex independently has a child with probability 1− c, and otherwise
has no children.

Proposition 48. The process T can be coupled with the change process in such a way
that, if both processes are run until one of the stopping conditions

• T has reached size at least ε2n;

• T has died out,

is satisfied, then T forms an upper coupling on the change process.

Proof. We first need to show that whp we make at most δ1n changes in round `+ 1 of the
peeling process. Since we have assumed that the high probability statement of Lemma 27
holds, we have ξ(`)

j = P(P̃o(dρ̂∗) = j)±ε1 and ξ̂(`)
j = P(B̃i(r, ρ∗) = j)±ε1. By the definition

of the peeling process (Definition 26) the only change we make when moving fromG` toG`+1
is that we disable all nodes of degree one. The proportion of such variable and factor nodes
in G` is ξ(`)

1 and ξ̂(`)
1 respectively. Recalling that P(P̃o(dρ̂∗) = 1) = P(B̃i(r, ρ∗) = 1) = 0,

this immediately implies that at most ε1(m+ n) 6 δ1n nodes are disabled in round `+ 1
of the peeling process, and these disablings represent the first nodes of the change process.

Now the proposition follows directly from the observation that in the change process,
a node only has at most one incident edge deleted (if it has degree one), and therefore at
most one neighbour is revealed, along with Claim 46, which implies that the probability of
not causing any further changes is at least c. The first stopping condition ensures that
we have deleted at most ε2n edges, and therefore the assumptions of Claim 46 are indeed
satisfied.

In view of Proposition 48, it is enough to prove that whp the branching process T dies
out (i.e. fulfills the second stopping condition) before reaching size ε2n.

Proposition 49. Whp T contains at most ε2n vertices.

Proof. In order to reach size ε2n, the first (at most) ε2n vertices of the process would have
to have a total of at least (ε2− δ1)n children, which, by Lemma 11, occurs with probability
at most

P (Bi(ε2n, 1− c) > (ε2 − δ1)n) 6 2 · exp
(
− (cε2 − δ1)2n2

2ε2n+ 2(cε2 − δ1)n/3

)

6 2 · exp
(
−(cε2/2)2n

3ε2

)
= o(1)

(since ε2n = √ε1n→∞) as required.
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We can now complete the proof of Lemma 28.

Proof of Lemma 28. Proposition 48 implies that the probability that at least ε2n further
nodes are disabled after round ` in the peeling process is at most the probability that T
reaches size ε2n. But this event has probability o(1) by Proposition 49.

This proves that whp at most ε2n further nodes are disabled after round ` in the
peeling process. To show the remaining two statements, observe that since disabling a
node deletes at most one edge, and therefore changes the degree of at most one variable
node and at most one factor node, at most ε2n nodes of each type will have their degree
changed. It follows immediately that for any j ∈ N we have ξj = ξ

(`)
j ± ε2, while similarly

ξ̂j = ξ̂
(`)
j ±

ε2n

m
= ξ̂

(`)
j ±

2ε2r

d
,

where we have used the fact that whp n
m

6 2r
d
by Proposition 14.

8 Concluding remarks

8.1 Upper bound on LP , LC

Theorem 6 and Corollary 7 state that whp LP and LC , the length of the longest loose path
and longest loose cycle respectively in Hr(n, p), satisfy LP , LC 6 (min{β, γ}+ o(1)) · n,
but which of β, γ is smaller? Recall that both β and γ are functions of d and r, with
β = γ = 0 for d < d∗. Numerical approximations and plots with Mathematica suggest that
for r = 2, 3, we have β 6 γ for all d, but that for r > 4, for values of d not too much larger
than d∗ we have γ < β, and there is a crossing point after which (for larger d) we have
β < γ. It would be interesting to investigate this behaviour more closely to determine
whether this is indeed true, and to determine the crossing point precisely as a function of
r.

8.2 High-order cores

The methods used in this paper are amenable to more general definitions of cores in
hypergraphs. More precisely, vertex degrees are far from the only type of degrees that
have been extensively studied in hypergraphs—one can consider the degrees of j-sets of
vertices for each 1 6 j 6 r − 1, and for each j there is a natural associated definition of
a core. So far only the case j = 1 has been studied, but it would also be interesting to
consider “high-order cores”, i.e. j > 2.
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A Analysis of fixed-point equation

Recall the fixed-point equation (2)

1− ρ = F (1− ρ)

with largest solution ρ∗. Note that this equation has no solutions for ρ > 1 and that 0 is a
solution, hence 0 6 ρ∗ < 1. Our goal in this section is to prove Claim 10 and Lemma 24.
It will be more convenient to use a transformed equation: by substituting x = 1− ρ and
taking logarithms on both sides (which is permissible since both sides are positive in any
solution) we get the equivalent equation log x = −d(1− xr−1), or equivalently

f(x) := log x+ d(1− xr−1) = 0, (18)

for 0 < x 6 1. Furthermore we define τ∗ to be the smallest solution of (18) and note that
τ∗ = 1− ρ∗ holds. We now restate Claim 10 in this new setting.

Claim 50.

(F1)’ If d < d∗, then τ∗ = 1.

(F2)’ If d > d∗, then f(1) = 0 and there is a unique solution to (18) in (0, 1).

Proof of Claim 10. It is clear that Claim 10 follows directly from Claim 50 since ρ∗ =
1− τ∗.

To prove Claim 50, we define

fn(x) := log x+ d
(

1 + 1
ω

)
(1− xr−1),

where ω = ω(n) is a function with ω n→∞−−−→∞. Observe that f(x) = lim
n→∞

fn(x) for each x.
We would like to treat fn and f simultaneously, therefore with a slight abuse of notation
we define f∞ = f , and set 1/ω = 0 for n =∞. Furthermore, whenever we use statements
such as “for n sufficiently large”, this also includes n =∞.

Now observe that

f ′n(x) = 1
x
− d

(
1 + 1

ω

)
(r − 1)xr−2,

f ′′n(x) = − 1
x2 − d

(
1 + 1

ω

)
(r − 1)(r − 2)xr−3.

The following fact collects properties of fn which are trivial to check and that will be used
later in this section.
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Fact 51. For sufficiently large n we have

(P1) fn(1) = 0.

(P2) fn(x) x→0−−→ −∞.

(P3) If d < d∗, then f ′n(x) > 0 for all 0 < x < 1.

(P4) If d > d∗, then f ′n(1) < 0.

(P5) f ′′n(x) < 0 for all 0 < x 6 1.

Proof of Claim 50. First we show (F1)’. Let d < d∗. By (P1) and (P3) we have f(x) < 0
for all 0 < x < 1 and hence that x = 1 is the unique solution of f(x) = 0, i.e. τ∗ = 1.

To see why (F2)’ holds we observe that (P1) and (P4) imply that there exists x0
with 0 < x0 < 1 such that f(x0) > 0. Since (P2) holds by the intermediate value theorem
there is y0 with 0 < y0 < x0 such that f(y0) = 0, which implies that τ∗ < 1.

To prove uniqueness, suppose that there are two solutions x1, x2 of (18) with 0 <
x1 < x2 < 1. Since 1 is also a solution, by the mean value theorem there exist y1, y2 with
x1 < y1 < x2 < y2 < 1 such that f ′(y1) = f ′(y2) = 0. Then by the mean value theorem
applied to f ′, there exists a z1 with y1 < z1 < y2 such that f ′′(z1) = 0. However, this
contradicts (P5).

We need one last fact before we can give the proof of Lemma 24.

Claim 52. If d > d∗, then there exists δ > 0 such that for all sufficiently large n and all
0 < x 6 τ∗, we have

f ′n(x) > δ. (19)

Proof. Observe that f ′(τ∗) > 0, which follows from the fact that τ∗ < 1, the fact that
f(1) = 0 and (P5). Now f ′n(τ∗) n→∞−−−→ f ′(τ∗), and therefore there exists δ > 0 and N ∈ N
such that for all n > N we have f ′n(τ∗) > δ. Together with (P5), the claim follows since
f ′n(x) > f ′n(τ∗) > δ holds for all 0 < x < τ∗ and n > N .

With these considerations we are able to give the proof of Lemma 24.

Proof of Lemma 24. Let Qn denote the set of zeros of fn(x) and let qn := τ∗
(
r, d

(
1 + 1

ω

))
.

Observe that qn = minn Qn and let q∗ := lim
n→∞

qn. Our goal is to show that

q∗ = τ∗(r, d) =: τ∗,

or in other words,
ρ∗

(
r, d

(
1 + 1

ω

))
= ρ∗ + o(1). (20)
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For all n ∈ N we have qn 6 1 since x = 1 is a solution to fn(x) = 0, and qn > 0 by (P2).
By Claim 50 there exists some N ∈ N such that for all n > N the function fn has exactly
one solution νn, and since fn(τ∗) > 0 we have that νn < τ∗. By the mean value theorem
there exists yn with νn < yn < τ∗ such that

f ′n(yn) = fn(τ∗)− fn(νn)
τ∗ − νn

.

By (19) we deduce that

τ∗ − νn = fn(τ∗)− fn(νn)
f ′n(yn)

(19)
6
fn(τ∗)
δ

and hence νn
n→∞−−−→ τ∗ (since fn(τ∗)→ 0).

We have now proved that (20) holds, and (3) shows that then we also have

ρ̂∗

(
r, d

(
1 + 1

ω

))
= ρ̂∗(r, d) + o(1).

Furthermore β and γ as defined in (5) and (6) are continuous functions in ρ∗ and ρ̂∗,
respectively, both of which are themselves continuous functions in d and the statement of
Lemma 24 follows.

B Probabilistic Lemmas

In this appendix we include various proofs of probabilistic results which were omitted from
the main text. These proofs are all standard applications of common techniques.

B.1 Sprinkling

Proof of Lemma 22. First let ω′ be a function which tends to infinity arbitrarily slowly,
and in particular such that p1nr

(ω′)rω
→∞. Observe that we may assume that L(1)

P > n/ω′,
since otherwise the trivial bound L(2)

C > 0 is sufficient.
Since H1, H2 are coupled such that H1 ⊂ H2, we have H2 ∼ H1 ∪ H0 for a random

hypergraph H0 ∼ Hr(n, p0) which is independent of H1 and where p0 = p2−p1
1−p1

> p1/ω.
Let P ′0 be a longest loose path in H1. Let V1 be the set of the first δn/(4ω′) vertices of P ′0.

Recall that we omit floors and ceilings, and in particular we assume that δn/(4(r−1)ω′) ∈ N.
Let I1 be defined similarly for the following δn/(4ω′) vertices and I2 for the last δn/(4ω′)
vertices of P ′0. Let P0 be the loose path which results after deleting V1, I1, I2 and all
incident edges. Denote by V0 the set of vertices contained in P0.

Now let A be the set of r-sets such that one vertex lies in I1, one vertex lies in I2 and
r − 2 vertices lie in V1. If some x ∈ A forms an edge in H0, then we would obtain a loose
cycle in H2 containing P0 and thus of length at least LP − 3n/(4(r − 1)ω′) = LP − o(n),
as required. We have

|A| = |I1||I2|
(
|V1|
r − 2

)
=
(
n

ω′

)2
(
n/(4ω′)
r − 2

)
= Θ

((
n

ω′

)r)
.
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Therefore the probability that no x ∈ A is an edge in H0 ∼ Hr(n, p0) is at most

(1− p0)Θ((n/ω′)r) 6 exp (−p0Θ((n/ω′)r)) 6 exp
(
−p1

ω
Θ
(

nr

(ω′)r

))
= o(1),

and therefore with high probability there is at least one such edge, as required.

B.2 Offspring distribution

Proof of Proposition 35. We will consider an auxiliary breadth-first search algorithm start-
ing from w, which goes through all

(
n−1
r−1

)
many r-sets of variable nodes containing the

currently active node x and queries an r-set R to determine whether it is an edge of
Hr(n, p) (i.e. if there exists a factor node whose neighbourhood is this r-set) if x is the
only node of R which lies in the current tree, and otherwise the query is skipped. Initially
the current tree consists simply of w, and the tree is updated if a query turns out to be
an edge—in this case the corresponding factor node and all its neighbours are added to
the current tree and we proceed. The event Ew(`) implies that |D6`+1(w)| 6 (log n)2 and
thus the number qx of queries made from any node x satisfies

(
n−(log n)2

r−1

)
6 qx 6

(
n

r−1

)
.

The number of edges found is asymptotically distributed as Bi (qx, p)—this is not exact
since we still have the conditioning on the event Ew(`), but since by Lemma 32 this is a
very likely event, it does not affect the distribution significantly. Now we can couple the
number Zx of edges discovered from x from below and above by random variables with
distributions Bi

((
n−(log n)2

r−1

)
, p
)
and Bi

((
n

r−1

)
, p
)
, respectively. Since each of these random

variables tends asymptotically to the Po(
(

n
r−1

)
p) distribution, which in turn converges to

the Po(d) distribution, so does Zx.
Finally, to prove independence observe that the upper and lower couplings in the

previous step were independent of the number of edges found from any previous vertex (the
lower coupling only used the conditioning on Ew(`)). Furthermore no r-set is queried more
than once, and therefore the upper and lower couplings can be considered independent for
each vertex. Thus the Zx are also asymptotically independent of each other.

B.3 Proof of Lemma 46

Proof. Defining ξj(G′) to be the proportion of variable nodes of degree j in G′ for each
j ∈ N, observe that when revealing the neighbour of a factor node, the probability of
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revealing a variable node of degree at least three is∑
j>3 jξj(G′)∑
j∈N jξj(G′)

>
3ξ3(G′)∑3

j=1 jξj(G′)

>
3(ξ(`)

3 − 2ε2)∑3
j=1 j(ξ

(`)
j + 2ε2)

L.27
>

3P
(
P̃o(dρ̂∗) = 3

)
− 3ε− 6ε2∑3

j=1 jP
(
P̃o(dρ̂∗) = j

)
+ 6ε+ 12ε2

>
(dρ̂∗)3 exp(−dρ̂∗)/2

E
(
P̃o(dρ̂∗)

) − 9ε− 18ε2

>
(dρ̂∗)2 exp(−dρ̂∗)

2 − 20ε2,

where in the last line we used that ε2 =
√
ε. Similarly, the probability of revealing a factor

node of degree at least three is at least

3P
(
B̃i(r, ρ∗) = 3

)
− 3ε− 6ε2∑3

j=1 jP
(
B̃i(r, ρ∗) = j

)
+ 6ε+ 12ε2

>
(r − 1)(r − 2)ρ2

∗(1− ρ∗)r−3

2 − 20ε2,

which proves our claim.

C Proof of Lemma 32

Recall that for a node w ∈ V ∪F the event Ew(`) holds if and only if |D6`+1(w)| 6 (log n)2

and furthermore D6`+1(w) contains no node which lies in a cycle of length at most 2`. We
will prove Lemma 32 under the assumption that w ∈ V. The case when w ∈ F follows
since clearly Ew(`) is implied by Ev1(`) ∩ . . . ∩ Evr(`), where v1, . . . , vr are the neighbours
of w. Furthermore, applying the statement of the lemma to the variable nodes v1, . . . , vr

we have

P(Ev1(`) ∩ . . . ∩ Evr(`)) > 1−
r∑

i=1
(1− P(Evi

(`)))

> 1− r exp
(
−Θ

(√
log n

))
= 1− exp

(
−Θ

(√
log n

))
,

as required. We therefore assume in the following that w ∈ V .
We begin a breadth-first search from w, and index the generations by a time t. We

run this process until a stopping time Tstop which is defined as follows.
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Definition 53. Let w ∈ V be given and ` = `(n) = o(log log n). Let Tstop be defined as
the smallest time t such that one of the following stopping conditions is invoked:

(S1) The BFS tree has size (log n)2;

(S2) The BFS tree contains a node which lies in a cycle of length at most 2`;

(S3) t = `+ 1.

We aim to show that whp (S3) is applied first.

Proposition 54. With probability at least 1− exp(−Θ(
√

log n)), (S1) is not applied.

Proof. We consider a branching process starting at one node and in which each variable
node has offspring distribution Bi

((
n−1
r−1

)
, p
)
independently, and each factor node has r− 1

offspring independently—this is an upper coupling on the BFS process started at w. (Note
in particular that each factor node has precisely r− 1 children since the parent has already
been counted and the root, which is the only node which has no parent, is a variable node.)

Let us consider the first generation t0 in which the number of nodes is at least
√

log n.
If no such t0 exists, or if t0 > ` + 1, then the total size of the first (` + 2) generations
is at most (` + 2)

√
log n 6 (log n)2 as required. On the other hand, if t0 6 ` + 1, let us

set xt to be the size of the t-th generation, for each t ∈ N. We will assume for technical
convenience that xt >

√
log n for all t > t0, i.e. the size of a generation does not decrease

back below
√

log n—if this does occur, we simply add in some fictitious nodes to reach
this size threshold, which is clearly permissible for an upper bound.

By a standard Chernoff bound (Lemma 11) we have for sufficiently large n that with
probability at least 1 − n−1 the maximum degree of any of the at most

√
log n nodes

in generation t0 − 1 is log n and thus we have xt0 6 (log n)3/2. Furthermore, again by
Lemma 11, for each even t > t0 (meaning that the t-th generation consists of variable
nodes), the probability that xt+1 > 2

(
n−1
r−1

)
pxt is at most exp

(
−Θ(
√

log n)
)
. Taking a

union bound over all at most d `+3−t0
2 e 6 `+ 1 even generations, and recalling that each

variable node has r − 1 children, we deduce that whp the total size of the process up to
generation `+ 1 is at most

t0
√

log n+ (1 + (r − 1))(log n)3/2
d `+3−t0

2 e∑
i=0

(
2
(
n− 1
r − 1

)
p

)i

6 log n+ r(log n)3/2
`+1∑
i=0

(3d)i

= (log n)3/2Θ
(
(3d)`+1

)
6 (log n)2,

where the last line follows since ` = o(log log n). In total, the error probability is at most
n−1/3 + exp(−Θ(

√
log n)) = exp(−Θ(

√
log n)).

Proposition 55. With probability at least 1− 2n−1/3, (S2) is not applied.

the electronic journal of combinatorics 29(4) (2022), #P4.13 42



Proof. Let X62` be the random variable counting the number of variable nodes in D6`+1(w)
which lie on cycles of length at most 2` in Gr(n, p). Then

E(X62`) 6
2∑̀

i=2
i
ni

2i

(
n

r − 2

)i

pi 6
2∑̀

i=3
(nr−1p)i = o(log n),

where the last line follows since ` = o(log n) and nr−1p = O(1). By Markov’s inequality,
with probability at least 1−n−1/3, at most n1/3 log n variable nodes lie on a cycle of length
at most 2`. Assuming that this is indeed the case, since (S1) was not invoked we infer
that the probability that there exists a node in D6`+1(w) that lies in a cycle of length at
most 2` is at most (log n)3n1/3

n
6 n−1/3, and so with probability at least 1− 2n−1/3 (S2) is

not invoked first.

Proof of Lemma 32. By Propositions 54 and 55, the probability that (S3) is invoked first
for some particular node w is at least 1−exp(−Θ(

√
log n))−2n−1/3 > 1−exp(−Θ(

√
log n)).

In particular, since exp(−Θ(
√

log n)) = o(1), by Markov’s inequality whp (1 − o(1))n
nodes satisfy Ew(`).

D Proof of Lemma 41

Proof. First observe that any permutation of V does not affect the probability that G` is
equal to a factor graph H with variable node set V , and therefore we assume without loss
of generality that φ|V is the identity map.

We will further simplify the proof by simply identifying each a ∈ F1 with φ(a) ∈ F2.
Note that this is an abuse of terminology: if it were in fact true that φ(a) = a, then the two
factor nodes would represent exactly the same edge in the original r-uniform hypergraph,
and therefore have exactly the same neighbours. However, although we identify the two
factor nodes with one another, we do not carry over these restrictions (indeed, otherwise
we would necessarily have H1 = H2). An alternative way of considering this is to say
that we regard the factor nodes no longer as edges of a hypergraph but as abstract nodes
stripped of all information.

Now for i = 1, 2, let Gi be the set of factor graphs G of r-uniform hypergraphs such
that G` = Hi. Observe that any G ∈ Gi has precisely the same node set as Hi, and in
particular has |Fi| factor nodes, and therefore the probability that Gr(n, p) = G is simply
p|Fi|(1− p)(

n
r)−|Fi|. Since this value is identical for i = 1, 2, what remains to prove is simply

that
|G1| = |G2|.

We now observe that, as follows from the definition of the peeling process, if G` = Hi

then any edge of G which runs between nodes which are non-isolated in Hi is also in Hi.
(In other words, the edge set of Hi is induced by the set of non-isolated nodes.) Since the
sets of isolated nodes in H1, H2 are identical, let W be this set, so for any G ∈ Gi, the
subgraph of G with all nodes but only those edges of G which lie within W is precisely
G` = Hi. Let us define a graph function f : G1 → G2 which, for each G ∈ G1, changes the
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edges within W to those of H2 instead of H1, but otherwise leaves all nodes and edges
unchanged. We aim to prove that f is a bijection from G1 to G2, which implies that these
classes have the same size, as required.

The critical part of the proof is to observe that the range of this function does indeed
lie within G2, i.e. that for every G ∈ G1 we have f(G) ∈ G2. To see this, observe that it is
a simple exercise to prove by induction on t that f(Gt) = (f(G))t for all G ∈ Ĝ1 and all
t ∈ [`]0, and in particular H2 = f(H1) = f(G`) = (f(G))`.

However, slightly more subtly, we have to observe that f(G) is indeed a factor graph
arising from an r-uniform hypergraph. It is clear from the construction that f(G) respects
the bipartition of variable and factor nodes, and also that the degrees of all nodes are
identical in G and f(G), so in particular every factor node has degree r in f(G). Note
also that G contained no double edges which means that f(G) cannot contain double
edges which do not lie entirely within W , while the fact that H2 contains no double edges
also means that f(G) contains no double edges which lie entirely within W . It therefore
remains to prove that f(G) contains no r-duplicates. Observe that in an r-duplicate
already all nodes have degree at least two, and therefore none of these nodes will ever be
disabled in the peeling process. Thus if f(G) contains an r-duplicate, it is also present in
f(G)` = H2, which contradicts our assumption.

We now further observe that f is clearly an injection, since any two distinct graphs
G,G′ ∈ G1 must differ in edges which do not lie completely within W, and therefore
f(G), f(G′) also differ in those edges. Finally, the function f has an obvious inverse, and
therefore is a bijection. It follows that |Ĝ1| = |Ĝ2|.
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