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Institute of Science and Technology Austria, Klosterneuburg, Austria

* wmlynars@ist.ac.at

Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Activity of sensory neurons is driven not only by external stimuli but also by feedback signals

from higher brain areas. Attention is one particularly important internal signal whose pre-

sumed role is to modulate sensory representations such that they only encode information

currently relevant to the organism at minimal cost. This hypothesis has, however, not yet

been expressed in a normative computational framework. Here, by building on normative

principles of probabilistic inference and efficient coding, we developed a model of dynamic

population coding in the visual cortex. By continuously adapting the sensory code to chang-

ing demands of the perceptual observer, an attention-like modulation emerges. This modu-

lation can dramatically reduce the amount of neural activity without deteriorating the

accuracy of task-specific inferences. Our results suggest that a range of seemingly dispa-

rate cortical phenomena such as intrinsic gain modulation, attention-related tuning modula-

tion, and response variability could be manifestations of the same underlying principles,

which combine efficient sensory coding with optimal probabilistic inference in dynamic

environments.

Introduction

Activity of sensory neurons is highly variable, even in response to the same stimulus [1–3].

Key factors contributing to this variability in the visual cortex are top-down feedback signals

from high-level visual areas [4–6]. These signals modulate neural responses to external stimuli

and are believed to reflect a broad range of internal states, such as goals of the organism and its

beliefs about the state of the environment [7–10].

The question of how internal states of the brain could modulate sensory neurons and con-

tribute to variability of neural activity has been addressed by a number of theoretical studies

[9,11]. Neural variability in the primary visual cortex has been linked to probabilistic inference

and uncertainty of low-level image features [12–14], as well as to hierarchical inference, where

sensory representations interact across different levels of visual pathway to represent progres-

sively more abstract features [15–19]. Structured variability in sensory populations could also

result from mechanistic constraints on neural circuit dynamics [20,21].

Attention is a particularly relevant internal state known to modulate sensory codes [5]. Its

presumed purpose is to allocate finite neural resources to accurately represent stimuli relevant

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001889 December 21, 2022 1 / 33

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Młynarski W, Tkačik G (2022) Efficient

coding theory of dynamic attentional modulation.

PLoS Biol 20(12): e3001889. https://doi.org/

10.1371/journal.pbio.3001889

Academic Editor: Adam Kohn, Yeshiva University

Albert Einstein College of Medicine, UNITED

STATES

Received: December 10, 2021

Accepted: October 24, 2022

Published: December 21, 2022

Copyright: © 2022 Młynarski, Tkačik. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code has been

written in Matlab and is available here: https://

seafile.ist.ac.at/published/attentionalmodulation_

code/.

Funding: GT & WM were supported by the

Austrian Science Fund Standalone Grant P 34015

"Efficient Coding with Biophysical Realism" (https://

pf.fwf.ac.at/) WM was additionally supported by

the European Union’s Horizon 2020 research and

innovation programme under the Marie

Skłodowska-Curie Grant Agreement No. 754411

(https://ec.europa.eu/research/mariecurieactions/).

https://orcid.org/0000-0003-4788-6358
https://doi.org/10.1371/journal.pbio.3001889
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001889&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001889&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001889&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001889&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001889&domain=pdf&date_stamp=2023-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001889&domain=pdf&date_stamp=2023-01-10
https://doi.org/10.1371/journal.pbio.3001889
https://doi.org/10.1371/journal.pbio.3001889
http://creativecommons.org/licenses/by/4.0/
https://seafile.ist.ac.at/published/attentionalmodulation_code/
https://seafile.ist.ac.at/published/attentionalmodulation_code/
https://seafile.ist.ac.at/published/attentionalmodulation_code/
https://pf.fwf.ac.at/
https://pf.fwf.ac.at/
https://ec.europa.eu/research/mariecurieactions/


for the task at hand [5,6]. To account for task specificity, attentional processes are traditionally

categorized by the task-relevant properties of the stimulus or the environment into, e.g.,

object-based attention [22–24], spatial attention [25–27], or feature-based attention [28–30].

Attentional processes are known to modulate neural tuning curves [31], receptive fields [32],

and individual neuron firing rates [33,34]. Attentional and other modulatory processes can

also influence the collective structure of the population activity, reflected in correlation pat-

terns between pairs of neurons [35–38]. Furthermore, fluctuations in the attentional state can

contribute to dynamic variability of neural firing that unfolds over long timescales [1,38–40].

Computational theories of attention have interpreted attention-related modulation of sen-

sory neurons as a consequence of probabilistic inference [41–44], slow fluctuations in the

brain state [38], or modulation of gain in hierarchical feed-forward pathways [45]. Despite this

progress, we currently do not understand how top-down modulation could enable a key puta-

tive feature of attentional computations—namely, the efficient use of limited resources by sen-

sory populations to dynamically encode only the task-relevant sensory information.

Here we address this issue by developing a model of dynamic, top-down modulation of sen-

sory codes. A theoretical grounding of our model is provided by a synthesis of two established

normative theories of neural computation: probabilistic inference and efficient coding. Proba-

bilistic inference specifies how task-relevant environmental states can be optimally estimated

from unreliable sensory signals. Efficient coding specifies how finite neural resources should

be allocated to encode these signals. A fusion of these two theories provides a natural frame-

work to study attentional modulation of sensory codes: a process whose presumed purpose is

to allocate finite resources to extract features of the stimulus, which are necessary to accurately

estimate relevant properties of the environment [46].

Building on these general principles, and by committing to specific assumptions and sim-

plifications, we develop a model of adaptive sensory representations in the visual cortex. The

model is optimized to infer the state of a changing environment from dynamic sequences of

natural images. To minimize the amount of neural activity used to encode individual stimuli,

the model utilizes top-down feedback to dynamically modulate the gain of individual neurons

in the sensory population. This modulation gives rise to an “adaptive code”—a sensory repre-

sentation that is dynamically adapted in a top-down manner to support perceptual inference

in a changing environment.

Adaptive codes can be viewed as the next iteration of the efficient coding paradigm, where

the neural code is optimized not only to the statistical structure of the incoming stimuli but

also to the statistical structure of the perceptual task [47]. In this way, the bits encoded about

the stimulus are the meaningful bits that are essential for a given perceptual task, while the

task-irrelevant bits are discarded (making adaptive code a lossy compression scheme) to save

resources. The adaptive coding model reproduces known properties of neural coding in the

visual cortex and generates novel testable predictions about neural correlations and the impact

of perceptual uncertainty on the population code. Our results provide a theoretical account of

how top-down modulation could contribute to increased efficiency of sensory representations

in the visual system.

Results

We consider a scenario depicted in Fig 1A, where the aim of the sensory system is to keep

track of a changing latent state of the environment. This latent state, denoted by y
!

t and evolv-

ing in time t, might correspond to a behaviorally relevant quantity, such as the position of a

moving target. The brain does not have direct access to this latent state and has to infer it from

a stream of high-dimensional stimuli x!t . Stimuli are encoded by a resource-constrained
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population of sensory neurons whose instantaneous responses are denoted by z!t. A sensory

representation of the current stimulus is conveyed via feed-forward connections to a brain

region that performs a specific inference (a perceptual observer). To solve this inference opti-

mally, the observer combines the stimulus representation z!t with its internal model of the

world into a posterior distribution over the current state of the environment pð y
!

tj z
!

t�tÞ. The

posterior distribution is used to extract a point-estimate of the state of the environment ŷt, and

the predicted future distribution of stimuli, which we denote as pð x!tþ1j z
!

t�tÞ. Based on this

prediction, optimal parameters for the sensory population are computed and conveyed back

upstream, via feedback connections. These optimal parameters are selected by the perceptual

observer to minimize a general cost function schematized in Fig 1B. The cost function navi-

gates a trade-off between two competing objectives: minimization of the expected error in

Fig 1. Adaptation of the sensory code for perceptual inference in a dynamic environment. (A) Continually evolving state of the environment y
!

t gives

rise to a sequence of stimuli x!t , which are encoded by a population of sensory neurons into neural responses z!t . The properties of sensory neurons (e.g.,

their gain, receptive fields, recurrent interactions) are not fixed but can be adapted moment by moment via feedback connections from higher brain areas

(the model considered here specifically adapts gain of individual neurons). The normative approach we study here considers a scenario where sensory

neurons optimally adapt their activation thresholds, leading to maximally accurate inference of the state of the environment by the perceptual observer, at

minimal activity cost in the sensory population. Illustrative natural images were taken from [48]. (B) Cost function used by the system to adapt the

parameters of the sensory code. At each time step, parameters are selected to minimize this cost function. (C) A single round of parameter updates

consists of multiple steps performed by the sensory system to infer the latent state of the environment from adaptively encoded stimulus stream. Colors

correspond to distinct terms of the equation displayed in (B).

https://doi.org/10.1371/journal.pbio.3001889.g001
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perceptual inference and minimization of the amount of neural activity, which the system

requires to encode the incoming stimuli. Parameters of the sensory code are chosen to opti-

mize these two terms, averaged over the stimulus distribution conditioned on the predicted

value of the latent state.

Computations described above can be represented as a sequence of steps performed by the

model sensory system at each time instant (Fig 1C). By implementing this procedure, the sen-

sory population can use its finite resources to retain only those features of the stimulus, which

are relevant to the perceptual observer at any given moment [46], which reflects our intuitions

about the role of attention in perception [5].

In the following sections, we develop a model of population coding in the primary visual

cortex that implements the general design principles outlined above. We describe first a spe-

cific model of neural populations in V1 and endow it with dynamic adaptation whereby the

continually evolving perceptual belief adjusts the code to minimize unnecessary neural activity.

We then simulate three inference tasks representative of the different kinds of attention stud-

ied previously. In the main part of the results, we describe properties of adaptive coding for

these tasks and compare them to experimental data.

Model of adaptive coding in the visual cortex

Following the rationale of Fig 1, we develop a model of adaptive coding in the visual cortex

(Fig 2A and 2B), which is an extension of the well-known sparse coding model of V1 [49]. In

the sparse coding model, a population of sensory neurons, each encoding a single image fea-

ture, forms a distributed representation of natural images. Preferred features of individual neu-

rons are optimized to reconstruct natural images with minimal error, while maximizing the

sparsity of neural responses (see Methods). The resulting features resemble receptive fields of

V1 neurons and can be conveniently visualized for the entire population [19] (Fig 2C). While

sparse encoding is highly nonlinear and requires inhibitory interactions between the neurons

[50], images can be linearly decoded from the population activity.

The standard sparse coding model is capable of accurately reconstructing entire images, up

to a single pixel, at minimal activity cost. Sparse coding can be viewed as an instantiation of

efficient coding of stimuli with a sparse generating structure in a static, task-agnostic setup

[51]. We hypothesized that significant further efficiency gains would be possible if the sensory

population could dynamically adjust its properties to encode only those image features

required by the perceptual observer at any given moment.

We therefore extended the standard sparse coding model by transforming the output of

each sparse feature with an adaptive nonlinearity (Fig 2A). Each nonlinearity is controlled by a

single parameter ξn, which corresponds to an activation threshold (Fig 2B). When ξn = 0, the

response of the neuron n is equal to the activation predicted by the standard sparse coding.

For ξn>0, the neuron responds only when the activation exceeds a threshold determined by

the value of ξn. An increase of the threshold can be understood as an effective decrease in the

neural gain (Fig 2B, inset). This nonlinear transformation is reminiscent of smooth shrinkage,

a well-known image denoising transform [52]. Neural nonlinearities can be dynamically mod-

ulated via feedback connections, as we describe more precisely below; what is essential here is

that these nonlinearity adjustments allow the resulting neural responses zt,n to be sparsified

beyond the standard, task-independent sparse coding. Mathematically, this is achieved by

imposing an “attentional resource constraint” of strength ψ that penalizes high neural activity

z!t (see Eq 1, below). Finally, the neural responses are transferred downstream to the percep-

tual observer. Image decoding remains a simple, linear transformation.
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To illustrate how this model population can selectively encode only the relevant features of

a stimulus, we consider a simple, static image encoding task (Fig 2D). We optimize the nonlin-

earity parameters to reconstruct only a region of interest (ROI) of an image (Fig 2D, orange

frame). When the attentional resource constraint is inactive (ψ = 0), our model is equivalent to

a sparse encoder, and the entire image can be reconstructed with high accuracy (Fig 2D, left-

most column). For increasing values of attentional resource constraint ψ, the neuronal thresh-

olds increase and “gain down” neurons that report on the image outside of the ROI (Fig 2D,

top row). While the quality of the overall image reconstruction deteriorates with increasing ψ
(Fig 2D, bottom row), the image within the ROI is preserved with accuracy higher than the

rest of the image (which we quantify in signal-to-noise ratio (SNR)). The trade-off between

population activity suppression and ROI reconstruction accuracy as a function of the

Fig 2. Adaptive population coding with nonlinearities. (A) An image x!t (32×32 pixel in size) is encoded by a population of N = 512 sparse coding

model neurons, characterized by the represented features. Feature activations are transformed by adaptive nonlinearities with threshold parameters ξn,t.

The resulting responses zn,t are transmitted to the perceptual observer, which may use them to linearly decode the image and perform further task-

specific computations. (B) Example adaptive nonlinearities for different values of the threshold parameter ξ (color). Inset: linear fits to nonlinearity

outputs demonstrate that increasing the threshold ξ effectively decreases the neural response gain. (C) Visualization of the population code (bottom).

The feature encoded by each model neuron is represented by a bar that matches that feature’s orientation and location. Two example features (top) are

represented by bars of the corresponding color (bottom). (D) Left: an example image reconstructed using the standard sparse code (“full,” when all

x
!
¼ 0). Orange frame marks a region of interest (ROI). Right, top row: three sensory populations optimized to reconstruct only the part of the image

within the ROI, sorted by increasing attentional resource constraint ψ. Red intensity visualizes the value of the optimal thresholds ξn (red = low threshold

and high gain; gray = high threshold and low gain). Right, bottom row: images linearly decoded from the corresponding sensory populations in the top

row. (E) Activity of the neural population is increasingly suppressed (black line) and quality of ROI reconstruction (measured in dB SNR) decreases with

increasing attentional resource constraint ψ.

https://doi.org/10.1371/journal.pbio.3001889.g002
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attentional resource constraint ψ is clearly visible (Fig 2E). This pedagogical example high-

lights how task-irrelevant features (here, image components outside of the ROI) can be sup-

pressed in a sensory population to increase coding efficiency. To implement the scenario

depicted in Fig 1A, we however need to go beyond a trivial scenario where the system aims to

reconstruct a fraction of a static image.

To instantiate adaptive coding, we assume that the perceptual observer dynamically adapts

the sensory population via feedback. In order to do so, it sets thresholds of all neurons in the

sensory population to optimal values x
�

tþ1
. These values are chosen at every time step t to mini-

mize the following cost function:

Cð x
!

tþ1Þ ¼

*

Dsym
KL ½pð y

!
tþ1j z
!

tþ1ð x
!

tþ1ÞÞjjpð y
!

tþ1j z
!

tþ1ð x
!
¼ 0ÞÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inference error due to neural activity suppression

þ c
XN

n¼1

jzn;tþ1ðxtþ1;nÞj

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
neural activity cost

+

pð x!tþ1 j z!t�t Þ

; ð1Þ

where Dsym
KL is the symmetrized Kullback–Leibler divergence. We relied on symmetrized variant

of the KL divergence because of its conceptual similarity to other error measures such as

reconstruction error, but the essence of our framework does not depend on this particular

choice.

The cost function in Eq 1 is a concrete instantiation of normative objectives illustrated in

Fig 1. The first term corresponds to the error in inference induced by image compression due

to suppression of the neural activity via adaptive thresholds (see Methods): This term is small

in expectation when the task-relevant predictive information can be retained (at low threshold

values). The second term is the neural activity cost, where ψ is the attentional resource con-

straint: This term is small when the predicted neural activations will be sparse (at high thresh-

old values). By minimizing the cost function C, the system balances the two opposing

objectives and minimizes the error in latent state inference while reducing the amount of neu-

ral activity beyond the limit set by standard sparse coding (ψ = 0).

To evaluate the cost function in Eq 1, the observer needs to estimate the predictive distribu-

tion over future stimuli,

pð x!tþ1j z
!

t�tÞ ¼

Z

d y
!

tþ1pð x
!

tþ1j y
!

tþ1Þ

Z

d y
!

tpð y
!

tþ1j y
!

tÞpð y
!

tj z
!

t�tÞ: ð2Þ

Therefore, the ability to predict the value of the relevant latent state y
!

tþ1 and the stimulus

distribution pð x!tþ1j y
!

tþ1Þ is a crucial component of forming an efficient and adaptive repre-

sentation for dynamic perceptual inference. We note that Eq 2 is a simplification. In real-

world scenarios, stimuli x!tþ1 will depend on additional factors, other than the relevant latent

state y
!

tþ1, and these factors might be correlated in time.

While our approach is grounded in abstract and general theoretical notions captured in

substrate-independent terms of the cost function in Eq 1, our model relies on specific

choices such as the parametrization of neural gain functions or individual V1 neuron

responses. While these choices are clearly important for biological realism of the model, we

do not consider them as crucial for the main results of this study, which are largely indepen-

dent of modeling details. The question of how realistic neural circuits could implement or

approximate the required computations is clearly important, but beyond the scope of pres-

ent work.
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Perceptual inference tasks

We consider three different probabilistic inference tasks that the perceptual observer carries

out using the adaptive sensory code: object detection, target localization, and orientation esti-

mation (Fig 3A). These tasks correspond to simple variants of traditionally defined types of

attention: object-based attention, spatial attention, and feature-based attention, respectively.

Each of these tasks is also a case of dynamic inference of a latent variable—a canonical

approach to study sensory computations [53].

For each task, the perceptual observer performs a sequence of computations outlined in Fig

1 at each time step. First, the observer uses a representation of the stimulus in the form of pop-

ulation activity vector z!t to perform a “measurement” m!t of the stimulus feature required to

infer the latent variable of interest. We introduce the measurement to reflect the fact that the

latent state of interest typically does not depend on the entire, high-dimensional representation

of the stimulus, but rather on a small number (perhaps just one) of its features. For example,

the position of a visual target will not depend on fine structure of the background of the image.

The measurement mt is an auxiliary quantity, which simplifies the description of different per-

ceptual inference tasks but is not essential and is thus not included in the general formulation

of the problem, depicted in Fig 1A. The measurement consists of evaluating a task-dependent

function f over the population activity vector, i.e., m!t ¼ f ð z!tÞ þ r, where ρ is additive Gauss-

ian noise. Second, the measurement m!t is used in a Bayesian update step to compute the distri-

bution over the latent state of the environment pð y
!

tjm
!

t�tÞ, and the predictive distribution of

future stimuli pð x!tþ1j z
!

t�tÞ. Third, the predictive distribution is used to select optimal values

for the neural nonlinearities, to be conveyed to the sensory population via top-down feedback

(see Methods for details). To identify the best solution achievable by the model we assume

that, as in the ideal observer paradigm [54], the system knows the statistical structure of the

task being solved.

Object detection. The goal of the object detection task is to infer whether a specific object

is embedded in the current image or not (Fig 3A and 3B, top row). The latent state of the envi-

ronment follows a random correlated process to switch between “object present” (θ = P) and

“object absent” (θ = A). The observer linearly decodes the image x̂t and computes the measure-

ment mt by projecting the decoded image onto the object template. The measurement mt fol-

lows a different distribution, depending on whether the object is present or absent in the scene

(Fig 3C, top row). The posterior distribution is characterized by a single number, the probabil-

ity of object present p(θ = P) (Fig 3D, top row).

Target localization. The goal of the target localization task is to infer the position of a

moving visual target—a white cross—embedded in the background of a natural movie (Fig 3A

and 3B, middle row). The observer linearly decodes the image to extract a noisy measurement

of the position of the target, by computing cross-correlation with the target template (Fig 3C,

middle row; see Methods). This noisy measurement, combined with observer’s knowledge of

the target dynamics, is used to estimate the current position of the target along the two spatial

coordinates ŷt ¼ ðŷx;t; ŷy;tÞ (Fig 3D, middle row). In this task, the observer relies on these

point estimates to adapt code parameters x
!

. In a general scenario, these parameters could be

adapted to the entire shape of the posterior over the latent variable θ.

Orientation estimation. The goal of the orientation estimation task is to determine

whether the current stimulus is predominantly horizontally or vertically oriented (Fig 3A and

3B, bottom row). These two classes of images were first discovered via unsupervised learning

(see Methods). The latent state of the environment follows a random correlated process to

switch between “horizontal” (θ = H) and “vertical” (θ = V). The observer projects the
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Fig 3. Perceptual inference tasks. (A) Rows correspond to individual inference tasks: object detection (top), target localization (middle), and orientation

estimation (bottom). (B) Visualization of latent states y
!

t (top row of each panel, orange and green frames) and example stimuli x!t in each task (bottom

rows of each panel, black frames). Top: tree present (orange) or absent (green). Middle: different white cross positions (orange dot). Bottom: orientation

horizontal (orange) or vertical (green). (C) Measurements taken by the perceptual observer to infer the state of the environment. Top: a linear decoding of

an image is projected onto a target “tree template” (inset, contour outline of the target image) and noise is added. Measurements with object present

(orange) and absent (green) follow different distributions. Middle: a linear decoding of an image is used to take a noisy measurement of the target position

(orange dot = position estimate; orange circle = noise standard deviation). Bottom: logarithmically transformed neural activity is projected onto a

template (inset, blue and red = negatively and positively weighted neurons, respectively) and noise is added. Measurements of predominantly horizontal

(orange) and vertical images (green) follow different distributions. (D) Example posterior distributions. Top: probability of object being present (P,

orange) or absent (A, green). Middle: probability of the visual target location (orange dot = MAP estimate; orange circle = covariance of the estimate).

Bottom: probability of the image being predominantly horizontally (H, orange) or vertically (V, green) oriented. Note that specific values displayed in the

panel are illustrative. (E) Top row, left column: population activity for two different observer belief levels that the tree is present. Top row, middle column:

two images decoded using the full code optimized for image reconstruction. Top row, right column: two images decoded using the adaptive code with the

activity shown in the left column. Middle and bottom rows: analogous to the top row, but for target localization and orientation estimation, respectively.

Throughout, the neural population is visualized using the expected neural activation (colorbar; see Methods).

https://doi.org/10.1371/journal.pbio.3001889.g003
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magnitudes of neural responses j z!tj onto a discriminative template, without decoding the

image first, to obtain the measurement mt (Fig 3C, bottom row; see Methods for details). The

measurement follows different distributions for horizontally and vertically oriented images

(Fig 3C, bottom row). The posterior distribution is characterized by a single number, the prob-

ability that the environment is in the horizontal state p(θ = H) (Fig 3D, bottom row).

In addition to the perceptual inference task, the primary factor that impacts the sensory

representation, neuronal thresholds ξ are modulated also by the strength of the attentional

resource constraint ψ and, crucially, by the time-changing perceptual belief of the observer

(Fig 3E). In the object detection task (Fig 3E, top panel), only the neurons that encode the sil-

houette of the object are modulated, while the rest of the population remains suppressed to

minimize activity. When the observer does not believe that the tree is present in the scene (i.e.,

p(θ = P) is low; Fig 3E, top panel, top row), only a minimal set of neurons remains active, in

order to encode the outline of the tree should it suddenly appear. This is evident when compar-

ing the image decoded from the full code with that from the adaptive code: In the latter case,

only the shape of the tree is retained while the rest of the image detail is compressed out.

When the uncertainty about the presence of the object increases (i.e., p(θ = P) = 0.5), the sen-

sory population must preserve additional image features to support the perceptual task (Fig

3E, top panel, bottom row).

Similar reasoning applies to the orientation estimation task (Fig 3E, bottom panel), where

only the neurons encoding the relevant image orientations remain active and modulated by

the observer. While the images reconstructed from the adaptive code lose a lot of spatial detail,

they retain the global “gist,” which enables the observer to identify their dominant orientation.

The influence of perceptual belief on the sensory encoding is perhaps most clearly apparent

in the target localization task (Fig 3E, middle panel). Here, the sensory population encodes

only that region of the image where the perceptual observer believes the target is expected to

move in the next time step. This task can be seen as a dynamic generalization of the ROI

encoding example of Fig 2D. As the target moves, the observer extrapolates this motion into

the future and encodes information just sufficient to confirm or rectify its prediction, while

suppressing the rest of the image. This results in an attentional phenomenon that closely

resembles a moving spatial “spotlight” of high visual acuity.

This specification of inference tasks completes our setup, and we now turn to discussing the

properties of the corresponding adaptive codes.

Adaptive coding enables accurate inference with minimal neural activity

How do adaptive codes navigate the trade-off between minimizing neural activity and maxi-

mizing task performance? We simulated perceptual inference in dynamic environments over

multiple time steps for all three tasks (Fig 4A). Adaptive coding results in drastic decreases of

neural activity in the sensory population compared to the standard sparse coding (Fig 4B).

Adaptive coding furthermore reveals interesting task-specific dynamics of population activity,

locked to the switches in the environmental state. For example, in the object detection and ori-

entation estimation tasks (Fig 4B, top and bottom panels, respectively), the neural activity is

significantly decreased in “absent” and “horizontal” environmental states, respectively. This is

because the sensory system needs to extract different kind of information to support down-

stream inferences in different environmental states. In contrast, the standard sparse code

maintains a roughly constant level of activity (Fig 4B, red lines).

We also quantified the cost of top-down feedback signaling (Fig 4C). In our model, feed-

back activity is commensurate with the amplitude and frequency of posterior belief updates in

the perceptual observer (see Methods), making feedback activity patterns strongly task specific.
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In the object detection task, feedback activity peaks briefly during switches between environ-

mental states (Fig 4C, top panel). In the orientation estimation task, the belief of the perceptual

observer fluctuates strongly when vertical orientation dominates, leading to elevated feedback

activity (Fig 4C, bottom panel). Since the signal statistics are more homogeneous in the target

localization task, feedback activity (when nonzero) stays within a tight interval (Fig 4C, middle

panel).

Fig 4. Adaptive coding significantly reduces activity cost with minimal impact on inference accuracy. (A) Rows correspond to inference tasks: object

detection (top), target localization (middle), and orientation estimation (bottom). (B) Sensory population activity h|zn,t|in in the standard sparse code

optimized for image reconstruction (red = full code) or for a particular task (blue = adaptive code). Activities in object detection (top) and orientation

estimation (bottom) tasks were averaged over 500 switches between different states of the environment. For the target localization task (middle), we plot a

short nonaveraged activity segment (200 time steps out of a 104 time step simulation; see Methods). (C) Same as B but for feedback activity required to

adapt the nonlinearities in the sensory population (see Methods). (D) Time-averaged activity of the full code (red bars) and adaptive code (blue bars). Pie

charts show the total activity decomposed into contributions from two different environmental states (green and orange; top and bottom row only) and

feedback (brown; adaptive codes only). (E) Inference accuracy (red = full code; blue = adaptive code). Estimates of the environmental state (“object

present” in object detection task, top; “orientation horizontal” in orientation estimation task, bottom) were averaged over 100 environmental switches. For

the target localization task (middle), inference accuracy is measured as mean squared error between the true and inferred position of the target cross. Text

insets display the average inference error in each task (see Methods).

https://doi.org/10.1371/journal.pbio.3001889.g004
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Despite the additional cost of feedback signaling, the total activity of adaptive codes is dras-

tically lower compared to the full sparse code, sometimes by more than an order of magnitude

(Fig 4D). This dramatic reduction does not significantly impact the accuracy of the inferences

(Fig 4E). Average trajectories of the posterior probability for the object detection and orienta-

tion estimation tasks are very similar (Fig 4E, top and bottom panels). In the target localization

task, the instantaneous error of the target location estimate using the adaptive code closely fol-

lows the error of the full code (Fig 4E, middle panel). For all tasks, the time-averaged error val-

ues are comparable between the adaptive and the full code. Taken together, this demonstrates

that adaptive coding enables accurate inferences while dramatically minimizing the cost of

neural activity in the sensory population.

Statistical signatures of adaptive coding

Dynamic adaptation significantly changes the statistical structure of a sensory code. The most

prominent change is a large increase in the sparsity of the adaptive code compared to the stan-

dard sparse code across all tasks (Fig 5A and 5B). This finding is consistent with the observed

suppression of average neural activity (Fig 4D). These two phenomena are, however, not

exactly equivalent. Sparsity of neural responses (as measured by kurtosis) can be increased in

many ways [49], and each would result in suppression of the average activity. In our case, spar-

sity increase in the adaptive code is induced specifically by a complete suppression of a sub-

population of neurons, resulting in the high spike at zero in the neural response distribution

(Fig 5A).

Coordinated top-down modulation of individual neurons leaves its imprint also on the col-

lective statistics of the population activity. For example, different perceptual tasks engage dif-

ferent neurons and, among them, induce different patterns of pairwise correlation. This effect

becomes apparent when we focus on a subset of neurons active in a task and compare their

correlated activity under standard sparse code or under the adaptive code. In the standard

sparse code, neural correlations are inherited solely from the stimulus (Fig 5C, top subma-

trices, red frame). In an adaptive code, they are additionally modulated by the task, leading to

a very different correlation pattern (Fig 5C, bottom submatrices, blue frame).

Changes in the stimulus are not the only factor that drives response variability in the visual

cortex. Cortical responses are notoriously unreliable and can fluctuate widely over multiple

presentations of the same stimulus [3], giving rise to “noise correlations” among sensory neu-

rons [55–57]. Patterns of noise correlations can be task specific and driven by feedback [37].

Our framework provides a new normative hypothesis about the origin and functional rele-

vance of response variability and noise correlations. In our model, neurons generate different

responses even at fixed stimulus when the neural nonlinearities change due to fluctuations in

the internal state of the perceptual observer. For example, at the beginning of each target locali-

zation trial—even though the stimulus is the same—the perceptual observer may have a differ-

ent prior belief about where the target is, possibly influenced by preceding history of the

neural dynamics or sampling noise that leads to stochastic information accumulation about

target position. Trial-to-trial differences in this internal belief will result in a variable allocation

of resources in the sensory population as directed by the perceptual observer via top-down

feedback, leading to strong noise correlations.

We simulated such a scenario by exposing our model to multiple presentations of a single

stimulus, identical across the three tasks, while enabling the perceptual belief to vary. A clear

pattern of response variability to multiple presentations of the same stimulus is visible in each

case (Fig 5D). This task-specific and feedback-driven response variability manifests in distinct

noise correlation structures (Fig 5E, left column). For the adaptive code, the noise correlation
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matrix is dominated by a small number of modes, reflecting a low-dimensional fluctuating

internal state of the perceptual observer. This observation is consistent with the experimentally

observed low dimensionality of task-specific correlations in the visual cortex [37,58]. In con-

trast, noise correlations are expected to be exactly zero for the standard sparse code, within the

setting considered here. If independent noise is purposefully introduced into the standard

Fig 5. Statistical differences between the adaptive code and the standard sparse code. (A) Rows correspond to inference tasks: object detection (top),

target localization (middle), and orientation estimation (bottom). (B) Distributions of neural responses zt,n for the standard sparse code code optimized

for image reconstruction (full, red) and the adaptive code (blue); kurtosis as a measure of sparsness is displayed in inset. (C) Pairwise correlations of 10

example neurons whose activity is modulated by the task (different for each task). Correlations were computed over the entire stimulus trajectory used to

generate plots in Fig 4. Upper triangle (red) of correlation matrices corresponds to the full code, bottom triangle (blue) to the adaptive code. (D) Belief-

induced response variability in the adaptive code. Neural activation (grayscale proportional to |zn,t|
0.5) for 32 example neurons chosen separately for each

task, exposed to 1,000 presentations of the same stimulus (orange frame). Response variability at fixed stimulus originates from the fluctuations in the

internal belief of the perceptual observer (top part of each panel). Here, these fluctuations are simulated as sinusoidal variations in the probability of

environmental state (object detection and orientation estimation tasks; top and bottom row, respectively), or a random walk trajectory of the target for the

localization task (middle row). (E) Belief-induced noise correlations in the adaptive code. Left column: correlation matrices of the same 100 neurons

computed from responses to stimulus presentations displayed in (D). Right column: scaled singular values of correlation matrices of the adaptive code

(blue). We compared this spectrum to the standard sparse coding in which a small amount of independent Gaussian noise is added to each neural

activation. The normalized singular spectrum of noise correlations of the sparse code (red) is denser compared to that of the adaptive code.

https://doi.org/10.1371/journal.pbio.3001889.g005
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sparse coding units (see Methods), the singular value spectrum is much denser than for the

adaptive code (Fig 5E, right column), indicating that the presence low-rank noise correlations

differentiates between adaptive and full sparse codes, within the framework described here. In

a general setting, noise correlations may be caused by a number of different factors beyond the

normative computations described here. For example, they can arise as a consequence of

recurrent circuit mechanisms used to compute sparse representations [15,50], or due to the

biophysical structure of a neuronal network [21,59–61].

Taken together, adaptive code is predicted to feature: first, a sparser response distribution

compared to the standard sparse code; second, task-dependent response correlations com-

pared to task-independent correlations for the standard sparse code; third, prominent yet low-

rank noise correlations compared to zero noise correlations for the standard sparse code.

Adaptive coding reproduces dynamics of internal modulation in the visual

cortex

To check whether our approach could provide an explanation of experimentally observed phe-

nomena, we compared the properties of the adaptive coding model to three different studies of

internal modulation of sensory codes in the primary visual cortex (Fig 6). These studies focus

on increasingly complex properties of internally driven modulation of sensory responses in

V1: (i) suppression of tuning curves of individual neurons; (ii) statistics of spontaneous gain

dynamics; and (iii) coordinated response variability across the entire neural population. Our

aim was not to capture the details of any specific experimental setting but rather to verify

whether the proposed model could qualitatively account for a broad range of V1 dynamics.

We first focused on the modulation of population tuning curves—a prominent hallmark of

spatial attention in the visual cortex [31,62–64]. Orientation-selective neurons whose receptive

fields are located in the attended part of the scene respond more strongly to preferred stimuli

than neurons encoding unattended parts of the scene (Fig 6A, top panel). This modulation is

manifested in the scaling of tuning curves of individual neurons, displayed either as parametric

fits (Fig 6A, top panel, top row; reproduced from [63]), as well as raw data (Fig 6A, bottom

panel; reproduced from [62]). To simulate such modulation in our model, we relied on the tar-

get localization task due to its similarity to the established spatial attention paradigm [5] (Fig

6A, bottom panel). When the perceptual observer expects the target to be present at a particu-

lar image location, it increases the gain of neurons reporting on that location, relative to neu-

rons encoding other locations. We interpret this as equivalent to top-down attention being

directed towards that location, which allows us to extract from our model a “prior-centered”

tuning curve comparable to the “attended” experimental condition. This is to be compared

with the “baseline” tuning curve comparable to the “unattended” experimental condition,

computed using neural gain averaged over long periods of time (see Methods). We note that

this spotlight-like gain modulation was not engineered in any way into our model; instead, it

emerged from a generic principle that optimizes perceptual inference under coding cost

constraints.

We next focused on response variability in individual neurons, another prominent signa-

ture of sensory processing in the visual cortex. This variability can be conveniently separated

into sensory drive and gain dynamics [1,39]. Spontaneous gain dynamics could be induced by

internal fluctuations of the attentional state [1,38], therefore enabling us to compare gain

dynamics to the predictions of our model (Fig 6B). Because changes in effective neural gain

are linked to changes in activation thresholds ξ in our setup (Fig 2B), we focus on predicted

neuron-to-neuron correlations in threshold dynamics as well as individual neuron threshold

autocorrelation function (see Methods). Clear similarities emerge. Observed correlations of
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gain and neural activity decay with decreasing correlation of neuronal tuning, as predicted by

our model; furthermore, the activity correlation is consistently lower than the gain correlation,

also as predicted (Fig 6B, left column). A broad spectrum of temporal dynamics for the gain of

Fig 6. Comparison of adaptive coding model to experimental data. (A) Tuning curves of individual neurons in macaque V1 in an attended (red) and

unattended (gray) conditions. We display parametric fits to tuning curves centered at the preferred orientation (top panel, top row; replotted from [63]),

as well as raw tuning curves (top panel, bottom row; replotted from [62]). Model reproduces the modulation of tuning curves (bottom panel; rows

correspond to rows in the top panel; see main text for details). (B) Pairwise correlation of internal gain signals (red) and neural activity (gray) as a

function of tuning correlation in macaque V1 (top left) is reproduced by the model (bottom left; see main text). Dashed lines denote gain correlations

when optimal gain values are randomly reshuffled across the population. Measured gain autocorrelation functions for three example neurons (top

middle) span a range of timescales similarly to optimal gain dynamics in the model (bottom middle). Average gain autocorrelation function (gray) and

average pairwise gain cross-correlation function (red) are reproduced by the model (data figures—courtesy of Robbe Goris [1] top right; model bottom

right). (C) Variation of V1 population responses to individual presentations of a mixture of oriented gratings (left, blue lines; data panels in (C) and (D)

are reproduced from [65]) fluctuates around the average response (left, red line). Lines depict parametric fits to data. Model optimized for orientation

discrimination generates similar pattern of variability (right). (D) Noise correlations in V1 depend on the difference in preferred orientation (left, red line

denotes the running median). Average noise correlations in the model display similar dependence (right, red line), which disappears after shuffling of

neural gains (right, blue line).

https://doi.org/10.1371/journal.pbio.3001889.g006
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individual neurons is observed in the sensory population: from long temporal correlations to

almost instantaneous decay, which is correctly reproduced by our model (Fig 6B, middle col-

umn). When averaged over multiple neurons, the gain autocorrelation function shows a

smoothly decaying profile. In contrast, the average cross-correlation in gain across pairs of

neurons reveals no preferred temporal relationship and decays essentially instantaneously,

which is also correctly reproduced by our model (Fig 6B, third column). Further inspection of

auto- and cross-correlation functions reveals the origins of this discrepancy. Gain autocorrela-

tions typically decay slowly with time, which is reflected in their average. However, individual

cross-correlation functions reveal strong variability and show significant deviations from zero

in either positive or negative direction, which cancel each other out during averaging (see S4

Fig). Therefore, the average cross-correlation is not a good representation of cross-correlations

of neuron pairs. It remains to be tested experimentally whether gain dynamics in V1 reveal

similar statistics.

Third, we analyze how response variability is coordinated across the population, which is

reflected in the structure of the noise correlations (Fig 6C). Previous work demonstrated that

multiple presentations of the mixture of oriented gratings trigger variable responses across the

population of neurons in V1 ([65]; Fig 6C, top-left). In our model optimized for orientation

estimation task, the gain of individual neurons is synchronously coordinated to match the per-

ceptual belief via feedback. These belief fluctuations result in population-level variability in the

responses reminiscent of V1 dynamics (Fig 6C, bottom left). We note that our model modu-

lates only the gain of individual neurons and therefore cannot capture the baseline firing fluc-

tuations in the V1 data. Nevertheless, it does reveal a qualitatively similar pattern of neuronal

variability. Variable stimulus responses in V1 are correlated, and the strength of correlations

depends on the difference in preferred tuning (Fig 6D, left). This observation is reproduced by

our model specialized for the orientation estimation task (Fig 6D, right). Differences in the

absolute magnitude of correlations between experimental data and our model probably imply

the existence of additional factors that contribute to shared neural variability, not accounted

for by our model.

New predictions of adaptive coding

Previous theoretical work established a link between perceptual uncertainty about the state of

the environment and the influence of stimuli on the perceptual belief [46]. In brief, when a

Bayesian perceptual observer is highly certain about the value of a latent state of the environ-

ment (strong prior), subsequent sensory signals will only have a small influence over its belief

(the posterior will be similar to the prior). In contrast, when the observer is highly uncertain,

any individual stimulus can sway the observer’s belief by a large margin (the posterior can dif-

fer significantly from the prior). This reasoning leads us to the following hypothesis: Efficient

sensory systems gain down stimulus encoding in states of high perceptual certainty and gain

up encoding in states of high perceptual uncertainty.

We tested this hypothesis in our model. Across all tasks, increases in perceptual uncertainty

lead to increased population activity (Figs 7A and 7B, S1 and S2). In contrast, standard sparse

coding is not modulated by uncertainty and maintains its activity at a high baseline required to

reconstruct the stimuli in full.

Does perceptual uncertainty affect only the total amount of neural activity or also its statisti-

cal structure? To answer this question, we assessed the dimensionality of sensory population

activity with principal component analysis (PCA) and analyzed it as a function of the entropy

of the prior that the perceptual observer holds about the environmental state (see Methods).

We find that progressively uncertain observer can engage increasing numbers of neurons (Fig
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7C, right column top and middle panels), which affects the dimensionality of the sensory code.

When the observer is highly certain, few principal components suffice to explain the popula-

tion activity; as perceptual uncertainty grows and progressively more neurons are engaged via

top-down feedback, the dimensionality of the code increases but always remains bounded by

the dimensionality of the full sparse code (Fig 7C). These changes are mirrored in the accuracy

of stimulus reconstruction that can be read out from the sensory population (Fig 7D): As per-

ceptual uncertainty grows, incoming stimuli are increasingly relevant for inference and more

Fig 7. Predicted changes in the adaptive code when perceptual uncertainty is manipulated. (A) Rows correspond to inference tasks: object detection

(top), target localization (middle), and orientation estimation (bottom). (B) Normalized population activity as a function of perceptual uncertainty for the

standard sparse code (red = full code) and the adaptive code (blue). Uncertainty in object detection (top) and orientation estimation (bottom) tasks was

binned into deciles (see Methods). Uncertainty in the target localization task (middle) is plotted for two levels of measurement noise (dark blue = high

noise; light blue = low noise). (C) Dimensionality of the adaptive code can increase with increasing perceptual uncertainty (left column). Shown is the

proportion of variance in total neural activity explained as a function of the number of principal components (red = full code; light blue = adaptive code at

low uncertainty; medium blue = adaptive code at intermediate uncertainty; dark blue = adaptive code at high uncertainty; see Methods). Increase in code

dimensionality is correlated with the number of active neurons at different levels of uncertainty (right column). (D) Same as (B) but showing the

normalized SNR of the image reconstruction at different perceptual uncertainty levels.

https://doi.org/10.1371/journal.pbio.3001889.g007
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sensory resources are deployed to encode the stimuli, leading to improvements in stimulus

reconstruction.

These results generate two new experimental predictions. First, the average firing rates and

the dimensionality of neural activity in the visual cortex should increase during periods of

high perceptual uncertainty about the state of the environment. This could be tested, for exam-

ple, in the target localization paradigm, by comparing experimental conditions in which the

target object follows a more versus less predictable trajectory, or where the target is embedded

at a higher versus lower contrast in a structured background. To control for sensory confounds

and isolate specific effects of perceptual uncertainty, it should be possible to design stimulus

protocols where the perceptual task is always performed with an identical probe stimulus, but

where perceptual uncertainty was manipulated by prior exposure to different priming stimuli.

A specific signature of increasing perceptual uncertainty, which emerges from our model, and

which could be measured experimentally, is an increase variability of gain, measured across

trials and neurons (see S3 Fig).

Second, under the additional assumption that nonlinearities can change only due to top-

down feedback or that they revert to the full code in the absence of feedback, our results pre-

dict that silencing of this signaling should decrease the variability of responses in the sensory

population. According to our model, the frequency and strength of top-down feedback activity

grows with perceptual uncertainty and the frequency of perceptual belief changes. As a conse-

quence, it should be possible to compare the activity of the intact sensory population with the

activity of the sensory population where top-down feedback was interrupted via mechanical,

pharmacological, or optogenetic means, under stimulus or task conditions that induce large

fluctuations in perceptual uncertainty. Disrupted feedback should decrease variability in the

sensory population and stabilize its statistics, consistently with the results of [66].

Discussion

Variability of sensory responses in the cortex has long been ascribed to fluctuations in internal

neural processing [4,7,10]. Top-down attention is a particularly important internal process

that enhances representations of task-relevant stimuli, at the expense of irrelevant sensory sig-

nals. Numerous theories for the origin and functional relevance of top-down attention have

been proposed [43,67–71]. In this work, we suggest that several open questions about atten-

tional modulation of sensory codes—about its phenomenology, its effects on the neural code,

and its functional origins—are interrelated and fall within the purview of a single conceptual

framework that synthesizes two canonical theories of neural computation: optimal perceptual

inference and efficient coding [46,72,73].

To make these ideas concrete, we develop a model of sensory coding in the visual cortex

that is applicable to dynamic and nonstationary scenarios. We demonstrate that attention-like

phenomena emerge as a consequence of moment-to-moment adaptations in a resource-lim-

ited sensory code optimized to efficiently learn about the states of the environment. Such

“optimal adaptive coding” reproduces a number of observations previously attributed to atten-

tion: emergence of the spatial spotlight, tuning curve modulation, gain dynamics, task depen-

dence of neural correlations, and response variability manifesting as noise correlations. We

furthermore suggest that different kinds of attention should not be thought of in terms of dis-

tinct computational processes but rather as a natural consequence of universal principles of

information processing.

Our framework also bears on a puzzling paradox at the heart of how we understand sensory

systems. On the one hand, perception and attention seem to rely on coarse, high-level proper-

ties of visual scenes, which are encoded selectively depending on the goals and internal states

PLOS BIOLOGY Attentional dynamics of efficient codes

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001889 December 21, 2022 17 / 33

https://doi.org/10.1371/journal.pbio.3001889


of the brain [74,75]. On the other hand, neurons in the sensory periphery encode signals at the

physical limits of precision, right up to individual photons [76]. Why invest in such precision

if the information is subsequently not used to guide perception or behavior? Our model shows

that adaptive sensory systems, which possess the ability to accurately encode the entire image

with a single pixel accuracy, can also dynamically partition this sensory information into the

task-relevant part to be extracted and the task-irrelevant part to be suppressed. Precise sensory

representations can thus be maintained at a higher cost only when needed; when they suffice

for the task, coarse sensory representations are preferred for their efficiency.

Relationship to other theoretical frameworks

Theories of sensory coding can be broadly categorized by their explanatory scope (Fig 8). For

example, the efficient coding framework (first proposed in [77]; Fig 8A) provides a range of

normative accounts of how neurons should use their finite metabolic resources to accurately

encode either as much stimulus information as possible [49,78] or to encode stimulus features

of particular relevance to the organism [47,79,80]. Theories of perceptual inference (Fig 8B,

left) place less importance on efficient use of neural resources. Instead, they focus on how the

brain could estimate relevant, unobserved (or latent) states of the environment (e.g., position

of a predator) from observable stimuli (e.g., retinal images) [54,81,82], and how such computa-

tions could be plausibly instantiated (e.g., [83]). Theories of perceptual inference can also take

into account the hierarchical organization of the environment (Fig 8B, right), where “high-

level” states (e.g., identity of a specific environment) determine statistics of “low-level” sensory

information (e.g., local orientation in images). In such settings, the brain is hypothesized to

establish a representation that parallels this hierarchical organization of the world [18].

Fig 8. Interpretative frameworks of sensory coding and perceptual inference. (A) Normative theories of sensory coding, such as efficient coding,

specify encodings (mappings) of low-level stimuli on neural responses. (B) Theories of perceptual inference focus on how behaviorally relevant states

can be estimated from low-level stimuli (left). Theories of hierarchical inference postulate the existence of a hierarchy of latent states, which are then

inferred by the brain from stimuli (right). (C) Our approach specifies how an encoding of stimuli can be dynamically adapted, such that only

information about task-relevant, high-level latent states is retained by the sensory system, in order to minimize the use of neural resources.

https://doi.org/10.1371/journal.pbio.3001889.g008
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Representations at different levels of such hierarchical systems can interact via multiple feed-

forward and feedback information exchanges to establish a complete representation of the

stimulus—from abstract, high-level latent states to the low-level image features at individual

pixel resolution [16,18,19].

Importantly, theories of efficient coding and perceptual inference are not mutually exclu-

sive [12,73,84] and our model builds precisely on a synthesis of these two theoretical frame-

works [46] (Fig 8C). Following perceptual inference approaches, we postulate that the goal of

the sensory system is to infer behaviorally relevant, “high-level” latent states from complex and

entropy-rich natural stimuli. Following efficient coding approaches, we focus on minimizing

the amount of neural resources required to retain information relevant for inference of such

“high-level” latent states. Our model exploits the fact that the relevant latent states of the envi-

ronment are typically low-dimensional and that their estimation may not require representing

all the details of the image. For example, to estimate a spatial position of a target, one does not

need to accurately encode the details of the background texture. OurAU : Pleasecheckandconfirmthattheeditstothesentence}Ourmodelreliesonfeedbacktodynamicallycompressirrelevantfeatures:::}didnotaltertheintendedthoughtofthesentence:model relies on feedback

to dynamically compress irrelevant features of stimuli and to retain only the inference-relevant

information. This is in stark contrast to theories of hierarchical predictive coding [16], or hier-

archical Bayesian inference [18,19] where the top-down feedback provides the values needed

for prediction or for explaining away features of the image. In our model, top-down feedback

conveys no stimulus information, at least not directly. Instead, feedback conveys the optimal

“system settings” for the lossy encoder (e.g., nonlinearity parameters for the sensory popula-

tion), based on predictions of the perceptual observer. In our scenario, the sensory system

does not require multiple feed-forward and feedback passes to establish the stimulus represen-

tation. As a consequence, neural resources devoted to coding and time devoted to transmission

of sensory information are dramatically reduced. This efficiency comes at a cost: The resulting

representation is less robust and unexpected environmental changes may lead to dramatic (but

possibly transient) errors in perceptual inference. Examining such errors might provide a via-

ble path to testing the framework of adaptive coding. Taken together, adaptive coding, as

instantiated by our model, offers a perspective on the role of top-down feedback in sensory

systems that is complementary to previous work.

A key distinction between adaptive coding presented here and the hierarchical predictive

coding [16] is that the latter forms a complete representation of the stimulus, from pixel values

to high-level latent states; this representation is established across multiple time steps of encod-

ing, transmission, and explaining-away. In contrast, our approach embodies lossy compres-

sion that purposefully discards stimulus information, in line with a dynamically evolving

internal prediction of the environmental state, task demands, and efficiency constraints. In

sum, we are proposing a lossy compression scheme, whereas previous proposals were, in

essence, lossless.

A separate class of theories is concerned with how neural circuits may explicitly represent

latent variables and associated uncertainty to perform probabilistic inference [12,85–87]. Our

model remains agnostic about such neural processes that could be instantiated by the percep-

tual observer. Instead, we focus on how relevant information can be efficiently extracted from

high dimensional stimuli to support estimation of dynamic latent states, regardless of specific

inference implementations. Therefore, questions regarding neural representations of uncer-

tainty over latent variables lie outside the explanatory scope of our approach.

Numerous models of top-down attention have been proposed to date [5,70,88,89]. Atten-

tion-related changes of sensory representations have been interpreted as a consequence of

probabilistic inference [41,42,90], and attention has been postulated as a distinct process that

increases gains of neurons relevant to the task [43,45]. In our approach, attention-like process-

ing emerges as a consequence of optimizing a general-purpose objective function. Phenomena
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such as the spatial spotlight or enhancement of vertical orientations are, therefore, a “side-

effect” of this optimization rather than a goal in itself.

To our knowledge, we provide the first theoretical demonstration of how the visual cortex

could—and should—perform accurate inferences while dramatically minimizing the cost of

neural activity used for stimulus encoding. To date, no work has shown how this frequently

postulated yet qualitative rationalization of attention [5,88,91,92] could be instantiated within

a mathematical model, for dynamic environments with high-dimensional, natural stimuli. We

demonstrate that the response variability, noise correlations, and slow modulations can

emerge as automatic consequences of adaptive coding. A salient prediction unique to our

model is the relationship between the uncertainty about a high-level, task-relevant latent state

(e.g., spatial position of a moving target), and the amount of information about low-level

image features present in the neural population, which could be recovered, e.g., via decoding

approaches.

Dynamic phenomena such as gain modulation, response variability, and noise correlations

are most likely driven by a range of internal processes [93–96]. Empirical dissection of these

different factors, and experimental tests of whether the brain relies on computations proposed

here, will require coordinated efforts between theory and experiment, which remains a subject

of future work.

Caveats and future work

Our work crucially depends on the observer using the correct statistical model of the environ-

ment and its dynamics. Dramatic reduction of neural activity cost with a negligible impact on

inference quality cannot be achieved by a “mismatched” observer, which uses an incorrect

model of the environment, operates under incorrect assumptions, or fails to correctly compute

the optimal thresholds. The question of how such internal model of environmental statistics is

learned through evolution and development remains one of the central issues in the field [97].

While our model neural population encodes natural images, perceptual tasks considered

here are, at best, naturalistic. Their statistics are designed to easily illustrate the benefits of

adaptive coding. Understanding how visual codes can adapt to perceptual tasks that require

knowledge of environmental statistics [13,14,54,83] will be a subject of future work.

Our model makes a number of idealizations about the sensory neuron population. Firstly,

we assume that adaptive nonlinearities are applied to the output of the sparse coding popula-

tion, where lateral inhibition plays a crucial role in forming the code [49,50]. Neural firing is

computed in a separate step, by transforming these potentials with a thresholding nonlinearity.

We envision other possible mechanisms where suppression of unnecessary neural activities

occurs simultaneously with the computation of the sparse code, for example, by manipulating

sparsity constraints of individual neurons. Secondly, our neural activity is real-valued, making

direct quantitative comparisons with spiking data impossible for features such as response var-

iability; this issue could be addressed by extending the model with Poisson spike generation.

Furthermore, we make assumptions about the top-down feedback activity. We assume it is

instantaneous, whereas real neural circuits may suffer from transmission delays that could det-

rimentally affect the code performance. We also assume that each change of the parameters of

the sensory code is triggered by a single activation of feedback connections. While such strat-

egy would minimize the amount of feedback activity, other mechanisms are possible. For

example, following each change, parameters of the code could gradually decay to a baseline

value, and sustained feedback activity would be required to maintain them in a desired state

[98]. We note that conclusions about the optimality of feedback signalling may depend also on

the measure of the feedback cost. The particular measure we adopt here takes into account
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how many neurons have to be adapted, and how frequently does such change occurs. Other

measures may reveal different costs. Lastly, we assume that the brain can precompute and

store optimal values of parameters of the sensory code corresponding to different tasks and

perceptual beliefs. While optimal, this strategy might be not feasible for neural circuits. A pos-

sible approximation strategy would be to store a “basis” of code parameters, which could be

flexibly recombined depending on the task at hand, and belief state.

Despite these assumptions, our key insights should not depend on modeling details. Com-

pression of sensory signals could be achieved with different types of nonlinearities, or transfor-

mations such as divisive normalization and multiplicative scaling [14,99]. Similarly, stimulus

could be represented by alternative schemes, e.g., by neural sampling [12]. Inference carried

out by the perceptual observer also need not be explicitly probabilistic [100]. The only essential

component of our model is the feedback loop that dynamically adapts the sensory code to the

demands of the perceptual observer. This provides the necessary theoretical link between the

dynamics of attentional processing, efficient coding, and perceptual inference.

Methods

Adaptive coding model of natural images

Spare coding model of V1. Standard sparse coding model [49] represents image patches

xt with a population of N neurons, each of which encodes strength of a feature �
!

n. Given acti-

vations of individual neurons sn,t, the image patch can be linearly decoded as

x̂t ¼
XN

n¼1

o=!nsn;t: ð3Þ

Basis functions ϕ are optimized to jointly minimize the reconstruction error and the cost of

neural activity (or, conversely, to maximize sparsity):

Eð�Þ ¼
X

i

1

2s2
SC

ðx̂t;i � xt;iÞ
2
þl
XN

n¼1

jsn;tj

* +

t

; ð4Þ

where λ is the sparsity constraint, s2
SC is the noise level, i indexes image pixels, and t indexes indi-

vidual images in the training dataset. We optimized a set ofN = 512 basis functions using the stan-

dard SparseNet algorithm [49], which iteratively alternates between minimizing Eq 4 with respect

to basis functions ϕ and coefficients s. During learning, we fix ||ϕn||2 = 1 for every n. To learn neu-

ral receptive fields, we used a dataset of 5�104 32×32 pixel image patches (standardized to zero

mean and unit variance for each patch) randomly drawn from natural movies of the African

savannah [101], which were reduced to 512 dimensions using PCA. We learned the sparse fea-

tures ϕ using λ = 1 and s2
SC ¼ 0:5; we then fixed features ϕ for all subsequent analyses.

Adaptive nonlinearities. We extended the sparse coding model by applying pointwise

nonlinearities to sparse coding outputs. After encoding an image patch x!t, we transformed

the activations of individual neurons sn,t into responses zn,t:

zn;tðsn;t; xn;t; aÞ ¼ signðsn;tÞ �
1

a
log expðaxn;tÞ þ expðajsn;tjÞ � 1
� �

� xn;t

� �

; ð5Þ

where ξn,t is the threshold value and α = 10 is a constant parameter. This nonlinearity is a

smooth and differentiable shrinkage operator proposed in [102]. Thresholds ξn,t are individu-

ally set for each neuron at each time point to encode only these features of the image, which

are required to perform the perceptual inference.
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Visualization of nonlinearity parameters. To compare different threshold settings ξ in

the sensory population across tasks, perceptual beliefs, and stimulus distributions, we visual-

ized the expected neural activity of neuron n at time t+1: hjzn;tþ1jipðxtþ1 jzt�tÞ
. This quantity,

which we typically display in color code, would correspond to experimentally observable

expected activity of neuron n.

Cost of feedback activity. We assume that the feedback activity cost at each time point is

equal to the standard deviation of the parameter vector x
!

t. We computed the cost of feedback

activity only at time points t when the optimal threshold values changed with respect to time

point at t−1. The resulting cost measure reflects the frequency of threshold switches and the

range of parameter values, which need to be transmitted from the observer to the sensory pop-

ulation via feedback connections after each switch.

Inference tasks

Object detection. Environment dynamics and stimuli. At each trial, the environment

switches randomly between two states corresponding to two values of the latent variable θt:
object present (θt = P) and object absent (θt = A), with the hazard rate h = 0.01. When the

object was absent, stimuli xt—samples from p(xt|θt = A)—were randomly drawn image patches

with zero mean and unit variance. When the object was present, stimuli—samples from

pð x!tjy ¼ PÞ—were a linear combination of a randomly selected image patch x!R
t , and prese-

lected image of the object of interest x!obj (a tree): x!t ¼ ð1 � gÞ x
!R

t þ g x
!

obj, where the mixing

coefficient γ = 0.2. Sparse coding neural activations sn,t were determined using λ = 0.05 and

s2
SC ¼ 0:5. We find that higher sparsity values increase the speed of learning the sparse code;

however, the precise sparsity value does not have impact on central findings of this work.

Observer model. At each time instant t, the observer performed the following sequence of

steps. First, the observer took the measurement mt to be a projection of the image recon-

structed from the sensory code z!t on the template image of the object of interest x!obj, i.e.,

mtð z
!

tÞ ¼ x̂Tt x
!

obj þ z, where T is vector transpose and z is a Gaussian noise with variance

s2
m ¼ 0:01. We modelled conditional probabilities p(mt|θt) as Gaussian distributions with

class-specific means and standard deviations μC, σC (where C2{P, A}).

Second, the observer updated the posterior distribution over the latent state θ:

p ytjmt�t

� �
¼

pðmtjytÞpðytjmt<tÞP
yt2fP;Ag

pðmtjytÞpðytjmt<tÞ
: ð6Þ

From the posterior, the observer computed the MAP estimate, ŷ. For simplicity, we

assumed that pðyj z!t�tÞ ¼ pðyjmt�tÞ. In the consecutive step, the observer computed the pre-

dictive distribution of the latent states pðytþ1jmt�tÞ ¼
P

y2fP;Agpðytþ1jyÞpðyjmt�tÞ. At low haz-

ard rate, we could approximate that the predictive distribution is equal to the current

posterior, pðytþ1jmt�tÞ � pðytjmt�tÞ, from which we derived the predicted distribution of sti-

muli: pð x!tþ1jmt�tÞ � pð x!tþ1jŷ tÞ.

Nonlinearity optimization. To avoid the necessity of optimizing nonlinearity parameters

at each time step of the simulation, parameters corresponding to different beliefs of the

observer were first optimized offline (learned or precomputed). These learned parameters

were then used in online simulations. To compute optimal nonlinearity thresholds for sensory

encoding at different internal belief states of the observer, we first discretized the posterior dis-

tribution over the latent state into k = 32 bins, corresponding to linearly spaced values for p(θt
= P|mτ�t) over [0,1]. Each of these states defined a distribution of expected image frames,
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pð x!tþ1jmt�tÞ. For each of these states, we generated a training dataset consisting of 104 images

with and without the object of interest mixed in proportion p(θt = P|mτ�t)/(1−p(θt = P|mτ�t)).

For each posterior state, we then numerically optimized the Eq 1 to derive optimal thresholds

ξ at attentional resource constraint ψ = 4, using resilient-backpropagation gradient descent

with numerically estimated gradient [103]. Each ξ was initialized with Gaussian noise. Since

ξn�0, we performed the optimization with respect to real-valued auxiliary variables an, where

xn ¼ a2
n. The resulting 32 vectors of optimal nonlinearity parameters x

!k (where k2{1,. . .,32})

were used during subsequent simulations, where at each time step the observer selected the

most appropriate set of nonlinearities k�:

k� ¼ argmin
k
½pk � pðyt ¼ Pjmt�tÞ�

2
; ð7Þ

where pk 2 1

32
; . . . ; 1

� �
is the k−th discretized value of the belief p(θt = P|mτ�t).

Simulation details. We generated a trajectory of the latent states of environment θt by

concatenating 500 cycles of 50 samples of object present (θt = P) followed by 100 samples of

object absent (θt = A) and again 50 samples of object present, resulting in the total length of

105 time steps. Analyses in Fig 4B–4E were performed by averaging over the 500 cycles. This

artificial environment allowed us to compute averages over multiple changes of the latent state

θt.
Target localization. Environment dynamics and stimuli. The latent environmental state

was defined by the 2D position of the center of the visual target (the white cross 7×7 pixels in

size) y
!

t ¼ ðy
x
t ; y

y
t Þ, where θx, θy2{1,. . .,32}. This position evolved as a random walk,

y
C
tþ1
¼ y

C
t þ r, where r � N ð0; s2Þ and C2{x, y}; coordinates were rounded to nearest integer

and bounded to image dimensions. We chose σ = 1.2 for the low-uncertainty scenario and σ =

2.4 for the high-uncertainty scenario to analyze the impact of uncertainty on the sensory code.

The target was superposed on consecutive frames of a natural movie, x!t . Sparse coding neural

activations sn,t were determined using λ = 0.1 and s2
SC ¼ 0:5.

Observer model. The observer computed the measurement m!t ¼ ðmx
t ;m

y
t Þ as the position

of the peak of the 2D cross-correlation function between the target template image (the cross)

and the stimulus decoded from the neural code x̂t. We assumed independent measurement

noise in spatial coordinates for the measurement mt: pðmtjytÞ ¼ pðmx
t jy

x
t Þpðm

y
t jy

y
t Þ, where mar-

ginal conditional distributions of coordinates are Gaussian: pðmC
t jy

C
t Þ ¼ N ðyCt ; s

2
mÞ (with C2

{x, y} is the index over spatial coordinates). To simplify optimization, we assumed vanishing

measurement noise in this task, σm = 10−5.

The posterior distribution pð y
!

tjm
!

t�tÞ can be then computed separately for each spatial

coordinate C:

p yCt jm
C
t�t

� �
¼
pðmC

t jy
C
t Þpðy

C
t jm

C
t<tÞ

pðmC
t Þ

: ð8Þ

The prior distribution pðyCt jm
C
t<tÞ and the likelihood pðmC

t jy
C
t Þ are Gaussian and conjugate

to each other; therefore, the posterior is also Gaussian, pðyCt jm
C
t�tÞ ¼ N ðmyt ;C; s

2
yt ;C
Þ; the point

estimate for position is ŷCt ¼ myt ;C. In this scenario, Eq 8 becomes a standard case of Bayesian

online estimation of the mean with well-known closed form solutions [104].
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We further assume that the observer relies on trivial dynamics, where

pðyCtþ1
jy

C
t Þ ¼ dðy

C
tþ1
� y

C
t Þ. Therefore the predicted distribution of positions y

C
tþ1

becomes

pðyCtþ1
jzt�tÞ ¼

Z

pðyct jzt�tÞpðy
C
tþ1
jy

C
t Þdy

C
t ¼

Z

pðyct jzt�tÞdðy
C
tþ1
� y

C
t Þdy

C
t ¼ pðyCt jzt�tÞ: ð9Þ

Because the measurement mC
tþ1
¼ y

C
tþ1
þ r, where r � N ð0; s2Þ, the predicted distribution

of measurements along each spatial coordinate is pðmC
tþ1
jzt�tÞ � N ðŷCt ; s

2
tþ1
Þ, where the vari-

ance is the sum of the variance of the posterior and variance of the random walk, i.e.,

s2
tþ1
¼ s2

yt ;C
þ s2.

Nonlinearity optimization. To compute optimal nonlinearity thresholds for sensory

encoding at different internal belief states of the observer, we discretized the posterior belief

about the position of the target into 25 values corresponding to a grid of 5 horizontal positions

ŷx and 5 vertical positions ŷy linearly spaced between 1 and 32 pixels. For each of these posi-

tions, we generated a training dataset consisting of 103 images, randomly drawn from a natural

image corpus. On each of these images, we superimposed an image of a target (a cross) at a

position (x, y), where each coordinate was drawn randomly from the distribution N ðmŷC ; s2Þ,

where C2{x, y}. For each posterior state corresponding to a spatial position, we then numeri-

cally optimized the Eq 1 to derive optimal thresholds ξ, using resilient-backpropagation gradi-

ent descent with numerically estimated gradient [103]. Each ξ was initialized with Gaussian

noise. Since ξn�0, we performed the optimization with respect to real-valued auxiliary vari-

ables an, where xn ¼ a2
n. The resulting 25 vectors of optimal nonlinearity parameters were used

during subsequent simulations. At each time step, the observer selected the optimal nonlinear-

ity vector ξx
� ,y� corresponding to the discretized position closest to the current position esti-

mate ŷt:

ðx�; y�Þ ¼ argmin
x;y
½ðŷxt � xÞ

2
þ ðŷyt � yÞ

2
�: ð10Þ

Simulation details. The simulation was ran for 104 steps during which the target trajectory

was evolving according to the dynamics described above.

Orientation estimation. Environment dynamics and stimuli. The environment state θt
was switching randomly between two states with hazard rate h = 0.01. One of the states was

generating images dominated by the vertical orientation θt = V and the other images with pre-

dominantly horizontal orientation θt = H. We identified these two states of the environment

via unsupervised learning. First, we used the sparse coding model (without nonlinearities) to

encode a large corpus of natural image patches x!t . We then transformed activations of each

model neuron n in response to each patch t by taking the log-ratio of its absolute value and the

average magnitude of the activation of that neuron: rn;t ¼ log jsn;t j
hjsn;t jit

. We then clustered such

transformed vectors of the population response rt into 9 clusters using the standard K-means

algorithm. Out of these 9 clusters, we visually selected two. One of these clusters included

encodings of image patches where neurons with horizontally oriented basis functions were

active stronger than their average. The other cluster included encodings of image patches

where the vertically oriented basis functions were activated more strongly than the baseline.

We selected these two sets of image patches to be generated by distributions pð x!tjy ¼ HÞ and

pð x!tjy ¼ VÞ, respectively. In this task, we used the following parameters of the sparse coding

algorithm to encode the images: λ = 0.05 and s2
SC ¼ 0:5.

Observer model. In this task, the observer did not explicitly decode the image. Instead, it

transformed neural activations zn,t by taking their absolute value: rn,t = |zn,t|. This vector of
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activity magnitude r!t was then projected on the discriminative vector d
!

to obtain the mea-

surement mt ¼ r!T
t d
!
þ z, where T denotes vector transpose, and z is a Gaussian measure-

ment noise with variance s2
m ¼ 10� 4. The discriminative vector d

!
was a linear discriminant

optimized to maximize discrimination accuracy between the two clusters of rescaled activity

r!t corresponding to the horizontal and vertical states, respectively. We fitted distributions of

noisy measurements p(mt|θt) with a Gaussian distribution for each state of the environment

separately, i.e., pðmtjyÞ ¼ N ðmyt ; s
2
yt
Þ, where θt2{V, H}. The remaining computations were

analogous to the object-detection task.

Nonlinearity optimization. We computed optimal nonlinearity thresholds for sensory

encoding at different internal belief states of the observer in a way analogous to the object

detection task. First, we discretized the posterior distribution over the latent state into k = 32

bins, corresponding to linearly spaced values for p(θt = H|mτ�t) over [0,1]. Each of these states

defined a distribution of expected image frames, pð x!tþ1jmt�tÞ. For each of these states, we gen-

erated a training dataset consisting of 104 images sampled from the vertical and horizontal ori-

entation categories in proportion p(θt = H|mτ�t)/(1−p(θt = H|mτ�t)). For each posterior state,

we then numerically optimized the Eq 1 to derive optimal thresholds ξ at attentional resource

constraint ψ = 4, using resilient-backpropagation gradient descent with numerically estimated

gradient [103]. Each ξ was initialized with Gaussian noise. Since ξn�0, we performed the opti-

mization with respect to real-valued auxiliary variables an, where xn ¼ a2
n. The resulting 32 vec-

tors of optimal nonlinearity parameters x
!k (where k2{1,. . .,32}) were used during subsequent

simulations, where at each time step the observer selected the most appropriate set of nonline-

arities k�:

k� ¼ argmin
k
½pk � pðyt ¼ Hjmt�tÞ�

2
: ð11Þ

Simulation details. We generated a trajectory of the latent states of environment θt by

concatenating 500 cycles of 50 samples of horizontal state (θt = H) followed by 100 samples of

vertical state (θt = V) and again 50 samples of the horizontal state. Analyses in Fig 4B–4E were

performed by averaging over these 500 cycles.

Computation of code statistics

Selection of task-modulated neurons. We sorted neurons according to how strongly

they were modulated by the task. As a measure of the task modulation, we took the ratio of the

average activity of that neuron in the full sparse code and in the task-specific, adaptive code
�zn
�sn

.

To compute activity correlation matrices in Fig 5C, we selected 10 neurons with high modula-

tion values computed in that way.

Response variability. To simulate response variability due to feedback modulation of the

sensory code (Fig 5D), we encoded the same, randomly selected image patch 1,000 times while

the belief of the observer was changing and adapting neural nonlinearities accordingly.

For the object detection and orientation estimation tasks, we took the trajectory of the

changing belief (p(θ = P) and p(θ = H), respectively) to be a sine function rescaled to fit in the

interval [0.1, 0.9]. Over the 1,000 stimulus presentations, this sinusoid completed five cycles.

For the target localization task, we generated an instance of Gaussian walk, which determined

the belief of the observer about the location of the target in the scene.

Noise correlations. For each task, we estimated noise correlations by computing correla-

tion matrices of neural responses to 1,000 presentations of the same stimulus (see above). To

avoid numerical errors we added a Gaussian noise with variance σ2 = 0.01 to neural responses
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zn,t, after the stimulus has been encoded at each presentation. Correlations of the full code

were all approximately equal to 0, since responses to each stimulus presentation were the

same.

Code dimensionality, population activity, and representation accuracy as a function of

perceptual uncertainty. To characterize the dimensionality of the code, we computed PCA

of the neural activity matrix S, where individual entries sn,t are responses of the n-th neuron at

t-th time point. We plotted the cumulative variance explained as a function of the number of

principal components. For object detection and orientation estimation tasks, we performed

the dimensionality analysis by dividing the neural responses according to the level of uncer-

tainty of the observer and computing PCA on these responses separately. We quantified the

uncertainty as the binary entropy of the prior over the latent state (H(p) = −p log2(p)−(1−p)

log2(1−p), where p is the probability of the object being present p(θ = P) in the object detection

task, and the image orientation being horizontal p(θ = H) in the orientation estimation task.

We defined three such intervals of uncertainty: [0, 0.33), [0.33, 0.66), and [0.66, 1] bits. For the

target localization task, we run the simulation for two different levels of spatial uncertainty,

determined by the variance of the target movements σ2.

To characterize the amount of population activity, we computed the average absolute value

of neural activations |zn,t|. The accuracy of representation was computed as the average SNR

dB of the image decoding x̂t, i.e., 20 log
10

P
i
x2
t;iP

i
ðxt;i � x̂ t;iÞ

2, where i indexes the image pixels. For the

object detection and orientation estimation tasks, we computed these average quantities for 10

levels of uncertainty spanned by the deciles of the uncertainty distribution. For the target local-

ization task, we computed them for two different levels of spatial uncertainty, determined by

the variance of the target movements σ2.

Determination of the number of active neurons. We declared n-th neuron to be active

at time t if the magnitude of its activity exceeded the 1% of its maximal activity, i.e., |zn,t|>0.01

maxt(|zn,t|). For each time point, we computed the number of active neurons Nact
t and averaged

this number for different levels of uncertainty.

Comparisons to data

Attentional modulation of population tuning curves. To estimate orientation tuning

curves of each neuron, we first generated artificial sinusoidal gratings, spanning 32 orienta-

tions between 0 and 180 degrees, as well as a range of frequencies and phase values. We

encoded them using the sparse coding algorithm and averaged absolute values of responses of

each neuron over the range of frequencies and phases to obtain model orientation tuning

curves.

We ran a simulation of the target localization task for 104 steps. The two population tuning

curves in Fig 6A were computed using different values of nonlinearity thresholds. To compute

tuning curves in the absence of attention, for each neuron, we took the nonlinearity threshold

value averaged across the entire duration of simulation and estimated the tuning curve in the

way described above. To compute the population tuning curve in presence of attention, we

took a single nonlinearity threshold value ξn corresponding to the belief that the target is clos-

est to the spatial position of the Gabor filter encoded by that neuron and estimated the tuning

curve in the way described above.

To obtain parametric fits of tuning curves for data comparison, we first represented each

tuning curve as a function of deviation from the preferred orientation (defined as the maxi-

mum of that tuning curve). We then fitted such relative-orientation curves with Gaussian dis-

tributions multiplied by a scalar value. We display such fits in Fig 6A (bottom panel, top row).
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Tuning curves reproduced in Fig 6A from [62] were traced by hand from the original

publication.

Temporal statistics of gain dynamics. To compute temporal statistics of nonlinearity

parameters, we ran a simulation of the target localization task for 104 steps. We note that while

we computed temporal correlations of nonlinearity threshold parameters ξn,t, the results do

not qualitatively change if we take an inverse of the threshold 1

xn;t
, a parameter more directly

related to the gain. As a measure of spatial tuning similiarity, we took the correlation of the

absolute values of neural basis functions |ϕn|. We took the absolute value of neural nonlinearity

outputs |zn,t| as a measure of neural activity level. Auto- and cross-correlation functions were

computed using standard methods. To provide baseline for comparison, we randomly reshuf-

fled population responses and gain values across the population after the simulation was

completed.

For the analysis displayed in Fig 6, we selected only the neurons whose average activity

magnitude h|zn,t|it exceeded the 0.01 of the maximal activity average for all neurons in the pop-

ulation. The results do not qualitatively depend on this selection criterion.

To provide a baseline analysis for the dependence of pairwise receptive field correlation and

gain and activity correlations (Fig 6B, left column), we randomly reshuffled optimal gain val-

ues across neurons prior to the simulation. In that way, each neuron was modulated by gains

optimized for a random different neuron through the entire simulation. We then repeated the

simulation and analysis described above.

Population response variability. We aimed to emulate results obtained in [65] using our

model. First, we generated an artificial stimulus by linearly superimposing two visual gratings

of 60 and 150 degrees, multiplied by 1 and 0.2, respectively. To simulate fluctuations of the

internal belief, we ran a simulation of the orientation estimation task for 10,000 time steps and

then extracted trajectory of gains. We encoded the artificial grating stimulus multiple times,

while gains were changing according to the previously simulated trajectory. We took the maxi-

mum of a tuning curve of each model neuron (estimated in a way described above, with 16 ori-

entations) to be the preferred orientation of that neuron. We computed population responses

by averaging responses of individual neurons, grouped according to their preferred orientation

into 32 bins spanning the interval between 0 and 180 degrees. Following [65], we fitted each

response with a mixture of two Gaussian curves: rð�Þ ¼ a1N ðm1; sÞ þ a2N ðm2; sÞ þ b, where

μ1 = 60, μ2 = 150 are orientations of the gratings used to create the stimulus, b is an additive

offset, and σ was fixed and equal to 0.35. In Fig 6C, left column, we plot these parametric

curves fitted to individual trials (blue lines) and to all trials (red line). We display parametric

fits to selected population responses computed in that way.

Noise correlations. To study the structure of noise correlations, we presented sinusoidal

gratings at 12 different orientations linearly spanned on the [0, 180] degree interval. Each of

the stimuli was presented 200 times, while the gains of the population were dynamically evolv-

ing as described above. We then computed pairwise correlations between all neuron pairs.

Each pair was labeled with a difference of preferred orientations, and pairs were grouped into

bins linearly spanning the range from −90 to 90 degrees. We then averaged correlations in

each bin. To provide a baseline analysis, we ran the simulation with gains randomly reassigned

as for Fig 6B and repeated the analyses described above.

Supporting information

S1 Fig. Statistics of uncertainty, population activity, and representational accuracy. (A)

Object detection task. Left column: full code (red) optimized for image reconstruction; right

column: adaptive code (blue) for inference. Top row: uncertainty vs. population activity;
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bottom row: uncertainty vs. representation accuracy. Each scatter density plot displays 10,000

points. Red, dashed lines depict the linear fit. (B) Same as (A) but for the orientation estima-

tion task.

(TIF)

S2 Fig. Impact of the attentional constraint ψ on uncertainty-activity and uncertainty-

accuracy relations in the orientation-estimation task. (A) Uncertainty decile vs. normalized

population activity (analogous to Fig 7B) for two values of the attentional constraint ψ. (B)

Correlation between uncertainty and population activity as a function of the attentional con-

straint ψ. (C) Uncertainty decile vs. encoding accuracy (analogous to Fig 7D) for two values of

the attentional constraint ψ. (D) Correlation between uncertainty and representation accuracy

as a function of the attentional constraint ψ.

(TIF)

S3 Fig. Average time courses of uncertainty and threshold (gain) variance. (A) Object

detection task. Top: time course of posterior uncertainty (in bits) averaged over 500 switches

between the environmental states (marked with a green-orange bar at the top). Bottom: time

course of variances of neural thresholds xin,t averaged over 500 switches between the environ-

mental states and neurons in the population. (B) Same as (A) but for the orientation estima-

tion task.

(TIF)

S4 Fig. Additional analyses of the gain autocorrelations and cross-correlations for simula-

tions of spatial tracking task in Fig 6B. (A) Log-probability histogram of the peaks of gain

cross-correlation functions across all pairs of neurons. (B) Distribution of extreme (maximal

and minimal) values of cross-correlation functions. (C) Distribution of decay times of autocor-

relation functions of gains of individual neurons. Decay time was determined as the number

of time samples after each the autocorrelation dropped below 0.1. (D) Distribution of largest

autocorrelation values (after excluding the peak at τ = 0). (E) Example cross-correlation func-

tions of individual pairs of neurons.

(TIF)
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