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Abstract. Witness encryption (WE) was introduced by Garg et al. (STOC’13). A WE scheme is defined
for some NP language L and lets a sender encrypt messages relative to instances x. A ciphertext for x can
be decrypted using w witnessing x ∈ L, but hides the message if x /∈ L. Garg et al. construct WE from
multilinear maps and give another construction (FOCS’13) using indistinguishability obfuscation (iO) for
encryption. Due to the reliance on such heavy tools, WE can currently hardly be implemented on powerful
hardware and will unlikely be realizable on constrained devices like smart cards any time soon.
We construct a WE scheme where encryption is done by simply computing a Naor-Yung ciphertext (two
CPA encryptions and a NIZK proof). To achieve this, our scheme has a setup phase, which outputs public
parameters containing an obfuscated circuit (only required for decryption), two encryption keys and a
common reference string (used for encryption). This setup need only be run once, and the parameters can
be used for arbitrary many encryptions. Our scheme can also be turned into a functional WE scheme, where
a message is encrypted w.r.t. a statement and a function f , and decryption with a witness w yields f(m,w).
Our construction is inspired by the functional encryption scheme by Garg et al. and we prove (selective)
security assuming iO and statistically simulation-sound NIZK. We give a construction of the latter in bilinear
groups and combining it with ElGamal encryption, our ciphertexts are of size 1.3 kB at a 128-bit security
level and can be computed on a smart card.

Keywords: Witness Encryption, Indistinguishability Obfuscation, NIZK, Groth-Sahai proofs.

1 Introduction

Witness encryption. In an encryption scheme, the receiver needs to know some secret piece of
information (the secret key) to decrypt. Garg, Gentry, Sahai and Waters [GGSW13] propose the
intriguing new notion of witness encryption (WE), where a scheme is defined for some NP language
L with witness relation R: L = {x |∃w : R(x,w) = 1}. The encryption algorithm takes an instance
x (instead of a public key) and a message m and produces a ciphertext c. Using a witness w such
that R(x,w) = 1, anyone can decrypt ciphertext c. Decryption is only possible if x is actually in
the language and it is required that a ciphertext computed for some x 6∈ L computationally hides
the message m.

Applications. As shown in [GGSW13], from WE one can construct powerful cryptographic
primitives such as identity-based encryption and attribute-based encryption [SW05] for circuits.
But WE also allows for applications that were not possible before; for example, one can encrypt a
message with respect to a puzzle, such that only someone who found a solution can decrypt. This
puzzle can be any problem where solutions can be efficiently verified, like a crossword or Sudoku
puzzle, or even the proof for some mathematical conjecture. Another application is asymmet-
ric password-based encryption [BH15], which allows hashed passwords (for any password-hashing
function already in place) to be used as public encryption keys and passwords to decrypt.

Constructing WE. Garg et al. [GGSW13] construct a WE scheme for the NP-complete lan-
guage “exact set cover”, which implies WE for any language L ∈ NP via polynomial-time many-one
reductions (a.k.a. Levin reductions). The security of this construction is based on a strong assump-
tion on “approximate” multilinear maps as constructed in [GGH13a]. Subsequently, a construction
of WE from indistinguishability obfuscation (iO) was given in [GGH+13b] and another one based
on multilinear maps in [GLW14]. The only candidate construction of iO is also based on the
approximate multilinear maps from [GGH13a].
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Implementing multilinear maps as required for iO or WE is computationally very expensive,
but a first—though far from practical—implementation exists [AHKM14], and it is conceivable
that algorithmic and hardware progress yield practical implementations in the not too distant
future.

Offline witness encryption. Given that WE is not even practical on high-end machines, it
seems foolish to hope for an implementation on low-end devices like smart cards. In this paper we
show however that it is possible to construct a WE scheme where encryption is very efficient, as the
entire computationally hard work can be moved to a setup phase and—to a lesser extent—to the
decryption process. This setup is either run by the sender before she knows the instance and the
message for an encryption; or it is run by a trusted party once and for all and everyone can use the
same parameters. The first case is reminiscent of online/offline encryption or signatures [EGM96],
except that in our case, once generated, the parameters can be used for arbitrary many “online
phases”.

We call this concept offline witness encryption and define it as a tuple of three algorithms. The
setup phase (which is not present in standard WE) takes as input only a security parameter 1λ

and outputs public parameters (ppe, ppd) ← Setup(1λ). To encrypt a message m for an instance
x, one runs an encryption algorithm c← Enc(x,m,ppe). Such ciphertext c can then be decrypted
given a witness w, i.e., for which R(x,w) = 1 holds, as m = Dec(c, w,ppd). The goal of offline WE
is to keep the parameters ppe for encryption and ciphertexts small and the Enc algorithm efficient.

Applications of offline WE. In any application of witness encryption its offline variant can be
used to make encryption practically efficient, if one accepts an additional setup phase. However,
for applications like IBE and attribute-based encryption, as discussed in [GGSW13], system-wide
parameters must be set up by a trusted party anyway. This party could therefore simply also
generate the offline-WE parameters, meaning encryption can be made efficient without requiring
any additional trust.

Bellare and Tung Hoang [BH15] define and construct asymmetric password-based encryption
(A-PBE), where a hash of a password can be used as a public key to encrypt messages, which can
then be decrypted using the password. Unlike its symmetric counterpart, A-PBE remains secure
even when the server storing hashed passwords is compromised. In particular, they show that
if hashed passwords are already deployed using an existing password-hashing function, witness
encryption can be used to turn the hashed passwords into public keys.1 The drawback of using
WE is that both encryption and decryption are inefficient. Using offline WE where a trusted third
party produces the system parameters in an offline phase, encryption can be made significantly
more efficient, whereas decryption (and the one-time setup) remains inefficient.

The use of offline WE is therefore particularly appealing in scenarios where decryption is usually
not done anyway, but ciphertexts are made public as a means of deterrent. Consider a scenario
where a content provider lets subscribed users set up passwords and use them to access some
content. The provider typically stores a hash of the password. In order to discourage subscribers
from distributing their passwords and allowing others to access content, the provider could simply
encrypt some sensitive user information (such as credit card details, etc.) under a user’s hashed
password and publish this ciphertext. As anyone who knows the password could decrypt, it is then
in the user’s interest to keep his password secret.

Our construction. Our construction, as well as its proof, is inspired by the functional encryption
scheme by Garg et al. [GGH+13b].

The parameters required for encryption ppe = (crs, pk1, pk2) consist of two public keys of a
standard public-key encryption (PKE) scheme and a common reference string for a non-interactive

1 Such a key consists of a pair (sa, hpw) of a salt and a hashed password hpw = PH(sa, pw) for a password-hashing
function PH. Given a WE for the NP-language {(sa,PH(sa, pw)) | pw}, messages are encrypted w.r.t. statements
(sa, hpw) and can be decrypted using witness pw such that hpw = PH(sa,pw).
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zero-knowledge (NIZK) proof system. The encryption c = (x, c1, c2, π) of a message m for an
instance x is simply a Naor-Yung [NY90, Sah99] CCA-secure encryption of the pair (x,m); that
is, encryptions c1 and c2 of (x,m) under pk1 and pk2, respectively, together with a NIZK proof π
showing that the two ciphertext c1, c2 encrypt the same message.

The setup algorithm samples two key pairs (sk1, pk1), (sk2,pk2) for the PKE scheme and a CRS
for the NIZK proof system. The parameters ppd required for decryption consist of the obfuscation
D̃ of a circuit D defined as follows. On input a ciphertext c = (x, c1, c2, π) and a string w, the
circuit D

– checks if R(x,w) = 1 (i.e., w is a witness for x ∈ L);

– checks if π is a proof that c1 and c2 encrypt the same message; and

– if both checks pass, decrypts (x′,m) = PK.Dec(sk1, c1) and outputs m if x′ = x.

Given an (obfuscated) circuit as above, the decryption algorithm of our WE scheme simply eval-
uates D̃((x, c1, c2, π), w), which will output the message m for any witness w with R(x,w) = 1.

We prove in Theorem 1 that the above is a secure offline-WE scheme (meaning that ciphertexts
for x 6∈ L computationally hide the message), assuming that the obfuscation satisfies the notion of
indistinguishability obfuscation [BGI+01], the NIKZ is statistically simulation-sound [GGH+13b]
and the PKE is semantically secure under chosen-plaintext attack (CPA).

Functional witness encryption. Functional witness encryption was proposed by Boyle et al.
[BCP14] and its encryption algorithm takes as input a circuit f in addition to instance x and
message m. A party knowing a witness w for x now does not learn m itself, but only the function
f(m,w). For example, x could be a labeled graph and a party knowing a t-clique in x can learn
the labels of this clique (but no other labels). Indistinguishability-based security (there is also
an extractability-based notion) requires that, even when x ∈ L, encryptions of (x,m0, f0) and
(x,m1, f1) are indistinguishable if for all w with R(x,w) = 1 we have f0(m0, w) = f1(m1, w).

In Sect. 4 we define an offline variant of functional witness encryption and give an instantiation
by adapting the (obfuscated) decryption circuit of our OWE scheme: instead of outputting m when
given a witness w, it parses m as a pair (f,m′) and outputs f(m′, w). Encryption still consists
of computing a Naor-Yung ciphertext, whereas for the scheme in [BCP14] the encryptor needs to
perform iO-obfuscation.

Efficiency of encryption. In Sect. 5 we propose a concrete instantiation of the encryption
algorithm used by our OWE schemes. In order to avoid random oracles, we use Groth-Sahai
proofs [GS08], which are perfectly sound NIZK proofs in the standard model for languages defined
over bilinear groups. They let us prove that two ElGamal ciphertexts encrypt the same message.
Using ideas from [GGH+13b] and making them efficient by translating them into the bilinear-
group framework, we construct a statistically simulation-sound (SSS) proof system. Under the
so-called SXDH assumption (which states that the decisional Diffie-Hellman problem holds in the
base groups), the encryption scheme is CPA-secure and the proof system we construct is zero-
knowledge.

In our instantiation a proof consists of 28 elements from a bilinear group and is computed by
using bilinear-group exponentiations (but no pairings). For a 128-bit security level, the size of the
output of our encryption algorithm, comprising 2 ciphertexts and one SSS proof, is about 1.3 kB.

Handling long messages and instances. ElGamal encryption is defined over a group G and
encrypts elements from G; we therefore need to encode the message (x,m) into G. Using elliptic-
curve-based groups, for 128-bit security the length of an element from G is 256 bits, and standard
encoding techniques [FJT13] allow for encoding of 128 bits into one group element, which is
prohibitively small for any meaningful application.

We could of course choose a larger group such that one group element fits the entire tuple (x,m),
but this would become very inefficient for large values. The encryption procedure we construct in
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Sect. 5 will therefore allow to encrypt arbitrarily long messages by encrypting them block-wise. We
then need to provide a proof for each 128-bit block separately; however, using some optimization,
we manage to limit the growth of the ciphertext to 0.25 kB for every 128 bits of plaintext, meaning
the ciphertext grows by a factor of 16 compared to the plaintext.

For offline WE (but not for its functional variant) a further optimization when handling large
messages m is to use key encapsulation: when encrypting, the sender first picks a key k for a
symmetric encryption scheme and generates a ciphertext c = (cK , cM ), where cK is the WE
encryption of (x, k), and cM is the (secret-key) encryption of m under k. To decrypt (given a
witness w), the receiver first decrypts cK to learn k and then decrypts cM to recover m.

Dealing with large instances x turns out more tricky. Instead of x we could encrypt a hash
y = H(x) using a collision-resistant hash function H, noting that x is input to the decryption
algorithm, which can therefore check whether y = H(x). However, to prove this construction
secure, we require the obfuscation to satisfy the notion of differing-inputs obfuscation (a.k.a. ex-
tractability obfuscation) [BGI+01, BCP14, ABG+13], which seems a much stronger assumption
than indistinguishability obfuscation, as implausibility results in [GGHW14] show.

Related work. Zhandry [Zha14] proposes the notion of reusable witness encryption, which is
similar to offline WE. Apart from being a key-encapsulation scheme (which does not generalize to
FWE), the main difference is that setup outputs parameters which are used for both encryption
and decryption and additionally a master decryption key (which allows for CCA-type security).

Zhandry constructs reusable WE using multilinear maps (and no obfuscation), which makes
decryption more efficient than ours. Although ciphertexts in [Zha14] are short, the parameters
are not, and, more importantly, encryption is less efficient than ours as it requires the evaluation
of a multilinear map whose level of multilinearity is linear in the number of gates of the circuit
describing the NP relation R. Efficient encryption was our main motivation for introducing offline
WE and for this reason our model has separate parameters for encryption and decryption.

2 Preliminaries

2.1 Notations and Conventions

Families of circuits. A family of circuits {Cλ}λ∈N is of polynomial size if for some polynomial
p(·) the size of every C ∈ Cλ is at most |C| ≤ p(λ).

Probabilistic algorithms. If X is a finite set then x ← X denotes the process of sampling x
uniformly at random from X . Let A be a probabilistic polynomial-time (PPT) algorithm; then
Pr[y ← A(x)] denotes the probability that A(x) outputs y when run on uniformly sampled coins.
We let Pr

[
x1 ← X1;x2 ← X2; . . . : ϕ(x1, x2, . . .) = 1

]
denote the probability that the predicate ϕ

evaluated on (x1, x2, . . .) is true after the ordered execution of x1 ← X1, x2 ← X2, . . .

Negligible functions. A function ν : N→ R is called negligible if for every positive polynomial
p(·), and all sufficiently large n ∈ N, it holds that ν(n) ≤ 1

p(n) . We write f(λ) = negl(λ) to mean

that f(·) is negligible.

2.2 Public-Key Encryption

Our first ingredient is a standard public-key encryption scheme.

Definition 1 (PKE). A public-key encryption scheme for a message space M is a tuple of PPT
algorithms (Gen,Enc,Dec). Gen, on input a security parameter 1λ, outputs a secret/public key
pair (sk,pk). Enc, on input a public key pk and a message m ∈ M, outputs a ciphertext c using
randomness r ∈ {0, 1}`PK(λ). Finally, Dec, on input a secret key sk and a ciphertext c, outputs
m ∈M∪ {⊥}. Furthermore we require correctness and security:
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ExpCPA-b
A (λ) :

(sk, pk)← Gen(1λ)

(m0,m1, st)← A1(1λ, pk)
cb ← Enc(pk,mb)
b′ ← A2(st, cb)
Return b′

Fig. 1. ExpCPA-b
A (λ): The security game of CPA-secure public-key encryption.

– Correctness: For every λ ∈ N, m ∈M we have

Pr
[
(sk, pk)← Gen(1λ); c← Enc(pk,m) : Dec(sk, c) = m

]
= 1 .

– Indistinguishability under chosen-plaintext attacks (CPA): For every non-uniform PPT adver-
sary A = (A1,A2) in ExpCPA-b

A (λ) as defined in Fig. 1 (where we assume that A’s output
satisfies |m0| = |m1|), it holds that∣∣Pr

[
ExpCPA-0

A (λ) = 1
]
− Pr

[
ExpCPA-1

A (λ) = 1
]∣∣ = negl(λ) .

2.3 Indistinguishability Obfuscation

The strongest notion of obfuscation is virtual black-box obfuscation, where one requires that given
the obfuscation of a circuit, everything that can be done could also be done given black-box access
to the functionality realized by the circuit. Barak et al. [BGI+12] show that this notion cannot
be achieved in general. They propose several weaker notions which potentially can be realized,
the weakest being indistinguishability obfuscation (iO), which requires that only obfuscations of
circuits computing the same function are indistinguishable.

Definition 2 (Indistinguishability obfuscation [BGI+12, GGH+13b]). A uniform PPT
algorithm iO is an indistinguishability obfuscator for a family of polynomial-size circuits {Cλ}λ∈N,
if the following hold:

– For all λ ∈ N, C ∈ Cλ and x ∈ {0, 1}λ we have

Pr
[
C̃ ← iO(1λ, C) : C(x) = C̃(x)

]
= 1 .

– For every non-uniform PPT adversary A, there exists a negligible function ν(·) such that for
all C0, C1 ∈ Cλ such that C0(x) = C1(x) for all x:∣∣Pr

[
A(iO(1λ, C0)) = 1

]
− Pr

[
A(iO(1λ, C1)) = 1

]∣∣ = ν(λ) . (1)

Garg et al. [GGH+13b] construct a candidate iO for families of polynomial-size circuits, based on
a strong assumption on “approximate” multi-linear maps from [GGH13a] and fully homomorphic
encryption [Gen09].

2.4 Statistically Simulation-Sound NIZK

A non-interactive (NI) proof system for a language L ∈ NP consists of four PPT algorithms: a
common-reference string (CRS) generator G, which on input 1λ outputs a CRS; a prover P, which
on input a CRS, a statement y and a witness w outputs a proof; and a verifier V, which on input
a CRS, a statement and a proof outputs 0 or 1.

We require a proof system that satisfies completeness, statistical soundness, and zero-knowledge
(ZK). Completeness means that, on input a statement and a witness, P outputs a proof that V
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accepts. Statistical soundness requires that no unbounded adversary can produce a proof of a false
statement. Zero-knowledge means that a proof does not reveal any information (in a computa-
tional sense) about the witness used to compute it; this is formalized by requiring the existence
of a simulator S = (S1, S2) that can output a CRS and a proof for any statement, which are
computationally indistinguishable from real ones.

A NIZK proof system is statistically simulation-sound (SSS) [GGH+13b] if no unbounded ad-
versary can produce a valid proof for a statement y′ /∈ L even when given a simulated proof for
any other statement y 6= y′.

Definition 3 (SSS-NIZK). A tuple of PPT algorithms (G,P,V,S = (S1,S2)) is a statistically
simulation-sound non-interactive zero-knowledge (SSS-NIZK) proof system for a language L ∈ NP
with witness relation R if the following hold:

– Perfect completeness: For every (y, w) such that R(y, w) = 1,

Pr
[
crs← G(1λ) ; π ← P(crs, y, w) : V(crs, y, π) = 1

]
= 1 .

– Statistical soundness:

Pr
[
crs← G(1λ) : ∃ (y, π) s.t. y′ /∈ L ∧ V(crs, y, π) = 1

]
= negl(λ) .

– Computational zero-knowledge: For every (y, w) such that R(y, w) = 1, and non-uniform PPT
adversary A, it holds that∣∣Pr

[
crs← G(1λ);π ← P(crs, y, w) : A(crs, y, π) = 1

]
−

Pr
[
(crs, τ)←S1(1

λ, y);π←S2(crs, τ, y) : A(crs, y, π) = 1
]∣∣ = negl(λ) . (2)

– Statistical simulation soundness: For every y, it holds that

Pr

[
(crs, τ)← S1(1

λ, y);
π ← S2(crs, τ, y)

:
∃ (y′, π′) s.t. y′ 6= y ∧ y′ /∈ L
∧ V(crs, y′, π′) = 1

]
= negl(λ) . (3)

Garg et al. [GGH+13b] construct an SSS-NIZK scheme from any statistically sound NIZK scheme
and any computationally hiding and perfectly binding non-interactive commitment scheme. In
Sect. 5, we give an efficient instantiation of this, following their blueprint and using perfectly sound
Groth-Sahai proofs [GS08] and ElGamal encryption as perfectly binding and computationally
hiding commitment scheme. In particular, our SSS-NIZK proof system is for the following NP
language.

Definition 4. Let (PK.Gen,PK.Enc,PK.Dec) be a public-key encryption scheme. Then we define
the NP language Lenc and let Renc denote its corresponding witness relation:

Lenc :=

{
(pk1,pk2, c1, c2)

∣∣∣∣∃ (x,m, r1, r2) s.t. c1 = PK.Enc(pk1, (x,m); r1)
∧ c2 = PK.Enc(pk2, (x,m); r2)

}
. (4)

3 Offline Witness Encryption

A (standard) witness encryption scheme [GGSW13, BH15] is defined by an encryption algorithm
Enc that takes a security parameter 1λ, a statement x and a message m and outputs a ciphertext c;
and a decryption algorithm Dec that on input a ciphertext c and a witness w outputs a message.
Offline witness encryption allows for efficient encryption by outsourcing the resource-heavy com-
putations to a setup phase, which is independent of the statement and message to be encrypted.
There is a third algorithm Setup which on input a security parameter 1λ outputs a pair of param-
eters: ppe, which is used by Enc, and ppd, which is used by Dec. In our formalization we follow the
strengthened definition of witness encryption put forth by Bellare and Tung Hoang [BH15].
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Expsel-WE-b
L,A (λ) :

(x,m0,m1, st)← A1(1λ)

(ppe,ppd)← Setup(1λ)

cb ← Enc(1λ, x,mb, ppe)
b′ ← A2(st, cb, ppe, ppd)
If x ∈ L, return 0
Return b′

Fig. 2. Expsel-WE-b
L,A (λ): The security game of

selectively-secure witness encryption.

Expadp-WE-b
L,A (λ) :

(ppe, ppd)← Setup(1λ)

(x,m0,m1, st)← A1(1λ, ppe, ppd)

cb ← Enc(1λ, x,mb,ppe)
b′ ← A2(st, cb)
If x ∈ L, return 0
Return b′

Fig. 3. Expadp-WE-b
L,A (λ): The security game of

adaptively-secure witness encryption.

Definition 5 (Offline witness encryption). An offline witness encryption (OWE) scheme for
a language L ∈ NP with witness relation R : X × W → {0, 1} is a tuple of PPT algorithms
(Setup,Enc,Dec) where:

– (ppe,ppd) ← Setup(1λ): On input a security parameter 1λ, Setup outputs parameters for en-
cryption ppe and parameters for decryption ppd.

– c← Enc(1λ, x,m, ppe): On input a security parameter 1λ, a string x ∈ X , a message m ∈ M,
and encryption parameters ppe, Enc outputs a ciphertext c.

– Dec(c, w,ppd) ∈M∪{⊥}: On input a ciphertext c, a string w ∈ W and decryption parameters
ppd, Dec outputs m ∈M∪ {⊥}.

We require correctness and security:

– Correctness: For all λ ∈ N, (x,w) ∈ X ×W such that R(x,w) = 1, m ∈M:

Pr
[
(ppe,ppd)← Setup(1λ); c← Enc(1λ, x,m, ppe) : Dec(c, w,ppd) = m

]
.

– Security: A scheme is selectively secure if for every non-uniform PPT adversary A = (A1,A2)
in Expsel-WE-b

L,A (λ) as defined in Fig. 2 (where we assume that A’s output satisfies |m0| = |m1|),
it holds that ∣∣Pr

[
Expsel-WE-0

L,A (λ) = 1
]
− Pr

[
Expsel-WE-1

L,A (λ) = 1
]∣∣ = negl(λ) .

An OWE scheme is adaptively secure if the same holds for Expadp-WE-b
L,A (λ) as defined in Fig. 3.

We now present our construction of offline WE that we have outlined in the introduction and prove
that it satisfies selective security.

Construction 1 (Offline WE). Let PKE = (PK.Gen,PK.Enc,PK.Dec) be a public-key encryp-
tion scheme, NIZK = (G,P,V) an SSS-NIZK scheme for Lenc (Def. 4), and iO an indistinguishability
obfuscator for the family of polynomial-size circuits Dλ defined in (5) below. We construct an of-
fline witness encryption scheme OWE = (Setup,Enc,Dec) for L ∈ NP that can be decided by a
(circuit) witness relation R : {0, 1}`x × {0, 1}`w → {0, 1} as follows:

(ppe,ppd)← Setup(1λ): On input a security parameter 1λ, do the following:

– (sk1, pk1)← PK.Gen(1λ) and (sk2, pk2)← PK.Gen(1λ).

– crs← NIZK.G(1λ).
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– Construct the circuit Dskj ,crs ∈ Dλ with j = 1

Dskj ,crs(c, w):

1: Parse c as c = (x, c1, c2, π)
2: If NIZK.V(crs, (pk1,pk2, c1, c2), π) = 1

// Verify that π is a proof for (pk1, pk2, c1, c2).
// w.r.t. Lenc, where (pk1, pk2) is hardcoded.

3: (x̂, m̂) := PK.Dec(skj , cj)
4: If (x̂ = x) ∧R(x,w) = 1
5: Return m̂
6: Return ⊥

(5)

– D̃sk1,crs ← iO(1λ, Dsk1,crs) after padding Dsk1,crs appropriately.2

– Set ppe = (crs,pk1,pk2) and ppd = D̃sk1,crs.
– Output (ppe, ppd).

c← Enc(1λ, x,m, ppe): On input a security parameter 1λ, a string x ∈ {0, 1}`x , a message m ∈M,

and ppe = (crs,pk1,pk2), Enc does the following:

– r1, r2 ← {0, 1}`PK(λ).
– c1 := PK.Enc(pk1, (x,m); r1) and c2 := PK.Enc(pk2, (x,m); r2).
– π ← NIZK.P

(
crs, (pk1, pk2, c1, c2), (x,m, r1, r2)

)
.

– Output c := (x, c1, c2, π).

Dec(c, w,ppd): On input a ciphertext c = (x, c1, c2, π), a string w ∈ {0, 1}`w and parameters

ppd = D̃sk1,crs, Dec interprets D̃sk1,crs as a circuit and outputs m := D̃sk1,crs(c, w).

Theorem 1. OWE = (Setup,Enc,Dec) in Construction 1 is a selectively-secure offline witness
encryption scheme if PKE is a CPA-secure PKE scheme, NIZK an SSS-NIZK scheme, and iO an
indistinguishability obfuscator for Dλ.

Proof. Assume towards contradiction that there exists a non-uniform PPT adversary A that
distinguishes Expsel-WE-0

L,A from Expsel-WE-1
L,A with non-negligible probability. We reach a contra-

diction by first constructing a series of games Exp(i) defined in Fig. 4, where by construction,
Expsel-WE-0

L,A = Exp(0) and Expsel-WE-1
L,A = Exp(6), and then proving for i = 0, 1, . . . , 5 that Exp(i)

and Exp(i+1) are computationally indistinguishable.
Exp(1) differs from Exp(0) in that the CRS crs for the NIZK and the proof π are simulated

rather than honestly generated. The zero-knowledge property of NIZK guarantees that honestly
generated CRSs and proofs are indistinguishable from simulated ones by PPT adversaries.

Proposition 1. Exp(0)(λ) and Exp(1)(λ) are computationally indistinguishable if NIZK is zero-
knowledge.

Exp(2) differs from Exp(1) in that the second ciphertext c2 is generated as PK.Enc(pk2, (x,m1))

rather than PK.Enc(pk2, (x,m0)). (Dsk1,crs and (π, crs) are the same as in Exp(1).) The CPA-
security of PKE for key pk2 guarantees that this change is indistinguishable by PPT adversaries.

Proposition 2. Exp(1)(λ) and Exp(2)(λ) are computationally indistinguishable if PKE is CPA-
secure.

Exp(3) differs from Exp(2) in that the circuit Dsk2,crs is obfuscated instead of Dsk1,crs. Statistical
simulation-soundness of NIZK now guarantees that Dsk1,crs and Dsk2,crs are functionally equivalent
when crs is simulated for the statement y := (pk1,pk2, c1, c2). It then follows from the security of
iO that their obfuscations are computationally indistinguishable.

2 W.l.o.g. we assume that |Dsk1,crs| = |Dsk2,crs|; otherwise we always pad to the maximum possible length.
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Exp(i)(λ) // i ∈ {0, 1, 2, 3, 4, 5, 6}

(x,m0,m1, st)← A1(1λ)

(sk1, pk1)← PK.Gen(1λ)

(sk2, pk2)← PK.Gen(1λ)

r1, r2 ← {0, 1}`PK(λ)

If i ∈ {0, 1, 2, 3} c1 := PK.Enc(pk1, (x,m0); r1)
Elseif i ∈ {4, 5, 6} c1 := PK.Enc(pk1, (x,m1); r1)

If i ∈ {0, 1} c2 := PK.Enc(pk2, (x,m0); r2)
Elseif i ∈ {2, 3, 4, 5, 6} c2 := PK.Enc(pk2, (x,m1); r2)

y := (pk1, pk2, c1, c2)

If i ∈ {0, 6} crs← NIZK.G(1λ)

Elseif i ∈ {1, 2, 3, 4, 5} (crs, τ)← NIZK.S1(1
λ, y)

If i ∈ {0, 1, 2, 5, 6} D := Dskj ,crs with j = 1 as defined in (5)
Elseif i ∈ {3, 4} D := Dskj ,crs with j = 2 as defined in (5)

D̃ ← iO(1λ, D)

Set ppe = (crs, pk1, pk2) and ppd = D̃
If i = 0 π ← NIZK.P(crs, y, (x,m0, r1, r2))
Elseif i = 6 π ← NIZK.P(crs, y, (x,m1, r1, r2))
Elseif i ∈ {1, 2, 3, 4, 5} π ← NIZK.S2(crs, τ, y)

c := (x, c1, c2, π)
b′ ← A2(st, c, ppe,ppd)
If x ∈ L, return 0
Return b′

Fig. 4. The hybrid games used in the proof of Theorem 1.

Proposition 3. Exp(2)(λ) and Exp(3)(λ) are computationally indistinguishable if NIZK is statis-
tically simulation-sound, and iO is secure.

Exp(4) differs from Exp(3) in that the first ciphertext c1 is generated as PK.Enc(pk1, (x,m1))

rather than PK.Enc(pk1, (x,m0)). (Dsk2,crs and (π, crs) are the same as in Exp(3).) Now CPA
security of PKE w.r.t. pk1 implies that this change is computationally indistinguishable.

Proposition 4. Exp(3)(λ) and Exp(4)(λ) are computationally indistinguishable if PKE is CPA-
secure.

Exp(5) differs from Exp(4) in that Dsk1,crs is obfuscated rather than Dsk2,crs. Statistical simu-
lation soundness of NIZK together with security of iO implies that this change is computationally
indistinguishable.

Proposition 5. Exp(4)(λ) and Exp(5)(λ) are computationally indistinguishable if NIZK is statis-
tically simulation-sound, and iO is secure.

Exp(6) coincides with the original game Expsel-WE-1
L,A , and differs from Exp(5) in that the CRS

and NIZK proof (crs, π) are honestly generated rather than simulated. By the zero-knowledge
property of NIZK this change is computationally indistinguishable.

Proposition 6. Exp(5)(λ) and Exp(6)(λ) are computationally indistinguishable if NIZK is zero-
knowledge.

Theorem 1 now follows from Propositions 1–6, which we prove in Appendix A. ut
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Expsel-FWE-b
L,A (λ) :

(x, (m′0, f0), (m′1, f1), st)← A1(1λ)

(ppe, ppd)← Setup(1λ); cb ← Enc(1λ, x, (m′b, fb),ppe)
b′ ← A2(st, cb,ppe,ppd)
If ∃w:

(
R(x,w) = 1 ∧ f0(m′0, w) 6= f1(m′1, w)

)
, return 0

Return b′

Fig. 5. Expsel-WE-b
L,A (λ): The security game of selectively-secure witness encryption.

4 Offline Functional Witness Encryption

Boyle et al. [BCP14] consider both extractable and indistinguishability-based notions of FWE. We
consider an offline version of their indistinguishability-based notion. Here the encryption algorithm
takes input an instance x and a pair (m, f) of a message and a description of a circuit f and outputs
a ciphertext c. A party knowing a witness w for x now does not learn m itself, but only the function
f(m,w). Security requires computational indistinguishability of encryptions of (x, (m0, f0)) and
(x, (m1, f1)) as long as f0(m0, w) = f1(m1, w) for all w with R(x,w) = 1.

Definition 6 (Offline FWE). (Setup,Enc,Dec) of Definition 5 is an offline FWE scheme if the
following hold:

– Correctness: For all λ ∈ N, (x,w) ∈ X ×W such that R(x,w) = 1, m ∈M:

Pr
[
(ppe,ppd)← Setup(1λ); c← Enc(1λ, x,m, ppe); (m′, f) := m : Dec(c, w,ppd) = f(m′, w)

]
.

– Security: A scheme is selectively secure if for every non-uniform PPT adversary A = (A1,A2)
(where we assume A1’s output satisfies |(m′0, f0)| = |(m′1, f1)|) we have∣∣Pr

[
Expsel-FWE-0

L,A (λ) = 1
]
− Pr

[
Expsel-FWE-1

L,A (λ) = 1
]∣∣ = negl(λ) ,

where Expsel-FWE-b
L,A (λ) is defined in Fig. 5.

Construction 2 (Offline functional WE). This construction is defined exactly as Construc-
tion 1, except that in the definition of the decryption circuit in Eq. (5) on page 8 we replace

Return m̂

with
Parse m̂ as (m̂′, f) and return f(m̂′, w) .

Theorem 2. Construction 2 is a selectively-secure offline functional witness encryption scheme
under the same assumptions as in Theorem 1.

The proof is analogous to the proof of Theorem 1.3

5 Instantiating Enc

We now show how to efficiently instantiate the encryption algorithm of both our offline-WE schemes
over a bilinear group and prove its security under a standard assumption (SXDH) and without
recurring to random oracles. We use ElGamal encryption [ElG84] for the public-key encryption
scheme and build an SSS-NIZK proof system from Groth-Sahai proofs [GS08] following the abstract
blueprint for it given in [GGH+13b].

3 The only change to be made is in the proof of Proposition 3, which is the only time we use the fact that x̄ /∈ L. In
the description of B, m̄j is replaced by (m̄′j , f̄j) for j = 0, 1. For Case 1 we now argue that D1((x̄, c̄1, c̄2, π), w) =
D2((x̄, c̄1, c̄2, π), w) for all π,w as follows: If R(x̄, w) = 0 then both circuits output ⊥. If R(x̄, w) = 1 then by the
winning condition for the security game we have f̄0(m̄′0, w) = f̄1(m̄′1, w) for all w. Since c̄1 decrypts to (x̄, (m̄′0, f̄0))
and c̄2 decrypts to (x̄, (m̄′1, f̄1)), both circuits return f̄0(m̄′0, w).
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5.1 Tools

Bilinear groups. G is a bilinear-group generator if on input a security parameter 1λ it returns
the description of a bilinear group Λ = (p,G,H,T, e, g, h) with the following properties:

– G, H and T are groups of prime order p, where p is of bit-length λ.

– e : G×H→ T is a bilinear map, that is, e(Ra, Sb) = e(R,S)ab for all R ∈ G, S ∈ H, a, b ∈ Zp.
– g and h generate G and H, resp., and e(g, h) generates T.

We will use Type-3 bilinear groups [GPS08], where no efficiently computable homomorphisms
are assumed to exist from G to H or vice versa. We can therefore assume that the decisional
Diffie-Hellman assumption (DDH) holds in G: for any non-uniform PPT A∣∣∣∣Pr

[
Λ← G(1λ); a, b← Zp :

1← A(Λ, ga, gb, gab)

]
− Pr

[
Λ← G(1λ); a, b, c← Zp :

1← A(Λ, ga, gb, gc)

]∣∣∣∣ = negl(λ) . (6)

We moreover assume DDH holds in H, that is, (6) holds with g replaced by h. The SXDH assump-
tion for a bilinear-group generator G is that DDH holds in both G and H.

ElGamal encryption. We use ElGamal encryption to encrypt message vectors in G`, for some
fixed `. A secret key x← Z `

p defines a public key X ∈ G` via Xi := gxi for i = 1, . . . , `. A message

M = (Mi)
`
i=1 ∈ G` is encrypted under X by choosing r ← Z∗p and setting

c = (c1, . . . , c`, c`+1) := ((Mi ·Xi
r)`i=1, g

r) . (7)

Note that by using the same randomness for every component, we decrease ciphertext length. CPA
security follows from the DDH assumption in G via a standard hybrid argument.

Groth-Sahai proofs. Groth-Sahai (GS) proofs [GS08] are efficient non-interactive witness-indis-
tinguishable4 (WI) proofs for several types of equations in bilinear groups. We only require linear
pairing-product equations over variables W1, . . . ,Wn ∈ H, which are of the form

n∏
i=1

e(Ai,Wi) = t , (8)

defined by (Ai)
n
i=1 ∈ Gn, and t ∈ T. (As a convention, we always underline the variables.) GS

proofs allow a prover to prove that there exists an assignment to the variables that satisfies a given
set of equations. Groth-Sahai proofs are perfectly sound (meaning there do not exist proofs for
an unsatisfiable set of equations). The instantiation of GS proofs we use is WI under the SXDH
assumption. The cost of a proof is 2 elements from H per variable and 2 elements from G per
equation.

5.2 Instantiation

Using ElGamal encryption, we encode pairs M = (x,m) (that is, statement/message pairs which
we encrypt in our offline-WE instantiation) as a vector of group elements from G`. We thus assume
that there exists an efficiently decodable encoding Cd of pairs (x,m) into G` [FJT13].

We now construct an SSS-NIZK proof system which allows us to prove that 2 ElGamal cipher-
texts under different keys encrypt the same message M . We assume that the ciphertexts are always
different from (1, . . . , 1), which for honestly generated ciphertext is the case as cl+1 6= 1 in (7).

4 Witness-indistinguishability for a proof system for a language L means the following: no PPT adversary that given
crs chooses y, w0, w1 with R(y, w0) = R(y, w1) = 1 can distinguish π0 ← P(crs, y, w0) from π1 ← P(crs, y, w1).
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A CRS for this system consists of a CRS for GS proofs together with a commitment C to 1.
An SSS-NIZK proof for the statement y: “c(1) and c(2) encrypt the same message” is a GS proof
for the statement

c(1) and c(2) encrypt the same message OR C commits to (c(1), c(2)) . (9)

Statistical soundness follows from perfect soundness of GS proofs: since C is not a commitment
to (c(1), c(2)) 6= 1, the first clause in (9) must hold. Zero-knowledge holds since given a statement
y = (c(1), c(2)) the simulator can set the value C in the CRS to a commitment to y; a proof for y can
then be simulated by using use the second clause in (9). Since this is (in an information-theoretic
sense) the only statement that can be simulated, statistical simulation-soundness (SSS) holds as
well. We now present the details.

Language. A statement for our language Lenc defined in Eq. (4) is of the form (X(1),X(2),
c(1), c(2)), where X(1),X(2) ∈ G` are ElGamal encryption keys and c(1), c(2) ∈ G`+1 are ElGa-
mal encryptions of the same message. Since the public keys are hard-coded in the description of
Dskj ,crs(c, w) (defined in (5)), we need not include them in the statement. We therefore construct
a proof system for the language

Lpk1,pk2 :=

{
(c1, c2)

∣∣∣∣ ∃ (M, r1, r2) ∈ G` × (Z∗p)r : c1 = PK.Enc(pk1,M ; r1)

∧ c2 = PK.Enc(pk2,M ; r2)

}
,

where M is an encoding of (x,m).

Commitment. We define a non-interactive commitment scheme that lets us commit to a message(
c(1), c(2)

)
∈ G2`+2 as follows:

– The commitment key is ck =
(
K

(1)
1 , . . . ,K

(1)
`+1,K

(2)
1 , . . . ,K

(2)
`+1

)
← G2`+2.

– A commitment Com
(
ck, (c(1), c(2))

)
to a message

(
c(1), c(2)

)
∈ G2`+2 is computed by picking

rc ← Zp and setting

C =
((
C

(i)
j := c

(i)
j · (K

(i)
j )rc

)i=1,2

j=1...`+1
, C ′ := grc

)
.

A commitment can be opened by publishing the “opening” W = hrc , which allows verifying that
C is a commitment to (c(1), c(2)) by checking

e(C
(i)
j ·(c

(i)
j )−1, h) = e(K

(i)
j ,W ) for i = 1, 2 , j = 1 . . . , `+ 1 and

e(C ′, h) = e(g,W ) .

This yields a perfectly binding commitment scheme for messages from G2`+2, and, as the commit-
ment is an ElGamal encryption, it is computationally hiding under the DDH assumption in G.

Using Com we now define our SSS proof system for showing that two ciphertexts as in (7)
encrypt the same message M .

CRS generation. A CRS is generated by computing a CRS for GS proofs crsGS ← GS.G(Λ),
picking a commitment key ck← G2`+2 computing C ← Com(ck, (1, . . . , 1)) and outputting

crs := (crsGS, ck,C) .

Proof. We show how to prove, under CRS (crsGS, (K
(1),K(2)),C), a statement (c(1), c(2)) ∈

LX(1),X(2) , using as witness (r1, r2) such that c(i) =
(
(Mj · (X(i)

j )ri)`j=1, g
ri
)

for some M ∈ G`.
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Consider the following set of linear pairing-product equations in variables Hc, He,W1,W2,Wc ∈ H:

e(g,Hc) e(g,He) = e(g, h) (10)

e(C
(i)
j ·(c

(i)
j )−1, Hc) = e(K

(i)
j ,Wc) for i = 1, 2 , j = 1 . . . , `+ 1 (11)

e(C ′, Hc) = e(g,Wc) (12)

e(c
(1)
j ·(c

(2)
j )−1, He) = e(X

(1)
j ,W1) e((X

(2)
j )−1,W2) for j = 1, . . . , ` (13)

e(c
(i)
`+1, He) = e(g,Wi) for i = 1, 2 (14)

A proof of our SSS-NIZK proof system is a (witness-indistinguishable) GS proof of satisfiability of
the above equation system and is computed by using witness (r1, r2) and setting the variables to

Hc := 1 , He := h , Wc := 1 , W1 := hr1 , W2 := hr2 . (15)

Verification. A proof π for statement (c(1), c(2)) under CRS (crsGS, ck,C) is verified by veri-
fying the GS proof π under crsGS of satisfiability of equations (10)–(14) defined by the values in

c(1), c(2), ck = (K(1),K(2)) and C = ((C
(i)
j )i=1,2

j=1...`+1, C
′ := grc).

Completeness of our SSS NIZK proof system follows from completeness of GS proofs together
with the fact that the values in (15) satisfy (10)–(14).

Soundness. Below we show that a proof of satisfiability of equations (10)–(14) proves that

– either c(1) and c(2) are encryptions of the same message
– or C contained in the CRS is a commitment to (c(1), c(2)).

(16)

Since GS proofs are perfectly sound and an honestly generated CRS contains a commitment to
(1, . . . , 1), which is a valid statement, a valid proof shows that the “either” clause above is satisfied,
thus (c(1), c(2)) ∈ Lpk1,pk2 . We now show (16).

– Eq. (10) proves that either Hc 6= 1 or He 6= 1; since e(g, 1) e(g, 1) 6= e(g, h).

– If Hc 6= 1 then (11)–(12) prove that (C
(1)
1 , . . . , C

(1)
`+1, C

(2)
1 , . . . , C

(2)
`+1, C

′) commits to (c
(1)
1 , . . . ,

c
(1)
`+1, c

(2)
1 . . . , c

(2)
`+1):

Let η, ω ∈ Zp, η 6= 0 (since Hc 6= 1), be such that Hc = hη and Wc = hω. From (12)

we have C ′ = gω/η, whereas the equations in (11) yield C
(i)
j · (c

(i)
j )−1 = (K

(i)
j )ω/η, thus C

(i)
j =

c
(i)
j ·(K

(i)
j )ω/η, which together means that (C

(1)
1 , . . . , C

(2)
`+1, C

′) is a commitment to (c
(1)
1 , . . . , c

(2)
`+1)

with randomness rc = ω/η.

– If He 6= 1 then with η 6= 0, ω1 and ω2 such that He = hη and Wi = hωi the equations in (14)

yield that c
(i)
`+1 = gωi/η, for i = 1, 2. Set ri := ωi/η and let m

(i)
j be (the unique values) such

that c
(i)
j = gm

(i)
j · (X(i)

j )ri . Then the equations in (13) yield c
(1)
j ·(c

(2)
j )−1 = (X

(1)
j )r1 · (X(2)

j )−r2 ,

thus gm
(1)
j = gm

(2)
j for all j = 1, . . . , `, meaning c(1) and c(2) encrypt the same message.

Simulation. Given a statement (c(1), c(2)), the simulator sets up the CRS by choosing rc ← Zp
and setting C := Com(ck, (c(1), c(2)); rc). It simulates a proof for statement (c(1), c(2)) ∈ Lpk1,pk2
by computing a GS proof for equations (10)–(14) by instantiating the variables as

Hc := h , He := 1 , Wc := hrc , W1 := 1 , W2 := 1 .

Since the commitment in the CRS is hiding under DDH in G, and since GS proofs are witness-
indistinguishable under SXDH, this simulation is also indistinguishable under SXDH (which implies
DDH in G). Statistical simulation-soundness holds, since once the CRS is set up, (c(1), c(2)) is the
only statement for which a proof using the 2nd clause in (16) can be computed. Any other proof
must use the first clause, meaning the statement must be in the language.
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5.3 Cost of an Encryption

In standard implementations of bilinear groups for 128-bit security, G elements are of size 256 bits
and H elements are of size 512 bits. Let ` be such that pairs (x,m) are of size < 128 · ` bits, that
is, they can be mapped to G`.

An encryption in our WE scheme then consists of two ElGamal ciphertexts (each in G`+1) and a
GS proof with 5 variables in H (requiring 10 elements from H) and 3`+6 linear equations (requiring
6`+ 12 elements from G). Computing an ElGamal encryption requires `+ 1 exponentiations and `
group operations in G. The 2 elements from H required for each variable require 2 exponentiations
and one group operation in H. The 2 elements from G required for each equation are computed
using together 4 exponentiations and 2 group operations in G.

With the above instantiation the output of Enc is in G8`+14×H10. If two group elements suffice
to encode pairs (x,m) then one encryption has ≈ 1.6 kB. For every 128-bit increase of the message
length, the encryption only grows by 8 elements from G, that is 0.25 kB.

Acknowledgements. We would like to thank Ilan Komargodski and Mark Zhandry for clarifying
the definition of reusable witness encryption.
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A Proofs

Below, we assume that the adversary A is deterministic, which is without loss of generality as we
always can fix A’s random coins to some value maximizing its advantage. As A has zero advantage
if the x it initially outputs is in L, we can further assume w.l.o.g. that the x initially output by A
is never in L.

A.1 Proof of Proposition 1

Proof. Assume towards contradiction that there exists a polynomial p(·) such that for infinitely
many λ ∣∣Pr

[
Exp(0)(λ) = 1

]
− Pr

[
Exp(1)(λ) = 1

]∣∣ ≥ 1
p(λ) .

We use A to construct a non-uniform PPT adversary B against the zero-knowledge security of
NIZK (cf.(2)) as follows:5

B(1λ):

– (x,m0,m1, st)← A1(1λ).

– (sk1, pk1)← PK.Gen(1λ) and (sk2, pk2)← PK.Gen(1λ).

– r1, r2 ← {0, 1}`PK(λ).
– c1 := PK.Enc(pk1, (x,m0); r1) and c2 := PK.Enc(pk2, (x,m0); r2).

– Set y = (pk1, pk2, c1, c2) and w = (x,m0, r1, r2) and note that Renc(y, w) = 1.

– Submit (y, w) to the zero-knowledge game of (2) to obtain either

– An honest (crs∗, π∗): crs∗ ← NIZK.G(1λ) and π∗ ← NIZK.P(crs∗, y, w), or

– A simulated (crs∗, π∗): (crs∗, τ)← NIZK.S1(1
λ, y), and π∗ ← NIZK.S2(crs

∗, τ, y)

– Set π = π∗ and crs = crs∗.

– Construct D := Dskj ,crs with j = 1 as defined in (5).

– D̃ ← iO(1λ, D).

– Set ppe = (crs, pk1, pk2), ppd = D̃, and c = (x, c1, c2, π).

– Output b′ ← A2(st, c, ppe,ppd).

By construction, if (crs∗, π∗) is generated honestly then B simulates Exp(0), and if (crs∗, π∗) is
simulated then B simulates Exp(1). Therefore, for infinitely many λ it holds that

1
p(λ) ≤

∣∣Pr
[
Exp(0)(λ) = 1

]
− Pr

[
Exp(1)(λ) = 1

]∣∣ =∣∣∣∣Pr

[
crs← G(1λ);
π←P(crs, y, w)

:
B(crs, y, π)

= 1

]
− Pr

[
(crs, τ)←S1(1

λ, y);
π ← S2(crs, τ, y)

:
B(crs, y, π)

= 1

]∣∣∣∣ .
We therefore reach a contradiction to the zero-knowledge security of NIZK, and conclude that∣∣Pr

[
Exp(0)(λ) = 1

]
− Pr

[
Exp(1)(λ) = 1

]∣∣ = negl(λ) .

5 We even break a weaker definition of zero-knowledge where (2) is only required to hold for pairs (y, w) with
R(y, w) = 1 output by A rather than for any such pair.
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A.2 Proof of Proposition 2

Proof. Assume towards contradiction that there exists a polynomial p(·) such that for infinitely
many λ ∣∣Pr

[
Exp(1)(λ) = 1

]
− Pr

[
Exp(2)(λ) = 1

]∣∣ ≥ 1
p(λ) .

We use A to construct a non-uniform PPT adversary B = (B1,B2) for the CPA security game
ExpCPA-b

B (λ) of PKE (cf. Fig. 1) as follows:

B1(1λ, pk):

– (x,m0,m1, stA)← A1(1λ).

– (sk1, pk1)← PK.Gen(1λ) and set pk2 = pk.

– r1 ← {0, 1}`PK(λ).
– c1 := PK.Enc(pk1, (x,m0); r1).

– Set m′0 = (x,m0), m′1 = (x,m1), and st = (sk1,pk1, c1, r1, x,m0,m1, stA).

– Output (m′0,m
′
1, st).

B2(st, c′b):

– Set c2 = c′b and y = (pk1, pk2, c1, c2).

– (crs, τ)← NIZK.S1(1
λ, y).

– π ← NIZK.S2(crs, τ, y).

– Construct D := Dskj ,crs with j = 1 as defined in (5).

– D̃ ← iO(1λ, D).

– Set ppe = (crs, pk1, pk2), ppd = D̃, and c = (x, c1, c2, π).

– Output b′ ← A2(stA, c, ppe,ppd).

By construction, if c′b ← PK.Enc(pk,m′0) then B simulates Exp(1), and if c′b ← PK.Enc(pk,m′1)

then B simulates Exp(2). Therefore, for infinitely many λ, it holds that

1
p(λ) ≤

∣∣Pr
[
Exp(1)(λ) = 1

]
− Pr

[
Exp(2)(λ) = 1

]∣∣ =∣∣Pr
[
ExpCPA-0

B (λ) = 1
]
− Pr

[
ExpCPA-1

B (λ) = 1
]∣∣ .

We therefore reach a contradiction to the CPA security of PKE, and conclude that

∣∣Pr
[
Exp(1)(λ) = 1

]
− Pr

[
Exp(2)(λ) = 1

]∣∣ = negl(λ) .

A.3 Proof of Proposition 3

Proof. Assume towards contradiction that there exists a polynomial p(·) such that for infinitely
many λ ∣∣Pr

[
Exp(2)(λ) = 1

]
− Pr

[
Exp(3)(λ) = 1

]∣∣ ≥ 1
p(λ) .

Then we use A to construct a non-uniform PPT adversary B = (B1,B2) against the indistinguisha-
bility security of iO (cf. (1)) as follows:6

6 We actually break a weaker definition of iO where (1) is only required to hold for pairs (C0, C1) with C0 ≡ C1

output by A rather than for any such pair.
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B(1λ):

– (x̄, m̄0, m̄1, st)← A1(1λ).

– (sk1, pk1)← PK.Gen(1λ) and (sk2, pk2)← PK.Gen(1λ).

– r1, r2 ← {0, 1}`PK(λ).
– Set c̄1 = PK.Enc(pk1, (x̄, m̄0); r1) and c̄2 = PK.Enc(pk2, (x̄, m̄1); r2).

– Set ȳ = (pk1, pk2, c̄1, c̄2).

– (crs, τ)← NIZK.S1(1
λ, ȳ).

– π̄ ← NIZK.S2(crs, τ, ȳ).

– Construct Dj := Dskj ,crs for j = 1, 2 as defined in (5).

– Submit (D1, D2) to the iO challenger to obtain D̃ ← iO(1λ, Dj).

– Set ppe = (crs, pk1, pk2), ppd = D̃, and c̄ = (x̄, c̄1, c̄2, π̄).

– Output b′ ← A2(stA, c̄,ppe, ppd).

By construction, if D̃ ← iO(1λ, D1) then B simulates Exp(2), and if D̃ ← iO(1λ, D2) then B
simulates Exp(3). Therefore, for infinitely many λ, it holds that

1
p(λ) ≤

∣∣Pr
[
Exp(2)(λ) = 1

]
− Pr

[
Exp(3)(λ) = 1

]∣∣ =∣∣Pr
[
B(iO(1λ, D1)) = 1

]
− Pr

[
B(iO(1λ, D2)) = 1

]∣∣ . (17)

We show that statistical simulation soundness of NIZK implies D1 ≡ D2. Let ((x, c1, c2, π), w) be
an arbitrary input. We distinguish the following cases and show that D1 and D2 have the same
output.

Case 1 x = x̄, c1 = c̄1 and c2 = c̄2: Since x̄ /∈ L, we have R(x,w) = 0, thus both D1 and D2

return ⊥ because of the 2nd check in line 4.
Case 2 x 6= x̄, c1 = c̄1 and c2 = c̄2: By correctness of PKE, circuit Dj computes (x̄, m̄j) in line 3

and both return ⊥ because x̄ 6= x in line 4.
Case 3 c1 6= c̄1 or c2 6= c̄2: If PK.Dec(sk0, c1) = PK.Dec(sk1, c2) then both D1 and D2 have the

same behavior (as the circuits only differ in line 3). If the decryptions differ then by correctness
of PKE we have y := (pk1, pk2, c1, c2) /∈ Lenc. Since y 6= ȳ (for which crs was simulated by
NIZK.S1), by SSS of NIZK we have NIZK.V(crs, y, π) = 0, which means that both D1 and D2

return ⊥ because of the check in line 2.

We thus have D1 ≡ D2 which together with (17) contradicts the security of iO. We conclude that∣∣Pr
[
Exp(2)(λ) = 1

]
− Pr

[
Exp(3)(λ) = 1

]∣∣ = negl(λ) .

A.4 Proofs of Propositions 4, 5 and 6

The proofs of Propositions 4, 5 and 6 are analogous to those of Propositions 2, 3 and 1, respectively.
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