
FORQ-Based Language Inclusion Formal
Testing

Kyveli Doveri1,2 , Pierre Ganty1(B) , and Nicolas Mazzocchi1,3

1 IMDEA Software Institute,
Madrid, Spain

{kyveli.doveri,pierre.ganty,
nicolas.mazzocchi}@imdea.org

2 Universidad Politécnica de Madrid,
Madrid, Spain

3 Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract. We propose a novel algorithm to decide the language inclu-
sion between (nondeterministic) Büchi automata, a PSpace-complete
problem. Our approach, like others before, leverage a notion of qua-
siorder to prune the search for a counterexample by discarding candidates
which are subsumed by others for the quasiorder. Discarded candidates
are guaranteed to not compromise the completeness of the algorithm.
The novelty of our work lies in the quasiorder used to discard candi-
dates. We introduce FORQs (family of right quasiorders) that we obtain
by adapting the notion of family of right congruences put forward by
Maler and Staiger in 1993. We define a FORQ-based inclusion algorithm
which we prove correct and instantiate it for a specific FORQ, called the
structural FORQ, induced by the Büchi automaton to the right of the
inclusion sign. The resulting implementation, called Forklift, scales
up better than the state-of-the-art on a variety of benchmarks includ-
ing benchmarks from program verification and theorem proving for word
combinatorics. Artifact: https://doi.org/10.5281/zenodo.6552870

Keywords: Language inclusion · Büchi automata · Well-quasiorders

1 Introduction

In verification [19,20] and theorem proving [31], Büchi automata have been used
as the underlying formal model. In these settings, Büchi automata respectively
encode 1) the behaviors of a system as well as properties about it; and 2) the
set of valuations satisfying a predicate. Questions like asking whether a system
complies with a specification naturally reduce to a language inclusion problem
and so does proving a theorem of the form ∀x ∃y, P (x) ⇒ Q(y).

This work was partially funded by the ESF Investing in your future, the Madrid
regional project S2018/TCS-4339 BLOQUES, the Spanish project PGC2018-102210-
B-I00 BOSCO, the Ramón y Cajal fellowship RYC-2016-20281, and the ERC grant
PR1001ERC02.

c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13372, pp. 109–129, 2022.
https://doi.org/10.1007/978-3-031-13188-2_6

https://doi.org/10.5281/zenodo.6552870
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13188-2_6&domain=pdf
http://orcid.org/0000-0001-9403-2860
http://orcid.org/0000-0002-3625-6003
http://orcid.org/0000-0001-6425-5369
https://doi.org/10.5281/zenodo.6552870
https://doi.org/10.1007/978-3-031-13188-2_6

110 K. Doveri et al.

In this paper we propose a new algorithm for the inclusion problem
between ω-regular languages given by Büchi automata. The problem is PSpace-
complete [23] and significant effort has been devoted to the discovery of algo-
rithms for inclusion that behave well in practice [8,10,14,18,22,25]. Each pro-
posed algorithm is characterized by a set of techniques (e.g. Ramsey-based,
rank-based) and heuristics (e.g. antichains, simulation relations). The algorithm
we propose falls into the category of Ramsey-based algorithms and uses the
antichain [11] heuristics: the search for counterexamples is pruned using qua-
siorders. Intuitively when two candidate counterexamples are comparable with
respect to some considered quasiorder, the “higher” of the two can be discarded
without compromising completeness of the search. In our setting, counterexam-
ples to inclusion are ultimately periodic words, i.e., words of the form uvω, where
u and v are called a stem and a period, respectively. Therefore pruning is done by
comparing stems and periods of candidate counterexamples during the search.

In the work of Abdulla et al. [7,8] which was further refined by Clemente et
al. [10] they use a single quasiorder to compare both stems and periods. Their
effort has been focused on refining that single quasiorder by enhancing it with
simulation relations. Others including some authors of this paper, followed an
orthogonal line [13,22] that investigates the use of two quasiorders: one for the
stems and another one, independent, for the periods. The flexibility of using
different quasiorders yields more pruning when searching for a counterexample.
In this paper, we push the envelope further by using an unbounded number of
quasiorders: one for the stems and a family of quasiorders for the periods each of
them depending on a distinct stem. We use the acronym FORQ, which stands for
family of right quasiorders, to refer to these quasiorders. Using FORQs leads to
significant algorithmic differences compared to the two quasiorders approaches.
More precisely, the algorithms with two quasiorders [13,22] compute exactly two
fixpoints (one for the stems and one for the periods) independently whereas the
FORQ-based algorithm that we present computes two fixpoints for the stems and
unboundedly many fixpoints for the periods (depending on the number of stems
that belong to the first two fixpoints). Even though we lose the stem/period
independence and we compute more fixpoints, in practice, the use of FORQs
scales up better than the approaches based on one or two quasiorders.

We formalize the notion of FORQ by relaxing and generalizing the notion
of family of right congruences introduced by Maler and Staiger [30] to advance
the theory of recognizability of ω-regular languages and, in particular, questions
related to minimal-state automata. Recently, families of right congruences have
been used in other contexts like the learning of ω-regular languages (see [9] and
references therein) and Büchi automata complementation [26].

Below, we describe how our contributions are organized:

– We define the notion of FORQs and leverage them to identify key finite sets
of stems and periods that are sound and complete to decide the inclusion
problem (Sect. 3).

– We introduce a FORQ called the structural FORQ which relies on the structure
of a given Büchi automaton (Sect. 4).

FORQ-Based Language Inclusion Formal Testing 111

– We formulate a FORQ-based inclusion algorithm that computes such key
sets as fixpoints, and then use these key stems and periods to search for
a counterexample to inclusion via membership queries (Sect. 5).

– We study the algorithmic complexity of the FORQ-based inclusion algorithm
instantiated with structural FORQs (Sect. 6).

– We implement the inclusion algorithm with structural FORQs in a prototype
called Forklift and we conduct an empirical evaluation on a set of 674
benchmarks (Sect. 7).

2 Preliminaries

Languages. Let Σ be a finite and non-empty alphabet. We write Σ∗ to refer
to the set of finite words over Σ and we write ε to denote the empty word.
Given u ∈ Σ∗, we denote by |u| the length of u. In particular |ε| = 0. We also
define Σ+ � Σ∗ \ {ε}, and Σ∇n � {u ∈ Σ∗ | |u| ∇ n} with ∇ ∈ {≤,≥},
hence Σ∗ = Σ≥0, Σ+ = Σ≥1. We write Σω to refer to the set of infinite words
over Σ. An infinite word μ ∈ Σω is said to be ultimately periodic if it admits
a decomposition μ = uvω with u ∈ Σ∗ (called a stem) and v ∈ Σ+ (called a
period). We fix an alphabet Σ throughout the paper.

Order Theory. Let E be a set of elements and � be a binary relation over E.
The relation � is said to be a quasiorder when it is reflexive and transitive. Given
a subset X of E, we define its upward closure with respect to the quasiorder �

by ��X � {e ∈ E | ∃x ∈ X,x � e}. Given two subsets X,Y ⊆ E the set
Y is said to be a basis for X with respect to �, denoted B�(Y,X), whenever
Y ⊆ X and ��X = ��Y . The quasiorder � is a well-quasiorder iff for each set
X ⊆ E there exists a finite set Y ⊆ E such that B�(Y,X). This property on
bases is also known as the finite basis property. Other equivalent definitions of
well-quasiorders can be found in the literature [27], we will use the followings:

1. For every {ei}i∈N ∈ EN there exists i, j ∈ N with i < j such that ei � ej .
2. No sequence {Xi}i∈N ∈ ℘(E)N is such that ��X1 � ��X2 � . . . holds.1

Automata. A (nondeterministic) Büchi automaton B (BA for short) is a tuple
(Q, qI ,Δ, F) where Q is a finite set of states including qI , the initial state,
Δ ⊆ Q × Σ × Q is the transition relation, and, F ⊆ Q is the set of accepting
states. We lift Δ to finite words as expected. We prefer to write B : q1 u−−→ q2
instead of (q1, u, q2) ∈ Δ. In addition, we write B : q1 u−−→F q2 when there exists a
state qF ∈ F and two words u1, u2 such that B : q1 u1−−→ qF u2−−→ q2, and u = u1u2.

A run π of B over μ = a0a1 · · · ∈ Σω is a function π : N → Q such that
π(0) = qI and for all position i ∈ N, we have that B : π(i) ai−−→ π(i + 1). A
run is said to be accepting if π(i) ∈ F for infinitely many values of i ∈ N. The
language L(B) of words recognized by B is the set of ω-words for which B admits
an accepting run. A language L is ω-regular if it is recognized by some BA.

1 The notation ℘(E) denotes the set of all subsets of E.

112 K. Doveri et al.

3 Foundations of Our Approach

Let A � (P, pI ,ΔA, FA) be a Büchi automaton and M be an ω-regular language.
The main idea behind our approach is to compute a finite subset TA of ultimately
periodic words of L(A) such that:

TA ⊆ M ⇐⇒ L(A) ⊆ M . (†)
Then L(A) ⊆ M holds iff each of the finitely many words of TA belongs to M
which is tested via membership queries.

First we observe that such a subset always exists: if the inclusion holds take
TA to be any finite subset of L(A) (empty set included); else take TA to contain
some ultimately periodic word that is a counterexample to inclusion. In what
follows, we will show that a finite subset TA satisfying (†) can be computed by
using an ordering to prune the ultimately periodic words of L(A). We will obtain
such an ordering using a family of right quasiorders, a notion introduced below.

Definition 1 (FORQ). A family of right quasiorders is a pair 〈<∼, {�∼u}u∈Σ∗〉
where <∼ ⊆ Σ∗ × Σ∗ is a right-monotonic2 quasiorder as well as every �∼u ⊆
Σ∗ × Σ∗ where u ∈ Σ∗. Additionally, for all u, u′ ∈ Σ∗, we require u <∼ u′ ⇒
�∼u′ ⊆ �∼u called the FORQ constraint.

First, we observe that the above definition uses separate orderings for stems
and periods. The definition goes even further, the ordering used for periods is
depending on stems so that a period may or may not be discarded depending on
the stem under consideration. The FORQ constraint tells us that if the periods
v and w compare for a stem u′, that is v �∼u′ w, then they also compare for
every stem u subsuming u′, that is v �∼u w if u <∼ u′.

Expectedly, a FORQ needs to satisfy certain properties for TA to be finite,
computable and for (†) to hold (in particular the left to right direction). The
property of right-monotonicity of FORQs is needed so that we can iteratively
compute TA via a fixpoint computation (see Sect. 5).

Definition 2 (Suitable FORQ). A FORQ F � 〈<∼, {�∼u}u∈Σ∗〉 is said to be
finite (resp. decidable) when <∼, its converse <∼−1, and {�∼u} for all u ∈ Σ∗ are
all well-quasiorders (resp. computable). Given L ⊆ Σω, F is said to preserve L
when for all u, û ∈ Σ∗ and all v, v̂ ∈ Σ+ if uvω ∈ L, u <∼ û, v �∼û v̂ and û v̂ <∼ û
then ûv̂ω ∈ L. Finally, F is said to be L-suitable (for inclusion) if it is finite,
decidable and preserves L.

Intuitively, the “well” property on the quasiorders ensures finiteness of TA.
The preservation property ensures completeness: a counterexample to L(A) ⊆ M
can only be discarded (that is, not included in TA) if it is subsumed by another
ultimately periodic word in TA that is also a counterexample to inclusion.

Before defining TA we introduce for each state p ∈ P the sets of words

Stemp � {u ∈ Σ∗ | A : pI u−−→ p} and Perp � {v ∈ Σ+ | A : p v−−→ p} .

2 A quasiorder � on Σ∗ is right-monotonic when u�v implies u w�v w for all w ∈ Σ∗.

FORQ-Based Language Inclusion Formal Testing 113

The set Stemp is the set of stems of L(A) that reach state p in A while the
set Perp is the set of periods read by a cycle of A on state p.

Given a M -suitable FORQ F � 〈<∼, {�∼u}u∈Σ∗〉, we let

TA �
{
uvω | ∃s ∈ FA : u ∈ Us, v ∈ V w

s for some w ∈ Ws with u <∼ w
}

(‡)
where for all p ∈ P , the set Up is a basis of Stemp with respect to <∼, that
is B<∼(Up, Stemp) holds. Moreover B<∼−1(Wp, Stemp) holds and B�∼w

(V w
p , Perp)

holds for all w ∈ Wp. Note that the quasiorder �∼w used to prune the periods
of Perp depends on a maximal w.r.t. <∼ stem w of Stemp since w belongs to the
basis Wp for <∼−1. The correctness argument for choosing �∼w essentially relies
on the FORQ constraint as the proof of (†) given below shows. In Sect. 8 we
will show, that when w is not “maximal” the quasiorder �∼w yields a set TA for
which (†) does not hold.

Furthermore, we conclude from the finite basis property of the quasiorders of
F that Up, Wp and {V w

p }w∈Σ∗ are finite for all p ∈ P , hence TA is a finite subset
of ultimately periodic words of L(A). Next we prove the equivalence (†). The
proof crucially relies on the preservation property of F which allows discarding
candidate counterexamples without loosing completeness, that is, if inclusion
does not hold a counterexample will be returned.

Proof (of (†)). Consider UltimA � {uvω | ∃s ∈ FA : u ∈ Stems, v ∈ Pers, uv <∼
u}. It is easy to show that UltimA = {uvω | ∃s ∈ FA : u ∈ Stems, v ∈ Pers}
(same definition as UltimA but without the constraint uv <∼ u) by reasoning
on properties of well-quasi orders.3 It is well-known that ω-regular language
inclusion holds if and only if it holds for ultimately periodic words. Formally
L(A) ⊆ M holds if and only if UltimA ⊆ M holds. Therefore, to prove (†), we
show that TA ⊆ M ⇔ UltimA ⊆ M .

To prove the implication UltimA ⊆ M ⇒ TA ⊆ M we start by taking a
word uvω ∈ TA such that, by definition (‡), u ∈ Us and v ∈ V w

s for some
s ∈ FA and w ∈ Ws. We conclude from B<∼(Us, Stems) and B�∼w

(V w
s , Pers) that

u ∈ Us ⊆ Stems and v ∈ V w
s ⊆ Pers. Thus, we find that uvω ∈ UltimA hence

the assumption UltimA ⊆ M shows that uvω ∈ M which proves the implication.
Next, we prove that TA ⊆ M ⇒ UltimA ⊆ M holds as well. Let uvω ∈

UltimA, i.e., such that there exists s ∈ FA for which u ∈ Stems and v ∈ Pers,
satisfying uv <∼ u. Since u ∈ Stems and v ∈ Pers, there exist u0 ∈ Us, w0 ∈ Ws

and v0 ∈ V w0
s such that u0 <∼ u <∼ w0 and v0 �∼w0 v thanks to the finite basis

property. By definition we have u0v
ω
0 ∈ TA and thus we find that u0v

ω
0 ∈ M since

TA ⊆ M . Next since u <∼ w0, the FORQ constraint shows that �∼w0 ⊆ �∼u which,
in turn, implies that v0 �∼u v holds. Finally, we deduce from u0v

ω
0 ∈ M , u0 <∼ u,

v0 �∼u v, uv <∼ u and the preservation of M by the FORQ F that uvω ∈ M . We
thus obtain that UltimA ⊆ M and we are done. ��
3 The case ⊆ is trivial. For the case ⊇, let uvω with u ∈ Stems and v ∈ Pers. If

uv <∼ u then we are done for otherwise consider the sequence {uvi}i∈N. Since <∼
−1

is a well-quasiorder, there exists x, y ∈ N such that x < y and uvx <∼
−1 uvy (viz.

uvy <∼ uvx). Therefore we have (uvx)(vy−x)ω = uvω, (uvx) ∈ Stems, (vy−x) ∈ Pers,
and (uvx)(vy−x) <∼ (uvx), hence uvω ∈ UltimA.

114 K. Doveri et al.

Example 3. To gain more insights about our approach consider the BAs of Fig. 1
for which we want to check whether L(A) ⊆ L(B) holds. From the description
of A it is routine to check that StempI

= Σ∗ and PerpI
= Σ+. Let us assume

the existence4 of <∼ (hence <∼−1), �∼ε and �∼aa such that a <∼ aa holds and so
does B<∼({ε, a}, Σ∗), B<∼−1({ε, aa}, Σ∗), B�∼ε

({b}, Σ+) and B�∼aa
({a}, Σ+). In

addition, we set UpI
= {ε, a} since B<∼({ε, a}, Σ∗) and WpI

= {ε, aa} since
B<∼−1({ε, aa}, Σ∗). Moreover V ε

pI
= {b} since B�∼ε({b}, Σ+), and V aa

pI
= {a}

since B�∼aa
({a}, Σ+). Next by definition (‡) of TA and from a <∼ aa we deduce

that TA = {ε(b)ω, a(a)ω}. Finally, we conclude from (†) and aω ∈ TA that
aω ∈ L(A) (since TA ⊆ L(A)) hence that L(A) � L(B) because aω /∈ L(B). By
checking membership of the two ultimately periodic words of TA into L(B) we
thus have shown that L(A) ⊆ L(B) does not hold.

In the example above we did not detail how the FORQ was obtained let alone
how to compute the finite bases. We fill that gap in the next two sections: we
define FORQs based on the underlying structure of a given BA in Sect. 4 and
show they are suitable; and we give an effective computation of the bases hence
our FORQ-based inclusion algorithm in Sect. 5.

4 Defining FORQs from the Structure of an Automaton

In this section we introduce a type of FORQs called structural FORQs such that
given a BA B the structural FORQ induced by B is L(B)-suitable.

Definition 4. Let B � (Q, qI ,ΔB, FB) be a BA. The structural FORQ of B is
the pair 〈<∼B, {�∼B

u}u∈Σ∗〉 where the quasiorders are defined by:

u1 <∼
B u2

�⇐⇒ TgtB(u1) ⊆ TgtB(u2)

v1 �∼B
u v2

�⇐⇒ CxtB(TgtB(u), v1) ⊆ CxtB(TgtB(u), v2)

with TgtB : ℘(Q) × Σ∗ → ℘(Q) and CxtB : ℘(Q) × Σ∗ → ℘(Q2 × {⊥,�})

TgtB(u) � {q′ ∈ Q | B : qI u−−→ q′}
CxtB(X, v) � {(q, q′, k) | q ∈ X, B : q v−−→ q′, (k = � ⇒ B : q v−−→F q′)}

Given u ∈ Σ∗, the set TgtB(u) contains states that u can “target” from
the initial state qI . A “context” (q, q′, k) returned by CxtB, consists in a source
state q ∈ Q, a sink state q′ ∈ Q and a boolean k ∈ {�,⊥} that keeps track
whether an accepting state is visited. Note that, having ⊥ as last component of
a context does not mean that no accepting state is visited. When it is clear from
the context, we often omit the subscript B from TgtB and CxtB. Analogously, we
omit the BA from the structural FORQ quasiorders when there is no ambiguity.

Lemma 5. Given a BA B, the pair 〈<∼B, {�∼B
u}u∈Σ∗〉 of Definition 4 is a FORQ.

4 The definition of the orderings, needed to compute the bases, are given in Example 6.

FORQ-Based Language Inclusion Formal Testing 115

(A)

pI

a, b (B)

qI q1 q2
a, b a, b

a, b b

Fig. 1. Büchi automata A and B over the alphabet Σ = {a, b}.

Proof. Let B � (Q, qI ,ΔB, FB) be a BA, we start by proving that the FORQ
constraint holds: u <∼B u′ =⇒ �∼B

u′ ⊆ �∼B
u . First, we observe that, for all Y ⊆

X ⊆ Q and all v, v′ ∈ Σ∗, we have that Cxt(X, v) ⊆ Cxt(X, v′) ⇒ Cxt(Y, v) ⊆
Cxt(Y, v′). Consider u, u′ ∈ Σ∗ such that u <∼B u′ and v, v′ ∈ Σ∗ such that
v �∼B

u′ v′. Let X � Tgt(u) and X ′ � Tgt(u′), we have that X ⊆ X ′ following
u <∼B u′. Next, we conclude from v �∼B

u′ v′ that Cxt(X ′, v) ⊆ Cxt(X ′, v′), hence
that Cxt(X, v) ⊆ Cxt(X, v′) by the above reasoning using X ⊆ X ′, and finally
that v �∼B

u v′.
For the right monotonicity, Definition 4 shows that if Tgt(u) ⊆ Tgt(v) then

Tgt(ua) ⊆ Tgt(va), hence we have u <∼ v implies ua <∼ va for all a ∈ Σ. The
reasoning with the other quasiorders and Cxt proceeds analogously. ��

Example 6. Consider the BA B of Fig. 1 and let 〈<∼, {�∼u}u∈Σ∗〉 be its structural
FORQ. More precisely, we have Tgt(ε) = {qI}; Tgt(a) = Tgt(b) = {q1}; and
Tgt(u) = {q1, q2} for all u ∈ Σ≥2. In particular we conclude from u1 <∼ u2

�⇐⇒
Tgt(u1) ⊆ Tgt(u2) that a <∼ aa, a <∼ b and b <∼ a; ε and a are incomparable; and
so are ε and aa. Since Tgt has only three distinct outputs, the set {�∼u}u∈Σ∗

contains three distinct quasiorders.

1. v1 �∼ε v2
�⇐⇒ Cxt({qI}, v1) ⊆ Cxt({qI}, v2) where

– Cxt({qI}, ε) = {(qI , qI ,⊥)}
– Cxt({qI}, a) = Cxt({qI}, b) = {(qI , q1,⊥)}
– Cxt({qI}, v) = {(qI , q1,⊥), (qI , q2,⊥), (qI , q2,�)} for all v ∈ Σ≥2

2. v1 �∼a v2 ⇐⇒ v1 �∼b v2
�⇐⇒ Cxt({q1}, v1) ⊆ Cxt({q1}, v2) where

– Cxt({q1}, ε) = {(q1, q1,⊥)}
– Cxt({q1}, v) = {(q1, q1,⊥), (q1, q2,⊥), (q1, q2,�)} for all v ∈ Σ+

3. v1 �∼u1 v2 ⇐⇒ v1 �∼u2 v2
�⇐⇒ Cxt({q1, q2}, v1) ⊆ Cxt({q1, q2}, v2) for all

u1, u2 ∈ Σ≥2 where
– Cxt({q1, q2}, ε) = {(q1, q1,⊥), (q2, q2,⊥), (q2, q2,�)}
– Cxt({q1, q2}, v) = {(q1, q1,⊥), (q1, q2,⊥), (q1, q2,�)} for all v ∈ Σ+{b}+
– Cxt({q1,q2}, v) = {(q1,q1,⊥),(q1,q2,⊥),(q1,q2,�),(q2,q2,⊥),(q2,q2,�)} for

all v ∈ {b}+

With the above definitions the reader is invited to check the following
predicates B<∼({ε, a}, Σ∗), B<∼({ε, b}, Σ∗), B<∼−1({ε, aa}, Σ∗), B�∼ε

({b}, Σ+),
B�∼a

({b}, Σ+) and B�∼aa
({a}, Σ+). Also observe that none of the above finite

bases contains comparable words for the ordering thereof. We also encourage the
reader to revisit Example 3.

116 K. Doveri et al.

As prescribed in Sect. 3, we show that for every BA B its structural FORQ is
L(B)-suitable, namely it is finite, decidable and preserves L(B).

Proposition 7. Given a BA B, its structural FORQ is L(B)-suitable.

Proof. Let B � (Q, qI ,ΔB, FB) be a BA and F � 〈<∼, {�∼u}u∈Σ∗〉 be its structural
FORQ. The finiteness proof of F is trivial since Q is finite and so is the proof
of decidability by Definition 4. For the preservation, given u0v

ω
0 ∈ L(B), we

show that for all u ∈ Σ∗ and all v ∈ Σ+ such that uv <∼ u and u0 <∼ u and
v0 �∼u v then uvω ∈ L(B) holds. Let a run π0 � qI u0−−→ q0 v0−−→ q1 v0−−→ q2 . . . of
B over u0v

ω
0 which is accepting. Stated equivalently, we have q0 ∈ Tgt(u0) and

(qi, qi+1, xi) ∈ Cxt(Tgt(u0v
i
0), v0) for every i ∈ N with the additional constraint

that xi = � holds infinitely often.
We will show that B has an accepting run over uvω by showing that

q0 ∈ Tgt(u) holds; (qi, qi+1, xi) ∈ Cxt(Tgt(uvi), v) holds for every i ∈ N;
and xi = � holds infinitely often. Since u0 <∼ u and q0 ∈ Tgt(u0) we find
that q0 ∈ Tgt(u) by definition of <∼. Next we show the remaining constraints
by induction. The induction hypothesis states that for all 0 ≤ n we have
(qn, qn+1, xn) ∈ Cxt(Tgt(uvn), v). For the base case (n = 0) we have to show that
(q0, q1, x0) ∈ Cxt(Tgt(u), v). We conclude from (q0, q1, x0) ∈ Cxt(Tgt(u), v0),
v0 �∼u v and the definition of �∼u that Cxt(Tgt(u), v0) ⊆ Cxt(Tgt(u), v)
and finally that (q0, q1, x0) ∈ Cxt(Tgt(u), v). For the inductive case, assume
(qn, qn+1, xn) ∈ Cxt(Tgt(uvn), v). The definition of context shows that qn+1 ∈
Tgt(uvn+1). It takes an easy an induction to show that uvn <∼ u for all n
using uv <∼ u and right-monotonicity of <∼. We conclude from uvn+1 <∼ u,
the definition of <∼ and qn+1 ∈ Tgt(uvn+1) that qn+1 ∈ Tgt(u) also holds,
hence that (qn+1, qn+2, xn+1) ∈ Cxt(Tgt(u), v0) following the definition of con-
texts and that of π0. Next, we find that (qn+1, qn+2, xn+1) ∈ Cxt(Tgt(u), v)
following a reasoning analogous to the base case, this time starting with
(qn+1, qn+2, xn+1) ∈ Cxt(Tgt(u), v0)). Finally, qn+1 ∈ Tgt(uvn+1) implies that
(qn+1, qn+2, xn+1) ∈ Cxt(Tgt(uvn+1), v). We have thus shown that q0 ∈ Tgt(u)
and (qi, qi+1, xi) ∈ Cxt(Tgt(uvi), v) for every i ∈ N with the additional con-
straint that xi = � holds infinitely often and we are done. ��

5 A FORQ-Based Inclusion Algorithm

As announced at the end of Sect. 3 it remains, in order to formulate our FORQ-
based algorithm deciding whether L(A) ⊆ M holds, to give an effective compu-
tation for the bases defining TA. We start with a fixpoint characterization of the
stems and periods of BAs using the function RcatA : ℘(Σ∗)|P | → ℘(Σ∗)|P |:

RcatA(�X).p � �X.p ∪ {
wa ∈ Σ∗ | w ∈ �X.p′, a ∈ Σ,A : p′ a−−→ p

}

where �S.p denotes the p-th element of the vector �S ∈ ℘(Σ∗)|P |. In Fig. 2, the
repeat/until loops at lines 4 and 5 compute iteratively subsets of the stems of A,
while the loop at line 10 computes iteratively subsets of the periods of A. The
following lemma formalizes the above intuition.

FORQ-Based Language Inclusion Formal Testing 117

Input: Büchi automaton A � (P, pI , ΔA, FA)
Input: ω-regular language M with procedure deciding uvω ∈ M given u, v
Input: M -suitable FORQ F � 〈<∼, {�∼u}u∈Σ∗〉
Output: Returns ok if L(A) ⊆ M and ko otherwise

1 Function:

2 let �U0 ∈ ℘(Σ∗)|P | as �U0.p � ∅ with p 	= pI and �U0.pI � {ε}
3 �W := �U := �U0

4 repeat �W := RcatA(�W) until B<∼−1(�W .p, RcatA(�W).p) for all p ∈ P

5 repeat �U := RcatA(�U) until B<∼(�U.p, RcatA(�U).p) for all p ∈ P
6 for each s ∈ FA do

7 let �V s
1 ∈ ℘(Σ∗)|P | as �V s

1 .p � {a ∈ Σ | A : s a−−→ p} with p ∈ P

8 for each w ∈ �W .s do

9 �V s := �V s
1

10 repeat �V s := RcatA(�V s) until B�∼w (�V s.p, RcatA(�V s).p) for all p ∈ P

11 for each v ∈ �V s.s do

12 for each u ∈ �U.s such that u <∼ w do
13 if uvω /∈ M then return ko

14 return ok

Fig. 2. FORQ-based algorithm

Lemma 8. Consider �U0 and �V s
1 (with s ∈ FA) in the FORQ-based algorithm.

The following holds for all n ∈ N:

Rcatn
A(�U0).p = Stemp ∩Σ≤n for all p ∈ P , and Rcatn

A(�V s
1).s = Pers ∩Σ≤n+1 .

Prior to proving the correctness of the algorithm of Fig. 2 we need the follow-
ing result which is key for establishing the correctness of the repeat/until loop
conditions of lines 4, 5, and 10.

Lemma 9. Let � be a right-monotonic quasiorder over Σ∗. Given
A � (P, pI ,ΔA, FA) and �S, �S′ ∈ ℘(Σ∗)|P |, if B�(�S′.p, �S.p) holds for all p ∈ P

then B�(RcatA(�S′).p, RcatA(�S).p) holds for all p ∈ P .

Proof. Consider w ∈ RcatA(�S).p where p ∈ P , we show that there exists w′ ∈
RcatA(�S′).p such that w′

� w. Assume that B�(�S′.p, �S.p) holds for all p ∈ P .
In particular, for all w1 ∈ �S.p, there exists w′

1 ∈ �S′.p such that w′
1 � w1. In the

case where w1 ∈ RcatA(�S).p \ �S.p, by definition of RcatA w1 is of the form w2a

for some a ∈ Σ and some w2 ∈ �S.p̂ such that A : p̂ a−−→ p. Since B�(�S′.p̂, �S.p̂)
and w2 ∈ �S.p̂, there exists w3 ∈ �S′.p̂ such that w3 � w2. We deduce that
w3a�w2a holds, hence w3a�w1 holds as well from the right-monotonicity of �.
Furthermore w3a ∈ RcatA(�S′).p by definition of RcatA and since A : p̂ a−−→ p.
Finally, we conclude that B�(RcatA(�S′), RcatA(�S)) holds. ��

118 K. Doveri et al.

Theorem 10. The FORQ-based algorithm decides the inclusion of BAs.

Proof. We first show that every loop of the algorithm eventually terminates.
First, we conclude from the definition of RcatA and the initializations (lines 3
and 9) of each repeat/until loop (lines 4, 5, and 10) that each component of
each vector holds a finite set of words. Observe that the halting conditions of
the repeat/until loops are effectively computable since every quasiorder of F is
decidable and because, in order to decide B�(Y,X) where X,Y are finite sets
and � is decidable, it suffices to check that Y ⊆ X and that for every x ∈ X
there exists y ∈ Y such that y � x. Next, we conclude from the fact that all the
quasiorders of F used in the repeat/until loops are all well-quasiorders that there
is no infinite sequence {Xi}i∈N such that ��X1 � ��X2 � . . . Since B�(Y,X)
is equivalent to Y ⊆ X ∧ ��X ⊆ ��Y and since each time RcatA updates a
component its upward closure after the update includes the one before, we find
that every repeat/until loop must terminate after finitely many iterations.

Next, we show that when the repeat/until loop of line 5 halts,
B<∼(�U.p, Stemp) holds for all p ∈ P . It takes an easy induction on n together with
Lemma 9 to show that if B<∼(Rcatn+1

A (�U0).p, Rcatn
A(�U0).p) holds for all p ∈ P

then B<∼(Rcatn
A(�U0).p, Rcatm

A (�U0).p) holds for all m > n. Hence Lemma 8 shows
that B<∼(Rcatk

A(�U0).p, Stemp) holds for all p ∈ P where k is the number of iter-
ations of the repeat/until loop implying B<∼(�U.p, Stemp) holds when the loop of
line 5 halts.

An analogue reasoning shows that B<∼−1(�W .p, Stemp) holds for all p ∈ P , as
well as B�∼w(�V s.s, Pers) holds for all w ∈ �W .s and all s ∈ FA upon termination
of the loops of lines 4 and 10.

To conclude, we observe that each time a membership query is performed
at line 13, the ultimately periodic word uvω belongs to TA defined by (‡).
This is ensured since u ∈ B<∼(�U.s, Stems), w ∈ B<∼−1(�W .s, Stems), v ∈
B�∼w

(�V s.s, Pers) for some s ∈ FA and, thanks to the test at line 12, the com-
parison u <∼ w holds. ��
Remark 11. The correctness of the FORQ-based algorithm still holds when,
after every “:=” assignment (at lines 3, 4, 5, 9 and 10), we remove from the
variable content zero or more subsumed words for the corresponding ordering.
The effect of removing zero or more subsumed words from a variable can be
achieved by replacing assignments like, for instance, �U := RcatA(�U) at line 5
with �U := RcatA(�U); �U := �Ur where �Ur satisfies B<∼(�Ur.p, �U.p) for all p ∈ P .
The correctness of the previous modification follows from Lemma 9. Therefore,
the sets obtained by discarding subsumed words during computations still satisfy
the basis predicates of TA given at (‡).

It is worth pointing out that the correctness arguments developed above, do
not depend on the specifics of the structural FORQs. The FORQ-based algorithm
is sound as long as we provide a suitable FORQ. Next we study the algorithmic
complexity of the algorithm of Fig. 2.

FORQ-Based Language Inclusion Formal Testing 119

6 Complexity of the Structural FORQ-Based Algorithm

In this Section, we establish an upper bound on the runtime of the algorithm
of Fig. 2 when the input FORQ is the structural FORQ induced by a BA B.
Let nA and nB be respectively the number of states in the BA A and B. We
start by bounding the number of iterations in the repeat/until loops. In each
repeat/until loop, each component of the vector holds a finite set of words the
upward closure of which grows (for ⊆) over time and when all the upward closures
stabilize the loop terminates. In the worst case, an iteration of the repeat/until
loop adds exactly one word to some component of the vector which keeps the
halting condition falsified (the upward closure strictly increases). Therefore a
component of the vector cannot be updated more than 2nB times for otherwise
its upward closure has stabilized. We thus find that the total number of iterations
is bounded from above by nA · 2nB for the loops computing �U and �W . Using an
analogous reasoning we conclude that each component of the �V vector has no
more than 2(2nB2) elements and the total number of iterations is upper-bounded
by nA · 2(2nB2). To infer an upper bound on the runtime of each repeat/until
loop we also need to multiply the above expressions by a factor |Σ| since the
number of concatenations in Rcat depends on the size of the alphabet.

Next, we derive an upper bound on the number of membership queries per-
formed at line 13. The number of iterations of the loops of lines 6, 8, 10, 11
and 12 is nA, 2nB , nA · 2(2nB2), 2(2nB2) and 2nB , respectively. Since all loops
are nested, we multiply these bounds to end up with n2

A · 2O(n2
B) as an upper

bound on the number of membership queries. The runtime for each ultimately
periodic word membership query (with a stem, a period and B as input) is upper
bounded by an expression polynomial in the size nB of B, 2nB for the length of
the stem and 2(2nB2) for the length of the period.

We conclude from the above that the runtime of the algorithm of Fig. 2 is at
most |Σ| · n2

A · 2O(n2
B).

7 Implementation and Experiments

We implemented the FORQ-based algorithm of Fig. 2 instantiated by the struc-
tural FORQ in a tool called Forklift [2]. In this section, we provide algorithmic
details about Forklift and then analyze how it behaves in practice (Sect. 7.1).
Data Structures. Comparing two words given a structural FORQ requires to
compute the corresponding sets of target for stems (Tgt), and sets of context
for periods (Cxt). A näıve implementation would be to compute Tgt and Cxt
every time a comparison is needed. We avoid to compute this information over
and over again by storing each stem together with its Tgt set and each period
together with its Cxt set.

Moreover, the function Rcat inserts new words in the input vector by con-
catenating a letter on the right to some words already in the vector. In our

120 K. Doveri et al.

implementation, we do not recompute the associated set of targets nor context
for the newly computed word from scratch. For all stem u ∈ Σ∗ and all letter
a ∈ Σ, the set of states Tgt(ua) can be computed from Tgt(u) thanks to the
following equality essentially stating that Tgt() can be computed inductively:

Tgt(ua) =
{
q ∈ Q | q′ ∈ Tgt(u), B : q′ a−−→ q

}
.

Analogously, for all period v ∈ Σ+, all X ⊆ Q and all a ∈ Σ, the set of contexts
Cxt(X, va) can be computed from Cxt(X, v) thanks to the following equality:

Cxt(X, va) =
{

(q0, q, k) ∈ Q2 × {⊥,�}
∣
∣
∣

(q0, q′, k′) ∈ Cxt(X, v), B : q′ a−−→ q

(k = ⊥ ∨ k′ = � ∨ B : q′ a−−→F q)

}
.

Intuitively Cxt can be computed inductively as we did for Tgt. The first part
of the condition defines how new context are obtained by appending a transi-
tion to the right of an existing context while the second part defines the bit of
information keeping record of whether an accepting state was visited.

Bases, Frontier and Membership Test. We stated in Remark 11 that the
correctness of the FORQ-based algorithm is preserved when removing, from the
computed sets, zero or more subsumed words for the corresponding ordering.
In Forklift, we remove all the subsumed words from all the sets we compute
which, intuitively, means each computed set is a basis that contains as few words
as possible. To remove subsumed words we leverage the target or context sets
kept along with the words. It is worth pointing out that the least fixpoint com-
putations at lines 4, 5, and 10 are implemented using a frontier. Finally, the
ultimately periodic word membership procedure is implemented as a classical
depth-first search as described in textbooks [17, Chapter 13.1.1].

Technical Details. Forklift, a näıve prototype implemented by a single per-
son over several weeks, implements the algorithm of Fig. 2 with the structural
FORQ in less than 1 000 lines of Java code. One of the design goals of our tool
was to have simple code that could be easily integrated in other tools. Therefore,
our implementation relies solely on a few standard packages from the Java SE
Platform (notably collections such as HashSet or HashMap).

7.1 Experimental Evaluation

Benchmarks. Our evaluation uses benchmarks stemming from various appli-
cation domains including benchmarks from theorem proving, software verifi-
cation, and from previous work on the ω-regular language inclusion problem.
In this section, a benchmark means an ordered pair of BAs such that the
“left”/“right” BAs refer, resp., to the automata on the left/right of the inclu-
sion sign. The BAs of the Pecan [31] benchmarks encode sets of solutions of
predicates, hence a logical implication between predicates reduces to a language
inclusion problem between BAs. The benchmarks correspond to theorems of type
∀x,∃y, P (x) =⇒ Q(y) about Sturmian words [21]. We collected 60 benchmarks
from Pecan for which inclusion holds, where the BAs have alphabets of up to
256 symbols and have up to 21 395 states.

FORQ-Based Language Inclusion Formal Testing 121

The second collection of benchmarks stems from software verification. The
Ultimate Automizer (UA) [19,20] benchmarks encode termination problems for
programs where the left BA models a program and the right BA its termination
proof. Overall, we collected 600 benchmarks from UA for which inclusion holds
for all but one benchmark. The BAs have alphabets of up to 13 173 symbols and
are as large as 6 972 states.

The RABIT benchmarks are BAs modeling mutual exclusion algorithms [8],
where in each benchmark one BA is the result of translating a set of guarded
commands defining the protocol while the other BA translates a modified set of
guarded commands, typically obtained by randomly weakening or strengthening
one guard. The resulting BAs are on a binary alphabet and are as large as 7 963
states. Inclusion holds for 9 out of the 14 benchmarks.

All the benchmarks are publicly available on GitHub [12]. We used all the
benchmarks we collected, that is, we discarded no benchmarks.

Tools. We compared Forklift with the following tools: SPOT 2.10.3, GOAL
(20200822), RABIT 2.5.0, ROLL 1.0, and BAIT 0.1.

SPOT [15,16] decides inclusion problems by complementing the “right” BA
via determinization to parity automata with some additional optimizations
including simulation-based optimizations. It is invoked through the command
line tool autfilt with the option --included-in. It is worth pointing out
that SPOT works with symbolic alphabets where symbols are encoded using
Boolean propositions, and sets of symbols are represented and processed using
OBDDs. SPOT is written in C++ and its code is publicly available [6].

GOAL [34] contains several language inclusion checkers available with multiple
options. We used the Piterman algorithm using the options containment
-m piterman with and without the additional options -sim -pre. In our
plots GOAL is the invocation with the additional options -sim -pre which
compute and use simulation relations to further improve performance while
GOAL− is the one without the additional options. Inclusion is checked by
constructing on-the-fly the intersection of the “left” BA and the complement
of the “right” BA which is itself built on-the-fly by the Piterman construction
[32]. The Piterman check was deemed the “best effort” (cf. [10, Section 9.1]
and [33]) among the inclusion checkers provided in GOAL. GOAL is written
in Java and the source code of the release we used is not publicly available [3].

RABIT [10] performs the following operations to check inclusion: (1) Remov-
ing dead states and minimizing the automata with simulation-based tech-
niques, thus yielding a smaller instance; (2) Witnessing inclusion by sim-
ulation already during the minimization phase; (3) Using a Ramsey-based
method with antichain heuristics to witness inclusion or non-inclusion. The
antichain heuristics of Step (3) uses a unique quasiorder leveraging simulation
relations to discard candidate counterexamples. In our experiments we ran
RABIT with options -fast -jf which RABIT states as providing the “best
performance”. RABIT is written in Java and is publicly available [4].

ROLL [24,25] contains an inclusion checker that does a preprocessing analogous
to that of RABIT and then relies on automata learning and word sampling

122 K. Doveri et al.

techniques to decide inclusion. ROLL is written in Java and is publicly avail-
able [5].

BAIT [13] which shares authors with the authors of the present paper, imple-
ments a Ramsey-based algorithm with the antichain heuristics where two
quasiorders (one for the stems and the other for the periods) are used to
discard candidate counterexamples as described in Sect. 1. BAIT is written
in Java and is publicly available [1].

As far as we can tell all the above implementations, including Forklift,
are sequential except for RABIT which, using the -jf option, performs some
computations in a separate thread.

Experimental Setup. We ran our experiments on a server with 24GB of RAM,
2 Xeon E5640 2.6 GHz CPUs and Debian Stretch 64-bit. We used openJDK
11.0.12 2021-07-20 when compiling Java code and ran the JVM with default
options. For RABIT, BAIT and Forklift the execution time is computed
using timers internal to their implementations. For ROLL, GOAL and SPOT
the execution time is given by the “real” value of the time(1) command. We
preprocessed the benchmarks passed to Forklift and BAIT with a reduction
of the set of final states of the “left” BA that does not alter the language it
recognizes. This preprocessing aims to minimize the number of iterations of the
loop at line 6 of Fig. 2 over the set of final states. It is carried out by GOAL
using the acc -min command. Internally, GOAL uses a polynomial time algo-
rithm that relies on computing strongly connected components. The time taken
by this preprocessing is negligible.

Plots. We use survival plots for displaying our experimental results in Fig. 3.
Let us recall how to obtain them for a family of benchmarks {pi}n

i=1: (1) run the
tool on each benchmark pi and store its runtime ti; (2) sort the ti’s in increasing
order and discard pairs corresponding to abnormal program termination like
time out or memory out; (3) plot the points (t1, 1), (t1+ t2, 2),. . . , and in general
(
∑k

i=1 ti, k); (4) repeat for each tool under evaluation.
Survival plots are effective at comparing how tools scale up on benchmarks:

the further right and the flatter a plot goes, the better the tool thereof scales
up. Also the closer to the x-axis a plot is, the less time the tool needs to solve
the benchmarks.

Analysis. It is clear from Fig. 3a and 3b that Forklift scales up best on both
the Pecan and UA benchmarks. Forklift’s scalability is particularly evident
on the PECAN benchmarks of Fig. 3a where its curve is the flattest and no
other tool finishes on all benchmarks. Note that, in Fig. 3b, the plot for SPOT is
missing because we did not succeed into translating the UA benchmarks in the
input format of SPOT. On the UA benchmarks, Forklift, BAIT and GOAL
scale up well and we expect SPOT to scale up at least equally well. On the other
hand, RABIT and ROLL scaled up poorly on these benchmarks.

On the RABIT benchmarks at Fig. 3c both Forklift and SPOT terminate
13 out of 14 times; BAIT terminates 9 out of 14 times; and GOAL, ROLL and

FORQ-Based Language Inclusion Formal Testing 123

[Benchmarks from Pecan]

41 43 52 54 57 58 59 60

103

104

105

106

107

108

instances

ti
m
e
(m

s)

GOAL GOAL−

RABIT BAIT
SPOT Forklift
ROLL

[Benchmarks from Ultimate Automizer]

551 561 564 600

105

106

107

108

instances

ti
m
e
(m

s)

GOAL− GOAL
RABIT BAIT
ROLL Forklift

[Benchmarks from RABIT]

7 9 12 13 14

102

103

104

105

106

107

108

instances

ti
m
e
(m

s)

RABIT GOAL− GOAL
SPOT BAIT ROLL

Forklift

[Benchmarks from RABIT (reduced)]

7 13 14
101

102

103

104

105

106

107

108

instances

ti
m
e
(m

s)

RABIT GOAL− GOAL
SPOT BAIT ROLL

Forklift

Fig. 3. Survival plot with a logarithmic y axis and linear x axis. Each benchmark has
a timeout value of 12 h. Parts of the plots left out for clarity. A point is plotted for
abscissa value x and tool r iff r returns with an answer for x benchmarks. All the
failures of BAIT and the one of Forklift are memory out.

124 K. Doveri et al.

RABIT terminate all the times. We claim that the RABIT benchmarks can all
be solved efficiently by leveraging simulation relations which Forklift does
not use let alone compute. Next, we justify this claim. First observe at Fig. 3c
how GOAL is doing noticeably better than GOAL− while we have the opposite
situation for the Pecan benchmarks Fig. 3a and no noticeable difference for the
UA benchmarks Fig. 3b. Furthermore observe how ROLL and RABIT, which
both leverage simulation relations in one way or another, scale up well on the
RABIT benchmarks but scale up poorly on the PECAN and UA benchmarks.

The reduced RABIT benchmarks at Fig. 3d are obtained by pre-processing
every BA of every RABIT benchmark with the simulation-based reduction oper-
ation of SPOT given by autfilt --high --ba. This preprocessing reduces the
state space of the BAs by more than 90% in some cases. The reduction signifi-
cantly improves how Forklift scales up (it now terminates on all benchmarks)
while it has less impact on RABIT, ROLL and SPOT which, as we said above,
already leverage simulation relation internally. It is also worth noting that GOAL
has a regression (from 14/14 before the reduction to 13/14).

Overall Forklift, even though it is a prototype implementation, is the tool
that returns most often (673/674). Its unique failure disappears after a prepro-
cessing using simulation relations of the two BAs. The Forklift curve for the
Pecan benchmarks shows Forklift scales up best.

Our conclusion from the empirical evaluation is that, in practice Forklift
is competitive compared to the state-of-the-art in terms of scalability. Moreover
the behavior of the FORQ-based algorithm in practice is far from its worst case
exponential runtime.

8 Discussions

This section provides information that we consider of interest although not essen-
tial for the correctness of our algorithm or its evaluation.

Origin of FORQs. Our definition of FORQ and their suitability property (in
particular the language preservation) are directly inspired from the definitions
related to families of right congruences introduced by Maler and Staiger in
1993 [28] (revised in 2008 [30]). We now explain how our definition of FORQs
generalizes and relaxes previous definitions [30, Definitions 5 and 6].

First we explain why the FORQ constraint does not appear in the setting
of families of right congruences. In the context of congruences, relations are
symmetric and thus, the FORQ constraint reduces to u <∼ u′ ⇒ �∼u′ = �∼u.
Therefore the FORQ constraint trivially holds if the set {�∼u}u∈Σ∗ is quotiented
by the congruence relation <∼, which is the case in the definition [29, Definition 5].

Second, we point that the condition v �∼u v′ ⇒ uv <∼ uv′ which appears in the
definition for right families of congruences [30, Definition 5] is not needed in our
setting. Nevertheless, this condition enables an improvement of the FORQ-based
algorithm that we describe next.

FORQ-Based Language Inclusion Formal Testing 125

Less Membership Queries. We put forward a property of structural FORQs
allowing us to reduce the number of membership queries performed by Fork-
lift. Hereafter, we refer to the picky constraint as the property of a FORQ
stating v �∼u v′ ⇒ uv <∼ uv′ where u, v, v′ ∈ Σ∗. We first show how thanks to the
picky constraint we can reduce the number of candidate counterexamples in the
FORQ-based algorithm and then, we show that every structural FORQ satisfies
the picky constraint.

In the algorithm of Fig. 2, periods are taken in a basis for the ordering �∼w

where w ∈ Σ∗ belongs to a finite basis for the ordering <∼−1. The only restriction
on w is that of being comparable to the stem u, as ensured by the test at line
12. The following lemma formalizes the fact that we could consider a stronger
restriction.

Lemma 12. Let <∼ be a quasiorder over Σ∗ such that <∼−1 is a right-monotonic
well-quasiorder. Let S, S′ ⊆ Σ∗ be such that B<∼−1(S′, S) and S′ contains no
two distinct comparable words. For all u ∈ Σ∗ and v ∈ Σ+ such that u ∈ S and
{wv | w ∈ S} ⊆ S, there exists ẘ ∈ S′ such that uvi <∼ ẘ and ẘvj <∼ ẘ for some
i, j ∈ N \ {0}.

As in Sect. 3, we show that the equivalence (†) holds but this time for an
alternative definition of TA we provide next. Given a M -suitable FORQ F �
〈<∼, {�∼u}u∈Σ∗〉, let

T̂A � {uvω | ∃s ∈ FA : u ∈ Us, v ∈ V w
s for some w ∈ Ws with u <∼ w,wv <∼ w}

where for all p ∈ P the sets Up, Wp and {V w
p }w∈Σ∗ such that B<∼(Up, Stemp),

B<∼−1(Wp, Stemp) and B�∼w
(V w

p , Perp) for all w ∈ Σ∗. Since T̂A ⊆ TA by def-
inition, it suffices to prove the implication T̂A ⊆ M ⇒ UltimA ⊆ M . Let
uvω ∈ UltimA, i.e., such that there exists s ∈ FA for which u ∈ Stems and
v ∈ Pers, satisfying uv <∼ u. In the context of Lemma 12, taking S � Stems and
S′ � Ws fulfills the requirements u ∈ S and {wv | w ∈ S} ⊆ S. We can thus
apply the lemma and ensure the existence of some w0 ∈ Ws satisfying uvi <∼ w0

and w0v
j <∼ w0 for some i, j ∈ N \ {0}. Since uvi ∈ Stems and vj ∈ Pers we find

that there exist u0 ∈ Us and v0 ∈ V w0
s such that u0 <∼ uvi and v0 �∼w0 vj thanks

to the finite basis property. We conclude from above that v0 �∼w0 vj , hence that
w0v0 <∼ w0v

j by the picky condition, and finally that w0v0 <∼ w0 by Lemma 12
and transitivity. By definition u0v

ω
0 ∈ T̂A and the proof continues as the one in

Sect. 3 for TA.
To summarize, if the considered FORQ fulfills the picky constraint then the

algorithm of Fig. 2 remains correct when discarding the periods v at line 11 such
that wv �<∼ w. Observe that discarding one period v possibly means skipping sev-
eral membership queries (u1v

ω, u2v
ω, . . .). As proved below, the picky constraint

holds for all structural FORQs.

Lemma 13. Let B � (Q, qI ,ΔB, FB) be a BA and F � 〈<∼B, {�∼B
u}u∈Σ∗〉 its

structural FORQ. For all u ∈ Σ∗ and all v, v′ ∈ Σ+ if v �∼B
u v′ then uv <∼B uv′.

126 K. Doveri et al.

Proof. For all q′ ∈ Tgt(uv), there exists q ∈ Q such that B : qI u−−→ q v−−→ q′.
Hence (q, q′,⊥) ∈ Cxt(Tgt(u), v). In fact (q, q′,⊥) ∈ Cxt(Tgt(u), v′) holds as
well since v �∼B

u v′. We deduce from the definition of Cxt that B : qI u−−→ q v′
−−→ q′

which implies q′ ∈ Tgt(uv′). Thus Tgt(uv) ⊆ Tgt(uv′), i.e., uv <∼B uv′. ��
We emphasize that this reduction of the number of membership queries was

not included in our experimental evaluation since (1) the proof of correctness is
simpler and (2) Forklift already scales up well without this optimization. We
leave for future work the precise effect of such optimization.

Why a Basis for <∼−1 is Computed? Taking periods in a basis for the ordering
�∼w where w ∈ Σ∗ is picked in a basis for the ordering <∼−1 may seem unnatural.
In fact, the language preservation property of FORQs even suggests that an
algorithm without computing a basis for <∼−1 may exist. Here, we show that
taking periods in a basis for the ordering �∼u where u ∈ Σ∗ is picked in a basis
for the ordering <∼ is not correct. More precisely, redefining TA as

T̃A � {uvω | ∃s ∈ FA : u ∈ Us, v ∈ V u
s }

where for all p ∈ P we have that B<∼(Up, Stemp) and B�∼w
(V w

p , Perp) for all
w ∈ Σ∗, leads to an incorrect algorithm because the equivalence (†) given by
T̃A ⊆ M ⇐⇒ L(A) ⊆ M no longer holds as shown below in Example 14.

Example 14. Consider the BAs given by Fig. 1. We have that L(A) � L(B) and,
in Example 3, we have argued that TA = {ε(b)ω, a(a)ω} contains the ultimately
periodic aω which is a counterexample to inclusion. Recall from Example 3 and
6 that we can set UpI

= {ε, a} since B<∼({ε, a}, Σ∗), and V a
pI

= V ε
pI

= {b}
since B�∼a

({b}, Σ+) and B�∼ε
({b}, Σ+). We conclude from the above definition

that T̃A = {ε(b)ω, a(b)ω}, hence that T̃A ⊆ L(B) which contradicts (†) since
L(A) � L(B).

9 Conclusion and Future Work

We presented a novel approach to tackle in practice the language inclusion prob-
lem between Büchi automata. Our antichain heuristics is driven by the notion
of FORQs that extends the notion of family of right congruences introduced
in the nineties by Maler and Staiger [29]. We expect the notion of FORQs to
have impact beyond the inclusion problem, e.g. in learning [9] and complemen-
tation [26]. A significant difference of our inclusion algorithm compared to other
algorithms which rely on antichain heuristics, is the increased number of fixpoint
computations that, counterintuitively, yield better scalability. Indeed our proto-
type Forklift, which implements the FORQ-based algorithm, scales up well on
benchmarks taken from real applications in verification and theorem proving.

FORQ-Based Language Inclusion Formal Testing 127

In the future we want to increase further the search pruning capabilities of
FORQs by enhancing them with simulation relations. We also plan to study
whether FORQs can be extended to other settings like ω-visibly pushdown lan-
guages.

References

1. BAIT: an ω-regular language inclusion checker. https://github.com/parof/bait.
Accessed 17 Jan 2022

2. FORKLIFT: FORQ-based language inclusion formal testing. https://github.com/
Mazzocchi/FORKLIFT. Accessed 7 Jun 2022

3. GOAL: graphical tool for omega-automata and logics. http://goal.im.ntu.edu.tw/
wiki/doku.php. Accessed 17 Jan 2022

4. RABIT/Reduce: tools for language inclusion testing and reduction of nondeter-
ministic Büchi automata and NFA. http://www.languageinclusion.org/doku.php?
id=tools. Accessed 17 Jan 2022

5. ROLL library: Regular Omega Language Learning library. https://github.com/
ISCAS-PMC/roll-library. Accessed 17 Jan 2022

6. Spot: a platform for LTL and ω-automata manipulation. https://spot.lrde.epita.
fr/. Accessed 17 Jan 2022

7. Abdulla, P.A.: Simulation subsumption in Ramsey-based Büchi automata univer-
sality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 14

8. Abdulla, P.A.: Advanced Ramsey-based Büchi automata inclusion testing. In:
Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6 13

9. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of ω-regular
languages. Log. Meth. Comput. Sci. 14 (2018). https://doi.org/10.23638/LMCS-
14(1:15)2018

10. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Meth. Comput. Sci. 15(1) (2019).
https://doi.org/10.23638/LMCS-15(1:12)2019

11. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 5

12. Doveri, K., Ganty, P., Parolini, F., Ranzato, F.: Büchi automata benchmarks for
language inclusion (2021). https://github.com/parof/buchi-automata-benchmark

13. Doveri, K., Ganty, P., Parolini, F., Ranzato, F.: Inclusion testing of Büchi automata
based on well-quasiorders. In: 32nd International Conference on Concurrency The-
ory (CONCUR). LIPIcs (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.
3

14. Doyen, L., Raskin, J.F.: Antichains for the automata-based approach to model-
checking. Log. Meth. Comput. Sci. 5(1) (2009). https://doi.org/10.2168/lmcs-5(1:
5)2009

https://github.com/parof/bait
https://github.com/Mazzocchi/FORKLIFT
https://github.com/Mazzocchi/FORKLIFT
http://goal.im.ntu.edu.tw/wiki/doku.php
http://goal.im.ntu.edu.tw/wiki/doku.php
http://www.languageinclusion.org/doku.php?id=tools
http://www.languageinclusion.org/doku.php?id=tools
https://github.com/ISCAS-PMC/roll-library
https://github.com/ISCAS-PMC/roll-library
https://spot.lrde.epita.fr/
https://spot.lrde.epita.fr/
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.23638/LMCS-14(1:15)2018
https://doi.org/10.23638/LMCS-14(1:15)2018
https://doi.org/10.23638/LMCS-15(1:12)2019
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/11817963_5
https://github.com/parof/buchi-automata-benchmark
https://doi.org/10.4230/LIPIcs.CONCUR.2021.3
https://doi.org/10.4230/LIPIcs.CONCUR.2021.3
https://doi.org/10.2168/lmcs-5(1:5)2009
https://doi.org/10.2168/lmcs-5(1:5)2009

128 K. Doveri et al.

15. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

16. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: what’s new? In: Shoham, S.,
Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. xx–yy (2022). https://doi.org/
10.1007/978-3-031-13188-2 18

17. Esparza, J.: Automata Theory - An Algorithmic Approach. Lecture Notes (2017).
https://www7.in.tum.de/∼esparza/autoskript.pdf

18. Fogarty, S., Vardi, M.Y.: Efficient Büchi universality checking. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12002-2 17

19. Heizmann, M.: Ultimate automizer and the search for perfect interpolants. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 447–451.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 30

20. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

21. Hieronymi, P., Ma, D., Oei, R., Schaeffer, L., Schulz, C., Shallit, J.: Decidability for
Sturmian words. In: 30th EACSL Annual Conference on Computer Science Logic
(CSL). LIPIcs (2022). https://doi.org/10.4230/LIPIcs.CSL.2022.24

22. Kuperberg, D., Pinault, L., Pous, D.: Coinductive algorithms for Büchi automata.
Fundam. Informaticae 180(4) (2021). https://doi.org/10.3233/FI-2021-2046

23. Kupferman, O., Vardi, M.Y.: Verification of fair transition systems. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 372–382. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61474-5 84

24. Li, Y., Chen, Y.F., Zhang, L., Liu, D.: A novel learning algorithm for Büchi
automata based on family of DFAs and classification trees. Inf. Comput. 281,
104678 (2020). https://doi.org/10.1016/j.ic.2020.104678

25. Li, Y., Sun, X., Turrini, A., Chen, Y.-F., Xu, J.: ROLL 1.0: ω-regular language
learning library. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427,
pp. 365–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-
0 23

26. Li, Y., Tsay, Y.-K., Turrini, A., Vardi, M.Y., Zhang, L.: Congruence relations
for büchi automata. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 465–482. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 25

27. de Luca, A., Varricchio, S.: Well quasi-orders and regular languages. Acta Infor-
matica 31(6) (1994). https://doi.org/10.1007/BF01213206

28. Maler, O., Staiger, L.: On syntactic congruences for ?—languages. In: Enjalbert,
P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 586–594.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56503-5 58

29. Maler, O., Staiger, L.: On syntactic congruences for ω-languages. Theor. Comput.
Sci. 183(1) (1997). https://doi.org/10.1016/S0304-3975(96)00312-X

30. Maler, O., Staiger, L.: On syntactic congruences for ω-languages. Technical report,
Verimag, France (2008). http://www-verimag.imag.fr/∼maler/Papers/congr.pdf

31. Oei, R., Ma, D., Schulz, C., Hieronymi, P.: Pecan: an automated theorem prover for
automatic sequences using Büchi automata. CoRR abs/2102.01727 (2021). https://
arxiv.org/abs/2102.01727

https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-031-13188-2_18
https://doi.org/10.1007/978-3-031-13188-2_18
https://www7.in.tum.de/~esparza/autoskript.pdf
https://doi.org/10.1007/978-3-642-12002-2_17
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.4230/LIPIcs.CSL.2022.24
https://doi.org/10.3233/FI-2021-2046
https://doi.org/10.1007/3-540-61474-5_84
https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1007/978-3-030-90870-6_25
https://doi.org/10.1007/978-3-030-90870-6_25
https://doi.org/10.1007/BF01213206
https://doi.org/10.1007/3-540-56503-5_58
https://doi.org/10.1016/S0304-3975(96)00312-X
http://www-verimag.imag.fr/~maler/Papers/congr.pdf
https://arxiv.org/abs/2102.01727
https://arxiv.org/abs/2102.01727

FORQ-Based Language Inclusion Formal Testing 129

32. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Log. Meth. Comput. Sci. 3(3) (2007). https://doi.org/10.2168/
lmcs-3(3:5)2007

33. Tsai, M., Fogarty, S., Vardi, M.Y., Tsay, Y.: State of Büchi complementation. Log.
Meth. Comput. Sci. 10(4) (2014). https://doi.org/10.2168/LMCS-10(4:13)2014

34. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 62

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.2168/lmcs-3(3:5)2007
https://doi.org/10.2168/lmcs-3(3:5)2007
https://doi.org/10.2168/LMCS-10(4:13)2014
https://doi.org/10.1007/978-3-642-39799-8_62
http://creativecommons.org/licenses/by/4.0/

	FORQ-Based Language Inclusion Formal Testing
	1 Introduction
	2 Preliminaries
	3 Foundations of Our Approach
	4 Defining FORQs from the Structure of an Automaton
	5 A FORQ-Based Inclusion Algorithm
	6 Complexity of the Structural FORQ-Based Algorithm
	7 Implementation and Experiments
	7.1 Experimental Evaluation

	8 Discussions
	9 Conclusion and Future Work
	References

