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SOME EFFECTIVITY RESULTS FOR PRIMITIVE DIVISORS
OF ELLIPTIC DIVISIBILITY SEQUENCES

MATTEO VERZOBIO

Let P be a nontorsion point on an elliptic curve defined over a number
field K and consider the sequence {Bn}n∈N of the denominators of x(nP).
We prove that every term of the sequence of the Bn has a primitive divisor
for n greater than an effectively computable constant that we will explicitly
compute. This constant will depend only on the model defining the curve.

1. Introduction

Let E be an elliptic curve defined by the equation

y2
+ a1xy + a3 y = x3

+ a2x2
+ a4x + a6,

with coefficients in a number field K . Let P ∈ E(K ) be a nontorsion point and
let OK be the ring of integers of K . Let us define the fractional ideal

(1) (x(nP))OK =
An

Bn

with An and Bn two relatively prime integral OK -ideals. We want to study the
sequence of integral OK -ideals {Bn}n∈N. These are the so-called elliptic divisibility
sequences. In particular, we want to study when a term Bn has a primitive divisor,
i.e., when there exists a prime ideal P such that

P ∤ B1 B2 · · · Bn−1 but P | Bn.

Silverman [1988, Proposition 10] proved that, if E is defined over Q, then Bn has a
primitive divisor for n large enough. This result was generalized for every number
field K in [Cheon and Hahn 1999], where the following theorem is proved.

Theorem 1.1 [Cheon and Hahn 1999, main theorem]. Let E be an elliptic curve
defined over a number field K and let P be a nontorsion point in E(K ). Consider
the sequence {Bn}n∈N of integral OK -ideals as defined in (1). Then Bn has a
primitive divisor for all but finitely many n ∈ N.
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The previous theorem is not effective. Indeed, the proof relies on Siegel’s
ineffective theorem about integral points on elliptic curves. The aim of this paper is
to make the work of [Cheon and Hahn 1999] effective. Indeed, we will explicitly
compute a constant C so that Bn has always a primitive divisor for n > C .

Theorem 1.2. Let E be an elliptic curve defined over a number field K and let P be
a nontorsion point in E(K ). Consider the sequence {Bn}n∈N of integral OK -ideals
as defined in (1). There exists a constant C(E/K ,M) > 0, effectively computable
and depending only on the curve E over the field K equipped with a model M also
defined over K , such that Bn has a primitive divisor for

n > C(E/K ,M).

In Section 8, we explicitly compute such a constant C(E/K ,M) (see (13)).

Remark 1.3. The dependence on the model M is necessary. Indeed, given a nontor-
sion point P on an elliptic curve E and a positive constant C , it is easy to show that
we can find a model of E such that Bn does not have a primitive divisor for all n ≤ C .

Remark 1.4. It is conjectured that, in the case when M is minimal, the constant
C(E/K ,M) should depend only on the field K . In [Ingram and Silverman 2012,
Theorem 1] it is proved that the number of terms without a primitive divisor of an
elliptic divisibility sequence can be bounded by a constant that does not depend
on E and P , in the case when E is given by a minimal model, K = Q, and assuming
the abc-conjecture.

Remark 1.5. We believe that the techniques used in this paper can be applied also
to a generalization of elliptic divisibility sequences. Let O be the endomorphism
ring of E and, given α ∈ O, define Bα as the denominator of (x(αP))OK . The
sequence {Bα}α∈O is a sequence of ideals and one can give a definition of primitive
divisors also for these sequences (see [Streng 2008, Section 1]). It has been shown
in [Streng 2008, main theorem] that also in this case there are only finitely many
terms that do not have a primitive divisor (see also [Verzobio 2021b]). In the
case when End(E) = Z this is a trivial corollary of Theorem 1.1, but in the case
End(E) ̸= Z (i.e., when E has complex multiplication) this is far from being easy.
We believe that using the techniques of this paper one can find an explicit upper
bound for the degree of α such that Bα does not have a primitive divisor, in the
case when End(E) is a maximal order and it is a principal ideal domain.

2. Notation

The curve E is defined by the equation

y2
+ a1xy + a3 y = x3

+ a2x2
+ a4x + a6

with coefficients in the number field K .
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The following notation will be used during the paper:

1 is the discriminant of the equation defining the curve.

1E/K is the minimal discriminant of the elliptic curve.

j (E) is the j-invariant of the curve.

D = [K : Q] is the degree of the number field K .

OK is the ring of integers of K .

1K is the discriminant of the field K .

fE/K is the conductor of the curve.

σE/K = log|NK/Q(1E/K )|/log|NK/Q(fE/K )|, where NK/Q is the norm of the
field extension, is the Szpiro quotient; if E/K has everywhere good reduction
(and then fE/K = 1), we put σE/K = 1.

If x ∈ OK is nonzero, then gpf(x) is the greatest rational prime p so that
ordp(NK/Q(x)) > 0.

If n ∈ N is nonzero, then ω(n) is the number of rational prime divisors of n.

If x ∈ K ∗, define m(x) = maxP{ordP(x)}, where the maximum runs over all
primes in OK .

3. Preliminaries

Let MK be the set of all places of K , take ν ∈ MK , and let | · |ν be the absolute value
associated with ν. Let nν be the degree of the local extension Kν/Qν . We normalize
the absolute values as in [Silverman 2009, Section VIII.5, after Example VIII.5.1].
If ν is finite, then |p|ν = p−1, where p is the rational prime associated to ν. If ν is
infinite, then |x |ν = max{x, −x} for every x ∈ Q. Thanks to this choice, we have
the usual product formula, i.e., ∏

ν∈MK

|x |
nν
ν = 1

for every x ∈ K ∗. Define M∞

K as the set of infinite places of K and M0
K as the set

of finite places.
Now, we define the height of a point on the curve; more details can be found in

[Silverman 2009, Chapter VIII]. Given x ∈ K ∗, define

hν(x) := max{0, log|x |ν}

and

h(x) :=
1

[K : Q]

∑
ν∈MK

nνhν(x).
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For every point R ̸= O of E(K ), define

hν(R) := hν(x(R))

and the height of the point as

h(R) := h(x(R)).

So, for every R ∈ E(K ) \ {O},

h(R) =
1

[K : Q]

∑
ν∈MK

nνhν(R).

Finally, put
h(O) = 0,

where O is the identity of the curve.
Given a point R in E(K ), define the canonical height as in [Silverman 2009,

Proposition VIII.9.1], i.e.,

ĥ(R) =
1
2

lim
N→∞

h(2N R)

4N .

We recall the properties of the height and of the canonical height that will be
necessary for this paper.

• It is known that the difference between the height and the canonical height can
be bounded by an explicit constant. In particular, we will use the following
result. Let

CE =
h( j (E))

4
+

h(1)

6
+ 2.14.

If E is defined by a Weierstrass equation in short form and with integer
coefficients, then, for every R ∈ E(K ),

|h(R) − 2ĥ(R)| ≤ CE .

This is proved in [Silverman 1990, equation 3].

• The canonical height is quadratic, i.e.,

ĥ(n R) = n2ĥ(R)

for every R in E(K ) and n ∈ N.

• For every nontorsion point R ∈ E(K ),

ĥ(R) > 0.
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There exists a positive constant JE , effectively computable and depending only
on E and K , such that

JE ≤ ĥ(P)

for every nontorsion point P ∈ E(K ). Thanks to [Petsche 2006, Theorem 2],
we can take

JE =
log|NK/Q(1E/K )|

1015 D3σ 6
E/K log2(104613Dσ 2

E/K )

where NK/Q is the norm of the field extension, D = [K : Q], and

σE/K =
log|NK/Q(1E/K )|

log|NK/Q(fE/K )|
.

If fE/K = 1, we put σE/K = 1. The conductor fE/K is defined in [Silverman
2009, beginning of Section VIII.11].

In order to prove that Bn has a primitive divisor for all but finitely many terms,
Silverman [1988] and Cheon and Hahn [1999] used a theorem of Siegel that says

lim
n→∞

hν(nP)

h(nP)
= 0

for every ν ∈ MK , as is proved in [Silverman 2009, Theorem IX.3.1]. This result
is not effective and hence their results are not effective. We will use some results
that tell us effectively how this limit goes to 0. As we will show later, for the finite
places we will use some results on the formal group of the elliptic curve, and for the
infinite places we will use the work in [David 1995]. The idea of using the result of
David to study primitive divisors of elliptic divisibility sequences was introduced,
as far as we know, by Streng [2008, Section 3].

We conclude this section by showing that we can focus only on the case when E
is defined by a Weierstrass equation in short form and with integer coefficients. We
will do that in Lemma 3.2. In order to prove that lemma, we need the following.

Lemma 3.1. Let E be an elliptic curve defined over K by a Weierstrass equation
with integer coefficients and let P ∈ E(K ). Let ν ∈ M0

K , P be the associated prime,
and p be the associated rational prime. There exists

k ≤ p
ν(1(E))

12 (2NK/Q(P) + 1) max{4, ordP( j (E)−1)}

such that ν(x(k P)) < 0.

Proof. Let EP be a minimal model for the elliptic curve over KP and let PP be the
image of P under the change of variables from E to EP . So, x(P) = u2

Px(PP)+rP
for some uP , rP ∈ KP . By [Silverman 2009, Proposition VII.1.3.d], ν(uP) ≥ 0
and ν(rP) ≥ 0. Note that 12ν(uP) = ν(1(E)) − ν(1(EP)) ≤ ν(1(E)) and so
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ν(uP)≤ν(1(E))/12. There exists a multiple k PP with k≤max{4,ordP( j (EP)−1)}

such that k PP is not a singular point in EP(FP) (see [Silverman 2009, Corol-
lary C.15.2.1]). Observe that FP has NK/Q(P) elements and then the group of
nonsingular points in EP(FP) has at most 2NK/Q(P)+ 1 elements. So, the order
of k PP in the group of nonsingular points modulo P is at most 2NK/Q(P) + 1.
Hence, there exists

nP(PP) ≤ (2NK/Q(P) + 1) max{4, ordP( j (EP)−1)}

such that nP(PP)PP reduces to the identity modulo P . Given a point Q in E(K ), it
is easy to show that Q reduces to the identity modulo P if and only if ν(x(Q)) < 0.
Therefore, ν(x(nP(PP)PP)) < 0.

From a classic result on formal groups,

ν
(
x(pν(uP )nP(PP)PP)

)
< −2ν(uP).

For more details on formal groups, see Lemma 5.2 or [Silverman 2009, Corol-
lary IV.4.4]. Using that ν(uP) ≥ 0 and ν(rP) ≥ 0, we have

ν
(
x(pν(uP )nP(PP)P)

)
= ν

(
u2
Px(pν(uP )nP(PP)PP) + rP

)
= ν

(
x(pν(uP )nP(PP)PP)

)
+ 2ν(uP)

< 0.

We conclude recalling that ν(uP) ≤ ν(1(E))/12. □

Lemma 3.2. Let E/K be an elliptic curve defined over K by a Weierstrass model M.
Then, there exists an elliptic curve E ′ defined over K by a short Weierstrass
model M′ with integer coefficients that is isomorphic over K to E , and a positive
rational integer s(E/K ,M) such that: if Theorem 1.2 holds with C(E ′/K ,M′)

for E ′,M′, then it holds with

C(E/K ,M) = max{C(E ′/K ,M′), s(E/K ,M)}

for E,M. The constant s(E/K ,M) is effectively computable and will be defined
during the proof (see (2)). It depends only on E and M.

Proof. Recall that E is defined by the equation

y2
+ a1xy + a3 y = x3

+ a2x2
+ a4x + a6.

Let u be the smallest positive rational integer such that, after the change of variables,

(x, y) → (x ′, y′) =

(
u2

(
x +

a2
1

12
+

a2

3

)
, u3

(
y +

a1

2
x +

a3

2

))
we have that E is isomorphic to a curve E ′ of the form y′2

= x ′3
+ ax ′

+ b with a
and b in OK . Let P ′ be the image of P under this isomorphism. So, x ′

= u2x + r
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for u ∈ Z ̸=0 and r ∈ K . Let q be the integral OK -ideal such that, for every ν ∈ M0
K ,

ν(q) = max{|ν(u2)|, −ν(r)}.

If r = 0, we take q such that ν(q) = |ν(u2)| for every ν ∈ M0
K . Note that q depends

only on E and M. Let B ′
n be the elliptic divisibility sequence associated with E ′

and P ′.
Let ν be the absolute value associated with a prime P coprime with q . We have

ν(u2) = 0 and ν(r) ≥ 0. If P divides Bn , then ν(x(nP)) < 0 and

ν(u2x(nP) + r) = ν(u2x(nP)) = ν(x(nP)) = −ν(Bn) < 0.

Therefore,
ν(B ′

n) = ν(Bn) > 0.

In the same way, if P divides B ′
n , then

ν(B ′

n) = ν(Bn) > 0.

So, if P is coprime with q, then P divides Bn if and only if it divides B ′
n .

Let

(2) s = max
P|q

{
p(12νP (u)+νP (1(E)))/12(2NK/Q(P) + 1)(max{4, ordP( j (E ′)−1)})

}
,

where p is the rational prime associated with P .
Assume n > s. We will show that, if P is a primitive divisor of B ′

n , then P is a
primitive divisor also for Bn .

Let P be a primitive divisor of B ′
n . Suppose that P divides q. By Lemma 3.1,

there exists

k ≤ p(ν(1(E ′)))/12(2NK/Q(P) + 1)(max{4, ordP( j (E ′)−1)})

= p(12ν(u)+ν(1(E)))/12(2NK/Q(P) + 1)(max{4, ordP( j (E ′)−1)})

≤ s

such that ν(B ′

k) > 0. But, since P is a primitive divisor of B ′
n we know that k ≥ n.

Hence, n ≤ s and this is absurd since we assumed n > s. So, P does not divide q.
Since P is a primitive divisor of B ′

n and P is coprime with q, then P divides Bn

and does not divide Bk for k < n. Therefore, it is a primitive divisor for Bn .
In conclusion, if n > max{C(E ′/K ,M′), s}, then B ′

n has a primitive divisor P .
As we showed, P is also a primitive divisor for Bn . Therefore, Bn has a primitive
divisor for all n > max{C(E ′/K ,M′), s}.

Observe that s depends on j (E ′), 1(E), u, r , and q . It is easy to show these five
values depend only on E and the model defining the curve. So, we are done. □
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From now on, we will assume that E is defined by a short Weierstrass equation
with coefficients in OK of the form

y2
= x3

− (g2/4)x − (g3/4).

Once we prove Theorem 1.2 under this assumption, then we can prove it in general
using Lemma 3.2. It is useful to have E in this form in order to apply the work in
[David 1995], as we will do in Section 6.

4. Structure of the proof

We start by recalling the structure of the proof of Cheon and Hahn of Theorem 1.1.

(1) If P is a nonprimitive divisor of Bn , then P divides Bn/q for q a prime divisor
of n. Moreover, if ν is the place associated to P , then hν(nP) and hν

( n
q P

)
are

roughly the same.

(2) If Bn does not have a primitive divisor, then, for every ν ∈ M0
K , we have

hν(nP) ≤

∑
q|n

hν

(n
q

P
)

+ O(log n),

using Step (1). Therefore,∑
ν∈M0

K

hν(nP) ≤

∑
ν∈M0

K

( ∑
q|n

hν

(n
q

P
)

+ O(log n)

)
.

(3) For every ν infinite, hν(nP) is negligible compared to h(nP). In particular,∑
ν∈M∞

K

hν(nP) = o(n2).

(4) Putting together the inequalities of (2) and (3), we obtain

2n2ĥ(P) = 2ĥ(nP)

= h(nP) + O(1)

=
1
D

∑
ν∈M0

K

nνhν(nP) +
1
D

∑
ν∈M∞

K

nνhν(nP) + O(1)

≤

∑
q|n

h
(n

q
P

)
+ o(n2)

= 2ĥ(P)
∑
q|n

n2

q2 + o(n2)

= 2n2ĥ(P)

(( ∑
q|n

1
q2

)
+ o(1)

)
.
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Note that one can use even sharper arguments using a complete inclusion-
exclusion to find better inequalities (see for example [Streng 2008, Proof of
the main theorem]).

(5) For every n we have
∑

q|n q−2 < 1 and then the inequality of (4) does not hold
for n large enough. So, Bn does not have a primitive divisor only for finitely
many n ∈ N.

In order to make this proof effective, we need to make Steps (1) and (3) effective.
In Section 5, we bound hν(nP)−hν((n/q)P) as in Step (1). In Section 6, we make
effective Step (3).

5. Finite places

Take P a prime over a valuation ν ∈ M0
K . Let p be the rational prime under P .

Recall that E is defined by a Weierstrass equation with integer coefficients. The
group of points of E(KP) that reduce to the identity modulo P is a group that is
isomorphic to a formal group, as proved in [Silverman 2009, Proposition VII.2.2].
Observe that, in the hypotheses of this proposition, there is the requirement that E is
in minimal form. Anyway, the proof works in the exact same way only requiring that
the coefficients of E are integers in KP , that is our case. Let Q ∈ E(KP) and, using
the equation defining the elliptic curve, it is easy to show that 3ν(x(Q))= 2ν(y(Q))

and therefore

(3) 2ν

(
x(Q)

y(Q)

)
= −ν(x(Q)) > 0.

Define

z(Q) =
x(Q)

y(Q)
∈ KP .

Lemma 5.1. Take ν ∈ M0
K and let P be the associated prime. Define nP as the

smallest integer such that nP P reduces to the identity modulo P . Then, k P reduces
to the identity modulo P if and only if k is a multiple of nP . Moreover, ν(x(k P))< 0
if and only if k is a multiple of nP .

Proof. Let Ens(FP) be the group of nonsingular points of the curve E reduced (with
respect to the given model) modulo P . Suppose by contradiction that k P reduces
to the identity but k is not a multiple of nP . Take q and r the quotient and the
remainder of the division of k by nP . Since nP does not divide k, we have that
0 < r < nP . So,

r P ≡ nP − kq P ≡ O − O ≡ O mod P
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and this is absurd since nP is the smallest positive integer such that nP P ≡ O mod P .
Vice versa, if k = qnP , then

k P ≡ q(nP P) ≡ q O ≡ O mod P.

Now, we conclude by observing that a point Q reduces to the identity modulo P if
and only if ν(x(Q)) < 0. □

Lemma 5.2. Let Q ∈ E(K ) be such that ν(z(Q)) > 0. Recall that p is the rational
prime such that ν(p) > 0. Then ν(z(pe Q)) ≥ e + ν(z(Q)). In particular, if pe

| n,
then ν(z(nQ)) > e.

Proof. By [Silverman 2009, Corollary IV.4.4], ν(z(pQ)) ≥ 1 + ν(z(Q)). Now,
we proceed by induction. The case e = 0 is trivial. Assume that we know that
ν(z(pe−1 Q)) ≥ e − 1 + ν(z(Q)). Put Q′

= pe−1 Q and for the observation at the
beginning of the proof we know ν(z(pQ′)) ≥ 1 + ν(z(Q′)). Therefore,

ν(z(pe Q)) = ν(z(pQ′)) ≥ 1 + ν(z(Q′)) = 1 + ν(z(pe−1 Q)) ≥ e + ν(z(Q)).

Now, we deal with the second part of the lemma. Let n = pen′ and, by Lemma 5.1,
ν(z(n′Q)) > 0. For the first part of the lemma, ν(z(nQ)) ≥ e + ν(z(n′Q)) > e. □

Lemma 5.3. Let Q ∈ E(K ) be such that ν(z(Q)) > ν(p)/(p − 1). Then,

ν(z(nQ)) = ν(z(Q)) + ν(n)

for all n ≥ 1.

Proof. This follows by [Silverman 1988, Theorem IV.6.4, Proposition VII.2.2]. □

Definition 5.4. Let S be the set of finite places of K such that ν | 2 or ν ramifies
over Q. Observe that this set is finite.

Corollary 5.5. Let Q ∈ E(K ) be such that ν(z(Q)) > 0. If ν /∈ S, then

ν(z(nQ)) = ν(z(Q)) + ν(n)

for all n ≥ 1.

Proof. Since ν /∈ S, we have ν(p)=1 and p−1≥2. So, ν(z(Q))≥1>ν(p)/(p−1)

and we apply Lemma 5.3. □

Proposition 5.6. Let E be an elliptic curve defined over a number field K and let
P ∈ E(K ) be a nontorsion point. Take ν ∈ M0

K , let P be the associated prime, and
p be the rational prime under P . Recall that nP is the smallest positive integer such
that nP P reduces to the identity modulo P . Assume that nP | n and nP ̸= n. Then,
one of the following hold:

• There exists a prime q | n such that ν(z((n/q)P)) > 0 and

ν(z(nP)) = ν
(

z
(n

q
P

))
+ ν(q).
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• ν ∈ S and

n < nP p
ν(p)

p−1 +1
.

Proof. Assume ν /∈ S and let Q = nP P . Since n/nP is an integer greater than 1,
there is a prime q that divides it. By Corollary 5.5,

ν(z(nP)) − ν
(

z
(n

q
P

))
= ν

(
z
( n

nP
Q

))
− ν

(
z
( n

qnP
Q

))
= ν

( n
nP

)
− ν

( n
qnP

)
= ν(q).

So, we focus on the case ν ∈ S. Assume that there exists q ̸= p such that q | n/nP .
Then,

ν(z(nP)) = ν
(

z
(n

q
P

))
by [Silverman 1988, Corollary IV.4.4] and we are done since ν(q) = 0. Assume
now that there is no q ̸= p such that q | n/nP . So, n = penP with e ≥ 1 (since
n ̸= nP ) and recall that we defined Q = nP P .

Assume that e−1 ≥ ν(p)/(p−1). Then, by Lemma 5.2, ν(z(pe−1 Q)) > e−1 ≥

ν(p)/(p − 1). Therefore, by Lemma 5.3,

ν(z(nP)) = ν(z(pe Q)) = ν(z(pe−1 Q)) + ν(p) = ν
(

z
( n

p
P

))
+ ν(p).

It remains the case e − 1 < ν(p)/(p − 1). In this case,

n = nP pe < nP p
ν(p)

p−1 +1
. □

Remark 5.7. To explicitly compute ν(z(nP)) in the second case of the previous
proposition one can use [Stange 2016, Lemma 5.1].

Lemma 5.8. Let ν ∈ S, P be the associated prime, and p be the associated rational
prime. It holds that

nP p
ν(p)

p−1 +1
≤gpf(21K )

m(1E )

12 max{4,m( j (E)−1)}(2gpf(21K )D
+1)gpf(21K )D+1.

See Section 2 for the definition of the constants involved.

Proof. Recall that we are working with an elliptic curve E defined by a Weierstrass
equation with integer coefficients. By Lemma 3.1,

nP ≤ p
ν(1(E))

12 (2NK/Q(P) + 1) max{4, ordP( j (E)−1)}.

Since P is a prime over a place in S and the primes that ramify divide the discriminant
of the field 1K , we have NK/Q(P) ≤ gpf(21K )D . Therefore,

nP ≤ gpf(21K )
ν(1(E))

12 max{4,m( j (E)−1)}(2 gpf(21K )D
+ 1).

Moreover, p ≤ gpf(21K ) and ν(p)/(p − 1) ≤ ν(p) ≤ D. □
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Definition 5.9. Define

C1 = gpf(21K )
m(1E )

12 max{4,m( j (E)−1)}(2 gpf(21K )D
+ 1) gpf(21K )D+1.

Proposition 5.10. Let E be an elliptic curve defined over a number field K and let
P ∈ E(K ) be a nontorsion point. Take ν ∈ M0

K and let P be the associated prime.
Assume that nP | n, that nP ̸= n, and that n ≥ C1. Then, there exists a prime q | n
such that

hν(nP) = hν

(n
q

P
)

+ 2hν(q−1).

Proof. Observe that we are in the hypotheses of Proposition 5.6. By Lemma 5.8
we know that, since n ≥ C1, we cannot be in the second case of Proposition 5.6.
Therefore, there exists a prime q | n such that

ν(z(nP)) = ν
(

z
(n

q
P

))
+ ν(q).

Observe that, given Q ∈ E(K ) with ν(x(Q)) < 0, then by (3),

hν(x(Q)) = log|x(Q)|ν = −2 log
∣∣∣∣ x(Q)

y(Q)

∣∣∣∣
ν

= −2 log|z(Q)|ν .

Therefore,

hν(nP) = −2 log|z(nP)|ν = −2 log
∣∣∣∣qz

(n
q

P
)∣∣∣∣

ν

= hν

(n
q

P
)

+ 2hν(q−1). □

6. Infinite places

We know that 2n2ĥ(P) is close to h(nP) and that

h(nP) =
1
D

∑
ν∈M0

K

hν(nP) +
1
D

∑
ν∈M∞

K

hν(nP).

Thanks to the previous section, we know how to bound hν(nP) for ν finite in the case
when Bn does not have a primitive divisor. Now, we need to bound hν(nP) for ν

infinite. We show that, for n large enough, hν(nP) is negligible compared to n2ĥ(P).
Recall that we are working with an elliptic curve E defined by the equation

y2
= x3

− (g2/4)x − (g3/4) with g2, g3 ∈ OK . Fix an embedding K ↪→ C and
consider the group of complex points E(C). We briefly recall the properties of E(C).
For the details see [Silverman 2009, Chapter VI]. There is a unique lattice 3 ⊆ C

such that C/3 is isomorphic to E(C) via the map φ : z → (℘ (z), ℘ ′(z)/2, 1) (see
[Silverman 2009, Theorem VI.5.1]). Thanks to [Silverman 1994, Proposition 1.1.5],
we can take ω1 and ω2 two generators of 3 such that τ = ω2/ω1 ∈ C is in the
fundamental domain. In particular, ℑτ ≥

√
3/2, where ℑτ is the imaginary part

of τ . We need to make this choice in order to use [David 1995, Theorem 2.1].
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Before proceeding, we need to define some constants. Let

h = max{1, h(1 : g2 : g3), h( j (E))},

where h(1 : g2 : g3) is the usual height on P2 (for a definition see [Silverman 2009,
Section VIII.5]). Let

log V1 = max{h, (3π)/(D · ℑτ)},

log V2 = max
{
h, (3π |ω2|

2)/(|ω1|
2
· D · ℑτ)

}
.

Let c1 := 3.6 · 1041, that is the constant c1 of [David 1995, Theorem 2.1] evaluated
in k = 2. Define

C3 = max{30, eh, log V1/D, log V2/D, D},(4)

C2 = 54 · c1 · D6 log V1 log V2.(5)

Proposition 6.1. Let E be an elliptic curve defined by the equation

y2
= x3

− (g2/4)x − (g3/4)

for g2, g3 ∈ K and take P ∈ E(K ). Let z ∈ C be so that φ(z) = P and suppose
log n > C3. If 0 ≤ m1, n1, m2, n2 ≤ n with n1, n2 ̸= 0, then

log
∣∣∣∣z −

m1
n1

ω1 −
m2
n2

ω2

∣∣∣∣ > −C2n1/2.

Proof. David [1995, Theorem 2.1] proved that, for all integers 0≤m1, n1, m2, n2 ≤n
with n1, n2 ̸= 0, we have

log
∣∣∣∣z−m1

n1
ω1−

m2
n2

ω2

∣∣∣∣>−c1 D6(log B D)(log log B+1+log D+h)3 log V1 log V2,

where
log B := max{eh, log n, log V1/D, log V2/D}.

Since log n > C3, we have log n > D, log n > eh > h+1, and log n = log B. Hence,

c1 D6(log B D)(log log B + 1 + log D + h)3 log V1 log V2 < C2 log4 n.

Moreover, since log n > 30, we have

log4 n < n1/2

and then

log
∣∣∣∣z −

m1
n1

ω1 −
m2
n2

ω2

∣∣∣∣ > −C2n1/2. □
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7. Proof of Theorem 1.2

Define

ρ(n) =

∑
p|n

1
p2

and ω(n) as the number of prime divisors of n. It is easy to prove, by direct
computation, that

ρ(n) <
∑

p prime

1
p2 <

1
2
.

Recall that C1 is defined in Definition 5.9.

Lemma 7.1. Let n ≥ C1. If Bn does not have a primitive divisor, then there exists
an embedding K ↪→ C such that

max{log|x(nP)|, 0} ≥ 2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1),

where with |x(nP)| we mean the absolute value in the embedding and CE is defined
in Section 2.

Proof. Suppose that Bn does not have a primitive divisor and take ν finite. Let P
be the associated prime and assume ν(Bn) > 0. Hence, nP | n but n ̸= nP since Bn

does not have a primitive divisor. So, using Proposition 5.10, there is a prime qν | n
such that

hν(nP) = hν

( n
qν

P
)

+ 2hν(q−1
ν ).

Let M0,n
K be the set of finite places ν such that hν(nP) > 0. Therefore,∑

ν∈M0
K

nνhν(nP) =

∑
ν∈M0,n

K

nνhν(nP)

≤

∑
ν∈M0,n

K

nνhν

( n
qν

P
)

+ 2nνhν(q−1
ν )

≤

(∑
q|n

Dh
(n

q
P

)
+ 2Dh(q−1)

)
.

Here we are using that hν(k P) ≥ 0 for all ν ∈ MK and all k ≥ 1. Thus,

1
D

∑
ν∈M∞

K

nνhν(nP) = h(nP) −
1
D

∑
ν∈M0

K

nνhν(nP)

≥ 2ĥ(nP) − CE −

∑
q|n

(
h
(n

q
P

)
+ 2 log q

)



PRIMITIVE DIVISORS OF ELLIPTIC DIVISIBILITY SEQUENCES 345

≥ 2ĥ(nP) − CE − 2 log n −

∑
q|n

(
2ĥ

(n
q

P
)

+ CE

)
= 2ĥ(P)n2

(
1 −

∑
q|n

1
q2

)
− 2 log n − CE(ω(n) + 1)

= 2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1).

Since hν(nP) ≥ 0 for all ν ∈ MK and
∑

ν∈M∞

K
nν = D, at least one of the hν(nP),

for ν ∈ M∞

K , is larger than the right-hand side. Recalling that

hν(x(P)) = max{log|x(nP)|ν, 0}

we conclude that

max{log|x(nP)|, 0} ≥ 2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1). □

We briefly recall the hypotheses that we are assuming. As we said in the previous
section, we are assuming that E(C) ∼= C/3 with the lattice 3 generated by the
complex numbers ω1 and ω2. Moreover, we are working with an elliptic curve
defined by a Weierstrass equation with integer coefficients and in short form. Recall
that C2 is defined in (5) and define

C4 = 2 max
ν∈M∞

K

{max{|x(T )|ν | T ∈ E(K )[2] \ {O}}}.

Proposition 7.2. Assume that

(6) 2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1) > 0,

that n ≥ C1, and that log n ≥ C3, as defined in (4). If Bn does not have a primitive
divisor, then

(7) ĥ(P)n2
≤ n1/2(2C2 + 4 + 2CE + log C4).

Proof. Fix the embedding K ↪→ C of Lemma 7.1. Since Bn does not have a
primitive divisor, we have

(8) log|x(nP)| ≥ 2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1)

thanks to Lemma 7.1 and the assumption in (6). Consider the isomorphism
C/3 ∼= E(C) as in Section 6 and take z ∈ C in the fundamental parallelogram
of the period lattice of E such that φ(z) = P . Assume

|x(nP)| ≥ C4
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and let δ be the n-torsion point of C/3 closest to z (if it is not unique, we choose
one of them). Then,

(9) log|x(nP)| ≤ −2 log|nz − nδ| + log 8

thanks to [Ingram 2009, Lemma 8] (here we are using the assumption |x(nP)|≥ C4).
This lemma is stated for K = Q, but the proof works in the exact same way for K
number field. Since δ is an n-torsion point, we have

δ =
m1
n

ω1 +
m2
n

ω2

for 0 ≤ m1, m2 ≤ n. Using Proposition 6.1 and the assumption that log n > C3,
we have

log|z − δ| = log
∣∣∣∣z −

m1
n

ω1 −
m2
n

ω2

∣∣∣∣ ≥ −C2n1/2.

Applying inequalities (8) and (9) we have

(10) log 8 + 2C2n1/2
≥ −2 log|z − δ| + log 8

= 2 log|n| − 2 log|nz − nδ| + log 8

≥ −2 log|nz − nδ| + log 8

≥ log|x(nP)|

≥ 2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1).

Observe that ω(n) ≤ log2 n and (1 − ρ(n)) > 0.5. Thus, rearranging (10), we have

ĥ(P)n2
≤ 2ĥ(P)n2(1 − ρ(n))

≤ 2 log n + CE(ω(n) + 1) + log 8 + 2C2n1/2

≤ n1/2(2C2 + 4 + 2CE).

Here we are using that n1/2 > log n thanks to the hypothesis log n > C3. Recall
that we obtained this inequality assuming |x(nP)| ≥ C4. If |x(nP)| < C4, applying
again (8), we have

log C4 ≥ log|x(nP)|

≥2ĥ(P)n2(1 − ρ(n)) − 2 log n − CE(ω(n) + 1).

Therefore, one can easily show that, both in the case |x(nP)| < C4 and in the case
|x(nP)| ≥ C4, we have

ĥ(P)n2
≤ n1/2(2C2 + 4 + 2CE + log C4). □

We are now ready to prove our main theorem. We will show that (7) does not
hold if n is large enough.
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Proof of Theorem 1.2. Define

C5 = J−1
E (2C2 + 4 + 2CE + log C4)

and take

(11) n > max
{
C1, C2/3

5 , V1, V2, exp(D), (exp(eh)), e30}.
We want to show that Bn has a primitive divisor.

Observe that, thanks to the assumption in (11) and the definition of C3 in (4),
we have log n > C3. Moreover,

n3/2 > C5 = J−1
E (2C2 + 4 + 2CE + log C4) > ĥ(P)−1(4 + 2CE)

and then
n2 > log n · ĥ(P)−1(4 + 2CE).

Therefore, equation (6) holds. Finally, n ≥ C1. Hence, we are in the hypotheses of
Proposition 7.2.

We assume that Bn does not have a primitive divisor and we find a contradic-
tion. Since Bn does not have a primitive divisor, we know that we can apply
Proposition 7.2 and (7) must hold. But

n3/2
≥ J−1

E (2C2 + 4 + 2CE + log C4)

≥
2C2 + 4 + 2CE + log C4

ĥ(P)
.

and then (7) does not hold. Therefore, we find a contradiction and then Bn must
have a primitive divisor.

In conclusion, define

(12) C6(E/K ,M) = max
{
C1, V1, V2, exp(D), exp(eh), e30, C2/3

5

}
and Bn has a primitive divisor for n > C6(E/K ,M). Observe that every constant
involved in the definition of C6(E/K ,M) does not depend on P and it is effectively
computable (we will give more details in the next section). So, we are done.

Recall that we are working under the assumption that E is defined by a short
Weierstrass equation with integer coefficients. In order to conclude for the general
case, one has to use Lemma 3.2. □

8. Explicit computation

Now, we explicitly write a constant C(E/K ,M) such that Theorem 1.2 holds. We
assume that E is defined by a short Weierstrass equation with integer coefficients,
the general case can be done using Lemma 3.2. Recall that we defined many
constants in Section 2.
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First of all, we show how to bound |τ |, as defined at the beginning of Section 6.
Recall that we are working under the assumption that τ is in the fundamental
domain. Hence, we know |ℜτ | ≤ 1/2 and then we study ℑτ , the imaginary part of
τ . Put q = e2π iτ and then

|q| = e−2πℑτ .

So,
log|q| = −2πℑτ.

Thanks to [Silverman 1990, Lemma 5.2.b], we have∣∣log|q|
∣∣ ≤ 5.7 + max{log| j (E)|, 0}.

Therefore,

|ℑτ | =

∣∣log|q|
∣∣

2π
≤

5.7 + max{log| j (E)|, 0}

2π
.

We obtain

|τ |
2
= |ℜτ |

2
+ |ℑτ |

2
≤

1
4

+

(
5.7 + max{log| j (E)|, 0}

2π

)2

.

Let

log V ′

1 = max{h, (2
√

3π)/D},

log V ′

2 = max
{

h,

(
2
√

3π

(
1
4

+

(
5.7 + max{log| j (E)|, 0}

2π

)2 ))
/D

}
,

C ′

2 = 54 · c1 · D6 log V ′

1 log V ′

2.

By the definitions of V1, V2, and C2 given at the beginning of Section 6, we have
V ′

1 ≥ V1, V ′

2 ≥ V2, and C ′

2 ≥ C2. Hence, by (12), Theorem 1.2 holds for

(13) C(E/K ,M)

= max
{

C1, V ′

1, V ′

2, exp(D), exp(eh), e30,

(
2C ′

2 + 4 + 2CE + log C4

JE

)2/3}
where

h = max{1, h(1 : g2 : g3), h( j (E))}, c1 = 3.6 · 1041,

C1 = gpf(21K )
m(1E )

12 max{4,m( j (E)−1)}(2 gpf(21K )D
+ 1) gpf(21K )D+1,

log V ′

1 = max{h, (2
√

3π)/D},

log V ′

2 = max
{

h,

(
2
√

3π

(
1
4

+

(
5.7 + max{log| j (E)|, 0}

2π

)2 ))
/D

}
,
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C ′

2 = 54 · c1 · D6 log V ′

1 log V ′

2,

CE =
h( j (E))

4
+

h(1)

6
+ 2.14,

C4 = 2 max
{
|x(T )| | T ∈ E(Q)[2] \ {O}

}
,

JE =
log|NK/Q(1E/K )|

1015 D3σ 6
E/K log2(104613Dσ 2

E/K )
.

9. Examples

We apply our main theorem to a couple of examples.

Example 9.1. Let E be the rational elliptic curve defined by the equation y2
=

x3
− 4x + 4. In this case, D = 1K = 1, h ≈ 10.23, j (E) = −27648/11,

1E/K = −2816, σE/K ≈ 1.78, and C4 ≈ 4.76. Using (13), we have

C(E/K ,M) ≈ 5.88 · 1042 < 6 · 1042.

With our methods, even if we optimize all the estimates in the proof, we cannot
hope to find a constant for Theorem 1.2 much smaller than the one of Example 9.1.
Indeed, in the definition of c1 and of JE appear constants that are very large
(namely 1041 and 1015) and so, even if the other constants involved are small, we
cannot find a constant much smaller than 1038. In order to find better constants,
one would need to have better constants in the bound of canonical height and in
logarithmic approximation.

Now, we present another example where we show the techniques that one can
use to find the terms without a primitive divisor.

Example 9.2. We focus on the elliptic curve y2
= x3

− 2x and P = (2, 2) ∈ E(Q).
The first terms of the sequence are B1 = 1, B2 = 22, B3 = 1, B4 = (24)(32)(72),
and B5 = (17)2(19)2. Hence, B1 and B3 do not have a primitive divisor. For
the terms that have very large indexes, we can use Theorem 1.2. So, we apply
Theorem 1.2 with C(E/K ,M) as defined in (13). In the definition of C(E/K ,M)

we substitute JE with 0.3. Indeed, for every rational nontorsion point of E , we
have ĥ(P) > 0.3 and JE is a constant such that JE < ĥ(P). The minimum of the
canonical height of the rational nontorsion points of E is computed in [LMFDB],
where the canonical height is defined as the double of our canonical height. By
Theorem 1.2 we have that, for n ≥ 2 · 1031, Bn has a primitive divisor.

To deal with the terms with indexes smaller than 2·1031, we can use the following
techniques. By [Voutier and Yabuta 2012, Theorem 1.3] and [Verzobio 2021a], Bn

has a primitive divisor for n even. So, we focus on the terms with odd indexes. As
an easy corollary of [Voutier and Yabuta 2012, Lemma 3.4], we have that if Bn

does not have a primitive divisor, then log Bn ≤ 0.18n2. So, we can compute the
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values of Bn and check if the inequality holds (this is much faster than computing
the factorization of the terms). As far as we know, the faster way to compute Bn is
to use [Verzobio 2022, Theorem 1.9], where it is proved that, for k ≥ 9,

(14) bk =
bk−2bk−6b2

4 − b2
k−4b6b2

bk−8b2
2

where bk = ±
√

Bk for an appropriate choice of the sign (for more details, see
[Verzobio 2022, Definition B]). One can check that log Bn > 0.18n2 for 4 ≤ n ≤ 105

using PARI/GP [2018] and then Bn has a primitive divisor for 4 ≤ n ≤ 105. So, our
bound is too large to be computationally useful and then new methods are needed
to bridge the gap.
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