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Panoramic visual statistics shape retina-wide 
organization of receptive fields

Divyansh Gupta    1,3, Wiktor Młynarski1,3, Anton Sumser    1,2,3, Olga Symonova1, 
Jan Svatoň    1 & Maximilian Joesch    1 

Statistics of natural scenes are not uniform—their structure varies 
dramatically from ground to sky. It remains unknown whether these 
nonuniformities are reflected in the large-scale organization of the early 
visual system and what benefits such adaptations would confer. Here, by 
relying on the efficient coding hypothesis, we predict that changes in the 
structure of receptive fields across visual space increase the efficiency of 
sensory coding. Using the mouse (Mus musculus) as a model species, we 
show that receptive fields of retinal ganglion cells change their shape along 
the dorsoventral retinal axis, with a marked surround asymmetry at the 
visual horizon, in agreement with our predictions. Our work demonstrates 
that, according to principles of efficient coding, the panoramic structure of 
natural scenes is exploited by the retina across space and cell types.

The idea that sensory neurons exploit the statistical structure of natural 
stimuli to minimize the metabolic cost of information transmission 
has been a guiding principle in neuroscience for over half a century1–3. 
This conceptual framework, known as the efficient coding hypothesis4, 
has provided successful theoretical accounts of sensory coding across 
species and sensory systems5–8 with the retina being the paramount 
example9. Most of the work in the retina has focused on retinal gan-
glion cells (RGCs), the neurons that relay visual information from the 
eye to the brain. It has been demonstrated that multiple properties of 
RGCs—the shape of receptive fields (RFs)10–13, organization of RF mosa-
ics14,15 and the ratio of ON to OFF RGC cell types16—can be explained as 
adaptations to the natural sensory environment. In all the mentioned 
cases, ab initio theoretical predictions about efficient encoding of 
natural scenes have led to a better understanding of the physiological 
and anatomical properties of the retina.

One way a sensory neuron could implement an efficient code is 
by removing predictable (or redundant) components from sensory 
stimuli, in a transformation known as predictive coding (PC). This 
prominent hypothesis suggests that the center–surround structure 
of R    G C R  F s i  s a   m  a n  if  e s  ta tion o  f s  u c h d  e s  ign p  r i  nc  i p  le    10. A  c c  or  ding t  o 
this hypothesis, the surround computes a prediction of the stimulus 
value in the center of the RF. The predicted value is then ‘subtracted’ 
from the center through inhibition, which dramatically reduces the 
amount of neural resources used to convey the stimulus downstream. 

PC and related information–theoretic principles11–13,17 typically assume 
that the structure of natural scenes is uniform across the visual field. 
However, as demonstrated recently, local contrast and luminance vary 
prominently across the elevation within the natural visual field of a 
mouse18,19. Such systematic variation affects the signal-to-noise ratio 
(SNR) of the input to RGCs. To understand how this inhomogeneous 
noise structure should shape RGC RFs, we developed a simple, predic-
tive coding model. When adapted to natural statistics of mouse vision, 
our model generates three key predictions linking the shape of optimal 
RFs and their position within the visual field. First, the relative surround 
strength should increase with increasing elevation, due to a consistent 
increase in brightness from the dim ground to the bright sky. Second, 
the center size should decrease along the same axis. Third, due to a 
rapid change of signal intensity between lower and upper FOVs, RFs 
centered on the horizon should have strongly asymmetric surrounds, 
with the upper half being stronger than the bottom one.

To test these predictions experimentally, we established a new 
system that enables recording and characterization of the RF structure 
at high resolution, at the scale of thousands of RGCs in a single retina. 
Such technological development enabled us to collect a dataset of 
31,135 RGC RFs covering the entire central retina, which was crucial 
to test our theory. We found a close agreement between theoretically 
optimal RF architecture and the variation of RF shapes across the 
retina, suggesting that RGCs exploit global asymmetries of natural 
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scenes are spatially inhomogeneous. To understand this inhomogene-
ity, we examined a set of natural images collected specifically to study 
mouse vision18. In agreement with previous studies18,19, we found that 
the power of the light intensity decreases gradually with the elevation 
and drops off suddenly close to the simulated horizon line (Fig. 1b,c). 
Under the assumption of constant noise level, the SNR of photorecep-
tor outputs (that is, RGC inputs) should therefore follow the analogous 
pattern (Fig. 1c). Moreover, due to an abrupt change of the stimulus 
power, stimuli centered at the horizon yield a highly nonuniform SNR 
pattern (Fig. 1d). To find how such inhomogeneities could affect sen-
sory representations across the retina, we numerically optimized RFs 
to minimize the strength of neural responses averaged across a set of 
natural image stimuli (Methods).

The shape of the optimal RF depends on the relative strength 
and the structure of noise. When the SNR decreases, the center of 
the optimal RF broadens, and the surround becomes more diffuse  
(Fig. 1e). These trends are dependent on the relative change but not on 
the absolute SNR. This qualitative change is manifested in increasing 
relative surround strength (Fig. 1f) and decreasing center sizes (Fig. 1f). 
The optimal RF shape is additionally modulated by the spatial pattern 
of the SNR (Fig. 1g). When the SNR is spatially nonuniform (for exam-
ple, when the signal is stronger in the upper half of the stimulus), the 
optimal RF becomes asymmetric (Fig. 1g). This effect is particularly 
visible in the increasing asymmetry of the surround as a function of 
SNR asymmetry (Fig. 1h). Because of such systematic variation in the 
stimulus power across the visual field, the PC model predicted three 

scenes for maximizing coding efficiency. Furthermore, we explored 
these adaptations across the diversity of functional RGC types20, each 
thought to share the same physiology, morphology and intraretinal 
connectivity21–24. We identified a systematic dorsoventral variation of 
the RF shape, regardless of the functional type. Finally, we show that 
these global adaptations are preserved in awake-behaving animals with 
intact eyes. Our results thus indicate that adaptations to the panoramic 
natural statistics structure retinal representations used by the brain.

Results
Efficient coding predicts receptive field shapes across the 
visual field
To understand how the statistical structure of natural scenes shapes 
RFs across the visual field, we developed a model of sensory coding in 
RGCs (Fig. 1a). Our approach is closely related to the PC theory, which 
postulates that RGCs recode outputs of photoreceptor cells to minimize 
the metabolic cost of sensory information transmission10. Following 
this theory, we modeled neural responses as a linear combination of 
the RF and natural stimuli, distorted by different sources of constant 
noise, for example, biochemical or synaptic9,25,26 (Fig. 1a). The computa-
tion performed by such RFs can be understood as the difference of the 
weighted center of the stimulus and its surrounding neighborhood. Our 
model generates predictions consistent with PC (Extended Data Fig. 1) 
as well as related theories of efficient sensory coding11,13.

Predictive coding theory of the retina assumes that statistics of 
natural stimuli are stationary across the visual field10. However, natural 
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Fig. 1 | Predictive coding and natural scene statistics. a, Schematic of the 
linear model of a receptive ganglion cell encoding noisy photoreceptor outputs. 
b, Average stimulus power in the mouse FOV in the UV range (natural image 
data, courtesy of H. Asari18). Orange dashed line denotes the simulated horizon. 
Orange frame illustrates the size of the model RF. c, Stimulus power in the UV 
range (left; red line) and example noise power level (left; gray line) as a function of 
elevation in the visual field. Increasing stimulus power increases the SNR (right). 
d, Vertical SNR asymmetry in the UV range as a function of elevation in the visual 
field (left). Change in SNR asymmetry is due to asymmetric power in the stimulus 
at the horizon line (right). e, Predictive coding RFs optimal for different levels of 

SNR. RFs were smoothed with a 2 × 2-pixel window for display purposes.  
f, Relative surround strength (top) and center size (bottom) of optimal predictive 
coding RFs increase and decrease respectively, with increasing photoreceptor 
SNR. Purple, green and orange lines correspond to the UV, green and joint 
spectra, respectively. g, Predictive coding RFs optimal for different levels of 
vertical SNR asymmetry. RFs were smoothed with a 2×2-pixel window for display 
purposes. h, Surround asymmetry of optimal predictive coding RFs increases 
with increasing vertical SNR asymmetry of photoreceptor output. Line colors 
analogous to f.
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qualitative links between the position of a neuron in the retina and 
the shape of its RF. First, the strength of the RF surround relative to 
the center should be increasing with elevation across the visual field. 
Second, the size of the center should increase in the opposite direc-
tion. Third, RFs located at the horizon should have surrounds that are 
substantially stronger in the upper half than in the lower half. Such 
distribution of RF shapes would indicate that RGCs exploit global sta-
tistics of the visual field to maximize the efficiency of sensory coding. 
These three predictions stand in contrast to the dominant view that 
RGC RFs are uniform across the retinal surface. Furthermore, predic-
tions of the PC model are reproducible across different ranges of the 
light spectrum (Fig. 1f,h) and sets of natural stimuli (Extended Data  
Fig. 1) and depend primarily on weak assumptions about the correlation 

structure of natural images10 (Supplementary Note 1 and Extended 
Data Fig. 2). We thus consider them to be a robust consequence of the 
efficient coding hypothesis.

Large-scale characterization of receptive fields across  
the retina
Testing these theoretical predictions requires a high-resolution char-
acterization of RGC RFs from extended regions of the retinal surface. 
Currently, however, it is not practical to perform such large-scale char-
acterizations with any of the existing methods. Multiphoton imag-
ing approaches can measure large numbers of RGCs20,27, but only at a 
moderate throughput (~150 RGCs at a time20,27). Multielectrode array 
recording approaches have improved this number but are limited 
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Fig. 2 | Large-scale retinal receptive field mapping. a, Normalized absorption 
spectra of mouse photoreceptors (purple, S-opsin; green, M-opsin). Normalized 
emission spectra of the UV and green light emitted by the DLP projector (filled 
purple, UV; filled green, green stimulus light), epifluorescence (orange) and 
two-photon (red) excitation are overlaid. b, Schematic of the epifluorescence 
imaging setup. c, Montage of five consecutively recorded fields (orange dashed 
box denotes one field) of a whole-mounted mouse retina from a Vglut2-ires-cre; 
TITL-R-CaMP1.07-D; ROSA26-ZtTA triple-transgenic mouse. Inset: black, imaged 
montage; red, retinal outline. d, Double-labeled immunostaining of RCamp1.07-
expressing RGCs (red) and RBPMS (cyan; n = 3). e, As in d but labeling with SMI32 
(cyan). Arrowheads depict double-labeled cells. f, Example Ca2+ signals (gray, five 

repetitions; black, mean) from DS (top) and non-DS (bottom) RGCs. g, Example 
distribution of preferred directions in one FOV. Inset shows a polar plot of DS 
preference. h, Example Ca2+ signals to chirp stimulus from three different RGCs 
(gray, five repetitions; black, mean). i, Recording Ca2+ signal stability across 
sequentially imaged FOVs for nine retinas (each session lasted ~25 min, 3–7 
sessions per retina). White lines denote medians, and minima and maxima of 
the gray bars indicate the 25th and 75th percentile range of the dF/F distribution, 
respectively. j, Example RFs recorded using ‘shifting’ white noise (top) and their 
respective parametrizations (bottom). Blue and red ellipses correspond to 2 s.d. 
contours of the ON and OFF Gaussians, respectively. k, Histogram of goodness of 
fit for all recorded RFs.
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by the recording area that is placed on top of the electrode array15. 
Moreover, RF estimates generated by current approaches lack a clear 
surround structure20. To circumvent these limitations, we designed a 
high-throughput and low-cost epifluorescence approach that enables 
imaging a larger field of view (FOV; 1.7 mm2 sampling at ~1 μm per pixel) 
and permits >1 h-long recordings of the same FOV while avoiding arti-
facts caused by small retina wrinkles and laser scanning. Our method 
takes advantage of red calcium sensors (for example, RCamp1.07)28 
that separate the Ca2+ indicator’s red-shifted excitation light from the 
opsin absorption spectrum (Fig. 2a,b and Methods), and allows robust 
responses to ultraviolet (UV) visual stimulation. We used the VGluT2-cre 
driver line to specifically target RGCs (Fig. 2c), leading to a uniform 
expression across the entire retina. All RCamp1.07-positive somata 
correspond to RGCs, as seen by the RGC-specific marker RBPMS29  
(Fig. 2d). Double-positive cells accounted for ~40% of all RGCs. 
This expression pattern appears to be RGC-type specific, as seen 

by co-labeling of SMI32 alpha-RGCs. Alpha-RGCs were consistently 
excluded from the expression profile, apart from a single, sparse 
and spatially distributed type (Fig. 2e). Using this line, we were able 
to reproduce and expand previous large-scale imaging results in sin-
gle retinas, as seen in direction-selective (DS) and non-DS responses  
(Fig. 2f), the cardinal DS response distributions (Fig. 2g) and clustering 
and reproducibility of responses to changes in frequency, contrast and 
luminance, known as the ‘chirp’ stimulus20 (Fig. 2h and Extended Data 
Fig. 3). By sequentially recording 3–7 FOVs (Fig. 2c), each for approxi-
mately 25 min, we could record neural activity from up to ~6 mm2 
of retinal surface (~40% of the total retinal area). By experimental 
design, the position of each FOV was random. Moreover, the strength 
of the functional responses in each consecutive session was unaltered  
(Fig. 2i). Importantly, using a new ‘shifting’ white-noise approach, where 
the checker positions are randomly shifted to increase the RF spatial 
resolution (Extended Data Fig. 4a–f, Methods and ref. 30), we were able 
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Fig. 3 | Retina-wide receptive field architecture. a, Average spatial RFs of all 
RGCs pooled from square bins of 300 μm in size at different positions of one 
retina (n = 64 ± 52 cells per bin; black cross indicates the optic nerve head).  
b, Top row, optimal RFs predicted by the model at different elevations of 
the visual scene. Bottom row, average spatial RFs of neurons along different 
dorsoventral locations on the retina. c, Top, radial profiles of model RFs at 
different SNR levels. Bottom, mean radial profiles of RGC RFs in bins along the 
dorsoventral axis. d, Mean relative surround strengths of RGCs within 100-μm 
bins, pooled from n = 6 retinas. e, Relative surround strengths for RGCs within 
six equally spaced bins along the dorsoventral axis (color indicates the mean 
and s.e.m. pooled from n = 15,686 RFs, gray lines denote individual retinas, 
and the inset shows linear regression weights of RF parameter on elevation 

(EL) and azimuth (AZ)). f,h, Same as d, but for center size and vertical surround 
asymmetry, respectively. g,i, Same as e, but for center size and vertical surround 
asymmetry, respectively. j, Left, one of the retinas, immunostained for 
S-opsin. Black box shows the region imaged for RF mapping. Right, normalized 
histograms of surround orientations of RGCs within corresponding bins marked 
on the left. k, Data from h overlaid on a sinusoidal projection of visual space (n = 6 
retinas). The animal is centered at 0° latitude and 0° longitude facing toward the 
viewer, and the black line shows the area of the visual field viewed by one eye.  
P values for two-sided Kolmogorov–Smirnov test: 6.11 × 10−5 (e), 2.84 × 10−4 (g) 
and 1.16 × 10−5 (i); see Extended Data Fig. 6 for extensive statistical comparisons). 
V, ventral; N, nasal; D, dorsal; T, temporal. a.u., arbitrary units.
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to estimate high-resolution and high-SNR spatiotemporal RFs for ~85% 
of recorded cells (Fig. 2j). The quality of these RF estimates allowed for 
automatic parametrization of the spatial RF into the center and sur-
round using a difference of Gaussians model (Figs. 2j,k, Extended Data 
Fig. 4g–l and Methods). In total, we recorded 11 retinas, reconstructing 
and parametrizing 31,135 spatiotemporal RFs, enabling an unprec-
edented opportunity to index RGC responses across single retinas. 
This methodology will enable functional developmental screens and 
circuit dissections due to its simplicity, efficiency and affordability, 
extending the current retinal research toolbox.

Receptive fields are adapted to anisotropic natural scene 
statistics
Taking advantage of the high-resolution RFs, we examined variations 
in RF shapes and strengths across the retina. Given that the PC model 
does not determine the polarity of the optimal RF and to globally com-
pare all retinal RFs, ON-center RFs were flipped in sign, such that all 
centers were negative, and all surrounds were positive. This allowed 
us to pool across all cells within small bins on the retinal surface and 
visualize the average spatial RF at different locations of the retina  
(Fig. 3a and Extended Data Fig. 5a). We observed a general and repro-
ducible trend across 11 retinas: a streak-shaped area where all RF sur-
rounds were oriented toward the optic nerve, and below which, hardly 
any RF surrounds were observed (Fig. 3a and Extended Data Fig. 5a). 
To compare these spatial variations of RFs with our theoretical predic-
tions, we oriented six of the recorded retinas to a common coordinate 
system using the immunohistochemically determined S-opsin gradient. 
Average RFs in the ventral, centrodorsal and peripheral-dorsal retina  
(Fig. 3b) qualitatively matched model RFs predicted for the upper, 
medial and lower visual fields, respectively (Fig. 3b). To confirm 
the change of relative surround strengths independently from sur-
round asymmetry, we computed the radial profiles of RFs and these 
also strongly resembled the radial profiles for model RFs (Fig. 3c).  

Overall, model RFs qualitatively reproduced all aspects of average 
spatial RFs across different elevations with remarkable detail.

To measure these phenomena quantitatively, we made use of the 
RF parametrizations and pooled RF parameters for all cells in different 
two-dimensional (2D; Fig. 3d–h) or one-dimensional (1D; Fig. 3e–i)  
bins across the retina. In line with our theoretical predictions  
(Fig. 1f), our analysis shows that the relative surround strength 
increases gradually along the dorsoventral axis (Fig. 3d), a trend visible 
in every single retina (Fig. 3e). Next, we explored if we could observe 
any global change in RF center size. As predicted (Fig. 1f), center sizes 
decreased only across the dorsoventral axis (Fig. 3f,g and Extended 
Data Fig. 6). While examining the spatial distribution of differences in 
upper and lower halves of the RF surrounds, we identified a consistent 
and prominent asymmetric streak in the dorsal retina, between 700 and 
900 μm dorsally from the optic nerve (Fig. 3h,i), as one would expect 
from asymmetric visual inputs (Fig. 1e). Accordingly, linear regressions 
weights were substantially stronger in elevation, but not azimuth, for 
all three trends (Fig. 3e–i and Extended Data Fig. 6). Overlaying the 
measured RF asymmetries with the opsin gradient indicated that the 
asymmetry is pronounced in the opsin transition zone (Fig. 3j). To test 
whether this streak corresponds to the horizon line within the animal’s 
visual field, we transformed the retinal coordinates to visual coordi-
nates31 and used the S-opsin gradient32 to define the dorsoventral axis 
(Fig. 3j,k and Methods). In visual coordinates, the center of this asym-
metric streak is located at 0° elevation, spanning the entire azimuth 
of our imaged FOVs (Fig. 3k), in line with our theoretical predictions 
(Fig. 1c). Finally, these trends also aligned in five additionally imaged 
retinas, where the true orientation could not be determined by the 
opsin gradient (Extended Data Fig. 7).

Adaptations to natural scene statistics across retinal pathways
It has long been assumed that specific RGC pathways have stereo-
typed response properties, shaped by the interactions between direct 
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excitation in their center and indirect inhibition in their surround33. 
Thus, one would expect that these center–surround interactions are 
uniform across visual space for most RGC pathways. To assess the 
specificity of the observed RF adaptations across functional RGC path-
ways, we clustered cells based on the temporal RF profile of 31,135 
RGCs into functional groups using a Gaussian mixture model (GMM), 
as done previously20. Consistent with the proportion of RGCs labeled 
in our line (Fig. 2d), we defined ten functional clusters (Fig. 4a). Chirp 
responses were not used for clustering because we observed reliable 
responses only in RGCs with weak surrounds. Therefore, for RGCs with 
strong surround, the chirps did not help us to match cluster identities 
(Extended Data Fig. 3c,d), despite finding new response properties 
that would have aided classification (for example, clusters 3, 11 and 
14; Extended Data Fig. 3b). Each cluster group had distinctly shaped 
temporal filters, corresponding to different functional properties 
such as ON or OFF selectivity, transient or sustained responses, and 
monophasic or biphasic selectivity, as seen in their average profiles 

(Fig. 4a). Cluster membership statistics were conserved across differ-
ent retinas (Extended Data Fig. 8). Moreover, the relative positions of 
RGCs belonging to individual clusters tile the retina in a mosaic-like 
arrangement in many cases (Fig. 4b), confirming that some clusters are 
indeed functionally distinct and irreducible RGC types15. As expected, 
many clusters represent a combination of RGC types that cannot be 
identified solely by their temporal profiles (Fig. 4b, cluster 10; see Sup-
plementary Table 1 for tiling statistics). We next used this classification 
and looked at the relative surround strength, center size and asymmet-
ric strength across clusters (Fig. 4c). As with the global pooling of RF 
(Fig. 3), cells in each functionally defined cluster increase their relative 
surround strengths gradually in the dorsoventral axis and decrease 
their center sizes accordingly. Moreover, all clusters contribute to 
the asymmetric streak (Extended Data Fig. 8c), consistent with the 
distribution of asymmetries in the opsin transition zone, where most 
cells have a strongly oriented surround with a ventral bias (Fig. 3k). All 
three trends were statistically significant for all clusters in elevation, 
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Fig. 5 | Colliculus-wide retinal ganglion cell’s receptive field architecture. 
a, Schematic of in vivo multiphoton imaging setup. b, FOV of a standard 
multiphoton recording of RGC axons expressing GCaMP8m in the SC (maximum 
projection, n = 10 sessions of three animals). c, Immunostaining of GCaMP8m of 
an example coronal section of the SC (n = 3 animals), showing homogeneous RGC 
labeling across the visual layers (green). d, Example RGC bouton RFs recorded 
using ‘shifting’ white noise (left) and their respective vertical 1D center profiles 
(1D RFs; right) at different elevation levels (gray lines). Note, ON-center RFs 
were inverted as done in Fig. 3. e, Average 1D RFs in 0.22° bins over elevation 

(smoothed horizontally in a 5° Gaussian window for display purposes).  
f, Example average RFs binned at a 4.1° visual angle (left), with their respective 1D 
RFs (right) at different elevation levels (gray bars). g, Relative surround strength 
of 4.1° binned and parametrized average 1D RFs; shading indicates the s.e.m. 
across azimuth bins (Extended Data Fig. 9g–i). Inset shows linear regression 
weights of individual bouton (n = 9,810) 1D RF parameters on elevation (EL) and 
azimuth (AZ). h,i, As in g, but for center size and vertical asymmetry, respectively. 
(P values for two-sided Kolmogorov–Smirnov test: 2.91 × 10−10 (g), 1.16 × 10−12 (h) 
and 1.48 × 10−6 (i). 2p, two photon.
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but not azimuth (Supplementary Table 1). These results indicate that 
a substantial proportion of RGC pathways adapt to the constraints 
imposed by natural statistics.

In vivo panoramic receptive field anisotropies match 
predictions
To test whether the adaptations to the panoramic visual scene statis-
tics affect sensory coding during behavior in naturalistic conditions, 
we decided to map RFs of the RGC axonal terminals in the superior 
colliculus (SC; Fig. 5a,b). These experiments have the advantage of 
testing our hypothesis in retinas that retain the complete adaptation 
machinery, from an attached pigment epithelium to functioning pupil 
constriction. Moreover, they provide important additional insights 
into the effects of the M-cone and rod pathways, which are saturated 
in our ex vivo retinal imaging system. For this purpose, we expressed 
the calcium indicator GCaMP8m34 in RGCs, using adeno-associated 
viruses (AAVs) in three mice. Subsequent implantation of a cranial 
window above the SC allows for visualization of RGC axonal terminal 
activity with two-photon calcium imaging in awake, behaving mice. 
The FOV varied for each recording from 0.32 to 1.85 mm2 (median 
of 0.68 mm2) of superficial SC surface (Fig. 5b), encompassing 23 to 
57 (median of 41) visual degrees in elevation. GCaMP8m expression 
spread homogeneously across the SC (Fig. 5c). Using the same previ-
ously used ‘shifting checker’ stimulus, we recorded 53,000 terminals 
in total, reconstructing 10,000 RFs above our quality index (Methods). 
Compared to the RFs recorded from ex vivo retinas, in vivo measured 
RFs were blurred along the main axis of saccadic movements (Figs. 2d  
and 5d; RFs). Thus, to compare across animals, we aligned the RFs of 
each animal to their respective saccadic plane, which, due to the head 
fixation, had one consistent axis parallel to the ground to each animal as 
shown previously35 (Extended Data Fig. 9a–c) and corrected the mouse 
head position to match the retinal coordinates (Methods). To avoid any 
bias due to eye movements, we then used the 1D profiles (1D RFs) of the 
orthogonal axis for further analysis (Figs. 5e). By binning and averag-
ing 1D RFs along the lateromedial axis, spanning from the lower visual 
field to the higher visual field (Fig. 5fg–i and Extended Data Fig. 9d), 
the three predicted trends became visible: (1) the surround strength 
increased, (2) the center size reduced and (3) the surround became 
more symmetric. Similarly to our retinal results (Fig. 3b), the mean 2D 
RFs qualitatively matched model RFs predicted for the upper, medial 
and lower visual fields (Fig. 5f). Next, we analyzed the RF parameters 
on mean 1D RFs across visual space. As with previous results, the RF 
properties were significantly different above and below the horizon 
and had substantial regression weights on elevation (Fig. 5g–i) but not 
on azimuth (Extended Data Fig. 9h–l). Consistently, the average visual 
maps (Extended Data Fig. 5b) resembled the ones measured ex vivo 
(Fig. 3d–h). Thus, our in vivo results provide independent corrobora-
tion that the visual system is adapted to the constraints imposed by 
the panoramic natural statistics.

Discussion
In this study, we leveraged a new, high-throughput neural imaging setup 
(Fig. 2) to identify a novel kind of adaptation to panoramic scene sta-
tistics in the retina. In agreement with theoretical predictions derived 
from the efficient coding framework (Fig. 1), our experimental results 
indicate that the global RF architecture is adapted to encode panoramic 
natural scenes efficiently (Figs. 3 and 4). These results were further cor-
roborated in RGC terminals of awake animals (Fig. 5), indicating that 
panoramic, efficient representations impact downstream processing 
during behavior. Classically, RGCs are known to dynamically change 
the strength of the RF surround in response to varying light levels36,37, 
which is thought to further increase the efficiency of sensory cod-
ing9,38,39. Our findings demonstrate that, in addition to such dynamic 
effects, RF shapes are also determined by static factors, namely their 
position within the visual field. In that way, the retina simultaneously 

exploits the large-scale spatial and fine-scale temporal structure of 
the visual space.

How could the visual system establish such global RF architecture 
without fine-tuning each RGC pathway independently? One partial 
mechanism would be the nonuniform distribution of spectral sen-
sitivity across the retina32. Such distribution has been discussed to 
be relevant for color vision40, contrast coding19,41 and the detection 
of aerial predators in the sky42, but simultaneously, could influence 
the static RF adaptations. For example, whereas the mouse retina has 
green light-sensing photoreceptors across the entire retina (M-opsin 
and Rod-opsin), UV sensitivity follows a sharp dorsoventral gradient 
(S-opsin)32. From the RGC’s perspective, both inputs will be added 
at mesopic conditions, leading to a net enhancement of the UV sen-
sitivity from the ground to the sky. Our in vivo results support this 
perspective by corroborating the ex vivo findings in an intact eye. 
Intriguingly, in vivo and ex vivo measured RFs differ subtly. Whereas ex 
vivo RFs show a clear asymmetrical peak at the horizon, in vivo RFs are 
more asymmetric across large proportions of the visual field (Fig. 5j). 
This is consistent with PC predictions because natural image patches 
located above the horizon tend to be vertically asymmetric (Fig. 1d) 
due to a gradient of stimulus power (Fig. 1b). Such an RF pattern indi-
cates that other mechanisms, apart from the S-opsin gradient, have 
to be involved. One possibility could be the circuitry mediating the 
asymmetric surround of J-RGCs33,40, which is ventrally displaced and 
sensitive to M-cones and rods. Interestingly, the vertical gradient of 
stimulus power will flatten at lower ambient light levels, for example, 
at dusk and dawn. In conjunction, the relative strength of UV sensitivity 
and the antagonistic surround would also decrease36,37. In these condi-
tions, efficient coding hypothesis would predict a more homogeneous 
RF distribution across the dorsoventral axis. Conversely, the horizon 
will become more prominent in photopic conditions, where rods are 
less active. In such situations, the in vivo RF architecture should have a 
localized asymmetric streak, as measured in our ex vivo data. It would 
be revealing to test if the retina-wide RF organization is dynamically 
reshaped under scotopic and photopic conditions. Finally, to fully 
benefit from this panoramic retinal code, the eye should maintain a 
relatively constant position on the horizon. In agreement with this idea, 
eye and head movements stabilize the retinal image remarkably well, 
on average ~10° in azimuthal angle, during behavior35,43.

A distinct, yet related question can be asked about the emergence 
of DS computations in retinorecipient areas, such as the SC, where neu-
rons integrate input from the entire retina, including the asymmetric 
streak. DS encoding can emerge as a consequence of an asymmetric and 
time-shifted surround, as shown before33,44. Consistent with the meas-
ured center–surround asymmetry, some studies have described these 
neurons as sensitive to upward motion45, whereas others do not find 
such specificity46,47. The efficient coding interpretation, such as the one 
adopted here, suggests that the key to resolving this puzzle might be 
understanding the statistics of what the animal ought to see in nature.

Our theoretical predictions established qualitative links between 
properties of RFs and their elevation within the visual field. They can 
be therefore thought of as a first-order approximation of how the 
retina is adapted to large-scale, spatial statistics of natural scenes. The 
exact pattern of global retinal adaptation should vary across species 
occupying diverse environments. It has been found that dorsoventral 
opsin gradients are present in many different mammalian species. For 
example, the rabbit, Chilean subterranean rodent cururo, European 
mole, the shrew and even the spotted hyena42,48 show higher S-opsin 
expression in the ventral retina. However, not all ecological niches 
are identical. For example, in dense forests, the vertical gradients of 
luminance and contrast are less prominent, and a clear horizon line 
might not be apparent. Interestingly, forest mice species whose opsin 
distribution has been described present a spatially uniform opsin 
distribution49. This further strengthens our hypothesis, which relates 
the global organization of the retina to the statistics of the ecological 
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visual field. Understanding this adaptation in more detail will require 
a careful analysis of stimuli from the ecological sensory niche, as well 
as an estimation of biophysical parameters such as biological SNR, RF 
size and tiling to refine our theoretical predictions. The combination 
of these approaches will be a critical requirement for building a more 
general theory of vision across the animal kingdom50.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-023-01280-0.
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Methods
Theory
We modeled neural responses rt as a dot product of the model RF ϕ⃗ and 
noisy stimulus vectors (image patches) s ⃗t ∶ rt = ϕ ⃗Tst, where T denotes 
vector transposition. RFs (filters) were optimized to minimize the fol-
lowing cost function:

L (ϕ⃗) = ⟨√r2t ⟩
t
+ λ

N
∑
i=1
ϕ2
i d(i)

Where d(i) is the squared distance between the i-th value of the RF and 
the one with the peak absolute value, and λ is the strength of the spatial 
locality constraint. This form of the locality constraint was introduced 
in ref. 11, and it has been demonstrated that it is consistent with RGC 
properties11,13. We note that the activity-related term in the cost function 
is equivalent to maximizing the sparsity of the neural activity quantified 
as the average absolute value of neural responses8. Without the spatial 
locality constraint (that is, λ = 0), the optimal RF is an oriented, 
Gabor-like filter. During optimization, to avoid convergence to trivial 
solutions, the norm of the RF ϕ⃗ was constant and equal to 1. Overall, 
this cost function enforces minimization of activity conveyed down-
stream, while preserving the information about the image and meeting 
the locality constraints. Conceptually, this goal is equivalent to that of 
the PC model10. Our model generates predictions consistent with the 
PC model proposed in ref. 10 (Extended Data Fig. 1). It is, however, more 
flexible, and enables us to capture changes in the center size.

We modeled output of photoreceptor cells (stimuli st) as natural 
image patches distorted with the additive Gaussian noise with variance 
σ2 that is: st,i = xt,i + ξ, where ξ ∼ N(0,σ2) is the noise term. To simulate 
different SNR conditions, we manipulated the noise variance level, and 
optimized RFs for each of the noise levels separately.

We optimized RFs by numerically minimizing the cost function L 
via gradient descent. For training, we used a dataset of 50,000 square 
image patches of 27 × 27 pixels in size taken from a dataset of natu-
ral images from the mouse visual environment18. We sampled images 
uniformly across the upper and lower visual fields. Each image patch 
was normalized to have a zero mean and unit variance. To simulate the 
impact of changing SNR, we normalized images with added noise. Dur-
ing optimization, the dimensionality of natural image data was reduced 
with principal-component analysis (PCA) to 128 dimensions. For each 
noise level, dimensionality reduction was performed using the same 
matrix of PCA components computed on noiseless data. To simulate 
the impact of changing SNR homogeneity, before normalization we 
multiplied the bottom half of each image by a scaling factor of less 
than one, resulting in the range of vertical surround asymmetry values 
reported in Fig. 1h. After such scaling, we normalized the data and added 
noise of constant variance. During optimization of RFs on asymmetric 
stimuli, we computed PCA for each level of SNR asymmetry separately.

In all cases, before optimization, in order to enforce that the RF is 
centered in the image patch, we initialized RFs with random Gaussian 
noise with variance equal to 0.1 but set the central pixel value to −1. We 
independently optimized RFs using images taken in the UV and green 
parts of the spectrum, as well as in the ‘joint’ spectrum where intensity 
of each pixel was the average of green and UV values. To ensure that 
results do not depend on the choice of natural image dataset, we per-
formed the simulations with the images of the African savanna from 
the van Hateren repository used in ref. 51 (Extended Data Fig. 2).

To evaluate RF properties, we defined the size of the RF to be the 
smallest circle that included 90% of energy (that is, ϕ2

i ) of optimal RFs 
averaged across all noise levels (Fig. 1b,c). Within that circle, we defined 
the center to be all ϕ⃗ values smaller than 0, and the surround to be those 
larger than or equal to 0. The strength of the surround was thus equal 

to ∑
i∶ϕi≥0

|ϕi| and the center to ∑
i∶ϕi<0

|ϕi|. Sizes of the center were simply 

numbers of entries that were smaller than 0.

To characterize changes in contrast and luminance across the 
visual field, we used natural images published in ref. 18. We limited our 
analysis to UV images only; however, light statistics of the green channel 
do not differ qualitatively. The images provided in ref. 18 were divided 
into two classes—upper visual field and lower visual field. To simulate 
the visual horizon, we concatenated pairs of images randomly selected 
from the upper and lower visual fields. We created a dataset of 1,000 
such concatenated images and used them to compute the mean and 
variance of light intensity as estimates of local luminance and contrast, 
as well as to estimate the SNR as a function of elevation. To estimate 
the vertical asymmetry of the SNR pattern we used a square stimulus 
window, and a fixed noise variance. We note that key, qualitative aspects 
of our predictions do not depend on these choices. For each position 
y of the window along the vertical dimension of the visual field, we 

computed the vertical SNR asymmetry as: asym ( y) = my
up−m

y
down

my
up+m

y
down

 where 

my
up and my

down are sums of the SNR value within the stimulus window 
above and below its midline, respectively.

Animals
Mouse protocols were reviewed by the institutional preclinical core 
facility at IST Austria. All breeding and experimentation were per-
formed under a license approved by the Austrian Federal Ministry 
of Science and Research in accordance with the Austrian and EU ani-
mal laws (BMF-66.018/0017-WF/V/3b/2017). For retinal experiments, 
triple-transgenic male and female mice (n = 8 mice, 3 males, 5 females; 
n = 11 retinas, 5 from the left eye, 6 from the right) aged 5–12 weeks were 
used for this study (Vglut2-ires-cre ( JAX 28863), TITL-R-CaMP1.07-D 
( JAX 030217) and ROSA26-ZtTA ( JAX 012266)). Original strains were 
obtained from Jackson Laboratories. For in vivo imaging experiments, 
C57BL/6J ( JAX, 000664; n = 3, 2 males, 1 female), aged 6–11 weeks at 
eye injection, were used. The mice were housed in a standard (in vivo 
inverted) 12-h day–night cycle and euthanized by cervical dislocation 
before in vitro imaging.

Statistics and reproducibility
No statistical method was used to predetermine sample size. Low 
SNR RFs were excluded from analysis, as described below. As done 
previously20, only chirp responses that passed a quality criterion were 
used for further analysis. Given the nature of the retinal experiments, 
the location of the recordings was randomized to prevent any biases 
in the outcome.

Ex vivo imaging
The dark-adapted mouse retina was isolated under far-red light (LED 
peak 735 nm, additionally filtered with a 735-nm LP filter eliciting an 
isomerization rate of ~17 R s−1) in oxygenated Ames’ medium (Sigma) 
with constant bubbling (95% O2, 5% CO2) at room temperature. Left 
and right retinas were kept separate for identification. Four incisions 
were made to flat mount the retina, with ganglion cells facing up, on 
an 18-mm coverslip (VWR, 631-0153), and held down with a filter paper 
(Merck, GSWP01300) with a ~2.5 mm × 2.5 mm imaging window cut 
out. The preparation was then placed in a heated (32 °C) superfusion 
chamber on the stage of a custom-built upright fluorescence micro-
scope. The retina was left to recover for a minimum of 10 min with the 
excitation light of the microscope turned on. An amber LED (Thorlabs, 
M595L4) filtered with a BP filter (Thorlabs, FB580-10) was used for 
excitation and a BP filter (Thorlabs, 641-75) in series with a 600-nm 
LP filter (Thorlabs, FEL0600) was used for collection. Background 
excitation light intensity was at a constant mean photopic intensity of 
105 R s−1 per rod (at 585 ± 5 nm). Isomerization rates were determined 
using opsin templates52 and assuming that the mouse rod has an optical 
density at peak absorption wavelength of 0.015 μm−1, a length of 24 μm, 
a diameter of 1.4 μm and a quantum efficiency of 0.67 (refs. 53,54). Each 
retina was tiled by recording 3–7 different FOVs at ×10 magnification 
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(Olympus XLUMPLFLN20XW objective) using a sCMOS camera (Pho-
tometrics Prime 95B) at 10 frames per second and 1.1-μm pixel resolu-
tion. Setup was controlled and data were acquired using custom-built 
LabVIEW software (National Instruments, version 2019).

Visual stimuli for retinal experiments
Light stimuli were delivered from a modified Texas Instruments DLPL-
CR4500EVM DLP projector through a custom-made lens system and 
focused onto the photoreceptors (frame rate of 60 Hz, magnification 
of 2.5 μm per pixel, total area of 3.2 mm × 2 mm). The projector’s blue 
LED was replaced with a high-power UV LED (ProLight 1 W UV LED, 
peak 405 nm), to improve the differential stimulation of S pigments. 
Two SP filters in series (Thorlabs, FESH0550) were put in the stimulus 
path to block green light from entering the camera. Intensities and 
spectra were measured using a calibrated spectrometer (Thorlabs, 
CCS-100) and a digital power meter (Thorlabs, S130C sensor). A shift-
ing spatiotemporal white-noise stimulus was presented using a binary 
pseudorandom sequence, in which the two primary lights (green and 
UV) varied dependently. All white-noise stimuli were presented at a 
6-Hz update for 15 min. The checker size was 100 × 100 μm and the 
entire grid was shifted by random multiples of 10 μm in both x axis and 
y axis after every frame. In comparison experiments, static checkers 
(without shifts) of 100 × 100 μm and 25 × 25 μm were interleaved with 
the shifting checkers in chunks of 5 min for a total of 20 min for each 
of the three checker types. A ‘chirp’ stimulus with a 1-s bright step, 
increasing amplitude (0 to 127 over 8 s) and increasing frequency (0 
to 4 Hz over 8 s) was repeated for five trials to reproduce clustering of 
responses20. Moving square gratings (temporal frequency of 0.6 cycles 
per second and spatial frequency of 0.025 cycles per micron) or a wide 
bright bar (1 mm s−1 speed, 2 mm width) in eight directions, repeated 
for five trials, were used for assessing direction selectivity. All visual 
stimuli were generated using the Psychtoolbox (version 3)55.

Histology
After the ex vivo recordings, some of the retinas were fixed with 4% 
paraformaldehyde (PFA) for 30 min and stained for S-opsin and RFP. 
Retinas were incubated for 7 d at 4 °C in PBS, containing 5% donkey 
serum, 0.5% Triton X-100, goat anti S-opsin (1:500 dilution; Rockland, 
600-101-MP7) and rabbit anti-RFP (1:1,000 dilution; Rockland, 600-401-
379). After washing thrice in PBS for 15 min each, retinas were incubated 
overnight in secondary antibodies, donkey anti-goat Alexa Fluor 488 
(1:1,000 dilution; Abcam, ab150129) and donkey anti-rabbit Alexa Fluor 
594 (1:1,000 dilution; Invitrogen, R37119). Retinas were then mounted 
and imaged with an Olympus VS120 Slidescanner with a ×20 objective. 
For cell-type characterization, Vglut2-ires-cre; TITL-R-CaMP1.07-D; 
ROSA26-ZtTA mice were euthanized and perfused intracardially, fol-
lowed by retina extraction and staining for RBMPS or SMI32, along with 
RFP (primary antibodies: guinea pig anti-RBPMS (1:500 dilution; Sigma, 
ABN1376), mouse anti-SMI32 (1:500 dilution; BioLegend, 801701), 
rabbit anti-RFP (1:1,000 dilution; Rockland, 600-401-379) or mouse 
anti-RFP (1:500 dilution; MBL, M155-3); secondary antibodies: goat 
anti-guinea pig Alexa Fluor 647 (1:1,000 dilution; Invitrogen, A21450), 
donkey anti-mouse Alexa Fluor 647 (1:1,000 dilution; Abcam, A-31571) 
and donkey anti-rabbit Alexa Fluor 594 (1:1,000 dilution; Invitrogen, 
R37119). The staining protocol was the same as above and these retinas 
were imaged with a Leica SP8 confocal microscope.

After the final in vivo recording, mice were terminally anesthe-
tized with ketamine/xylazine (100 mg per kg body weight/10 mg per 
kg body weight) intraperitoneally (i.p.) and transcardially perfused 
with PBS, followed by 4% PFA. Brains were extracted and post-fixed in 
4% PFA at 4 °C overnight. Brains were then washed and transferred to 
30% sucrose solution for cryoprotection overnight at 4 °C and subse-
quently frozen and the midbrain coronally sliced into 40-μm sections 
on a Leica SM2010R sliding microtome. Sections were washed and then 
incubated in PBS, containing 5% donkey serum, 0.3% Triton X-100 and 

goat anti-GFP (1:2,000 dilution; Abcam, ab6673) overnight at 4 °C. After 
washing thrice in PBS for 15 min each, brain sections were incubated for 
1 h in secondary antibody solution, donkey anti-goat Alexa Fluor 488 
(1:1,000 dilution; Abcam, ab150129), washed thrice again in PBS and 
mounted on slides, where they were stained with DAPI (not shown) and 
coverslipped with custom-made Mowiol. Brain sections were imaged 
with a Nikon CSU-W1 spinning disk confocal microscope at ×20 tile 
stack acquisition. Shading correction was performed on image stacks 
with BaSiC56 in ImageJ and, finally, maximum projection was performed 
over the whole stack.

Preprocessing
Regions of interest (ROIs) were detected automatically from raw cal-
cium movies using Suite2p54. Fluorescence traces, F, were detrended 
by computing dF/F, where the 8th percentile in a 20-s sliding window 
centered around each time point was taken as the baseline fluores-
cence. Different FOVs from the same retina were stitched together 
based on coordinates from the stage motors and repeated ROIs in 
overlapping regions were manually annotated using an open-source 
tool57. Repeated ROIs with the highest score in Suite2p’s built-in classi-
fier were kept for analysis. The deconvolved signal from Suite2p (with 
tau = 1.0 s) was used for calculating RFs.

The median dF/F response across trials was taken as the response 
to the chirp and normalized by dividing by the maximum of the abso-
lute values across time. Quality Index was computed as in ref. 20, and 
only responses with a score > 0.45 were kept for clustering (8,019 of 
30,798 neurons). For moving gratings and bar, the mean across tri-
als and maximum across time was taken as the response in any one 
direction.

Receptive field mapping
The RF for each neuron was computed as a calcium-triggered average. 
The spatiotemporal RF at latency τ, position (x,y) for neuron i was 
computed as

RF (i, x, y, τ) =
T
∑
t=1
s (x, y, t − τ) ⋅ r (i, t) −

T
∑
t=1
s(x, y, t − τ) ⋅

N
∑
j=1
r(j, t),

where r(i,t) is the deconvolved response of neuron i at time t, s(x,y,t)) 
is the white-noise stimulus, T is the length of the recording and N is 
the total number of neurons in the recording. The second term in this 
equation subtracts away the residual distribution of the stimulus and 
the contribution of slow bleaching that is common to all neurons in 
that recording and leads to RFs that had noticeably less noise. Only 
the UV channel of the stimulus was used for RF mapping. The latency 
τ was varied in increments of 0.025 s (40 Hz), and the stimulus was 
interpolated by using the last frame before a particular time, t-τ. The 
RF for each neuron was normalized between −1 and 1 by subtracting the 
mean value of the RF at latencies τ < 0, and dividing by the maximum 
absolute value of the entire RF.

The location of the center of an RF was estimated by finding the 
pixel that varied the most across time, Pvar = argmax Vart(x, y)  where 
Vart (x, y) is the variance across time for position (x,y). Each neuron’s  
RF was cropped within a square window of edge 1 mm centered on this 
pixel. The SNR of an RF was computed as the peak-to-noise ratio where 
the power of noise was estimated in regions with distance >0.5 mm 
from the point Pvar. Only RFs with a peak SNR > 15 dB were kept for 
analysis (31,135 selected RFs of 37,086 recorded neurons). The location 
of the RF in time was found in a similar way; Tvar = argmax Varxy(t)   
here, Varxy (t) is the variance in space.

Parametrization of receptive fields
We parametrized spatiotemporal properties of the center and surround 
of the RFs as a sum of two 2D Gaussian distributions (Gaussians) G1 + G2. 
The first Gaussian represents the center of the RF; its amplitude can be 
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either negative or positive corresponding to an OFF or an ON cell. The 
amplitude of the second Gaussian is required to be of the opposite sign 
to model the properties of the surround. We computed a spatial rep-
resentation of the RF, denoted as RF2D as the median of the RF within a 
small time window around Tvar. To reduce noise, we excluded the pixels 
that were weakly correlated with Pvar across time. The sum of 2D Gauss-
ians G1 + G2 was then fitted to RF2D. Each Gaussian is defined by the 
amplitude A, center (mx,my), width (σx,σy) and the orientation angle θ. 
We fit only one Gaussian G1 to parametrize the location (mx,my), the size 
and the orientation θ1 of the center. In the next step, we fit the sum of 
Gaussians, where we fixed (mx,my,σx0,σy0,θ1) parameters of G1 while 
allowing all other parameters to be fitted anew.

Here we differentiated two types of RFs: a RF with a strong center 
and a weaker surround that largely overlap, and a RF where both 
center and surround components are strong and well separated. For 
the first case, we imposed a constraint such that the center of G2 is 
within the distance d = 2 min (σx01 ,σy01 ) from the center (mx

1 ,m
y
1 ). We 

implemented this constraint as a penalty sigmoid function 
P(dist(G1,G2)) of the distance between the locations of the center and 
surround components. We added P(dist(G1,G2)) to the Gaussian mix-
ture and allowed it to be prohibitively large for dist(G1, G2)> d. Encod-
ing the constraint in this manner allowed us to remove the bias for 
the location of the surround on the diagonals of the RF2D, which oth-
erwise happens when fitting Gaussian mixture on the square 
bound-constrained region. There were no constraints for the second 
type of the RFs where the surround component is strong and more 
distant from the center. To decide the type of the RF, we found the 
maximum and minimum points of the RF, and we computed the dis-
tance between them and the ratio of their absolute values. If the ratio 
of the smaller to the bigger values was less than 0.75 or if the distance 
between the extrema points was less than d, then we classified such 
an RF as the first type, and as the second type otherwise. Experimen-
tally, we found that imposing such a constraint on the location of the 
second Gaussian leads to a better fitted sum of Gaussians for RFs with 
largely overlapping center and surround components. All the fitting 
procedures were implemented using the nonlinear least-squares 
solver lsqcurvefit in MATLAB.

Using parametrization, we computed various RF characteristics. 
We found two sets of pixels corresponding to the center and the sur-
round. Center pixels are the pixels within two standard deviations 
from the center of the G1. Surround pixels are the pixels within two 
standard deviations from the center of the G2 and that are not center 
pixels. The center size is the number of pixels in the center set, con-
verted to mm2 for display. The relative surround strength is the ratio 
of the absolute value of sum of surround pixels to the absolute value 
of sum of center pixels. Vertical surround asymmetry is defined as 
(u − l)/(u + l) where u and l denote the absolute value of sum of pixels 
in the upper and lower halves of the surround pixels, respectively. 
The distance between the center and the surround is the distance 
between the center of mass (COM) of the center pixels and the COM 
of the surround pixels. The orientation is the angle between the hori-
zontal axis and the line connecting the two COMs. Radial profiles were 
computed as the average values of the pixels in RF2D within rings of 
increasing radii centered on the point Pvar. The average value of the 
center or surround pixels across time was taken to be the RF center 
or surround temporal dynamics, respectively. The R2 goodness of fit 
was computed as

R2 = 1 −
∑i (RF2Di −Mi)

2

∑i (RF2Di − RF2D)
2 ,

where M = G1 + G2 is the RF parametrization. The values of the above RF 
parameters are reported for a few representative neurons in Extended 
Data Fig. 4.

Retina alignment
All functional imaging experiments were performed with randomized 
retina orientations. For retinas that were co-stained against S-opsin 
and RCaMP1.07 (n = 6 retinas), the direction with the highest density 
of S-opsin was taken to be the ventral direction58. The stitched maxi-
mal projection images of the functional imaging experiments were 
aligned to the RCaMP channel using the retinal vasculature. In each of 
these retinas, we observed that a streak of asymmetric surrounds was 
always consistently present across the dorsal retina. Thus, we assumed 
this to be a reproducible feature, which we then used to manually align 
the remaining n = 5 retinas that did not have an S-opsin staining (and 
hence no ground truth orientation). To avoid any potential circular 
arguments, we present the location of neurons from these five retinas 
only in Extended Data Fig. 7, with a clear indication that the retinal 
orientation is presumed.

The coordinates of cells from each retina were then translated to 
make the optic nerve the zero of the coordinate system and rotated 
such that the positive y axis denoted ventral direction. Left retinas were 
flipped in the nasotemporal axis such that the positive x axis denoted 
nasal direction for all retinas. All spatial RFs were also translated and 
rotated accordingly. The cartesian retinal coordinates of cells in the 
stained retinas were converted to spherical visual coordinates using 
the R package Retistruct, assuming the optical axis of the mouse eye 
to be oriented at an azimuth of 64° and an elevation of 22° from the 
long axis of the animal31.

Binning of receptive field properties
For 2D bins, the retinal space from −1,500 μm to 1,500 μm in both 
nasotemporal and dorsoventral axes was divided into a square grid and 
all neurons within each bin were collected. Only 2D bins with at least 
five neurons were analyzed to minimize sampling bias. The spatial RF 
values of all neurons within each bin of 300 μm in size were averaged 
and plotted at the location of the bin in Fig. 3a and Extended Data Fig. 6. 
The RF parameter values of neurons within each bin of size 50 μm were 
averaged to yield a 2D map of the parameter, and this map was visual-
ized (without smoothing) in Fig. 3d–h. Owing to its area-preserving 
property, the sinusoidal projection of visual space was binned in the 
same way as the retinal surface, and the fraction of cells in each bin that 
had ventrally oriented surrounds were plotted in Fig. 3k.

For 1D analysis, the bins were defined along the dorsoventral or 
nasotemporal axis based on the range of coordinates in a particular 
group (by retina (Fig. 3) or cluster (Fig. 4)). The range was divided 
into six equally spaced bins and the mean parameter value of neurons 
within each bin was plotted at the coordinate of the center of the bin. 
As a summary statistic, two-sample Kolmogorov–Smirnov-tests were 
performed between ventral and dorsal samples of these binned values 
(n = 56 (Fig. 3) and n = 60 (Fig. 4) samples). Two-sample Kolmogo-
rov–Smirnov tests (with Bonferroni correction for multiple compari-
sons) were also performed between raw values of RF parameters for 
Extended Data Fig. 6. In addition, the weights of linear regressions of 
RF parameters in elevation (dorsoventral) and azimuth (nasotemporal) 
orientations are reported.

Clustering into functional types
The GMM procedure developed in ref. 20 was used for clustering tem-
poral RFs and chirp responses, separately. In brief, after normalization, 
the trace was first reduced in dimension using PCA (10 components for 
temporal RFs and 20 components for chirp responses) and then GMM 
models with diagonal covariance matrices were fitted while increasing 
the number of clusters. The numbers of clusters were identified to be 10 
for temporal RFs and 20 for chirp responses based on elbow points in 
the respective Bayesian information criteria curves. One chirp cluster 
(n = 68 cells) lacked stimulus-evoked responses and was discarded on 
visual inspection. To assess the degree of overlap between the RFs of 
neurons belonging to each of the clusters, we defined the tiling index 
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(TI) of the cluster K as the area of the union of all RF centers in a cluster, 
divided by the sum of their individual areas:

TIK =
Area(∪i∈K RFi)
∑i∈K Area(RFi)

The value of this index for each cluster was computed separately 
for each retina and the mean and s.d. across retinas are reported in 
Supplementary Table 1.

Viral eye injections
For viral-mediated gene transfer, 6- to 11-week-old wild-type C57BL/6J 
mice ( JAX, 000664) were anesthetized with ketamine/xylazine by i.p. 
injection. A 1/2-inch, 30-gauge needle was used to make a small hole 
in the temporal eye, below the cornea. Then, 1 μl of vitreous fluid was 
withdrawn and 1 μl of AAV2.7M8-syn-GCaMP8m viral vector solu-
tion (at a titer of ~1 × 1013 genome copies per ml, ISTA viral facility) 
was injected into the subretinal space with a Hamilton syringe and a 
33-gauge blunt-ended needle.

Mouse surgery for in vivo imaging
Two to three weeks after viral eye injections, mice were injected 
with meloxicam (20 mg per kg body weight, subcutaneous (s.c.), 
3.125 mg ml−1 solution) and dexamethasone (0.2 mg per kg body weight 
i.p., 0.02 mg ml−1 solution). Anesthesia was induced by 2.5% isoflurane 
in oxygen in an anesthesia chamber. The mouse was subsequently 
fixed in a stereotaxic device (Kopf) with a constant isoflurane supply 
at 0.7% to 1.2% in O2 and body temperature controlled by a heating pad 
to 37.5 °C. After the assertion that reflexes subsided, the cranium was 
exposed and cleaned of periosteum and connective tissue. A circular 
craniotomy of 4 mm in diameter was drilled above the left SC and from 
this point onwards, the exposed brain was constantly irrigated with 
artificial cerebrospinal fluid. The exposed dura mater was removed, 
and subsequently, the left transverse sinus was sutured twice with 
9-0 monofil surgical suture material (B. Braun) and cut between the 
sutures. Cortical areas covering the left SC were aspirated with a cell 
culture vacuum pump (Accuris) connected to a blunt needle of 0.5 mm 
in diameter. A 3-mm circular coverslip was glued (Norland optical adhe-
sives 61) to a thin-walled custom-made conical ring, made from stainless 
steel. The coverslip ring was inserted into the cavity left by the aspirated 
cortex, so that the glass was sitting flush on the surface of the SC. Slight 
pressure was applied with the help of a thinned toothpick, fixed to the 
stereotaxic arm. The space around the insert was filled with Dura-Gel 
(Cambridge Neurotech) and the insert was fixed in place with VetBond 
(3M). After cleaning and drying the surrounding cranium, a multilayer 
of glues was applied. First, to provide adhesion to the bone, All-in-One 
Optibond (Kerr) was applied and hardened by blue light (B.A. Optima 
10). Second, Charisma Flow (Kulzer) was applied to cover the exposed 
bone and fix the metal ring in place by also applying blue light. After 
removal of the fixation toothpick, a custom-designed and manufactured 
(RPD) headplate, selective laser-sintered from the medical alloy TiAl6V4 
(containing a small bath chamber and micro-ridges for repeatable fixa-
tion in the setup), was positioned in place and glued to the Charisma 
on the cranium with Paladur (Kulzer). Mice were given 300 μl of saline 
and 20 mg per kg body weight meloxicam (s.c.), before removing them 
from the stereotaxic frame and letting them wake up while keeping 
them warm on a heating pad. Another dose of 20 mg per kg body weight 
meloxicam s.c. and 0.2 mg per kg body weight i.p. dexamethasone was 
further injected 24 h after conclusion of the surgery. After the implanta-
tion surgery, animals were allowed to recover for 1 week.

In vivo visual stimulation and eye movements
Mice were head-fixed while awake using a custom-manufactured clamp, 
connected to a three-axis motorized stage (8MT167-25LS, Standa). 
Mice could run freely on a custom-designed spherical treadmill (20-cm 

diameter). Visual stimuli were projected by a modified LightCrafter 
(Texas Instruments) at 60 Hz, reflected by a quarter-sphere mirror 
(Modulor) below the mouse and presented on a custom-made spher-
ical dome (80 cm in diameter) with the mouse’s head at its center. 
The green and blue LEDs in the projector were replaced by cyan (LZ1-
00DB00-0100, Osram) and UV (LZ1-00UB00-01U6, Osram) LEDs 
respectively. A double bandpass filter (387/480 HD Dualband Filter, 
Semrock) was positioned in front of the projector to not contaminate 
the imaging. The reflected red channel of the projector was captured by 
a transimpedance photo-amplifier (PDA36A2, Thorlabs) and digitized 
for synchronization. Cyan and UV LED powers were adjusted so that the 
reflectance on the screen matched the relative excitation of M-cones 
and S-cones during an overcast day, determined and calibrated using 
opsin templates52 and a spectrometer (CCS-100, Thorlabs). Stimuli 
were designed and presented with Psychtoolbox (version 3)55, running 
on MATLAB 2020b (MathWorks). Stimulus frames were morphed on 
the GPU using a customized projection map and an OpenGL shader 
to counteract the distortions resulting from the spherical mirror and 
dome. The dome setup allows the presentation of mesopic stimuli from 
circa 100° on the left to circa 135° on the right in azimuth and from circa 
50° below to circa 50° above the equator in elevation.

Visual stimuli were like ex vivo retinal imaging experiments: A 
shifting spatiotemporal white-noise stimulus was presented using 
a binary pseudorandom sequence, in which the two primary lights 
(cyan and UV) varied dependently. All pseudo white-noise stimuli were 
presented at a 5-Hz update in 5-min episodes, interleaved with different 
stimuli (for example, gray screen, moving gratings (not shown)) with a 
total pseudo white-noise duration of 15–60 min (median of 25 min) per 
recording. The checker size was a visual angle of 8 × 8° and the entire 
grid was shifted by random multiples of a 0.4° visual angle in both eleva-
tion and azimuth axis after every frame. Eye movements of the right 
eye were recorded with a camera (Basler acA1920-150um, 18–108 mm 
macro zoom lens (MVL7000, ThorLabs), set at 100 mm, and infrared 
illumination of 830 nm) via an infrared mirror at 50 frames per second.

In vivo retinal terminal imaging
Two-photon axonal terminal imaging was performed on a custom-built 
microscope, controlled by ScanImage (Vidrio Technologies) running 
on MATLAB 2020b (MathWorks) and a PXI system (National Instru-
ments). The beam from a pulsed Ti:Sapphire laser (Mai-Tai DeepSee, 
Spectra-Physics) was scanned by a galvanometric-resonant (8 kHz) mir-
ror combination (Cambridge Scientific) and expanded to underfill the 
back-aperture of the objective (×16 0.8-NA water-immersion, Nikon); 
1.9 × 1.9-mm FOV; 30-Hz frame rates. Fast volumetric imaging was 
acquired with a piezo actuator (P-725.4CA, Physik Instrumente). Emit-
ted light was collected (FF775-Di01, Semrock), split (580 nm long-pass, 
FF580-FDi01, Semrock), bandpass filtered (green, FF03-525/50; red, 
FF01-641/75; Semrock), measured (GaAsP photomultiplier tubes, 
H10770B-40, Hamamatsu), amplified (TIA60, Thorlabs) and digitized 
(PXIe-7961R NI FlexRIO FPGA, NI 5734 16-bit, National Instruments). 
The laser wavelength was set between 920 and 950 nm. Average laser 
output power at the objective ranged from 57 to 101 mW (median of 
69 mW)56. A FOV of 0.32–1.85 mm2 (median of 0.68 mm2) was imaged 
over 3–7 planes (median of 6 planes) with a plane distance of 14–40 μm 
(median of 25 μm) at a pixel size of 0.6–1.9 μm (median of 1.3 μm) and a 
volume rate of 4.3–9.5 Hz (median of 5.0 Hz). Each mouse was recorded 
in 2–4 imaging sessions on different days. In a subset of mice (n = 2) in 
separate imaging sessions, absence of substantial z-motion was veri-
fied by injecting 40 μl of Texas Red dextran (3000 MW, X 14.3 mg ml−1, 
diluted in saline, Themo Fisher Scientific) s.c. and imaging brightly red 
labeled blood vessels at 980 nm59.

In vivo eye movement analysis
Behavior videos were analyzed with DeepLabCut60, labeling eight 
points around the pupil. The eight points were then fitted to an ellipse 
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and the ellipse center position transformed to rotational coordinates 
under the assumption of eyeball radius = 1.5 mm61, using custom Python 
scripts. The median of all eye positions was set to zero azimuth and 
elevation, that is, all eye coordinates were relative to the median posi-
tion. The individual horizontal axis, which varied slightly between mice 
due to differences in the positioning of the head plate, was corrected 
by leveraging a behavioral feature of head-fixed mice: Saccadic move-
ments are nearly exclusively in one plane35. Saccades were extracted 
by determining events of fast position changes on a median filtered 
position trace (median filter window of 0.7 s, minimal saccadic speed 
of 45° per second, minimal saccade amplitude of 3°, minimal saccade 
interval of 0.25 s). The preferred saccadic orientation and orientation 
tuning was determined in a similar fashion as that for neuronal visual 
orientation tuning based on circular variance:

ᾱ = 1
2arg [∑t

rtexp(2iαt)]

̄r = 1
∑t rt

||||
∑
t
rtexp(2iαt)

||||

with ᾱ as the saccadic orientation angle, r̄ as saccadic orientation tun-
ing, rt as saccade amplitude and 𝛼t as direction of saccade t (Extended 
Data Fig. 9a–c). Saccade orientation tuning was very high, with mean 
selectivity = 0.8.

In vivo axonal terminal analysis
Functional calcium imaging data were first analyzed with suite2p 
(v0.10.0)62 for motion correction and ROI extraction. ROIs were then 
curated manually based on morphological and activity shape. Fur-
ther analysis was performed in custom MATLAB R2021a (MathWorks) 
scripts: dF/F0 was estimated based on published procedures63 by first 
subtracting neuropil contamination (from suite2p, fluorescence signal 
of 350 pixels surrounding the ROI, excluding other ROIs) with a factor 
of 0.5 (estimated from fluorescence of small capillaries as reported 
previously). From the neuropil-corrected ROI fluorescence, baseline F0 
was defined as the 8th percentile of a moving window of 15 s64. dF/F0 was 
then calculated by first subtracting and then dividing the fluorescence 
trace by the median of the same 15-s window63. Fluorescence SNR was 
defined for each neuron by dividing the 99th percentile of the dF/F trace 
(‘signal’) by the standard deviation of its negative values after baseline 
correction (‘noise’). Only axonal segments with a fluorescence SNR ≥ 5 
were included in further analysis. The deconvolved signal from Suite2p 
(with tau = 0.7 s) was used for calculating RFs. Note that multiple axonal 
ROIs can originate from the same RGC. Spatiotemporal RF analysis for 
in vivo retinal terminals was conducted as for ex vivo RGC imaging, 
but on visual stimuli downsampled to a resolution of a 1° visual angle. 
The resulting 50 × 50° RFs were contaminated by eye movements and 
exhibited a lower SNR (as determined by temporal variance of the most 
varying pixel over the temporal variance of pixels with >50° visual angle 
distance) than ex vivo soma recordings, requiring further inclusion 
criteria: SNR > 15 (as in ex vivo data) and peak variance over time located 
at tau values between −0.1 and 0.6 s. Additionally, the retinotopic 
projection pattern of RGCs to the SC was utilized by fitting a map from 
visual coordinates to collicular space. For each recording, RF center 
azimuth and elevation values were fitted separately to the location of 
the ROI in the SC using the ‘poly22’ fit option in MATLAB and using only 
the highest 15% ROIs in SNR and SNR as a fitting weight. Boutons with 
peak location of the RF deviating by more than a 20° visual angle from 
its expected location based on the retinotopy fits were removed from 
further analysis (828 boutons removed).

The main saccadic axis was used to rotate the computed spatial 
RFs around their respective center and the center positions in visual 
space as spherical rotation around the approximate eye axis (65° from 

frontal direction in the horizontal plane). Finally, while freely moving 
mice hold their head at an approximate pitch angle of 30° downwards65, 
in vivo imaging allowed only for a pitch angle of 10° downwards. To 
compensate, the center positions of all RFs were spherically rotated 20° 
downwards around the main pitch axis (90° from frontal direction in 
horizontal plane). Note that these calculations only allow an estimate 
of the position of the horizon in free locomotion.

To avoid biasing the analyses by eye movements, RF parametriza-
tion was conducted on mean vertical 1D profiles of extracted 50 × 50° 
2D RF crops at the peak azimuthal position ± 1°, where ON center bou-
ton RFs were inverted. To extract parameters from 1D RFs, they were 
fitted with a difference of two Gaussians, initialized with the central 
peak magnitude (Mpeak) and width (Wpeak). The fitting procedure was 
then constrained with amplitudecenter ∈ [Mpeak/2, inf], amplitudesurround 
∈ [0,inf], locationcenter ∈ [−20, 20]°, locationsurround ∈ [−25, 25]° (edge of 
crop), sigmacenter ∈ [Wpeak/4, inf] and sigmasurround ∈ [Wpeak, inf]. Boutons 
with a center fit location in 1D RFs of more than 5° or with a surround 
fit location of more than 25° distant from peak estimation based on 
variance in 2D RFs, were excluded from further analysis (1,609 bou-
tons removed). Extraction of parameters was identical to ex vivo RF 
parametrization, except center size, where in vivo 2sigmacenter of the 
fit was used.

For presenting RF characteristics of RGC axonal boutons in the SC, 
the centered 1D RFs were binned and averaged in each bin. RF param-
eters varying over elevation and azimuth are presented as parameters 
of the fit on the mean 1D RF in the respective bin. Linear regression 
weights were computed from the parameters and location of each 
individual bouton.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used in the analysis can be found at ISTA data repository: https://
doi.org/10.15479/AT:ISTA:12370.

Code availability
Code used to generate the results is available at GitHub: https://github.
com/joesch-lab/panoramic-retina/.
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Extended Data Fig. 1 | Predictive coding predictions derived from a 
previously proposed model. (a) Average luminance (left panel) and local 
contrasts (right panel) in the mouse field of view in the ultraviolet range. Red 
dashed lines separate elevation bands. Orange opaque rectangle denotes the 

horizon band. Natural image data - courtesy of Hiroki Asari18. (b) Receptive 
fields optimized for each band in (a). (c) Relative surround-to-center strength 
as a function of the elevation band. (d) Surround asymmetry as a function of 
elevation band. Orange mark denotes the horizon band.
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Extended Data Fig. 2 | Predictive coding model trained with an alternative 
set of natural images. We used natural images of animals and landscapes of the 
African savanna from van Hateren repository, used in51 (a) Top - RFs optimized at 
different levels of SNR. Bottom – center size (purple line) and relative surround 
strength (black line) plotted as a function of the SNR. (b) Top - RFs optimized 

at different levels of the vertical SNR asymmetry. Bottom – vertical surround 
asymmetry plotted as a function of the vertical SNR asymmetry of the model 
photoreceptor output (RGC input). (c) RFs predicted for different positions 
within the visual field. (d) Horizontal cross-sections of model RFs in (c).
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Extended Data Fig. 3 | Clustering of Ca2+ signals to “chirp” stimulus shows 
segregation into functional types. (a) normalized Ca2+ responses to changes in 
frequency, contrast, and luminance, known as “chirp” stimulus from RGCs, sorted 
by cluster ids, as determined by GMM. (b) Mean and standard deviation of each 
cluster reveal ON (cluster 2, 4, 8, 9, 10, 11, 13, 14, 18), OFF (5, 12, 15, 16), ON-OFF (3, 6, 
7, 17), suppressed-by contrast (1, 19) RGC-types, as well as differences in frequency 
tuning to slow (for example, cluster 4), mid (for example, cluster 3), fast (for 

example, cluster 11) and all frequency modulations (for example, cluster 2) or 
difference in luminance sensitivity (for example, compare ON responsive cluster 
14 and 18). Note: clusters 15 and 19 are not homogeneous, as seen in their large 
standard deviations. (c) Chirp-response quality index versus surround strength, 
determined using their spatiotemporal filters (as in Fig. 2J). Good-quality chirp 
responses have a strong bias for weak surrounds. (d) Distribution of chirp quality 
index for weak and strong surround, as defined in (c, see color code).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison and parametrizations of RFs. (a) 
Schematic of binary white noise stimuli used for recovering RFs during imaging 
experiments for static checkers with grid size 100 ×100 μm2. (b) Spatial RFs of 
9 representative neurons were generated from the stimuli above. (c,d) Same as 
(a,b) for the same neurons, but for static 25 μm sized checkers. (e,f) Same as in 
(a,b) for the same neurons but for a shifting checkers with grid size 100 ×100 μm2, 
where the entire grid was shifted by random multiples of 10 μm in both x- and 
y-axis. While the static 100 μm checkers were too low resolution for automatic 
analysis and the static 25 μm checkers were unable to drive many neurons 
strongly enough to elicit sufficient responses for RF reconstruction, the moving 
white noise stimulus was able to unambiguously recover the most detail in the 

center–surround structure of RFs. (g) Spatial receptive field snapshot at the peak 
center strength. (h) Difference of Gaussians model fitted to the spatial RF. Ellipses 
represent 2 SD of the two Gaussians. (i) Temporal trace of the mean value of pixels 
within the respective Gaussians (top: center, bottom: surround). Dashed line 
represents no correlation between stimulus and response. (j) Values of different 
parameters of the RF reconstruction (Peak SNR), the goodness of fit (R2), center-
surround structure (Center Size, Rel. Surround Strength) and eccentricity of 
surround (Vertical Asymmetry, Surround Distance, Surround Orientation). All 
neurons are plotted with the same scale and limits (after normalization). (k) 
Schematic depicting the parametrization of the receptive field in (g), showing the 
surround distance (“d”) and orientation (“𝛂”). (l) Example parametrizations.
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Extended Data Fig. 5 | Spatial structure of average RFs across the retina and 
superior colliculus. (a) Average spatial RFs of all RGCs in square bins of size 
300 μm at different positions of the retinal surface. As in Fig. 3a, but including 
cells from 6 retinas (n = 220 ± 200 cells per bin). Black cross: optic nerve head 

position. (b) Average spatial RFs of all RGC boutons in square bins of size 5.6 ° 
at different positions in visual space. n = 93 ± 68 boutons per bin, only bins with 
n > = 20 boutons shown.
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Extended Data Fig. 6 | Homogeneity of receptive field architecture in the 
temporal-nasal axis. (a) Top: Mean relative surround strength at 6 different 
dorsoventral positions. Bottom: p-values of two-sided Kolmogorov-Smirnov 
tests (with Bonferroni correction) between all pairs of bins. Darker colors 
represent higher significance levels that the cells in the two corresponding bins 

have different surround strengths. (b) Same as (a), but for trends and significance 
levels across the naso-temporal axis. (c,d) Same as (a,b), respectively, but 
for center sizes. (e,f) Same as (a,b), respectively, but for Vertical surround 
asymmetry (n = 6 retinas with S-opsin staining).
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Extended Data Fig. 7 | Surround strength, center size and asymmetric streak 
align in retinas without an S-opsin staining. (a) Mean relative surround 
strengths of RGCs within 100 μm bins, pooled from n = 5 retinas. (Same as Fig. 3d)  
(b) Relative surround strengths for RGCs within 6 equally spaced bins along 
the presumed dorsoventral axis (color: mean and SEM pooled from n = 15449 

RFs, grey lines: individual retinas). (c & e) Same as (a), but for center size and 
vertical surround asymmetry, respectively. (d & f) same as (b), but for center 
size and vertical surround asymmetry, respectively. (p-values for two-sided 
Kolmogorov-Smirnov test: (b) 0.0047, (d): 0.0168, (f): 2.3766e-04.
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Extended Data Fig. 8 | Proportions of cluster membership. (a) Fraction 
of cells from each retina that were classified into each of the 10 temporal RF 
clusters (from Fig. 4). (b) Fraction of cells across dorsoventral positions within 
bins of width 500 μm. (c) Distribution of relative surround to center strength, 

center sizes and vertical asymmetry for each cluster, subdivided into ventral 
(above the optic nerve) and dorsal (below the optic nerve). For all statistics, see 
Supplementary Table 1.
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Extended Data Fig. 9 | Sampling RGC bouton receptive field architecture 
across superior colliculus. (a) Two example video frame crops of eye in two 
extreme horizontal positions. (b) Polar scatter plot of individual saccade 
amplitudes and directions (gray dots) in example recording and computed 
saccade axis (orange line, saccadic orientation tuning r̄ = 0.92). (c) Saccade axes 
of all recordings (n = 10 in 3 mice) close to the horizon (offset = 5.5 ± 2.9 °). (d) 
Relative surround strengths of mean 1-d-RFs within 4.3 ° bins. n = 45 ± 40 boutons 
per bin, only bins with n > = 5 boutons shown. (e & f) Same as (d), but for center 
size and vertical surround asymmetry, respectively. (g) Example RGC bouton 

receptive fields recorded using “shifting” white noise (left) and their respective 
1-d RFs (right) at different azimuth positions (gray lines). (h) Average 1-d RFs, in 
smoothed 0.22 ° bins over azimuth. (i) Example average receptive fields binned 
at 2.9 ° visual angle (left), with their respective 1-d RFs (right) at different azimuth 
positions (gray bars). (j) Relative surround strength of 4.1 ° binned average 1-d 
RFs, shading indicating SEM across elevation bins (shown in (a)). Regression 
weights for both elevation and azimuth shown in Fig. 5g. (k, l) as ( j), but for center 
size and vertical asymmetry, respectively. p-values indicated in j-l for two-sided 
Kolmogorov-Smirnov test.
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Data exclusions Only retinas that had full coverage were used (n=9). All cells that had high SNR receptive fields were used (85% of total)
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