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Abstract

The scope of this thesis is to study quantum systems exhibiting a continuous symmetry that
is broken on the level of the corresponding effective theory. In particular we are going to
investigate translation-invariant Bose gases in the mean field limit, effectively described by
the Hartree functional, and the Fröhlich Polaron in the regime of strong coupling, effectively
described by the Pekar functional. The latter is a model describing the interaction between a
charged particle and the optical modes of a polar crystal. Regarding the former, we assume in
addition that the particles in the gas are unconfined, and typically we will consider particles
that are subject to an attractive interaction. In both cases the ground state energy of the
Hamiltonian is not a proper eigenvalue due to the underlying translation-invariance, while on
the contrary there exists a whole invariant orbit of minimizers for the corresponding effective
functionals. Both, the absence of proper eigenstates and the broken symmetry of the effective
theory, make the study significantly more involved and it is the content of this thesis to
develop a frameworks which allows for a systematic way to circumvent these issues.

It is a well-established result that the ground state energy of Bose gases in the mean field limit,
as well as the ground state energy of the Fröhlich Polaron in the regime of strong coupling, is
to leading order given by the minimal energy of the corresponding effective theory. As part
of this thesis we identify the sub-leading term in the expansion of the ground state energy,
which can be interpreted as the quantum correction to the classical energy, since the effective
theories under consideration can be seen as classical counterparts.

We are further going to establish an asymptotic expression for the energy-momentum relation
of the Fröhlich Polaron in the strong coupling limit. In the regime of suitably small momenta,
this asymptotic expression agrees with the energy-momentum relation of a free particle having
an effectively increased mass, and we find that this effectively increased mass agrees with the
conjectured value in the physics literature.

In addition we will discuss two unrelated papers written by the author during his stay at ISTA
in the appendix. The first one concerns the realization of anyons, which are quasi-particles
acquiring a non-trivial phase under the exchange of two particles, as molecular impurities.
The second one provides a classification of those vector fields defined on a given manifold
that can be written as the gradient of a given functional with respect to a suitable metric,
provided that some mild smoothness assumptions hold. This classification is subsequently
used to identify those quantum Markov semigroups that can be written as a gradient flow of
the relative entropy.
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CHAPTER 1
Introduction

It is a central observation that the fundamental physical laws are symmetric with respect
to the basic transformations of space, or equivalently, according to Noether’s theorem, that
the total momentum as well as the total angular momentum are conserved under the time
evolution. Historically, symmetries and conserved quantities have been an important tool in
the mathematical analysis of physical systems, as they allow to reduce the available degrees
of freedom. This is especially relevant when it comes to low dimensional systems, where
symmetries have been used to identify exact solutions. In this thesis we are concerned with
theories that posses a large or infinite number of degrees of freedom instead, where exact
solutions are out of reach and effective theories gain relevance. In contrast to low dimensional
theories, the presence of continuous symmetries seems to rather complicate the mathematical
treatment of the physical systems under consideration, making novel techniques a necessity.

1.1 Translation-invariant Bose gases
The first physical system we shall discuss is an unconfined gas of interacting (bosonic)
particles. In the absence of any confinement, like a box or a trapping potential, we will
typically assume that the interaction is attractive in order to prevent the gas from diffusing
over the whole available space Rd. As a concrete example we will investigate a (bosonic)
gas of gravitating particles, which can be considered as a model for a neutral (Bose) star.
In quantum physics, a gas of N particles is described by a wave-function Ψ P L2�RN�d�,
where x � �

xp1q, . . . , xpNq
� P RN�d contains the coordinate vectors xpjq P Rd of the various

particles, together with a self-adjoint operator HN on L2�RN�d� that encodes the dynamical
information of the theory, referred to as the Hamiltonian of the system. In the following we
will consider Hamiltonians of the form

HN :�
Ņ

j�1
p�∆qj � 1

N � 1
¸
j k

v
�
xpjq � xpkq

�
, (1.1.1)

where v : Rd ÝÑ R is a given interaction potential and p�∆qj indicates that the Laplace
operator ∆ acts on the j-th particle in the tensor product L2�RN�d� � L2�Rd

�bN . Typically
we will take v to be negative with vpxq ÝÑ

|x|Ñ8
0, describing an attractive interaction between

the particles in the gas, and we use the non-relativistic kinetic energy �∆ for the sake of

1



1. Introduction

concreteness, even though our results are valid for a much larger class of translation invariant
operators including the (pseudo) relativistic kinetic energy

?
m2 �∆. Due to the mean-field

scaling factor 1
N�1 , the interaction term in Eq. (1.1.1) is of the same order of magnitude as the

kinetic energy, which gives rise to complex phenomena as a consequence of the competition
between the two contributions to the total energy. We further want to emphasize that the
interaction term 1

N�1
°
j k v

�
xpjq � xpkq

�
in Eq. (1.1.1) only depends on the relative position

of the particles to each other, and consequently HN is invariant under the group of translations
in space pxp1q, . . . , xpNqq ÞÑ pxp1q � v, . . . , xpNq � vq, where v P Rd. Equivalently, the total
momentum P :� °N

j�1
1
i
∇j commutes with the Hamiltonian HN , i.e. rHN ,Ps � 0, and is

therefore conserved under the time evolution Ut :� eitHN .

Regarding Bose gases, we are primarily concerned with the behaviour of the ground state
energy of the Hamiltonian HN in the parameter regime where the number of particles N in
the gas goes to infinity, i.e. we take an interested in the quantity

EN :� inf
Ψ:}Ψ}�1

xHNyΨ , (1.1.2)

in the limit N Ñ 8. To be more precise we shall establish an asymptotic two term expansion
of the form EN � Na� b� oNÑ8p1q, where a, b P R are (rather) explicit constants. Since
the infimum in Eq. (1.1.2) is reached by permutation symmetric Ψ : RN�d ÝÑ C only,
which we will refer to as bosonic wave-functions, we shall restrict ourself to such elements
Ψ P L2

sym
�
RN�d� � L2�Rd

�bsN in the following, where bs denotes the symmetric tensor
product. Based on the large dimension of the space RN�d, finding an exact expression for the
ground state energy EN seems to be out of reach and it becomes necessary to introduce an
effective theory. A suitable effective theory can be derived by restricting the test functions
Ψ to a specific sub-manifold of L2

sympRN�dq. In the case of a Bose gas, the most natural
permutation symmetric N particle test functions are considered to be pure product states
Ψ :� ubN with u P L2�Rd

�
satisfying }u} � 1. Due to the mean-field factor 1

N�1 in front
of the interaction v, and the absence of any scaling factor in the argument of v, the energy
of such a test function is proportional to N , which leads to the definition of the Hartree
functional

EHrus :� 1
N
xHNyubN �

»
|∇xu|2dx� 1

2

» »
|upxq|2vpx� yq|upyq|2dxdy.

Clearly we obtain an upper bound on the ground state energy EN by

1
N
EN ¤ inf

u:}u}�1
EHrus �: eH.

A less trivial but well-established result is that the upper bound eH is asymptotically correct
in the regime of large N , i.e. it is known that the ground state energy EN is to leading order
given by EN � NeH � oNÑ8pNq, see [71]. In the presence of a confining box or trapping
potential, it is even known that the ground state ΨGS, characterized (up to a phase) by
xHNyΨ � EN and }ΨGS} � 1, is close to the pure product ΨGS � ubN0 in a suitable topology,
where u0 is characterized (up to a phase) by EHru0s � eH and }u0} � 1. As we will argue in
the subsequent paragraph, this picture is no longer valid in the translation invariant setting
studied in this thesis.

In order to understand the action of a continuous symmetry group on a quantum theory,
it is usually useful to find a fibre representation first, i.e. we want to find an identification

2



1.1. Translation-invariant Bose gases

L2
sympRN�dq � L2�Rd,HN

�
, where HN is a suitable Hilbert space, as well as a collection of

operators tHNppq : p P Rdu defined on HN , such that the action of HN reads pHNΨqp �
HNppqΨp and the action of the total momentum operator is given by pPΨqp � pΨp. In the
case of a N particle gas, such a fibration can naturally be realized using the vector space of
relative coordinates XN :�  

x P RN�d :
°N
j�1 x

pjq � 0
(
. With the notation ∇j,k :� ∇j �∇k

at hand, we can rewrite HN as

HN � 1
N
P2 � 1

2N

Ņ

j,k�1
∇2
j,k �

1
N � 1

¸
j k

v
�
xpjq � xpkq

�
,

where � 1
2N

°N
j,k�1 ∇2

j,k� 1
N�1

°
j k v

�
xpjq � xpkq

�
can naturally be seen as an operator acting

on L2
sympXNq. Defining an identification of the spaces L2

sympRN�dq � L2�Rd, L2
sympXNq

�
as Ψppxp1q, . . . , xpNqq :�

�?
N

2π

	 d
2 ³

Rd e
�ipyΨpxp1q � y, . . . , xpNq � yq dy therefore yields the

desired fibration with the fibre Hamiltonian

HNppq :� |p|2
N

� 1
2N

Ņ

j,k�1
∇2
j,k �

1
N � 1

¸
j k

v
�
xpjq � xpkq

�
acting on L2

sympXNq. As an immediate consequence we observe that the joint spectrum
σpP, HNq is given by the union of the parabolas E � |p|2

N
� λ with λ P σpHNp0qq, a

property which follows from the Galilean invariance of the non-relativistic kinetic energy.
Furthermore, assuming that HNp0q has a ground state Ψrel in L2

sympXNq, the ground state
of HN in L2�Rd, L2

sympXNq
�

is formally given by p ÞÑ δ0ppqΨrel, which corresponds to the
function ΨGSpxp1q, . . . , xpNqq :� � 1

2π

� d
2 Ψrel

�
xp1q � x̄, . . . , xpNq � x̄

�
, with x̄ :� 1

N

°N
j�1 x

pjq,
according to our identification L2

sympRN�dq � L2�Rd, L2
sympXNq

�
. Clearly ΨGS is non-zero

and translation invariant, i.e. ΨGSpxp1q � y, . . . , xpNq � yq � ΨGSpxp1q, . . . , xpNqq for all
y P Rd, which in particular means that ΨGS does not have a finite L2 norm and inf σpHNq is
therefore not a proper eigenvalue. Furthermore this means that ΨGS cannot be close to a
product state, since ubN , as an L2 function, is localized in space while ΨGS is constant along
every (non-compact) orbit tpxp1q � y, . . . , xpNq � yq : y P Rdu.
Since the fiber Hamiltonian HNp0q contains all the spectral information of the original
Hamiltonian HN , it is tempting to analyse the operator HNp0q instead of HN , especially
when we consider that HNp0q might have a proper ground state and that we are effectively
removing d degrees of freedom by freezing the total momentum coordinate p � 0. However
we believe that the fibration in terms of relative coordinates is not beneficial when it comes
to the large N asymptotics of the ground state energy, as we are not aware of a natural
notion of products states in the L2 space over the vector space of relative coordinates XN ,
and therefore it is not even clear how to recover the leading order asymptotics EN � NeH,
originally obtained by a restriction to pure products.

We have seen so far that there is no straightforward way of comparing the ground state ΨGS,
respectively its fibre counterpart Ψrel, with the pure product state ubN . We circumvent this
issue by relaxing our definition of a ground state, to be precise we say that a sequence of states
ΨN is an approximate ground state in case xHNyΨN � EN�oNÑ8p1q. Since we are interested
in the two term expansion of the ground state energy EN � NeH� b�oNÑ8p1q, where b P R
is a (rather) explicit constant, our definition of an approximate ground state uses indeed the

3



1. Introduction

correct scale. In contrast to the exact ground state, it is possible to construct an approximate
ground state which is close to the product state ubN0 , where u0 is a minimizer of the Hartree
functional EH. By the translation-invariance of HN , it is clear that the Hartree functional EH
is translation-invariant as well and therefore uy P L2�Rd

�
defined as uypxq :� u0px � yq is

again a minimizer of EH . As a consequence we can assume w.l.o.g. that u0 is centred around
the origin in the sense that

³
xi 0 |u0pxq|2dx �

³
xi¡0 |u0pxq|2dx � 1

2 for all i P t1, . . . , du. In
the following we will break the translation-invariance of the true ground state ΨGS in order to
construct an approximate ground state ΨN that is confined around the origin as well.
In the light of the relative-coordinate fibration, it seems to be natural to construct an
approximate ground state by localizing the center of mass coordinate x̄ � 1

N

°N
j�1 x

pjq, such
that |x̄| ¤ κN ! 1 for all x P supppΨNq. However it turns out that this property is insufficient
to conclude ΨN � ubN0 , as we shall illustrate in the subsequent paragraph. Let us first specify
the notion ΨN � ΨrN as being equivalent to���xBk bs 1

bpN�kqyΨN � xBk bs 1
bpN�kqyΨrN

��� ÝÑ
NÑ8

0

for all bounded k particle operators Bk. In case ΨrN � ubN , we will also refer to this as
(complete) Bose-Einstein condensation with respect to u. In order to illustrate that a center
of mass localization is insufficient, let us define the test function ΨNpxp1q, . . . , xpNqq :�
utpxp1qq � � �utpxpN�1qqg

�
x̄
κN

	
for t � 0. Clearly the center of mass x̄ is localized around the

origin for κN ! 1. However since ΨN contains a factor ut in every component except the
last one, it is easy to show that ΨN � ubNt as long as 1

N
! κN , which especially in particular

means that ΨN cannot be close to ubN0 . We conclude that the center of mass is not the right
statistical quantity for our localization procedure.
As it turns out, the median, respectively a hybrid between the median and the center of mass,
is a more robust statistical quantity. In order to see this, let us assume d � 1 for the sake of
simplicity and let ΨN be a (permutation symmetric) test function having a median localized
around the origin. To be precise, let us assume that for any x P supppΨNq, there are at least
p1

2�ϵNqN particles satisfying xpjq ¤ ϵN and at least p1
2�ϵNqN particles satisfying xpjq ¥ �ϵN ,

where ϵN ! 1. As an immediate consequence we obtain limNÑ8 x1xp1q¤ϵN1xp2q¥�ϵN yΨN
� 1

4 .
This however means that ΨN cannot be close to ubNt for t � 0, since this would imply

lim
NÑ8

x1xp1q¤ϵN1xp2q¥�ϵN yΨN
�
»
x¤t

|u0pxq|2dx
�

1�
»
x¤t

|u0pxq|2dx


� 1

4
and hence

³
x¤t |u0pxq|2dx � 1

2 , which is a contradiction to our assumptions t � 0 and³
x¤0 |u0pxq|2dx � 1

2 , given that u0 ¡ 0. The concrete construction of a ΨN having a localized
median, the corresponding estimate on the energy penalty and the proof that ΨN indeed
satisfies Bose-Einstein condensation ΨN � ubN0 can be found in Chapter 2. Having an
approximate ground state ΨN at hand will be a central prerequisite in establishing the two
term expansion EN � NeH � b� oNÑ8p1q, as we shall explain in the following.

In order to identify the sub-leading term in the expansion of EN it is useful to recast the
Hamiltonian HN in the language of second quantization. For this purpose let us define the
Fock space over a given Hilbert space H as the direct sum FpHq :�À8

n�0 Hbsn and let us
define for any element f P H the creation operator a:pfq on FpHq as

a:pfqΨ :�
a
hpn� 1qf bs Ψ (1.1.3)

4



1.1. Translation-invariant Bose gases

for all Ψ P Hbsn, where h ¡ 0 is a given constant. Furthermore we denote the adjoint
operator as apfq and refer to it as the annihilation operator. It can easily be checked that
creation and annihilation operators satisfy the (rescaled) canonical commutation relations
rapfq, a:pgqs � h xf |gyH. In the following we choose H :� L2�Rd

�
and h :� 1

N
, and we

introduce the shorthand notation aj :� apfjq, where tfj : j P Nu is a basis of L2�Rd
�
, which

allows us to express the Hamiltonian HN as

1
N
HN �

8̧

j,k�0
xfj| �∆|fky a:jak �

N

2pN � 1q
8̧

i,j,k,ℓ�0
xfi b fj|vp|fk b fℓy a:ia:jakaℓ,

where we denote vp as the two body multiplication operator by vpx� yq. Furthermore we can
naturally express the fact that ΨN satisfies Bose-Einstein condensation ΨN � ubN0 in the
language of second quantization. For this purpose, let us assume that the first basis element
is given by f0 :� u0. Since a:0a0, restricted to L2�Rd

�bsN , is given by |u0y xu0| bs 1
bpN�1q,

Bose-Einstein condensation immediately implies xa:0a0yΨN � 1� oNÑ8p1q by definition, or
equivalently xN�yΨN � oNÑ8p1q with N� :� °8

j�1 a
:
jaj. Heuristically, this means that we

should think of the modes aj with j ¥ 1 as being small, while we do not have sufficient
information to determine the value of a0.

Making use of the fact that the number of particles

N :�
8̧

j�0
a:jaj (1.1.4)

is fixed to N � N and the observation that HN is gauge invariant, i.e. HN stays invariant
under the transformation aj ÞÑ eiθaj with θ P R, we see that one of the degrees of freedom
in our problem is redundant. Following the approach presented in [72], we can make this
statement rigorous by applying a unitary transformation UN , referred to as the excitation
map. This map removes the dependence of the Hamiltonian HN on the zero mode a0 by
eliminating the particle number constraint, and it is defined as

UN

�
ub

i0
0 bs u

bi1
1 bs � � � bs u

bim
m

	
:� ub

i1
1 bs � � � bs u

bim
m (1.1.5)

for non-negative integers i0 � � � � � im � N , mapping L2�Rd
�bsN into the Fock space

F
�tu0uK

�
over modes orthogonal to u0. It is an easy exercise to check that N� stays invariant

under the excitation map, and therefore Bose-Einstein condensation implies xN�yUNΨN �
oNÑ8p1q.
Regarding the Hartree theory EH we can get rid of the norm constraint }u} � 1 in a similar
fashion, by making use of the map z ÞÑ ιpzq :� a

1� }z}2 u0 � z, defined for z P tu0uK
satisfying }z} ¤ 1, leading to the study of the transformed functional z ÞÑ EHrιpzqs. Since
ιp0q � u0 is a minimizer of EH , i.e. EHrιpzqs � eH, we obtain by a formal Taylor expansion

EHrιpzqs � eH �
8̧

j,k�1

�
Qj,kzjzk �Gj,kzjzk �Gj,kzjzk

�� o

� 8̧

j�1
z̄jzj

�
, (1.1.6)

where zj :� xfj|zy, Qj,k :� 1
2

�BRezj � iBImzj
� pBRezk � iBImzkq |z�0EHrιpzqs and Gj,k :�

1
2

�BRezj � iBImzj
� pBRezk � iBImzkq |z�0EHrιpzqs. As we demonstrate in Chapter 2, the map ι

and the excitation map UN share similar properties, which enables us to use the same Taylor

5



1. Introduction

expansion as in Eq. (1.1.6) for the transformed operator UNHNU
�1
N as well, i.e. one can

verify that

1
N
UNHNU

�1
N � eH �

8̧

j,k�1

�
Qj,ka

:
jak �Gj,kajak �Gj,ka

:
ja

:
k

	
� o

� 8̧

j�1
a:jaj

�
, (1.1.7)

where o
�°8

j�1 a
:
jaj

	
is a symbolic expression for terms which are at least cubic in the operators

taj : j ¥ 1u. Since our approximate ground state satisfies Bose-Einstein condensation, i.e.
since we think of the modes aj as being small, we expect terms of higher order to be
negligible, leading to the two term expansion of the energy EN � NeH� b with b :� inf σ pHq
and the Bogoliubov operator defined as H :� N

°8
j,k�1

�
Qj,ka

:
jak �Gj,kajak �Gj,ka

:
ja

:
k

	
.

Note that H is indeed independent of N due to the scaling in the commutation relations
rapfq, a:pgqs � 1

N
xf |gy. This approach of establishing the two term expansion of the ground

state energy has been carried out in [72] for Bose gases that are confined by a box or a
trapping potential.

A central tool in [72] is an operator inequality of the form
°8
j�1 a

:
jaj À 1

N
H, which allows

one to absorb the error term o
�°8

j�1 a
:
jaj

	
in Eq. (1.1.7) by the quadratic part H. In

the translation-invariant setting such an operator inequality is no longer possible, since the
quadratic part H is degenerate in the directions f1 :� Bx1u0

}Bx1u0} , . . . , fd :� Bxdu0
}Bxdu0} and therefore

we can only absorb terms which are small compared to
°8
j�d�1 a

:
jaj. We circumvent this

issue by applying yet another unitary transformation WN to our Hamiltonian as well as a
corresponding transformation F to our effective theory. Essentially, F flattens the manifold
of minimizers corresponding to z ÞÑ EHrιpzqs, which leads to the improved Taylor expansion

EHrιpF pzqqs � eH �
8̧

j,k�1

�
Qj,kzjzk �Gj,kzjzk �Gj,kzjzk

�� o

� 8̧

j�d�1
z̄jzj

�
.

Again, WN and F share similar properties, which we use in order to obtain an improved Taylor
expansion of the Hamiltonian

1
N

WNUNHNU
�1
N W�1

N � eH � 1
N
H� o

� 8̧

j�d�1
a:jaj

�
.

Absorbing the residuum o
�°8

j�d�1 a
:
jaj

	
by the quadratic part H, then allows us to establish

the two term expansion of the ground state energy EN � NeH � inf σpHq � oNÑ8p1q.

1.2 The Fröhlich Polaron at Strong Coupling
The second physical system we shall discuss is the Fröhlich Polaron, which is a model for a
charged particle, say an electron, interacting with a polarizable medium. The medium itself is
a crystal made of initially neutral particles, which become dipoles due to the electric field of
the charged particle travelling through the crystal. In the Fröhlich theory, the lattice spacing
is assumed to be vanishingly small, allowing for a continuous description of the crystal by a
polarization field y ÞÑ Φpyq, which measures the electric dipole moment of the medium at a
given point in space y P R3. Mathematically the Fröhlich polaron, which is a quasiparticle

6



1.2. The Fröhlich Polaron at Strong Coupling

consisting of the electron and a cloud of excitations of the polarization field attached to it, is
described by the Hamiltonian

H :� �∆x �N � a pwxq � a: pwxq (1.2.1)

acting on the Hilbert space L2pR3q b F pL2pR3qq, where ∆x is the Laplace operator on
the Hilbert space of the electron L2pR3q and x is the position of the electron, the creation
and annihilation operators a and a: are defined in Eq. (1.1.3) with h :� 1

α2 acting on
the Hilbert space F pL2pR3qq, the corresponding particle number operator N is defined in
Eq. (1.1.4) and the interaction wx : R3 ÝÑ R is given by wxpyq :� 1

π
3
2 |y�x|2

. Regarding the
physical interpretation, �∆x is the kinetic energy of the electron and the particle number
operator N represents the internal energy of the polarization field Φpxq :� 1

2

�
ax � a:x

�
, where

ax is a symbolic expression for the distribution apfq � ³
R3 fpxqaxdx. The last terms in

Eq. (1.2.1) model the interaction between the electron, living in the Hilbert space L2pR3q,
and the polarization field, living in the Hilbert space F pL2pR3qq, where the constant α ¡ 0
appearing in the canonical commutation relations rapfq, a:pgqs � 1

α2 xf |gy is interpreted as
the interaction strength between the charged particle and the medium. We want to emphasize
that the interaction

a pwxq � a: pwxq � 2
π

3
2

»
R3

Φpyq
|x� y|2 dy

only depends on the relative position between the electron and the argument y of the field
operator Φpyq, and consequently the operator H is invariant under the group of translations
in space tTy : y P R3u, characterized (up to a phase) by the transformation laws x ÞÑ x� y,
1
i
∇x ÞÑ 1

i
∇x and ax ÞÑ ax�y, which in particular implies Φpxq ÞÑ Φpx� yq. Since the group

of translations is generated by the total momentum operators P � pP1,P2,P3q defined as

P :� 1
i
∇� α2

»
R3
k a:kakdk,

where we use the standard notation
³
R3 gpkqa:kakdk as a symbolic expression for the operator°8

n,m�1

A
fn

���g �1
i
∇
� ���fmEa:pfnqapfmq and tfn : n ¥ 1u is an orthonormal basis of L2pR3q,

the translation invariance of the Hamiltonian H can equivalently be expressed as rH,Ps � 0,
making the total momentum P a conserved quantity under the time evolution generated by H.

Regarding the polaron we are primarily interested in the low energy properties of H in the
regime of large coupling α between the electron and the polarizable medium. The first
main result, presented in Chapter 3, identifies the two term expansion of the ground state
energy Eα :� inf σpHq in the asymptotics of large α and the second main result, presented in
Chapter 4, establishes an asymptotic expression for the energy-momentum relation EαpP q,
defined as EαpP q :� inf σ|P�P pHq with σ|P�P pHq :� tE : pP,Eq P σpP,Hqu. Since the
translation group is shifting the electron as well as the polarization field, but not the medium
itself, our theory is not fully Galilean invariant and therefore one can not expect the joint
spectrum σpP,Hq to consist of parabolas, as it was the case for the translation-invariant
(non-relativistic) Bose gas, making it an interesting object to study. In particular we confirm
that, asymptotically, the energy-momentum relation EαpP q of a polaron coincides with the
one of a free particle having an effectively increased mass which scales like α4 in the limit of
large α, which is a well known conjecture from 1948 in the physics literature due to Landau
and Pekar [63], however a rigorous mathematical proof has so far been out of reach.
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1. Introduction

Again our methods rely on the usage of an effective theory that arises as a restriction to a
suitable manifold of test functions. In the case of the polaron, a suitable manifold is given by
states of the form Ψ � ψ b Ωφ, where ψ P L2pR3q is an electron wave-function satisfying
}ψ} � 1 and Ωφ is a coherent state with basis φ P L2pR3q characterized (up to a phase) by
apfqΩφ � xf |φyΩφ and }Ωφ} � 1, i.e. Ωφ is an eigenvector of the annihilation operator
apfq to the eigenvalue xf |φy. The expectation value of H with respect to such a state turns
out to be independent of α, leading us to the definition of the Pekar energy functional

Epψ, φq :� xHyψbΩφ �
»
R3
|∇xψ|2dx�

»
R3
|φpyq|2dy � 2

π
3
2

»
R3

»
R3

|ψpxq|2Reφpyq
|x� y|2 dydx.

We clearly have the upper bound Eα ¤ infφ infψ:}ψ}�1 Epψ, φq �: ePek. Furthermore it has
been established in [1, 29, 79] that this upper bound is sharp in the asymptotics of large α,
i.e. we have Eα � ePek � oαÑ8p1q.
In order to identify the subleading term in the energy expansion Eα � ePek � oαÑ8p1q we
first introduce a finite dimensional version of H as

Hfin :� �∆x �
Ņ

n�1
a:nan �

Ņ

n�1
xfn|wxy

�
an � a:n

�
,

where tfn : n P t1, . . . , Nuu is a real-valued orthonormal basis of a suitable finite dimensional
subspace Xfin � L2pR3q and we define an :� apfnq as usual. Due to the ultraviolet
regularization techniques developed in [40] we have |Eα � Eα,fin| ! α�2 with Eα,fin :�
inf σpHfinq, and hence it is enough to establish the two term expansion for the energy Eα,fin
of the regularized model. Following the methods in [40] we can furthermore eliminate the
electronic degrees of freedom for a lower bound. Let us first identify the Fock space FpXfinq
over the finite collection of modes a1, . . . , aN with L2�RN

�
such that the annihilation operators

read an � λn � 1
2α2Bλn with λ � pλ1, . . . , λNq P RN . According to this identification we

obtain

Hfin � �∆x � Vλpxq �
Ņ

n�1
a:nan ¥ inf σ p�∆� Vλq �

Ņ

n�1
a:nan

� � 1
4α4

Ņ

n�1
B2
λn � inf σ p�∆� Vλq �

Ņ

n�1
λ2
n �

N

2α2 (1.2.2)

with Vλpxq :� �2
°N
n�1 xfn|wxyλn, where we have used that λn � 1

2

�
an � a:n

�
. Similarly we

can eliminate the dependence on the electronic degrees of freedom in the effective energy
functional E , leading to the study of the Pekar functional

FPekpφq :� inf
}ψ}�1

Epψ, φq � inf σ p�∆� Vλq �
»
R3
|φpxq|2dx

with λn :� 1
2 pφn � φnq and φn :� xfn|φy. In order to emphasize the structural similarity

between the Pekar functional FPek and the right hand side of Eq. (1.2.2) note that we can
write

³
R3 |φpxq|2dx �

°N
n�1 λ

2
n for φ � °N

n�1 λnfn, and by a (formal) Taylor expansion of
FPek around a minimizer φPek we obtain

FPekpφq � ePek �
Ņ

i,j�1
HPek
i,j pλi � λPek

i qpλj � λPek
j q � o

�|λ� λPek|2�
8



1.2. The Fröhlich Polaron at Strong Coupling

with HPek
i,j :� 1

2BReφiBReφjFPek and λPek
j :� xfj|φPeky. Consequently we have, at least

formally, the lower bound

Hfin¥ePek� 1
4α4

Ņ

n�1
B2
λn�

Ņ

i,j�1
HPek
i,j pλi�λPek

i qpλj�λPek
j q� N

2α2�o
�|λ�λPek|2� . (1.2.3)

Since the operator � 1
4α4

°N
n�1 B2

λn �
°N
i,j�1 H

Pek
i,j pλi�λPek

i qpλj �λPek
j q� N

2α2 is, up to a shift
in λ, a collection of harmonic oscillators, we can identify its ground state energy explicitly
as � 1

2α2 Tr
�
1�

?
HPek

�
, leading to the conjectured two term expansion of the ground state

energy Eα � ePek � 1
2α2 Tr

�
1�

?
HPek

�
� oαÑ8

� 1
α2

�
.

In order to verify this conjecture, we have to make sure that the residuum o
�|λ� λPek|2�

is small compared to the quadratic part in Eq. (1.2.3), i.e. we need the a priori information
that λ is close to λPek. Following the strategy previously developed for the mathematical
treatment of translation-invariant Bose gases, we first construct an approximate ground state
Ψα that is confined around the origin. In this context we call a family of states tΨα : α ¡ 0u
an approximate ground state in case xHyΨα � Eα � oαÑ8

� 1
α2

�
. The confinement is achieved

by localizing a regularized version of the median, i.e. for any x P supppΨα,nq � Rn�3, where
Ψα �

À8
n�0 Ψα,n with Ψα,n P L2pR3qbsn, there are at least p1

2 � ϵαqn particles satisfying
x
pjq
k ¤ ϵα and at least p1

2 �αqn particles satisfying xpjqk ¥ �ϵα, where k P t1, 2, 3u and ϵα ! 1.
As we demonstrate in Chapter 3, such a state is necessarily close to the coherent state ΩφPek

where φPek is a minimizer of the Pekar functional FPek, in the sense that Ψα is an approximate
eigenstate of the annihilation operators an with respect to the eigenvalue λPek

n . This implies in
particular that λn�φPek

n is a small quantity, allowing us to absorb the error term o
�|λ� λPek|2�

in Eq. (1.2.3) by the quadratic part � 1
4α4

°N
n�1 B2

λn�
°N
i,j�1 H

Pek
i,j pλi�λPek

i qpλj�λPek
j q� N

2α2 ,
at least after a suitable unitary transformation, which is similar to the unitary WN used in
Section 1.1.

The corresponding upper bound Eα ¤ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� oαÑ8

� 1
α2

�
has been

established in [40, 91] by construction of a suitable test function. Combining lower and upper
bound then yields the two term expansion of the ground state energy

Eα � ePek � 1
2α2 Tr

�
1�

?
HPek

�
� oαÑ8

�
1
α2



.

Finally we shall derive a similar expression for the conditional ground state energy EαpP q :�
inf σ|P�P pHq. By using the method of Lagrange multiplier, we will first eliminate the
momentum restriction leading to a global minimization problem, which we will treat similarly
to the previous problem of finding an asymptotic expansion for the (unconditional) ground
state energy Eα. Clearly we have

inf σ
�
H� λpP � Pq� � inf

P 1PR3

!
EαpP 1q � λpP � P 1q

)
,

where λ P R3 is the Lagrange multiplier with which we multiply the momentum constraint
P � P , leading to the lower bound on the conditional ground state energy

EαpP q ¥ inf σ
�
H� λpP � Pq� (1.2.4)

9



1. Introduction

in terms of the global minimum of H � λpP � Pq. As it turns out, the lower bound in
Eq. (1.2.4) is insufficient, since H � λpP � Pq is unbounded from below for λ � 0. This
issue can be avoided by introducing an ultraviolet cut-off in the Hamiltonian H as well as
in the total momentum operator P, leading to the study of the regularized operators Hreg
and Preg defined as the restriction (in the sense of quadratic forms) of the operators H and P
to FpXΛq, which can naturally be seen as a subspace of FpL2pR3qq, with XΛ being defined
as the space of all functions φ which have their Fourier transformation supported in the ball
BΛp0q. Making the optimal choice λ :� P

mα4 , and choosing a suitable Λ ¡ 0, we shall verify
in Chapter 4 the lower bound Hreg � λpP � Pregq Á ePek � 1

2α2 Tr
�
1�

?
HPek

�
� |P |2

2mα4 with
m :� 2

3}∇φPek}2, leading to the (asymptotically sharp) lower bound

inf σ|Preg�P pHregq Á ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |P |2

2mα4 . (1.2.5)

In order to compare the energy-momentum relation of the regularized model Eα,regpP q with
EαpP q, we apply the result in [40], respectively [97], which provide the estimate H Á Hreg�NK

for a suitable choice of the regularization parameter Λ, where NK is the particle number
operator on the Fock space F

�
XK

Λ
�
. This yields

EαpP q Á inf σ|P�P
�
Hreg �NK� � inf

P 1PR3

!
inf σ|Preg�P 1pHregq � inf σ|PK�P�P 1pNKq

)
,

where PK :� P � Preg is the restriction of P to F
�
XK

Λ
�
, which can naturally be seen as a

subspace of FpL2pR3qq. Using the elementary fact that inf σ|PK�P�P 1pNKq � 1
α2 δP,P 1 , where

δP,P 1 :� 1 for P � P 1 and δP,P 1 :� 0 otherwise, we obtain according to Eq. (1.2.5)

EαpP q Á inf
P 1PR3

"
ePek � 1

2α2 Tr
�
1�

?
HPek

�
� |P 1|2

2mα4 �
1
α2 δP,P 1

*
� ePek � 1

2α2 Tr
�
1�

?
HPek

�
�min

! |P |2
2mα4 ,

1
α2

)
. (1.2.6)

By the upper bound EαpP q ¤ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� min

!
|P |2

2mα4 ,
1
α2

)
� oαÑ8

� 1
α2

�
derived in [91], our lower bound in Eq. (1.2.6) is asymptotically sharp, leading to the main
result of Chapter 4

EαpP q � ePek � 1
2α2 Tr

�
1�

?
HPek

�
�min

! |P |2
2mα4 ,

1
α2

)
� oαÑ8

�
1
α2



.

For momenta P below the critical value Pcrit :� ?
2mα we obtain in particular that the

energy-momentum relation of a polaron EαpP q � Eαp0q � |P |2
2mα4 coincides with the energy-

momentum relation of a (non-relativistic) free particle having mass mα4. In this sense we
confirm the celebrated conjecture by Landau and Pekar, claiming that the effective mass of a
polaron is given by Meff � mα4.

1.3 Main novel contributions of the Thesis.
In Chapter 2 we provide a two term expansion for the ground state energy EN of a translation-
invariant, mean-field, Bose gas in Theorem 2.1.4, given that the mild Assumptions 2.1.1 and

10
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2.1.3 hold. As an intermediate result we confirm the existence of approximate ground states
satisfying Bose-Einstein condensation in Theorem 2.1.2.

In Chapter 3 we establish a lower bound on the ground state energy Eα of the Fröhlich
Hamiltonian in Theorem 3.1.1, which is asymptotically sharp up to the subleading order in
the limit of large coupling α Ñ 8. While our result concerns the Fröhlich polaron in R3,
corresponding results have been obtained previously for the Fröhlich polaron in a bounded
region of space, see [40], as well as for the Fröhlich polaron on the three dimensional torus,
see [37].

In Chapter 4 we provide a lower bound on the ground state energy EαpP q of the Fröhlich
Hamiltonian as a function of the total momentum in Theorem 4.1.1, which is asymptotically
sharp up to the subleading order in the limit of large coupling α Ñ 8. Together with
the corresponding upper bound derived in [91] and the results of Chapter 3, we obtain
an asymptotic expression for the energy-momentum increment EαpP q � Eαp0q, which is a
quantity related to the effective mass of a polaron.

Appendix A is the output of a first year rotation project in the group of Mikhail Lemeshko,
where we provide a numerical computation of the full low-energy spectrum of two anyons on
the sphere in Figure A.1. Furthermore we show that a system of quasiparticles with anyonic
statistics can be realized in terms of linear molecules exchanging angular momentum with a
many-particle bath.

Appendix B is the output of a first year rotation project in the group of Jan Maas, where we
classify those vector fields which can be written as the gradient flow of a given functional with
respect to some smooth metric in Theorem B.1.1, given that the regularity Assumption B.2.1
holds. Subsequently we use this classification in Theorem B.1.2, to show that any ergodic
quantum Markov semigroup defined on a finite dimensional C�-algebra can be written as the
gradient of the relative entropy, given that it respects a certain scalar product.
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CHAPTER 2
Validity of Bogoliubov’s approximation

for translation-invariant Bose gases

Abstract. We verify Bogoliubov’s approximation for translation-invariant Bose gases
in the mean field regime, i.e. we prove that the ground state energy EN is given by
EN � NeH � inf σ pHq � oNÑ8p1q, where N is the number of particles, eH is the minimal
Hartree energy and H is the Bogoliubov Hamiltonian. As an intermediate result we show the
existence of approximate ground states ΨN , i.e. states satisfying xHNyΨN � EN � oNÑ8p1q,
exhibiting complete Bose–Einstein condensation with respect to one of the Hartree minimizers.

2.1 Introduction and Main Results
We study the Hamiltonian HN acting on the Hilbert space L2

sympRN�dq �ÂN
s L

2pRdq of N
identical bosons in Rd for d ¥ 1, given by

HN :�
Ņ

i�1
Ti � 1

N � 1
¸
i j

vpxi � xjq, (2.1.1)

where T is a non-negative and translation-invariant operator defined on the single particle
space L2pRdq and the interaction potential v is an even function. Typically we will think of T
as the non-relativistic energy T � �∆ or the pseudo relativistic energy T � ?

m2 �∆�m,
and of the interaction v as being attractive. The most prominent features of this model
are the mean field scaling 1

N�1 of the interaction energy and the invariance of HN under
translations, which especially means that the Hamiltonian HN describes an unconfined system
of N bosons. By choosing a product state Ψ :� ub

N as a test function, we obtain the trivial
upper bound on the ground state energy EN :� inf σ pHNq per particle

N�1EN ¤ N�1 xHNyΨ � xT yu �
1
2

» »
|upxq|2vpx� yq|upyq|2dxdy �: EHrus,

where EHrus is referred to as the Hartree energy functional. This upper bound is independent
of the particle number N due to the scaling by 1

N�1 of the interaction. It is known under
quite general assumptions on v and T that the upper bound

eH :� inf
}u}�1

EHrus (2.1.2)
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on the ground state energy per particle is asymptotically correct in the mean field limit N Ñ 8,
see [71]. Furthermore, the Bogoliubov approximation [13] predicts that the next order term
in the approximation EN � N eH is of order one and given by the ground state energy of the
corresponding Bogoliubov Hamiltonian H, which is formally the second quantization of the
Hessian Hess|u0EH at a minimizer u0. In the past decade, this conjecture has been proven
for a variety of mean field models [48, 72, 99, 115], and also for systems with more singular
interactions [27, 11, 12, 14, 15, 100]. However, the rigorous verification of Bogoliubov’s
approximation has so far been restricted to confined systems only. In the case of translation-
invariant models, we face the problem that minimizers of the Hartree energy functional EH
are not unique and that the Hessian Hess|u0EH at a minimizer u0 does not exhibit a gap,
i.e. we do not have an inequality of the form Hess|u0EH ¥ c with c ¡ 0. Novel ideas and
techniques are required in order to deal with these translation-invariance specific problems,
which we will develop in the course of this paper allowing us to verify Bogoliubov’s prediction
EN � N eH� inf σ pHq�oNp1q for translation-invariant systems. As an intermediate step, we
will construct a sequence of approximate ground states ΨN satisfying complete Bose–Einstein
condensation, which we believe to be of independent interest.

Note that the situation is different for time-dependent problems, where it is already well-
known that fluctuations around a product state ubN evolve according to a (time-dependent)
Bogoliubov operator, even for translation-invariant systems [74].

Due to the translation-invariance, it is clear that HN has no ground state and therefore we
have to restrict our attention to sequences of approximate ground states ΨN . We will use the
convention that states Ψ are normed Hilbert space elements, i.e. }Ψ} � 1. In our first result
we show the existence of a sequence of approximate ground states ΨN , with the property
that ΨN is close to a product state ubN0 where u0 minimizes the Hartree energy EH. In this
context, close means that the sequence ΨN satisfies complete Bose–Einstein condensation
with respect to the state u0, i.e. the corresponding one particle density matrices γp1qN satisfy
xγp1qN yu0

ÝÑ
NÑ8

1. In general we define the k-particle density matrix γpkqΨ corresponding to a

state Ψ P ÂN
s L

2 �Rd
�

by the equation Tr
�
γ
pkq
Ψ B

�
� xB b 1b � � � b 1yΨ for all bounded

k-particle operators B. This means in particular that we use the normalization convention
Tr

�
γ
pkq
N

�
� 1. In order to prove complete Bose–Einstein condensation, we need certain

assumptions concerning the kinetic energy operator T and the Hartree theory, as well as a
relative bound of the interaction potential v in terms of the kinetic energy.

Assumption 2.1.1. The kinetic energy is given by T :� pm2 �∆qs �m2s with m ¡ 0 and
s P p0, 1s, the interaction potential v satisfies lim|x|Ñ8 vpxq � 0 and the chain of inequalities

�λT � Λ ¤ v ¤ |v| ¤ ΛpT � 1q (2.1.3)

for some λ P p0, 2q and Λ P p0,8q. Furthermore, the Hartree energy defined in Eq. (2.1.2)
is strictly negative, i.e. eH   0, and there exists a real-valued function u0 P L2 �Rd

�
that

minimizes the Hartree energy, i.e. eH � EHru0s, and satisfies
³
rxr¤ts |u0pxq|2 dx � 1

2 if and
only if t � 0, where xr is the r-th component of the vector x P Rd. Up to a complex phase,
all other Hartree minimizers are given by translations of u0, i.e. all minimizers are of the form
eiθu0,t with θ P r0, 2πq, t P Rd and u0,tpxq :� u0px� tq.
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By the translation-invariance of the Hartree energy, any shift of a Hartree minimizer u0px� tq
is again a minimizer. Therefore, we can always choose the Hartree minimizer such that it
is centered around zero, i.e. such that

³
rxr¤0s |u0pxq|2 dx � 1

2 for all r P t1, . . . , du. In
particular, in case the minimizers u of EH satisfy u ¡ 0, the existence of a u0 satisfying³
rxr¤ts |u0pxq|2 dx � 1

2 if and only if t � 0 is always granted. Furthermore, most of our
proofs do not depend on the concrete structure T � pm2 �∆qs �m2s of the kinetic energy,
and it is sufficient to assume instead that the operator T is of the translation-invariant form
T � tpi∇q for some t with tppq ÝÑ

|p|Ñ8
8 such that the Hartree approximation 1

N
EN ÝÑ

NÑ8
eH

as well as the IMS localization formula in Lemma 2.2.2 hold.

With Assumption 2.1.1 at hand, we obtain our first main result Theorem 2.1.2, which we will
prove in Section 2.2.

Theorem 2.1.2. Given Assumption 2.1.1, there exists a sequence of states ΨN PÂN
s L

2 �Rd
�

with xHNyΨN � EN�oNÑ8p1q, exhibiting complete Bose–Einstein condensation with respect
to the state u0, i.e.

xγp1qN yu0
ÝÑ
NÑ8

1. (2.1.4)

Since Assumption 2.1.1 implies the validity of the Hartree approximation in the form 1
N
EN ÝÑ

NÑ8
eH, see [71], it is clear that the product state ubN0 , which trivially satisfies perfect Bose–
Einstein condensation, approximates the ground state energy to leading order, i.e. xHNyubN0

�
EN � oNÑ8pNq. In Theorem 2.1.2 we improve this result by constructing a Bose–Einstein
condensate that approximates EN even up to terms oNÑ8p1q. Note, however, that Theorem
2.1.2 claims nothing about the rate of convergence in Eq. (2.1.4). One can improve this
result a posteriori by using the trial states in our proof of the upper bound in Theorem 2.1.4,
which yields for any given sequence cN ÝÑ

NÑ8
8 a sequence of approximate ground states ΨrN

satisfying

| xγrp1qN yu0
� 1| ¤ cN

N
.

It follows from our proof of the lower bound in Theorem 2.1.4 that this result is optimal
in the sense that any sequence with | xγrp1qN yu0

� 1| � ONÑ8
� 1
N

�
cannot be a sequence of

approximate ground states.

Furthermore it follows from the proof of Theorem 2.1.2 that for any sequence cN ÝÑ
NÑ8

8, there
exist states Ψ1

N exhibiting complete Bose–Einstein condensation with xHNyΨ1
N
¤ EN � cN

N
.

Again it is a consequence of our proof of the lower bound that this result is optimal in
the sense that any sequence with xHNyΨ1

N
� EN � ONÑ8

� 1
N

�
does not satisfy complete

Bose–Einstein condensation.

Proof strategy of Theorem 2.1.2. With Assumption 2.1.1 at hand, we can apply the
results in [71] which tell us that the Hartree asymptotics 1

N
EN ÝÑ

NÑ8
eH holds true and that

any sequence of approximate ground states ΨN has a subsequence such that the k-particle
density matrices converge weakly to a mixture of not necessarily normed Hartree minimizers.
This means that there exists a probability measure µ supported on functions u with }u} ¤ 1
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

and EHrus � inf}v}�}u} EHrvs, such that the k-particle density matrix of the subsequence ΨNj

satisfies

Tr
�
γ
pkq
Nj

K
�
ÝÑ
jÑ8

»
Tr

��|uy xu|�bkK�
dµpuq (2.1.5)

for any compact k particle operator K. The proofs in [71] rely on the quantum de Finetti
theorem (see also [120, 55]), which identifies states on the infinite symmetric tensor product
as the convex hull of product states. In order to prove Theorem 2.1.2, we have to construct
a sequence of approximate ground states ΨN such that the corresponding measure µ in
Eq. (2.1.5) is equal to the delta measure δu0 . In particular this means that µ has to be
supported on the set of normed elements }u} � 1, or equivalently we have to make sure that
mass cannot escape to infinity. For confined systems satisfying a binding inequality, it has
been shown in [71] that µ is always supported on normed elements. For translation-invariant
systems this is no longer the case, since one can always find yN P Rd such that ΨrN á

NÑ8
0

where

ΨrN �
xp1q, . . . , xpNq

�
:� ΨN

�
xp1q � yN , . . . , x

pNq � yN
�

for all
�
xp1q, . . . , xpNq

� P RN�d, and therefore the corresponding measure is supported on t0u
only. While one could circumvent this issue by factoring out the center-of-mass variable, we
avoid doing this since there is no straightforward analogue of product states and Bose–Einstein
condensation in the space of relative coordinates. Alternatively we overcome this problem by
localizing a sequence of approximate ground states ΨN only to configurations that are centered
around zero. It turns out that the median of a configuration x � �

xp1q, . . . , xpNq
� P RN�d,

respectively a regularized version of the median, is the right statistical quantity to measure
whether a configuration is centered around the origin or not. Furthermore, we will energetically
rule out configurations where the mass is split up in two or multiple parts, e.g. we will rule
out configurations where N

2 particles are very far from the other N
2 particles. We conclude

that the mass is concentrated at the origin and therefore it does not escape to infinity.

In order to identify the support of the measure µ in Eq. (2.1.5), note that all Hartree minimizers
are up to a complex phase translations of the minimizer u0, which is a function centered
around zero. Consequently, up to this complex phase, u0 is the only minimizer with the
property of being centered around zero. Using the support property of ΨN , this already
suggests that the measure µ should be supported on states of the form teiθu0 : θ P r0, 2πqu
only. Since |eiθu0y xeiθu0| � |u0y xu0| defines the same density matrix for all complex phases
eiθ, this support property of the measure µ implies the convergence of the density matrix γpkqN

to a single condensate
�|u0y xu0|

�bk .
Having a sequence of approximate ground states at hand that satisfies complete Bose–
Einstein condensation is a crucial prerequisite in identifying the sub-leading term in the energy
asymptotics EN � N eH � opNq. In the following, let u0, u1, . . . , ud, ud�1, . . . be a real
orthonormal basis of L2�Rd

�
, where u0 is the Hartree minimizer from Assumption 2.1.1 and

u1, . . . , ud a basis of the vector space spanned by the partial derivatives xBx1u0, . . . , Bxdu0y.
Since the functional EH is invariant under a phase change u ÞÑ eiθu, we can restrict ourself
to states u with xu0, uy ¥ 0. Then, the Hessian Hess|u0EH of the Hartree energy is a
real quadratic form defined on tu0uK � L2 �Rd

�
, and consequently there exist coefficients

Qi,j, Gi,j P C, i, j P N, such that Hess|u0EHrzs �
°8
i,j�1

�
Qi,jzizj �Gi,jzizj �Gi,jzizj

�
,
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2.1. Introduction and Main Results

where zi are the coordinates of z P tu0uK. In order to define the Bogoliubov operator H,
let ai, a:i be the annihilation/creation operators corresponding to the state ui P L2 �Rd

�
.

Following [72] we formally define H as the second quantization of the Hessian Hess|u0EH, i.e.

H :�
8̧

i,j�1

�
Qi,j a

:
iaj �Gi,j aiaj �Gi,j a

:
ia

:
j

	
. (2.1.6)

For a rigorous construction see Definition 2.4.3.

Note that due to the translation-invariance, the Hessian Hess|u0EH is degenerate in the
directions uj for j P t1, . . . , du, i.e. Hess|u0EHrujs � 0. The following Assumption makes
sure that Hess|u0EH is non-degenerate in all other directions.

Assumption 2.1.3. The partial derivatives of u0 are in the form domain of T , and there
exists a constant η ¡ 0 such that

Hess|u0EHrzs ¥ η }z}2 (2.1.7)

for all z of the form z � i
°d
j�1 sjuj � z¡d with sj P R and z¡d P tu0, Bx1u0, . . . , Bxdu0uK.

Furthermore, the Hartree minimizer u0 is an element of H2pRdq.

With the Assumption 2.1.3 at hand, we arrive at our second main Theorem, which identifies
the sub-leading term in the energy asymptotics as the ground state energy inf σ pHq of the
Bogoliubov operator H.

Theorem 2.1.4. Let EN be the ground state energy of the Hamiltonian HN defined in
Eq. (2.1.1), eH the Hartree energy defined in Eq. (2.1.2) and let H be the Bogoliubov operator
defined in Eq. (2.1.6). Given Assumption 2.1.1 and Assumption 2.1.3, we have

EN � N eH � inf σ pHq � oNÑ8 p1q . (2.1.8)

Examples of systems satisfying both Assumptions 2.1.1 and 2.1.3, and hence our Theorem
2.1.4 applies to, are as follows.

Example (I). Let us first consider a system of N non-relativistic bosons in R3 interacting
with each other via a Newtonian potential

HN :� �
Ņ

i�1
∆i � g

N � 1
¸
i j

1
|xi � xj|

with g ¡ 0. Existence and uniqueness of the Hartree minimizer u0, in the sense of Assumption
2.1.1, have been shown in [76]. Moreover, u0 is strictly positive and smooth, hence satisfies
all the other requirements of Assumptions 2.1.1 and 2.1.3. The non-degeneracy of the Hessian
follows from the results in [69] by standard arguments, see for instance [41]. Furthermore, it
is clear by a scaling argument that eH   0 and that we can bound the interaction energy in

17



2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

terms of the kinetic energy by 1
|x| ¤ �ϵ∆� 1

4ϵ for all ϵ ¡ 0.

Example (II). As a second example let us consider a system of N pseudo-relativistic bosons
in R3 with positive mass m ¡ 0, interacting with each other via a Newtonian potential

HN :�
Ņ

i�1

�a
m2 �∆i �m

	
� g

N � 1
¸
i j

1
|xi � xj| ,

where we assume that the coupling strength satisfies g P p0, g�q for a suitable positive
constant g� ¡ 0. It has been shown in [81] that there exists a Hartree minimizer u0 as
long as the coupling g is below a critical value, in which case the Hartree approximation
limNÑ8N�1EN � eH holds true. The chain of operator inequalities in Assumption 2.1.1
holds as long as the coupling is below the critical value 4

π
, see [54, 58]. By restricting the

attention to possibly smaller couplings g P p0, g�q it has been shown in [69, 51] that minimizers
u0 are unique in the sense of Assumption 2.1.1. Furthermore it follows from the results in
[69, 51] that the Hessian is non-degenerate in the sense of Assumption 2.1.3 for couplings g
below a critical value. We will verify this explicitly in Appendix 2.6, using an argument similar
to the one in [41] for non-relativistic systems. (The argument in [41] is based on scaling the
coordinates and hence not directly applicable in the pseudo-relativistic case.)

Example (III). As a third example let us consider the exactly solvable model of N non-
relativistic bosons on the real line R, interacting with each other via an attractive delta
potential

HN :� �
Ņ

i�1
B2
i �

λ

N � 1
¸
i j

δpxi � xjq,

where λ ¡ 0, see [87] for an explicit expression of the ground state energy. In this case the
Hartree energy EH is given by

EHrus �
» 8

�8
|u1pxq|2dx� λ

2

» 8

�8
|upxq|4dx.

For d � 1 we have δ ¤ �ϵ B2 � 1
4ϵ for all ϵ ¡ 0 in the sense of quadratic forms, and therefore

Eq. (2.1.3) in Assumption 2.1.1 holds. By a scaling argument it is clear that eH   0 and
minimizers of the Hartree energy are unique in the sense of Assumption 2.1.1, see [62]
where the uniqueness of solutions to the corresponding Euler-Lagrange equation is verified.
Furthermore the coercivity assumption in Eq. (2.1.7) is a consequence of the slightly different
coercivity result in [129] (arguing, e.g., as in Appendix 2.6).

We remark that in Examples (I) and (III), the value of the coupling constant, and hence also the
factor 1{pN � 1q in front of the interaction term, is irrelevant, since it can be replaced by any
other value by a simple scaling of the coordinates. This does not apply to Example (II), however.

Proof strategy of Theorem 2.1.4. We will verify the upper bound in our main result
(2.1.8) analogously to the proof of the energy asymptotics for confined systems in [72]. The
more difficult lower bound will be based on the correspondence between the Hartree energy
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EH and the Hamiltonian HN . This correspondence becomes evident when we rewrite HN in
the language of second quantization. For this purpose, let us define the rescaled creation
operators b:j :� 1?

N
a:uj , where we suppress the N dependence in our notation for simplicity.

Then we can write

N�1HN �
8̧

i,j�0
Ti,j b

:
ibj �

N

N � 1
1
2
¸
ij,kℓ

v̂ij,kℓ b
:
ib
:
jbkbℓ, (2.1.9)

where Ti,j are the matrix entries of the operator T with respect to the basis tui : i P N0u and
v̂ij,kℓ are the ones of the two body multiplication operator v̂ � vpx� yq with respect to the
basis tui b uj : i, j P N0u. Up to the factor N

N�1 , the Hartree energy EHrus

EH rus �
8̧

i,j�0
Ti,j ci cj � 1

2
¸
ij,kℓ

v̂ij,kℓ ci cj ck cℓ

is represented by the same symbolic expression as in Eq. (2.1.9), i.e. we plug in the complex
numbers ci instead of the operators bi. Before investigating the next order term in the
energy asymptotics, let us discuss the next order expansion of the commutative counterpart
EHrus � eH � o p}u� u0}q, which is given by the Hessian of the functional EH. Since
the Hartree energy is defined on the infinite dimensional manifold tu P L2 �Rd

�
: }u} �

1, xu0, uy ¥ 0u � L2 �Rd
�
, it is convenient to introduce the embedding

ι :
#
tz P tu0uK : }z} ¤ 1u ÝÑ tu P L2 �Rd

�
: }u} � 1, xu0, uy ¥ 0u,

z ÞÑ ιpzq :�a
1� }z}2 u0 � z.

(2.1.10)

Using the chart ι, we can express the Hessian as Hess|u0EH � D2|0 pEH � ιq and the second
order expansion at z � 0 is given by

EHrιpzqs � eH � Hess|u0EHrzs � o
�}z}2� .

In contrast to confined systems, the Hessian for translation-invariant systems is always
degenerate in the directions u1, . . . , ud, i.e. Hess|u0EH rujs � 0 for j P t1, . . . , du. It is
important to observe that the manifold of minimizers M :� tz : EHrιpzqs � eHu is not
contained in the null space of the Hessian tz : Hess|u0EHrzs � 0u. Therefore, we do not have
the crucial estimate EHrιpzqs ¥ eH � p1� ϵqHess|u0EHrzs, 0   ϵ   1, not even in an arbitrary
small neighborhood of zero. In order to obtain such an inequality, we will introduce yet
another transformation F on the ball tz P tu0uK : }z} ¤ 1u, such that D|0F is the identity
and such that F flattens the manifold of minimizers M, i.e. EH

�
pι � F q

�°d
j�1 tjuj

	�
� eH

for all tj P R. For a concrete construction of F see Eq. (2.4.7) in Section 2.4. Under the
assumption that the Hessian is only degenerate in the directions uj , see Assumption 2.1.3, we
obtain for any fixed ϵ ¡ 0 and z small enough the important estimate

EHrpι � F q pzqs ¥ eH � p1� ϵqHess|u0EHrzs. (2.1.11)

Returning to the Hamiltonian HN , we will introduce non-commutative counterparts to the
embedding ι and the transformation F . The counterpart to ι is the excitation map UN
introduced in [72], where it has already been used to verify the next order approximation of
the ground state energy for confined systems. It is defined as

UN

�
ub

i0
0 bs u

bi1
1 bs � � � bs u

bim
m

	
:� ub

i1
1 bs � � � bs u

bim
m (2.1.12)
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for non-negative integers i0 � � � � � im � N , mapping the N particle space
ÂN

s L
2 �Rd

�
into

the truncated Fock space F¤N
�tu0uK

�
:� À

n¤N
Ân

s tu0uK over modes orthogonal to u0,
where the symmetric tensor product bs is defined as

ψkbsψℓ
�
xp1q, . . . , xpk�ℓq

�
:� 1a

ℓ!k!pk�ℓq!
¸

σPSk�ℓ
ψk

�
xpσ1q, . . . , xpσkq

�
ψℓ
�
xpσk�1q, . . . , xpσk�ℓq

�
for ψk P

Âk
s L

2pR3q and ψℓ P
Âℓ

s L
2pR3q, and Sn is the set of permutations on t1, . . . , nu.

Regarding the transformation F , we construct the counterpart WN in Definition 2.4.8 as a
certain transformation reminiscent of the Gross transformation in [49, 102], operating on the
space F

�tu0uK
�
. Based on these correspondences and the observation that the Bogoliubov

operator is the non-commutative analogue of the Hessian Hess|u0EH, we obtain the following
inequality analogous to Eq. (2.1.11)

pWNUNqN�1HN pWNUNq�1 Á eH � p1� ϵqN�1H. (2.1.13)

We write Á for two reasons: There are errors of order o
� 1
N

�
coming from the non-commutative

nature of HN ; moreover Eq. (2.1.13) only holds for states Ψ that satisfy a strengthened
version of Bose–Einstein condensation of the form UNΨ P F¤MN

�tu0uK
�

with MN ! N ,
which corresponds to the fact that Inequality (2.1.11) only holds for small z. The rigorous
verification of inequality (2.1.13) will be the content of Sections 2.4 and 2.5.

Our construction of WN and the proof of Inequality (2.1.13) do not rely on the specific
structure of HN or L2pRdq, and they can be generalized for various mean field models with
continuous symmetries. The essential assumption is that the dimension of the symmetry
group agrees with the nullity of the Hessian, i.e. the Hessian is as non-degenerate as possible
in the presence of a continuous symmetry, see Assumption 2.1.3.

Outline. The paper is structured as follows. In Section 2.2 we construct a sequence of
approximate ground states satisfying complete Bose–Einstein condensation, which verifies our
first main Theorem 2.1.2. The methods and results of Section 2.2 can be read independently
of the rest of the paper, which is dedicated to the proof of our second main Theorem 2.1.4.
In Section 2.3, we will introduce the relevant Fock spaces as well as a useful notation for
second quantized operators, which we believe to be intuitive and natural for our problem.
With the basic notions at hand, we will follow the strategy in [72] and reformulate our problem
in a Fock space language using the excitation map UN . In Section 2.4 we will discuss the
energy asymptotics of HN , starting with a precise definition of the Bogoliubov operator H in
Subsection 2.4.1, the verification of the upper bound in Subsection 2.4.2 and the proof of the
lower bound in Subsection 2.4.3, up to the proof of the main technical inequality Eq. (2.1.13).
The proof of the latter is the content of Section 2.5.

2.2 Bose–Einstein Condensation of Ground States
In this section we will prove Theorem 2.1.2 by constructing a sequence ΨN of approximate
ground states satisfying complete Bose–Einstein condensation. The concrete construction of
ΨN will be part of Subsection 2.2.1, where we introduce a suitable localization method and
verify that mass does not escape to infinity. In the following Subsection 2.2.2, we will use this
to verify complete Bose–Einstein condensation of the sequence ΨN .
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2.2.1 Localization of the Ground State
In the following we are constructing a sequence of states ΨN , i.e. elements satisfying
}ΨN} � 1, localized only to configurations x P RN�d centered at zero, such that xHNyΨN �
EN � oNÑ8p1q. For such a sequence we will verify that mass cannot escape to infinity. As
it turns out, the regularized median MN , which we will define in the subsequent Definition
2.2.1, is the right statistical quantity to measure the center

xcenter :�
�
MN,k

�
x
p1q
1 , . . . , x

pNq
1

	
, . . . ,MN,k

�
x
p1q
d , . . . , x

pNq
d

		
P Rd

of a configuration x � �
xp1q, . . . , xpNq

� P RN�d, where xpjq �
�
x
pjq
1 , . . . , x

pjq
d

	
P Rd is the

coordinate vector of the j-th particle.

Definition 2.2.1 (Localization). Given N P N and k such that k � N
2 P N, we define the

regularized median MN,k : RN ÝÑ R as the unique permutation-invariant function that is
defined for all xp1q ¤ � � � ¤ xpNq as

MN,k

�
xp1q, . . . , xpNq

�
:� 1

2k � 1

N
2 �k¸

j�N
2 �k

xpjq.

In the IMS-type estimate of the following Lemma 2.2.2, which has been proven in [70, Lemma
7], we will make use of the specific structure of the operator T � pm2 �∆qs �m2s. Note
that this is the only place where the specific structure is relevant for us.

Lemma 2.2.2. Let T � pm2 �∆qs �m2s be as in Assumption 2.1.1 and let tχi : i P Iu be
a family of W 1,8�Rd

�
functions with

°
i χ

2
i � 1. With the definition C :� m2ps�1qs we have

for all states u P L2 �Rd
�

¸
iPI
xT yχiu ¤ xT yu � C

�����¸
iPI
|∇χi|2

�����
8
.

Lemma 2.2.3. Let EN denote the ground state energy of HN and let kN be a sequence
with

?
N ! kN ! N such that kN � N

2 P N. Then there exists a sequence of states ΨN in
L2

sym
�
RN�d� with xHNyΨN � EN ÝÑ

NÑ8
0 and a sequence 0   αN ! 1, such that��MN,kN

�
xp1qr , . . . , xpNqr

��� ¤ αN

for all x P supp pΨNq � RN�d and r P t1, . . . , du.

Proof. Let 0   αN ¤ 1 be a sequence with
?
N
kN

! αN ! 1 and let νℓ : RÑ R, ℓ P Z, be a
family of C8 functions with

°
ℓPZ ν

2
ℓ � 1, supppνℓq � pℓ� 1, ℓ� 1q and νℓpxq � ν0px� ℓq.

Then we define the family of functions χℓ,r : RN�d ÝÑ R with ℓ P Z and r P t1, . . . , du as

χℓ,r pxq :� νℓ

�
1
αN

MN,kN

�
xp1qr , . . . , xpNqr

�

and for ℓ � pℓ1, . . . , ℓdq P Zd we define χℓ :� χℓ1,1 . . . χℓd,d. First of all

°
ℓPZd χ

2
ℓ ��°

ℓ1PZ χ
2
ℓ1,1

�
. . .

�°
ℓdPZ χ

2
ℓd,d

� � 1. Furthermore, for any x P RN�d the family of smooth
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functions tχℓ : ℓ P Zdu satisfies #tℓ P Zd : χℓpxq � 0u � #
±d

r�1tz P Z : χz,rpxq � 0u ¤ 2d.
With the definition Cd :� 2dC, where C is the constant from Lemma 2.2.2, we obtain any
state Ψ P L2 �RN�d�

Ņ

j�1
xTjyΨ¥

Ņ

j�1

¸
ℓPZd

xTjyχℓΨ�Cd
Ņ

j�1
sup
ℓPZd

��|∇jχℓ|2
��
8¥

Ņ

j�1

¸
ℓPZd

xTjyχℓΨ �N
Cdd

α2
Nk

2
N

}ν 10}2
8,

where we used the fact that |∇jχℓ|2 ¤ °d
r�1 |Bjχℓr,r|2 ¤ °d

r�1
1
α2
N
}ν 1ℓr}2

8}BjMN,kN }2
8,

}BjMN,kN }8 ¤ 1
kN

and }ν 1z}8 � }ν 10}8 for any z P Z. By our choice of αN it is clear
that ϵN :� N Cdd

α2
Nk

2
N
}ν 10}2

8 ÝÑ
NÑ8

0. In the following let ΦN be a sequence of states with

xHNyΦN � EN ÝÑ
NÑ8

0, and let us define ρN,ℓ :� }χℓΦN}2 as well as ΦN,ℓ :� ρ
� 1

2
N,ℓ χℓΦN .

Since ΦN is a state, it is clear that
°
ℓ ρN,ℓ � 1. We have the estimate¸

ℓPZd
ρN,ℓ xHNyΦN,ℓ ¤

Ņ

j�1
xTjyΦN � ϵN � 1

N � 1
¸
i j
xvpxi � xjqyΦN � xHNyΦN � ϵN ,

and therefore there exists at least one l P Zd such that xHNyΦN,ℓ ¤ xHNyΦN � ϵN . We
can finally define ΨN

�
xp1q, . . . , xpNq

�
:� ΦN,ℓ

�
xp1q � ξ, . . . , xpNq � ξ

�
with ξ :� αNℓ. By

translation-invariance of HN , we have xHNyΨN ¤ xHNyΦN � ϵN and consequently xHNyΨN �
EN ÝÑ

NÑ8
0. Furthermore, ΨN

�
xp1q, . . . , xpNq

� � 0 implies for all r P t1, . . . , du
1
αN

MN,kN

�
xp1qr �ξr, . . . , xpNqr �ξr

� � 1
αN

MN,kN

�
xp1qr , . . . , xpNqr

��ℓr P supppνℓrq,

and therefore MN,kN

�
xp1qr , . . . , xpNqr

� P p�αN , αNq. ■

Recall the inequality �pλT � Λq ¤ v ¤ |v| ¤ ΛpT � 1q from Assumption 2.1.1. Let us
denote with v̂ :� vpx� yq the two body multiplication operator associated to the interaction
potential v. Due to the translation-invariance of T , we can promote the one body operator
inequality from above to the two body operator inequality

�pλT � Λq b 1L2pRdq ¤ v̂ ¤ |v̂| ¤ ΛpT � 1q b 1L2pRdq.

As an immediate consequence of this inequality we have the following Lemma.

Lemma 2.2.4. Given Assumption 2.1.1, there exist constants c and δ ¡ 0 such that

δ
Ņ

j�1
pTj � cq ¤ HN ¤ δ�1

Ņ

j�1
pTj � cq,

as well as 1
N�1

°
i j |vpxi � xjq| ¤ c pHN �Nq.

Definition 2.2.5. Let us define nN,r,L : RN�d ÝÑ R as the density of particles xpjq P Rd

that satisfy xpjqr ¥ L, i.e. for a configuration x � �
xp1q, . . . , xpNq

� P RN�d with xpjq ��
x
pjq
1 , . . . , x

pjq
d

	
P Rd we define

nN,r,Lpxq :� 1
N

Ņ

j�1
1rL,8q

�
xpjqr

�
.
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2.2. Bose–Einstein Condensation of Ground States

Furthermore, let ΩN,r,L,δ be the set of all x P RN�d that satisfy nN,r,Lpxq ¥ δ and
MN,kN

�
xp1qr , . . . , xpNqr

� ¤ ξ0, where kN is the sequence introduced in Lemma 2.2.3 and
ξ0 is some fixed positive number. Let EN,r,L,δ denote the ground state energy of HN restricted
to states Φ with supppΦq � ΩN,r,L,δ.

Lemma 2.2.6. Given Assumption 2.1.1, there exist for all δ ¡ 0 constants γδ ¡ 0, L0pδq
and N0pδq, such that for all r P t1, . . . , du, L ¥ L0pδq and N ¥ N0pδq

EN,r,L,δ ¥ EN � γδN. (2.2.1)

Proof. According to Definition 2.2.5, for any configuration x � �
xp1q, . . . , xpNq

� P ΩN,r,L,δ

there are at least N
2 � kN particles xpjq such that xpjqr ¤ ξ0 and at least δN particles xpkq such

that xpkqr ¥ L. Heuristically, this means that N
2 particles do not interact with δN particles

in case L� ξ0 is large compared to the range of the interaction v. Since the interaction in
Eq. (2.1.1) scales like 1

N
, the absence of N

2 � δN interaction pairs corresponds to an increase
in energy of order N . In order to make this rigorous, i.e. in order to verify Eq. (2.2.1), we
will apply the ideas of geometric localization from [73, 71]. In the first step, we decompose
the energy xHNyΨ of a state Ψ into a term E� covering contributions from the left side
xpjqr ¤ ξ �R with ξ ¡ ξ0 and ξ �R   L, a term E� covering contributions from the right
side xpjqr ¥ ξ and a localization error depending on the length R of the overlap rξ, ξ �Rs of
the two regions, which can be neglected for large separations R " 1. In the second step, we
will verify that the sum of the local energies E� � E� is indeed larger than the ground state
energy EN by a contribution of order N , which corresponds to the observation that E��E�
does not involve any interactions between particles on the left side and particles on the right
side.

In the following let us fix an r P t1, . . . , du, and let f�, f� : R ÝÑ r0, 1s be smooth functions
with f 2

��f 2
� � 1, f�ptq � 1 for t ¤ 0 and f�ptq � 1 for t ¥ 1. Then we define for ξ P R and

R ¡ 0 the functions fξ,R,� : Rd ÝÑ r0, 1s as fξ,R,�pxq :� f�
�
xr�ξ
R

�
. This family of functions

clearly satisfies fξ,R,�pxq � 1 for xr ¤ ξ, fξ,R,�pxq � 0 for xr ¥ ξ � R, fξ,R,�pxq � 1
for xr ¥ ξ � R and fξ,R,�pxq � 0 for xr ¤ ξ. Furthermore, there exists a constant
k ¡ 0 such that |∇fξ,R,�|2 ¤ k

R2 . By Lemma 2.2.2 we have the IMS localization formula
T ¥ fξ,R,�Tfξ,R,� � fξ,R,�Tfξ,R,� � K

R2 , K :� 2kC. For a state Ψ P ÂN
s L

2 �Rd
�
, let us

denote with γpkq its reduced density matrices and with ρpkq the corresponding density functions,
and let us further define the localized objects γpkqξ,R,� :� fb

k

ξ,R,�γ
pkqfb

k

ξ,R,� and the corresponding
density functions ρpkqξ,R,�px1, . . . , xkq :� ρpkqpx1, . . . , xkqfξ,R,�px1q2 . . . fξ,R,�pxkq2. Then,

1
N
xHNyΨ � Tr

�
γp1q T

�� 1
2

» »
ρp2qpx, yqvpx� yqdxdy

�Tr
�
γp1qT

�� 1
2

» »
ρp2qpx, yq �f 2

ξ,R,��f 2
ξ,R,�

� pxq �f 2
ξ,R,��f 2

ξ,R,�
� pyq vpx� yqdxdy

¥ E� � E� �
» »

ρp2qpx, yqfξ,R,�pxq2fξ,R,�pyq2vpx�yqdxdy� K

R2 ,

where we define

E� � Tr
�
γ
p1q
ξ,R,� T

�
� 1

2

» »
ρ
p2q
ξ,R,�px, yqvpx� yqdxdy. (2.2.2)
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Note that we have vR :� sup|x|¥R |vpxq| ÝÑ
RÑ8

0 by Assumption 2.1.1, and therefore we can
estimate the localization error

��³ ³ ρp2qpx, yqfξ,R,�pxrq2fξ,R,�pyrq2vpx� yq�� by» »
r|xr�yr| Rs

ρp2qpx, yqfξ,R,�pxq2fξ,R,�pyq2|vpx� yq|dxdy � vR

» »
ρp2qpx, yqdxdy

¤
» »

r|xr�ξ| Rs
ρp2qpx, yq|vpx� yq|dxdy � vR,

where we used the fact that x P supp pfξ,R,�q, y P supp pfξ,R,�q and |xr � yr|   R is
only possible in case |xr � ξ|   R. Let us now define for n P N and m ¤ n the points
ξm :� ξ0 � 2Rm. Clearly, the intervals r|xr � ξm|   Rs are disjoint and therefore Lemma
2.2.4 yields

ņ

m�1

» »
r|xr�ξm| Rs

ρp2qpx, yq|vpx�yq|dxdy¤
» »

ρp2qpx, yq|vpx�yq|dxdy¤ 2c
N
xHNyΨ � 2c.

Hence, there exists an m� ¤ n such that
³ ³

r|xr�ξm� | Rs ρ
p2qpx, yq|vpx�yq| ¤ 2c

nN
xHNyΨ� 2c

n
.

We conclude that for n P N, there exists a ξ with ξ0 ¤ ξ ¤ ξ0 � 2nR such that
1� 2c

n

N
xHNyΨ ¥ E� � E� � K

R2 � vR � 2c
n
. (2.2.3)

Let us now investigate the local energy contributions E�. As a first step, we follow the
framework in [71] and define the mixed ℓ particle states

Gℓ,� �
�
N

ℓ



Trℓ�1ÑN

�
fb

ℓ

ξ,R,� b fb
N�ℓ

ξ,R,	 |Ψy xΨ| fbℓξ,R,� b fb
N�ℓ

ξ,R,	
�
,

where we used the notion Trℓ�1ÑN r . s for the partial trace over the indices ℓ � 1, . . . , N .
These mixed states satisfy TrrGℓ,�s � TrrGN�ℓ,�s as well as

°N
ℓ�0 TrrGℓ,�s � 1. Furthermore,

it was shown in [71] that we can use these mixed states to express the localized density
matrices as

fb
k

ξ,R,� γpkq fb
k

ξ,R,� �
�
N

k


�1 Ņ

ℓ�k

�
ℓ

k



G
pkq
ℓ,�, (2.2.4)

where Gpkq
ℓ,� is the k-th reduced density matrix of Gℓ,�. In the following, let us assume that

the state Ψ satisfies supp pΨq � ΩN,r,L0,δ with δ ¡ 0 and L0 ¡ ξ0 �R, i.e. all x P supp pΨq
satisfy MN,kN pxq ¤ ξ0 and nN,r,L0pxq ¥ δ. The first condition MN,kN pxq ¤ ξ0 implies that
at most N

2 � kN indices j satisfy xpjqr ¡ ξ0 and the second condition nN,r,L0pxq ¥ δ is
equivalent to the fact that at most rp1 � δqN s indices satisfy xpjqr   L0. Let us denote
N�pNq :� max

�
N
2 � kN , rp1� δqN s

�
. From the support properties of fξ,R,� we obtain for

all ξ with ξ0   ξ   L0 � R and x P supp pΨq, that fξ,R,�
�
xp1q

�
. . . fξ,R,�

�
xpℓq

� � 0 for
all ℓ ¡ N�pNq and fξ,R,�

�
xpℓ�1q� . . . fξ,R,� �xpNq� � 0 for all N � ℓ ¡ N�pNq. Hence, we

obtain for all ℓ with either ℓ ¡ N�pNq or ℓ   N �N�pNq, and ξ with ξ0   ξ   L0 �R�
N

ℓ


�1

Tr rGℓ,�s � Tr
�
fb

ℓ

ξ,R,� b fb
N�ℓ

ξ,R,� |Ψy xΨ| fbℓξ,R,� b fb
N�ℓ

ξ,R,�
�

�
»

supppΨq

fξ,R,�
�
xp1q

�2
. . . fξ,R,�

�
xpℓq

�2
fξ,R,�

�
xpℓ�1q�2

. . . fξ,R,�
�
xpNq

�2|Ψ|2 dx � 0,
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2.2. Bose–Einstein Condensation of Ground States

and since Gℓ,� ¥ 0 this implies Gℓ,� � 0 for all such ℓ. Using TrrGℓ,�s � TrrGN�ℓ,�s, we
also obtain Gℓ,� � 0 for all ℓ with ℓ ¡ N�pNq, respectively ℓ   N �N�pNq.
Let us define rescaled versions Hpλq

ℓ :� °ℓ
j�1 Tj � 1

ℓ�1
°ℓ
i j λvpxi � xjq of the Hamiltonian

HN and let us denote the corresponding ground state energy by Epλq
ℓ :� inf σ

�
Hλ
ℓ

�
. Note

that there exists a δ-dependent κδ   1 and N1 P N, such that N�pNq�1
N�1 ¤ κδ for all

N ¥ N1. Applying Eq. (2.2.4) together with the identity Tr
�
G
p1q
ℓ,� T

�
� l�1

N�1
1
2Tr

�
G
p2q
ℓ,� v̂

�
�

Tr
�

1
ℓ
H
p ℓ�1
N�1q

ℓ Gℓ,�

�
yields for all N ¥ N1 and ξ with ξ0   ξ   L0 �R

E� � Tr
�
γ
p1q
ξ,R,� T

�
� 1

2

» »
ρ
p2q
ξ,R,�px, yqvpx� yqdxdy � 1

N

N�pNq¸
ℓ�N�N�pNq

Tr
�
H
p ℓ�1
N�1q

ℓ Gℓ,�

�

¥ 1
N

N�pNq¸
ℓ�N�N�pNq

E
p l�1
N�1q

ℓ Tr rGℓ,�s ¥ 1
N

Ņ

l�N�N�pNq
κδEℓ Tr rGℓ,�s

¥ κδ min
ℓ¥N�N�pNq

�
1
ℓ
Eℓ



1
N

Ņ

l�0
ℓ Tr rGℓ,�s ,

where we used Hpλ1q
k ¥ λ1

λ2
H

pλ2q
k for all λ1 ¤ λ2 as well as the fact that Eℓ � E

p1q
ℓ   0, which

is a direct consequence of the assumption eH   0. Observe that

1
N

Ņ

l�0
ℓ Tr rGℓ,�s � 1

N

Ņ

l�0
ℓ Tr rGℓ,�s � 1

N

Ņ

l�0
ℓ Tr rGℓ,�s � 1

N

Ņ

l�0
pN � ℓq Tr rGℓ,�s � 1,

and consequently we obtain for all N ¥ N1 and ξ with ξ0   ξ   L0 �R the estimate

E� � E� ¥ κδ min
ℓ¥N�N�pNq

1
ℓ
Eℓ, (2.2.5)

where E� is defined in Eq. (2.2.2). Furthermore, Assumption 2.1.1 enables us to apply the
results in [71], which tell us that limℓ

1
ℓ
Eℓ � eH, and since N�N�pNq ÝÑ

NÑ8
8, we obtain that

minℓ¥N�N�pNq 1
ℓ
Eℓ ÝÑ

NÑ8
eH as well. For R ¡ 0 and n P N, let us define L0 :� ξ0�p2n�1qR.

Combining Inequalities (2.2.3) and (2.2.5), we obtain

lim inf
NÑ8

1
N

��
1� 2c

n



EN,r,L0,δ � EN

�
¥ pκδ � 1qeH � K

R2 � vR � 2c
n
.

Since κδ   1 and eH   0, we can choose Rδ and nδ large enough, such that βδ :�
pκδ � 1qeH � K

R2
δ
� vRδ � 2c

nδ
¡ 0. With the choice L0pδq :� ξ0 � p2nδ � 1qRδ we conclude

lim inf
NÑ8

1
N

�
EN,r,L0pδq,δ � EN

� ¥ lim inf
NÑ8

1
N

�
min

��
1� 2c

nδ



EN,r,L0pδq,δ, 0

�
� EN



¥ min pβδ,�eHq ¡ 0.

■

Corollary 2.2.7. Let Assumption 2.1.1 hold and ΨN be a sequence as in Lemma 2.2.3. Then,
lim
LÑ8

lim sup
NÑ8

xnN,r,LyΨN � 0

for any r P t1, . . . , du.
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Proof. In the following, let χ : R ÝÑ r0, 1s be a function with χpxq � 0 for x ¤ 1 and
χpxq � 1 for x ¥ 2, such that χ and

?
1� χ2 are C8. Then we define

fN,r,L,δpxq :� χ

�
1
δN

Ņ

j�1
χ

�
2xpjqr
L


�
,

gN,r,L,δpxq :�
b

1� f 2
N,r,L,δ and α :� }χ1}2

8
�
}χ1}2

8 � }
?

1� χ21}2
8
	

. Note that we have
supp pfN,r,L,δΨNq � ΩN,r,L2 ,δ

. Therefore the localization formula from Lemma 2.2.2 and the
result from Lemma 2.2.6 tell us that there exists a γδ ¡ 0 such that for all L ¥ 2L0pδq and
N ¥ N0pδq

xHNyΨN ¥ xHNyfN,r,L,δΨN � xHNygN,r,L,δΨN �
4C

δ2NL2α

¥ pEN � γδNq }fN,r,L,δΨN}2 � EN
�
1� }fN,r,L,δΨN}2�� 4C

δ2NL2α.

Consequently, 0 ¤ }fN,r,L,δΨN}2 ¤ xHN yΨN
�EN� 4C

δ2NL2 α

γδN
ÝÑ
NÑ8

0. Furthermore, note that

x P supp pgN,r,L,δq implies nN,r,Lpxq ¤ 1
N

°N
j�1 χ

�
2xpjqr
L

	
¤ 2δ and therefore

0 ¤ xnN,r,LyΨN � xnN,r,LyfN,r,L,δΨN � xnN,r,LygN,r,L,δΨN ¤ }fN,r,L,δΨN}2 � 2δ ÝÑ
NÑ8

2δ

for all L ¥ 2Lpδq. Hence lim
LÑ8

lim sup
NÑ8

xnN,r,LyΨN � 0. ■

2.2.2 Convergence to a Single Condensate
It was shown in [71] that under quite general assumptions, including ours, on the decay and
regularity of the interaction potential v, there exists for any sequence of states ΦN with
xHNyΦN � EN � opNq a probability measure ν supported on the set of (not necessarily
normed) Hartree minimizers tu P H : EHrus � eHp}u}qu, where eHpsq :� inf}v}�s EHrvs, such
that a subsequence of the sequence γpkqΦN converges weakly to the state

³ �|uy xu|�bk dνpuq
for all k P N, i.e.

Tr
�
γ
pkq
ΦNj

B
�
ÝÑ
jÑ8

»
Tr

��|uy xu|�bkB� dνpuq (2.2.6)

for any compact k particle operator B. In Lemma 2.2.8, we will lift this weak convergence
to a strong one for the sequence of approximate ground states ΨN constructed in Lemma
2.2.3, by using the fact that mass cannot escape to infinity as a consequence of Corollary
2.2.7. In this context, strong convergence means that Eq. (2.2.6) holds for all bounded k
particle operators B, and not only compact ones. In particular, }u} � 1 on the support of ν.

Lemma 2.2.8 (Strong Convergence). Let ΨN be the sequence from Lemma 2.2.3 and let
γ
pkq
N denote the corresponding reduced density matrices. Given Assumption 2.1.1, there exists

a probability measure µ supported on Rd and a subsequence Nj , such that for any bounded k
particle operator B

Tr
�
γ
pkq
Nj

B
�
ÝÑ
jÑ8

»
Rd

Tr
��|u0,ty xu0,t|

�bk
B
�

dµptq,

where u0,t is defined in Assumption 2.1.1.
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2.2. Bose–Einstein Condensation of Ground States

Proof. As was shown in [71], any sequence of approximate ground states, such as ΨN , has
a subsequence Nj that converges weakly to a convex combination of product states over
Hartree minimizers, i.e. there exists a probability measure ν supported on the set of Hartree
minimizers u with }u} ¤ 1, such that Eq. (2.2.6) holds for any compact k particle operator
B. As the central step of this proof, we will verify that the measure ν satisfies the identity³ }u}2dνpuq � 1. By Corollary 2.2.7, we know that

lim
LÑ8

lim sup
jÑ8

Tr
�
γ
p1q
Nj

1rxr¡Ls
�
� lim

LÑ8
lim sup
jÑ8

xnNj ,r,LyΨNj
� 0.

Since the reflected states x ÞÑ ΨNp�xq still satisfy the conditions of Corollary 2.2.7, we
obtain lim

LÑ8
lim sup
jÑ8

Tr
�
γ
p1q
Nj

1rxr �Ls
�
� 0 as well. Consequently,

lim
LÑ8

lim inf
jÑ8

Tr
�
γ
p1q
Nj

1r�L,Lsd
�
� 1.

Since the operator 1r�L,Lsd is not compact, we cannot immediately apply the convergence
(2.2.6) for B :� 1r�L,Lsd . In order to obtain a convergence in a stronger sense, note that
by Lemma 2.2.4 we have a uniform bound on the kinetic energy of γp1qNj

, i.e. there exists a
constant C   8, such that

Tr
�
pT � 1q 1

2 γ
p1q
Nj

pT � 1q 1
2

�
¤ C

for all j P N. Since the trace class operators are the dual space of the compact operators,
there exists by the Banach-Alaoglu theorem a trace class operator γ and a subsequence, which
we will still denote by Nj for the sake of readability, such that for any compact one particle
operator K

Tr
�
pT � 1q 1

2 γ
p1q
Nj

pT � 1q 1
2 K

�
ÝÑ
jÑ8

Tr rγ Ks .

This in particular yields Tr
�
γ
p1q
Nj

B
�
ÝÑ
jÑ8

Tr
�
pT � 1q� 1

2 γ pT � 1q� 1
2 B

�
for any compact

B, and consequently pT � 1q� 1
2 γ pT � 1q� 1

2 � ³ |uy xu| dνpuq by Eq. (2.2.6). Since
the kinetic energy is of the form T � t pi∇q with tppq ÝÑ

|p|Ñ8
8, the operator K :�

pT � 1q� 1
2 1r�L,Lsd pT � 1q� 1

2 is compact. Collecting all the results we have obtained
so far yields

1 � lim
LÑ8

lim inf
jÑ8

Tr
�
γ
p1q
Nj

1r�L,Lsd
�
� lim

LÑ8
lim inf
jÑ8

Tr
�
pT � 1q 1

2 γ
p1q
Nj

pT � 1q 1
2 K

�
� lim

LÑ8
Tr

�
pT � 1q� 1

2 γ pT � 1q� 1
2 1r�L,Lsd

�
� lim

LÑ8

»
Tr

�|uy xu| 1r�L,Lsd� dνpuq

�
»

Tr
� |uy xu| �dνpuq � »

}u}2dνpuq.

As an immediate consequence we obtain that ν is supported on Hartree minimizers u with
}u} � 1. By Assumption 2.1.1, we know that all such Hartree minimizers are given by eiθu0,t
with θ P r0, 2πq and t P Rd. Recall that |eiθu0,ty xeiθu0,t| � |u0,ty xu0,t| defines the same
density matrix for all complex phases eiθ. Therefore, defining the measure µpAq :� ν

�tu0,t :
t P A, θ P r0, 2πqu� yields

Tr
�
γ
pkq
Nj

B
�
ÝÑ
jÑ8

»
Rd

Tr
��|u0,ty xu0,t|

�bk
B
�

dµptq (2.2.7)
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

for all compact operators B. Since limj Tr
�
γ
p1q
Nj

�
� 1 � ³

Rd Tr
� |u0,ty xu0,t|

�
dµptq, this

convergence holds even in the strong sense, see [128], i.e. the convergence (2.2.6) holds for
all bounded operator B. ■

Lemma 2.2.9. Let ΨN be the sequence from Lemma 2.2.3. For any ϵ ¡ 0 and r P t1, . . . , du,
consider the bounded two particle operator Bϵ,r :� 1rxr¤ϵs 1ryr¥�ϵs � 1ryr¤ϵs 1rxr¥�ϵs. Then

lim inf
NÑ8

Tr
�
γ
p2q
N Bϵ,r

�
¥ 1

2 .

Proof. With the help of the function fN,ϵ,r :� 2
NpN�1q

°
i�j 1rxpiqr ¤ϵs1rxpjqr ¥�ϵs we have

Tr
�
γ
p2q
N Bϵ,r

�
�

»
RN�d

fN,ϵ,rpxq|ΨN |2dx.

Let αN and kN be the sequences introduced in Lemma 2.2.3 and let N be large enough such
that αN   ϵ. Then,

��MN,kN

�
xp1qr , . . . , xpNqr

���   ϵ for all x P supp pΨNq, and therefore at least
N
2 � kN particles satisfy xr ¤ ϵ and at least N

2 � kN particles satisfy �ϵ ¤ xr. Consequently

fN,ϵ,rpxq ¥ 2
NpN � 1q

�
N

2 � kN


2

ÝÑ
NÑ8

1
2 ,

and therefore lim inf
NÑ8

³
RN�d fN,ϵ,rpxq|ΨN |2 dx ¥ 1

2 . ■

Lemma 2.2.10. The measure µ from Lemma 2.2.8 is supported on t0u � Rd, i.e. µ � δ0.

Proof. Let us define the density function ρpxq :� |u0pxq|2, as well as the marginal density
function ρrpxrq :� ³

ρpxq dx1 . . . dxr�1dxr�1 . . . dxd and the marginal measure µrpAq :�
µ prxr P Asq. Note that the two particle density function corresponding to

�|u0,ty xu0,t|
�b2

is
given by ρpx� tqρpy � tq, and therefore Lemmata 2.2.8 and 2.2.9 imply

1
2 ¤ lim

j
Tr

�
γ
p2q
Nj

Bϵ,r

�
�

»
Rd

Tr
��|u0,ty xu0,t|

�b2
Bϵ,r

�
dµptq

� 2
»
R

�� tr�ϵ»
�8

ρrpxrqdxr

�
�� 8»
tr�ϵ

ρrpxrqdxr

�
dµrptrq

� 2
»
R

fr ptr � ϵq p1� fr ptr � ϵqq dµrptrq ÝÑ
ϵÑ0

2
»
R

frptrq p1� frptrqq dµrptrq

with the definition frpsq :� ³s
�8 ρrpxrq dxr, where we have used dominated convergence and

continuity of fr. Hence we obtain the inequality»
R
frptrq p1� frptrqq dµrptrq ¥ 1

4 .

Since the function hpqq :� qp1� qq is bounded by 1
4 and attains its maximum only for q � 1

2 ,
we conclude frpsq � 1

2 µr-almost everywhere. On the other hand, by Assumption 2.1.1 we
know that

³s
�8 ρrpxrq dxr � 1

2 if and only if s � 0 and therefore frpsq � 1
2 for all s � 0. This

together with the fact frpsq � 1
2 µr-almost everywhere, implies µr � δ0. Since this holds for

all marginal measures µr with r P t1, . . . , du, we conclude µ � δ0. ■
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2.3. Fock Space Formalism

By choosing the bounded one particle operator B as the projection onto the state u0, Theorem
2.1.2 is a direct consequence of Lemmata 2.2.8 and 2.2.10.

2.3 Fock Space Formalism
In order to prove Theorem 2.1.4, we will make use of the correspondence between the Hartree
energy EH and the Hamiltonian HN . For a rigorous treatment of this correspondence, we first
need to formulate our problem in the language of second quantization. In the subsequent
Definition 2.3.1 we will define the necessary formalism including the relevant Fock spaces
with the corresponding creation and annihilation operators. Following [72], we will use the
excitation map UN in order to arrive at an operator UNHNU

�1
N that only depends on modes

ai, i ¡ 0, describing excitations, and not on the mode a0 corresponding to the condensate u0.
The usefulness of this stems from the fact that all the modes ai, i ¡ 0, can be thought of as
being small due to Bose–Einstein condensation.

Before we start introducing the Fock space formalism, let us fix some notation. In the following
we will repeatedly use the notation A �B for the composition of an operator B : H1 ÝÑ H2
with an operator A : H2 ÝÑ H3, especially when we want to stress that the involved operators
map different Hilbert spaces. In order to have a consistent notation, we will occasionally write
expectation values as operator products by identifying an element u P L2pRq with a linear
map C ÝÑ L2pRq, e.g. we write u: � T � u for the expectation value xT yu. Furthermore,
recall the real orthonormal basis u0, u1, . . . , ud, ud�1, . . . from the introduction, where u0 is
the Hartree minimizer from Assumption 2.1.1 and u1, . . . , ud form a basis of the vector space
spanned by the partial derivatives Bx1u0, . . . , Bxdu0. Moreover, let us define the spaces

H : � L2�Rd
�
,

H0 : � tu0uK � H.

Definition 2.3.1. Let us denote with aj :� auj the annihilation operator corresponding to
uj P H and N¥k :� °8

j�k a
:
jaj. In the following, we will repeatedly use the Fock spaces

F :� F pHq, F0 :� F pH0q and F¤M :� 1rN¤MsF0 � F0, where N :� N¥1. For any
k P N0 we define the operator a¥k : dom p?N¥k q ÝÑ F bH as

a¥k :�
8̧

j�k
aj b uj,

as well as the re-scaled operator b¥k :� °8
j�k bj b uj :� 1?

N
a¥k, and the re-scaled and

restricted operator L :� 1
N

N
��
F¤N

: F¤N ÝÑ F¤N , where we suppress the N dependence
of b¥k and L in our notation. Furthermore, given two operators X � °8

i�0 Xi b ui :
dompXq ÝÑ F b H and Y � °8

i�0 Yi b ui : dom pY q ÝÑ F b H defined on subsets
dompXq, dompY q � F , we define the product operator X b Y : D ÝÑ F bH bH, with
D :� tΨ P F :

°8
i,j�0 }XiYjΨ}2   8u, as

X b Y :� X b 1H � Y �
8̧

i,j�0
pXiYjq b ui b uj,

where we use the convention that tensor products are performed before operator products, i.e.
X b 1H � Y :� pX b 1Hq � Y .
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Remark 2.3.2. Recall that T is an operator acting on the one particle space H and
v̂ :� vpx� yq is an operator acting on the two particle space H bH. Then, 1F b T is an
operator on F bH and 1F b v̂ operates on F bH bH. With this, we have a convenient
way to express double and four fold sums of creation and annihilation operators

b:¥0� 1F b T � b¥0 �
8̧

i,j�0
Ti,j b

:
ibj,

pb¥0 b b¥0q: � 1F b v̂ � b¥0 b b¥0 �
8̧

ij,kℓ�0
v̂ij,kℓ b

:
ib
:
jbkbℓ.

In order to avoid issues with operator domains, we will define products of the form
�
b¥0 b b¥0

�:�
1F b v̂ � b¥0 b b¥0 as quadratic forms, i.e. we define the quadratic formA�

b¥0 b b¥0
�: � �1F b v̂

� � �b¥0 b b¥0
�E

Ψ
:�

A
1F b v̂

E
b¥0bb¥0Ψ

.

For the sake of readability, we will suppress the tensor with the identity in our notation, i.e.
we will simply write b:¥0 � T � b¥0 and pb¥0 b b¥0q: � v̂ � b¥0 b b¥0.

In the following, we will make use of the fact that we can express the Hamiltonian in Eq. (2.1.1)
in terms of the rescaled creation and annihilation operators as

N�1HN � b:¥0 � T � b¥0 � N

2pN � 1q pb¥0 b b¥0q: � v̂ � b¥0 b b¥0. (2.3.1)

Since the Hamiltonian HN is only defined on the subset
ÂN

s H � F , the equation above
only holds in this subspace of fixed particle number N . In order to focus on excitations above
the condensate, we follow the strategy in [72] and map the Hamiltonian HN to an operator
which acts on the truncated Fock space F¤N of modes orthogonal to u0 with the help of
the excitation map UN . We will think of this map UN as the quantum counterpart to the
embedding of the disc tz P tu0uK : }z} ¤ 1u into the sphere tu P H : }u} � 1u via the map ι
defined in Eq. (2.1.10). The proof of the following properties of UN is elementary and is left
to the reader.

Lemma 2.3.3. Recall the definition of the operator L in Definition 2.3.1 and the excitation
map UN :

ÂN
s H ÝÑ F¤N from Eq. (2.1.12)

UN

�
ub

i0
0 bs u

bi1
1 bs � � � bs u

bim
m

	
:� ub

i1
1 bs � � � bs u

bim
m ,

for non-negative integers i0 � � � � � im � N . Under conjugation with this unitary map UN ,
we have for all i, j ¥ 1 the following transformation laws

UN b
:
0b0 U

�1
N � 1� L,

UN b
:
jb0 U

�1
N � b:j

?
1� L,

UN b
:
jbi U

�1
N � b:jbi.
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2.3. Fock Space Formalism

We can summarize the transformation laws from Lemma 2.3.3 as follows: In any product
of the form b:ibj we exchange b0 with the operator

?
1� L. In analogy to this, the zero

component of the embedding ιpzq defined in Eq. (2.1.10) is given by u:0 � ιpzq �
a

1� }z}2.
In order to express UNHNU

�1
N , let us first compute

UN

�
b:¥0 � T � b¥0

	
U�1
N � UN Re

�
T0,0 b

:
0b0�2

8̧

i�1
Ti,0 b

:
ib0 �

8̧

i,j�1
Ti,j b

:
ibj

�
U�1
N

� Re

�
T0,0 p1� Lq � 2

8̧

i�1
Ti,0 b

:
i

?
1� L�

8̧

i,j�1
Ti,j b

:
ibj

�
� Re

�
u:0 � T � u0 p1� Lq � 2 b:¥1 � T � u0 �

?
1� L� b:¥1 � T � b¥1

�
,

where the real part of an operator is defined as Re rXs :� X�X:
2 . Similarly, we can express

the transformed operator UN
�

N
2pN�1q pb¥0 b b¥0q: � v̂ � b¥0 b b¥0

	
U�1
N as

Re
�1

2
�
u0 b u0

�: � v̂ � u0 b u0 f0 pLq � 2
�
b¥1 b u0

�: � v̂ � u0 b u0 f1 pLq
� �

b¥1 b b¥1
�: � v̂ � u0 b u0 f2 pLq �

�
b¥1 b u0

�: � v̂ � b¥1 b u0 f3 pLq
� �

u0 b b¥1
�: � v̂ � b¥1 b u0 f4 pLq �2

�
b¥1 b b¥1

�: � v̂ � b¥1 b u0 f5 pLq
� 1

2
�
b¥1 b b¥1

�: � v̂ � b¥1 b b¥1 f6 pLq
�
, (2.3.2)

with f0pxq :� N
N�1p1 � xqp1 � x � N�1q, f1pxq :� N

N�1p1 � x � N�1q?1� x, f2pxq :�
N
N�1

?
1� x�N�1

?
1� x, f3pxq :� f4pxq :� N

N�1p1 � xq, f5pxq :� N
N�1

?
1� x and

f6pxq :� N
N�1 . In order to keep the notation compact, let us name the essential building

blocks involved in the expressions above.

Definition 2.3.4. We define A0 :� u:0 � T � u0, A1 :� 2 b:¥1 � T � u0 and A2 :� b:¥1 � T � b¥1,
as well as B0 :� 1

2

�
u0 b u0

�: � v̂ � u0 b u0 and

B1 : � 2
�
b¥1 b u0

�: � v̂ � u0 b u0, B4 :� �
u0 b b¥1

�: � v̂ � b¥1 b u0,

B2 : � �
b¥1 b b¥1

�: � v̂ � u0 b u0, B5 :� 2
�
b¥1 b b¥1

�: � v̂ � b¥1 b u0,

B3 : � �
b¥1 b u0

�: � v̂ � b¥1 b u0, B6 :� 1
2
�
b¥1 b b¥1

�: � v̂ � b¥1 b b¥1.

With these building blocks at hand, we can express the transformed Hamiltonian as

UNN
�1HNU

�1
N �

2̧

r�0
Re

�
Ar
?

1� L2�r�� 6̧

r�0
Re rBrfr pLqs . (2.3.3)

In the subsequent Lemma 2.3.5 we will derive estimates for operator expressions of the form
Br f pLq. Such estimates will be useful for the identification of lower order terms in the energy
asymptotics in Eq. (2.1.8).

Lemma 2.3.5. Let us denote with πM the orthogonal projection onto F¤M . Given Assumption
2.1.1, there exists a constant c such that for functions f : r0, 1s ÝÑ R

�πM Re rB1f pLqsπM ¤ c sup
x¤M

N

|fpxq|
c
M

N
(2.3.4)
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

for all M ¤ N , and for all t ¡ 0 and i P t2, 3, 4u we have

�πM Re rBif pLqsπM ¤ c sup
x¤M

N

|fpxq|
c
M

N

�
t� t�1 b:¥1 � pT � 1q � b¥1

	
,

�πM Re rB5f pLqsπM ¤ c sup
x¤M

N

|fpxq| M
N

�
t� t�1 b:¥1 � pT � 1q � b¥1

	
,

�M

2N b:¥1 � pλ T � Λq � b¥1 ¤ πM Re rB6s πM ¤ M

2N b:¥1 � pΛT � Λq � b¥1,

where the constants λ,Λ are as in Assumption 2.1.1.

Proof. Using the Cauchy–Schwarz inequality as in Lemma 2.8.1 with Q :� 1F0 b v̂, A :�
b¥1 b u0 πM and B :� 2u0 b u0 f pLq πM , and defining k :� pu0 b u0q: � |v̂| � u0 b u0, we
obtain for any s ¡ 0

�πM Re rB1f pLqsπM � �Re
�
A: �Q �B� ¤ s A: � |Q| � A� s�1 B: � |Q| �B

� s πM pb¥1 b u0q: � |v̂| � b¥1 b u0 πM � s�14k πMf pLq2 πM .

By Assumption 2.1.1, |v̂| ¤ Λ 1H b pT � 1q. Let K :� Λ u:0 � pT � 1q � u0, then

πM pb¥1 b u0q: � |v̂| � b¥1 b u0 � πM ¤ K πM b:¥1 � b¥1 πM ¤ K
M

N
.

Using πMf pLq2 πM ¤
�

supx¤M
N
|fpxq|

	2
and choosing s :�

b
N
M

supx¤M
N
|fpxq| yields

Eq. (2.3.4). The other inequalities can be derived similarly. ■

The following two Lemmata will be useful tools in the verification of the lower bound of the
energy asymptotics in Theorem 2.4.13.

Lemma 2.3.6. There exist constants c, δ ¡ 0, such that for N ¥ 2

δ b:¥1 � T � b¥1 � c ¤ UNN
�1HNU

�1
N ¤ c

�
b:¥1 � T � b¥1 � 1

	
. (2.3.5)

Let us further denote with Pn the orthogonal projection onto 1rN�nsF0. Then there exists a
constant k, such that for N ¥ 2

Ņ

n�0
Pn

�
UNN

�1HNU
�1
N

�
Pn ¤ k

�
UNN

�1HNU
�1
N � k

�
.

Proof. Recall from Lemma 2.2.4 that N�1HN ¥ δ
N

°N
j�1 Tj � δc � δ b:¥0 � T � b¥0 � δc.

Therefore we have the estimate

UNN
�1HNU

�1
N ¥ δ

�
u0 �

?
1� L� b¥1

�: � T � �u0 �
?

1� L� b¥1
�� δc

¥ δ

2b
:
¥1 � T � b¥1 � δu:0 � T � u0 p1� Lq � δc ¥ δrb:¥1 � T � b¥1 � cr,
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2.3. Fock Space Formalism

with δr :� δ
2 and cr :� δu:0 � T � u0 � δc. The upper bound in Eq. (2.3.5) follows analogously.

In order to verify the second inequality note that the map A ÞÑ °
n PnAPn is monotone and°

n Pn

�
b:¥1 � T � b¥1

	
Pn � b:¥1 � T � b¥1

°
n P

2
n � b:¥1 � T � b¥1. Hence,

Ņ

M�0
Pn

�
UNN

�1HNU
�1
N

�
Pn¤

Ņ

M�0
Pn

�
c b:¥1 � T � b¥1� c

	
Pn

� c b:¥1 � T � b¥1 � c ¤ δ�1c UNN
�1HNU

�1
N � pc� δ�1c2q.

■

In the subsequent Lemma we are going to verify that we can exchange the N -dependent
functions fi in Eq. (2.3.3) with N -independent functions

?
1� x

βi , for suitable βi, without
changing the operator substantially. This will be convenient in the lower bound of the energy
asymptotics, since there we have to verify an operator Taylor approximation, which will be
more convenient to do for the functions

?
1� x

βi than for the functions fi.

Lemma 2.3.7. Let β0 :� 4, β1 :� 3, β2 :� β3 :� β4 :� 2, β5 :� 1 and β6 :� 0, and let us
define the operators ArN and BrN acting on F0 as

ArN : �
2̧

r�0
Re

�
Ar
?

1� L2�r�
, (2.3.6)

BrN : �
6̧

r�0
Re

�
Br

?
1� Lβr

�
. (2.3.7)

Then, given Assumption 2.1.1, there exists a constant K such that for all M ¤ N

�πM
�
UNN

�1HNU
�1
N �ArN�BrN	 πM ¤ C

N

c
M

N

�
b:¥1 � T � b¥1 � 1

	
. (2.3.8)

Proof. According to Eq. (2.3.3), we have

UNN
�1HNU

�1
N � ArN �BrN �

6̧

r�0
Re

�
Br

�
fr pLq �

?
1� Lβr

	�
, (2.3.9)

with the functions f0, . . . , f6 from Eq. (2.3.2). Note that for all N ¥ 2

�πMB0
�
f0pLq�p1� Lq2� πM � �1

2 v̂00,00 πM
�
f0pLq�p1� Lq2�πM

¤ 1
2 |v̂00,00| sup

x¤M
N

|f0pxq � p1� xq2| ¤ 1
2 |v̂00,00| M

pN � 1qN .

Furthermore, fr pxq �
?

1� x
βr �O � 1

N

�
and therefore we obtain with Lemma 2.3.5 and the

choice t � 1

�πMBr

�
frpLq �

?
1� x

βr
	
πM ¤ C

N

c
M

N

�
b:¥1 � T � b¥1 � 1

	
,

for a constant C and r P t1, . . . , 6u. ■
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

2.4 Asymptotics of the Ground State Energy
We start by making the formal definition of the Bogoliubov Hamiltonian H in Eq. (2.1.6)
rigorous in Subsection 2.4.1. In the following Subsection 2.4.2, we will verify the upper bound
in the energy asymptotics in Eq. (2.1.8). We will then discuss the proof of the lower bound in
Subsection 2.4.3, while the verification of the main technical Theorem 2.4.12 for the lower
bound will be postponed to Section 2.5.

2.4.1 Construction of the Bogoliubov Operator H
In the following Lemma 2.4.1 we will identify the Hessian Hess|u0EH, and give a precise
definition of the Bogoliubov operator in the subsequent Definition 2.4.3. Furthermore, we
shall see that the operator H is indeed semi-bounded. In the following let us denote with
dom rAs :� dom

�?
A
�

the form domain of an operator A ¥ 0.

Lemma 2.4.1. Given Assumption 2.1.1, the Hessian of the Hartree energy EH at the Hartree
minimizer u0 is given by

1
2Hess|u0EHrzs � z: �QH � z �G:

H � z b z � pz b zq: �GH, (2.4.1)

where GH :� 1
2 v̂ � u0 b u0 P H0 bs H0

}.}� is in the closure of H0 bs H0 with respect to the
norm }G}� :� }1H b pT � 1q� 1

2 �G}, and the operator QH is defined by the equation

z: �QH � z : � z: � T � z � pz b u0q: � v̂ � z b u0 � µH z
: � z � pu0 b zq: � v̂ � z b u0

for all z P H0 X dom rT s, with µH :� u:0 �T � u0 �pu0 b u0q: � v̂ � u0 b u0. Furthermore, QH is
non-negative and satisfies ν�1pT |H0 � 1q ¤ QH � 1 ¤ νpT |H0 � 1q for some constant ν ¡ 0.

Remark 2.4.2. By Assumption 2.1.1, we know that v̂ �u0bu0 P H0 bs H0
}.}� , which follows

from the fact that 1H b pT � 1q� 1
2 � v̂ � 1H b pT � 1q� 1

2 is a bounded operator and that
u0 P dom rT s. For such elements G P H0 bs H0

}.}� , we have that Greg :� 1HbpT �1q� 1
2 �G

is an element of H0 bs H0 and therefore we can define for all z P dom rT s

G: � z b z :� G:
reg � z b

�
pT � 1q 1

2 � z
	
.

In a similar fashion, we define the operator G: � b¥1bb¥1 :� G:
reg � b¥1b

�
pT � 1q 1

2 � b¥1

	
.

Proof of Lemma 2.4.1. With the help of the embedding ι defined in Eq. (2.1.10), we can
express the Hessian as Hess|u0EHrzs � D2|0 pEH � ιq pzq, where D2|z0fpzq denotes the second
derivative of a function f in the direction z evaluated at z0. An explicit computation yields
Eq. (2.4.1). Regarding the second part of the Lemma, observe that QH ¥ 0 follows from the
fact that we can always find a phase θz such that

z: �QH � z � 1
2Hess|u0EHreiθzzs ¥ 0.

34



2.4. Asymptotics of the Ground State Energy

Furthermore, note that |v| ¤ ΛpT � 1q implies �p1H0 b u0q: � v̂ � 1H0 b u0 ¤ c 1H0 with
c :� u:0 � ΛpT � 1q � u0 and

�pu0b1H0q: �v̂ �1H0bu0 ¤ 1
2 pu0b1H0q: �|v̂|�u0b1H0�

1
2 p1H0bu0q: �|v̂|�1H0bu0 ¤c 1H0 .

Hence QH ¥ 0 implies QH�1 ¥ T |H0 �1�p2c�|µ|�1q ¥ T |H0 �1�p1�2c�µqpQH�1q,
and therefore p2� 2c� µqpQH � 1q ¥ T |H0 � 1. Furthermore T ¥ 0 implies

QH � 1 ¤ T � 2c� |µ| ¤ p1� 2c� |µ|qpT |H0 � 1q.
■

Definition 2.4.3. Let the selfadjoint operator QH and GH P H0 bs H0
}.}� be as in Lemma

2.4.1. Then we define the Bogoliubov operator H as

H :� a:¥1 �QH � a¥1 �G:
H � a¥1 b a¥1 � pa¥1 b a¥1q: �GH. (2.4.2)

Theorem 2.4.4. The quadratic form on the right side of Eq. (2.4.2) is semi-bounded
from below and closeable, and consequently defines by Friedrichs extension a selfadjoint
operator H with inf σ pHq ¡ �8. Furthermore there exists a sequence of states ΨM P
dom

�
a:¥1 � pT � 1q � a¥1

�
X F¤M , }ΨM} � 1, such that

xHyΨM ÝÑ
MÑ8

inf σ pHq .

Additionally there exists a constant r� ¡ 0 such that for all r   r� the operator H � rA
satisfies inf σ pH� rAq ¡ �8 as well, where

A :� �1
4

ḑ

j�1

�
aj � a:j

	2
� a:¡d � pT � 1q � a¡d. (2.4.3)

The proof of Theorem 2.4.4 is being carried out in Appendix 2.7. We emphasize that H is
degenerate, in the sense that z: � QH � z � G:

H � z b z � pz b zq: � GH � 0 for any z in the
vector space spanned by tu1, . . . , udu, and therefore we cannot directly apply the results in
[98]. We also note that the semi-boundedness of Bogoliubov operators with degeneracies has
been verified in [59] under the additional assumption that QH is bounded.

2.4.2 Upper Bound
With the essential definitions at hand, we will derive the upper bound in Theorem 2.4.6 using
the representation of UNHNU

�1
N derived in the previous section. We follow the strategy

presented in [72], by sorting the operator UNHNU
�1
N in terms of different powers in b¥1 and

identifying the zero component as the Hartree energy NeH defined in Eq. (2.1.2) and the
second order component as the Bogoliubov operator H defined in Eq. (2.4.2).

Lemma 2.4.5. Let Assumption 2.1.1 hold. Then there exists a constant C such that

�πM
�
UNN

�1HNU
�1
N � eH �N�1H

�
πM ¤ C

�
M

N


 3
2 �

1� a:¥1 � pT � 1q � a¥1

	
for all M ¤ N .
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

While Lemma 2.4.5 will be useful for proving the upper bound in Theorem 2.4.6, it is
insufficient for proving the corresponding lower bound. This is due to the fact that Bose–
Einstein condensation only provides the rough a priori information M � opNq, see also the
proof of Theorem 2.4.13.

Proof. Observe that u0 minimizes the Hartree energy, and therefore

eH � inf
}u}�1

EHrus � u:0 � T � u0 � 1
2 pu0 b u0q: � v̂ � u0 b u0 � A0 �B0,

where Ai and Bi are defined in Definition 2.3.4. Since EHru0s ¤ EHrus for }u} � 1, we obtain
by differentiation in any direction z K u0

0 � D|u0EHpzq � u:0 � T � z � z: � T � u0 � pz b u0q: � v̂ � u0 b u0 � pu0 b u0q: � v̂ � z b u0,

and consequently u:j � T � u0 � puj b u0q: � v̂ � u0 b u0 � 0 for all j ¥ 1. Hence,

A1 �B1 � 2
�
b:¥1 � T � u0 � pb¥1 b u0q: � v̂ � u0 b u0

	
� 0.

By Definition 2.4.3 and Lemma 2.4.1, we have

N�1H � Re
�
A2 �B2 �B3 �B4 � µH b:¥1 � b¥1

�
,

and consequently we can write for any M ¤ N , using Eq. (2.3.3),

πM
�
UNN

�1HNU
�1
N � eH �N�1H

�
πM � πMRe rXs πM

with

X :� B0 pf0 pLq�1�2Lq�B1
�
f1 pLq�

?
1�L

�� 4̧

r�2
Br pfr pLq�1q�

6̧

r�5
Brfr pLq ,

where we used A1
?

1� L � �B1
?

1� L. In order to estimate the first contribution, note
that |f0pxq � 1� 2x| ¤ 2 M2

pN�1qN for all 0 ¤ x ¤ M
N

and therefore

�πMB0 pf0 pLq � 1� 2LqπM � �1
2 v̂00,00πM pf0 pLq � 1� 2LqπM ¤ |v̂00,00| M2

pN � 1qN .

Recalling that b¥1 � 1?
N
a¥1 and Lemma 2.3.5 yields

�πMB1
�
f1 pLq �

?
1� L

�
πM ¤ c

M

N � 1

c
M

N
.

Furthermore we obtain for r P t2, 3, 4u by Lemma 2.3.5 with the choice t � 1?
N

, together
with the bound supx¤M

N
|frpxq � 1| ¤ CM

N
for a constant C ¡ 0,

�πMBr pfr pLq � 1q πM ¤ cC
M

3
2

N2

�
1� a:¥1 � pT � 1q � a¥1

	
.

The estimates for B5f5 pLq and B6f6 pLq can be obtained analogously. ■
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2.4. Asymptotics of the Ground State Energy

Theorem 2.4.6 (Upper Bound). Let EN be the ground state energy of HN , eH the Hartree
energy defined in Eq. (2.1.2) and let H be the Bogoliubov operator defined in Eq. (2.4.2).
Given Assumption 2.1.1, we have the upper bound

EN ¤ N eH � inf σ pHq � oNÑ8 p1q .

Proof. Let ν be the constant from Lemma 2.4.1, such that the inequality QH � 1 ¤
ν pT |H0 � 1q holds. For all ϵ ¡ 0, we know by Theorem 2.4.4 that there exists a state
Ψ P FM with M   8 such that κ :� xa:¥1 � pT � 1q � a¥1yΨ   8 and xHyΨ ¤ inf σ pHq � ϵ.
Applying Lemma 2.4.5 yields the estimate

xHNyU�1
N Ψ ¤ N eH � xHyΨ � C M

c
M

N

�
1� xa:¥1 � pT � 1q � a¥1yΨ

	
¤ N eH � inf σ pHq � ϵ� C M

c
M

N
p1� κq .

■

2.4.3 Lower Bound
In the following, we will give the proof of the lower bound in the energy asymptotics in
Eq. (2.1.8). First of all let us define the operators q, p : dom rN s ÝÑ F0 bH0 as

q :�
ḑ

j�1
qj b uj :� 1

2

ḑ

j�1

�
bj � b:j

	
b uj, (2.4.4)

p :�
ḑ

j�1
pj b uj :� 1

2i

ḑ

j�1

�
bj � b:j

	
b uj, (2.4.5)

which satisfy the commutation relations rpk, qℓs � 1
2iN δk,ℓ. Recall that due to the translation-

invariance of EH, the Hessian Hess|u0EH is degenerate on the real subspace t°d
j�1 tjuj : tj P Ru.

Therefore the Bogoliubov operator H, which we have defined in Eq. (2.4.2) as the second
quantization of the Hessian Hess|u0EH, is degenerate with respect to the operator q, i.e. it
can be expressed only in terms of p, b¡d and b:¡d. Due to this degeneracy, we cannot directly
apply the strategy pursued in [72] where the residuum of the Bogoliubov approximation
is being estimated by the Bogoliubov operator itself. The problem is that the residuum
UNHNU

�1
N �NeH�H includes contributions depending significantly on the modes qj , like q3

j ,
which we cannot compare with the Bogoliubov operator H due to its degeneracy. Furthermore,
it is insufficient to compare the residuum with the (rescaled) particle number operator
1
N

N , which indeed dominates terms like q3
j , since we only have the a priori information

xN yUNΨN � opNq provided by Bose–Einstein condensation. The novel idea of this Subsection
and the subsequent Section 2.5 is to apply a further unitary transformation WN such that
the residuum WNUNHNU

�1
N W�1

N �NeH �H no longer includes this kind of contributions
and consequently we can compare the residuum with the Bogoliubov operator H. This leads
to the important inequality in Eq. (2.1.13). As a consequence we observe that, in contrast to
the particle number operator N , the Bogoliubov operator satisfies xHyUNΨN � Op1q, which,
a posteriori, justifies estimating the residuum by the Bogoliubov operator.
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Before we are going to construct a unitary map WN satisfying Eq. (2.1.13), we are solving
the corresponding problem on a classical level, i.e. we are going to construct a map F which
satisfies Eq. (2.1.11). We will then define WN as the quantum counterpart to F .

Definition 2.4.7. For any y P Rd, let us recall the functions u0,ypxq :� u0px� yq defined in
Assumption 2.1.1 and let us define the map λ : Rd ÝÑ Rd

λpyq :�
�
u:j � u0,y

	d
j�1

P Rd.

Note that uj and u0,y are real-valued functions, and therefore λ is indeed Rd-valued. Since
y ÞÑ u0,y is a C2 �Rd,H

�
function by Assumption 2.1.3, Dyλp0q has full rank and λp0q � 0,

there exists a local inverse λ�1 : B2δp0q ÝÑ Rd for δ ¡ 0 small enough, where Brp0q � Rd

denotes the ball of radius r centered around the origin. Let 0 ¤ σ ¤ 1 be a smooth function
with σ|Bδp0q � 1 and supppσq � B2δp0q. Then we define the function f : Rd ÝÑ H

fptq : � σptq
�
u0,λ�1ptq �

�
u:0 � u0,λ�1ptq

	
u0 �

ḑ

j�1
tj uj

�
�

8̧

j�d�1
fjptquj, (2.4.6)

with fjptq :� σptqu:j � u0,λ�1ptq. Note that t ÞÑ fptq is a C2 �Rd,H0
�

function, due to the
regularity of y ÞÑ u0,y. Furthermore, fp0q � 0. We can now define the map F : H0 ÝÑ H0

for all z � °d
j�1 ptj � isjquj � z¡d P H0 with t, s P Rd and z¡d P tu1, . . . , uduK as

F pzq :�
ḑ

j�1

�
tj � is1j

�
uj � z¡d � fptq, (2.4.7)

where s1j :� sj � Im
�Bjfptq: � z¡d�.

The essential property of F is that ι � F , where ι is the embedding defined in Eq. (2.1.10),
maps the set t°d

j�1 tjuj : |t|   δu into the set of Hartree minimizers

ι � F
�

ḑ

j�1
tjuj

�
� ι

�
ḑ

j�1
tjuj � fptq

�
� u0,λ�1ptq,

for all |t|   δ. This also implies the central inequality Eq. (2.1.11), as will be demonstrated
in the introduction of Section 2.5.

The arguments so far are based only on the fact that F shifts the component z¡d by an
amount fptq. The identity pι � F q

�°d
j�1 tjuj

	
� u0,λ�1ptq would still hold if we used sj

instead of s1j in Eq. (2.4.7). Nevertheless, it is natural that F shifts the s component
as well, since this shift makes sure that dF preserves the symplectic form ωpz1, z2q :�
Re rz1s: � Im rz2s � Im rz1s: � Re rz2s. Therefore it makes sense to look for a quantum
counterpart WN , which we are going to define in the subsequent Definition 2.4.8. In analogy
to F preserving the symplectic form ω, the unitary map WN is preserving the commutator
bracket.
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2.4. Asymptotics of the Ground State Energy

Definition 2.4.8 (Unitary Transformation WN : F0 ÝÑ F0). Based on the fact that the
operators q1, . . . , qd defined in Eq. (2.4.4) commute, we can assign to a function h : Rd ÝÑ H0
with components hjptq :� u:j � hptq an operator hpqq : F0 ÝÑ F0 bH0

hpqq :�
8̧

j�1
hjpq1, . . . , qdq b uj,

where the operators hjpq1, . . . , qdq are well defined via functional calculus. Let f be the
function defined in Eq. (2.4.6), then we can define the unitary map WN : F0 ÝÑ F0 as

WN :� exp
�
Nfpqq: � b¡d �Nb:¡d � fpqq

�
� exp

�
N

8̧

j�d�1
fjpq1, . . . , qdq

�
bj � b:j

	�
,

(2.4.8)

where we have used that u:j � fptq � 0 for j P t1, . . . , du. Note that q1, . . . , qd and b¡d have
an N dependence, which we suppress in our notation. Furthermore, we define the transformed
operators

p1j : � WN pj W�1
N ,

p1 : � WN pW�1
N �

ḑ

j�1
p1j b uj,

L1 : � WN LW�1
N ,

where p is defined in Eq. (2.4.5) and L is defined in Definition 2.3.1. Note that the domain
of L1 is WNF¤N , since L is only defined on F¤N .

That the unitary map WN is indeed a quantum counterpart to the classical map F defined in
Eq. (2.4.7) can be seen from the transformation laws described in the following Lemma 2.4.9.

Lemma 2.4.9 (Transformation Laws). We have the following transformation laws

WN bj W�1
N � bj � fjpqq for j ¡ d,

WN qj W�1
N � qj for j P t1, . . . , du,

p1j � pj � Im
�Bujfpqq: � b¡d� for j P t1, . . . , du,

and therefore WN b¥1 W�1
N � q � ip1 � b¡d � fpqq.

The proof of Lemma 2.4.9 is elementary and is left to the reader. Before we state the main
Theorems of this subsection, let us define what it means for a sequence of operators XN to
be asymptotically small compared to another sequence YN , in a suitable sense that is specific
to our problem.

Definition 2.4.10. We say that sequences of operators XN , YN with YN ¥ 0 satisfy

XN � o�pYNq,
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

in case for all ϵ ¡ 0 there exists a δ ¡ 0, such that
�� xXNyΨ

�� ¤ ϵ xYNyΨ for all M,N with
M
N
¤ δ and all elements Ψ P WNF¤M . Furthermore, we say that sequences of operators

XN , YN with YN ¥ 0 satisfy

XN � O�pYNq,

in case there exists a constant C and δ0 ¡ 0, such that
�� xXNyΨ

�� ¤ C xYNyΨ for all M,N
with M

N
¤ δ0 and all Ψ P WNF¤M .

Remark 2.4.11. Let us denote with πM,N :� WN πM W�1
N the orthogonal projection onto

the subspace WNF¤M � F0. Then the statement XN � O� pYNq holds true if and only if
there exists a constant C and δ0 ¡ 0, such that

πM,N Re rλXN s πM,N ¤ C πM,NYNπM,N (2.4.9)

for all λ P C with |λ| � 1 and M
N
¤ δ0. Similarly, XN � o� pYNq is equivalent to the existence

of a function ϵ : R� ÝÑ R� with lim
δÑ0

ϵpδq � 0, such that

πM,N Re rλXN s πM,N ¤ ϵ

�
M

N



πM,NYNπM,N (2.4.10)

for all λ P C with |λ| � 1 and M ¤ N .

Theorem 2.4.12. Recall the o�p�q notation from Definition 2.4.10, the Hartree energy eH
defined in Eq. (2.1.2) and the Bogoliubov operator H defined in Eq. (2.4.2), and let us define

TN :� p: � p� b:¡d � pT � 1q � b¡d � 1
N
. (2.4.11)

Then, given Assumptions 2.1.1 and 2.1.3, we have

pWNUNqN�1HN pWNUNq�1 � eH �N�1H� o� pTNq .

The proof of Theorem 2.4.12, which in particular gives rise to a rigorous version of the key
inequality Eq. (2.1.13), will be the content of Section 2.5. With Theorem 2.4.12 at hand we
can verify the lower bound in the main Theorem 2.1.4.

Theorem 2.4.13 (Lower Bound). Let EN be the ground state energy of HN , eH the Hartree
energy defined in Eq. (2.1.2) and let H be the Bogoliubov operator defined in Eq. (2.4.2).
Given Assumptions 2.1.1 and 2.1.3, we have the lower bound

EN ¥ N eH � inf σ pHq � oNÑ8 p1q .

Proof. According to Theorem 2.1.2, there exists a sequence of states ΨN PÂN
s H, }ΨN} � 1,

such that xHNyΨN ¤ EN � αN with αN ÝÑ
NÑ8

0 and

ϵN :� xb:¥1 � b¥1yUNΨN � xb:¥1 � b¥1yΨN ÝÑ
NÑ8

0.

Let us abbreviate HrN :� UNHNU
�1
N and let πM be the orthogonal projection onto the space

F¤M as before. Furthermore, let 0 ¤ f, g ¤ 1 be smooth functions with f 2�g2 � 1, fpxq � 1
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2.4. Asymptotics of the Ground State Energy

for x ¤ 1
2 and fpxq � 0 for x ¥ 1, and let us define fMpxq :� f

�
x
M

�
and gMpxq :� g

�
x
M

�
.

Then the generalized IMS localization formula in [78, Theorem A.1], in the form stated in
[72, Proposition 6.1], tells us that

HrN � fM pN q HrN fM pN q � gM pN q HrN gM pN q �RM,N ,

with RM,N ¤ R
M2

°8
n�0 Pn

�
HrN � EN

	
Pn, where Pn is the orthogonal projection onto

F¤n X FK
¤n�1, N � °8

j�1 a
:
jaj and R :� 16

�}f 1}2
8 � }g1}2

8
�
. Let us define MN as the

smallest integer larger than ?ϵNN and N 2
3 . The exponent 2

3 is somewhat arbitrary and we
could use any sequence ℓN with N 1

2 ! ℓN ! N instead. Using the estimate 1�fMpxq2 ¤ 2
M
x

yields

ρN :� x1�fMN
pN q2yUNΨN ¤

2
MN

xN yUNΨN �
2N
MN

xb:¥1 � b¥1yUNΨN ¤
2?
ϵN
ϵN ÝÑ

NÑ8
0.

Let us define ΦN :� p1 � ρNq� 1
2 fMN

pN qUNΨN . Using Lemma 2.3.6 and the inequality
HrN ¥ EN yields

EN�αN¥xHrNyUNΨN ¥p1�ρNq xHrNyΦN�ρNEN�
R

M2
N

xkHrN�k2N�ENyUNΨN .

(2.4.12)

Since limN N
�1EN � eH, we obtain that βN :� R

M2
N
xkHrN � k2N � ENyUNΨN satisfies

βN ¤ R

N
4
3

�pk � 1qEN � kαN � k2N
� ÝÑ
NÑ8

0.

We can now rewrite Inequality (2.4.12) as

EN ¥ xHrNyΦN �
αN � βN
1� ρN

.

Let r ¡ 0 be as in the assumption of Theorem 2.4.4 and recall the definition of A in Eq. (2.4.3).
Note that NTN � A� 1. By Theorem 2.4.12 and Remark 2.4.11, there exists a function ϵ
with limδÑ0 ϵpδq, such that

xHrNyΦN ¥ N eH � xHyWNΦN � ϵ

�
MN

N



xA� 1yWNΦN

� N eH �
�

1� 1
r
ϵ

�
MN

N




xHyWNΦN �

1
r
ϵ

�
MN

N



xH� rAyWNΦN � ϵ

�
MN

N



¥ N eH � inf σ pHq � 1

r
ϵ

�
MN

N


�
inf σ pH� rAq � inf σ pHq �� ϵ

�
MN

N



for all N large enough such that 1 � 1

r
ϵ
�
MN

N

� ¥ 0. This concludes the proof, since
inf σ pH� rAq ¡ �8 by Theorem 2.4.4. ■
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

2.5 Taylor Expansion of pWNUNqHN pWNUNq�1

This section is devoted to the verification of the main technical Theorem 2.4.12, which is the
rigorous version of inequality Eq. (2.1.13). Before we explain the proof, recall the definition of
ι in Eq. (2.1.10) and F in Eq. (2.4.7), and let us verify the classical counterpart Eq. (2.1.11).
For this purpose we define the functional

E 1pzq :� EH rι pF pzqqs , (2.5.1)

which satisfies according to the definition of F that E 1 ptq � eH for all t P Rd with t :�°d
j�1 tjuj, i.e. F flattens the manifold of minimizers of EH � ι. We will verify Eq. (2.1.11)

by sorting the functional E 1 in terms of powers in the variables s and z¡d for any z �°d
j�1 ptj � isjquj � z¡d P H0 with z¡d P tu1, . . . , uduK. In the following, let πpzq :�°d
j�1 isjuj � z¡d be the projection onto V :� π pH0q. We can now sort E 1pzq in terms of

powers in s and z¡d, i.e. in terms of powers in πpzq, using a Taylor approximation with
expansion point t

E 1pzq � E 1 pt� πpzqq � E 1 pt q�D|t E 1�πpzq�� 1
2D

2|t E 1�πpzq�� t HigherOrders u

� E 1 pt q�DV |t E 1pzq � 1
2D

2
V |t E 1�z�� t HigherOrders u, (2.5.2)

where D|z0E 1pvq is the first derivative of E 1 in the direction v at z0, D2|z0E 1pvq is the
second derivative in the direction v, and DV |z0E 1pvq :� D|z0E 1 pπpvqq and D2

V |z0E 1�v� :�
D2|z0E 1�πpvq� are the derivatives only with respect to directions in V. Using E 1 pt q � eH,
DV |t E 1 � 0 and the fact that D2

V |t E 1pvq ¥ �
1� ϵ

2

�
D2

V |0 E 1pvq for t small enough by
continuity, we formally arrive at Eq. (2.1.11), which is claimed to hold only for small
}z}2 � |t|2 � }πpzq}2 anyway.

By sorting the expression pWNUNqHN pWNUNq�1 in terms of powers in the operators p and
b¡d, we will verify that we end up with the same Taylor approximation we obtained by sorting
E 1pzq in terms of powers in the variables s and z¡d. More precisely, our goal is to verify that

pWNUNqN�1HN pWNUNq�1�Epqq�DV
��
q
E
�
b¥1

	
� 1

2D
2
V
��
0E
�
b¥1

	
�o� pTNq (2.5.3)

� eH �N�1H� o� pTNq ,

where E : dom rT s Ñ R is a differentiable extension to all of dom rT s of the functional E 1��
Br

,
restricted to the ball Br :� tz P H0 X dom rT s : }z}   ru for a sufficiently small r ¡ 0. Note
that the spectrum of the operators q1, . . . , qd is the whole real axis R. In order to even define
E pqq and DV

��
q
E
�
b¥1

	
with the help of functional calculus, it is therefore necessary that E ,

in contrast to E 1, is an everywhere defined and differentiable functional. For such a function
E we can define E pqq via functional calculus starting from the function t ÞÑ E

�°d
j�1 tjuj

	
for t P Rd. The so far formal objects DV

��
q
E
�
b¥1

	
and 1

2D
2
V
��
0E
�
b¥1

	
are later defined in

Definition 2.5.4. Note that it is a necessity to restrict E 1 to a sufficiently small ball Br first,
to be precise we require that }F pzq} ¤ 1� δ for all z P Br where 0   δ   1, since E 1 itself
does not have a differentiable extension due to the square root appearing in the definition of
ι, see Eq. (2.1.10).
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2.5. Taylor Expansion of pWNUNqHN pWNUNq�1

In order to reduce the technical efforts of proving Eq. (2.5.3), we will make use of the fact
that

pWNUNqN�1HN pWNUNq�1 � WNArNW�1
N �WNBrNW�1

N � o� pTNq ,

which, as we will see in the proof of Theorem 2.4.12, is a consequence of Eq. (2.3.8). We
can then prove Eq. (2.5.3) separately for the operators WN ArN W�1

N and WN BrN W�1
N . In

fact, we are going to verify that

WN ArN W�1
N � EA pqq�DV

��
q
EA

�
b¥1

	
� 1

2D
2
V
��
0EA

�
b¥1

	
� c

N
� o� pTNq , (2.5.4)

WN BrN W�1
N � EB pqq�DV

��
q
EB

�
b¥1

	
� 1

2D
2
V
��
0EB

�
b¥1

	
� c

N
� o� pTNq , (2.5.5)

where the constant c arises due to the non-commutative nature of the operators q and p, and
EA and EB are differentiable extensions of E 1

A, E 1
B : Br ÝÑ C

E 1
Apzq : � u:z � T � uz, E 1

Bpzq :� 1
2 puz b uzq: � v̂ � uz b uz, (2.5.6)

where uz :� ι pF pzqq. The proofs of Eqs. (2.5.4) and (2.5.5) will be carried out in Subsections
2.5.1 and 2.5.2, respectively. We have to perform a variety of operator estimates, and
since WNArNW�1

N and WNBrNW�1
N involve factors of the form

?
1� L1 with L1 defined

in Definition 2.4.8, we need in particular to estimate the Taylor residuum corresponding
to approximations of such terms. The operator estimates can be found in Appendix 2.8,
respectively Appendix 2.9 for the operator square root specifically.

2.5.1 Taylor Expansion of WNArNW�1
N

In order to structure the analysis, we split the operator WNArNW�1
N into simpler operators HJ ,

introduced in Definition 2.5.1, and we split the classical counterpart EA defined in Eq. (2.5.6)
into atoms EJ , defined in Definition 2.5.2. In Lemma 2.5.3, we then explain how WNArNW�1

N

and EA can be written in terms of HJ and EJ , respectively.

Definition 2.5.1. Recall the function t ÞÑ fptq from Definition 2.4.7. For i P t0, . . . , 4u, we
define operators hi : domrN s ÝÑ F0 bH by h0 :� 1F0 b u0 and

h1 : � q �
ḑ

j�1
qj b uj, h3 :� ip1 � i

ḑ

j�1

�
pj � Im

�Bjfpqq: � b¡d��b uj,

h2 : � fpqq, h4 :� b¡d,

where fpqq and Bjfpqq are defined according to Definition 2.4.8. Furthermore, for a multi-index
J � pi, jq with i, j P t0, . . . , 4u we define an operator HJ on WNF¤N as

HJ : � h:i � T � hj
�

1� L1
	mJ

2
,

where mJ counts how many of the indices in J � pi, jq are zero.
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Definition 2.5.2. Let us decompose an arbitrary z P H0 as z � °d
j�1ptj � isjq uj � z¡d,

with t, s P Rd and z¡d P tu1, . . . , uduK. For i P t0, . . . , 4u, we define in analogy to Definition
2.5.1 the functions ei : H0 ÝÑ H by e0pzq :� u0 and

e1pzq : �
ḑ

j�1
tj uj, e3pzq :� i

ḑ

j�1

�
sj � Im

�Bjfpt1, . . . , tdq: � z��uj,
e2pzq : � f ptq , e4pzq :� z¡d.

With this at hand, we can write the transformation F : H0 ÝÑ H0 from Eq. (2.4.7) as

F pzq � e1pzq � e2pzq � e3pzq � e4pzq.
Furthermore, consider for m P t0, . . . , 4u the functions

ηm pzq :�

$'&'%
�

1� }F pzq}2
	m

2 for even m,

χ
�}F pzq}2��1� }F pzq}2

	m
2 for odd m,

(2.5.7)

where χ is a smooth function with 0 ¤ χpxq ¤ 1, supp pχq � r0, 1q and χpxq � 1 for
|x|   1

2 . Then we can define for a multi-index J � pi, jq with i, j P t0, . . . , 4u the function
EJ : H0 X domrT s ÝÑ C as

EJpzq :� eipzq: � T � ejpzq ηmJ pzq ,
where mJ counts how many of the two indices i, j are zero.

Lemma 2.5.3. Let us define for all i, j P t1, . . . , 4u the coefficients λp0,0q :� 1, λpi,0q :� 2,
λpi,jq :� 1 and λp0,jq :� 0. Then

WN ArN W�1
N �

¸
JPt0,...,4u2

λJ Re rHJ s , (2.5.8)

where ArN is defined in Eq. (2.3.6). Furthermore, the functional EA defined as

EApzq : �
¸

JPt0,...,4u2

λJ Re rEJpzqs , (2.5.9)

is an extension of E 1
A

��
Br

defined in Eq. (2.5.6), where Br :� tz P H0 X dom rT s : }z}   ru
and r ¡ 0 is a constant such that }F pzq}   1

2 for all z P H0 with }z}   r.

Note that the operator WN ArN W�1
N involves terms with

?
1� L1 on the right side as well as

on the left side. In order to reduce the technical effort later, it will be convenient to have all
of them on one side, say the right side. This can be achieved by using the real part, e.g. we
can write for j P t1, . . . , 4u

h:j � T � u0
?

1� L1 �
?

1� L1u:0 � T � hj � Re
�
h:j � T � u0

?
1� L1

�
� 2Re

�
Hpj,0q

�
.

Therefore we set all the coefficients λp0,jq in Lemma 2.5.3 to zero, since the p0, jq-contribution
is already included in the real part of the pj, 0q-contribution.
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2.5. Taylor Expansion of pWNUNqHN pWNUNq�1

Proof. Eq. (2.5.8) follows from the transformation law WN b¥1 W�1
N � h1 � h2 � h3 � h4,

where hi is defined in Definition 2.5.1, and the definition L1 � WN LW�1
N . Similarly we

obtain EApzq � E 1
Apzq for all z with }z}   r for r as above and the fact that

ι
�
F pzq� � ι pe1pzq�e2pzq�e3pzq�e4pzqq �

a
1�}F pzq}2e0�e1pzq�e2pzq�e3pzq�e4pzq.

■

In order to prove the Taylor approximation in Eq. (2.5.4), we will verify that each of the
atoms HJ can be approximated using the quantized Taylor coefficients of EJ . The quantized
Taylor coefficients DV

��
q
EJ
�
b¥1

	
and D2

V
��
0 EJ

�
b¥1

	
are rigorously defined by the following

Definition.

Definition 2.5.4. Let Lt : H0 ÝÑ C be a bounded R-linear map for all t P Rd, and let
wptq, wrptq be the unique elements in H0 such that Ltpzq � wptq: � z � z: � wrptq. Then we
define

Lq pb¥1q :� wpqq: � b¥1 � b:¥1 � wrpqq. (2.5.10)

Let furthermore Λ be an R-quadratic form on H0 with a unique decomposition Λpzq �
z: �Q � z �G: � z b z � pz b zq: �Gr where Q is an operator on H0 and G,Gr P Hbs H0 (or,
more generally, in H0 bs H0

}.}� as introduced in Lemma 2.4.1). Then we define Λ pb¥1q as

Λ pb¥1q :� b:¥1 �Q � b¥1 �G: � b¥1 b b¥1 � pb¥1 b b¥1q: �Gr .
In the following we want to verify that the residuum RJ defined as

RJ : � HJ � EJpqq �DV
��
q
EJ pb¥1q � 1

2D
2
V
��
0EJ pb¥1q � cJ

N
(2.5.11)

is small, where the constant cJ are given by

cp0,0q : � d

4 u:0 � T � u0 � �1
8

ḑ

j�1
B2
tj

��
t�0Ep0,0q pt q ,

cp3,3q : � 1
4

ḑ

j�1
u:j � T � uj �

1
8

ḑ

j�1
B2
tj

��
t�0Ep1,1q pt q , (2.5.12)

cp1,3q :� cp3,1q :� �cp3,3q and cJ :� 0 for all other J P t0, . . . , 4u2, where t :� °d
j�1 tjuj.

The proof will be spit into two parts. In Lemma 2.5.6 we derive an explicit representation of
the residuum RJ by sorting the operator HJ in terms of powers in p and b¡d, and in Theorem
2.5.7 we will make sure that this residuum is indeed small compared to the operator TN
defined in Eq. (2.4.11), which is quadratic in the operators p and b¡d.

In order to illustrate the emergence of the additional constants cJ in the residuum RJ in
Eq. (2.5.11), let us first investigate the following toy problem.

Example. Consider the toy Hamiltonian Htoy :� b:1b1 and the corresponding Hartree functional
Etoy : C ÝÑ C given by Etoyrzs :� |z|2. Using b1 � q1 � ip1 and the commutation relation
rip1, q1s � 1

2N , we obtain

Htoy � q2
1�p2

1�
1

2N � q2
1�

1
4

�
b1�b:1

	2
� 1

2N � q2
1�

1
2b

:
1b1� 1

4b
2
1�

1
4

�
b:1
	2
� 1

4N . (2.5.13)
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Let DV be the derivative with respect to the imaginary part and z � t� is P C, then

1
2D

2
V |0 Etoypzq � 1

2D
2|0 Etoypisq � s2 � 1

2 |z|
2 � 1

4z
2 � 1

4 z̄
2.

With the definition ctoy :� �1
8B2

t

��
t�0Etoyrts � �1

4 we can therefore rewrite Eq. (2.5.13) as

Htoy � Etoyrq1s � 1
2D

2
V |0Etoypb1q � ctoy

N
.

Definition 2.5.5 (Taylor approximation of the square root). Let ηm be the function defined
in Eq. (2.5.7) and let us define the constant cm :� m

8 d. We then define the residuum

corresponding to the operator Taylor approximation of
�

1� L1
	m

2 , for different degrees of
accuracy, as

E0
m : �

�
1� L1

	m
2 � ηm pqq ,

E1
m : �

�
1� L1

	m
2 � ηm pqq �DV

��
q
ηm

�
b¥1

�
,

E2
m : �

�
1� L1

	m
2 � ηm pqq �DV

��
q
ηm

�
b¥1

�� 1
2D

2
V
��
0ηm

�
b¥1

�� cm
N
.

Lemma 2.5.6. Let J � pi, jq P t0, . . . , 4u2 be such that λJ � 0, where λJ is defined
in Lemma 2.5.3, and let RJ be the residuum defined in Eq. (2.5.11). By distinguishing
different cases with the help of the index eJ :� |tℓ P J : ℓ P t3, 4uu| and the index mJ :�
|tℓ P J : ℓ � 0u|, we can explicitly express RJ as

• In the case mJ � 2, i.e. J � p0, 0q: Rp0,0q �
�
u:0 � T � u0

	
E2

2 .

• In the case eJ � 0 and mJ   2: RJ �
�
h:i � T � hj

	
E1
mJ

.

• In the case eJ � 1, there exists a constant C and functions FJ : Rd ÝÑ R with
|FJptq| ¤ C|t|, such that

RJ �
�
h:i � T � hj

	
E0
mJ

� FJpqq
N

. (2.5.14)

• For eJ � 2 we distinguish further between the individual cases and obtain

Rp3,3q � pip1 � ipq: � T � ip1 � pipq: � T � pip1 � ipq ,
Rp3,4q � pip1 � ipq: � T � b¡d � R:

p4,3q,

Rp4,4q � 0.

Proof. The Lemma can be verified by straightforward computations for the different individual
cases. For the purpose of illustration, we will explicitly carry out the computations for the
case J � p3, jq with j P t0, 1, 2u, i.e. we are going to verify Eq. (2.5.14) for this special case.
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2.5. Taylor Expansion of pWNUNqHN pWNUNq�1

Using the definition of E0
m in Definition 2.5.5, the observation hj � ejpqq and the fact that

pip1ℓq: � b:¥1 �
�
uℓ � Buℓfpqq

�� �
uℓ � Buℓfpqq

�: � b¥1, we obtain

HJ � pip1q: � T � ejpqq p1� L1qm2 � pip1q: � T � ejpqqηmpqq � pip1q: � T � ejpqqE0
m

� 1
2

ḑ

ℓ�1
b:¥1 �

�
uℓ�Buℓfpqq

�
u:ℓ �T �ejpqq ηmpqq �

1
2

ḑ

ℓ�1

�
uℓ�Buℓfpqq

�: �b¥1u
:
ℓ �T �ejpqq ηmpqq

� pip1q: � T � ejpqqE0
m, (2.5.15)

where m :� mJ . Our goal is to commute b¥1 in
�
uℓ � Buℓfpqq

�: � b¥1u
:
ℓ � T � ejpqq ηmpqq to

the right side, in order to obtain an expression which is of the same form as (2.5.10). We
define the corresponding functions w and wr as

w :� �1
2

ḑ

ℓ�1

�
u:ℓ � T � ej pt qηm pt q

	 �
uℓ � Btℓfptq

�
and wrptq :� �wptq. The commutation law

�
gpqq, �uℓ�Buℓfpqq�: �b¥1

�
� rgpqq, ipℓs �

� 1
2N Bℓgpqq, for C1 functions g : Rd ÝÑ R then yields

�1
2

ḑ

ℓ�1

�
uℓ � Buℓfpqq

�: �b¥1 u
:
ℓ � T � ejpqq ηmpqq � wpqq: � b¥1 � 1

N
ypqq,

where y : Rd ÝÑ R is defined as yptq :� �1
4
°
ℓ Bℓ puℓ � T � ejpt qηmpt qq. Furthermore

DV
��
t

EJpzq�e3pzq: �T �ej pt qηmpt q�
ḑ

ℓ�1

�
iIm

��
uℓ�Btℓfptq

�: �z�uℓ	: �T �ej pt qηmpt q
� wptq: � z � z: � wrptq.

Consequently we can rewrite Eq. (2.5.15) as

pip1q: � T � ejpqq p1� L1qm2 � DV
��
q

EJ pb¥1q � 1
N
ypqq � pip1q: � T � ejpqqE0

m.

Note that EJ pt q � 0 and D2
V
��
0EJ � 0. Therefore Eq. (2.5.14) follows from the fact that

F ptq :� yptq � cJ is Lipschitz and F p0q � 0, which implies that there exists a constant C
such that |F ptq| ¤ C|t|. ■

For the proof of the following Theorem, we will use various operator estimates derived in
Appendices 2.8 and 2.9.

Theorem 2.5.7. Let J P t0, . . . , 4u2 be such that λJ � 0 and let RJ be the residuum defined
in Eq. (2.5.11). Then,

RJ � o� pTNq ,

with TN defined in Eq. (2.4.11) and the o�p�q notation from Definition 2.4.10.
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2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

Proof. Recall the definitions in Lemma 2.5.6 of eJ :� |tl P J : l P t3, 4uu|, which counts how
many of the indices in J � pi, jq are equal to 3 or 4, mJ :� |tl P J : l � 0u|, which counts
how many of the indices are zero, and the residuum RJ defined in Eq. (2.5.11). In order
to prove the statement of the Theorem, we are going to verify RJ � o� pTNq for all J with
λJ � 0.

The case J � p0, 0q: In this case we have the identity Rp0,0q �
�
u:0 � T � u0

	
E2

2 , hence we
have to verify E2

2 � o� pTNq. In order to do this, recall the function η2pxq � 1 � }F pxq}2

from Eq. (2.5.7) and let us compute using Lemma 2.4.9

1� L1 � 1� pq � fpqq � ip1 � b¡dq: � pq � fpqq � ip1 � b¡dq
� 1� q: � q � fpqq: � fpqq � fpqq: � b¡d � b:¡d � fpqq
� b:¡d � b¡d �

�
p: � p�� d

2N � p: � pp1 � pq � pp1 � pq: � p1

� η2pqq �DV
��
q
η2
�
b¥1

��D2
V
��
0η2

�
b¥1

�� d

4N � p: � pp1 � pq � pp1 � pq: � p1,

where we used η2pqq � 1�q: �q�fpqq: �fpqq and p: �p � 1
4
°d
j�1

�
2b:jbj � b2

j �
�
b:j
	2


� d

4N .

Note that c2
N
� d

4N , where c2 is the constant from Definition 2.5.5. Since p2 ¤ TN , it is
clear that p2 � O� pTNq. In Lemmata 2.8.6 and 2.8.5, we will verify that pp1q2 � O� pTNq
and pp1 � pq2 � o� pTNq. Therefore we obtain by the operator Cauchy–Schwarz inequality in
the auxiliary Lemma 2.8.1 that p: � pp1 � pq as well as pp1 � pq: � p1 are of order o� pTNq. We
conclude E2

2 � o� pTNq.

The case eJ � 0, with J � p0, 0q: In this case mJ P t0, 1u and the error is given by

RJ � h:i � T � hj E1
mJ

� ei pqq: � T � ej pqq E1
mJ
.

We clearly have E1
0 � 0. For mJ � 1, let us define the function V ptq :� ei pt q: � T � ej pt q,

which satisfies V ptq ¤ C|t| for a constant C. In Lemma 2.9.2 we will then verify that
V pqqE1

1 � o� pTNq.
The case eJ � 1: In this case the error reads RJ �

�
h:i � T � hj

	
E0
mJ

� FJ pqq
N

, where
FJptq ¤ C|t| for some constant C. Using Lemma 2.9.2 and Lemma 2.8.4 from the Appendix,
we obtain that pE0

1q:E0
1 � o� pTNq and FJ pqq

N
� o�

� 1
N

�
. Regarding the first term, note that

E0
0 � 0. Hence, we assume w.l.o.g. mJ � 1. We are done once we can verify�

h:i � T � hj
	
�
�
h:i � T � hj

	:
� O� pTNq (2.5.16)

in case one of the indices i, j is in t3, 4u and the other is zero. Let us first assume i P t3, 4u.
Then h:i � T � hj � h:i � w, with w :� T � u0 P H, and therefore Eq. (2.5.16) follows from
Lemma 2.8.6 in the case i � 3 and from Lemma 2.8.5 in the case i � 4. The proof of the
case j P t3, 4u follows analogously.

The case eJ � 2: In this case, the error is a linear combination of pip1 � ipq: � T � hj and
h:i � T � pip1 � ipq with hi, hj P tp1, b¡du. Note that A :� ?

T p1H � π¡dq is bounded, and
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therefore

pip1 � ipq: � T � pip1 � ipq � pip1 � ipq: � A:A � pip1 � ipq
¤ }A}2 pip1 � ipq: � pip1 � ipq � o� pTNq

by Lemma 2.8.5. Similarly, we have pp1q: � T � p1 ¤ }A}2pp1q: � p1 � O� pTNq by Lemma
2.8.6. Hence Lemma 2.8.1 tells us that pip1 � ipq: � T � hj and h:i � T � pip1 � ipq are of order
o� pTNq. ■

Corollary 2.5.8. Recall the functional EA defined in Eq. (2.5.9) and let us define the constant
c :� °

JPt0,...,4u2 λJcJ . Then

WNArNW�1
N � EApqq �DV

��
q
EA pb¥1q � 1

2D
2
V
��
0EA pb¥1q � c

N
� o� pTNq .

Proof. The statement follows from combining Lemma 2.5.3 and Theorem 2.5.7. ■

2.5.2 Taylor Expansion of WNBrNW�1
N

Similar to the previous subsection, we introduce atoms HJ in Definition 2.5.9 as well as their
classical counterparts EJ in Definition 2.5.10. In Lemma 2.5.11 we explain how WNBrNW�1

N

and EB can be written in terms of HJ and EJ , respectively.

Definition 2.5.9. Recall the definition of hi : domrN s ÝÑ F0 bH from Definition 2.5.1.
For a multi-index J � pi, j, k, ℓq with i, j, k, ℓ P t0, . . . , 4u, we define an operator HJ on
WNF¤N as

HJ : � phi b hjq: � v̂ � hk b hℓ p1� L1q
mJ

2 ,

where mJ counts how many of the indices i, j, k, ℓ are zero.

Definition 2.5.10. Recall the definition of ei : H0 ÝÑ H and ηm from Definition 2.5.2. For
a multi-index J � pi, j, k, ℓq with i, j, k, ℓ P t0, . . . , 4u, we define EJ : H0 X domrT s ÝÑ C

EJpzq : �
�
eipzq b ejpzq

�:
� v̂ � ekpzq b eℓpzq ηmJ pzq,

where mJ counts how many of the indices i, j, k, ℓ are zero and ηm are the functions defined
in Eq. (2.5.7).

Lemma 2.5.11. Let us define for all i, j, k, ℓ P t1, . . . , 4u the coefficients λp0,0,0,0q :� 1
2 ,

λpi,0,0,0q :� 2, λpi,j,0,0q :� λpi,0,k,0q :� λp0,j,k,0q :� 1, λpi,j,k,0q :� 2, λpi,j,k,ℓq :� 1
2 and all other

coefficients are defined as λJ :� 0. Then
WN BrN W�1

N �
¸

JPt0,...,4u4

λJ Re rHJ s .

Furthermore, the functional EB defined as
EBpzq :�

¸
JPt0,...,4u4

λJ Re rEJpzqs , (2.5.17)

is an extension of E 1
B

��
Br

defined in Eq. (2.5.6), where Br :� tz P H0 X dom rT s : }z}   ru
and r ¡ 0 is a constant such that }F pzq}   1

2 for all z P H0 with }z}   r.

49



2. Validity of Bogoliubov’s approximation for translation-invariant Bose gases

The proof of Lemma 2.5.11 works analogously to the proof of Lemma 2.5.3. Following the
strategy from Subsection 2.5.1 we are going to verify that the residuum RJ

RJ : � HJ � EJpqq �DV
��
q
EJ pb¥1q � 1

2D
2
V
��
0EJ pb¥1q � cJ

N
(2.5.18)

is small, where the constant cJ are given by cp0,0,0,0q :� �1
8
°d
j�1 B2

tj

��
t�0Ep0,0,0,0q pt q and

cp3,3,0,0q : � �1
8

ḑ

j�1
B2
tj

��
t�0Ep1,1,0,0q pt q , cp3,1,0,0q :� �cp3,3,0,0q, cp1,3,0,0q :� cp3,3,0,0q,

cp3,0,3,0q : � 1
8

ḑ

j�1
B2
tj

��
t�0Ep1,0,1,0q pt q , cp1,0,3,0q :� �cp3,0,3,0q, cp3,0,1,0q :� �cp3,0,3,0q,

cp0,3,3,0q : � 1
8

ḑ

j�1
B2
tj

��
t�0Ep0,1,1,0q pt q , cp0,1,3,0q :� �cp0,3,3,0q, cp0,3,1,0q :� �cp0,3,3,0q,

(2.5.19)

and all other constants are defined as cJ :� 0. The proof will be split into two parts. In
Lemma 2.5.12 we derive an explicit representation of the residuum RJ by sorting the operator
HJ in terms of powers in p and b¡d, and in Theorem 2.5.16 we will make sure that this
residuum is indeed small compared to the operator TN .

Lemma 2.5.12. Let J � pi, j, k, ℓq P t0, . . . , 4u4 be such that λJ � 0, where λJ is defined in
Lemma 2.5.11, and let RJ be the residuum defined in Eq. (2.5.18). By distinguishing different
cases with the help of the indices eJ :� |tℓ P J : ℓ P t3, 4uu| and mJ :� |tℓ P J : ℓ � 0u|, we
can explicitly express RJ as:

• In the case mJ � 4, i.e. J � p0, 0, 0, 0q: RJ � phi b hjq: � v̂ � hk b hℓE
2
4 .

• In the case eJ � 0 and mJ   4: RJ � phi b hjq: � v̂ � hk b hℓE
1
mJ

.

• In the case eJ � 1, there exists a constant C and functions FJ : Rd ÝÑ R with
|FJptq| ¤ C|t|, such that RJ � phi b hjq: � v̂ � hk b hℓE

0
mJ

� FJ pqq
N

.

• In the case eJ � 2 and mJ � 2 when two of the indices are 4:

RJ � �phi b hjq: � v̂ � hk b hℓ L1.

• In the case eJ � 2 and mJ � 2 when one of the indices is 3 and another one is 4, let
us define hr3 :� p1 � p and hrr :� hr for r P t0, 1, 2, 4u. Then,

RJ � �phi b hjq: � v̂ � hk b hℓ L1 �
�
hri b hrj	: � v̂ � hrk b hrℓ.

• In the case eJ � 2 and mJ � 2 when two of the indices are 3, let us define the
coefficients Λr,r1

p3,3,0,0q :� �pur b ur1q: � v̂ � u0 b u0, Λr,r1
p3,0,3,0q :� pur b u0q: � v̂ � ur1 b u0

and Λr,r1
p0,3,3,0q :� pu0 b urq: � v̂ � ur1 b u0. Then,

RJ��phibhjq: � v̂ � hkbhℓ L1�
ḑ

r,r1�1
Λr,r1
J rpp1r�prq � p1r1� pr � pp1r1�pr1qs . (2.5.20)

50



2.5. Taylor Expansion of pWNUNqHN pWNUNq�1

• In the cases eJ � 2 and mJ   2, respectively eJ ¡ 2: RJ � HJ .

Proof. Similar to the proof of Lemma 2.5.6, the proof of Lemma 2.5.12 follows from a
straightforward computation for the individual cases. For the purpose of illustration, we will
explicitly carry out the computations for the case J � p3, 0, 3, 0q, i.e. we are going to verify
Eq. (2.5.20). Since Ep3,0,3,0qpzq is quadratic in πpzq, we immediately obtain Ep3,0,3,0q pt q � 0
and DV

��
t

Ep3,0,3,0q � 0. Let us define the coefficients λα,γ :� puα b u0q: � v̂ � uγ b u0, the
operator Q � 1

2
°d
α,γ�1 v̂α0,γ0 uα � u:γ and G P H0 b H0 by G � �1

4
°d
α,γ�1 v̂α0,γ0 uα b uγ.

Then

D2
V
��
0 Ep3,0,3,0qpzq � z: �Q � z �G: � z b z � pz b zq �G

and therefore D2
V
��
0 Ep3,0,3,0q pb¥1q � b:¥1 � Q � b¥1 � G: � b¥1 b b¥1 � pb¥1 b b¥1q � G. This

concludes the proof of Eq. (2.5.20), since

HJ � pip1 b u0q: � v̂ � ip1 b u0 p�L1q �
ḑ

r,r1�1
Λr,r1
J rpp1r � prq � p1r1 � pr � pp1r1 � pr1qs

� pip b u0q: � v̂ � ip b u0�
ḑ

α,γ�1
puα b u0q: � v̂ � uγ b u0

1
2
�
bα � b:α

�: � 1
2
�
bγ � b:γ

�
� b:¥1 �Q � b¥1 � pb¥1 b b¥1q: �G�G: � b¥1 b b¥1 � cp3,0,3,0q

N
.

■

In the remainder of this subsection, we are going to verify that the residuum RJ is small
compared to the quadratic operator TN . Note that the error term in the last case of Lemma
2.5.12 is quite different from the other cases, since it simply corresponds to the whole operator
HJ . This is not surprising, however, since the second order Taylor approximation of an object
that is already of an higher order than two is zero, i.e. the residuum coincides with the object
itself. With the help of the following three results in Lemma 2.5.13, Lemma 2.5.14 and
Theorem 2.5.15, we will systematically verify that HJ is small compared to the quadratic
operator TN in the cases eJ � 2 and mJ   2, respectively eJ ¡ 2. Regarding all other cases,
we will verify the smallness of the residuum in Theorem 2.5.16. In order to do this, we will
repeatedly use results derived in Appendices 2.8 and 2.9.

Lemma 2.5.13. For indices i, j P t0, . . . , 4u, we have the following estimates:

• In case one of the indices is contained in t3, 4u, we have

phi b hjq: � |v̂| � hi b hj � O� pTNq .

• In case one of the indices is contained in t3, 4u and the other one is contained in
t1, . . . , 4u, we have

phi b hjq: � |v̂| � hi b hj � o� pTNq .
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Proof. We will repeatedly use the inequality |v| ¤ Λ pT � 1q �: S from Assumption 2.1.1,
which implies together with the translation-invariance of T the inequalities |v̂| ¤ S b 1H and
|v̂| ¤ 1H b S.

The case i P t1, 2u and j P t3, 4u: Recall that hk � ekpqq for k P t0, 1, 2u and let us define
the function φptq :� ei pt q: � S � ei pt q. Using the inequality |v̂| ¤ S b 1H we obtain

peipqq b hjq: � |v̂| � eipqq b hj ¤ h:j � φpqq � hj.

Since |φptq| ¤ C p|t| � |t|2q for a constant C, we obtain h:3 � φpqq � h3 � o� pTNq and
h:4 � φpqq � h4 � o� pTNq by Lemmata 2.8.4 and 2.8.6.

The case i P t3, 4u and j P t1, 2u: Making use of the commutation laws rbα, qβs � 0 and
ripα, qβs � 1

2N δα,β, this case follows from the previous one.

The case i � 3, j � 3: Let π¤d :� °d
r�1 ur � u:r. Since

�pp1q: � p1�2 � o� pTNq, we obtain

pp1 b p1q: � |v̂| � p1 b p1 ¤ pp1q: � �pp1q: � p1�b S � p1 ¤ ��π¤d S π¤d�� �pp1q: � p1�2 � o� pTNq .

The case i � 4 and j P t3, 4u: Note that

pb¡d b hjq: � |v̂| � b¡d b hj ¤ 2 pfpqq b hjq: � |v̂| � fpqq b hj

� 2 ppb¡d � fpqqq b hjq: � |v̂| � pb¡d � fpqqq b hj

By the previous case i P t1, 2u and j P t3, 4u, we know that pfpqq b hjq: � |v̂| � fpqq b hj �
o� pTNq. For the second contribution, recall the definition of πM,N from Remark 2.4.11 and
let π̂M,N be the orthogonal projection onto the subspace WNF�

¤M � F0, where

F�
¤M :� 1r0,Ms

� 8̧

j¡d
a:j � aj

�
. (2.5.21)

Since we have bk π̂M,N � π̂M,N bk π̂M,N for k ¡ d and rp1j, π̂M,N s � 0 by Lemma 2.8.3, we
obtain using πM,N � π̂M,N πM,N (which follows from WNF¤M � WNF�

¤M)

πM,N ppb¡d � fpqqq b hjq: � |v̂| � pb¡d � fpqqq b hj πM,N

¤ πM,N h
:
j �

�
π̂M,N pb¡d � fpqqq: � pb¡d � fpqqq π̂M,N

�b S � hj πM,N

¤ M

N
πM,N h

:
j � S � hj πM,N ¤ C

M

N
πM,N TN πM,N

for a constant 0   C   8, where we used h:j �S � hj � O� pTNq and and the characterization
of the O�p�q notation in Remark 2.4.11 for the last inequality. Using this characterization for
the inequality above yields ppb¡d � fpqqq b hjq: � |v̂| � pb¡d � fpqqq b hj � o� pTNq.

The case i � 3 and j � 4: Making use of the commutation laws rip1α, bs � � 1
2N Bαfpqq, this

case follows from the previous one.
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The case i � 0 and j P t3, 4u, respectively i P t3, 4u and j � 0: Since h0 � 1F0 b u0
commutes with h3 � ip1 and h4 � b¡d, we assume w.l.o.g. i � 0 and j P t3, 4u. With
λ :� u:0 � S � u0, we obtain

pu0 b hjq: � |v̂| � u0 b hj ¤ λ h:j � hj � O� pTNq .

■

Lemma 2.5.14. In the following, let G : Rd ÝÑ H bH be a differentiable function and let
us define the operators X, Y : domrN s ÝÑ F0 bH as

X :� pip1q: b 1H �Gpqq � �
8̧

k�1

�
ḑ

j�1
iGj,kp

1
j

�
b uk,

Y :� b:¡d b 1H �Gpqq �
8̧

k�1

�¸
j¡d

iGj,kb
:
j

�
b uk.

Then we have the estimates

X: �X ¤ 2
�
pp1q: � }G}2pqq � p1 � d

N2

ḑ

α�1
}BαG}2pqq

�
,

Y : � Y ¤ b:¡d � }G}2pqq � b¡d � 1
N
}G}2pqq.

The proof of Lemma 2.5.14 is based on the commutation relations rbα, b:βs � 1
N
δα,β and

rpα, qβs � 1
2iN δα,β, and is left to the reader.

Theorem 2.5.15. Let L1 be the operator from Definition 2.4.8. Then we have the following
estimates:

• In case at least two of the indices i, j, k, ℓ P t1, . . . , 4u are contained in t3, 4u, we have

phi b hjq: � v̂ � hk b hℓ � o� pTNq ,

• In case at least two of the indices i, j, k P t0, . . . , 4u are contained in t3, 4u, we have

phi b hjq: � v̂ � hk b u0 L1 � o� pTNq ,

• In case at least two of the indices i, j, k P t1, . . . , 4u are contained in t3, 4u, we have

phi b hjq: � v̂ � hk b u0
?

1� L1 � o� pTNq .

Proof. Let us denote with epa,bq the number of indices in pa, bq that are elements of t3, 4u. In
the following, we will verify the theorem separately for the case epi,jq ¥ 1 and epk,ℓq ¥ 1, and
the case epk,ℓq � 0. Note that the case epi,jq � 0 is only possible for the first bullet point, and
the proof of the statement follows from the case epk,ℓq � 0, since�

phi b hjq: � v̂ � hk b hℓ

�:
� phk b hℓq: � v̂ � hi b hj.
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The case epi,jq ¥ 1 and epk,ℓq ¥ 1: Let us define the operators A :� hi b hj and Q :� v̂,
and depending on the concrete bullet point let us define B as hk b hℓ, hk b u0 L1 or
hk b u0

?
1� L1. In any case we have to verify

A: �Q �B � o� pTNq .

By Lemma 2.8.1, it is enough to verify that one of the operators A: � |Q| �A and B: � |Q| �B
is of order o� pTNq, and the other one is of order O� pTNq, which follows from Lemma 2.5.13
and the auxiliary Corollary 2.9.4.

The case epk,ℓq � 0: In this case we have i, j P t3, 4u for any of the bullet points. Let us define
the function G : Rd ÝÑ H bH by Gptq :� 1H b pT � 1q� 1

2 � v̂ � ek pt q b eℓ pt q. Note that
Gptq P HbH follows from Assumption 2.1.1. We define the operator X :� pT � 1q 1

2 �hi and
depending on the concrete bullet point let us define Y :� h:j b 1H �GpqqZ with Z :� 1F0 ,
Z :� L1 or Z :� ?

1� L1. In the following, we have to verify X: � Y � o� pTNq. Since
i P t3, 4u, we know that X: �X � O� pTNq. By the Cauchy–Schwarz like result in Lemma
2.8.1, it is therefore enough to verify Y : � Y � o� pTNq. Applying Lemma 2.5.14 yields in any
case

Y : � Y � Z:
�
h:j b 1H �Gpqq

	:
�
�
h:j b 1H �Gpqq

	
Z

¤ 2 Z:
�
h:j � }Gpqq}2 � hj � 1

N
}Gpqq}2 � d

N2

ḑ

r�1
}BrGpqq}2

�
Z,

and Corollary 2.9.4 then yields that Z: }Gpqq}2 Z and Z: 1
N

�°d
r�1 }BrGpqq}2

	
Z are of order

o�p1q. Therefore, Z: 1
N
}Gpqq}2Z and Z: d

N2

�°d
r�1 }BrGpqq}2

	
Z are both of order o� pTNq.

Finally, Z: h:j � }Gpqq}2 � hj Z � o� pTNq follows from the auxiliary Lemmata 2.8.4 and 2.8.6,
and the auxiliary Corollary 2.9.4. ■

Theorem 2.5.16. Let J P t0, . . . , 4u4 be such that λJ � 0 and let RJ be the residuum
defined in Eq. (2.5.18). Then,

RJ � o� pTNq .

Proof. Let J � pi, j, k, ℓq be a multi index with λJ � 0, and recall the index eJ :�
|tl P J : l P t3, 4uu| and the index mJ :� |tl P J : l � 0u| from Lemma 2.5.12 as well as the
residuum defined in Eq. (2.5.18). In order to prove the statement of the Theorem, we have
to verify RJ � o� pTNq for all J P t0, . . . , 4u4.

The case eJ � 0 and mJ � 0: In this case we have a trivial residuum RJ � 0.

The case eJ � 0 and mJ � 1: In this case, RJ � V pqqE1
1 , with V ptq :� �

ei pt q b ej pt q
�: �

v̂ � ek pt qb eℓ pt q. Since the C1 function V satisfies F p0q � 0, we obtain V pqqE1
1 � o� pTNq

by Lemma 2.9.2.
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The case eJ � 0 and mJ � 2: In this case RJ � V pqqE1
2 , with V ptq :� �

ei pt q b ej pt q
�: �

v̂ � ek pt q b eℓ pt q. We compute

E1
2 � p1� L1q � η2pqq �DV

��
q
η2
�
b¥1

� � �
�
b:¡d � b¡d � pp1q: � p1 �

d

2N



.

By Lemmata 2.8.4 and 2.8.6 we know that V pqq b:¡d � b¡d � V pqq b:¡d � b¡d and V pqq pp1q: � p1
are of order o� pTNq, and consequently V pqqE1

2 � o� pTNq.

The case eJ � 0 and mJ � 3: In this case RJ � V pqqE1
3 , with V ptq :� �

ei pt q b ej pt q
�: �

v̂ � ek pt q b eℓ pt q. We compute

E1
3 : � p1� L1q

?
1� L1 � η3pqq �DV

��
q
η3
�
b¥q

�
� p1�η2pqqqE1

1�
�
fpqq: �b¡d�b¡d �fpqq

�
E0

1�
�
b:¡d �b¡d�pp1q: �p1�

d

2N


?
1�L1.

By Lemma 2.9.2, we know that V pqqp1� η2pqqqE1
1 � o� pTNq and pE0

1q2 � o� pTNq. Note
that we further have

�
V pqq �fpqq: � b¡d � b¡d � fpqq

��2 � o� pTNq, and therefore the product
V pqq �fpqq: � b¡d � b¡d � fpqq

�
E0

1 is of order o� pTNq as well. By making use of Lemmata
2.8.4 and 2.8.6, and Corollary 2.9.4, we obtain

V pqq
�
b:¡d �b¡d�pp1q: �p1�

d

2N


?
1�L1 � o� pTNq .

The case eJ � 0 and mJ � 4: In this case RJ � pu0 b u0q � v̂ � u0 b u0 E
2
4 . We compute

E2
4 : � p1� L1q2 � η4pqq �DV

��
q
η4
�
b¥1

��D2
V
��
0η4

�
b¥1

�� c4

N

� �
fpqq: � b¡d � b¡d � fpqq

�2 �
!
fpqq: � b¡d � b¡d � fpqq, pp1q: � p1 � b:¡d � b¡d

)
�
�
pp1q: � p1 � b:¡d � b¡d

	2
�
!
η2pqq, pp1q: � p1 � b:¡d � b¡d

)
� 2p: � pp1 � pq � 2 pp1 � pq: � p1 � d

N
L1 � d2

4N2 ,

with the notation tA,Bu :� AB �BA. Clearly d
N
L1 � o� pTNq. From Lemmata 2.8.4, 2.8.5

and 2.8.6, we know that all the operators p: � pp1 � pq, pp1 � pq: �p1, �pp1q: � p1�2,
�
b:¡d � b¡d

	2
,�

b:¡d � fpqq � fpqq: � b¡d
	2

, η2pqq b:¡d � b¡d and η2pqq pp1q: � p1 η2pqq are of order o� pTNq.
Consequently, tη2pqq, pp1q: � p1� b:¡d � b¡du and

!
fpqq: � b¡d� b¡d � fpqq, pp1q: � p1� b:¡d � b¡d

)
are of order o� pTNq as well.

The case eJ � 1: In this case, we have RJ � phi b hjq: � v̂ �hk b hℓE
0
mJ
� FJ pqq

N
. By Lemma

Lemma 2.8.4, we know that FJ pqq
N

� o� pTNq. Since we know that
�
E0
mJ

�2 � o� pTNq
by Corollary 2.9.5, we are done once we can verify that XJ � X:

J � O� pTNq, where
XJ :� phi b hjq: � v̂ � hk b hℓ.
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With 3 P ti, j, k, ℓu: Let us first assume j � 3, and define wptq :� ei pt q: b 1H � v̂ � ek pt q b
eℓ pt q. Clearly, XJ � pip1q: � wpqq and therefore XJX

:
J � O� pTNq follows from 2.8.6. The

other cases i � 3, k � 3 and ℓ � 3 follows from the commutation relation rip1α, qβs � 1
2N δα,β.

With 4 P ti, j, k, ℓu: In any case, XJ is either equal to wpqq: � b¡d or b:¡d � wpqq, where
w : Rd ÝÑ H with }wptq} ¤ c|t|j and j ¥ 0. Note that we use the commutativity of qj and
b¡d here. Therefore, Lemma 2.8.5 implies XJ �X:

J � O� pTNq.

The case eJ � 2 and mJ � 2: In any case, we know by the second bullet point of Theorem
2.5.15, that phi b hjq: � v̂ � hk b hℓ p�L1q � o� pTNq. In case ti, j, k, ℓu � t0, 4u, this is the
whole residuum RJ . In case ti, j, k, ℓu � t0, 3u, the residuum reads

RJ � phi b hjq: � v̂ � hk b hℓ p�L1q �
ḑ

r,r1�1
Λr,r1
J rpp1r � prq � p1r1 � pr � pp1r1 � pr1qs .

Since any of the products pp1r � prq � p1r1 and pr � pp1r1 � pr1q are of order o� pTNq, we conclude
RJ � o� pTNq. The case ti, j, k, ℓu � t0, 3, 4u works similarly, and is left to the reader.

The cases eJ � 2 and mJ   2, respectively eJ ¡ 2: We obtain for mJ � 0 by the first bullet
point of Theorem 2.5.15, and for mJ � 1 by the third bullet point, that

RJ � HJ � o� pTNq .

■

Corollary 2.5.17. Recall the functional EB defined in Eq. (2.5.17) and the constant c from
Corollary 2.5.8. Then,

WNBrNW�1
N � EBpqq �DV

��
q
EB pb¥1q � 1

2D
2
V
��
0 EB pb¥1q � c

N
� o� pTNq .

Proof. Let us define cr :� °
JPt0,...,4u4 λJcJ . Combining Lemma 2.5.11 and Theorem 2.5.16

immediately yields

WNBrNW�1
N � EBpqq �DV

��
q
EB pb¥1q � 1

2D
2
V
��
0 EB pb¥1q � cr

N
� o� pTNq .

Recall the definition of cJ in Eq. (2.5.12) for J P t0, . . . , 4u2, respectively Eq. (2.5.19) for
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J P t0, . . . , 4u4. Making use of the observation that most of the cJ are zero, we obtain

c� cr� ¸
JPt0,...,4u2

λJcJ �
¸

JPt0,...,4u4

λJcJ � λp0,0qcp0,0q � λp1,1q
�
cp1,3q � cp3,1q � cp3,3q

�
� λp0,0,0,0qcp0,0,0,0q � λp1,1,0,0q

�
cp3,3,0,0q � cp3,1,0,0q � cp1,3,0,0q

�
� λp1,0,1,0q

�
cp3,0,3,0q � cp3,0,1,0q � cp1,0,3,0q

�
� λp0,1,1,0q

�
cp0,3,3,0q � cp0,1,3,0q � cp0,3,1,0q

�
� �1

8B
2
tj

��
t�0

ḑ

j�1

�
λp0,0qEp0,0q pt q � λp1,1qEp1,1q pt q � λp0,0,0,0qEp0,0,0,0q pt q

� λp1,1,0,0qEp1,1,0,0q pt q � λp1,0,1,0qEp1,0,1,0q pt q � λp0,1,1,0qEp0,1,1,0q pt q
	

� �1
8

ḑ

j�1
B2
tj

��
t�0

�
EA pt q � EB pt q

	
� 0,

where we have used in the first equality of the last line that B2
tj

��
t�0λJEJ pt q � 0 for

J R tp0, 0q, p1, 1q, p1, 1, 0, 0q, p1, 0, 1, 0q, p0, 1, 1, 0qu

and in the second equality of the last line that EA pt q � EB pt q � E 1 pt q � eH for t small
enough, where E 1 is defined in Eq. (2.5.1). ■

Proof of Theorem 2.4.12. Making use of Eq. (2.3.8), we obtain

pWNUNqN�1HN pWNUNq�1 � WNArNW�1
N �WNBrNW�1

N � o� pTNq , (2.5.22)

where we have used that WN b
:
¥1 � T � b¥1 W�1

N ¤ 2 pX1 �X2q with

X1 : � pq � fpqqq: � T � pq � fpqqq � o�p1q,
X2 : � pip1 � b¡dq: � T � pip1 � b¡dq � O� pTNq ,

see Lemmata 2.8.4 and 2.8.6. Combining Corollaries 2.5.8 and 2.5.17 yields

WNArNW�1
N �WNBrNW�1

N � E pqq�DV
��
q
E
�
b¥1

	
� 1

2D
2
V
��
0E
�
b¥1

	
� o� pTNq ,

with E :� EA � EB. Furthermore, note that Epzq � E 1pzq for }z}   r where E 1 is defined
in Eq. (2.5.1), see Lemmata 2.5.3 and 2.5.11. Therefore, E pt q � eH and DV

��
t
E � 0 for

t small enough. As we will show in Lemma 2.8.2, this implies E pqq � eH � o� pTNq and
DV

��
q
E
�
b¥1

	
� o� pTNq. Furthermore, we have 1

2D
2
V
��
0 E � Hess|u0EH and therefore

1
2D

2
V
��
0 E

�
b¥1

	
� N�1H.

In combination with Eq. (2.5.22) this concludes the proof. ■
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2.6 Coercivity of the Hessian in Example (II)
In the following we are going to verify that the Hartree energy of a system of pseudo-relativistic
bosons in R3 interacting via a Newtonian potential, given by

Eg rus :� @?
m2 �∆�m

D
u
� pub uq: � g

2|x� y| � ub u,

satisfies the coercivity assumption in Eq. (2.1.7) for g small enough, see Example (II) in the
introduction. Note that we are using the notation introduced in Section 2.3. Let us denote
with ug,β the unique radial minimizer of the functional Eg subject to the rescaled condition
}u} � 1� β, i.e. ug,β is radial, and satisfies }ug,β} � 1� β and Egrug,βs � inf

}u}�1�β
Egrus. Let

us further denote the normed minimizers by ug :� ug,0. By a scaling argument it is easy to
see that ug,β � p1� βqugp1�βq2 . For real-valued functions f and h in tug,βuK we can express
the Hessian as 1

2Hess|ug,βEgrf � ihs � xL�g,βyf � xL�g,βyh, where L�g,β and L�g,β are selfadjoint
operators given by

L�g,β :�
?
m2 �∆�m� µg,β � p1b ug,βq: � g

|x� y| � 1b ug,β,

L�g,β :� L�g,β � p1b ug,βq: � 2g
|x� y| � ug,β b 1,

with µg,β :� @?
m2 �∆�mD

ug,β
�pug,β b ug,βq: � g

|x�y| � ug,β b ug,β. Furthermore we denote
the operators associated to the normed minimizers ug by L�g :� L�g,0. Note that

xL�g � L�g yf � pf b ugq: � 2g
|x� y| � ug b f ¡ 0

for all f � 0, and consequently it is enough to verify the following Theorem 2.6.1 in order to
prove Eq. (2.1.7).

Theorem 2.6.1. There exist constants g0 and η ¡ 0 such that for all 0   g   g0 and
f P L2 �Rd

�
with f K tug, Bx1ug, Bx2ug, Bx3ugu

xL�g yf ¥ η}f}2.

In order to prove Theorem 2.6.1, we first need some auxiliary results regarding the minimizers
ug,β subject to the rescaled condition }ug,β} � 1� β.

Lemma 2.6.2. Let us define Rg,β :� ug,β � ug for β P r0, 1q (where 1 can be replaced by
any other positive number). Then there exist constants g0, C ¡ 0 such that

L�g Rg,β � δg,βug � ϵg,β,

with |δg,β| ¤ Cβ and }ϵg,β} ¤ C}Rg,β}2 for g P p0, g0q and β P r0, 1q.

Proof. Since the elements ug,β are minimizers of Eg, they satisfy the corresponding Euler-
Lagrange equations L�g,βug,β � 0. A straightforward computation yields

0 �L�g,βug,β � L�g ug � L�g Rg,β � δg,βug � ϵg,β
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with

δg,β :� µg,β � µg,

ϵg,β :� pµg,β � µgqRg,β � p1b ug,βq: � g

|x� y| �Rg,β bRg,β

� p1bRg,βq: � g

|x� y| �Rg,β b ug � p1bRg,βq: � g

|x� y| � ug bRg,β. (2.6.1)

Let us first investigate the contributions involving g
|x�y| . From [69, Proposition 1] it is clear

that there exists a constant C such that }ug,β}H1pR3q ¤ C   8 for all g small enough and
β P r0, 1q. With the notation S :� ?

1�∆ we obtain����p1b ug,βq: � g

|x� y| �Rg,β bRg,β

���� � ����p1b Sug,βq: � 1b S�1 g

|x� y| �Rg,β bRg,β

����
¤ g}Sug,β}

����1b S�1 1
|x� y|

���� }Rg,β}2 ¤ Cg

����S�1 1
|x|

���� }Rg,β}2,

where
���S�1 1

|x|

��� is the operator norm of the bounded one-particle operator S�1 1
|x| . Similarly,

the other contributions involving g
|x�y| in Eq. (2.6.1) can be estimated by Cg

���S�1 1
|x|

��� }Rg,β}2

as well. The uniform control of the norm }ug,β}H1pR3q ¤ C   8 furthermore implies
|δg,β| � |µg,β � µg| ¤ Crβ for some constant Cr . Note that }Rg,β} ¥ }ug,β} � }ug} � β, and
consequently } pµg,β � µgqRg,β} ¤ Crβ}Rg,β} ¤ Cr}Rg,β}2. We conclude that

}ϵg,β} ¤
�
Cr � 3Cg

����S�1 1
|x|

����
 }Rg,β}2.

■

Lemma 2.6.3. Let Rg,β and ϵg,β be as in Lemma 2.6.2. Then there exists a constant g0 ¡ 0
such that lim

βÑ0
}ϵg,β}

xug ,Rg,βy � 0 and lim sup
βÑ0

|δg,β |
xug ,Rg,βy ¤ C for a suitable constant C ¡ 0 and

g P p0, g0q.

Proof. By the results in [69] we know that 0 is an isolated eigenvalue of L�g , i.e. there
exists a constant δ ¡ 0 such that σ

�
L�g

�X p�δ, δq � t0u, with corresponding eigenvectors
Bx1ug, Bx2ug, Bx3ug. Since ug,β is radial, we know that Rg,β K Bxjug, and therefore we obtain
by Lemma 2.6.2

δ}Rg,β} ¤ }L�g Rg,β} ¤ C
�
β � }Rg,β}2� . (2.6.2)

Using [69, Proposition 1] again, it is clear that lim
gÑ0,βÑ0

}Rg,β} � 0 and therefore there exists

a constant g0 such that }Rg,β} ¤ δ
2C for all g P p0, g0q and β small enough. Consequently

Eq. (2.6.2) yields }Rg,β} ¤ 2C
δ
β. Using the fact that }ug,β} � 1� β, we further obtain

1� 2β ¤ p1� βq2 � 1� 2 xug, Rg,βy � }Rg,β}2 ¤ 1� 2 xug, Rg,βy �
�

2C
δ


2

β2,
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and therefore

}ϵg,β}
xug, Rg,βy ¤

C
�2C
δ

�2
β2

β � 2
�
C
δ

�2
β2

ÝÑ
βÑ0

0,

|δg,β|
xug, Rg,βy ¤

Cβ

β � 2
�
C
δ

�2
β2

ÝÑ
βÑ0

C.

■

Proof of Theorem 2.6.1. Let Q denote the projection onto the space tuguK. Clearly there
exists a w P L2pR3q such that

L�g f � QL�g f � xw, fyug

for all f P L2pR3q. With Rg,β, δg,β and ϵg,β from Lemma 2.6.2 at hand, we obtain

L�g pδg,βf � xw, fyRg,βq � δg,βQL
�
g f � xw, fy ϵg,β,

and therefore }L�g pδg,βf � xw, fyRg,βq } ¤ |δg,β| }QL�g f} � }w} }ϵg,β} }f}. Using again that
there exists a constant δ ¡ 0 such that σ

�
L�g

�Xp�δ, δq � t0u with corresponding eigenvectors
Bx1ug, Bx2ug, Bx3ug, see [69], and that Rg,β as a radial function is orthogonal to them, we
obtain for all f P tug, Bx1ug, Bx2ug, Bx3uguK

}L�g pδg,βf � xw, fyRg,βq } ¥ δ}δg,βf � xw, fyRg,β} ¥ δ| xug, Rg,βy | | xw, fy |.

Combining the estimates we have so far yields

| xw, fy | ¤ |δg,β|
δ| xug, Rg,βy |}QL

�
g f} �

}w} }ϵg,β}
δ| xug, Rg,βy |}f} �: xβ}QL�g f} � yβ}f}.

By Lemma 2.6.3 we know that lim sup
βÑ0

|xβ| ¤ C for some constant C ¡ 0 and yβ ÝÑ
βÑ0

0.

Using again that σ
�
L�g

�X p�δ, δq � t0u, we obtain

δ}f} ¤ }L�g f} ¤ }QL�g f} � | xw, fy | ¤ p1� xβq }QL�g f} � yβ}f}

and consequently }QL�g f} ¥ δ�yβ
1�xβ }f}. This holds for all (small) β, hence β Ñ 0 gives

}QL�g f} ¥ δ
1�C }f}. Finally note that QL�g Q ¥ 0 since xL�g yf � 1

2Hess|ugEgrf s ¥ 0 for
real-valued f K ug, which concludes the proof. ■

2.7 The Bogoliubov Operator
In the following we will prove Theorem 2.4.4, i.e. we are going to verify that the Bogoliubov
operator H constructed in Definition 2.4.3 is bounded from below and that its ground state
energy can be approximated by Ψ P �

MPN domra:¥1 � pT � 1q � a¥1s X F¤M with }Ψ} � 1.
Our strategy is to decouple the degenerate modes from the non-degenerate ones and to apply
the general framework for non-degenerate Bogoliubov operators in [98].
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Definition 2.7.1. Let QH �
°
i,j¥1 Qi,j ui �u:j and GH �

°
i,j¥1 Gij uibuj be as in Lemma

2.4.1, and let us denote the operator QK :� °
i,j¡dQi,j ui � u:j on HK :� xu0, u1, . . . , udyK

as well as GK :� °
i,j¡dGijui b uj. Then we define the operator HK as

HK :� a:¡d �QK � a¡d � 2Re
�
G:
K � a¡d b a¡d

�
.

Lemma 2.7.2. The operator HK is semi-bounded from below, i.e. inf σ pHKq ¡ �8.
Furthermore, there exists a constant R ¡ 0 such that

HK ¤ R
�
a:¡d �QK � a¡d � 1

	
. (2.7.1)

Proof. Let us define the operator Gop on HK by the condition z: �Gop � z � 2G:
K � zb z, with

z being the usual complex conjugation in L2 �Rd
�
. Then, z: �QK � z � 2Re

�
z: �Gop � z

� �
Hess|u0EHrzs ¥ η}z}2 for all z P HK with η ¡ 0 by Assumption 2.1.3. As pointed out in
Section 2.1 in [72], this implies QK ¥ r ¡ 0 as well as�

QK G:
op

Gop QK



¥ 0,

where we have used that QK is a real operator. Since QK ¡ 0, this is further equivalent to
Gop Q

�1
K G:

op ¤ QK. Since GH P H0 bH0
}.}� , where the }.}� norm is defined in Lemma 2.4.1,

and since z: �Q� 1
2

K � z ¤ c z: � pT � 1q� 1
2 � z for a suitable constant c and z P HK, which is an

easy consequence of the operator inequality in Lemma 2.4.1 and the fact that QK ¥ r ¡ 0,
we obtain

Tr
�
Gop Q

�1
K G:

op
� � }1HK bQ

� 1
2

K �GK}2
HbH ¤ c2 }GH}2

�   8, (2.7.2)

i.e. Gop Q
� 1

2
K is a Hilbert-Schmidt operator. By the general results in [98], this implies that

HK is semi-bounded as well as the existence of a constant R ¡ 0 such that Eq. (2.7.1)
holds. ■

Lemma 2.7.3. Let us define Pj :� 1
2i

�
aj � a:j

	
� ?

Npj for j P t1, . . . , du, the constant
c0 :� °d

j�1 Gj,j, the quadratic function νpyq :� �4
°d
j,k�1 Gj,kyjyk for y P Rd and the linear

HK valued function

upy1, . . . , ydq :� 4i
ḑ

j�1
yj

¸
k¡d

Gj,kuk P HK.

Then we can rewrite the Bogoliubov operator H from Definition (2.4.3) as
H � c0 � ν pP1, . . . , Pdq � u pP1, . . . , Pdq: � a¡d � a:¡d � u pP1, . . . , Pdq �HK. (2.7.3)

Proof. Since Hess|u0EHrzs � z: �QH � z � 2Re
�
G:

H � z b z
�

is degenerate in the directions
u1, . . . , ud, we obtain Qj,k � �2Gj,k in case j or k is in t1, . . . , du. Writing H in coordinates
therefore yields

H�
ḑ

j,k�1
Gj,k

�
�2a:jak�ajak�a:ja:k

	
�2

ḑ

j�1

¸
k¡d

Gj,k

�
aj�a:j

	
ak�2

ḑ

j�1

¸
k¡d

Gj,k

�
aj�a:j

	
a:k

�
¸
j,k¡d

�
Qj,ka

:
jak �Gj,kajak �Gj,ka

:
ja

:
k

	
�  

c0 � ν pP1, . . . , Pdq
(� u pP1, . . . , Pdq: � a¡d � a:¡d � u pP1, . . . , Pdq �HK,
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where we have used �2a:jak � ajak � a:ja
:
k � �4PjPk � δj,k in the second identity. ■

Remark 2.7.4. In the subsequent Lemma 2.7.5, we want to get rid of the term u pP1, . . . , Pdq:�
a¡d � a:¡d � u pP1, . . . , Pdq in Eq. (2.7.3) by completing the square, i.e. by applying a shift
a¡d ÞÑ a¡d � w pP1, . . . , Pdq where wpy1, . . . , ydq P HK is a suitable vector. In the following
we are going to construct such a wpyq. Let us first define the R-linear map L : HK ÝÑ HK

z: � Lpwq :� z: �QK � w � 2 pw b zq: �GK,

for all z P HK. Furthermore, let us define the real inner product xz, wyR :� Re
�
z: � w� on

HK. Clearly, L is symmetric with respect to this inner product. By Assumption 2.1.3 we have
for all w P HK

xw,LpwqyR � Hess|u0EHrws ¥ η }w}2, (2.7.4)

and consequently we can define wpyq P HK for all y P Rd as the solution of the equation

L � wpyq � �upyq. (2.7.5)

We note that wpyq P domrQKs due to the improved coercivity

xw,LpwqyR ¥ crw: �QK � w (2.7.6)

where cr is a suitable constant, which follows from the fact that

2
���pw b wq: �GK

��� ¤ w: ��ϵQK�ϵ�1c2}GH}2
�
��w ¤ ϵ w: �QK �w� c

2}GH}2
�

ϵη
xw,LpwqyR

for all ϵ ¡ 0, where c is the constant in Eq. (2.7.2).

Lemma 2.7.5. Let w : Rd Ñ HK be the function defined by Eq. (2.7.5) and let us define
the unitary transformation R : F0 ÝÑ F0

R : � exp
�
w pP1, . . . , Pdq: � a¡d � a:¡d � w pP1, . . . , Pdq

�
.

Then there exists a non-negative quadratic function η : Rd ÝÑ R, s.t.
RHR�1 � c0 � η pP1, . . . , Pdq �HK, (2.7.7)

where c0 and HK are as in Lemma 2.7.3 and Definition 2.7.1.

Proof. Let us define ηpy1, . . . , ydq :� νpy1, . . . , ydq � xwpy1, . . . , ydq, upy1, . . . , ydqyR. With
η and the vector valued function w at hand, we can rewrite Eq. (2.7.3) as

H � c0 � η pP1, . . . , Pdq �
�
a¡d � w pP1, . . . , Pdq

	:
�QK �

�
a¡d � w pP1, . . . , Pdq

	
� 2Re

�
G:
K �

�
a¡d � w pP1, . . . , Pdq

	
b

�
a¡d � w pP1, . . . , Pdq

	�
. (2.7.8)

Eq. (2.7.7) follows now from the representation of H in Eq. (2.7.8) and the fact that

R a¡d R�1 � a¡d � w pP1, . . . , Pdq .
In order to see that η is indeed non-negative, note that we can use η and w to complete
the square in Hess|u0EHrzs as well, i.e. for z � °d

j�1 ptj � isjquj � z¡d with t, s P Rd and
z¡d P HK we can write Hess|u0EHrzs as

ηpsq�pz¡d�wpsqq: �QK �pz¡d�wpsqq�2Re
�
G:
K � pz¡d�wpsqqbpz¡d�wpsqq

�
.

Therefore, Hess|u0EHrzs ¥ 0 for all z implies ηpsq ¥ 0 for all s P Rd. ■
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Proof of Theorem 2.4.4. Since the function η in Lemma 2.7.5 is non-negative, we immediately
obtain the lower bound

inf σ pHq ¥ c0 � inf σ pHKq ¡ �8.
In order to verify the bound from below for the operator H � rA, where A is defined in
Eq. (2.4.3), we will make use of the improved coercivity

Hess|u0EHrzs ¥ r�

�
ḑ

j�1
s2
j � z:¡d � pT � 1q � z¡d

�
, (2.7.9)

where r� is a suitable constant and z � °d
j�1ptj � isjquj � z¡d with z¡d P HK, which can

be verified analogously to Eq. (2.7.6) in Remark 2.7.4. With the definition ηr :� r� � r for
r   r� we obtain, in analogy to Assumption 2.1.3,

Hess|u0EHrzs � r

�
ḑ

j�1
s2
j � z:¡d � pT � 1q � z¡d

�
¥ ηr}z}2

for all z of the form z � i
°d
j�1 sjuj � z¡d with sj P R and z¡d P HK. Therefore we can

repeat the proof of the lower bound for the operator H� rA, which yields

H� rA ¥ inf σ pH� rAq ¡ �8. (2.7.10)

Note that this further implies that the Friedrichs extension of the quadratic form H is well-
defined, i.e. H is semi-bounded and closeable, since H is comparable to the non-negative
selfadjoint operator A, i.e. there exist constants α1, α2, β1, β2 ¡ 0 with

α1A� β1 ¤ H ¤ α2A� β2.

In order to verify that there exists an approximate sequence of ground states ΨM with
ΨM P F¤M and ΨM P dom

�
a:¥1 � pT � 1q � a¥1

�
, it is enough to prove that such states

are dense in dom
�
a:¥1 � pT � 1q � a¥1

�
, the domain of the quadratic form which defines the

Bogoliubov operator H by Friedrichs extension, with respect to the norm }Ψ}2
H :� xH� CyΨ

where C ¡ � inf σ pHq. The lower bound follows from Eq. (2.7.10), while the upper bound
follows from Eq. (2.7.3) and Inequality (2.7.1). Furthermore, we have

}Ψ}2
H ¤ α2 xAyΨ � pβ2 � Cq}Ψ}2 ¤ }Ψ}2

�,

for all Ψ P F0, where }Ψ}2
� :� α2 xa:¥1 � pT � 1q � a¥1yΨ � pβ2 � C � d

4q}Ψ}2. Clearly,�
M F¤M Xdom

�
a:¥1 � pT � 1q � a¥1

�
is dense in the domain dom

�
a:¥1 � pT � 1q � a¥1

�
with

respect to the norm }.}� and therefore it is also dense with respect to }.}H. ■

2.8 Auxiliary Lemmata
In the following section we will derive various operator estimates involving powers of the
operators p, p1, b¡d and functions of q, with an emphasis on asymptotic results of the form
AN � o�pBNq, where the o�p�q notation is introduced in Definition 2.4.10. It is a crucial
observation that all of our basic variables qi, pj and bk are of order o�p1q, and therefore the
product of a basic variable with an operator AN should be of order o�pANq, which we will
verify for specific examples AN . Let us first discuss an important tool, which we will repeatedly
use, given by the following Cauchy–Schwarz inequality for operators.
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Lemma 2.8.1. For any λ P C with |λ| � 1, t ¡ 0, linear operators A : H1 ÝÑ H2 and
B : H1 ÝÑ H2, and selfadjoint operator Q : H2 ÝÑ H2, we have the operator inequality

Re
�
λ A: �Q �B� ¤ t A: � |Q| � A� t�1 B: � |Q| �B. (2.8.1)

Furthermore, let AN , BN be sequences of linear operators H1 ÝÑ H2, Q a selfadjoint
operator on H2 and CN : H1 ÝÑ H1 a sequence of non-negative operators, which satisfy
A:
N � |Q| � AN � O� pCNq and B:

N � |Q| �BN � o� pCNq. Then,

A:
N �Q �BN � o� pCNq ,

B:
N �Q � AN � o� pCNq .

Proof. Let Q � U |Q| be the polar decomposition of Q. Inequality (2.8.1) immediately follows
from the inequality

0 ¤
�?

t A�
c

1
t
λ UB

�:

� |Q| �
�?

t A�
c

1
t
λ UB

�
.

By our assumption A:
N � |Q| � AN � O� pCNq we know that there exist constants c, δ0 ¡ 0,

such that πM,N A
:
N � |Q| �AN πM,N ¤ c xCNyΨ for all M

N
¤ δ0. Furthermore, by our assumption

B:
N � |Q| � BN � o� pCNq, there exists a function ϵ : R� ÝÑ R� with lim

δÑ0
ϵpδq, such that

πM,N B
:
N � |Q| �BN πM,N ¤ ϵ

�
M
N

�
CN . Applying Inequality (2.8.1) with t :�

b
ϵ
�
M
N

�
yields

for all λ P C with |λ| � 1 and M
N
¤ δ0

πM,N Re
�
λ A:

N �Q �BN

�
πM,N ¤

d
ϵ

�
M

N



CN .

■

Consider a function g : Rd ÝÑ R. The following Lemma states that the operator gpqq
depends, up to an exponentially small error, only on the local data of g in an arbitrary small
neighborhood r�ϵ, ϵsd of the origin, i.e. gpqq � grpqq �O�

�
e�δN

�
in case g|r�ϵ,ϵsd � gr|r�ϵ,ϵsd .

This property plays a key role in the proof of the main technical Theorem 2.4.12, since the
involved functions are (somewhat arbitrary) extensions of locally constructed functions with
specific properties, which the extensions no longer have, see for example the definition of
f : Rd ÝÑ H0 in Definition 2.4.7.

Lemma 2.8.2. Let q1, . . . , qd be the operators defined in Eq. (2.4.4) and let g : Rd Ñ R be
a function such that g|r�ϵ,ϵsd � 0 for some ϵ ¡ 0. Furthermore, assume that g satisfies the
growth condition |gptq| ¤ C|t|2j, with C ¡ 0 and j P N. Then

g pqq � O�
�
e�δN

�
for some δ ¡ 0.
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Proof. Using the elementary estimate |t|2j �
�°d

r�1 t
2
r

	j
¤ dj max1¤r¤d t2jr yields

|gptq| ¤ djC
ḑ

r�1
t2jr 1pϵ,8q p|tr|q .

In the following we want to verify that there exist constants C, δ ¡ 0 and δ0 ¡ 0 such
that xq2j

r 1pϵ,8qp|qr|qyΨ ¤ Ce�δN for all states Ψ P WNF¤M , }Ψ} � 1, with M
N
¤ δ0 and

r P t1, . . . , du. Since WN qr W�1
N � qr, it is equivalent to verify this for Ψ P F¤M instead.

Due to the reflection symmetry qr ÞÑ �qr of q2j
r , it is furthermore enough to verify that

x1pϵ,8qpqrqq2j
r yΨ ¤ Ce�δN for all states Ψ P F¤M with M

N
¤ δ0. Note that the operators

qr :� 1?
2N

ar�a:r?
2 depend on N . In the following we will make use of the description of the

Fock space F¤M in terms of Hermite polynomials hn, i.e. for r P t1, . . . , du and Ψ P F¤M
there exist states Ψn P F¤M�n with arΨn � 0, such that Ψ � °M

n�0 hn

�
ar�a:r?

2

	
Ψn, see for

example Eq. (1.26), respectively Exercise 1(ii), in [86]. Furthermore we define the density
matrix γrpx, yq :� °M

n1,n2�0 xΨn1 ,Ψn2yhn2pxqhn1pyq 1?
π
e�

x2�y2
2 on L2 pRq. With γr at hand

we have

x1pϵ,8qpqrqq2j
r yΨ �

» 8

?
2Nϵ

�
x?
2N


2j

γrpx, xqdx.

In order to estimate this quantity, let us define the harmonic oscillator Hamiltonian H :�
� d2

dx2 � x2 on L2pRq. Since γr involves only eigenfunctions hnpxqe�x2
2 of H with n ¤M , we

have the operator inequality γr ¤ e2M�1�H . Using the Mehler kernel for e�H therefore yields
for c :� 1?

2π sinhp2q and λ :� cothp2q � cosechp2q ¡ 0, and all M ¤ ϵ2λN{2» 8

?
2Nϵ

�
x?
2N


2j

γrpx, xqdx ¤ c eϵ
2λN�1

» 8

?
2Nϵ

�
x?
2N


2j

e�λx
2dx � ONÑ8

�
e�ϵ

2λN
	
.

■

The following Lemma is an auxiliary result, which will be useful for the verification of various
asymptotic results involving the operator b¡d.

Lemma 2.8.3. Recall the operators WN ,L1, p1j and fpqq from Definition 2.4.8 and the
definition of π̂M,N above Eq. (2.5.21). Then, qj and p1j commute with π̂M,N for j P t1, . . . , du,
π̂M,NL1Ψ � L1π̂M,NΨ for all Ψ P WNF¤N , and bk π̂M,N � π̂M,N bk π̂M,N for all k ¡ d.
Furthermore, we have for all M ¤ N the estimate

π̂M,N pb¡d � fpqqq: � pb¡d � fpqqq π̂M,N ¤ M

N
, (2.8.2)

π̂M,N b
:
¡d � b¡d π̂M,N ¤ 4. (2.8.3)

Proof. Recall N :� °8
j�1 a

:
jaj and let us define N� :� °

j¡d a
:
j �aj . Since N� commutes with

L and qj, pj for j P t1, . . . , du, we obtain that π̂M,N � WN 1r0,Ms pN�qW�1
N commutes with

qj � WN qj W�1
N and p1j � WN pj W�1

N . Similarly π̂M,NL1Ψ � L1π̂M,NΨ for all Ψ P WNF¤N .
Making use of the fact that bj � WN pbj � fjpqqq W�1

N yields

bj π̂M,N � WN pbj � fjpqqq1r0,Ms pN�qW�1
N

� WN 1r0,Ms pN�q pbj � fjpqqq1r0,Ms pN�qW�1
N � π̂M,N bj π̂M,N .
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Inequality (2.8.2) follows from
�
b¡d � fpqq�: � �b¡d � fpqq� � 1

N
WN N� W�1

N and

π̂M,N pb¡d � fpqqq: � pb¡d � fpqqq π̂M,N � 1
N

WN N�1r0,Ms pN�q W�1
N ¤ M

N
.

In order to verify Inequality (2.8.3), note that fptq: � fptq ¤ 1 for all t. Applying the
Cauchy–Schwarz inequality as in 2.8.1 yields

π̂M,N b
:
¡d � b¡d π̂M,N¤2π̂M,N pb¡d � fpqqq: � pb¡d � fpqqq π̂M,N�2π̂M,N fpqq: � fpqq π̂M,N

¤ 2M
N
� 2 ¤ 4.

■

The proof of the main technical Theorem 2.4.12 consists of two steps: First one has to identify
the residuum RJ , which is carried out in the Lemmata 2.5.6 and 2.5.12, and in the second
step one has to derive asymptotic results for these residua RJ , which is carried out in the
Theorems 2.5.7 and 2.5.16. The following three Lemmata provide asymptotic results for the
types of operators most frequently encountered during our analysis of RJ .

Lemma 2.8.4. Let φ,Φ : Rd ÝÑ R be functions with |φptq| ¤ C|t|k and |Φptq| ¤ Cp1�|t|kq
for some k ¥ 1. Then, φpqq � o�p1q and Φpqq � O�p1q. Furthermore,

φpqq b:¡d � b¡d � o�

�
b:¡d � b¡d �

1
N



, (2.8.4)

Φpqq b:¡d � b¡d � O�

�
b:¡d � b¡d �

1
N



. (2.8.5)

Proof. In the following, let 0 ¤ τ ¤ 1 be a smooth function with supp pτq � B1p0q and τptq �
1 for all t P B 1

2
p0q, and let τrptq :� τ

�
t
r

�
for r ¡ 0. Clearly φpqq � τrpqqφpqq�p1�τrpqqqφpqq.

By our assumptions we know that |τrφ| ¤ ϵr with ϵr ÝÑ
rÑ0

0 and p1 � τrqφ is zero in a
neighborhood of zero, hence p1�τrpqqqφpqq � O�

�
e�δN

�
by Lemma 2.8.2. We conclude that

|φpqq| ¤ ϵr � O�
�
e�δN

�
for all r ¡ 0, and consequently φpqq � o�p1q. The corresponding

statement for Φpqq follows from the fact that Φpqq ¤ C � φpqq with φptq :� |t|k and
φpqq � o�p1q.
Let us write similar to before φpqq b:¡d � b¡d � τrpqqφpqq b:¡d � b¡d � p1� τrpqqqφpqq b:¡d � b¡d.
In order to verify Eq. (2.8.5). First of all τrpqqφpqq b:¡d � b¡d ¤ ϵrb

:
¡d � b¡d, where we use

that q commutes with b¡d. For the treatment of the second term, recall Inequality (2.8.3)
and πM,Np1� τrpqqq2|φrpqq|2πM,N ¤ C2e�2δN for M

N
¤ δ with C, δ ¡ 0, which follows from

Lemma 2.8.2. Hence,

πM,Np1�τrpqqq|φpqq| b:¡d � b¡d πM,N�πM,Np1�τrpqqq|φpqq|π̂M,N b
:
¡d � b¡d πM,N

¤
���πM,Np1�τrpqqq|φpqq|

��� ���π̂M,N b
:
¡d � b¡d π̂M,N

��� ¤ 4Ce�δN .

We conclude that πM,NφpqqπM,N ¤ 4Ce�δN � ϵrb
:
¡d � b¡d for M

N
¤ δ, and therefore φpqq �

o�
�
b:¡d � b¡d � 1

N

	
. The corresponding statement for Φpqq b:¡d � b¡d follows as above. ■
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Lemma 2.8.5. Given w : Rd ÝÑ H with }wptq} ¤ c |t|k and W : Rd ÝÑ H with
}W ptq} ¤ c

�
1� |t|k� for some c ¡ 0 and k ¥ 1, we define X :� W pqq: � b¡d and

Y :� wpqq: � b¡d. Then, X:X and XX: are of order O�
�
b:¡d � b¡d � 1

N

	
, and Y :Y and Y Y :

are of order o�
�
b:¡d � b¡d � 1

N

	
. Furthermore, for Φ : Rd ÝÑ R with |Φptq| ¤ c p1� |t|jq,

we obtain

Φpqq
�
b:¡d � b¡d

	2
� o�

�
b:¡d � b¡d �

1
N



.

Recall the operator p1 from Definition 2.4.8. We have

pp1 � pq: � pp1 � pq � o�

�
b:¡d � b¡d �

1
N



.

Proof. Let us define Gptq :� W ptq: �W ptq and gptq :� wptq: � wptq. Then we obtain by
Lemma 2.8.4 together with the inequality W ptq �W ptq: ¤ Gptq 1H the estimate

X:X � b:¡d �W pqq �W pqq: � b¡d ¤ Gpqq b:¡d � b¡d � O�

�
b:¡d � b¡d �

1
N



.

Similarly, Y :Y ¤ gpqq b:¡d � b¡d � o�
�
b:¡d � b¡d � 1

N

	
. For the reversed order, we use the fact

that }Gpqq}2 � O� p1q and }gpqq}2 � o� p1q

XX: � X:X � 1
N
}Gpqq}2 � O�

�
b:¡d � b¡d �

1
N



,

Y Y : � Y :Y � 1
N
}gpqq}2 � o�

�
b:¡d � b¡d �

1
N



.

For the next statement, note that we have
�
b:¡d � b¡d

	2
� b:¡d �

�
b:¡d � b¡d � 1

N

	
� b¡d and

b:¡d � b¡d ¤ 2pb¡d�fpqqq: �pb¡d�fpqqq � 2fpqq: �fpqq, and consequently

Φpqq
�
b:¡d � b¡d

	2
� Φpqq b:¡d �

�
b:¡d � b¡d �

1
N



� b¡d

¤ 2b:¡d �pb¡d�fpqqq: �Φpqq�pb¡d�fpqqq�b¡d�2Φpqqfpqq: �fpqq b:¡d �b¡d�
Φpqq
N

b:¡d �b¡d.

Note that 2Φpqqfpqq:�fpqq b:¡d�b¡d and Φpqq
N

b:¡d�b¡d are of order o�
�
b:¡d � b¡d � 1

N

	
by Lemma

2.8.4. For the other term in the inequality above, note that we have the estimate
πM,N b

:
¡d �

�
Φpqqpb¡d � fpqqq: � pb¡d � fpqqq� � b¡d πM,N

� πM,N b
:
¡d �

�
Φpqqπ̂M,Npb¡d � fpqqq: � pb¡d � fpqqqπ̂M,N

� � b¡d πM,N

¤ M

N
πM,NΦpqq b:¡d � b¡d πM,N ¤ C

M

N
πM,N

�
b:¡d � b¡d �

1
N



πM,N ,

where we have used that πM,NΦpqq b:¡d � b¡d πM,N ¤ C πM,N

�
b:¡d � b¡d � 1

N

	
πM,N for

M
N
¤ δ0   1, see Lemma 2.8.4. In order to verify the last part of the Lemma, let us define

the operators Yℓ :� Bℓfpqq: � b¡d. From the previous part of this Lemma we know

pp1 � pq: � pp1 � pq �
ḑ

ℓ�1
Im rYℓs2 ¤ 1

2

ḑ

ℓ�1

�
Y :
ℓ Yℓ � YℓY

:
ℓ

	
� o�

�
b:¡d � b¡d �

1
N



.

■
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For the following Lemma 2.8.6 as well as for the results in Appendix 2.9, it is convenient to
define the operator

QN :� p: � p� b:¡d � b¡d �
1
N
. (2.8.6)

Since QN ¤ TN , where TN is defined in Eq. (2.4.11), any sequence with XN � O� pQNq,
respectively XN � o� pQNq, satisfies XN � O� pTNq, respectively XN � o� pTNq, as well.

Lemma 2.8.6. Let φ : Rd ÝÑ R be a function with |φptq| ¤ c |t|k and Φ : Rd ÝÑ R with
|Φptq| ¤ c

�
1� |t|k� for some constant c and k ¥ 1. Then

pp1q: � φpqq � p1 � o� pQNq ,
pp1q: � Φpqq � p1 � O� pQNq .

In case the partial derivatives Biφptq, BjΦptq and BiBjΦptq are bounded by c p1� |t|jq, we also
have

φpqq pp1q: � p1 φpqq � o� pQNq ,
Φpqq

�
pp1q: � p1

�2
Φpqq � o� pQNq .

Proof. Since p: � p ¤ QN and pp1 � pq: � pp1 � pq � O� pQNq by Lemma 2.8.5, we obtain
pp1q: � p1 � O� pQNq as well, i.e.

πM,Npp1q: � p1πM,N ¤ C1 πM,NQNπM,N

for all M,N with M
N
¤ δ1   1 where δ1 and C1 are suitable constants. By Lemma 2.8.4,

we know that πM,NΦpqqπM,N ¤ C2 for all M
N
¤ δ2   1 where δ2 and C2 are suitable

constants, and πM,NφpqqπM,N ¤ ϵ
�
M
N

�
with limδÑ0 ϵpδq � 0. Based on the observation

that p1 πM,N � πM�1,N p
1 πM,N , we obtain for all M,N that satisfy M

N
¤ δ :� 2mintδ1, δ2u

πM,N pp1q: � Φpqq � p1 πM,N�πM,N pp1q: � πM�1,NΦpqqπM�1,N � p1 πM,N

¤ C1C2 πM,N �QN � πM,N .

Similarly, we have πM,N pp1q: �φpqq � p1 πM,N ¤ C1ϵ
�
M
N

�
πM,N QN πM,N . Hence, pp1q: �Φpqq �

p1 � O� pQNq and pp1q: �φpqq�p1 � o� pQNq. In case we have a polynomial bound on the partial
derivatives as well, let us define wptq :� 1

2
°d
ℓ�1 Bℓφptq b uℓ and W ptq :� 1

2
°d
ℓ�1 BℓΦptq b uℓ.

Using the commutation relation rip1j, qks � δj,k
2N , we compute

φpqq pp1q: � p1 φpqq �
�
φpqq � ip1 � 1

N
wpqq


:
�
�
φpqq � ip1 � 1

N
wpqq



.

From the previous part, we know that pφpqq � ip1q: �φpqq � ip1 � o� pQNq. Furthermore, Lemma
2.8.4 tells us that wpqq: � wpqq � O� p1q, and therefore 1

N
wpqq: � 1

N
wpqq � o� pQNq. Hence,

φpqq pp1q: � p1 φpqq is of order o� pQNq as well. The last estimate in the Lemma can be verified
analogously. ■
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2.9 Analysis of the Operator Square Root
In the following section we derive asymptotic results for operators involving the square root?

1� L1, where L1 is defined in Definition 2.4.8, allowing us to prove a Taylor approximation
for the operators p1� L1qm2 , see Definition 2.5.5. The easiest case m � 2 will be discussed
in the following Lemma 2.9.1, the case m � 1 is the content of Lemma 2.9.2 and the case
m � 3 is covered by Corollary 2.9.5.

Lemma 2.9.1. Recall the operator QN from Eq. (2.8.6) and the function f from Definition
2.4.7, and let us define gptq :� °d

j�1 t
2
j � fptq: � fptq. Then,

rL1 � gpqqs2 � o� pQNq . (2.9.1)

Proof. Using the transformation laws in Lemma 2.4.9 we obtain

L1 � gpqq � fpqq: � b¡d � b:¡d � fpqq � pp1q: � p1 � b:¡d � b¡d �
d

2N .

By Lemma 2.8.5, we know that
�
fpqq: � b¡d � b:¡d � fpqq

�2
� o� pQNq and

�
b:¡d � b¡d

�2
�

o� pQNq, and by Lemma 2.8.6 we know that
�
pp1q: � p1

�2
� o� pQNq. ■

Lemma 2.9.2. Let Assumption 2.1.3 hold and recall the function η1 from Eq. (2.5.7). Then,�?
1� L1 � η1pqq

�2 � o� pQNq . (2.9.2)

Furthermore for any function V : Rd ÝÑ R with |V ptq| ¤ c
�|t| � |t|k� and bounded

derivatives |BtiV ptq| � |BtiBtjV ptq| ¤ c
�
1� |t|k� for some k ¥ 1, we have

V pqq
�?

1� L1 � η1pqq �DV
��
q
η1
�
b¥1

�� � o� pQNq . (2.9.3)

Proof. Let us define hpxq :� χ pxq?1� x, where χ : r0,8q ÝÑ r0, 1s is the function from
the definition of η1 in Eq. (2.5.7), as well as the operator Q :� q: � q � fpqq: � fpqq. By the
support properties of χ we have for all M

N
  1

2 and Ψ P WNF¤M
?

1� L1 Ψ � h pL1qΨ,

and therefore it is enough to verify the statements of this Lemma for h pL1q instead of
?

1� L1.
With h at hand, we have η1pqq � h p}F pqq}2q � h pQq and

DV
��
q
η1pvq � wpqq: � v � v: � wpqq

with wptq :� h1
�°d

j�1 t
2
j � fptq: � fptq

	
fptq, for all v P H0. Hence wpqq � h1 pQq fpqq. In

the following, let ĥ be the Fourier transform of the smooth function h, normalized such that
hpxq � ³

ĥpzq eizx dz. Then,

h pL1q � h pQq �
»
ĥpzq

�
eizL

1 � eizQ
	

dz.
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In order to investigate the integrand, we use the following integral representation

eizL
1 � eizQ � i

» z

0
eiyL

1 pL1 �Qq eipz�yqQ dy

� i

» z

0
eiyL

1
eipz�yqQ dy pL1 �Qq � i

» z

0
eiyL

1 �L1, eipz�yqQ
�

dy.

Let us define the operators Bz :� i
³z

0 e
iyL1eipz�yqQ dy and Rz :� i

³z
0 e

iyL1
�
L1, eipz�yqQ

�
dy.

Clearly, }Bz} ¤ |z|. Regarding Rz, note that every term in the definition of L1 commutes
with Q, except pp1q � p1, which satisfies the relation

�
p1j, φpqq

� � rpj, φpqqs � 1
i2N pBjφq pqq.

We define the family of functions

φxptq :� eixp
°d
j�1 t

2
j�fptq:�fptqq (2.9.4)

and compute

�
L1, eixQ

� � rpp1q � p1, φxpqqs �
ḑ

j�1

��
p1j
�2
, φxpqq

�
� 1
iN

ḑ

j�1
Bjφxpqqp1j �

1
4N2

ḑ

j�1
B2
jφxpqq.

We have the estimates |Bjφxptq| ¤ c|x| |t| and
��B2
jφxptq

�� ¤ c p1� |x|2q p1� |t|2q for some
c ¡ 0, where we use the fact that t ÞÑ fptq is a C2 �Rd,H0

�
function, see Definition 2.4.7.

As before, let πM,N be the orthogonal projection onto WN pF¤Mq. By Lemma 2.8.4

}BjφxpqqπM,N} ¤ c|x| } |q| πM,N} ¤ cr|x|,
}B2
jφxpqqπM,N} ¤ c

�
1� |x|2� } �1� |q|2� πM,N} ¤ cr�1� |x|2� ,

for some constant cr and all x P R and all M ¤ N . Note that p1jWNF¤M � WNF¤M�1 and
}p1j πM,N} ¤

b
M�1
N

, and consequently we have for all M ¤ N � 1

}�L1, eixQ
�
πM,N} ¤ 2

N

ḑ

j�1
}Bjφxpqq πM�1,N} }p1j πM,N}� 1

N2

ḑ

j�1
}B2
jφxpqqπM,N}

¤ dcr
N
|x| � dcr

4N2

�
1� |x|2� ¤ 2dcr

N

�
1� |x|2� .

Therefore, }RzπM,N} ¤ C
N
p1� |z|3q for some constant C.

Let us define B :� ³
ĥpzqBz dz and R :� ³

ĥpzqRz dz. From our estimates on Bz, Rz, we
deduce }B} ¤ ³ |ĥpzq| |z| dz :� C1   8 and }RπM,N} ¤ C

N

³ |ĥpzq| p1� |z|3q dz :� C2
N
 

8. Hence, R:R � o� pQNq. Since h pL1q�h pQq � B pL1 �Qq�R, we obtain the estimate

rh pL1q � h pQqs2 � rB pL1 �Qq �Rs:rB pL1 �Qq �Rs
¤ 2 pL1 �QqB:B pL1 �Qq � 2R:R

¤ 2pC1q2 pL1 �Qq2 � 2R:R � o� pQNq ,

where we have used that pL1 �Qq2 is of order o� pQNq, see Lemma 2.9.1. This proves
Eq. (2.9.2).
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In order to verify Eq. (2.9.3) let us compute
?

1� L1 � η1pqq �DV
��
q
η1
�
b¥1

� �h pL1q�h pQq � h1 pQq
�
b:¡d � fpqq�fpqq: � b¡d

	
�
»
ĥpzq

�
i

» z

0
eiyL

1 pL1�Qq eipz�yqQ dy � iz eizQ
�
fpqq: � b¡d�b:¡d � fpqq

	�
dz

� R�
»
ĥpzq

�
i

» z

0
eiyL

1
eipz�yqQdy pL1�Qq�iz eizQ

�
fpqq: � b¡d�b:¡d � fpqq

	�
dz

� R � i

»
ĥpzq

» z

0

�
eiyL

1 � eiyQ
	
eipz�yqQ dy dz pL1 �Qq (2.9.5)

� i

»
ĥpzqz eizQ dz

�
L1 �Q� fpqq: � b¡d � b:¡d � fpqq

	
.

Let V be a function that satisfies the assumptions of the Lemma. To complete the proof,
we need to verify that V pqq

�
h pL1q � h pQq � h1 pQq

�
fpqq: � b¡d � b:¡d � fpqq

	�
is of order

o� pQNq. By Lemma 2.8.4, we know that |V |2pqq � o�p1q and from the previous part it is clear
that πM,N R

:RπM,N � O�p 1
N2 q. Hence, V pqqR � o�p 1

N
q and especially V pqqR � o�pQNq.

Regarding the second term in Eq. (2.9.5), recall that eiyL1 � eiyQ � pL1 �Qq B:
�y � R:

�y.
Therefore, »

ĥpzqi
» z

0

�
eiyL

1 � eiyQ
	
eipz�yqQ dy dz pL1 �Qq

�
»
ĥpzqi

» z

0

�pL1 �QqB:
�y �R:

�y
�
eipz�yqQ dy dz pL1 �Qq

�
�
pL1 �QqBr : �Rr :� pL1 �Qq ,

with Br :� �i ³ ĥpzq ³z0 eipy�zqQB�y dy dz and Rr :� �i ³ ĥpzq ³z0 eipy�zqQR�y dy dz. In
the following we want to verify that V pqq

�
pL1 �QqBr : �Rr :� pL1 �Qq � o� pQNq. Since

pL1 �Qq2 � o� pQNq by Lemma 2.9.1, it is enough to verify that V pqqRr :RrV pqq and
V pqq pL1 �QqBr :

Br pL1 �QqV pqq are of order o� pQNq. Recall that we have the identity
Ry � i

³y
0 e

ixL1
�
L1�Q, eipy�xqQ� dx � i

³y
0 e

ixL1
�pp1q: � p1, φxpqq� dx with the function φx from

Eq. (2.9.4). We can further express rpp1q: � p1, φxpqqsV pqq as

ḑ

j�1

�
1
iN

BjφxpqqV pqqp1j �
1

2N2BjφxpqqBjV pqq �
1

4N2B2
jφxpqqV pqq



.

Similar to before, this leads to the estimate }RzV pqqπM,N} ¤ Cr
N
p1� |z|3q for some constant

Cr , and consequently }RrV pqqπM,N} ¤ Cr1
N

for some constant Cr 1. Hence we have V pqqRr :RrV pqq �
o� pQNq. Regarding the term V pqq pL1 �QqBr :

Br pL1 �QqV pqq, note that }Br}2 �: Cr 2   8.
Applying the Cauchy–Schwarz yields

V pqq pL1 �QqBr :
Br pL1 �QqV pqq ¤ Cr 2 V pqq pL1 �Qq2 V pqq

¤5Cr 2V pqq
�
fpqq: �b¡d b:¡d �fpqq�b:¡d �fpqqfpqq: �b¡d�

�pp1q: �p1�2�
�
b:¡d �b¡d

	2
� d2

N2

�
V pqq.
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Let us define the function wptq :� V ptqfptq. By Lemma 2.8.5 we obtain that

V pqq fpqq: � b¡d b:¡d � fpqqV pqq � wpqq: � b¡d b:¡d � wpqq � o� pQNq ,
V pqq b:¡d � fpqq fpqq: � b¡d V pqq � b:¡d � wpqqwpqq: � b¡d � o� pQNq ,

and V pqq
�
b:¡d � b¡d

	2
V pqq � o� pQNq. Furthermore, V pqq

�
pp1q: � p1

�2
V pqq � o� pQNq by

Lemma 2.8.6. We conclude that V pqq pL1 �QqBr :
Br pL1 �QqV pqq � o� pQNq.

Let us now verify that the final term Vr pqq�L1 �Q� b:¡d � fpqq � fpqq: � b¡d
	

in Eq. (2.9.5)

is of order o� pQNq, where Vr ptq :� V ptq ³ ĥpzqiz eizp°dj�1 t
2
j�fptq:�fptqq dz. By the definition

of L1 and Q, we have the identity

Vr pqq�L1 �Q� fpqq: � b¡d � b:¡d � fpqq
	
� Vr pqqb:¡d � b¡d � Vr pqq pp1q: � p1 � d

2N V pqq.

The first term is of order o� pQNq by Lemma 2.8.4, the second term is by Lemma 2.8.6 and
regarding the last term we know that d

2NV pqq � o� pQNq by Lemma 2.8.4. ■

Before we can verify the Taylor approximation for the operator p1� Lq 3
2 in Corollary 2.9.5, we

need the following two results, which are of independent relevance for the proof of Theorem
2.5.16.

Lemma 2.9.3. We have pL1q2 � o� p1q, and furthermore
?

1� L1QN

?
1� L1 � O� pQNq , (2.9.6)

L1QN L1 � o� pQNq . (2.9.7)

Proof. Note that }L1πM,N} � M
N

for all M ¤ N , and therefore we immediately obtain
pL1q2 � o� p1q. In order to verify Equations (2.9.6) and (2.9.7), it is enough to prove that?

1� L1 �ξ: � ξ�?1� L1 � O� pQNq and L1 �ξ: � ξ�L1 � o� pQNq for ξ P tp1, b¡du.

The case ξ � p1: In order to verify
?

1� L1 �ξ: � ξ�?1� L1 � O� pQNq, observe that we
have for all Ψ P WNF¤N�1 the commutation law

p1j
?

1� L1Ψ �
b

1� L1 � 1
N
�
b

1� L1 � 1
N

2 p1jΨ�
b

1� L1 � 1
N
�
b

1� L1 � 1
N

2 qjΨ.

For M ¤ N � 2, let us define the operators BM,N :�
?

1�L1� 1
N
�
?

1�L1� 1
N

2 πM�1,N and

BrM,N :�
?

1�L1� 1
N
�
?

1�L1� 1
N

2 πM�1,N . Note that }BM,N} ¤ 1 and }BrM,N}2 ¤ C
N2 for all

M
N
¤ δ0, where C and 0   δ   1 are suitable constants. Consequently

πM,N

?
1� L1 pp1q: �p1

?
1� L1πM,N �

����BM,Nb1H �p1�BrM,Nb1H �q
	
πM,N

���2
¤ 2 |BM,N b 1H � p1 πM,N |2 � 2

���BrM,N b 1H � q πM,N

���2
¤ πM,N pp1q: � p1 πM,N � Cpd� 1q

N2 ,
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which concludes the proof of
?

1� L1 pp1q: � p1?1� L1 � O� pQNq. The estimate L1 pp1q: �
p1 L1 � o� pQNq follows from an analogue commutation law.

The case ξ � b¡d: In order to verify
?

1� L1 b:¡d � b¡d
?

1� L1 � O� pQNq, note that�?
1� L1 � η1pqq

�2 � o� pQNq by 2.9.2, i.e. there exists a function ϵ with ϵpδq ÝÑ
δÑ0

0

and πM,N

�?
1� L1 � η1pqq

�2
πM,N ¤ ϵ

�
M
N

�
πM,N QN πM,N . By Lemma 2.8.3, we know

that π̂M,N b
:
¡d � b¡d π̂M,N ¤ C for a constant C. Furthermore

�?
1� L1 � η1pqq

�
π̂M,N �

π̂M,N

�?
1� L1 � η1pqq

�
. Let us define S :� �?

1� L1 � η1pqq
�
b:¡d � b¡d

�?
1� L1 � η1pqq

�
,

and estimate

πM,NSπM,N � πM,N

�?
1� L1 � η1pqq

�
π̂M,N b

:
¡d �b¡d π̂M,N

�?
1� L1 � η1pqq

�
πM,N

¤ 4 πM,N

�?
1� L1 � η1pqq

�2
πM,N ¤ 4 ϵ

�
M

N



πM,N QN πM,N .

Hence, S � o� pQNq and therefore
?

1� L1 b:¡d � b¡d
?

1� L1 ¤ 2
�
S � η1pqq b:¡d � b¡d η1pqq

	
� O� pQNq .

The proof of L1 b:¡d � b¡d L1 � o� pQNq can be carried out in a similar fashion. ■

Corollary 2.9.4. Let XN be a sequence with XN � O� pQNq and YN a sequence with
YN � o� pQNq. Then,

?
1� L1XN

?
1� L1 � O� pQNq , (2.9.8)?

1� L1YN
?

1� L1 � o� pQNq , (2.9.9)
L1XNL1 � o� pQNq . (2.9.10)

Proof. The Corollary follows from Lemma 2.9.3 and the fact that πM,N commutes with?
1� L1 and L1. For the purpose of illustration, let us verify Eq. (2.9.8). By the assumptions

of the Corollary we know that there exist constants C and δ ¡ 0, such that πM,N XN πM,N ¤
CπM,N QN πM,N . Consequently

πM,N

?
1� L1XN

?
1� L1 πM,N �

?
1� L1πM,N XN πM,N

?
1� L1

¤ CπM,N

?
1� L1QN

?
1� L1 πM,N � O� pQNq ,

where we have used Eq. (2.9.6) from Lemma 2.9.3 in the last equality. ■

Corollary 2.9.5. Let Assumption 2.1.3 hold and let ηm be the functions from Eq. (2.5.7),
with m P t0, . . . , 3u. Then �

p1� L1qm2 � ηmpqq
�2
� o� pQNq .

Proof. The case m � 0 is trivial. The case m � 1 is the content of Lemma 2.9.2 and the
case m � 2 follows from Lemma 2.9.1. Let us now verify the statement in the case m � 3.
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Using the fact that η3ptq � η2ptqη1ptq, we obtain

p1� L1q
?

1� L1 � η3pqq � rp1� L1q � η2pqqs
?

1� L1 � η2pqq
�?

1� L1 � η1pqq
�

� �
�
fpqq: � b¡d � b:¡d � fpqq � pp1q: � p1 � b:¡d � b¡d �

d

2N


?
1� L1

� τrpqqη2pqq
�?

1� L1 � η1pqq
�� r1� τrpqqs η2pqq

�?
1� L1 � η1pqq

�
,

where τ : Rd ÝÑ R is a function with τ |B1p0q � 0, τ |RdzB2p0q � 1 and 0 ¤ τ ¤ 1. Since the
function ηr � p1� τqη2 is bounded by a constant c, we obtain using Lemma 2.9.2�?

1� L1 � η1pqq
�
ηr2pqq �?1� L1 � η1pqq

� ¤ c
�?

1� L1 � η1pqq
�2 � o� pQNq .

Note that η1 :� pτ η2q2 is zero in a neighborhood of zero. Therefore, η1pqq � O�
�
e�δN

�
and

η2
1pqqη1pqq � O�

�
e�δN

�
for some δ ¡ 0 by Lemma 2.8.2. By Corollary 2.9.4, we obtain in

particular that
?

1� L1η1pqq?1� L1 � o� pQNq. Hence we have the estimate�?
1�L1�η1pqq

�
η1pqq �?1�L1�η1pqq

�¤2
?

1�L1η1pqq
?

1�L1�2η2
1pqqη1pqq�o� pQNq .

By Lemma 2.8.5, Lemma 2.8.6 and Corollary 2.9.4, we know that the operators
?

1� L1
�
b:¡d � fpqq � fpqq: � b¡d

	2?
1� L1

?
1� L1 �pp1q: � p1�2?1� L1 as well as

?
1� L1

�
b:¡d � b¡d

	2?
1� L1 are of order o� pQNq

as well, and therefore

?
1� L1

�
b:¡d � fpqq � fpqq: � b¡d � pp1q: � p1 � b:¡d � b¡d �

d

2N


2?
1� L1 � o� pQNq .

We conclude that p1� L1q?1� L1 � η3pqq � T1 � T2 � T3 is a sum of terms with T :
i Ti �

o� pQNq, and therefore
�p1� L1q?1� L1 � η3pqq

�2 � o� pQNq. ■
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CHAPTER 3
The Fröhlich Polaron at Strong

Coupling – Part I: The Quantum
Correction to the Classical Energy

Abstract. We study the Fröhlich polaron model in R3, and establish the subleading term
in the strong coupling asymptotics of its ground state energy, corresponding to the quantum
corrections to the classical energy determined by the Pekar approximation.

3.1 Introduction and Main Results
This is the first part of a study of the asymptotic properties of the Fröhlich polaron, which
is a model describing the interaction between an electron and the optical modes of a polar
crystal [44]. In the regime of strong coupling between the electron and the optical modes, also
called phonons, it is a well known fact [1, 29, 79] that the ground state energy of the Fröhlich
polaron is asymptotically given by the minimal Pekar energy [106], which can be considered
as the ground state energy of an electron interacting with a classical phonon field. This result
is motivated by using appropriately scaled units, see e.g. [116], which demonstrates that the
strong coupling regime is a semi-classical limit in the phonon field variables. In such units the
Fröhlich Hamiltonian, acting on the space L2pR3q b F pL2pR3qq, reads

H :� �∆x � a pwxq � a: pwxq �N , (3.1.1)

where the annihilation and creation operators satisfy the rescaled canonical commutation
relations

�
apfq, a:pgq� � α�2 xf |gy for f, g P L2pR3q with α ¡ 0 being the coupling strength,

the interaction is given by wxpx1q :� π�
3
2 |x1 � x|�2 and N is the corresponding (rescaled)

particle number operator, i.e. N :� °8
n�1 a

:pφnqapφnq where tφn : n P Nu is an orthonormal
basis of L2pR3q. The definition of the Fröhlich Hamiltonian in Eq. (3.1.1) has to be understood
in the sense of quadratic forms, see for example [116], due to the ultraviolet singularity in the
interaction wx. By substituting the annihilation and creation operators a and a: in Eq. (3.1.1)
with a (classical) phonon field φ P L2pR3q, i.e. replacing apfq with xf |φy and a:pfq with
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xφ|fy, we arrive at the Pekar energy

E pψ, φq : � @
ψ
���∆x � xwx|φy � xφ|wxy � }φ}2 ��ψD (3.1.2)

�
»
|∇ψpxq|2 dx�

¼
wxpx1q

�
φpx1q � φpx1q

	
|ψpxq|2 dx1dx�

»
|φpx1q|2dx1,

where ψ P L2pR3q is the wave-function of the electron. We further define the Pekar functional
FPekpφq :� inf}ψ}�1 E pψ, φq and the minimal Pekar energy ePek :� infφ FPekpφq. It is known
that the ground state energy Eα :� inf σ pHq, as a function of the coupling strength α, is
asymptotically given by the minimal Pekar energy ePek in the limit α Ñ 8 [1, 29]. More
precisely, one has ePek ¥ Eα � ePek � OαÑ8

�
α�

1
5

	
, as shown in [79]. In this work we are

going to verify the prediction in the physics literature [123, 2, 3] that the sub-leading term in
this energy asymptotics is actually of order α�2 with a rather explicit pre-factor

Eα � ePek � 1
2α2 Tr

�
1�

?
HPek

�
� oαÑ8

�
α�2� , (3.1.3)

where φPek is a minimizer of FPek and HPek is the Hessian of FPek at φPek restricted to
real-valued functions φ P L2

RpR3q, i.e. HPek is an operator on L2pR3q defined by

xφ|HPek|φy � lim
ϵÑ0

1
ϵ2

�
FPek�φPek � ϵφ

�� ePek� (3.1.4)

for all φ P L2
RpR3q. The prediction in Eq. (3.1.3) has been verified previously for polaron

models either confined to a bounded region of R3 [40] or to a three-dimensional torus [37].
The methods presented there exhibit substantial problems regarding their extension to the
unconfined case, however. In this paper we present a new approach, which is partly based on
techniques previously developed in the study of Bose–Einstein condensation and the validity of
Bogoliubov’s approximation for Bose gases [71, 72, 16] in the mean-field limit. We employ a
localization method for the phonon field, which breaks the translation-invariance and effectively
reduces the problem to the confined case, allowing for an application of some of the methods
developed in [40, 37]. Our main result is the following Theorem 3.1.1 where we verify the
lower bound on Eα in Eq. (3.1.3) .

Theorem 3.1.1. Let Eα be the ground state energy of H in (3.1.1). For any s   1
29

Eα ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� α�p2�sq (3.1.5)

for all α ¥ αpsq, where αpsq ¡ 0 is a suitable constant.

As an intermediate result, which might be of independent interest, we will establish the
existence of a family of approximate ground states, by which we mean states whose energy
is given by the right side of (3.1.3), exhibiting complete Bose–Einstein condensation with
respect to a minimizer φPek of the Pekar functional FPek. We refer to Theorem 3.3.13 for a
precise statement.

In contrast to the lower bound, the proof of the upper bound on Eα in Eq. (3.1.3) is essentially
the same as for confined polarons [40, 37] and can be obtained by the same methods. It is
also contained as a special case in [91], where it has been verified that the ground state energy
EαpP q as a function of the (conserved) total momentum P can be bounded from above by

EαpP q ¤ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |P |2

2α4m
� Cϵα

� 5
2�ϵ, (3.1.6)
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where m :� 2
3}∇φPek}2 and ϵ ¡ 0, with Cϵ a suitable constant. Since Eα � Eαp0q [50, 30, 93],

Theorem 3.1.1 in combination with Eq. (4.1.3) for the specific case P � 0 concludes the
proof of Eq. (3.1.3). Combining (4.1.3) with Theorem 3.1.1, one further obtains an upper
bound on the increment EαpP q � Eα, a quantity related to the effective mass of the polaron
[63, 77, 119, 9]. In the second part [18] we will discuss, in analogy to Theorem 3.1.1, the
corresponding lower bound on EαpP q.

The proof of Eq. (3.1.3) for confined systems in [40, 37] requires an asymptotically correct
local quadratic lower bound on the Pekar functional FPekpφq for configurations close to a
minimizer, as well as a sufficiently strong quadratic lower bound valid for all configurations.
While our proof of Theorem 3.1.1 makes use of a local quadratic lower bound as well, we
believe that in the translation-invariant setting any globally valid quadratic lower bound cannot
be sufficiently strong, and therefore new ideas are necessary. As we explain in the following, we
circumvent this problem by constructing an approximate ground state Ψ, which is essentially
supported close to a minimizer of the Pekar functional FPek, and consequently we only require
a locally valid quadratic lower bound.

Proof strategy of Theorem 3.1.1. Even though we want to verify a lower bound on Eα,
let us first discuss how test functions providing an asymptotically correct upper bound are
expected to look like. In the following let pψPek, φPekq denote a minimizer of the Pekar energy
E defined in Eq. (3.1.2). It has been established in [76] that all other minimizers are given by
translations φPek

x px1q :� φPekpx1 � xq and ψPek
x px1q :� eiθψPekpx1 � xq of φPek and eiθψPek,

where θ is an arbitrary phase. W.l.o.g. let us denote in the following by pψPek, φPekq the unique
minimizer of E such that φPek is radial and ψPek is non-negative. Then all the product states
of the form ψPek

x bΩφPek
x

with x P R3, where ΩφPek
x

is the coherent state corresponding to φPek
x

(defined by apwqΩφ � xw|φyΩφ for all w P L2pR3q), have the asymptotically correct leading
term in the energy xψPek

x b ΩφPek
x
|H |ψPek

x b ΩφPek
x
y � ePek. By taking convex combinations

of these states on the level of density matrices, we can construct a large family of low energy
states

Γµ :�
»
R3
|ψPek
x b ΩφPek

x
y xψPek

x b ΩφPek
x
| dµpxq

for any given probability measure µ on R3. Clearly, Γµ exhibits the correct leading energy
xH yΓµ � ePek. Our proof of the lower bound given in Eq. (3.1.5) relies on the observation
that asymptotically as α Ñ 8, any low energy state Ψ is of the form Γµ with a suitable
probability measure µ on R3. Since we only need this statement for the phonon part of Ψ, we
will verify the weaker statement

Trelectron
� |Ψy xΨ| � � »

R3
|ΩφPek

x
y xΩφPek

x
| dµpxq

instead, see Theorem 3.3.2 for a precise formulation. This statement is analogous to a version
of the quantum de Finetti theorem used in [71] in order to verify the Hartree approximation
for Bose gases in a general setting. The main technical challenge of this paper will be the
construction of approximate ground states Ψ where the corresponding measure is a delta
measure, µ � δ0, i.e. the construction of states where the phonon part is essentially given
by a single coherent state ΩφPek . The method presented here is based on a grand-canonical
version of the localization techniques previously developed for translation-invariant Bose gases
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in [16], and in analogy to the concept of Bose–Einstein condensation we say that such states
satisfy (complete) condensation with respect to the Pekar minimizer φPek. Heuristically this
means that only field configurations φ close to the minimizer φPek are relevant, hence the
translational degree of freedom has been eliminated and the system is effectively confined.

Based on this observation we can adapt the strategy developed for confined polarons in
[40, 37], which starts by introducing an ultraviolet regularization in the interaction wx with
the aid of a momentum cut-off Λ, leading to the study of the truncated Hamiltonian HΛ.
Using a lower bound on the excitation energy FPekpφq � ePek that is, up to a symplectic
transformation, quadratic in the field variables φ and valid for all φ close to the minimizer
φPek, one can bound the truncated Hamiltonian from below by an operator that is, up to a
unitary transformation, quadratic in the creation and annihilation operators. The lower bound
is only valid, however, if tested against a state satisfying (complete) condensation in φPek.
Finally an explicit diagonalization of this quadratic operator yields the desired lower bound in
Eq. (3.1.5).

The symplectic transformation on the phase space L2pR3q, respectively the corresponding
unitary transformation on the Hilbert space F pL2pR3qq, is one of the key novel ingredients in
our proof. It turns out to be necessary due to the presence of the translational symmetry,
which makes it impossible to find a non-trivial positive semi-definite quadratic lower bound on
FPekpφq � ePek. This issue has already been addressed in the study of a polaron on the three
dimensional torus [37], where a different coordinate transformation is used, however. The
symplectic/unitary transformation presented in this paper is an adaptation of the one used in
the study of translation-invariant Bose gases in [16].

Outline. The paper is structured as follows. In Section 3.2 we will introduce an ultraviolet
cut-off as well as a discretization in momentum space, and provide estimates on the energy
cost associated with such approximations. Section 3.3 then contains our main technical result
Theorem 3.3.13, in which we verify the existence of approximate ground states satisfying
(complete) condensation with respect to a minimizer φPek of the Pekar functional FPek.
Subsequently we will discuss a large deviation estimate for such condensates in Section 3.4,
quantifying the heuristic picture that only configurations close to the point of condensation
matter. In Section 3.5 we then discuss properties of the Pekar functional FPek. In particular,
we will discuss quadratic approximations around the minimizer φPek as well as lower bounds
that are, up to a coordinate transformation, quadratic in φ. Together with the error estimates
from Section 3.2 and the large deviation estimate from Section 3.4, applied to the approximate
ground state constructed in Section 3.3, this will allow us to verify our main Theorem 3.1.1
in Section 3.6. The subsequent Section 3.7 contains the proof of Theorem 3.3.2, which can
be interpreted as a version of the quantum de Finetti theorem adapted to our setting. Finally,
Appendices 3.8 and 3.9 contain auxiliary results concerning the Pekar minimizer φPek and the
projections introduced in Section 3.2, respectively.

3.2 Models with Cut-off
In this section we will estimate the effect of the introduction of an ultraviolet cut-off, as well
as a discretization in momentum space, on the ground state energy, following similar ideas
as in [79, 40, 37]. We will eventually apply these results for two different levels of coarse
graining, a rough scale used in the proof of Theorem 3.3.2 in Section 3.7, which applies to
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low energy states with energy ePek � oαÑ8p1q, and a fine scale precise enough to yield the
correct ground state energy up to errors of order oαÑ8 pα�2q, see the proof of Theorem 3.1.1
in Section 3.6.

Definition 3.2.1. Given parameters 0   ℓ   Λ, let us define for z P 2ℓZ3zt0u the cubes
Cz :� rz1 � ℓ, z1 � ℓq�rz2 � ℓ, z2 � ℓq�rz3 � ℓ, z3 � ℓq, and let z1, .., zN be an enumeration
of the set of all z � pz1, z2, z3q P 2ℓZ3zt0u such that Cz � BΛp0q, where Brp0q is the (open)
ball of radius r around the origin. Then we define the orthonormal system en P L2pR3q as

enpxq :� 1b
p2πq3 ³

Czn
1
|k|2 dk

»
Czn

ei k�x

|k| dk,

as well as the translated system ey,npxq :� enpx� yq and the orthogonal projection Πy
Λ,ℓ onto

the space spanned by tey,1, . . . , ey,Nu. Furthermore we denote with ΠΛ the projection onto
the spectral subspace of momenta |k| ¤ Λ.

Lemma 3.2.2. Let wxpx1q :� π�
3
2 |x1 � x|�2. Then we obtain for 0   ℓ   Λ and x, y P R3

the following estimate on the L2 norm��ΠΛwx � Πy
Λ,ℓwx

�� À |x� y|ℓ
?

Λ�
?
ℓ.

Proof. With �p denoting Fourier transformation, we have

?
2π2 Πy

Λ,ℓwx
{ pkq �

Ņ

n�1

1³
Czn

1
|k1|2 dk1

»
Czn

eik
1�py�xq

|k1|2 dk1 1
|k|1Czn pkq,

where we have used that ΠΛwx{pkq � 1?
2π2|k|1BΛp0qpkq. Defining the function σnpk, x, yq :�

1³
Czn

1
|k1|2 dk1

³
Czn

eik
1�py�xq�eik�py�xq

|k1|2 dk1, we further have

?
2π2

�
Πy

Λ,ℓwx
{ pkq � ΠΛwx{pkq

	
�

Ņ

n�1
σnpk, x, yq 1

|k|1Czn pkq �
1
|k|1Apkq

withA :� BΛp0qz
��N

n�1 Czn
	

. Making use of the estimate |σnpk, x, yq|2 ¤ |y�x|2 maxk1PCzn |k1�
k|2 ¤ 12|x� y|2ℓ2 for k P Czn , we therefore obtain

Ņ

n�1

»
Czn

|σnpk, x, yq|2 1
|k|2 dk ¤ 12|x� y|2ℓ2

»
|k|¤Λ

1
|k|2 dk � 48π|x� y|2ℓ2Λ.

Since A � B2ℓ YBΛzBΛ�4ℓ we consequently have
³
A

1
|k|2 dk À ℓ. ■

Definition 3.2.3. For y P R3, 0   ℓ   Λ, let us define the cut-off Hamiltonians

Hy
Λ,ℓ :� �∆x � a

�
Πy

Λ,ℓwx
�� a:

�
Πy

Λ,ℓwx
��N , (3.2.1)

HΛ :� �∆x � a pΠΛwxq � a: pΠΛwxq �N . (3.2.2)
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These Hamiltonians can be interpreted as the restriction of H (in the quadratic form sense)
to states where only the phonon modes in Πy

Λ,ℓL
2pR3q, respectively ΠΛL

2pR3q, are occupied.
In particular, this implies that inf σpHy

Λ,ℓq ¥ Eα as well as inf σpHΛq ¥ Eα. In the following
we shall quantify the energy increase due to the introduction of the cut-offs.

Note that the α-dependence of the Hamiltonians H, Hy
Λ,ℓ and HΛ only enters through the

rescaled canonical commutation relations
�
apfq, a:pgq� � α�2 xf |gy satisfied by the creation

and annihilation operators a: and a, and we will usually suppress the α dependency in our
notation for the sake of readability. In the rest of this paper, we will always assume that α is
a parameter satisfying α ¥ 1 and, in case it is not stated otherwise, estimates hold uniformly
in this parameter for α Ñ 8, i.e. we write X À Y in case there exist constants C, α0 ¡ 0
such that X ¤ C Y for all α ¥ α0.

The proof of the subsequent Lemma 3.2.4 closely follows the arguments in [80, 79], where it
was shown that H is bounded from below and well approximated by an operator containing only
finitely many phonon modes. For the sake of completeness we will illustrate the proof, which is
based on the Lieb–Yamazaki commutator method, see [80]. In the following Lemma 3.2.4, we
will use the identification L2pR3q b F pL2pR3qq � L2pR3,F pL2pR3qqq, in order to represent
elements Ψ P L2pR3q b F pL2pR3qq as functions x ÞÑ Ψpxq with values in F pL2pR3qq,
allowing us to define the support supp pΨq as the closure of tx P R3 : Ψpxq � 0u.
Lemma 3.2.4. We have for all 0   ℓ   Λ ¤ K and L ¡ 0, and states Ψ with supp pΨq �
BLpyq the estimate

��xΨ|HK �Hy
Λ,ℓ|Ψy

�� À�
Lℓ
?

Λ�
?
ℓ�

c
1
Λ � 1

K

�
xΨ| �∆x �N � 1|Ψy . (3.2.3)

Furthermore, there exists a constant d ¡ 0 such that

HK ¥ � d

t2
� t

�
N � α�2� , (3.2.4)

HK ¥ �d� 1
2 p�∆x �N q (3.2.5)

for all t ¡ 0, K ¥ 0 and α ¥ 1.

Proof. Let us define the functions unx by unxxpkq :� 1?
2π21BKp0qzBΛp0qpkqkne

ik�x
|k|3 . We have

a pBxnunxq � a: pBxnunxq �
�Bxn , a punxq�a: punxq� and

� i
�Bxn , a punxq�a: punxq� ¤ �2ϵB2

xn�
1
ϵ

�
apunxq:apunxq�apunxqapunxq:

�
¤ �2ϵ B2

xn �
}unx}2

ϵ

�
2N � α�2� � 2}unx}

�
�B2

xn �N � 1
2α

�2


,

where we have applied the Cauchy–Schwarz inequality in the first line and used the specific
choice ϵ :� }unx} in the last identity. Note that the L2-norm }unx} is independent of x, and
furthermore we can express � �

Hy
Λ,ℓ �HK

�
as

� a
�
ΠΛwx�Πy

Λ,ℓwx
��a: �ΠΛwx�Πy

Λ,ℓwx
�� i

3̧

n�1

�
a pBxnunxq� a: pBxnunxq

�
¤ 2

��ΠΛwx � Πy
Λ,ℓwx

�� p1�N q � 2 max
nPt1,2,3u

}unx}
�
�∆x � 3N � 3

2α
�2


.
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This concludes the proof of Eq. (3.2.3), since we have
��ΠΛwx � Πy

Λ,ℓwx
�� À Lℓ

?
Λ�?

ℓ for
all x P supp pΨq by Lemma 3.2.2 and }unx}2 À 1

Λ � 1
K

. The other statements in Eqs. (3.2.4)
and (3.2.5) can be verified similarly, using the decomposition ΠKwx � ΠK1wx�

°3
n�1

1
i
Bxngnx

with gnxp pkq :� 1?
2π21BKp0qzBK1 p0qpkqkne

ik�x
|k|3 where K 1 ¤ K is large enough such that }gnx}  

1
12 . ■

The subsequent Theorem 3.2.5 is a direct consequence of the results in [40] and [97, 37],
where multiple Lieb–Yamazaki bounds as well as a suitable Gross transformation are used in
order to verify that the energy cost of introducing an ultraviolet cut-off Λ � α

4
5 p1�σq with

σ ¡ 0 is only of order oαÑ8 pα�2q. Combined with an application of the IMS localization
formula, as was also done in [79], one obtains the following.

Theorem 3.2.5. Given a constant 0   σ ¤ 1
4 , let us introduce the momentum cut-off

Λ :� α
4
5 p1�σq as well as the space cut-off L :� α1�σ. Then there exists a sequence of states

Ψ�
α satisfying xΨ�

α|HΛ|Ψ�
αy�Eα À α�2p1�σq and supp pΨ�

αq � BLp0q, where Eα is the ground
state energy of H.

Proof. We start by arguing that

inf σ pHΛq � Eα À Λ� 5
2 � α�1Λ� 3

2 � α�2Λ� 1
2 (3.2.6)

for large α. An analogous bound was shown in [40, Prop. 7.1] in the confined case, where
additional powers of ln Λ appear due to complications coming from the boundary. In the
translation-invariant setting on a torus, (3.2.6) is shown [37, Prop. 4.5], and that proof applies
verbatim also in the unconfined case considered here (as has been worked out also in [97]).

By our choice of Λ � α
4
5 p1�σq, we immediately obtain inf σ pHΛq � Eα À α�2p1�σq. Hence

there exists a state Ψ satisfying xΨ|HΛ|Ψy � Eα À α�2p1�σq. In order to construct a state
which is furthermore supported on the ball BLp0q, let χ be a non-negative H1pR3q function
with

³
χpyq2dy � 1 and supp pχq � B1p0q. We define Ψypxq :� L�

3
2χ pL�1px� yqqΨpxq

for y P R3 and compute, using the IMS identity,»
xΨy|HΛ|Ψyy dy � xΨ|HΛ|Ψy � L�3

¼ ��∇xχ
�
L�1px� yq���2 dy }Ψpxq}2dx

� xΨ|HΛ|Ψy � L�2}∇χ}2 � Eα �OαÑ8
�
α�2p1�σq� ,

see also [79] where an explicit choice of χ is used. Since
³ }Ψy}2dy � 1, there clearly exists a

y P R3 such that the state Ψ�
α :� }Ψy}�1Ψy satisfies xΨ�

α|HΛ|Ψ�
αy � Eα À α�2p1�σq. By the

translation invariance of HΛ we can assume that y � 0. ■

3.3 Construction of a Condensate
The purpose of this section is to construct a sequence of approximate ground states Ψα, i.e.
states with xΨα|HΛ|Ψαy � Eα � oαÑ8 pα�2q and Λ as in Theorem 3.2.5, that additionally
satisfy complete condensation with respect to a minimizer φPek of the Pekar functional
FPek, i.e. the phonon part of Ψα is in a suitable sense close to a coherent state ΩφPek with
ΩφPek :� eα

2a:pφPekq�α2apφPekqΩ, where Ω is the vacuum in F pL2pR3qq, see Lemma 3.3.12
and Theorem 3.3.13. The construction will be based on various localization procedures of the
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phonon field with respect to operators of the form Fp defined in the subsequent Definition
3.3.1. Before we start with the localization procedures, we will discuss an asymptotic formula
for the expectation value xΨα|Fp |Ψαy in Theorem 3.3.2 as well as the energy cost of localizing
with respect to such an operator Fp in Lemma 3.3.3.

Definition 3.3.1. Given a function F : M pR3q ÝÑ R, where M pR3q is the set of
finite (Borel) measures on R3, let us define the operator Fp acting on the Fock space
F pL2pR3qq �

8À
n�0

L2
sympR3�nq as Fp 8À

n�0
Ψn :�

8À
n�0

F nΨn, where

pF nΨnq px1, . . . , xnq :� F

�
α�2

ņ

k�1
δxk

�
Ψnpx1, . . . , xnq

and F0Ψ0 � F p0qΨ0, i.e. Fp acts component-wise on
8À
n�0

L2
sympR3�nq by multiplication with

the real valued function px1, . . . , xnq ÞÑ F pα�2 °n
k�1 δxkq.

In order to keep the notation simple, we will allow F : M pR3q ÝÑ R to act on non-negative
L1 pR3q functions q : R3 ÝÑ r0,8q as well by identifying them with the corresponding
measure λ P M pR3q defined as dλ

dx � qpxq.
Before we discuss the asymptotic formula for the expectation value xΨα|Fp |Ψαy, let us introduce
a family of cut-off functions χϵ pa ¤ fpxq ¤ bq where ϵ ¥ 0 determines the sharpness of the
cut-off. In the following let α, β : R ÝÑ r0, 1s be C8 functions such that α2 � β2 � 1,
supp pαq � p�8, 1q and supp pβq � p�1,8q. For a given function f : X ÝÑ R and
constants �8 ¤ a   b ¤ 8, let us define the function χϵ pa ¤ f ¤ bq : X ÝÑ r0, 1s as

χϵ pa ¤ fpxq ¤ bq :�
#
α
�
fpxq�b

ϵ

	
β
�
fpxq�a

ϵ

	
, for ϵ ¡ 0

1ra,bs pfpxqq , for ϵ � 0.
(3.3.1)

Note that
°
jPJ χ

ϵ paj ¤ fpxq ¤ bjq2 � 1 in case the intervals raj, bjq are a disjoint partition
of R with �8 ¤ aj   bj ¤ 8.

Similarly, we define the operator χϵ pa ¤ T ¤ bq :� ³
χϵ pa ¤ t ¤ bq dEptq, where T is a

self-adjoint operator and E is the spectral measure with respect to T . Furthermore we
will write χ pa ¤ f ¤ bq, respectively χ pa ¤ T ¤ bq, in case ϵ � 0 as well as χϵ pa ¤ �q and
χϵ p� ¤ bq in case b � 8 or a � �8, respectively.

The proof of the following Theorem 3.3.2 will be carried out in Section 3.7. It is reminiscent
of the quantum de-Finetti Theorem, and establishes in addition that for low energy states
phonon field configurations are necessarily close to the set of Pekar minimizers given by
tφPek

x uxPR3 .

Theorem 3.3.2. Given m P N, C ¡ 0 and g P L2pR3q, we can find a constant T ¡ 0 such
that for all α ¥ 1 and states Ψ satisfying χ pN ¤ CqΨ � Ψ and xΨ|HK |Ψy ¤ ePek � δe

with δe ¥ 0 and K ¥ α
8

29 , there exists a probability measure µ on R3, with the property����@Ψ
��Fp ��ΨD� »

R3
F
�|φPek

x |2� dµpxq
���� ¤ T }f}8 max

!?
δe, α�

2
29

)
(3.3.2)
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for all F : M pR3q ÝÑ R of the form F pρq � ³
. . .

³
fpx1, . . . , xmq dρpx1q . . . dρpxmq with

bounded f : R3�m ÝÑ R, and furthermore����AΨ
���W�1

g NWg

���ΨE
�
»
R3

��φPek
x � g

��2 dµ pxq
���� ¤ T max

!?
δe, α�

2
29

)
, (3.3.3)

where Wg is the Weyl operator characterized by W�1
g aphqWg � aphq � xh|gy.

In the subsequent Lemma 3.3.3 we introduce a generalized IMS-type estimate quantifying
the energy cost of localizing with respect to an Fp -operator, similar to the generalized
IMS results in [78, Theorem A.1] and [72, Proposition 6.1]. In order to formulate the
result, let us define for a given subset Ω � M pR3q and a (quadratic) partition of unity
P � tFj : M pR3q ÝÑ R : j P Ju, i.e. 0 ¤ Fj ¤ 1 and

°
jPJ F

2
j � 1, the variation of this

partition on Ω as

VΩ pPq :� α4 sup
ρPΩ,yPR3

¸
jPJ

��Fj �ρ� α�2δy
�� Fj pρq

��2 .
Lemma 3.3.3. There exists a constant c ¡ 0, such that for any partition of unity P � tFj :
M pR3q ÝÑ R : j P Ju, Ω � M pR3q, K ¡ 0, α ¥ 1 and state Ψ with 1ΩxΨ � Ψ�����¸

jPJ

@
FjxΨ

��HK

��FjxΨ
D� xΨ|HK |Ψy

����� ¤ c
?
Kα�4VΩ pPq

@
Ψ
��?N � α�2

��ΨD
. (3.3.4)

Furthermore given M ¡ 0, there exists a constant c1 ¡ 0 such that we have for any φ P L2pR3q
satisfying }φ} ¤M , partition of unity tfj : R ÝÑ R : j P Ju, K ¥ 1, α ¥ 1 and state Ψ�����¸

jPJ
xΨj|HK |Ψjy � xΨ|HK |Ψy

����� ¤ c1
?
Kα�4VMpR3q pP 1q

A
Ψ
���?N � 1

���ΨE
,

where we define Ψj :� fj
�
W�1
φ NWφ

�
Ψ with Wφ being the corresponding Weyl operator

and P 1 :� tF 1
j : M pR3q ÝÑ R : j P Ju with F 1

jpρq :� fjp
³

dρq.

Proof. By applying the IMS identity, we obtain¸
jPJ

FjxHKFjx�HK � 1
2
¸
jPJ

��
Fjx,HK

�
, Fjx�

� �
¸
jPJ

Re
��
Fjx, a pΠKwxq

�
, Fjx�

,

where we have used the fact that Fj commutes with �∆x and N in the last identity. Since
a state Ψ is a function with values in F pL2pR3qq �

8À
n�0

L2
sympR3�nq, we can represent it

as Ψ � À8
n�0 Ψn where Ψnpy, x1, . . . , xnq is a function of the electron variable y and the

n phonon coordinates xk P R3. In order to simplify the notation, we will suppress the
dependence on the electron variable y in our notation. By an explicit computation, we obtain��
Fp , a pvq� , Fp�À8

n�0 Ψn � �À8
n�0

b
n�1
α2 Ψ1

n with

Ψ1
npx1, . . . , xnq�

»�
F

�
α�2

n�1̧

k�1
δxk



�F

�
α�2

ņ

k�1
δxk


�2

vpxn�1qΨn�1px1, . . . , xn�1qdxn�1,
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for v P L2pR3q and F : M pR3q ÝÑ R. By the definition of VΩ pPq we obtain that

σpx1, . . . , xn�1q :�
¸
jPJ

�
Fj

�
α�2

n�1̧

k�1
δxk

	
� Fj

�
α�2

ņ

k�1
δxk

	�2

¤ α�4VΩ pPq

for all xn�1 P R3 and every px1, . . . , xnq P R3n with α�2 °n
k�1 δxk P Ω. Hence we can

estimate
���AΨ

���°jPJ Re
��
Fp j, a pvq� , Fp j� ���ΨE���, using the notation X � px1, . . . , xnq, by

8̧

n�0

c
n�1
α2

»
|ΨnpXq|

»
σpX, xn�1q|vpxn�1qΨn�1pX, xn�1q|dxn�1dX

¤ α�5VΩ pPq
8̧

n�0

?
n� 1

»
|ΨnpXq|

»
|vpxn�1qΨn�1pX, xn�1q|dxn�1dX

¤ α�5VΩ pPq }v}
8̧

n�0

?
n� 1

��Ψn

�� ��Ψn�1
�� ¤ α�4VΩ pPq }v}

A
Ψ
���?N � α�2

���ΨE
.

This concludes the proof of Eq. (3.3.4), using the concrete choice v :� ΠKwx, since
}ΠKwx}2 � 1

2π2

³
|k|¤K

1
|k|2 � 2

π
K.

In order to verify the second statement we apply the unitary transformation Wφ to the operator
X :� °

jPJ fj
�
W�1
φ NWφ

�
HKfj

�
W�1
φ NWφ

��HK and compute

WφXW�1
φ � 1

2
¸
jPJ

��
fj pN q ,WφHKW

�1
φ

�
, fj pN q

�
�

¸
jPJ

Re
��
fj pN q , a pφ� ΠKwxq

�
, fj pN q

�
�

¸
jPJ

Re
��
Fp 1
j, a pvq

�
, Fp 1

j

�
,

where we defined v :� φ � ΠKwx and applied the definition F 1
jpρq � fj

�³
dρ
�
. We know

from the previous estimates that

�
¸
jPJ

Re
��
fj pN q , a pvq

�
, fj pN q

�
¤ α�4VMpR3q pP 1q }v}

?
N � α�2.

Clearly }v} ¤ }φ} � }ΠKwx} À
?
K for K ¥ 1, and consequently�����¸

jPJ
xΨj|HK |Ψjy � xΨ|HK |Ψy

����� À ?
Kα�4VMpR3q pP 1q

A
Ψ
���bW�1

φ NWφ � α�2
���ΨE

À
?
Kα�4VMpR3q pP 1q

A
Ψ
���?N � 1

���ΨE
,

where we have used that W�1
φ NWφ ¤ 2 pN � }φ}2q and the operator-monotonicity of the

square root. ■

In the following let L :� α1�σ and Λ :� α
4
5 p1�σq with 0   σ ¤ 1

4 , and let Ψ

α be a sequence

of states satisfying supp pΨ

αq � BLp0q and Erα � Eα À α�

4
29 , where

Erα :� xΨ

α|HΛ|Ψ


αy . (3.3.5)
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The exponent 4
29 is chosen for convenience, as it allows to simplify the right hand side of

Eq. (3.3.2) to }f}8α� 2
29 (using that Eα ¤ ePek). For the proof of Theorem 3.1.1 we shall

use the specific choice Ψ�
α from Theorem 3.2.5 for Ψ


α, but it will be useful in the second part
to have the first two localization procedures in Lemma 3.3.4 and 3.3.5 formulated for a more
general sequence Ψ


α.

In the following Eq. (3.3.6) and Eq. (3.3.10), we will apply localizations procedures to the
given sequence Ψ


α in order to construct states having additional useful properties, which
we will use in Lemma 3.3.12 in order to construct a sequence of approximate ground states
satisfying complete condensation. Furthermore we will quantify the energy cost of these
localizations by xΨα|HΛ|Ψαy�Erα À α�3 in the Lemmata 3.3.4 and 3.3.5. In Theorem 3.3.13
we will then apply a final localization procedure, in order to lift the (weak) condensation from
Lemma 3.3.12 to a strong one, following the argument in [72].

Having Lemma 3.3.3 at hand, we can verify our first localization result in Lemma 3.3.4, which
allows us to restrict our attention to states Ψ1

α having a (rescaled) particle number N between
some fixed constants c� and c�. To be precise, for given c�, c� and ϵ1 we use the function
F�pρq :� χϵ

1 �
c� � ϵ1 ¤ ³

dρ ¤ c� � ϵ1
�

in order to define the states

Ψ1
α :� Z�1

α Fp�Ψ

α, (3.3.6)

with the corresponding normalization constants Zα :� }Fp�Ψ

α}. By construction we have

χ pc� ¤ N ¤ c�qΨ1
α � Ψ1

α as well as supp pΨ1
αq � BLp0q. In the following Lemma 3.3.4 we

derive an upper bound on the energy of Ψ1
α, and in addition we will investigate the large α

behavior of Zα, which will be useful in the second part.

Lemma 3.3.4. Let Ψ

α be the sequence introduced above Eq. (3.3.5). Then there exist

α-independent constants c�, c�, ϵ1 ¡ 0 such that the corresponding states Ψ1
α defined in

Eq. (3.3.6) satisfy xΨ1
α|HΛ|Ψ1

αy � Erα À α�
7
2 . Furthermore, Zα ÝÑ

αÑ8 1.

Proof. In the following let F� be the function defined above Eq. (3.3.6) and let us complete
it to a quadratic partition of unity P :� tF�, F�, F�u with the aid of the functions F�pρq :�
χϵ

1 �³ dρ ¤ c� � ϵ1
�

and F�pρq :� χϵ
1 �
c� � ϵ1 ¤ ³

dρ
�
. Making use of Lemma 3.3.3 and

Λ � α
4
5 p1�σq ¤ α, we then obtain

Z2
α,� xΨα,�|HΛ|Ψα,�y � Z2

α xΨ1
α|HΛ|Ψ1

αy � Z2
α,� xΨα,�|HΛ|Ψα,�y

¤ xΨ

α|HΛ|Ψ


αy � c α�
7
2VMpR3q pPq

@
Ψ

α

��?N � α�2
��Ψ


α

D
, (3.3.7)

where Ψα,� :� Z�1
α,�Fp p�qΨ


α, with corresponding normalization factors Zα,� :� }Fp p�qΨ

α}.

By Eq. (3.2.5) there exists a constant d s.t.
@
Ψ

α

��N ��Ψ

α

D ¤ @
Ψ

α

��2HΛ � d
��Ψ


α

D À d� α�
4

29 ,
where we have used the assumption

@
Ψ

α

��HΛ
��Ψ


α

D � Erα ¤ Erα � Eα À α�
4

29 . The first
derivative of the functions χϵ1p� ¤ c� � ϵ1q, χϵ1pc� � ϵ1 ¤ � ¤ c� � ϵ1q and χϵ1p� ¤ c� � ϵ1q is
uniformly bounded by some ϵ1-dependent constant D, and consequently we have for all finite
measures ρ and ρ1 :� ρ� α�2δy with y P R3, and � P t�, �,�u,

|F� pρ1q � F� pρq| ¤ D

����» dρ1 �
»

dρ
���� � Dα�2.

This implies that VMpR3q pPq À 1, and therefore the right hand side of Eq. (3.3.7) is bounded
by xΨ


α|HΛ|Ψ

αy �Cα�

7
2 for a suitable C ¡ 0. Since Z2

α,� �Z2
α �Z2

α,� � 1, this means that
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at least one of the terms xΨα,�|HΛ|Ψα,�y , xΨ1
α|HΛ|Ψ1

αy or xΨα,�|HΛ|Ψα,�y is bounded from
above by xΨ


α|HΛ|Ψ

αy�Cα�

7
2 � Erα�Cα� 7

2 . We can however rule out that xΨα,�|HΛ|Ψα,�y,
respectively xΨα,�|HΛ|Ψα,�y, satisfy this upper bound for all small c�, ϵ1 and large α, c�,
since Erα ¤ Eα � C 1α�

4
29 ¤ ePek � C 1α�

4
29   ePek

2   0 for α large enough and a suitable C 1,
and since we have by Eqs. (3.2.4) and (3.2.5) for all t ¡ 0

xΨα,�|HΛ|Ψα,�y¥xΨα,�|� d

t2
�t�N�α�2�|Ψα,�y¥� d

t2
�t�c��2ϵ1�α�2�¥�ePek

2 ,

(3.3.8)

xΨα,�|HΛ|Ψα,�y ¥ xΨα,�| � d� 1
2N |Ψα,�y ¥ �d� 1

2pc� � 2ϵ1q ¥ 0, (3.3.9)

where the last inequality in Eq. (3.3.8), respectively Eq. (3.3.9), holds for small c�, ϵ1 and

large α, c� with the concrete choice t :�
�

d
c��2ϵ1�α�2

	 1
3 . Using again that the right hand side

of Eq. (3.3.7) is bounded by xΨ

α|HΛ|Ψ


αy � Cα�
7
2 together with Eqs. (3.3.8) and (3.3.9),

and the fact that HΛ ¥ Eα and Eα ¤ ePek, yields furthermore

p1� Z2
αq
�
Eα � ePek

2



� Z2

αEα ¤ p1� Z2
αq
ePek

2 � Z2
αEα ¤ Erα � Cα�

7
2 ,

and therefore �p1� Z2
αq e

Pek

2 ¤ Erα � Eα � Cα�
7
2 ÝÑ
αÑ8 0. Since ePek   0, this immediately

implies Zα ÝÑ
αÑ8 1. ■

Regarding the next localization step in Lemma 3.3.5, let us introduce for given R and ϵ ¡ 0
satisfying R ¡ 2ϵ the function KR pρq :� ´

χϵ pR � ϵ ¤ |x� y|q dρpxqdρpyq, which measures
how sharply the mass of the measure ρ is concentrated. It will be convenient in the second
part to have KR defined for arbitrary ϵ ¥ 0 even though we only need it for ϵ � 0 in the
following. We also define the function FR pρq :� χ

δ
3

�
KR pρq ¤ 2δ

3

	
for R, δ ¡ 0, as well as

the states

Ψ2
α :� Z�1

R,αF
p
RΨ1

α, (3.3.10)

where Ψ1
α is as in Lemma 3.3.4 and ZR,α :� }FpRΨ1

α}. Since Ψ1
α satisfies supp pΨ1

αq � BLp0q,
we have supp pΨ2

αq � BLp0q as well. Furthermore χ
�
Kp R ¤ δ

	
Ψ2
α � Ψ2

α. Heuristically this
means that we can restrict our attention to phonon configurations that concentrate in a ball
of fixed radius R.

Lemma 3.3.5. Let Ψ1
α be the sequence from Lemma 3.3.4, and let ϵ ¥ 0 and δ ¡ 0

be given constants. Then there exists a α independent R ¡ 0, such that the states Ψ2
α

defined in Eq. (3.3.10) satisfy xΨ2
α|HΛ|Ψ2

αy � Erα À α�
7
2 , where Erα is defined in Eq. (3.3.5).

Furthermore, ZR,α ÝÑ
αÑ8 1.

Proof. Since P :� tFR, GRu with GR :�
a

1� F 2
R � χ

δ
3
�2δ

3 ¤ KR pρq
�

is a partition of
unity, we obtain by Lemma 3.3.3

xFpRΨ1
α|HΛ|FpRΨ1

αy�xGpRΨ1
α|HΛ|GpRΨ1

αy¤xΨ1
α|HΛ|Ψ1

αy�c α�
7
2VΩ pPq

@
Ψ1
α

��ac��α�2
��Ψ1

α

D
(3.3.11)
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with Ω :� tρ :
³

dρ ¤ c�u, where we have used χ pN ¤ c�qΨ1
α � Ψ1

α and Λ ¤ α. Since
d

dxχ
δ
3
�2δ

3 ¤ x
�

and d
dxχ

δ
3
�
x ¤ 2δ

3

�
are bounded by some δ-dependent constant D, we have

for all ρ P Ω and ρ1 :� ρ� α�2δz with z P R3, and R ¡ 2ϵ, the estimate

|FR pρ1q � FR pρq| ¤ D |KRpρ1q �KRpρq| � 2Dα�2
»
χϵ pR � ϵ ¤ |y � z|q dρpyq

¤ 2Dα�2c�,

and the same result holds for GR. Therefore we have by Eq. (3.3.11) and Lemma 3.3.4

xFpRΨ1
α|HΛ|FpRΨ1

αy � xGpRΨ1
α|HΛ|GpRΨ1

αy ¤ xΨ1
α|HΛ|Ψ1

αy � C1α
� 7

2 ¤ Erα � C2α
� 7

2

(3.3.12)

for suitable constants C1, C2 ¡ 0. Since }FpRΨ1
α}2 � }GpRΨ1

α}2 � 1, this means that we
either have xΨ2

α|HΛ|Ψ2
αy ¤ Erα � C2α

� 7
2 or xΨrα|HΛ|Ψrαy ¤ Erα � C2α

� 7
2 , where Ψrα :�

}GpRΨ1
α}�1GpRΨ1

α. In the following we are going to rule out the second case for R and
α large enough, to be precise we are going to verify xΨrα|HΛ|Ψrαy ¡ Erα � dα�

4
29 for any

d ¡ 0 and large enough R and α by contradiction. In order to do this, let us assume
xΨrα|HΛ|Ψrαy ¤ Erα � dα� 4

29 . Since Erα ¤ Eα �Cα� 4
29 ¤ ePek �Cα� 4

29 by assumption for a
suitable constant C, Ψrα satisfies the assumptions of Theorem 3.3.2 with δe :� pd� Cqα� 4

29 .
Hence there exists a measure µ such that Eq. (3.3.2) holds. By the support properties of GR

we obtain
δ

3 ¤
@
Ψrα��Kp R

��ΨrαD � »
KR

���φPek
x

��2	 dµ�OαÑ8
�
α�

2
29

	
(3.3.13)

� KR

���φPek��2	�OαÑ8
�
α�

2
29

	
. (3.3.14)

Since limRÑ8KR

���φPek
��2	 � 0, Eq. (3.3.13) is a contradiction for large R and α, and

consequently we have xΨrα|HΛ|Ψrαy ¡ Erα � dα�
4

29 for such R and α. In combination with
Eq. (3.3.12) this furthermore yields

Z2
R,αEα�p1�Z2

R,αq
�
Eα�dα� 4

29

	
¤ Z2

R,αEα�p1�Z2
R,αq

�
Erα�dα� 4

29

	
¤ Erα�C2α

� 7
2 ,

and therefore 1�Z2
R,α ¤ α

4
29
d

�
Erα � Eα � C2α

� 7
2

	
¤ 1

d
� C2

d
α

4
29� 7

2 . Since this holds for any
d ¡ 0 and α large enough, we conclude that ZR,α ÝÑ

αÑ8 1. ■

The previous localizations in the Lemmas 3.3.4 and 3.3.5 will allow us to control the energy
cost of the main localization in the proof of Lemma 3.3.12. Before we come to Lemma 3.3.12
we need to define the regularized median mq in Definition 3.3.8 and verify Lemma 3.3.10,
which provides an upper bound on the variation VΩ pPq for partitions P � tFj : j P Ju of
the form Fjpρq � fj pmqpρqq. The following auxiliary Lemmas 3.3.6 , 3.3.7 and 3.3.9 will be
useful in proving Lemma 3.3.10.

Lemma 3.3.6. Let us define the set Ωreg as the set of all ρ P M pR3q satisfying»
xi�t

dρpxq ¤ α�2

for all t P R and i P t1, 2, 3u. Then 1Ωreg
zΨ � Ψ for all Ψ P F pL2pR3qq.

87



3. The Fröhlich Polaron at Strong Coupling – Part I: The Quantum
Correction to the Classical Energy

Proof. For given x � px1, . . . , xnq P R3�n, let us define the measure ρx :� α�2 °n
k�1 δxk .

Note that ρx R Ωreg if and only if there exists an i P t1, 2, 3u such that xki � xk
1
i for

indices k � k1. Clearly the set of all such x P R3�n has Lebesgue measure zero. Hence the
multiplication operator by the function px1, . . . , xnq ÞÑ 1Ωreg pρxq is equal to the identity on
L2

sympR3�nq, which concludes the proof according to Definition 3.3.1. ■

Lemma 3.3.7. Let ν, ν 1 be finite measures on R such that ν pttuq ¤ ϵ and ν 1 pttuq ¤ ϵ for
all t P R, and let xκpνq be the κ-quantile of the measure ν with 0 ¤ κ ¤ 1, to be precise
xκpνq is the supremum over all numbers t P R satisfying

³t
�8 dν ¤ κ

³
dν, where we use the

convention that the boundaries are included in the domain of integration
³b
a
fdν :� ³

ra,bs fdν.
Then ��� » xκpν1q

�8
dν �

» xκpνq

�8
dν

��� ¤ 2}ν 1 � ν}TV � ϵ,

where }ν 1 � ν}TV :� sup
}f}8�1

��³ f dν 1 � ³
f dν

��.
Proof. We estimate» xκpν1q

�8
dν �

» xκpνq

�8
dν ¤

» xκpν1q

�8
dν � κ

»
dν ¤

» xκpν1q

�8
dν 1 � }ν 1 � ν}TV � κ

»
dν

¤ κ

»
dν 1 � ϵ� }ν 1 � ν}TV � κ

»
dν ¤ 2}ν 1 � ν}TV � ϵ,

where we have used
³xκpνq
�8 dν ¥ κ

³
dν and

³xκpν1q
�8 dν 1 ¤ κ

³
dν 1 � ϵ. The bound from below

can be obtained by interchanging the role of ν and ν 1. ■

Definition 3.3.8. Let xκpνq be the κ-quantile of a measure ν on R defined in Lemma 3.3.7
and let us denote Kqpνq :� rx 1

2�qpνq, x 1
2�qpνqs for 0   q   1

2 . Then we define

mqpνq :� 1³
Kqpνq dν

»
Kqpνq

t dνptq P R (3.3.15)

for ν � 0 and mqp0q :� 0. Furthermore we define for a measure ρ on R3 the regularized
median as mqpρq :�

�
mqpρ1q,mqpρ2q,mqpρ3q

	
P R3, where ρ1, ρ2 and ρ3 are the marginal

measures of ρ defined by ρi pAq :� ρ prxi P Asq.

Note that xκpνq is the largest value, such that both
³xκpνq
�8 dν ¥ κ

³
dν and

³8
xκpνq dν ¥

p1�κq ³ dν hold. As an immediate consequence, we obtain that the expression in Eq. (3.3.15)
is well-defined for ν � 0 and 0   q   1

2 , since

»
Kqpνq

dν �
» x

1
2�qpνq

�8
dν �

» 8

x
1
2�qpνq

dν �
»

dν ¥ 2q
»

dν ¡ 0. (3.3.16)

Lemma 3.3.9. Given constants R, c ¡ 0 and 0   δ   c2

2 , let ρ satisfy c ¤ ³
dρ and³ ³

|x�y|¥R
dρpxqdρpyq ¤ δ and let q be a constant satisfying 0   q ¤ 1

2 � δ
c2 . Then we have for

all i P t1, 2, 3u that x 1
2 pρiq �R ¤ x

1
2�qpρiq ¤ x

1
2�qpρiq ¤ x

1
2 pρiq �R.

88



3.3. Construction of a Condensate

Proof. Since xκ is translation covariant, i.e. xκ pνp� � tqq � xκpνq� t, we can assume w.l.o.g.
that x 1

2 pρiq � 0 for i P t1, 2, 3u. Then

δ ¥
» »

|x�y|¥R

dρpxqdρpyq ¥ 2
»
xi¥0

dρpxq
»
yi¤�R

dρpyq ¥
»

dρ
»
yi¤�R

dρpyq ¥ c

»
yi¤�R

dρpyq,

where we have used that x 1
2 pρiq � 0 and

³
dρ ¥ c in the last two inequalities. Hence»

yi¤�R
dρpyq ¤ δ

c
¤ δ

c2

»
dρ ¤ κ

»
dρ

for all κ ¥ δ
c2 and consequently we have �R ¤ xκpρiq for all such κ by the definition of xκpρiq.

Similarly we obtain xκpρiq ¤ R for all κ satisfying κ ¤ 1� δ
c2 . Therefore |x 1

2�qpρiq| ¤ R for
q ¤ 1

2 � δ
c2 . ■

Lemma 3.3.10. Given constants R, c ¡ 0 and 0   δ   c2

2 , let Ω be the set of ρ P Ωreg
satisfying c ¤ ³

dρ and
³ ³

|x�y|¥R
dρpxqdρpyq ¤ δ. Then

��mq

�
ρ� α�2δx

��mq pρq
�� À R

cα2q

for all ρ P Ω, x P R3 and 0   q   1
2 � δ

c2 , where mq is defined in Definition 3.3.8.

Proof. Since mq acts translation covariant on any ρ � 0, i.e. mq pρp� � yqq � mqpρq � y, we
can assume w.l.o.g. that x 1

2 pρiq � 0 for i P t1, 2, 3u. By Lemma 3.3.9 we therefore obtain
|x 1

2�qpρiq| ¤ R for ρ P Ω and 0   q ¤ 1
2 � δ

c2 . Note that the marginal measures ρi and
ρ1i, where ρ1 :� ρ � α�2δx, satisfy ρi ptyuq ¤ α�2 and ρ1i ptyuq ¤ 2α�2 by our assumption
ρ P Ωreg. Therefore xκ�pρiq ¤ xκpρ1iq ¤ xκ

�pρiq for ρ P Ω and κ ¡ 0, with κ� :� κ� 21
c
α�2

and κ� :� κ� 31
c
α�2. In particular, this implies |x 1

2�qpρ1iq| ¤ R for 0   q   1{2� δ{c2 and
α large enough. In the following it will be convenient to write the difference mq pρ1iq�mqpρiq
as�

1³
Kqpρ1iq dρ1i

� 1³
Kqpρiq dρi

�»
Kqpρ1iq

t dρ1iptq �
1³

Kqpρiq dρi

�»
Kqpρ1iq

t dρ1iptq�
»
Kqpρiq

t dρiptq
�
.

(3.3.17)

Making use of
³
Kqpρiq dρi ¥ 2qc, see Eq. (3.3.16), and Kqpρ1iq � r�R,Rs for all ρ P Ω, we

can estimate the individual terms in Eq. (3.3.17) by�����
�

1³
Kqpρ1iq dρ1i

� 1³
Kqpρiq dρi

�»
Kqpρ1iq

t dρ1iptq
����� ¤ R

���³Kqpρ1iq dρ1i �
³
Kqpρiq dρi

���
2qc ,

����� 1³
Kqpρiq dρi

�»
Kqpρ1iq

t dρ1iptq�
»
Kqpρiq

t dρiptq
������ ¤

���³Kqpρ1iq t dρ1iptq�
³
Kqpρiq t dρiptq

���
2qc .

Note that Kqpρiq is contained in r�R,Rs as well and consequently t is bounded by R on
the subset Kqpρiq YKqpρ1iq. In order to verify the statement of the Lemma, it is therefore
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sufficient to prove that
���³Kqpρ1iq fptq dρ1iptq�

³
Kqpρiq fptq dρiptq

��� À α�2}f}8 for an arbitrary
measurable and bounded f : RÑ R. We estimate�����

»
Kqpρ1iq

fptq dρ1iptq�
»
Kqpρiq

fptq dρiptq
����� ¤

�����
»
Kqpρ1iq

fptq dρ1iptq�
»
Kqpρ1iq

fptq dρiptq
�����

�
�����
»
Kqpρ1iq

fptq dρiptq�
»
Kqpρiq

fptq dρiptq
����� ¤ }f}8

�
}ρ1i � ρi}TV �

»
Kqpρ1iq∆Kqpρiq

dρi

�
,

where A∆B :� pAYBq z pAXBq is the symmetric difference. Note that }ρ1i�ρi}TV � α�2.
Furthermore we can estimate the expression

³
Kqpρ1iq∆Kqpρiq

dρi by������
» x

1
2�qpρ1iq

�8
dρi �

» x
1
2�qpρiq

�8
dρi

�������
������
» x

1
2�qpρ1iq

�8
dρi �

» x
1
2�qpρiq

�8
dρi

������ .
Since the distributions ρi and ρ1i satisfy the assumptions of Lemma 3.3.7 with ϵ :� 2α�2, we
conclude that every term in the sum above is bounded by 2}ρ1 � ρ}TV � ϵ � 4α�2. ■

Before we state the central Lemma 3.3.12, let us verify in the subsequent Lemma 3.3.11 that
low energy states with a localized median necessarily satisfy (complete) condensation with
respect to a minimizer of the Pekar functional.

Lemma 3.3.11. Given a constant C ¡ 0, there exists a constant T ¡ 0, such thatA
Ψ
���W�1

φPek NWφPek

���ΨE
¤ T

�
α�

2
29 � q � ϵ

	
for all states Ψ satisfying xΨ|HK |Ψy ¤ ePek � α�

4
29 with K ¥ α

8
29 and 1Ω�yΨ � Ψ, where

Ω� is the set of all ρ satisfying
³

dρ ¤ C and |mqpρq| ¤ ϵ with q, ϵ ¡ 0.

Proof. Let us begin by defining the functions

P ϵ
i pρq :�

�
1
2

»
dρ

2

�
»
xi¤ϵ

dρpxq
»
yi¥�ϵ

dρpyq. (3.3.18)

Observe that |mqpρq| ¤ ϵ implies �ϵ ¤ x
1
2�qpρiq and x

1
2�qpρiq ¤ ϵ for all such ρ which

additionally satisfy ρ � 0, see Definition 3.3.8. Therefore P ϵ
i pρq ¤

�³
dρ
�2 �1

4�
�1

2 � q
�2 � À q

for all ρ P Ω�, and consequently the measure µ from Theorem 3.3.2 corresponding to the
state Ψ satisfies

³
P ϵ
i

���φPek
x

��2	 dµpxq ¤ @
Ψ
��Pp ϵi ��ΨD � Dα�

2
29 À q � α�

2
29 for a suitable

D ¡ 0, where we have used Eq. (3.3.2) in the first inequality. Furthermore we know that
}φPek

x � φPek}2 À °3
i�1 P

ϵ
i

���φPek
x

��2	� ϵ by Lemma 3.8.3, hence

»
}φPek

x �φPek}2 dµpxq À
3̧

i�1

»
P ϵ
i

���φPek
x

��2	 dµpxq�ϵ À q�α� 2
29�ϵ.

Therefore Eq. (3.3.3) immediately concludes the proof of Eq. (3.3.19). ■
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Lemma 3.3.12. Given 0   σ ¤ 1
4 , let Λ and L be as in Theorem 3.2.5. Then there exist

states Ψ3
α satisfying xΨ3

α |HΛ|Ψ3
αy � Eα À α�2p1�σq, supp pΨ3

αq � B4Lp0q andA
Ψ3
α

���W�1
φPek NWφPek

���Ψ3
α

E
À α�

2
29 , (3.3.19)

where WφPek is the Weyl operator corresponding to the Pekar minimizer φPek.

Proof. It is clearly sufficient to consider only the case α ¥ α0 for a suitable (large) α0,
since we can always re-define Ψ3

α :� Ψ for α   α0 where Ψ is an arbitrary state satisfying
supp pΨq � B4Lp0q. In the following let us use the concrete choice Ψ


α :� Ψ�
α for the sequence

in Eq. (3.3.5), where Ψ�
α is defined in in Theorem 3.2.5, which is a valid choice since it

satisfies the assumptions supp pΨ�
αq � BLp0q and Erα�Eα À α�2p1�σq ¤ α�

4
29 . Furthermore

let tχz : z P Z3u be a smooth (quadratic) partition of unity on R3, i.e. 0 ¤ χz ¤ 1 and°
zPZ3 χ2

z � 1, with χzpxq � χ0px � zq and supp pχ0q � B1p0q. Then we define for z P Z3

and u, v ¥ 2
29 with u� v ¤ 1

4 the function Fzpρq :� χz
�
αumα�vpρq

�
, as well as the states

Ψα,z :� Z�1
α,zF

p
zΨ2

α (3.3.20)

with Zα,z :� }Fp zΨ2
α} and Ψ2

α as in Lemma 3.3.5 for ϵ � 0 and 0   δ   c2

2 , where c :� c�
is as in Lemma 3.3.4. Applying Lemma 3.3.3 with respect to P :� tFz : z P Z3u, where
the functions Fz are defined above Eq. (3.3.20) and Ω is defined as the set of all ρ P Ωreg
satisfying c� ¤

³
dρ ¤ c� and

³ ³
|x�y|¥R

dρpxqdρpyq ¤ δ, yields

¸
zPZ3

Z2
α,z xΨα,z|HΛ|Ψα,zy ¤ xΨ2

α|HΛ|Ψ2
αy � cα�

7
2VΩ pPq

a
c� � α�2, (3.3.21)

where we used Lemma 3.3.6, Λ ¤ α and 1ΩxΨ2
α � Ψ2

α by the definition of Ψ2
α in Eq. (3.3.10).

Since the support of χz only overlaps with the support of finitely many other χz1 , we obtain
for v ¡ 0 and α large enough

VΩ pPq À α4supρPΩ,yPR3 supzPZ3

��χz�αumα�vpρ� α�2δyq
�� χz

�
αumα�vpρq

���2
À α2u�4supρPΩ,yPR3

��mα�vpρ� α�2δyq �mα�vpρq
��2 À α2pu�vq,

where we have used supzPZ3 |χz pyq � χz pxq| ¤
��∇χ0

��
8|y � x| in the first inequality and

Lemma 3.3.10 in the second one. Combining this with Eq. (3.3.21) and the fact that u�v ¤ 1
4

yields ¸
zPZ3

Z2
α,z xΨα,z|HΛ|Ψα,zy � xΨ2

α|HΛ|Ψ2
αy À α�3. (3.3.22)

Since
°
zPZ3 Z2

α,z � 1, this in particular means that there exists a zα P Z3 such that
xΨα,zα |HΛ|Ψα,zαy � Eα À α�2p1�σq, and by the translation invariance of HΛ we obtain
xΨ3

α |HΛ|Ψ3
αy�Eα À α�2p1�σq where Ψ3

α � T�α�uzαΨα,zα . Using the fact that 1Ω�Ψ3
α � Ψ3

α ,
where Ω� is the set of all ρ satisfying

³
dρ ¤ c� and |mα�vpρq| ¤ α�u, together with Lemma

3.3.11, immediately concludes the proof of Eq. (3.3.19).

Finally let us verify that supp pΨ3
αq � B4Lp0q. By the definition of Ψ3

α � T�α�uzαΨα,zα ,
and the fact that supp pΨα,zαq � BLp0q, it is clear that supp pΨ3

αq � BLp�wαq with
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wα :� α�uzα. In the following we show that |wα| ¤ 3L by contradiction for α large
enough, and therefore supp pΨ3

αq � BL�|wα|p0q � B4Lp0q. Assuming |wα| ¡ 3L, we
obtain supp pΨ3

αq � R3zB2Lp0q and Corollary 3.9.7 consequently yields xΨ3
α |HΛ|Ψ3

αy ¥
Eα � xΨ3

α |NBLp0q|Ψ3
αy �

b
D
L

, where NBLp0q denotes the number operator in the ball BLp0q
(as defined in Cor. 3.9.7). Defining φLpxq :� χ p|x| ¤ LqφPekpxq, we further have

xΨ3
α |NBLp0q|Ψ3

αy �
A

Ψ3
α

���W�1
φPek

�
NBLp0q � apφLq � a:pφLq � }φL}2�WφPek

���Ψ3
α

E
¥ �

A
Ψ3
α

���W�1
φPekNWφPek

���Ψ3
α

E
� 1

2}φL}
2 ¥ �D1α�

2
29 � 1

2}φL}
2

for a suitable constant D1, where we have used the operator inequality NBLp0q � apφLq �
a:pφLq � }φL}2 ¥ �N � 1

2}φL}2 as well as Eq. (3.3.19). Therefore we obtain

xΨ3
α |HΛ|Ψ3

αy � Eα ¥ 1
2}φL}

2 �D1α�
2

29 �
c
D

L
ÝÑ
αÑ8

1
2}φ

Pek}2 ¡ 0,

where we have used that L � α1�σ ÝÑ
αÑ8 8. This, however, is a contradiction to xΨ3

α |HΛ|Ψ3
αy�

Eα À α�2p1�σq. ■

Following the method in [72], we are going to lift the weak condensation derived in Lemma
3.3.12 to a strong one in the subsequent Theorem 3.3.13, which represents the main result of
this section.

Theorem 3.3.13. Given 0   σ ¤ 1
4 and h   2

29 , let Λ and L be as in Theorem 3.2.5. Then
there exist states Ψα with xΨα|HΛ|Ψαy�Eα À α�2p1�σq and supp pΨαq � B4Lp0q, satisfying

χ
�
W�1
φPek NWφPek ¤ α�h

	
Ψα � Ψα (3.3.23)

for large enough α.

Proof. Using the states Ψ3
α from Lemma 3.3.12, we define for 0   ϵ   1

2

Ψα :� Z�1
α χϵ

�
αhW�1

φPekNWφPek ¤ 1
2



Ψ3
α

where Zα is a normalizing constant. Clearly the states Ψα satisfy the strong condensation
property χ

�
W�1
φPekNWφPek ¤ α�h

	
Ψα � Ψα. In order to control the energy cost of the

localization with respect to the operator W�1
φPekNWφPek , note that the partition P 1 :� tF 1, G1u

with F 1pρq :� χϵ
�
αh

³
dρ ¤ 1

2

�
and G1pρq :� χϵ

�1
2 ¤ αh

³
dρ
�

satisfies

κ :� VMpR3q pP 1q À α4supρ,xPR3

����αh » d
�
ρ� α�2δx

�� αh
»

dρ
����2 � α2h,

where we used
��χϵ �y ¤ 1

2

�� χϵ
�
x ¤ 1

2

��� ¤ �� d
dxχ

ϵ
�
� ¤ 1

2

	��
8|y � x| and the corresponding

estimate for χϵ
�1

2 ¤ ��. Therefore we obtain by Lemma 3.3.3, using Λ ¤ α,

Z2
αxΨα|HΛ|Ψαy�p1�Z2

αqxΨrα|HΛ|Ψrαy¤xΨ3
α |HΛ|Ψ3

αy�c1 α�
7
2κ
A

Ψ3
���?N�1

���Ψ3
E

¤ Eα �OαÑ8
�
α�2p1�σq��OαÑ8

�
α2h� 7

2

	
� Eα �OαÑ8

�
α�2p1�σq� , (3.3.24)
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with Ψrα :�a
1� Z2

α

�1
χϵ

�
1
2 ¤ αhW�1

φPekNWφPek

	
Ψ3
α . Making use of the trivial lower bound

Eα ¤ xΨrα|HΛ|Ψrαy, Eq. (3.3.24) implies xΨα|HΛ|Ψαy ¤ Eα � Z�2
α OαÑ8

�
α�2p1�σq�, which

concludes the proof since

1� Z2
α �

A
Ψ3
α

���χϵ�1
2 ¤ αhW�1

φPekNWφPek


2 ���Ψ3
α

E
¤ 1

1
2 � ϵ

αh
A

Ψ3
α

���W�1
φPekNWφPek

���Ψ3
α

E
À 1

1
2 � ϵ

αhα�
2

29 ÝÑ
αÑ8 0.

■

3.4 Large Deviation Estimates for Strong Condensates
In this Section we will derive a large deviation principle for states with suitably small particle
number (compared to α2), which can be interpreted as complete condensation with respect to
the vacuum. We will show that such states are, up to an error which is exponentially small in
α2, contained in the spectral subspace

��apfq � a:pfq�� ¤ ϵ, see Eq. (3.4.6). Note that taking
the point of condensation to be the vacuum is not a real restriction, since this is the case
after applying a suitable Weyl transformation. Before we can formulate the main result of
this section in Proposition 3.4.2, we need to introduce some notation.

For 0   σ   1
4 let us define Λ :� α

4
5 p1�σq, ℓ :� α�4p1�σq and

Π :� Π0
Λ,ℓ, (3.4.1)

see Definition 3.2.1, and let us identify F pΠL2pR3qq with L2�RN
�

using the representation
of real functions φ � °N

n�1 λnφn P ΠL2pR3q by points λ � pλ1, . . . , λNq P RN , where
N :� dimΠL2pR3q and tφ1, . . . , φNu is a real orthonormal basis of ΠL2pR3q. We choose
this identification such that the annihilation operators an :� a pφnq read

an � λn � 1
2α2Bλn , (3.4.2)

where λn is the multiplication operator by the function λ ÞÑ λn on L2�RN
�
. From the

construction one readily checks that N À pΛ{ℓq3 ¤ αp for suitable p ¡ 0.
In the following we will verify a large deviation principle for the density function ρpλq :� γpλ, λq
corresponding to a density matrix γ on F pΠL2pR3qq that satisfies the strong condensation
condition

χ

�
Ņ

n�1
a:nan ¤ α�h

�
γ � γ (3.4.3)

for some h ¡ 0. This result is comparable to [16, Lemma C.2]. For this purpose, we define a
convenient norm | � |� on RN in the subsequent Definition.

Definition 3.4.1. Let |λ| :�
b°N

n�1 λ
2
n denote the standard norm on RN and let us define

the norm | � |� on RN , using the identification φ � °N
n�1 λnφn, as

|λ|� :� 2 sup
xPR3

d»
B1pxq

����p�∆q� 1
2 φ

	
pyq

���2 dy. (3.4.4)
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The norm | � |� will again appear naturally in Section 3.5 where we investigate properties of
the Pekar functional FPek (see Eq. (3.5.2) and the subsequent comment).

Proposition 3.4.2. Let 0   s   min
 
h
2 ,

1
5p1� 4σq( and D ¡ 0. Then there exist constants

β, α0 ¡ 0, such that we have for all α ¥ α0, ϵ ¥ Dα�s and γ satisfying Eq. (3.4.3)»
|λ|�¥ϵ

�
1� |λ|2� ρpλqdλ ¤ e�βϵ

2α2
, (3.4.5)

where ρpλq :� γpλ, λq is the density function corresponding to the state γ. Furthermore for
all ζ P RN and β   1

|ζ|2 , there exists a constant αpβ, |ξ|q such that»
|xζ|λy|¥ϵ

�
1� |λ|2� ρpλqdλ ¤ e�βϵ

2α2 (3.4.6)

for all α ¥ αpβ, |ξ|q and ϵ ¥ Dα�s.

The restriction to the finite dimensional space ΠL2pR3q will be essential in the proof of
Proposition 3.4.2, to be precise we will make use of the fact that N À αp for a suitable p ¡ 0,
which in particular implies that N À eα

t , uniformly in α, for any t ¡ 0. Before we prove
Proposition 3.4.2, we first need auxiliary results concerning the | � |� norm.

Definition 3.4.3. For x P R3 and r ¡ 0, let us define Txλ :� �2χ p| � �x| ¤ 1q p�∆q� 1
2 φ

and T¥rλ :� �2χ p| � | ¥ rq p�∆q� 1
2 φ with the above identification φ � °N

n�1 λnφn.
Furthermore let us define the operators Ax :�

a
T :
xTx and A¥r :�

b
T :
¥rT¥r, as well

as the constant β0 :� infxPR3 }Ax}�2.

Using the operators Ax we can write |λ|� � supxPR3 |Axλ|, which is bounded by

|λ|� ¤ 65 max
"

sup
zPZ3:|z|¤r�1

|Azλ|, |A¥rλ|
*

(3.4.7)

for any r ¡ 0. In order to see this, note that for any y P R3 there exists a z P Z3

with |y � z|   1. In case y P Brp0q X B1pxq, where x P R3, we see that z satisfies
|z| ¤ r � 1 and |x � z|   2. Denoting the set of such z by Mpx, rq � Z3, we obtain
B1pxq �

�
zPMpx,rqB1pzq Y pR3zBrp0qq. Consequently

|λ|� ¤ sup
x

¸
zPMpx,rq

|Azλ| � |A¥rλ| ¤ sup
x

�
|Mpx, rq| � 1

	
max
x

!
sup

zPMpx,rq
|Azλ|, |A¥rλ|

)
.

This concludes the proof of Eq. (3.4.7), since there are at most 64 elements z P Z3 satisfying
|x� z|   2.

Lemma 3.4.4. The constant β0 from Definition 3.4.3 is positive, uniformly in α, and
}Ax}HS À Λ uniformly in x P R3, where Λ is defined above Eq. (3.4.1). Furthermore there
exists a constant v ¡ 0 such that }A¥r}HS À αv?

r
for all α ¥ 1 and r ¡ 0.
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Proof. Note that the space ΠL2pR3q is contained in the spectral subspace �∆ ¤ Λ2, hence
Π ¤ p1� Λ2q p1�∆q�1, and therefore

}Ax}2
HS�4

���χ p| ��x| ¤ 1q p�∆q� 1
2 Π

���2

HS
¤4

�
1�Λ2����χ p| ��x| ¤ 1q p�∆q� 1

2 p1�∆q� 1
2

���2

HS

� 4
�
1� Λ2� ���χ p| � | ¤ 1q p�∆q� 1

2 p1�∆q� 1
2

���2

HS
.

Applying Eq. (3.9.5) with ψ � χ p|.| ¤ 1q yields that χ p| � | ¤ 1q p�∆q� 1
2 p1�∆q� 1

2 is
Hilbert-Schmidt, hence }Ax}HS À Λ. In order to prove the uniform lower bound β0 ¡ 0, it is
enough to verify the boundedness of χ p|.| ¤ 1q fp�∆q, where fptq :� χp|t|¤1q?

t
. An explicit

computation in Fourier space yields for φ P L2pR3q

xφ|fp�∆qχ p|.| ¤ 1q fp�∆q|φy �
»
|k|¤1

»
|k|¤1

χ p| � | ¤ 1q{ pk � k1qφppkqφppk1q
|k| |k1| dkdk

¤
���χ p| � | ¤ 1q{ ���

8

����»|k|¤1

|φppkq|
|k| dk

����2 À }φ}2.

Finally we are going to verify }A¥r}HS À αv?
r
, using that

}A¥r}HS � 2

gffe Ņ

n�1

���χ p| � | ¥ rq p�∆q� 1
2 φn

���2
À
?
N
αv?
r

for a suitable constant v ¡ 0 by Corollary 3.9.2, where N is the dimension of ΠL2pR3q. This
concludes the proof, since N À αp for some p ¡ 0. ■

Proof of Proposition 3.4.2. Making use of Eq. (3.4.7) and defining ϵ� :� ϵ
65 , we obtain»

|λ|�¥ϵ

�
1�|λ|2�ρpλqdλ¤ ¸

|z|¤r�1

»
|Azλ|¥ϵ�

�
1�|λ|2�ρpλqdλ �»

|A¥rλ|¥ϵ�

�
1�|λ|2�ρpλqdλ,

where the sum runs over z P Z3 with |z| ¤ r � 1. In the following we are going to verify
that every contribution of the form

³
|Axλ|¥ϵ�p1�|λ|2qρpλqdλ is exponentially small uniformly

in x P R3. As a consequence of Eq. (3.4.3), we have for t ¥ 0 the estimate

γ ¤ χ

�
Ņ

n�1
a:nan ¤ α�h

�
¤ etpα�h�

°N
n�1 a

:
nanq.

By our assumption on s, there exists a h1 such that 2s   h1   h. Consequently we obtain for
t :� α2�ph�h1q, using Mehler’s kernel,

ρpλq�γpλ, λq¤eα2�h1
e�t

°N
n�1 a

:
nanpλ, λq�eα2�h1

�
1

1� e�αh�h
1


N�
α2wα
π


N
2

e�α
2wα|λ|2 ,

(3.4.8)

with wα :� coth
�
αh�h

1��cosech
�
αh�h

1�. SinceNe�αh�h
1 ÝÑ
αÑ8 0, it is clear that

�
1

1�e�αh�h1
	N

is bounded uniformly in α. Since wα ¥ 0 is strictly increasing in α, we can choose
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0   β1   β0 infα¥1 wα, where β0 is the constant from Definition 3.4.3. Consequently
} β1
wα
|Ax|2}   1 uniformly in x P R3 and α ¥ 1, and in particular

�
1� β1

wα
|Ax|2

	�1
is a

bounded operator. Hence we obtain for x P R3

»
|Axλ|¥ϵ�

�
1� |λ|2� ρpλqdλ À eα

2�h1
�
α2wα
π


N
2
»
|Axλ|¥ϵ�

�
1� |λ|2� e�α2wα|λ|2dλ

¤ eα
2�h1

�
α2wα
π


N
2
»
RN

�
1� |λ|2� e�α2pwα|λ|2�β1ϵ2��β1|Axλ|2qdλ

� eα
2�h1 wα � α�2Tr

�
1� β1

wα
|Ax|2

	�1

wα det
b

1� β1
wα
|Ax|2

e�β
1ϵ2�α2

.

Furthermore, for a suitable, x-independent, constant µ

eα
2�h1 wα�α�2Tr

�
1� β1

wα
|Ax|2

	�1

wα det
b

1� β1
wα
|Ax|2

Àeα2�h1 αp

det
b

1� β1
wα
|Ax|2

� e
α2�h1�p lnα� 1

2 Tr ln
�

1� β1
wα

|Ax|2
	
¤ eα

2�h1�p lnα�µ}Ax}2
HS ¤ eα

2�h1�p lnα�µCΛ2
, (3.4.9)

where we have used the rough estimate wα � α�2Tr
�

1� β1
wα
|Ax|2

	�1
À 1� α�2N À αp for

a suitable exponent p ¡ 0 in the first inequality and Lemma 3.4.4 in the last inequality. Note
that the exponent in Eq. (3.4.9) is of order αmax

 
2�h1, 8

5 p1�σq
(
! ϵ2

�α
2 since Λ2 � α

8
5 p1�σq and

ϵ ¥ Dα�s with s   min
 
h1
2 ,

1
5p1� 4σq(.

Defining r :� α2q with q ¡ v, where v is the constant from Lemma 3.4.4 and making use of
the fact that the number of z P Z3 with |z| ¤ r � 1 is of order r3 � α6q, we obtain¸

|z|¤r�1

»
|Azλ|¥ϵ�

�
1� |λ|2� ρpλqdλ dx À α6qeα

2�h1�p lnα�µCΛ2�β1ϵ2�α2 ¤ e�βϵ
2�α2

for β   β1 and α large enough. We have }A¥r}HS ÝÑ
αÑ8 0 by Lemma 3.4.4 and our choice

r � α2q with q ¡ v. Using Eq. (3.4.8), and an argument similar to the one in Eq. (3.4.9), we
can therefore estimate

³
|A¥rλ|¥ϵ� p1� |λ|2q ρpλqdλ by

»
|A¥rλ|¥ϵ�

�
1� |λ|2� ρpλqdλ À eα

2�h1
�
α2wα
π


N
2
»
|A¥rλ|¥ϵ�

�
1� |λ|2� e�α2wα|λ|2dλ

À eα
2�h1 αp

det
b

1� β1
wα
|A¥r|2

e�β
1ϵ2�α2 À eα

2�h1�p lnα�µ}A¥r}2
HS�β1ϵ2�α2

.

Again we observe that the exponent α2�h1 � p lnα � µ}A¥r}2
HS is small compared to ϵ2

�α
2,

which concludes the proof of Eq. (3.4.5).

The proof of Eq. (3.4.6) can be carried out analogously with the help of the operator
Aζλ :� xζ|λy ζ

}ζ} using the fact that }Aζ}HS � }Aζ} � |ζ| and the assumption β   1
|ξ|2 . More
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precisely we obtain for β   β1   1
|ξ|2»

|xζ|λy|¥ϵ

�
1� |λ|2� ρpλqdλ À eα

2�h1
�
α2wα
π


N
2
»
|Aζλ|¥ϵ

�
1� |λ|2� e�α2wα|λ|2dλ

À eα
2�h1 αp

det
b

1� β1
wα
|Aζ |2

e�β
1ϵ2α2 À eα

2�h1�p lnα�µ}Aζ}2
HS�β1ϵ2α2 ¤ e�βϵ

2α2
.

■

3.5 Properties of the Pekar Functional
In this section we are going to discuss essential properties of the Pekar functional FPek,
and we are going to verify an asymptomatically sharp quadratic approximation for FPekpφq,
which is valid for all field configurations φ close to a minimizer φPek. It has been proven in
[40] that a suitable quadratic approximation of FPek holds for all configurations φ satisfying
}Vφ�φPek} ! 1, where

Vφ :� �2 p�∆q� 1
2 Reφ. (3.5.1)

In the following we are showing that this result is still valid, in case we substitute the L2-norm
with the weaker } � }� norm, which is a hybrid between the L2 and the L8 norm defined as

}V }� :� sup
xPR3

d»
B1pxq

|V pyq|2 dy, (3.5.2)

where B1pxq is the unit ball centered at x P R3. This will be the content of Lemma 3.5.2
and Theorem 3.5.4, respectively. We have }Vφ}� � |λ|� for φ � °N

n�1 λnφn, where | � |� is
the norm defined in Eq. (3.4.4). Before we come to the proof of Lemma 3.5.2, we first need
the subsequent auxiliary Lemma 3.5.1.

Lemma 3.5.1. There exists a constant C ¡ 0 such that the operator inequality

V 2 ¤ C}V }2
� p1�∆q2 (3.5.3)

holds for all (measurable) V : R3 ÝÑ R, where V 2 is interpreted as a multiplication operator.

Proof. As a first step, we are going to verify that Eq. (3.5.3) holds in case we use the L2

norm }V } instead of }V }�. This follows from V 2 ¤ }V p1�∆q�1}2
HS p1�∆q2, where } � }HS

is the Hilbert-Schmidt norm, and��V p1�∆q�1��2
HS �

» »
V pxq2Kpy � xq2 dxdy �

»
Kpyq2dy }V }2

with Kpy � xq being the kernel of the operator p1 � ∆q�1. Note that C 1 :� ³
Kpyq2dy is

finite, which concludes the first step. In order to obtain the analogue statement for }V }�,
let χ be a smooth, non-negative, function with supp pχq � B1p0q and

³
R3 χpyq2 dy � 1.
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Defining χypxq :� χpx � yq for y P R3 and using the previously derived inequality V 2 ¤
C 1}V }2 p1�∆q2, which holds for any V P L2pR3q, we obtain

V 2 �
»
χyV

2χy dy �
»
χy

�
1B1pyqV

�2
χy dy ¤ C 1

»
}1B1pyqV }2 χy p1�∆q2 χy dy

¤ C 1}V }2
�

»
χy p1�∆q2 χy dy � C 1}V }2

�

» ��p1�∆qχy
��2 dy,

where |A|2 � A:A. Furthermore p1�∆qχy � χyp1�∆q � 2 p∇χyq∇� p∆χyq, which yields
together with a Cauchy–Schwarz inequality the estimate» ��p1�∆qχy

��2dy ¤ 3
» �

p1�∆qχ2
yp1�∆q � 4∇ |∇χy|2 ∇� |∆χy|2

	
dy

� 3p1�∆q2 � 12 ∇
�» ��∇χ2

y

�� dy
∇� 3
»
|∆χy|2dy À p1�∆q2 ,

where we have used that
³ |∇χpyq|2 dy and

³ |∆χpyq|2 dy are finite. ■

In the following we are going to use that we can write the Pekar energy as

FPekpφq � }φ}2 � inf σ p�∆� Vφq , (3.5.4)

where Vφ is defined in Eq. (3.5.1). As an immediate consequence of Eq. (3.5.3) we have
�V ¤ ?

C}V }� p1�∆q and consequently there exists a δ0 ¡ 0 and a contour C � C, such
that C separates the ground state energy inf σ p�∆� V q from the excitation spectrum of
HV :� �∆ � V for all V with }V � VφPek}�   δ0, see also [40]. This allows us to further
identify FPekpφq as

FPekpφq � }φ}2 � Tr
»

C

z

z �HVφ

dz
2πi (3.5.5)

for all φ satisfying }Vφ�φPek}�   δ0. Following the strategy in [40], we will use Eq. (3.5.5) to
compare FPekpφq with ePek � FPek�φPek�. Before we do this let us introduce the operators

KPek :� 1�HPek � 4 p�∆q� 1
2 ψPek 1� |ψPeky xψPek|

HV Pek � µPek ψPek p�∆q� 1
2 , (3.5.6)

LPek :� 4 p�∆q� 1
2 ψPek p1�∆q�1 ψPek p�∆q� 1

2 , (3.5.7)

where HPek is defined in Eq. (3.1.4), µPek :� ePek � }φPek}2 and ψPek is the, non-negative,
ground state of the operator HV Pek with V Pek :� VφPek , which we interpret as a multiplication
operator in Eqs. (3.5.6) and (3.5.7). The following Lemma 3.5.2 can be proved in the same
way as [40, Proposition 3.3], using Lemma 3.5.1.

Lemma 3.5.2. There exist constants c, δ0 ¡ 0 such that for all φ with }Vφ�φPek}�   δ0��FPekpφq�ePek � xφ�φPek|1�KPek|φ� φPeky��¤c}Vφ�φPek}� xφ�φPek|LPek|φ�φPeky .
(3.5.8)

Proof. By taking δ0 small enough, we can assume for all V with }Vφ�φPek}�   δ0 that

sup
zPC

����Vφ�φPek
1

z �HV Pek

����
op
  1, (3.5.9)
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where } � }op denotes the operator norm. This immediately follows from����Vφ�φPek
1

HV Pek � z

����2

op
À ���Vφ � V Pek� p1�∆q�1��2

op ¤ C}Vφ�φPek}2
�,

where we used Eq. (3.5.3) and the fact that the spectrum of HV Pek has a positive distance
to the contour C, allowing us to bound the operator norm of p1�∆q 1

H
V Pek�z uniformly in

z P C. Given Eq. (3.5.9), it has been verified in the proof of [40, Proposition 3.3] that����}φ}2 � Tr
»

C

z

z �HVφ

dz
2πi � ePek � xφ� φPek|1�KPek|φ� φPeky

����
À ϵ xφ� φPek|LPek|φ� φPeky

for ϵ :� supzPC

! �� A
1�A

��
op�

�� B
1�B

��
op�

���p1�∆q 1
2 1
z�H

V Pek
A

1�A p1�∆q 1
2

���
op

)
, where we denote

A :� �
Vφ�φPek

� 1
z�H

V Pek
and B :� �

1� |ψPeky xψPek|�A:. In the following we want to verify
that ϵ À }Vφ�φPek}�, which concludes the proof by Eq. (3.5.5). Since p1 � ∆q 1

z�H
V Pek

is
uniformly bounded in z,

�� A
1�A

��
op ¤

}A}op
1�}A}op

À } �Vφ�φPek
� p1�∆q�1 }op À }Vφ�φPek}� by

Eq. (3.5.3). Similarly
�� B

1�B
��

op À }Vφ�φPek}�. Regarding the final term in the definition of ϵ,
note that p1�∆q 1

2 1
z�H

V Pek
p1�∆q 1

2 is uniformly bounded in z, and therefore����p1�∆q 1
2

1
z�HV Pek

A

1�A p1�∆q 1
2

����
op
À
����p1�∆q� 1

2
A

1�A p1�∆q 1
2

����
op
�
���� A1

1�A1

����
op
,

with A1 :�p1�∆q� 1
2 A p1�∆q 1

2 . Furthermore
�� A1

1�A1
��

op¤
}A1}op

1�}A1}op
and

}A1}op À
���p1�∆q� 1

2
�
Vφ�φPek

� p1�∆q� 1
2

���
op
¤ } �Vφ�φPek

� p1�∆q�1 }op À }Vφ�φPek}�.

■

Lemma 3.5.2 gives a lower bound on FPek�φPek � ξ
�� ePek in terms of a quadratic function

ξ ÞÑ xξ|1� �
KPek � ϵLPek� |ξy for ξ satisfying }Vξ}�   mint ϵ

c
, δ0u. Due to the translation

invariance of FPek, this lower bound is however insufficient, since we have for all ξ P
spantBy1φ

Pek, By2φ
Pek, By3φ

Pekuzt0u

xξ|1� �
KPek � ϵLPek� |ξy � Hess|φPekFPekrξs � ϵ xξ|LPek|ξy � �ϵ xξ|LPek|ξy   0,

(3.5.10)

i.e. the quadratic lower bound is not even non-negative. In order to improve this lower bound,
we will introduce a suitable coordinate transformation τ in Definition 3.5.3. Before we can
formulate Definition 3.5.3 we need some auxiliary preparations.

In the following let Π be the projection defined in Eq. (3.4.1) and let us define the real
orthonormal system

φn :� ΠBynφPek

}ΠBynφPek} (3.5.11)
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for n P t1, 2, 3u, which we complete to a real orthonormal basis tφ1, .., φNu of ΠL2pR3q.
Furthermore let us write φPek

x pyq :� φPekpy� xq for the translations of φPek and let us define
the map ω : R3 ÝÑ R3 as

ω pxq :�
�
xφn|φPek

x y
	3

n�1
P R3. (3.5.12)

Since φPek P H1pR3q, ω is differentiable. Moreover, since φPek is invariant under the action
of O p3q and since the operator Π commutes with the reflections yi Ñ �yi and permutations
yi Ø yj , it is clear that ωp0q � 0. By the same argument we see that D|0ω has full rank and
therefore there exists a local inverse t ÞÑ xt for |t|   δ� and a suitable constant δ� ¡ 0.

Definition 3.5.3. We define the map τ : ΠL2pR3q ÝÑ ΠL2pR3q as

τ pφq :� φ� fptφq,
where tφ :� � xφ1|φy , xφ2|φy , xφ3|φy

� P R3 and fptq is defined as

fptq :� χ
�|t|   δ�

��
ΠφPek

xt �
3̧

n�1
tnφn

�
.

The map τ is constructed in a way such that it “flattens” the manifold of Pekar minimizers
tφPek

x : x P R3u. More precisely, we have that τ
�
ΠφPek

x

�
is for all small enough x P R3 an

element of the linear space spanned by tφ1, φ2, φ3u. A similar construction appears in [16]
and, in a somewhat different way, in [37].

Recall the operators KPek and LPek from Eqs. (3.5.6) and (3.5.7), and let Tx be the translation
operator defined by pTxφqpyq :� φpy�xq. Then we define the operators KPek

x :� TxK
Pek T�x

and LPek
x :� Tx L

Pek T�x, as well as for |t|   ϵ with ϵ   δ�

Jt,ϵ :� π
�

1� p1� ϵq �KPek
xt � ϵLPek

xt

� 	
π, (3.5.13)

where π : L2pR3q ÝÑ L2pR3q is the orthogonal projection onto the subspace spanned by
tφ4, . . . , φNu. Furthermore we define Jt,ϵ :� π for |t| ¥ ϵ. In contrast to the operator
1� �

KPek � ϵLPek� from Eq. (3.5.10), the operator Jt,ϵ is non-negative for ϵ small enough,
as will be shown in Lemma 3.9.5. With the operator Jt,ϵ and the transformation τ at hand
we can formulate a strong lower bound for FPekpφq � ePek in the subsequent Theorem 3.5.4,
where we use the shorthand notation Jt,ϵ

�
φ
�

:� xφ|Jt,ϵ|φy.
Theorem 3.5.4. There exist constants C ¡ 0, 0   ϵ0 ¤ δ� and 0   D ¤ 1 such that

FPekpφq ¥ ePek � Jtφ,ϵ
�
τpφq �� C

ϵ

��p1� ΠqφPek
xtφ

��2 (3.5.14)

for all 0   ϵ   ϵ0 and φ P ΠL2pR3q satisfying
��Vφ�φPek

��
�   ϵD and |tφ|   ϵD, where Jt,ϵ is

defined in Eq. (3.5.13).

Proof. In the following we use the abbreviation t :� tφ. Since
��VφPek�φPek

x

��
� À |x| and

|xt| À |t| for |t| ¤ δ�
2 , we have for all φ satisfying

��Vφ�φPek
��
�   Dϵ and |t|   mintDϵ, δ�2 u��VT�xtφ�φPek

��
� �

��Vφ�φPek
xt

��
� ¤

��Vφ�φPek
��
� �

��VφPek�φPek
xt

��
� À

��Vφ�φPek
��
� � |t| À Dϵ.
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By taking D small enough we obtain
��VT�xtφ�φPek

��
� ¤ ϵ

c
where c is the constant from Lemma

3.5.2. Let us define ϵ0 :� min
 
cδ0,

δ�
2D , δ�

(
. Using the translation-invariance of FPek and

applying Lemma 3.5.2 yields

FPekpφq�ePek�FPekpT�xtφq�ePek¥xT�xtφ�φPek|1��KPek�ϵLPek�|T�xtφ�φPeky
� xφ� φPek

xt |1�
�
KPek
xt � ϵLPek

xt

� |φ� φPek
xt y

¥ }φ� ΠφPek
xt }2 � xφ� φPek

xt |KPek
xt � ϵLPek

xt |φ� φPek
xt y

¥ }φ� ΠφPek
xt }2 � p1� ϵq xφ� ΠφPek

xt |KPek
xt � ϵLPek

xt |φ� ΠφPek
xt y

� �
1� ϵ�1� xp1� ΠqφPek

xt |KPek
xt � ϵLPek

xt | p1� ΠqφPek
xt y , (3.5.15)

where we have used the positivity of KPek
x and LPek

x , and the Cauchy–Schwarz inequality in
the last estimate. Note that by construction of xt as the local inverse of the function ω from
Eq. (3.5.12), we have xφn|φ� ΠφPek

xt y � 0 for n P t1, 2, 3u and therefore

φ� ΠφPek
xt � π

�
φ� ΠφPek

xt

� � π pφ� fptqq � π pτ pφqq
with π being defined below Eq. (3.5.13), where we used |t|   δ�. This concludes the proof
with C :� p1� ϵ0q p}K}op � ϵ0}L}opq. ■

3.6 Proof of Theorem 3.1.1
In the following we will combine the results of the previous sections in order to prove the lower
bound on the ground state energy Eα in Theorem 3.1.1. We start by verifying the subsequent
Lemma 3.6.1, which provides a lower bound on Eα in terms of an operator that is, up to a
coordinate transformation τ and a non-negative term, a harmonic oscillator.

Let us again use the identification F pΠL2pR3qq � L2�RN
�

utilizing the representation of
real functions φ � °N

n�1 λnφn P ΠL2pR3q by points λ � pλ1, . . . , λNq P RN , such that
the annihilation operators an :� a pφnq are given by an � λn � 1

2α2Bλn , where λn is the
multiplication operator by the function λ ÞÑ λn on L2�RN

�
, see also Eq. (3.4.2), where Π

is the projection from Eq. (3.4.1) and tφ1, . . . , φNu is the orthonormal basis of ΠL2pR3q
constructed around Eq. (3.5.11). Let us also use for functions φ ÞÑ gpφq depending on
elements φ P ΠL2pR3q the convenient notation gpλq :� g

�°N
n�1 λnφn

	
, where λ P RN .

Lemma 3.6.1. Let C ¡ 0 and 0   σ ¤ 1
4 , and assume s, h and σ satisfy 2s   h and

σ   1�5s
4 . Furthermore let us define Λ :� α

4
5 p1�σq and L :� α1�σ. Then we obtain for any

state Ψ satisfying xΨ|HΛ|Ψy ¤ C, supp pΨq � B4Lp0q and

χ
�
W�1
φPekNWφPek ¤ α�h

	
Ψ � Ψ, (3.6.1)

that

xΨ|HΛ|Ψy ¥ ePek �
A

Ψ
���� 1

4α4

Ņ

n�1
B2
λn � Jtλ,α�s

�
τpλq ��N �

Ņ

n�1
a:nan

���ΨE
� N

2α2

�O
�
αs�

12
5 p1�σq � α�2p1�σq

	
, (3.6.2)

where tφ and τpφq are defined in Lemma 3.5.3 and Jt,ϵ is defined in Eq. (3.5.13). Furthermore,
there exists a β ¡ 0, such that xΨ|1� B|Ψy ¤ e�βα

2p1�sq , where B is the multiplication
operator by the function λ ÞÑ χ

�|tλ|   α�s
�
.
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Proof. Applying Eq. (3.2.3) with Λ and ℓ as in the definition of Π, see Eq. (3.4.1), and
K :� Λ, and utilizing Eq. (3.2.5), we obtain for a suitable C 1

xΨ|HΛ|Ψy ¥ xΨ|H0
Λ,ℓ|Ψy � C 1α�2p1�σq. (3.6.3)

Making use of
°N
n�1 a

:
nan �

°N
n�1

�� 1
4α4B2

λn � λ2
n

� � N
2α2 and an � a:n � 2λn, we further

have the identity

H0
Λ,ℓ � �∆x � 2

Ņ

n�1
xφn|wxyλn �

Ņ

n�1

�
� 1

4α4B2
λn � λ2

n



� N

2α2 �N �
Ņ

n�1
a:nan

� �∆x � Vλpxq �
Ņ

n�1

�
� 1

4α4B2
λn � λ2

n



� N

2α2 �N �
Ņ

n�1
a:nan,

with Vφ defined in Eq. (3.5.1). Clearly �∆x�Vλ ¥ inf σ p�∆x � Vλq � FPekpλq�°N
n�1 λ

2
n,

which yields the inequality H0
Λ,ℓ ¥ K�N �°N

n�1 a
:
nan with

K :� � 1
4α4

Ņ

n�1
B2
λn � FPekpλq � N

2α2 . (3.6.4)

Combining Eqs. (3.6.3) and (3.6.4), we obtain

A
Ψ
���HΛ �N �

Ņ

n�1
a:nan

���ΨE
� C 1α�2p1�σq ¥ xΨ|K|Ψy � xKyγ , (3.6.5)

where γ is the reduced density matrix on the Hilbert space F pΠL2pR3qq � L2�RN
�

corresponding to the state Ψ, i.e. we trace out the electron component as well as all
the modes in the orthogonal complement of ΠL2pR3q,

γ :� TrL2pR3qbFpL2pR3qqÑFpΠL2pR3qq r |Ψy xΨ| s .

Note that we have the inequality W�1
ΠφPek

�°N
n�1 a

:
nan

	
WΠφPek ¤ W�1

φPek NWφPek. The
operators on the left and right hand side commute, and consequently (3.6.1) implies
that χ

�
W�1

ΠφPek

�°N
n�1 a

:
nan

	
WΠφPek ¤ α�h

	
Ψ � Ψ. This in particular means that the

transformed reduced density matrix γr :� WΠφPekγW�1
ΠφPek satisfies

χ

�
Ņ

n�1
a:nan ¤ α�h

�
γr � γr. (3.6.6)

Using the identification φ � °N
n�1 λnφn as before, the Weyl operator WΠφPek acts as�

WΠφPekΨ
� pλq � Ψ

�
λ� λPek� with λPek :� � xφ1|φPeky , . . . , xφN |φPeky �. Due to Eq. (3.6.6),

and the fact that 2s   h and σ   1�5s
4 , the assumptions of Proposition 3.4.2 are satisfied,

and therefore we obtain for any D ¡ 0 the existence of a constant β ¡ 0 such that for α
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large enough»
|λ�λPek|�¥α�sD

�
1� |λ� λPek|2� ρpλqdλ � »

|λ|�¥α�sD

�
1� |λ|2� ρrpλqdλ ¤ e�βα

2p1�sq
,

(3.6.7)»
|tλ|¥α�sD

�
1� |λ� λPek|2� ρpλqdλ ¤ 3̧

n�1

»
|λn|¥α�s?

3
D

�
1� |λ� λPek|2� ρpλqdλ

�
3̧

n�1

»
|λn|¥α�s?

3
D

�
1� |λ|2� ρrpλqdλ ¤ e�βα

2p1�sq
, (3.6.8)

where ρ and ρr are the density functions corresponding to γ and γr, respectively, and where we
have used tλ � pλ1, λ2, λ3q P R3. For the concrete choice D :� 1, Eq. (3.6.8) immediately
yields the claim xΨ|1� B|Ψy � ³

|tλ|¥α�s ρpλqdλ ¤ e�βα
2p1�sq .

In order to verify Eq. (3.6.2), we need to find a sufficient lower bound for the expectation value
xKyγ, where K is the operator from Eq. (3.6.4). Recall the definition of the transformation
τ : ΠL2pR3q ÝÑ ΠL2pR3q from Definition 3.5.3 and the operator Jt,ϵ from Eq. (3.5.13). As
a first step we will provide a lower bound on xFPekpλqyγ , using Eq. (3.5.14) and the fact that
sup|t|¤t0

��p1� ΠqφPek
xt

��2 À α�
12
5 p1�σq for t0 small enough, which follows from Lemma 3.8.1

together with xt ÝÑ
tÑ0

0. We define the operator A :� χ
�|λ� λPek|�   α�sD

�
χ
���tλ��   α�sD

�
,

where D is as in Theorem 3.5.4, and estimate

xFPekpλqyγ � xFPekpλqAyγ � xFPekpλq p1� Aqyγ
¥
A�
ePek � Jtλ,α�s

�
τpλq ��AE

γ
� xFPekpλq p1� Aqyγ �O

�
αs�

12
5 p1�σq

	
�
A
ePek�Jtλ,α�s

�
τpλq �E

γ
�
A
X
E
γ
�O

�
αs�

12
5 p1�σq

	
(3.6.9)

with X :� �
FPekpλq � ePek � Jtλ,α�s

�
τpλq �� p1� Aq. Using Eqs. (3.6.7) and (3.6.8) as well

as the fact that 1 � A ¤ χ
�|λ� λPek|� ¥ Dα�s

� � χ
���tλ�� ¥ Dα�s

�
, we obtain

A
X
E
γ
À

e�βα
2p1�sq , where we have used that FPekpλq and Jtλ,α�s

�
τpλq � are bounded by Cp1� |λ|2q

for suitable C ¡ 0. By Eq. (3.6.9) we therefore have the estimate xFPekpλqyγ ¥
A
ePek�

Jtλ,α�s
�
τpλq �E

γ
�O

�
αs�

12
5 p1�σq

	
, and consequently

xKyγ ¥ ePek�
A
� 1

4α4

Ņ

n�1
B2
λn � Jtλ,α�s

�
τpλq �E

γ
� N

2α2 �O
�
αs�

12
5 p1�σq

	
. (3.6.10)

Since
A
� 1

4α4

°N
n�4 B2

λn � Jtλ,α�s
�
τpλq �E

γ
�

A
Ψ
���� 1

4α4

°N
n�4 B2

λn � Jtλ,α�s
�
τpλq ����ΨE

, this
concludes the proof together with Eq. (3.6.5). ■

In the following, let Ψα be the sequence of states constructed in Theorem 3.3.13, satisfying
xΨα|HΛ|Ψαy�Eα À α�2p1�σq, supp pΨαq � B4Lp0q with L � α1�σ and strong condensation
with respect to φPek, i.e. χ

�
W�1
φPek NWφPek ¤ α�h

	
Ψα � Ψα, and furthermore let s   1

29

be a given constant and let us choose σ and h such that 2s   h   2
29 and s

2 ¤ σ   1�5s
4 .
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Note that h   2
29 makes sure that the assumption of Theorem 3.3.13 is satisfied, while 2s   h

and σ   1�5s
4 are necessary in order to apply Lemma 3.6.1. The final assumption s

2 ¤ σ will
be useful later in Eq. (3.6.15) in order to make sure that α�2p1�σq ¤ α�p2�sq. Making use of
� 1

4α4

°3
n�1 B2

λn ¥ 0 and N ¥ °N
n�1 a

:
nan, we obtain by Lemma 3.6.1 that

Eα ¥ ePek�
A

Ψα

���� 1
4α4

Ņ

n�4
B2
λn�Jtλ,α�s

�
τpλq ����Ψα

E
� N

2α2�O
�
α�2p1�σq� (3.6.11)

for a suitable C 1, where we have used αs�
12
5 p1�σq ¤ α�2p1�σq and Eα � xΨα|HΛ|Ψαy Á

�α�2p1�σq. In order to further estimate the expectation value in Eq. (3.6.11), let us define
the unitary transformation pUΨq pλq :� Ψ pτ 1 pλqq with τ 1 pλq :�

�@
φn|τ pλq

D	N
n�1

P RN .
Since τ 1 acts as a shift operator on each of the planes Xt :� tλ : pλ1, λ2, λ3q � tu for t P R3,
it is clear that det D|λτ 1 � 1, which in particular means that the operator U is indeed unitary,
and we have Bλn � U�1BλnU for n ¥ 4. Furthermore we define the operator

Qt,ϵ :� � 1
4α4

Ņ

n�4
B2
λn �

Ņ

n,m�1
pJt,ϵqn,m λnλm

with pJt,ϵqn,m :� xφn|Jt,ϵ|φmy. Note that pJt,ϵqn,m � pJt,ϵqm,n � 0 in case n P t1, 2, 3u, i.e.
the operator Qt,ϵ depends only on the variables λn for n ¥ 4 and not on tλ � pλ1, λ2, λ3q,
hence it acts on the Fock space F

�
spantφ4, . . . , φNu

� � L2�RN�3� only. Utilizing the
fact that U�1Jtλ,α�s

�
τpλq �U � Jtλ,α�s

�
λ
� � °N

n,m�1
�
Jtλ,α�s

�
n,m

λnλm, where we used that
U�1tλU � tλ, we obtain

U�1

�
� 1

4α4

Ņ

n�4
B2
λn�Jtλ,α�s

�
τpλq ��U � Qtλ,α�s ¥ Qtλ,α�sB ¥ inf

|t| α�s
inf σ pQt,α�sqB,

where B is as in Lemma 3.6.1. Here we have used Qtλ,α�s ¥ 0, which follows from Lemma
3.9.5, as well as the fact that 1� B is non-negative and commutes with Qtλ,α�s . Applying
this inequality with respect to the state Ψrα :� U�1Ψα yieldsA

Ψα

���� 1
4α4

Ņ

n�4
B2
λn�Jtλ,α�s

�
τpλq ����Ψα

E
¥ inf

|t| α�s
inf σ pQt,α�sq

@
Ψrα��B��ΨrαD

¥ inf
|t| α�s

infσ pQt,α�sq� N

2α2

@
Ψrα��1� B

��ΨrαD (3.6.12)

where we have used Jt,ϵ ¤ 1, and therefore inf σ pQt,ϵq ¤ N
2α2 . By Lemma 3.6.1, we know

that
@
Ψrα��1� B

��ΨrαD � @
Ψα

��1� B
��Ψα

D ¤ e�βα
2�2s . Combining Eqs. (3.6.11) and (3.6.12),

and making use of the fact that N À αp for some p ¡ 0, yields

Eα ¥ ePek � inf
|t| α�s

inf σ pQt,α�sq � N

2α2 �O
�
α�2p1�σq� . (3.6.13)

Since the operator Qt,α�s is quadratic in Bλn and λn, we have an explicit formula for its
ground state energy, given by

inf σ pQt,α�sq � N

2α2 � �TrΠL2pR3q
�
1�a

Jt,α�s
�

2α2 , (3.6.14)
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where we used the fact that Jt,α�s ¥ 0 for α large enough, as shown in Lemma 3.9.5. Using
Eq. (3.9.7), we can approximate this quantity by

sup
|t| α�s

���TrΠL2pR3q
�
1�a

Jt,α�s
�� Tr

�
1�

?
HPek

���� À α�s � α�
1
5 ,

where HPek is defined in Eq. (3.1.4). Consequently Eq. (3.6.13) yields

Eα�ePek� 1
2α2 Tr

�
1�

?
HPek

�
Á�α�2p1�σq�α�p2�sq�α�p2� 1

5q, (3.6.15)

which concludes the proof, since all the terms on the right side are of order α�p2�sq.

3.7 Approximation by Coherent States
This section is devoted to the proof of Theorem 3.3.2, which states that asymptotically the
phonon part of any low energy state is a convex combination of the coherent states ΩφPek

x

with x P R3, where the convex combination is taken on the level of density matrices. As a
central tool we will verify in Lemma 3.7.2 an asymptotic formula for the expectation value@
Ψ
��Fp��ΨD

in terms of the lower symbol Py corresponding to the state Ψ, see Eq. (3.7.6).
Furthermore we will make use of the inequality

inf
xPR3

}φ� φPek
x }2 À FPekpφq � ePek (3.7.1)

derived in [38, Lemma 7], which implies that the only coherent states Ωφ with a low energy
have their point of condensation φ close to the manifold of Pekar minimizers tφPek

x : x P R3u.
We start with the subsequent Lemma 3.7.1, which provides an asymptotic formula for Fp
operators in terms of creation and annihilation operators.

Lemma 3.7.1. Let m P N and C ¡ 0 be given constants, tgn : n P Nu an orthonormal basis
of L2pR3q and let us denote an :� apgnq. Then there exists a constant T ¡ 0 such that for
all functions F of the form

F pρq �
»
. . .

»
fpx1, . . . , xmq dρpx1q . . . dρpxmq, (3.7.2)

with f : R3�m ÝÑ R bounded, and states Ψ satisfying χ pN ¤ CqΨ � Ψ, we can
approximate the operator Fp from Definition 3.3.1 by�����@Ψ

��Fp��ΨD� ¸
I,JPNm

fI,J
@
Ψ
��a:I1 . . . a

:
ImaJ1 . . . aJm

��ΨD����� ¤ T }f}8α�2, (3.7.3)

where we interpret f as a multiplication operator on L2pR3qbm � L2pR3�mq and denote the
matrix elements fI,J :� xgI1 b � � � b gIm |f |gJ1 b � � � b gJmy.

Proof. By the assumption χ pN ¤ CqΨ � Ψ, we can represent the state Ψ as Ψ �À
n¤Cα2 Ψn where Ψnpy, x1, . . . , xnq is a function of the electron variable y and the n

phonon coordinates xk P R3. As in the proof of Lemma 3.3.3, we will suppress the dependence
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on the electron variable y in our notation. Using the definition of Fp in Definition 3.3.1, as
well as the notation X � px1, . . . , xnq, we can write

@
Ψ
��Fp��ΨD � ¸

n¤Cα2

»
R3n

F

�
α�2

ņ

k�1
δxk

�
|ΨnpXq|2dX

� α�2m
¸

n¤Cα2

¸
kPt1,...,num

»
R3n

fpxk1 , . . . , xkmq|ΨnpXq|2dX.

Defining K as the set of all k P t1, . . . , num satisfying ki � kj for all i � j, we can further
express the operator

°
I,JPNm fI,J a

:
I1 . . . a

:
ImaJ1 . . . aJm as¸

I,JPNm
fI,J

@
Ψ
��a:I1 . . . a

:
ImaJ1 . . . aJm

��ΨD � α�2m
¸

n¤Cα2

¸
kPK

»
R3n
fpxk1 , . . . , xkmq|ΨnpXq|2dX.

Consequently we can identify the left hand side of Eq. (3.7.3) as�����α�2m
¸

n¤Cα2

¸
kPt1,...,numzK

»
R3n

fpxk1 , . . . , xkmq|ΨnpXq|2dX
�����

¤ }f}8
¸

n¤Cα2

� ¸
kPt1,...,numzK

α�2m

�»
R3n

|ΨnpXq|2dX.

Since
°
kPt1,...,numzK α

�2m �
�
nm � n!

pn�mq!

	
α�2m ¤ m2mnm�1α�2m À α�2 for n ¤ Cα2

and since
°
n¤Cα2

³
R3n |ΨnpXq|2dX � }Ψ}2 � 1, this concludes the proof. ■

In the following we are going to define the lower symbol Py corresponding to a state
Ψ P L2

�
R3,F

�
L2pR3q �	. Since we consider the Fock space over the infinite dimensional

Hilbert space L2pR3q, we need to modify the usual definition of the lower symbol by introducing
suitable localizations. For 0   s ¤ 4

27 and y P R3, let us define ℓ� :� α�
5
2 s and Λ� :� α2s,

and the projection

Πy :� Πy
Λ�,ℓ� , (3.7.4)

see Definition 3.2.1. We have N� :� dim ΠyL
2pR3q À pΛ�{ℓ�q3 ¤ α2 by our assumption

s ¤ 4
27 . Using the notation tey,1, . . . , ey,N�u for the orthonormal basis of ΠyL

2pR3q from
Definition 3.2.1, we introduce for ξ P CN� the coherent states Ωy,ξ :� eα

2a:pφy,ξq�α2apφy,ξqΩ,
where Ω is the vacuum in F pΠyL

2pR3qq and φy,ξ :� °N�
n�1 ξney,n P ΠyL

2pR3q. Furthermore
we define wave-functions Ψy localized in the electron coordinates x as

Ψypxq :� L
� 3

2� χ

�
x� y

L�



Ψpxq, (3.7.5)

where y P R3 and L� :� α
s
2 , and χ is a smooth non-negative function with supp pχq �

B1p0q and
³
χpyq2 dy � 1. For the following construction, note that we can identify

L2
�
R3,F

�
L2pR3q �	 � F pΠyL

2pR3qq b L2
�
R3,F

�
ΠyL

2pR3qK
		

. Let us now define
measures Py on CN� � R2N� corresponding to the state Ψy as

dPy
dξ :� 1

πN�
}Θy,ξΨy}2 , (3.7.6)
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where Θy,ξ is the orthogonal projection onto the set spanned by elements of the form Ωy,ξbΨr
with Ψr P L2

�
R3,F

�
ΠyL

2pR3qK
		

. Note that the coherent states Ωy,ξ provide a resolution
of the identity 1

πN�

³
CN� |Ωy,ξy xΩy,ξ| dξ � 1FpΠyL2pR3qq, see for example [79], and consequently

the projections Θy,ξ satisfy 1
πN�

³
CN� Θy,ξ dξ � 1. In particular we see that the total mass of

the measure Py is
³

dPy � }Ψy}2 and therefore¼
dPydy �

»
}Ψy}2dy � }Ψ}2 � 1.

In the following Lemma 3.7.2 and Corollary 3.7.3 we will provide an asymptotic formula for
the expectation value

@
Ψy

��Fp��Ψy

D
, respectively

@
Ψ
��Fp��ΨD

, in terms of the measures Py.

Lemma 3.7.2. Given m P N, C ¡ 0 and g P L2pR3q, there exists a T ¡ 0 such that for all
F of the form (3.7.2), y P R3 and ϵ ¡ 0, and states Ψ satisfying χ pN ¤ CqΨ � Ψ

1
T }f}8

����@Ψy

��Fp ��Ψy

D�» F �|φy,ξ|2� dPypξq
����¤�

N�
α2 � ϵ



}Ψy}2�ϵ�1@Ψy

��N y
¡N�

��Ψy

D
,

(3.7.7)

with N y
¡N� :� N �°N�

n�1 a
:
y,nay,n and ay,n :� a pey,nq, and furthermore

1
T

����@Ψy

��W�1
g NWg

��Ψy

D�»}φy,ξ�g}2dPypξq
����¤�

N�
α2 �ϵ



}Ψy}2�ϵ�1@Ψy

��N y
¡N�

��Ψy

D
,

(3.7.8)

where Wg is the corresponding Weyl transformation.

Proof. Let tgn : n P Nu be a completion of tey,1, . . . , ey,N�u to an orthonormal basis of
L2pR3q and let us define an :� a pgnq. We further introduce an operator Fr as

Fr :�
¸

I,JPt1,...,N�um
fI,J a

:
I1 . . . a

:
ImaJ1 . . . aJm�

¸
I,JPNm

�
Πbm
y fΠbm

y

�
I,J
a:I1 . . . a

:
ImaJ1 . . . aJm . (3.7.9)

In the following we want to verify that both }f}�1
8

���@Ψy

��Fp ��Ψy

D� @
Ψy

��Fr ��Ψy

D���
and }f}�1

8
���@Ψy

��Fr ��Ψy

D� ³
F p|φy,ξ|2q dPy pξq

��� are, up to a multiplicative constant, bounded
by the right hand side of Eq. (3.7.7). Applying the Cauchy–Schwarz inequality, we obtain for
all ϵ ¡ 0

��f�Πbm
y f Πbm

y

� � �f �1�Πbm
y

���1�Πbm
y

�
f Πbm

y ¤ ϵ}f}8�ϵ�1}f}8
�
1�Πbm

y

�
¤ ϵ}f}8�ϵ�1}f}8

�p1�Πyq1�. . .�p1�Πyqm
�
,

where p1�Πyqj means that the operator 1�Πy acts on the j-th factor in the tensor product.
Consequently we have the operator inequality

�
� ¸
I,JPNm

fI,J a
:
I1 . . . a

:
ImaJ1 . . . aJm � Fr� ¤ ϵ}f}8Nm � ϵ�1}f}8mN y

¡N�Nm�1.
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Making use of Eq. (3.7.3) and the fact that χ pN ¤ CqΨy � Ψy further yields�����xΨy|Fp |Ψyy �
¸

I,JPNm
fI,J xΨy|a:I1 . . . a

:
ImaJ1 . . . aJm |Ψyy

����� ¤ dα�2}f}8}Ψy}2

for a suitable constant d ¡ 0. We have thus shown the bound
1

}f}8
���xΨy|Fp |Ψyy�xΨy|Fr |Ψyy

���¤�
dα�2�ϵCm

�}Ψy}2�ϵ�1mCm�1@Ψy

��N y
¡N�

��Ψy

D
(3.7.10)

which is of the desired form.

In order to verify that 1
}f}8

���@Ψy

��Fr ��Ψy

D� ³
F p|φy,ξ|2q dPy pξq

��� is of the same order as the
right hand side of Eq. (3.7.7) as well, we will first compute Fr with reversed operator ordering,
i.e. we compute¸

I,JPt1,...,N�um
fI,J aJ1 . . . aJma

:
I1 . . . a

:
Im �

¸
I,JPt1,...,N�um

fI,J a
:
I1 . . . a

:
ImaJ1 . . . aJm (3.7.11)

�
m̧

n�1

1
α2nn!

¸
σ,τPSm,n

�¸
I 1,J 1

fσ,τI 1,J 1
¹

kRtσ1,...,σnu
a:I 1

k

¹
ℓRtτ1,...,τnu

aJ 1
ℓ

�
where Sm,n is the set of all sequences σ � pσ1, . . . , σnq without repetitions having values
σk P t1, . . . ,mu and the coordinate matrices fσ,τ are defined as

fσ,τI 1,J 1 :�
¸

I,JPt1,...,N�um
fI,J δIσ1 ,Jτ1

. . . δIσn ,Jτn

¹
kRtσ1,...,σnu

δIk,I 1k

¹
ℓRtτ1,...,τnu

δJℓ,J 1ℓ

for I 1 P t1, . . . , N�ut1,...,muztσ1,...,σnu and J 1 P t1, . . . , N�ut1,...,muztτ1,...,τnu. One can verify
Eq. (3.7.11) either by iteratively applying the (rescaled) canonical commutation relations
rai, a:js � α�2δi,j, or by using the fact that the operator eα�2∇ξ̄∇ξ , which is well defined on
polynomials in ξ and ξ̄, transforms the upper symbol into the lower symbol (see e.g. [107]),
and computing its action on P pξq :� °

I,JPt1,...,N�um fI,JξI1 . . . ξImξJ1 . . . ξJm as

eα
�2∇ξ̄∇ξ pP q pξq � P pξq �

m̧

n�1

1
α2nn!

¸
σ,τPSm,n

�¸
I 1,J 1

fσ,τI 1,J 1
¹

kRtσ1,...,σnu
ξI 1
k

¹
ℓRtτ1,...,τnu

ξJ 1
ℓ

�
.

In order to identify the left hand side of Eq. (3.7.11), we will make use of the resolution of
identity 1

πN�

³
CN� Θy,ξ dξ � 1, where Θy,ξ is defined below Eq. (3.7.6), which allows us to

rewrite the anti-wick ordered term aJ1 . . . aJma
:
I1 . . . a

:
Im as

1
πN�

»
CN�

aJ1 . . . aJmΘy,ξa
:
I1 . . . a

:
Im dξ � 1

πN�

»
CN�

ξJ1 . . . ξJmξI1 . . . ξImΘy,ξ dξ.

Here we have used that aiΘy,ξ � ξiΘy,ξ for all i P t1, . . . , N�u. By the definition of Py in
Eq. (3.7.6) we can therefore rewrite the expectation value of the first term on the left hand
side of Eq. (3.7.11) with respect to the state Ψy as¸

I,JPt1,...,N�um
fI,J

@
Ψy

��aJ1 . . . aJma
:
I1 . . . a

:
Im

��Ψy

D� ¸
I,JPt1,...,N�um

fI,J

»
ξJ1 . . . ξJmξI1 . . . ξImdPypξq

�
» @

φb
m

y,ξ

��f ��φbmy,ξ D dPypξq �
»
F
�|φy,ξ|2� dPy pξq . (3.7.12)
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In order to control the terms in the second line of Eq. (3.7.11), we can estimate the norm
}fσ,τ}op ¤ }f}8Nn

� for all σ, τ P Sm,n, which follow from

xv|fσ,τ |wy �
¸

I,JPt1,...,N�um
fI,JδIσ1 ,Jτ1

. . . δIσn ,JτnvI 1wJ 1 �
¸

kPt1,...,N�un

@
vk
��f ��wkD

¤ }f}8
¸

kPt1,...,N�un
}vk}}wk} ¤ }f}8Nn

� }v}}w},

where I 1 denotes the restriction of I to t1, . . . ,muztσ1, . . . , σnu and vk is defined as
�
vk
�
I

:�
δIσ1 ,k1 . . . δIσn ,knvI 1 , and J 1 and wk are defined analogue. Hence we obtain����� 1

α2n

¸
I 1,J 1

fσ,τI 1,J 1
@
Ψy

�� ¹
kRtσ1,...,σnu

a:I 1
k

¹
ℓRtτ1,...,τnu

aJ 1
ℓ

��Ψy

D����� ¤ }f}8
�
N�
α2


n

xΨy|Nm�n|Ψyy

for n ¥ 1. Since χ pN ¤ CqΨy � Ψy and N� À α2, see the comment below Eq. (3.7.4), this
is a quantity of order }f}8N�

α2 }Ψy}2. Combing this estimate with Eq. (3.7.11) and Eq. (3.7.12)
yields that 1

}f}8

���@Ψy

��Fr ��Ψy

D� ³
F p|φy,ξ|2q dPy pξq

��� is, up to a multiplicative factor, bounded
by the right hand side of Eq. (3.7.7). Together with Eq. (3.7.10), this concludes the proof of
Eq. (3.7.7).

In order to verify Eq. (3.7.8), let us define Gpρq :� ³
dρ. Note that W�1

g NWg � N � apgq�
a:pgq�}g}2 � Gp �apgq�a:pgq�}g}2. Furthermore we have

@
Ψy

��apΠygq�a:pΠygq
��Ψy

D �³ pxg|φy,ξy � xφy,ξ|gyq dPy pξq, where we used that apgq � a:pgq is anti-Wick ordered, and���AΨy

���apgq � a:pgq � apΠygq � a:pΠygq
���Ψy

E��� ¤ ϵ�1 xΨy|N y
¡N� |Ψyy � ϵ}g}2}Ψy}2.

Hence, applying Eq. (3.7.7) with respect to the function G and using that
³}φy,ξ � g}2dPy �³ pG p|φy,ξ|2q � xg|φy,ξy � xφy,ξ|gyq dPy pξq � }g}2}Ψy}2 concludes the proof of Eq. (3.7.8).

■

Corollary 3.7.3. Given constants m P N, C ¡ 0 and g P L2pR3q, there exists a constant
T ¡ 0 such that for all F of the form (3.7.2) and states Ψ satisfying χ pN ¤ CqΨ � Ψ and
xΨ|HK |Ψy ¤ ePek � δe, with δe ¥ 0 and K ¥ Λ� � α2s,

1
T }f}8

����@Ψ
��Fp ��ΨD�¼

F
�|φy,ξ|2� dPy pξq dy

���� ¤ ?
δe� α�

s
2 � α

27
2 s�2, (3.7.13)

and furthermore

1
T

����AΨ
���W�1

g NWg

���ΨE
�
¼

}φy,ξ � g}2dPy pξq dy
���� ¤ ?

δe� α�
s
2 � α

27
2 s�2. (3.7.14)

Proof. Using the fact that we have
@
Ψ
��Fp ��ΨD � ³ @

Ψy

��Fp ��Ψy

D
dy and

@
Ψ
��W�1

g NWg

��ΨD �³ @
Ψy

��W�1
g NWg

��Ψy

D
dy, and applying Eq. (3.7.7), respectively Eq. (3.7.8), immediately yields

that the left hand sides of Eqs. (3.7.13) and (3.7.14) are bounded by

N�
α2 � ϵ� ϵ�1

»
xΨy|N y

¡N� |Ψyy dy (3.7.15)
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for any ϵ ¡ 0. In order to bound
³xΨy|N y

¡N� |Ψyy dy from above, let us first apply Eq. (3.2.3)
together with Eq. (3.2.5), which provides the auxiliary estimate»

| xΨy|Hy
Λ�,ℓ� |Ψyy � xΨy|HK |Ψyy |dy À α�s

»
xΨy| �∆x �N � 1|Ψyy dy

¤ α�s
»
xΨy|2HK � d� 1|Ψyy dy.

Note that the assumptions of Eq. (3.2.3) are indeed satisfied, since K ¥ Λ� and supp pΨyq �
BL�pyq. In combination with the IMS identity

³ xΨy|HK |Ψyy dy � xΨ|HK |Ψy � L�2
� }∇χ}2,

where χ is the function from Eq. (3.7.5), this furthermore yields����» xΨy|Hy
Λ�,ℓ� |Ψyy dy � xΨ|HK |Ψy

���� À α�s pxΨ|HK |Ψy � d� 1q , (3.7.16)

where we have used L�2
� � α�s. Furthermore xΨ|HK |Ψy ¤ ePek � δe by assumption,

and consequently | ³ xΨy|Hy
Λ�,ℓ� |Ψyy dy � xΨ|HK |Ψy | ¤ Dα�spδe � 1q for a suitable D.

Consequently

xΨ|HK |Ψy ¥
»
xΨy|Hy

Λ�,ℓ� |Ψyy dy �Dα�spδe� 1q

¥ Eα �
»
xΨy|N y

¡N� |Ψyy dy �Dα�spδe� 1q. (3.7.17)

where we have used that Hy
Λ�,ℓ� ¥ Eα �N y

¡N� in the second inequality. Using Eq. (3.7.17)
as well as the fact that Eα � ePek Á �α� 1

5 ¥ �α�s, see [79], we obtain the upper bound»
xΨy|N y

¡N� |Ψyy dy À xΨ|HK |Ψy � ePek � α�spδe� 1q À δe� α�s. (3.7.18)

Choosing ϵ :� ?
δe� α�s in Eq. (3.7.15) therefore concludes the proof together with the

observation that N�
α2 À α

27
2 s�2. ■

In the following Lemma 3.7.4 we are investigating the support properties of the lower symbol
Py. In particular we derive bounds on the associated moments and verify that φy,ξ is typically
close to the manifold of minimizers tφPek

x : x P R3u.
Lemma 3.7.4. Given constants m P N and C ¡ 0, there exists a T ¡ 0, such that´ |ξ|2mdPy pξq dy ¤ T for all Ψ satisfying χ pN ¤ CqΨ � Ψ, and furthermore we have for
all K ¥ Λ�, where Λ� is as in the definition of Πy in Eq. (3.7.4),

1
T

¼
inf
xPR3

}φy,ξ � φPek
x }2dPy pξq dy ¤ xΨ|HK |Ψy � ePek � α�s � α

27
2 s�2. (3.7.19)

Proof. For m P N, let us define the function Gpρq :� �³
dρpxq�m � ³

. . .
³

dρpx1q . . . dρpxmq,
which is clearly of the form given in Eq. (3.7.2). Consequently by Lemma 3.7.2»
|ξ|2mdPy pξq �

»
G
�|φy,ξ|2� dPy pξq À

@
Ψy

��Gp ��Ψy

D� �
N�
α2 � 1



}Ψy}2 � xΨy|N y

¡N� |Ψyy

� @
Ψy

��N 2m��Ψy

D� �
N�
α2 � 1



}Ψy}2 � xΨy|N y

¡N� |Ψyy ¤
�
C2m � N�

α2 � 1� C



}Ψy}2,
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which concludes the proof of the first part, since N� À α2 and
³ }Ψy}2dy � }Ψ}2 � 1.

Regarding the proof of Eq. (3.7.19), we have the simple bound

Hy
Λ�,ℓ���∆x�a pΠywxq�a: pΠywxq�N ¥�∆x�a pΠywxq�a: pΠywxq�

N�̧

n�1
a:y,nay,n

� �∆x � a pΠywxq � a: pΠywxq �
N�̧

n�1
ay,na

:
y,n �

N�
α2 . (3.7.20)

Since all terms in Eq. (3.7.20) are represented in anti-Wick ordering, we can follow [79] and
express, similar as in the proof of Lemma 3.7.2, their expectation value as

A
Ψy

����∆x�a pΠywxq�a: pΠywxq�
N�̧

n�1
ay,na

:
y,n

���Ψy

E
�
»�xψξy|�∆x�Vφy,ξ |ψξyy�}φy,ξ}2�dPypξq

¥
» �

inf σ
��∆x � Vφy,ξ

�� }φy,ξ}2� dPy pξq �
»

FPekpφy,ξq dPy pξq , (3.7.21)

with ψξy :� Θy,ξΨy
}Θy,ξΨy} where Θy,ξ is defined below Eq. (3.7.6), FPek is the Pekar functional

and Vφ is defined in Eq. (3.5.1). Making use of Eq. (3.7.1) we obtain together with
Eqs. (3.7.16), (3.7.20) and (3.7.21)» »

inf
xPR3

}φy,ξ � φPek
x }2dPy pξq dy À

»
xΨy|Hy

Λ�,ℓ� |Ψyy dy � ePek � N�
α2

À xΨ|HK |Ψy � ePek � N�
α2 �Dα�s pxΨ|HK |Ψy � d� 1q ,

for a suitable D ¡ 0. This concludes the proof, since we have N� À α
27
2 s. ■

The bound in Eq. (3.7.19) suggests that φy,ξ is close to φPek
xy,ξ with a high probability,

where xy,ξ is the minimizer of x ÞÑ }φy,ξ � φPek
x }. Motivated by this observation we

expect
´
F
�|φy,ξ|2� dPydy �

´
F
���φPek

xy,ξ

��2	 dPydy for measures Py for low energy states
Ψ, and therefore it seems natural to define the measure µ in Theorem 3.3.2 as

³
fdµ :�´

f
�
xy,ξ

�
dPydy, allowing us to identify

´
F
���φPek

xy,ξ

��2	 dPydy �
³
F
���φPek

x

��2	 dµ. This
expression is however ill-defined, since the infimum infxPR3 }φy,ξ � φPek

x } is not necessarily
attained and it is not necessarily unique. In order to avoid these difficulties, we will slightly
modify the definition of the measure µ in the proof of Lemma 3.7.5.

Lemma 3.7.5. Given m P N, C ¡ 0 and g P L2pR3q we can find a constant T ¡ 0, such
that for all states Ψ satisfying χ pN ¤ CqΨ � Ψ and xΨ|HK |Ψy ¤ ePek � δe, with δe ¥ 0
and K ¥ Λ�, there exists a probability measure µ on R3 with the property

1
T }f}8

����¼ F
�|φy,ξ|2�dPypξq dy �

»
F
���φPek

x

��2	dµpxq
���� ¤ ?

δe� α�
s
2 � α

27
4 s�1, (3.7.22)

for all F of the form (3.7.2), and furthermore

1
T

����¼ }φy,ξ � g}2dPypξq dy �
»
}φPek

x � g}2dµpxq
���� ¤ ?

δe� α�
s
2 � α

27
4 s�1. (3.7.23)
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Proof. For ϵ ¡ 0, let
�8
n�1 Aϵ,n � CN� be a partition of CN� consisting of non-empty

measurable sets Aϵ,n having a diameter bounded by dpAϵ,nq ¤ ϵ. Furthermore choose
ξϵ,n P Aϵ,n and xϵ,n P R3 satisfying }φ0,ξϵ,n � φPek

xϵ,n} ¤ infxPR3 }φ0,ξϵ,n � φPek
x } � ϵ. Then

}φy,ξ�φPek
y�xϵ,n} � }φ0,ξ�φPek

xϵ,n} ¤ }φ0,ξϵ,n�φPek
xϵ,n}�}φ0,ξ�φ0,ξϵ,n} ¤ }φ0,ξϵ,n�φPek

xϵ,n}�ϵ
¤ inf

xPR3
}φ0,ξϵ,n�φPek

x }�2ϵ ¤ inf
xPR3

}φ0,ξ�φPek
x }�3ϵ � inf

xPR3
}φy,ξ�φPek

x }�3ϵ. (3.7.24)

Let us now define the probability measure µ on R3 by specifying its action on functions
f P C pR3q as»

fdµ :�
8̧

n�1

»
f py � xϵ,nqPypAϵ,nq dy �

8̧

n�1

» »
Aϵ,n

f py � xϵ,nq dPydy.

Since
³
F
�|φy,ξ|2�dPypξq � °8

n�1
³
Aϵ,n

F
�|φy,ξ|2�dPypξq, we can estimate the left hand side

of Eq. (3.7.22) with the aid of the triangle inequality by
8̧

n�1

» »
Aϵ,n

����F �|φy,ξ|2�� F

����φPek
y�xϵ,n

���2
���� dPypξq dy. (3.7.25)

From the concrete form of the function F given in Eq. (3.7.2), as well as the facts that
}φPek

y�xϵ,n} � }φPek
0 } is finite and }φy,ξ} � |ξ|, one readily concludes that����F �|φy,ξ|2�� F

����φPek
y�xϵ,n

���2
���� À }f}8
���φy,ξ � φPek

y�xϵ,n

��� p1� |ξ|q2m�1 .

Using Eq. (3.7.24) we further obtain for any κ ¡ 0 and ξ P Aϵ,n���φy,ξ � φPek
y�xϵ,n

��� p1� |ξ|q2m�1 ¤
�

inf
xPR3

}φy,ξ�φPek
x } � 3ϵ

	
p1� |ξ|q2m�1

¤ κ�1 inf
xPR3

}φy,ξ�φPek
x }2 � κ

4 p1� |ξ|q
4m�2 � 3ϵ p1� |ξ|q2m�1 ,

and therefore the expression in Eq. (3.7.25) can be bounded from above by

}f}8
�
κ�1

¼
inf
xPR3

}φy,ξ�φPek
x }2dPypξq dy � κ

4

¼
p1� |ξ|q4m�2 dPypξq dy

� 3ϵ
¼

p1� |ξ|q2m�1 dPypξq dy


.

By Lemma 3.7.4 this concludes the proof of (3.7.22) with ϵ :� κ :�
a
δe� α�s � α

27
2 s�2.

Eq. (3.7.23) can be proven analogously, using the estimate���}φy,ξ � g}2 � }φPek
y�xϵ,n � g}2

��� À ���φy,ξ � φPek
y�xϵ,n

��� p1� |ξ|q
for ξ P Aϵ,n. ■

Combining Eq. (3.7.13), respectively Eq. (3.7.14), with Eq. (3.7.22), respectively Eq. (3.7.23),
immediately yields that the left hand side of Eq. (3.3.2), respectively Eq. (3.3.3), is of the
order

?
δe� α�

s
2 � α

27
4 s�1. Optimizing in the parameter 0   s ¤ 4

27 concludes the proof of
Theorem 3.3.2 with the concrete choice s :� 4

29 .
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3.8 Properties of the Pekar Minimizer
In the following section we derive certain useful properties concerning the minimizer φPek of
the Pekar functional FPek in (3.5.4). We start with Lemma 3.8.1, where we quantify the
error of applying the cut-off Π to a minimizer, where Π is the projection defined in Eq. (3.4.1)
for a given parameter 0   σ   1

4 . The subsequent Lemmas 3.8.2 and 3.8.3 then concern the
concentration of the density

��φPek
��2 around the origin.

Lemma 3.8.1. For all r ¡ 0 we have the estimates sup|x|¤r
��p1� ΠqφPek

x

�� À α�
6
5 p1�σq.

Moreover,
��p1� Πq BxnφPek

�� À α�
2
5 p1�σq for n P t1, 2, 3u.

Proof. We can write φPek � 4
?
π p�∆q� 1

2
��ψPek

��2 where ψPek is the ground state of the
operator HV Pek . Consequently φPek

x � 4
?
π pfx � gxq with the definitions

fxp pkq � 1BΛpkq |
ψPek|2{ pkq

|k| eik�x and gxp pkq � 1R3zBΛpkq |
ψPek|2{ pkq

|k| eik�x, where �p denotes the
Fourier transform. In the first step we are going to estimate } p1� Πq gx} � }gx} by

}gx}2�
»
|k|¥Λ

��� ��ψPek
��2{ pkq

���2
|k|2 dk¤

����|k|2 ��ψPek��2{ pkq
����2

8

»
|k|¥Λ

1
|k|6 dk À 1

Λ3 �α�
12
5 p1�σq,

(3.8.1)

where we have used that ψPek P H2pR3q, see [76, 95], and therefore
����|k|2 ��ψPek

��2{ pkq
����
8
  8.

In order to estimate the remaining part } p1� Πq fx}, let us first compute

fxpyq� 1ap2πq3
»
|k|¤Λ

��ψPek
��2{ pkq
|k| eik�px�yqdk � 1

p2πq3
»
|k|¤Λ

eik�px�yq

|k|
»
R3

��ψPekpzq��2eik�zdzdk
� 1
p2πq3

»
R3

��ψPekpzq��2 »
|k|¤Λ

eik�px�z�yq

|k| dk dz � 1?
4π

»
R3

��ψPekpzq��2 ΠΛwx�zpyq dz

using the projection ΠΛ from Definition 3.2.1 and the function wx from Lemma 3.2.2.
Consequently we obtain by Lemma 3.2.2

} p1� Πq fx} ¤ 1?
4π

»
R3

��ψPekpzq��2 }ΠΛwx�z � Πwx�z} dz

À ℓ
?

Λ
»
R3
|z| ��ψPekpzq��2 dz � ℓ

?
Λ|x| �

?
ℓ,

where we have used p1� ΠqΠΛ � ΠΛ � Π and
³
R3

��ψPekpzq��2 dz � 1. This concludes the
proof of the first part, since the terms ℓ

?
Λ and

?
ℓ are all bounded by α� 6

5 p1�σq, and the
state ψPek satisfies

³
R3 |z|p

��ψPekpzq��2 dz   8 for any p ¥ 0, see [95].

In order to verify the second part, we write again BxnφPek � 4
?
π pBxnf0 � Bxng0q. In

analogy to Eq. (3.8.1) we have }Bxng0}2 À 1
Λ � α�

4
5 p1�σq. Furthermore Bxnf0pxq �
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� 1?
4π

³
R3 Bzn

���ψPekpzq��2	ΠΛwzpxq dz, hence proceeding as above yields

} p1� Πq Bxnf0} À ℓ
?

Λ
»
R3
|z|��Bzn ���ψPekpzq��2	�� dz

�
�
ℓ
?

Λ|x| �
?
ℓ
	 »

R3

��Bzn ���ψPekpzq��2	�� dz.
This concludes the proof, since»

R3
|z|
���Bxn ���ψPekpzq��2	��� dz � 2

»
R3
|z||ψPekpzq||BznψPekpzq| dz

¤
»
R3
|z|2|ψPekpzq|2 dz �

»
R3
|∇ψPekpzq|2 dz   8

and similarly with |z| replaced by 1. ■

Lemma 3.8.2. There exists a constant C such that
³

t¤xi¤t�ϵ

��φPekpxq��2 dx ¤ C ϵ for all

t P R, ϵ ¡ 0 and i P t1, 2, 3u.

Proof. By the reflection symmetry of the Pekar minimizer, it is enough to prove the statement
for i � 1. For this purpose, let us define the function D : RÑ R as

Dptq :�
»
R2

��φPekpt, x2, x3q
��2 dx2dx3

In order to prove the Lemma, we are going to show that D is a bounded function. Since
Dptq ÝÑ

tÑ�8 0, we have }D}8 ¤ ³ |D1ptq|dt and furthermore»
|D1ptq|dt ¤

» »
R2

���Bt ��φPekpt, x2, x3q
��2��� dx2dx3dt ¤

»
R3

���∇x

��φPek��2��� dx

� 2
»
R3
φPekpxq ��∇xφ

Pek�� dx ¤ }φPek}2 � }∇φPek}2   8,

where we have used that φPek P H1pR3q. ■

Lemma 3.8.3. The Pekar minimizers φPek
x satisfy

��φPek
x � φPek

��2 À °3
i�1 P

ϵ
i

���φPek
x

��2	�α�u,
where P ϵ

i is defined in Eq. (3.3.18).

Proof. Since
��φPek

x � φPek
�� ¤ ��φPek

x

�����φPek
�� � 2

��φPek
�� and

��φPek
x � φPek

��2 ¤ |x|2 ��∇φPek
��2,

we have
��φPek

x � φPek
��2 À mint|x|2, 1u. Therefore it is enough to show that we have

mintx2
i , 1u À P ϵ

i

���φPek
x

��2	� ϵ. By the reflection symmetry of φPek, we can assume w.l.o.g.

that i � 1. We identify 1
}φPek}4P ϵ

1

���φPek
x

��2	
1
4 �

1
}φPek}2

»
y1¤x1�ϵ

��φPekpyq��2 dy
�

1� 1
}φPek}2

»
y1¤x1�ϵ

��φPekpyq��2 dy



�
�

1
2�F px1q


2

� F px1q
�
F px1�ϵq�F px1q

���F px1q�F px1�ϵq
��

1�F px1 � ϵq�
¥
�

1
2�F px1q


2

� �
F px1�ϵq�F px1q

�� �
F px1q�F px1�ϵq

� ¥ �
1
2�F px1q


2

� 2C ϵ
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with F ptq :� 1
}φPek}2

³
y1¤t

��φPekpyq��2 dy, where C is the constant from Lemma 3.8.2. Since
φPek is radially decreasing, see [76], it is clear that |φPekpxq|2 ¥ c ¡ 0 for all x P r�δ, δs3
where δ, c ¡ 0 are suitable constants. Assuming x1 ¡ 0 w.l.o.g. we conclude that��φPek

��2 �
F px1q � 1

2

� ¥ c
³

0¤y1¤x1
1r�δ,δs3pyq dy � 4cδ2mintx1, δu Á mintx1, 1u. ■

3.9 Properties of the Projection Π
In the following section we discuss properties of the Projections Π defined in Eq. (3.4.1)
and ΠK defined in Definition 3.2.1. The first two results in Lemma 3.9.1 and Corollary
3.9.2 concern the space confinement of elements in the range of Π, to be precise we show
that the associated potentials Vφ defined in Eq. (3.5.1) are concentrated in a ball of radius
αq for a suitable q ¡ 0. While Lemma 3.9.3 is an auxiliary result, we will show in the
subsequent Lemmas 3.9.4 and 3.9.5 that the operator Jt,ϵ is an approximation of the Hessian
Hess|φPekFPek, where Jt,ϵ is the operator defined in Eq. (3.5.14). Finally, we will show in
Lemma 3.9.6 that the functions ΠKwx, which appear in the definition of HK in Eq. (3.2.2),
are confined in space around the origin. We will then use this result in order to quantify the
energy cost of having the electron and the phonon field localized in different regions of space,
see Corollary 3.9.7.

The proof of the following auxiliary Lemma 3.9.1 is an easy analysis exercise and is left to the
reader.

Lemma 3.9.1. There exists a constant C ¡ 0 such that for f P C3 pR3q and K :�
pk1, k

1
1q � pk2, k

1
2q � pk3, k

1
3q � R3 with ki   k1i   ki � 2���p1Kfq{ pxq

��� ¤ C
}f}C3pKq

p1� |x1|q p1� |x2|q p1� |x3|q

for all x � px1, x2, x3q P R3, where }f}C3pKq :� max|α|¤3 supxPK |Bαfpxq| and �p denotes the
Fourier transform.

Corollary 3.9.2. There exists a constant v ¡ 0, such that for all r ¡ 0 and φ P ΠL2pR3q
��1R3zBrp0qVφ

�� À αv}φ}?
r
, (3.9.1)

where Π is defined in Eq. (3.4.1) and Vφ is defined in Eq. (3.5.1).

Proof. Let en be the basis from Definition 3.2.1 corresponding to concrete choices of Λ and
ℓ defined above Eq. (3.4.1). Given φ � °N

n�1 λnen P ΠL2pR3q, λn P C, we have the rough
estimate

��1R3zBrp0qVφ
�� ¤ Ņ

n�1
|λn|

��1R3zBrp0qVen
�� ¤ ?

N}φ} sup
nPt1,...,Nu

��1R3zBrp0qVen
�� .

Since N ¤ αp for a suitable constant p, it is enough to verify Eq. (3.9.1) for φ � en. Making
use of Ven � 1Knfz with Kn :� pzn1 � ℓ, zn1 � ℓq � pzn2 � ℓ, zn2 � ℓq � pzn3 � ℓ, zn3 � ℓq and
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fpkq � �2b
p2πq3 ³Kn 1

|k|2 dk
1
|k|2 , and the fact that pznk � ℓq � pznk � ℓq � 2ℓ ¤ 2, we obtain by

Lemma 3.9.1��1R3zBrp0qVen
��2 À α2p1

»
|x|¡r

1
p1� |x1|q2p1� |x3|q2p1� |x3|q2 dx À α2p1 1

r
,

where we have used Kn � R3zB2ℓp0q and therefore }f}C3pKq À ℓ�
3
2 Λ pℓq�5 � αp

1 for a
suitable p1 ¡ 0. ■

Lemma 3.9.3. For ψ P L2pR3q and T ¡ 0,» »
|k1|¤T

|ψppk � k1q|2
p1� |k|2q |k1|2 dk1dk À }ψ}2T, (3.9.2)» »

|k1|¡T

|ψppk � k1q|2
p1� |k|2q |k1|2 dk1dk À }ψ}2

?
T
. (3.9.3)

Furthermore, interpreting ψ as a multiplication operator we have���p1�∆q� 1
2 ψ p�∆q� 1

2

���
HS
À }ψ}, (3.9.4)���p1�∆q� 1

2 p�∆q� 1
2 ψ

���
HS
�
?

2π}ψ}. (3.9.5)

Proof. Eq. (3.9.2) and Eq. (3.9.3) immediately follow from the estimates» »
|k1|¤T

|ψppk � k1q|2
p1� |k|2q |k1|2 dk1dk ¤

» »
|k1|¤T

|ψppk � k1q|2
|k1|2 dk1dk � }ψ}24πT,» »

|k1|¡T

|ψppk � k1q|2
p1� |k|2q |k1|2 dk1dk ¤ 1

2

» »
|k1|¡T

�
1?

T p1� |k|2q2�
?
T

|k1|4


|ψppk � k1q|2 dk1dk

¤ 1
2

�» 1
p1� |k|2q2 dk � 4π


 }ψ}2
?
T
.

By making use of the fact that the integral kernel of p1�∆q� 1
2 ψ p�∆q� 1

2 in Fourier space is
given as ψppk�k1q?

1�|k|2|k1| , Eq. (3.9.4) immediately follows from Eq. (3.9.3) and Eq. (3.9.2) with the
concrete choice T � 1. Finally Eq. (3.9.5) follows from the fact that the corresponding integral
kernel is given by ψppk�k1q?

1�|k|2|k| and the identity
³ ³ |ψppk�k1q|2

|k|2p1�|k|2q dk1dk � ³ 1
|k|2p1�|k|2q dk }ψ}2 �

2π2}ψ}2. ■

Lemma 3.9.4. We have Tr
�p1� ΠqLPek

x p1� Πq� À α�
2
5 for |x| À 1, where LPek

x is the
operator defined above Eq. (3.5.13).

Proof. With the definition ψPek
x pyq :� ψPekpy � xq, we can express the operator LPek

x as
LPek
x � 2

���p1�∆q� 1
2 ψPek

x p�∆q� 1
2

���2. Since the integral kernel of p1�∆q� 1
2 ψPek

x p�∆q� 1
2

is given by ψpPek
x pk�k1q?
1�|k|2|k1| in Fourier space and since the one of Π reads

°N
n�1

1Czn pkq1Czn pk1q³
Czn

1
|q|2 dq |k| |k1| ,
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where Czn is as in Definition 3.2.1, we can further express the integral kernel of the operator
p1�∆q� 1

2 ψPek
x p�∆q� 1

2 p1� Πq as

Ņ

n�1

³
Czn

ψpPek
x pk�k1q�ψpPek

x pk�qq?
1�|k|2|k1|

1
|q|2 dq³

Czn
1

|q1|2 dq 1Czn pk1q �
ψpPek
x pk � k1qa
1� |k|2|k1|1R3zp�n Cznqpk

1q. (3.9.6)

In the following we need to show that the L2pR3 � R3q norm of the expression in Eq. (3.9.6) is
of order α� 1

5 . As in the proof of Lemma 3.2.2, we will use R3z p�nCznq � B2ℓYpR3zBΛ�4ℓq,
where Λ and ℓ are defined above Eq. (3.4.1). Applying Eq. (3.9.2) with T � 2ℓ and Eq. (3.9.3)
with T � Λ� 4ℓ yields» »

R3zp�n Cznq
|ψpPek

x pk � k1q|2
p1� |k|2q|k1|2 dk1dk À 2ℓ� 1?

Λ� 4ℓ
À α�

2
5 .

In order to estimate the L2 norm of fpk, k1q :� °N
n�1

³
Czn

ψp
Pek
x pk�k1q�ψpPek

x pk�qq?
1�|k|2|k1|

1
|q|2 dq³

Czn
1
|q|2 dq 1Czn pk1q, let

us define ψx,s,ηpyq :� η
|η| � yeisη�yψPek

x pyq for s P R, η P R3 and ξ :� q � k1, and compute

ψpPek
x pk�k1q�ψpPek

x pk�qq �
» 1

0
ξ �∇ψpPek

x pk�k1 � sξqds � |ξ|
» 1

0
ψpx,s,ξpk�k1qds.

Making use of the inequality
1
|q|2³

Czn
1

|q1|2 dq1 À ℓ�3 for q P Czn and the fact that ξ � q � k1 P
K :� p�2ℓ, 2ℓq3 for all k1, q P Czn , yields

|fpk, k1q|2 À
Ņ

n�1
1Czn pk1qℓ�4

�����
»
K

» 1

0

��ψpx,s,ξpk � k1q��a
1� |k|2|k1| dsdξ

�����
2

¤
Ņ

n�1
1Czn pk1q8ℓ�1

»
K

» 1

0

��ψpx,s,ξpk � k1q��2
p1� |k|2q|k1|2 dsdξ ¤ 8ℓ�1

»
K

» 1

0

��ψpx,s,ξpk � k1q��2
p1� |k|2q|k1|2 dsdξ,

where we have applied the Cauchy–Schwarz inequality. An application of Lemma 3.9.3 with
T � 1 then yields¼

|fpk, k1q|2 dk1dk À ℓ�1
»
K

» 1

0
}ψx,s,ξ}2dsdξ ¤ Cℓ2 À α�8,

where we used that }ψx,s,η} ¤ C for all |x| À 1 and a suitable constant C   8. ■

Lemma 3.9.5. Recall the operator HPek from Eq. (3.1.4). Then there exists a constant
c ¡ 0 such that Jt,ϵ ¥ c π for ϵ small enough and α large enough. Furthermore���TrΠL2pR3q

�
1�a

Jt,ϵ

�
� Tr

�
1�

?
HPek

���� À ϵ� α�
1
5 (3.9.7)

for |t|   ϵ, ϵ small enough and α large enough.

Proof. Recall the definition of π and Jt,ϵ in, respectively below, Eq. (3.5.13) for |t|   ϵ  
δ�, where δ� is defined before Definition 3.5.3. In the following we are going to verify
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that }p1 � ϵqπ �KPek
xt � ϵLPek

xt

�
π}op ¤ 1 � c for a suitable constant c ¡ 0, small ϵ and

|t|   ϵ, which immediately implies Jt,ϵ ¥ c π. Let πx be the orthogonal projection onto
tBx1φ

Pek
x , Bx2φ

Pek
x , Bx3φ

Pek
x uK and let φn be defined in Eq. (3.5.11). Then we estimate

Tr r|π0 � πx|s ¤ 2
3̧

n�1

����φn � BxnφPek
x

}BxnφPek
x }

���� (3.9.8)

¤ 2
3̧

n�1

���� BxnφPek

}BxnφPek} �
BxnφPek

x

}BxnφPek
x }

����� 2
3̧

n�1

����φn � BxnφPek

}BxnφPek}
���� À |x| � α�

2
5 ,

where we have used Lemma 3.8.1 in order to obtain }BxnφPek � ΠBxnφPek} À α�
2
5 and

the fact that φPek P H2pR3q, which yields }BxnφPek
x � BxnφPek} ¤ |x| ��∇BxnφPek

�� À |x|.
Hence Tr r|π0 � π�xt |s À |t| � α�

2
5 for t small enough. It is a straightforward consequence of

(3.7.1) that the operator norm of π0K
Pekπ0 is bounded by }π0K

Pekπ0}op   1 (see also [91,
Lemma 1.1]). Therefore we obtain, using π � Ππ0 � π0Π,��p1�ϵqπ�KPek

xt �ϵLPek
xt

�
π
��

op¤
��p1�ϵqπ0

�
KPek
xt �ϵLPek

xt

�
π0
��

op�
��π0K

Pek
xt π0

��
op�O pϵq

� ��π�xtKPekπ�xt
��

op�O pϵq � ��π0K
Pekπ0

��
op�O pϵq �O

�
α�2{5� ¤ 1�c (3.9.9)

for a suitable constant c ¡ 0, ϵ small enough, |t|   ϵ and α large enough.

In order to verify Eq. (3.9.7), let |t|   ϵ and ϵ be small enough such that Jt,ϵ ¥ 0, and let us
compute

TrΠL2pR3q
�
1�a

Jt,ϵ

�
� Tr

�
1� πK0 �

b
1� p1� ϵqπ �KPek

xt � ϵLPek
xt

�
π

�
,

Furthermore we have the identity Tr
�
1�?

1�KPek
� � Tr

�
1� πK0 �

?
1� π0KPekπ0

� �
Tr

�
1�a

1� πxtK
Pek
xt πxt

� � Tr
�
πK0

�
. Using the definition of KPek in Eq. (3.5.6), we can

express TrΠL2pR3q
�
1�a

Jt,ϵ
�� Tr

�
1�

?
HPek

�
as

Tr
�
1�

b
1� p1� ϵqπ �KPek

xt � ϵLPek
xt

�
π

�
� Tr

�
1�

b
1� πxtK

Pek
xt πxt

�
. (3.9.10)

In the following let f be a smooth function with compact support satisfying fpxq �
1 � ?

1� x for 0 ¤ x ¤ 1 � c, where c is as in Eq. (3.9.9), and let us define the
operators A :� p1�ϵqπ �KPek

xt �ϵLPek
xt

�
π and B :� πxtK

Pek
xt πxt . Using Eq. (3.9.10) and��p1� ϵqπ �KPek

xt � ϵLPek
xt

�
π
��

op ¤ 1� c for t and ϵ small enough, we obtain���TrΠL2pR3q
�
1�a

Jt,ϵ

�
� Tr

�
1�

?
HPek

���� � |Tr rfpAq � fpBqs|

¤ }fpAq � fpBq}1 ¤
1?
2π

»
R
|tfpptq| dt }A�B}1 , (3.9.11)

where } � }1 is the trace norm and fp is the Fourier transformation of f . In order to estimate
the right hand side of Eq. (3.9.11), we write A � B � T1 � π0T2π0 � πT3π with T1 :�
pπ0 � πxtqKPek

xt π0 � πxtK
Pek
xt pπ0 � πxtq, T2 :� pΠ � 1qKPek

xt Π � KPek
xt pΠ � 1q and T3 :�

ϵ
�
KPek
xt � p1� ϵqLPek

xt

�
. Clearly we have the estimates }πT3π}1 ¤ }T3}1 À ϵ and }T1}1 À

}π0 � πxt}1 À t� α�
2
5 by Eq. (3.9.8), using the fact that KPek

xt is trace-class, which follows
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from KPek
xt À LPek

xt and the fact that LPek
xt is trace-class, see Eq. (3.9.4) with ψ :� ψPek.

Using Lemma 3.9.4 together with a Cauchy–Schwarz estimate for the trace norm, we can
bound the final contribution π0T2π0 by

}π0T2π0}1 ¤ }T2}1 ¤ 2Tr
�
ΠKPek

xt Π
� 1

2 Tr
�p1� ΠqKPek

xt p1� Πq� 1
2 À α�

1
5 .

■

The following Lemma 3.9.6 is an auxiliary result, which we will use to quantify the energy
cost of having the electron and the phonon field localized in different regions of space, see
Corollary 3.9.7.

Lemma 3.9.6. Let w0pyq � π�
3
2 1
|y|2 and let ΠK be the projection defined in Definition 3.2.1.

Then there exist a constant D such that

}1R3zBrp0qΠKw0} ¤ D?
r

for all K, r ¡ 0.

Proof. The Fourier transform of ΠKw0 is given by χp|k|¤Kq?
2π2|k| . Defining the function u via its

Fourier transform as uppkq :� χϵp2ϵ¤|k|¤Kq?
2π2|k| , where ϵ ¡ 0 and χϵ is defined in Eq. (3.3.1), we

have

}ΠKw0 � u}2 ¤ 1
2π2

»
|k|¤3ϵ

1
|k|2 dk � 1

2π2

»
K�ϵ¤|k|¤K�ϵ

1
|k|2 dk � 6ϵ

π
,

and consequently }1R3zBrp0qΠKw0} ¤
b

6ϵ
π
� }1R3zBrp0qu}. Making use of the observation

that 1
|y|1R3zBrp0qpyq ¤ 1

r
yields

}1R3zBrp0qu}2 ¤ 1
r2

»
R3
|y|2|upyq|2dy � 1

r2 }∇kû}2 � 1
2π2r2 }f1 � f2}2

with f1pkq :� χϵp2ϵ¤|k|¤Kq
|k|2 and f2pkq :� ∇kχ

ϵp2ϵ¤|k|¤Kq
|k| . Clearly we can bound }f1}2 ¤³

|k|¥ϵ
1
|k|4 dk � 4π

ϵ
. Furthermore we obtain, using }∇kχ

ϵ p2ϵ ¤ |k| ¤ Kq}8 À 1
ϵ
,

}f2}2 À 1
ϵ2

�»
ϵ¤|k|¤3ϵ

1
|k|2 dk �

»
K�ϵ¤|k|¤K�ϵ

1
|k|2 dk



� 4
ϵ
.

In combination this yields }1R3zBrp0qΠKw0}2 À ϵ� 1
r2ϵ

, which concludes the proof with the
concrete choice ϵ :� 1

r
. ■

Corollary 3.9.7. Given A � R3, let us define the operator NA :� DA
x withDApρq :� ³

A
dρpyq,

using the notation of Definition 3.3.1, i.e. α2NA counts the number of particles in the region
A. Furthermore let A1 � R3. Then given a constant C ¡ 0, there exists a constant D ¡ 0
such that for all states Ψ with supp pΨq � A1 and χ pN ¤ CqΨ � Ψ

xΨ|HK |Ψy ¥ Eα � xΨ|NA|Ψy �
d

D

distpA,A1q ,

where K ¡ 0.
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Proof. Let us define the function vx :� 1AΠKwx and rewrite HK �NA as

HK �NA � �∆x � a pΠKwx � vxq � a: pΠKwx � vxq �N �NA � a pvxq � a: pvxq .

Identifying L2
�
R3,F

�
L2pR3q �	 � L2

�
R3,F

�
L2pR3zAq

		
b F

�
L2pAq

	
, we observe that

�∆x�a pΠKwx � vxq�a: pΠKwx � vxq�N�NA is the restriction (in the sense of quadratic
forms) of HK to states of the form Ψ1bΩ, where Ω is the vacuum in F

�
L2pAq

	
, and therefore

we have the operator inequality �∆x � a pΠKwx � vxq � a: pΠKwx � vxq �N �NA ¥ Eα.
Consequently

xΨ|HK �NA|Ψy ¥ Eα � xΨ|a pvxq � a: pvxq |Ψy ¥ Eα � sup
xPA1

}vx} p1� Cq ,

where we have used the operator inequality a pvxq � a: pvxq ¥ �}vx} p1�N q, as well as the
assumptions supp pΨq � A1 and χ pN ¤ CqΨ � Ψ, in the second inequality. This concludes
the proof, since }vx}2 � ³

A
|ΠKw0py � xq|2 dy ¤ ³

|y|¥distpA,A1q |ΠKw0pyq|2 dy for all x P A1

and
³
|y|¥distpA,A1q |ΠKw0pyq|2 dy À 1

distpA,A1q , see Lemma 3.9.6. ■
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CHAPTER 4
The Fröhlich Polaron at Strong

Coupling – Part II: Energy-Momentum
Relation and effective Mass

Abstract. We study the Fröhlich polaron model in R3, and prove a lower bound on its
ground state energy as a function of the total momentum. The bound is asymptotically sharp
at large coupling. In combination with a corresponding upper bound proved earlier [91], it
shows that the energy is approximately parabolic below the continuum threshold, and that
the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the
celebrated Landau–Pekar formula. In particular, it diverges as α4 for large coupling constant
α.

4.1 Introduction and Main Results
This is the second part of a study of the Fröhlich polaron [44] in the regime of strong coupling
between the electron and the phonons, which are the optical modes of a polar crystal. Our
goal is to quantify the heuristic picture that the mass of an electron in a polarizable medium
effectively increases due to an emerging phonon cloud attached to it. We are going to verify
that the energy-momentum relation of a polaron is asymptotically given by the semi-classical
formula EpP q �Ep0q � |P |2

2α4m
, which agrees with the energy-momentum relation of a particle

having mass α4m, where α4m is the asymptotic formula conjectured by Landau and Pekar
[63] for the mass of a polaron in the regime where the coupling parameter α goes to infinity.

Following the notation of the first part [17], where a second order expansion for the absolute
ground state energy of a polaron was verified, we are going to use creation and annihilation
operators satisfying the semi-classical rescaled canonical commutation relations rapfq, a:pgqs �
α�2 xf |gy for f, g P L2pR3q, in order to introduce the Fröhlich Hamiltonian acting on the
Fock space L2pR3q b F pL2pR3qq as

H :� �∆x � a pwxq � a: pwxq �N ,

where wxpx1q :� π�
3
2 |x1 � x|�2 and the (rescaled) particle number operator N equals

N :� °8
n�1 a

:pφnqapφnq for an orthonormal basis tφn : n P Nu of L2pR3q. The Fröhlich
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Hamiltonian H commutes with the components pP1,P2,P3q of the total momentum operator

P :� 1
i
∇� α2

»
R3
k a:kakdk ,

where we use the standard notation
³
R3 fpkqa:kakdk as a symbolic expression for the operator°8

n,m�1

A
φn

���f �1
i
∇
� ���φmEa:pφnqapφmq. Hence we can study their joint spectrum σ pP,Hq �

R4, and define the ground state energy EαpP q of H at total momentum P as EαpP q :�
inf

 
E : pP,Eq P σ pP,Hq (. Our main result below is the proof of the asymptotic energy-

momentum relation

EαpP q � Eαp0q �min
" |P |2

2α4m
,α�2

*
�OαÑ8

�
α�p2�wq

�
, (4.1.1)

where w ¡ 0 is a suitable constant and m is the conjectured constant by Landau and Pekar.
In order to provide an explicit expression for m, let us first define the Pekar functional
FPekpφq :� }φ}2 � inf σ p�∆� Vφq for φ P L2pR3q, where we define the potential Vφ :�
�2 p�∆q� 1

2 Reφ. If follows from the analysis in [76] that there exists a unique radial minimizer
φPek of the functional FPek. With this minimizer at hand, we can introduce the constant
m :� 2

3

��∇φPek
��2 in Eq. (4.1.1).

In order to formulate our main Theorem 4.1.1, let us further introduce the minimal Pekar
energy ePek :� infφ FPekpφq as well as the Hessian HPek of FPek at the minimizer φPek

restricted to real-valued functions φ P L2
RpR3q, i.e. we define HPek as the unique self-adjoint

operator on L2pR3q satisfying

xφ|HPek|φy � lim
ϵÑ0

1
ϵ2

�
FPek�φPek � ϵφ

�� ePek�
for all φ P L2

RpR3q. With this notation at hand, we can state our main new result in Theorem
4.1.1. It provides a sharp asymptotic lower bound on the ground state energy EαpP q of the
operator H as a function of the total momentum P.

Theorem 4.1.1. There exists a constant w ¡ 0 such that

EαpP q ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
�min

" |P |2
2α4m

,α�2
*
� α�p2�wq (4.1.2)

for all P P R3 and for all α ¥ α0, where α0 is a suitable constant.

That the lower bound in Eq. (4.1.2) is indeed sharp follows from the corresponding asymptotic
upper bound established in [91], given by

EαpP q ¤ ePek � 1
2α2 Tr

�
1�

?
HPek

�
�min

" |P |2
2α4m

,α�2
*
� Cϵα

� 5
2�ϵ, (4.1.3)

where ϵ ¡ 0 is arbitrary and Cϵ a suitable constant. In combination with Eq. (4.1.2) this
shows that

EαpP q � ePek � 1
2α2 Tr

�
1�

?
HPek

�
�min

" |P |2
2α4m

,α�2
*
�OαÑ8

�
α�p2�wq

�
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for all P P R3, which in particular proves Eq. (4.1.1). Note that α�2 corresponds to the
continuum threshold; i.e., σpP,Hq � R3 � rEαp0q � α�2,8q, the latter corresponding to
states describing free phonons on top of the polaron ground state [93? ].

In particular, EαpP q has an approximate parabolic shape below the continuum threshold, i.e.,
for |P |   ?

2mα. The Landau–Pekar formula for the effective mass appears in the limit
αÑ 8 as the semi-latus rectum of the parabola, in the sense that for any 0   |P |   ?

2m

m � lim
αÑ8α

�4 |αP |2
2 pEαpαP q � Eαp0qq . (4.1.4)

It is common the define the polaron’s effective mass for fixed α as

Meffpαq :� lim
PÑ0

|P |2
2 pEαpP q � Eαp0qq .

The quantity on the right hand side of Eq. (4.1.4) is clearly related to the large α limit of
α�4Meffpαq, with the difference being that the limit P Ñ 0 is taken before the limit αÑ 8.
While it is not clear at this point how to obtain the lower bound limαÑ8 α�4Meffpαq ¥ m,
we can make use of the inequality EαpP q ¤ Eαp0q � |P |2

2Meffpαq recently proved in [110] in order
to verify the upper bound limαÑ8 α�4Meffpαq ¤ m. In fact, by applying Eq. (4.1.1) in the
special case of P satisfying |P | � ?

2mα we have

Eαp0q � 1
α2 �OαÑ8

�
α�p2�wq

� � EαpP q ¤ Eαp0q � mα2

Meffpαq ,

which yields the claimed upper bound on Meffpαq. We formulate it as the subsequent Corollary.

Corollary 4.1.2. There exists a constant w ¡ 0 such that Meffpαq ¤ α4m�OαÑ8pα4�wq.

The remainder of this paper contains the proof of Theorem 4.1.1. In order to guide the reader,
we start with a short explanation of the main strategy.

Proof strategy of Theorem 4.1.1. Since pP,EαpP qq is an element of the joint spectrum
of the operator pair pP,Hq, there clearly exist states Ψα satisfying PΨα � PΨα and HΨα �
EαpP qΨα. In order to verify Theorem 4.1.1, it is therefore enough to show that xΨα|H|Ψαy
is bounded from below by the right hand side of Eq. (4.1.2). For this to hold it is crucial to
use the additional information PΨα � PΨα on the momentum, since in general H, as an
operator, is not bounded from below by the right hand side of Eq. (4.1.2). It is not possible
to transform the constrained minimization problem to a global one by the usual method of
Lagrange multipliers, since the operators P are not bounded relative to H. More precisely,
while clearly

EαpP q ¥ inf σpH� λpP � Pqq (4.1.5)

for any λ P R3, such a bound is insufficient as the right hand side is �8 for λ � 0, which
follows easily from the fact that EαpP q is bounded uniformly in P (compare with Eq. (4.1.1)).

In order to improve the lower bound in Eq. (4.1.5), we introduce a wavenumber cut-off
Λ in the Hamiltonian H as well as in the momentum operator P, leading to the study of
the ground state energy Eα,ΛpP q of the truncated Hamiltonian HΛ as a function of the

123



4. The Fröhlich Polaron at Strong Coupling – Part II: Energy-Momentum
Relation and effective Mass

truncated momentum PΛ. As we will show in the subsequent Section 4.2, it is enough to prove
Eq. (4.1.2) for the modified energy Eα,ΛpP q in order to verify our main Theorem 4.1.1. By
introducing the cut-off we manually exclude the radiative regime where a single phonon carries
the total momentum, which is responsible for the (approximately) flat energy-momentum
relation EαpP q above the threshold |P | � ?

2mα and the resulting collapse of the quadratic
approximation EαpP q � Eαp0q � |P |2

2α4m
above this threshold.

In contrast, in the presence of the cut-off, it turns out that we can apply the method of
Lagrange multiplies. We shall follow the strategy developed in the first part [17], and construct
approximate eigenstates Ψα to the joint eigenvalue pP,Eα,ΛpP qq of the operator pair pPΛ,HΛq,
which in addition satisfy (complete) Bose–Einstein condensation with respect to the minimizer
φPek of the Pekar functional FPek. In this context we call Ψα an approximate eigenstate
in case xΨα|pPΛ � P q2|Ψαy � OαÑ8pα2�rq and Eα,ΛpP q ¥ xΨα|HΛ|Ψαy �OαÑ8

�
α�p2�rq

�
for some r ¡ 0. In order to verify that Eα,ΛpP q is bounded from below by the right hand side
of Eq. (4.1.2), it is consequently enough to show thatA

Ψ
���HΛ � λ

�
P � PΛ

	���ΨE
¥ ePek � 1

2α2 Tr
�
1�

?
HPek

�
� λP � α4m|λ|2

2 � α�p2�wq

(4.1.6)

for all states Ψ satisfying (complete) Bose–Einstein condensation with respect to the minimizer
φPek, providing the desired lower bound for the optimal choice λ � P

mα4 , with the term α4m|λ|2
2

in Eq. (4.1.6) arising naturally as the Legendre transformation of the quadratic approximation
|P |2

2α4m
.

Since Eq. (4.1.6) claims a global lower bound, i.e. there is no constraint on the momentum
of Ψ, we can utilize the methods developed in the first part [17], where a lower bound on
the total minimum Eα � inf σpHq was established. The basic idea is that we can find, up to
a unitary transformation, a lower bound on the operator HΛ � P

mα4

�
P � PΛ

	
of the form

ePek � |P |2
2α4m

�Q�OαÑ8
�
α�p2�rq

�
, where Q is a system of harmonic oscillators, which holds

when tested against states satisfying (complete) Bose–Einstein condensation. The ground
state energy of Q can then be computed explicitly, giving rise to the quantum correction
� 1

2α2 Tr
�
1�

?
HPek

�
in Eq. (4.1.2).

Outline. The paper is structured as follows. In Section 4.2 we shall show that it is sufficient
to prove Eq. (4.1.2) for a model including a suitable ultraviolet wavenumber cut-off in order to
verify our main Theorem 4.1.1. In the subsequent Section 4.3, we will construct approximate
eigenstates for the truncated model defined in Section 4.2, which in addition satisfy (complete)
Bose–Einstein condensation with respect to the state φPek. Section 4.4 is then devoted to the
proof of our main technical Theorem 4.2.1, where we use the method of Lagrange multipliers
in order to get rid of the momentum constraint. Finally, Appendix 4.5 contains auxiliary
results on commutator estimates as well as properties of the Pekar minimizer φPek, which get
used in the proof.

4.2 Reduction to Bounded Wavenumbers
In this section we shall introduce the truncated Hamiltonian HΛ, which includes a wavenumber
restriction |k| ¤ Λ, and we are going to state our main technical Theorem 4.2.1, which
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provides an analogue of Theorem 4.1.1 for the truncated model. While the proof of Theorem
4.2.1 is the content of Sections 4.3 and 4.4, we will verify in this Section that Theorem 4.1.1
is a consequence of Theorem 4.2.1, i.e. we will explain why it is enough to prove Eq. (4.1.2)
for a model including a wavenumber regularization. The quantum nature of our system, and
in particular the discrete spectrum σ pN q �

!
0, 1

α2 ,
2
α2 , . . .

)
of the number operator N , is

essential for this argument to work. In contrast, in the classical case the effective mass is
infinite since there nothing prevents a priori the wavenumber from escaping to infinity without
an energy penalty, and one has to introduce a suitable regularization in order to observe the
expected asymptotics Meff � α4m� oαÑ8 pα4q, see [39].

Before formulating Theorem 4.2.1, we shall introduce some useful notation. Following [17],
we define for a function f : X ÝÑ R, ϵ ¥ 0 and �8 ¤ a ¤ b ¤ 8, the function
χϵ pa ¤ f ¤ bq : X ÝÑ r0, 1s as

χϵ pa ¤ fpxq ¤ bq :�
#
α
�
fpxq�b

ϵ

	
β
�
fpxq�a

ϵ

	
, for ϵ ¡ 0

1ra,bs pfpxqq , for ϵ � 0,
(4.2.1)

where α, β : R ÝÑ r0, 1s are given C8 functions such that α2 � β2 � 1, supp pαq �
p�8, 1q and supp pβq � p�1,8q. Similarly we define the operator χϵ pa ¤ T ¤ bq :�³
χϵ pa ¤ t ¤ bq dE, where T is a self-adjoint operator and E the corresponding spectral

measure. Furthermore let us write χpa ¤ f ¤ bq in case ϵ � 0 and χϵ p� ¤ bq, respectively
χϵ pa ¤ �q, in case a � �8 or b � 8, respectively. With this notation at hand, we define the
Hamiltonian HΛ with wavenumber cut-off Λ ¥ 0 as

HΛ :� �∆x � a pχ p|∇| ¤ Λqwxq � a: pχ p|∇| ¤ Λqwxq �N . (4.2.2)

Theorem 4.2.1. Let Eα,ΛpP q be the ground state energy of the operator HΛ as a function
of the (one-component of the) truncated total momentum

PΛ :� 1
i
∇x1 � α2

»
χ1�Λ�1|k1| ¤ 2

�
k1 a

:
kakdk

and let Λ � α
4
5 p1�σq with 0   σ   1

9 . Then there exists a constant w ¡ 0 such that for all
C ¡ 0, |P | ¤ Cα and α0 ¥ αpσ,Cq

Eα,ΛpP q ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |P |2

2α4m
� α�p2�wq, (4.2.3)

where α0pσ,Cq is a suitable constant.

For technical reasons we use here the smooth cut-off χ1pΛ�1|k1| ¤ 2q instead of the sharp
cut-off χ pΛ�1|k1| ¤ 1q in the definition of the momentum operator PΛ. Note also that the
momentum cut-off appears in (4.2.2) only in the interaction term, and not in the field energy
N . In the following we shall argue that, as a consequence of Theorem 4.2.1, Eq. (4.2.3) is
also valid with PΛ replaced by P11 :� 1

i
∇x1 �α2 ³

|k|¤Λ kj a
:
kakdk having the sharp cut-off, and

with HΛ replaced by the fully restricted Hamiltonian H1
Λ :� HΛ �

³
|k|¡Λ a

:
kakdk. In order to

see this, observe that P11 and H1
Λ are the restrictions (in the sense of operators) of PΛ and

HΛ to states of the form Ψ1 b Ω, where Ψ1 P L2
�
R3,F

�
ranχ

�|∇| ¤ Λ
�	


and Ω is the
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vacuum in F
�

ranχ
�|∇| ¡ Λ

�	
. Hence

σ pP11,H1
Λq � σ pPΛ,HΛq ,

and therefore we obtain as an immediate consequence of the previous Theorem 4.2.1 that

E ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |P |2

2α4m
� α�p2�wq (4.2.4)

for all pP,Eq P σ pP11,H1
Λq with |P | ¤ Cα and α ¥ α0pσ,Cq. In the proof of Theorem 4.1.1

below it will be useful to have Eq. (4.2.4) for P11 and H1
Λ, instead of Eq. (4.2.3) for PΛ and

HΛ.

In order to verify Theorem 4.1.1, it is convenient to introduce the ground state energy E�
α,ΛpP q

of the operator HΛ as a function of P. Note that in contrast to Eα,ΛpP q, we do not use a
wavenumber cut-off in the momentum operator here, while we still have the cut-off in the
Hamiltonian HΛ. In the following Lemma 4.2.2 we are going to utilize the results in [40, 97],
where the energy cost of introducing a wavenumber cut-off in the Hamiltonian is quantified,
in order to compare E�

α,ΛpP q with EαpP q.

Lemma 4.2.2. Let Λ � α
4
5 p1�σq for σ ¡ 0. Then there exists a constant C 1 ¡ 0, such that

for all P P R3 and α large enough

EαpP q ¥ E�
α,ΛpP q � C 1α�2p1�σq.

Proof. By the results in [40, 97], there exists a C ¡ 0 such that for α large enough

HΛ ¤ H� Cα�2p1�σq �H2 � 1
�
. (4.2.5)

This was first shown in [40] for a confined polaron model on a bounded domain, but the
method extends in a straightforward way to the model on R3, as shown in [97] (see also [37]
for the corresponding result for a polaron model on a torus). In the following, let Ψϵ be a
state satisfying χ

�°3
j�1 pPj � Pjq2 ¤ ϵ2

	
Ψϵ � Ψϵ and xΨϵ|

�
H� EαpP q

�2|Ψϵy ¤ ϵ2, where
ϵ ¡ 0. By Eq. (4.2.5) we therefore have

xΨϵ|HΛ|Ψϵy ¤ EαpP q � Cα�2p1�σq �xΨϵ|H2|Ψϵy � 1
�� ϵ

¤ EαpP q � Cα�2p1�σq �2EαpP q2 � 2ϵ2 � 1
�� ϵ ¤ EαpP q � C 1α�2p1�σq � ϵ

for 0   ϵ ¤ 1 and a suitable C 1, where we used that EαpP q is uniformly bounded for P P R3

and α ¥ 1 in the last inequality. Hence χ
�
HΛ ¤ EαpP q � C 1α�2p1�σq � ϵ

�
Ψϵ � 0. Using

χ
�°3

j�1 pPj � Pjq2 ¤ ϵ2
	

Ψϵ � Ψϵ, we obtain

Aϵ :� σ pP,HΛq X
�
BϵpP q �

��8, EαpP q � C 1α�2p1�σq � ϵ
�� � H.

Since HΛ is bounded from below, pAϵq0 ϵ¤1 is a monotone sequence of non-empty compact
sets, i.e. Aϵ1 � Aϵ2 for ϵ1 ¤ ϵ2, and consequently

σ pP,HΛq X
�tP u � ��8, EαpP q � C 1α�2p1�σq�� � £

0 ϵ¤1
Aϵ � H,

which is equivalent to E�
α,ΛpP q ¤ EαpP q � C 1α�2p1�σq. ■
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Given Theorem 4.2.1 we can now give a proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. In the first step of the proof, we are going to verify Eq. (4.1.2) for
|P | ¤ ?

2mα. Due to the rotational symmetry, we can assume w.l.o.g. that P � pP1, 0, 0q,
and by Lemma 4.2.2 we know that

EαpP q � C 1α�2p1�σq ¥ inftE : pP1, 0, 0, Eq P σpP1,P2,P3,HΛqu
¥ inftE : pP1, Eq P σpP1,HΛqu. (4.2.6)

Making use of the fact that the operators P11,H1
Λ,P1 � P11 and HΛ � H1

Λ are pairwise
commuting and that P11,H1

Λ and P1 � P11,HΛ � H1
Λ act on different factors in the tensor

product L2
�
R3,F

�
ranχ

�|∇| ¤ Λ
�	
 b F

�
ranχ

�|∇| ¡ Λ
�	

, their joint spectrum is well-

defined and satisfies σ pP11,H1
Λ,P1 � P11,HΛ �H1

Λq � σpP11,H1
Λq � σpP1 � P11,HΛ � H1

Λq.
Hence we can rewrite the right hand side of Eq. (4.2.6) as

inf
P 11�Pr1�P1

!
E 1 � Er : pP 1

1, E
1q P σpP11,H1

Λq, pPr1, Erq P σpP1 � P11,HΛ �H1
Λq
)
.

In order to verify that E 1�Er is bounded from below by the right hand side of Eq. (4.1.2) for a
suitable w ¡ 0 and |P1| ¤

?
2mα, let us first consider the case Er ¥ α�2. Since E 1 P σpH1

Λq,
we have E 1 ¥ inf σpH1

Λq ¥ inf σpHq � Eα and therefore

E 1 � Er ¥ Eα � α�2 ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� α�2 � α�p2�w

1q

for a suitable w1 ¡ 0, where we have used [17, Theorem 1.1]. Regarding the other case
Er   α�2, note that we have pPr1, Erq P σpP1 � P11,HΛ � H1

Λq � tp0, 0qu Y�8
ℓ�1 R � t ℓ

α2 u,
and therefore Er � 0 and Pr1 � 0. Hence |P 1

1| � |P1| ¤
?

2mα and consequently

E 1 � Er � E 1 ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |P 1

1|2
2α4m

� α�p2�wq

� ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |P1|2

2α4m
� α�p2�wq,

where we have used pP 1
1, E

1q P σpP11,H1
Λq together with Eq. (4.2.4). This concludes the proof

of Eq. (4.1.2) for |P | ¤ ?
2mα.

In order to verify Eq. (4.1.2) for |P | ¡ ?
2mα, we are going to use the fact that P ÞÑ EαpP q

is a monotone radial function, as recently shown in [110], and consequently EαpP q ¥
Eα

�?
2m P

|P |

	
for |P | ¥ ?

2mα. This reduces the problem to the previous case, and hence
concludes the proof of Theorem 4.1.1. ■

4.3 Construction of a Condensate
This section is devoted to the construction of approximate p ground states Ψα satisfying
complete condensation in φPek, which we will utilize in order to prove Theorem 4.2.1 in
Section 4.4. In this context, we call Ψα an approximate p ground state in case xΨα|HΛ|Ψαy �
Eα,Λpα2pq �OαÑ8

�
α�p2�wq

�
, where Eα,Λpα2pq and HΛ are defined in, respectively above,
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Theorem 4.2.1, and
@
Ψα

�� pΥΛ � pq2 ��Ψα

D À α�p2�wq, with w ¡ 0, where we define the
(rescaled and truncated) phonon momentum operator

ΥΛ :�
»
χ1�Λ�1|k1| ¤ 2

�
k1 a

:
kakdk .

Similarly to HΛ, it also depends on α due to the rescaled canonical commutation relations
rapfq, a:pgqs � α�2 xg|fy but we suppress the α dependence for the sake of readability.
Here and in the following, we write X À Y in case there exist constants C, α0 ¡ 0
such that X ¤ C Y for all α ¥ α0. It is clear that there exist states Ψα that satisfy
both xΨα|HΛ|Ψαy � Eα,Λpα2pq À α�p2�wq and

@
Ψα

�� pα�2 PΛ � pq2 ��Ψα

D À α�p2�wq, since
pp, Eα,Λpα2pqq is a point in the joint spectrum of pα�2 PΛ,HΛq. As part of the subsequent
Lemma 4.3.1 we are going to show that the contribution of 1

iα2 ∇x1 in α�2 PΛ � 1
iα2 ∇x1 �ΥΛ

is negligibly small, i.e., we shall show that it does not matter whether one uses ΥΛ or α�2 PΛ
in the definition of approximate ground states. In particular, this will imply the existence
of approximate p ground states. We will choose Ψα such that supp pΨαq � BLp0q for a
suitable L, where we define the support using the identification L2pR3q b F pL2pR3qq �
L2pR3,F pL2pR3qqq in order to represent elements Ψ P L2pR3q b F pL2pR3qq as functions
x ÞÑ Ψpxq with values in F pL2pR3qq, i.e. supp pΨq refers to the support of the electron.

In the rest of this paper, we will always assume that α ¥ 1. Most of the results in this Section
include Eα,Λpα2pq ¤ Eα�C|p|2 as an assumption for an arbitrary, but fixed, constant C ¡ 0,
where Eα denotes the ground state energy of H. For the purpose of proving Theorem 4.2.1 this
is not a restriction, since we can always pick C ¥ 1

2m and therefore Eα,Λpα2pq ¡ Eα � C|p|2
immediately implies the statement of Theorem 4.2.1

Eα,Λ
�
α2p

� ¡ Eα � C|p|2 ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� |p|2

2m � α�p2�sq,

where we used Eα ¥ ePek � 1
2α2 Tr

�
1�

?
HPek

�
� α�p2�sq by [17, Theorem 1.1].

Lemma 4.3.1. Given 0   σ   1
4 , let Λ � α

4
5 p1�σq and L � α1�σ, and assume p satisfies

|p| ¤ C
α

and Eα,Λpα2pq ¤ Eα � C|p|2 for a given C ¡ 0, where Eα is the ground state
energy of H. Then there exist states Ψ


α satisfying
@
Ψ

α

�� pΥΛ � pq2 ��Ψ

α

D À α2σ�4 and
xΨ


α|HΛ|Ψ

αy � Eα,Λpα2pq À α�2p1�σq, as well as supp pΨ


αq � BLp0q.

Proof. Since pp, Eα,Λpα2pqq is an element of the joint spectrum σ
� 1
iα2 ∇x1 �ΥΛ,HΛ

�
, there

exist states Ψ0
α satisfying

@
Ψ0
α

�� � 1
iα2 ∇x1 �ΥΛ � p

�2 ��Ψ0
α

D ¤ α�4 and

xΨ0
α|HΛ|Ψ0

αy ¤ Eα,Λ
�
α2p

�� 1
2α

�2p1�σq. (4.3.1)

From [17, Lemma 2.4] we know that xΨ0
α| �∆x|Ψ0

αy ¤ 2 xΨ0
α|HΛ|Ψ0

αy � d for a suitable
constant d ¡ 0, which implies that xΨ0

α| �∆x|Ψ0
αy À 1 due to Eq. (4.3.1) and our assumption

Eα,Λpα2pq ¤ Eα � C|p|2 ¤ C|p|2 ¤ C3

α2 , and hence

@
Ψ0
α

��pΥΛ � pq2��Ψ0
α

D ¤ 2
B

Ψ0
α

����� 1
iα2 ∇x1 �ΥΛ � p


2����Ψ0
α

F
�2α�4@Ψ0

α

��∆x

��Ψ0
α

D ¤ cα�4

(4.3.2)
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for a suitable c ¡ 0.

Let η : R3 ÝÑ r0,8q be a smooth function that is supported on B1p0q and satisfies
³
η2 � 1.

With this at hand we define Ψypxq :� L�
3
2η pL�1px� yqqΨ0

αpxq and Zy :� }Ψy}, as well as
the set S � R3 containing all y satisfying
xΨy|HΛ|Ψyy ¡ Z2

y

�
Eα,Λpα2pq � p1� }∇η}2qα�2p1�σq�. Making use of the IMS identity we

obtain

xΨ0
α|HΛ|Ψ0

αy �
»
xΨy|HΛ|Ψyy dy � L�2}∇η}2

¥
»
S

Z2
ydy

�
Eα,Λ

�
α2p

�� �
1� }∇η}2�α�2p1�σq�� �

1�
»
S

Z2
y dy



Eα � L�2}∇η}2,

where we have used xΨy|HΛ|Ψyy ¥ Eα and
³
Z2
y dy � 1. Using Eq. (4.3.1) and L�2 �

α�2p1�σq therefore yields�
Eα,Λ

�
α2p

�� Eα�
�
1� }∇η}2�α�2p1�σq

	 »
S

Z2
y dy

¤ Eα,Λ
�
α2p

�� Eα �
�

1
2 � }∇η}

2


α�2p1�σq,

and consequently
³
S
Z2
y dy ¤ 1�γα with γα :� 1

2
α�2p1�σq

Eα,Λpα2pq�Eα�p1�}∇η}2qα�2p1�σq . Let us further
define S 1 � R3 as the set of all y satisfying

@
Ψy

�� pΥΛ � pq2 ��Ψy

D ¡ Z2
y

2c
γα
α�4. Clearly we

have, using Eq. (4.3.2),

2c
γα
α�4

»
S1
Z2
y dy ¤

» @
Ψy

�� pΥΛ � pq2 ��Ψy

D
dy � @

Ψ0
α

�� pΥΛ � pq2 ��Ψ0
α

D ¤ cα�4,

and hence
³
S1 Z

2
y dy ¤ γα

2 . Consequently
³
SYS1 Z

2
y dy ¤ ³

S
Z2
y dy � ³

S1 Z
2
y dy ¤ 1 � γα

2   1.
Since

³
Z2
y dy � 1, this means in particular that there exists a y R S Y S 1 with Zy ¡

0, i.e. Ψ

α :� Z�1

y Ψy satisfies xΨ

α|HΛ|Ψ


αy ¤ Eα,Λpα2pq � p1� }∇η}2qα�2p1�σq and@
Ψ

α

�� pΥΛ � pq2 ��Ψ

α

D ¤ 2c
γα
α�4 À α2σ�4, where we have used Eα,Λpα2pq � Eα À |p|2 À α�2

in the last estimate. Moreover, we clearly have supp pΨ

αq � BLpyq. By the translation

invariance of HΛ and ΥΛ, we can assume w.l.o.g. that y � 0, which concludes the proof. ■

In the following Lemmas 4.3.2 and 4.3.4, we will use localization methods in order to construct
approximate p ground states with useful additional properties, which we will use in Lemma
3.3.12, together with an additional localization procedure, in order to show the existence of
approximate p ground states satisfying complete condensation. In Theorem 4.3.7 we will then
apply a final localization step in order to obtain complete condensation in a stronger sense,
following the argument in [72].

In order to formulate our various localization results, we follow [17] and define for a function
F : M pR3q ÝÑ R, where M pR3q is the set of all finite (Borel) measures on R3, the operator
Fp acting on F pL2pR3qq �

8À
n�0

L2
sympR3�nq as Fp 8À

n�0
Ψn :�

8À
n�0

Ψ�
n with Ψ�

npx1, . . . , xnq :�
F npx1, . . . , xnqΨnpx1, . . . , xnq, where

F npx1, . . . , xnq :� F

�
α�2

ņ

k�1
δxk

�
(4.3.3)
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and Fp 0 :� F p0q, i.e. Fp acts component-wise on
8À
n�0

L2
sympR3�nq by multiplication with the

real-valued function px1, . . . , xnq ÞÑ F pα�2 °n
k�1 δxkq.

With this notation at hand, we define for given positive c�, c� and ϵ1 the function F�pρq :�
χϵ

1 �
c� � ϵ1 ¤ ³

dρ ¤ c� � ϵ1
�

and the states

Ψ1
α :� Z�1

α Fp�Ψ

α, (4.3.4)

with normalization constants Zα :� }Fp�Ψ

α}, where Ψ


α is the sequence constructed in Lemma
4.3.1. Since N � Gp with Gpρq :� ³

dρ, it is clear that the states Ψ1
α are localized to a region

where the (scaled) number operator N is between c� and c�, i.e. χ pc� ¤ N ¤ c�qΨ1
α � Ψ1

α.
The following Lemma 4.3.2 quantifies the energy and momentum error of this localization
procedure. The subsequent results in Lemmas 4.3.2, 4.3.4 and 3.3.12 as well as Theorem
4.3.7, which quantify the energy and momentum error of specific localization procedures,
are generalizations of the corresponding results in [17], where only the energy cost of such
localization procedures is discussed. In the following we will usually refer to the respective
results in [17] when it comes to quantifying the energy error, and only discuss the localization
error of the momentum operator ΥΛ.

Lemma 4.3.2. Given 0   σ   1
4 , let Λ � α

4
5 p1�σq and L � α1�σ, and assume p satisfies

|p| ¤ C
α

and Eα,Λpα2pq ¤ Eα � C|p|2 for a given C ¡ 0. Then there exist constants c�, c�
and ϵ1, such that the states Ψ1

α defined in Eq. (4.3.4) satisfy
@
Ψ1
α

�� pΥΛ � pq2 ��Ψ1
α

D À α2σ�4

and xΨ1
α|HΛ|Ψ1

αy � Eα,Λpα2pq À α�2p1�σq.

Proof. By our assumptions we clearly have Erα � Eα À α�
4

29 with Erα :� xΨ

α|HΛ|Ψ


αy, and
therefore we can apply [17, Lemma 3.4], which tells us that we can choose c�, c� and ϵ1, such
that xΨ1

α|HΛ|Ψ1
αy � Eα,Λpα2pq À α�2p1�σq, and furthermore Zα ÝÑ

αÑ8 1. Since Fp� commutes

with ΥΛ, we obtain with Ψrα :�
c

1�Fp2
�

1�Z2
α

Ψ

α

Z2
α

@
Ψ1
α

�� pΥΛ � pq2 ��Ψ1
α

D� p1� Z2
αq
@
Ψrα�� pΥΛ � pq2 ��ΨrαD � @

Ψ

α

�� pΥΛ � pq2 ��Ψ

α

D
Hence

@
Ψ1
α

�� pΥΛ � pq2 ��Ψ1
α

D ¤ Z�2
α

@
Ψ

α

�� pΥΛ � pq2 ��Ψ

α

D À α2σ�4. ■

When it comes to localizations with respect to more complicated functions F compared
to the one used in Eq. (4.3.4), we first need to introduce some tools in order to quantify
the localization error of the momentum operator. Given a function F : M pR3q ÝÑ R,
Ω � M pR3q and λ ¡ 0, let us define

}F }2
Ω,λ :� sup

1¤n¤λα2
sup
xPΩn

��pF n,x̄q1��2 � sup
1¤n¤λα2

sup
xPΩn

»
R

���� d
dtF

npt, x̄q
����2dt, (4.3.5)

where x � px1, . . . , xnq P R3�n with xk � pxk1, xk2, xk3q and x̄ :� px1
2, x

1
3, x

2, . . . , xnq P
R3�n�1, i.e. we define x̄ such that x � px1

1, x̄q, Ωn is the set of all x such that α�2 °n
j�1 δxj P

Ω and F n,y : R ÝÑ R is defined as F n,yptq :� F npt, yq for y P R3�n�1, where F n is as in
Eq. (4.3.3).
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Lemma 4.3.3. Given λ ¡ 0, there exists a constant T ¡ 0 such that we have for all quadratic
partitions of unity P � tFj : M pR3q ÝÑ R : j P Ju, i.e. families of functions satisfying
0 ¤ Fj ¤ 1 and

°
jPJ F

2
j � 1, Λ ¡ 0, |p| ¤ Λ, Ω � M pR3q and states Ψ satisfying

χ pN ¤ λqΨ � Ψ and 1ΩxΨ � Ψ�����¸
jPJ

xΨj| pΥΛ � pq2 |Ψjy � xΨ| pΥΛ � pq2 |Ψy
����� ¤ TΛ

¸
jPJ

}Fj}2
Ω,λ,

where we define Ψj :� Fp jΨ.

Proof. Using the IMS identity we can write¸
jPJ

xΨj| pΥΛ � pq2 |Ψjy � xΨ| pΥΛ � pq2 |Ψy � �1
2
¸
jPJ

@
Ψ
�� ��pΥΛ � pq2 , Fp j� , Fp j� ��ΨD

.

Hence it suffices to show that �@Ψ
�� ��pΥΛ � pq2 , Fp� , Fp� ��ΨD À Λ}F }2

Ω,λ for any bounded
F : M pR3q ÝÑ R and state satisfying χ pN ¤ λqΨ � Ψ and 1ΩxΨ � Ψ. Let us start by
estimating

�
��
pΥΛ � pq2 , Fp� , Fp� � �2

�
ΥΛ, Fp�2

�
!

ΥΛ � p,
��

ΥΛ, Fp� , Fp�)
¤ �2

�
ΥΛ, Fp�2

� }F }2
Ω,λ

Λ pΥΛ � pq2 � Λ
}F }2

Ω,λ

��
ΥΛ, Fp� , Fp�2

,

where tA,Bu :� AB � BA. By the definition of ΥΛ it is clear that }F }2
Ω,λ

Λ pΥΛ � pq2 À
Λ}F }2

Ω,λ pN � 1q2 for |p| ¤ Λ, and consequently �@Ψ
�� }F }2

Ω,λ
Λ pΥΛ � pq2 ��ΨD À Λ}F }2

Ω,λ.
Using that Ψ is a function with values in F¤λα2 pL2pR3qq :� À

n¤λα2
L2

sympR3�nq, we are going

to represent it as Ψ �À
n¤λα2 Ψn where Ψnpz, x1, . . . , xnq is a function of the electron variable

z and the n phonon coordinates xj P R3 satisfying Ψnpz, x1, . . . , xnq � 0 for all px1, . . . , xnq R
Ωn. In order to simplify the notation, we will suppress the dependence on the electron variable
z. We have

�
ΥΛ, Fp�Ψ �À

1¤n¤λα2 α�2nΨ�
n with Ψ�

n :� 1
n

°n
j�1

�
g
�

1
i
∇xj1

	
, F n

�
Ψn, where

gpkq :�χ1pΛ�1|k| ¤ 2qk for k P R. HenceA
Ψ
���� �

ΥΛ, Fp�2 ���ΨE
�
����ΥΛ, Fp�Ψ

���2
�

¸
1¤n¤λα2

α�4n2}Ψ�
n}2 ¤ λ2

¸
1¤n¤λα2

}Ψ�
n}2,

and }Ψ�
n} ¤ 1

n

°n
j�1

����g �1
i
∇xj1

	
, F n

�
Ψn

��� � ����g �1
i
∇x1

1

	
, F n

�
Ψn

���, where we have used
the permutation symmetry of Ψn. By Lemma 4.5.1 we know that�����g�1

i
∇x1

1



, F n

�
Ψn

����¤ sup
xPsupppΨnq

�����g�1
i

d
dt



, F n,x̄

�����
op
}Ψn}À

?
Λsup
xPΩn

}pF n,x̄q1}}Ψn},

and thereforeA
Ψ
���� �

ΥΛ, Fp�2 ���ΨE
¤ λ2Λ sup

1¤n¤λα2,xPΩn
}pF n,x̄q1}2

¸
n¤λα2

}Ψn}2 � λ2Λ}F }2
Ω,λ.
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In order to estimate the expectation value of
��

ΥΛ, Fp� , Fp�2
we proceed similarly, by writing��

ΥΛ, Fp� , Fp�Ψ � À
n¤λα2 α�2nΨrn with Ψrn � 1

n

°n
j�1

��
g
�

1
i
∇xj1

	
, F n

�
, F n

�
Ψn, and

estimating
A

Ψ
��� ��ΥΛ, Fp� , Fp�2 ���ΨE

¤ λ2 °
n¤λα2

���Ψrn���2
as well as���Ψrn��� ¤ sup

xPsupppΨnq

������g�1
i

d
dt



, F n,x̄

�
, F n,x̄

�����
op
}Ψn} ¤ sup

xPΩn
}pF n,x̄q1}2}Ψn},

where we have again applied Lemma 4.5.1. This concludes the proof. ■

With the subsequent localization step in Eq. (3.3.10), we want to restrict the state Ψ1
α to

phonon density configurations ρ which have a sharp concentration of their mass. To be precise,
for given R and ϵ, δ ¡ 0, let us define KR pρq :� ´

χϵ pR � ϵ ¤ |x� y|q dρpxqdρpyq as well
as FR pρq :� χ

δ
3

�
KR pρq ¤ 2δ

3

	
and

Ψ2
α :� Z�1

R,αF
p
RΨ1

α, (4.3.6)

where Ψ1
α is as in Lemma 4.3.2 and ZR,α :� }FpRΨ1

α}. Clearly 1ΩxΨ2
α � Ψ2

α where Ω is the
set of all ρ satisfying

´
|x�y|¥R dρpxqdρpyq ¤ δ. In the following Lemma 4.3.4 we are going

to quantify the energy and momentum cost of this localization procedure.

Lemma 4.3.4. Given 0   σ   1
4 , let Λ � α

4
5 p1�σq and L :� α1�σ, and assume p satisfies

|p| ¤ C
α

and Eα,Λpα2pq ¤ Eα�C|p|2 for a given C ¡ 0. Then for any ϵ, δ ¡ 0, there exists a
constant R ¡ 0, such that the states Ψ2

α defined in Eq. (4.3.6) satisfy
@
Ψ2
α

�� pΥΛ � pq2 ��Ψ2
α

D À
α

4
5σ� 16

5 and xΨ2
α|HΛ|Ψ2

αy � Eα,Λpα2pq À α�2p1�σq.

Proof. By the results in [17, Lemma 3.5], there exists a constant R ¡ 0 such that
xΨ2

α|HΛ|Ψ2
αy � Eα,Λpα2pq À α�2p1�σq and ZR,α ÝÑ

αÑ8 1. Applying Lemma 4.3.3 yields

xFpRΨ1
α| pΥΛ � pq2 |FpRΨ1

αy�xGpRΨ1
α| pΥΛ � pq2 |GpRΨ1

αy
Àα2σ�4�α 4

5 p1�σq
�}FR}2

MpR3q,c��}GR}2
MpR3q,c�

�
(4.3.7)

with GR :�
a

1� F 2
R, where we used xΨ1

α| pΥΛ � pq2 |Ψ1
αy À α2σ�4 and χ pN ¤ c�qΨ1

α �
Ψ1
α. In order to estimate }FR}MpR3q,c� , let us define the functions gpsq :� χ

δ
3

�
s ¤ 2δ

3

	
and hpsq :� χϵ pR � ϵ ¤ ?

sq. Then F n
Rpxq � g

�
α�4 °n

i,j�1 h p|xi � xj|2q
	

and therefore
F n,y
R ptq � g

�
α�4 °n

i�2 h
�pt� yj1q2 � δiy

�� µy
�

with δiy :� py1
2 � yi2q2�py1

3 � yi3q2 and µy :�
α�4 °n

i,j�2 h p|yi � yj|2q. Consequently

}pF n,y
R q1}¤4α�4}g1}8

ņ

i�2

d»
R
|t|2 ��h1 �t2 � δiy

���2 dt¤4α�4}g1}8pn� 1q}h1}8
c

2R3

3 ,

where we have used supp ph1q � r0, R2q in the second inequality. Hence }FR}MpR3q,c� �
sup1¤n¤c�α2 supxPR3�n }pF n,x̄

R q1} À α�2. Similarly we have }GR}MpR3q,c� À α�2. In combination
with Eq. (4.3.7) we therefore obtain@

Ψ2
α

��pΥΛ � pq2��Ψ2
α

D À Z�2
R,α

�
α2σ�4�α 4

5 p1�σq
�}FR}2

MpR3q,c��}GR}2
MpR3q,c�

�	Àα 4
5σ� 16

5 .

■
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Before we come to our next localization step in Lemma 3.3.12, we need to define the regularized
median of a measure ν P M pRq, see also [17, Definition 3.8], and derive a useful estimate
for it in the subsequent Lemma 4.3.5. In the following let xκpνq :� suptt :

³t
�8 dν ¤ κ

³
dνu

denote the κ-quantile, where we use the convention that boundaries are included in the domain
of integration

³b
a
fdν :� ³

ra,bs fdν, and let us define for 0   q   1
2 and ν � 0

mqpνq :� 1³
Kqpνq dν

»
Kqpνq

h dνphq, (4.3.8)

whereKqpνq :� rx 1
2�qpνq, x 1

2�qpνqs, andmqp0q :� 0. Furthermore we will denote the marginal
measures of ρ P M pR3q as ρi, i.e. ρipAq :� ρ prxi P Asq, where A � R is measurable and
i P t1, 2, 3u.
Lemma 4.3.5. Let us define Ωreg as the set of all ρ P M pR3q satisfying

³
xi�t dρpxq ¤ α�2

for t P R and i P t1, 2, 3u, and Ω as the set of all ρ P Ωreg satisfying c ¤ ³
dρ and´

|x�y|¥R dρpxqdρpyq ¤ δ for given R, c, δ ¡ 0. Furthermore let q be a constant satisfying
q � α�2

c
¤ 1

2 � δ
c2 . Then we have for any n ¥ 1 and function of the form F pρq � f pmqpρ1qq

the estimate

supxPΩn

��pF n,x̄q1�� ¤ α�2 }f 1}8
2qc

?
2R, (4.3.9)

where mq is defined in Eq. (4.3.8) and Ωn below Eq. (4.3.5).

Proof. Given x P Ωn, let us define νt :� α�2
�
δt �

°n
j�2 δxj1

	
, which allows us to rewrite

F n,x̄ptq � fpmqpνtqq. Let us first compute the derivative d
dtmqpνtq for t P Rztx2

1, . . . , x
n
1u. For

such t, there clearly exists an ϵ ¡ 0 such that pt� ϵ, t� ϵq � Rztx2
1, . . . , x

n
1u. It will be useful

in the following that the set Y :� tx2
1, . . . , x

n
1u XKqpνsq is independent of s P pt� ϵ, t� ϵq,

with Kqpνq being defined below Eq. (4.3.8). Furthermore we have for s P pt� ϵ, t� ϵq that
s P Kqpsq if and only if t P Kqptq. Therefore α2 ³

Kqpvsq h dνsphq �
°
hPY h � s1Kqpsqpsq �°

hPY h� s1Kqptqptq and α2 ³
Kqpvsq dνs � |Y |�1Kqpsqpsq � α2 ³

Kqpvtq dνt for s P pt� ϵ, t� ϵq,
and consequently we obtain for t P Rztx2

1, . . . , x
n
1u

d
dtmqpνtq � α�2 d

ds

���
s�t

°
hPY h� s1Kqptqptq³

Kqpvtq dνt
� α�2 1Kqptqptq³

Kqpvtq dνt
.

Note that due to our assumption ρ P Ωreg, mqpνtq can be continuously extended from
Rztx2

1, . . . , x
n
1u to all of R, and therefore d

dtmqpνtq � α�2 1Kqptqptq³
Kqpvtq dνt in the sense of distributions.

Since
³
Kqpvtq dνt ¥ 2qc we conclude |pF n,x̄q1ptq| ¤ α�2 }f 1}8

2qc 1Kqptqptq for almost every t. In
order to obtain from this the upper bound on the L2pRq-norm in Eq. (4.3.9), we are going to
verify that the support of t ÞÑ 1Kqptqptq is contained in an interval of the form pξ �R, ξ �Rq
for a suitable ξ P R. Let us start by verifying that

xκ pνt1q ¥ xκ�
α�2
c pνt2q (4.3.10)

for 0   κ   1 and t1, t2 P R. Note that any y P R satisfying the inequality
³y
�8 dνt2 ¤�

κ� α�2

c

	 ³
dνt2 , also satisfies» y

�8
dνt1 ¤ α�2 �

» y

�8
dνt2 ¤ α�2 �

�
κ� α�2

c


»
dνt2 ¤ κ

»
dνt2 � κ

»
dνt1 ,
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where we have used α�2 ¤ α�2

c

³
dνt2 , and therefore y ¤ xκ pνt1q. Using that xκ�α�2

c pνt2q
is the supremum over all such y, we conclude with the desired Eq. (4.3.10). Furthermore
observe that νt0 � ρ1 with t0 :� x1

1 and ρ :� α�2 °n
j�1 δxj P Ω, and therefore we know by

[17, Lemma 3.9] that there exists a ξ P R such that ξ�R ¤ x
1
2�q1pνt0q ¤ x

1
2�q1pνt0q ¤ ξ�R

for q1 ¤ 1
2 � δ

c2 . By our assumptions, q1 :� q � α�2

c
satisfies this condition, and therefore we

obtain using Eq. (4.3.10) with t1 :� t, t2 :� t0 and κ :� 1
2 � q, respectively t1 :� t0, t2 :� t

and κ :� 1
2 � q � α�2

c
, that

ξ �R ¤ x
1
2�qpνtq ¤ x

1
2�qpνtq ¤ ξ �R

for all t P R, and consequently 1Kqptqptq � 0 for |t� ξ| ¡ R. ■

Lemma 4.3.6. Given 0   σ   1
9 and C ¡ 0, let Λ � α

4
5 p1�σq and L � α1�σ, and assume p

satisfies |p| ¤ C
α

and Eα,Λpα2pq ¤ Eα �C|p|2 for a given C ¡ 0. Then there exist r1, c� ¡ 0
and states Ψ3

α with
@
Ψ3
α

�� pΥΛ � pq2 ��Ψ3
α

D À α�p2�r
1q, xΨ3

α |HΛ|Ψ3
αy � Eα,Λpα2pq À α�p2�r

1q,
supp pΨ3

αq � B4Lp0q and χ pN ¤ c�qΨ3
α � Ψ3

α , such thatA
Ψ3
α

���W�1
φPek NWφPek

���Ψ3
α

E
À α�r

1
, (4.3.11)

where WφPek is the Weyl operator corresponding to the Pekar minimizer φPek, characterized
by W�1

φPekapfqWφPek � apfq � xf |φPeky for all f P L2pR3q.

Proof. For u ¡ 0, let us define the functions fℓpyq :� χ
1
2
�
ℓ� 1

2   αuy ¤ ℓ� 1
2

�
for ℓ P

Z satisfying |ℓ| ¤ 3
2α

uL, as well as f�8pyq :� χ
1
2
�
αuy ¤ �t3

2α
uLu� 1

2

�
and f8pρq :�

χ
1
2
�
t3

2α
uLu� 1

2   αuy
�
. With these functions at hand we define for i P t1, 2, 3u and

v ¡ 0 the partitions Pi :�  
Fℓ,i : ℓ P A

(
, where Fℓ,ipρq :� fℓ pmα�vpρiqq and A :�

t�8,�t3
2α

uLu,�t3
2α

uLu�1, . . . , t3
2α

uLu,8u � ZYt�8,8u, as well as P :�  
Fz : z P A3(

with Fz :� Fz3,3Fz2,2Fz1,1. In the following let Ψ2
α be as in Lemma 4.3.4 with δ   c2

�
2 and let

Ωreg and Ω be the sets from Lemma 4.3.5 with δ and R as in Lemma 4.3.4, q :� α�v and
c :� c�. Due to the straightforward result [17, Lemma 3.6] we have 1Ωreg

zΨ2
α � Ψ2

α, and by
the definition of Ψ2

α in Eq. (4.3.6) it is clear that we furthermore have 1ΩxΨ2
α � Ψ2

α. Therefore
we can apply Lemma 4.3.3 together with Eq. (4.3.9) in order to obtain¸
z1PA

A
Fp z1,1Ψ2

α

��� pΥΛ � pq2
���Fp z1,1Ψ2

α

E
¤xΨ2

α| pΥΛ � pq2 |Ψ2
αy�Tα

4
5 p1�σq

¸
z1PA

α�4

��f 1z1

��2
8

2α�2vc2�
R

À α
4
5σ� 16

5 � α
4
5σ� 16

5 �2v sup
z1PA

��f 1z1

��2
8

¸
z1PA

1 À α
9
5σ�2v�3u� 1

5α�2

for all α large enough such that α�v� α�2

c�
  1

2 � δ
c2
�

, where we have used supz1PA
��f 1z1

�� À αu,
as well as

°
z1PA 1 ¤ 3pαuL� 1q À αu�1�σ. Since the functions F n

ℓ,i are independent of x1
1

for i P t2, 3u, we furthermore obtainA
Fp z1,1Ψ2

α

��� pΥΛ � pq2
���Fp z1,1Ψ2

α

E
�

¸
z2,z3PA

A
Fp z3,3Fp z2,2Fp z1,1Ψ2

α

��� pΥΛ � pq2
���Fp z3,3Fp z2,2Fp z1,1Ψ2

α

E
and therefore ¸

zPA3

Z2
z xΨz| pΥΛ � pq2 |Ψzy À α

9
5σ�2v�3u� 1

5α�2 (4.3.12)
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with Ψz :� Z�1
z Fp zΨ2

α and Zz :�
���Fp zΨ2

α

���.
Regarding the localization error of the energy, we obtain by [17, Lemma 3.3] and [17, Lemma
3.10] (see also the proof of [17, Eq. (3.22)]) that¸

zPA3

Z2
z xΨz|HΛ|Ψzy ¤ xΨ2

α|HΛ|Ψ2
αy �OαÑ8

�
α�3� ¤ Eα,Λ

�
α2p

�� Cα�2p1�σq (4.3.13)

for a suitable constant C ¡ 0, as long as u � v ¤ 1
2 . In the following, let S be the set of

all z P A3 such that xΨz|HΛ|Ψzy ¡ Eα,Λ pα2pq � α�p2�wq for a given w ¡ 0, and define
M :� °

zPS Z
2
z . By Eq. (4.3.13), we have

M
�
Eα,Λ

�
α2p

�� α�p2�wq
�� p1�MqEα ¤ Eα,Λ

�
α2p

�� Cα�2p1�σq,

and therefore 1 � M ¥ α�p2�wq�Cα�2p1�σq
Eα,Λpα2pq�Eα�α�p2�wq ¥ C1α

�w for w   2σ, α large enough
and a suitable constant C1, where we have used the assumption Eα,Λ pα2pq � Eα À
|p|2 À α�2. Moreover, let us define S 1 as the set containing all z P A3, such that
xΨz| pΥΛ � pq2 |Ψzy ¡ α

1
2p 9

5σ�2v�3u� 1
5qα�2 and M 1 :� °

zPS1 Z
2
z . By Eq. (4.3.12) we see

that M 1 ¤ C2α
1
2p 9

5σ�2v�3u� 1
5q for a suitable constant C2. Consequently¸

zRSYS1
Z2
z ¥ 1�M �M 1 ¥ C1α

�w � C2α
1
2p 9

5σ�2v�3u� 1
5q

for α large enough. Since σ   1
9 , we can take u, v and w small enough, such that 2w �

9
5σ � 2v � 3u   1

5 , and consequently
°
zRSYS1 Z

2
z ¡ 0 for α large enough, which implies the

existence of a z� R S Y S 1 with Zz� ¡ 0, i.e. xΨz� |HΛ|Ψz�y ¤ Eα,Λ pα2pq � α�p2�wq and
xΨz� | pΥΛ � pq2 |Ψz�y ¤ α

1
2p 9

5σ�2v�3u� 1
5q�2.

In order to rule out that one of the components z�i is infinite, let us verify that xΨz|HΛ|Ψzy ¡
Eα,Λ pα2pq � α�p2�wq for α large enough in case there exists an i P t1, 2, 3u with zi � �8.
Note that ρ P supp pF�8,iq implies mα�vpρiq   �3

2L and therefore
³
|x|¡ 3

2L
dρ ¥ ³� 3

2L

�8 dρi ¥³mα�v pρiq
�8 dρi ¥

�1
2 � α�v

� ³
dρ. Similarly

³
|x|¡ 3

2L
dρ ¥ �1

2 � α�v
� ³

dρ for ρ P supp pF8,iq.
Consequently we have for any z with zi � �8 for some i P t1, 2, 3u

xΨz|NR3zB 3
2L

p0q|Ψzy ¥
�

1
2 � α�v



xΨz|N |Ψzy ,

where NR3zB 3
2L

p0q :� Gp with Gpρq :� ³
|x|¡ 3

2L
dρ. Therefore [17, Corollary B.7] together with

the fact that supp pΨzq � supp pΨ2
αq � BLp0q, yields

xΨz|HΛ|Ψzy¥Eα�
�

1
2�α

�v


xΨz|N |Ψzy�

d
D

3
2L�L

¥Eα�
�

1
2 � α�v



c��

?
2Dα�p1�σq

� Eα,Λ
�
α2p

�� 1
2 �OαÑ8

�
α�v

� ¡ Eα,Λ
�
α2p

�� α�p2�wq

for a suitable constant D ¡ 0 and α large enough. Hence we obtain that all components z�i
are finite, i.e. mα�vpρq P B?

3α�u pα�uz�q � R3 for ρ P supp
�
Fz�3 ,3Fz�2 ,2Fz�1 ,1

	
.
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Let Ψ3
α :� T�α�uz�Ψz� , where Tz is a joint translation in the electron and phonon component,

i.e. pTzΨq pxq :� UzΨpx � zq with Uz being defined by U�1
z apfqUz � apfzq and fzpyq :�

fpy � zq. Using the fact that xΨz� |HΛ|Ψz�y ¤ Eα,Λ pα2pq � α�p2�wq À Eα � α�
2

29 as well
as 1Ω�Ψ3

α � Ψ3
α , where Ω� is the set of all ρ satisfying

³
dρ ¤ c� and mα�vpρq P B?

3α�up0q,
we can apply [17, Lemma 3.11], which yieldsA

Ψ3
α

���W�1
φPek NWφPek

���Ψ3
α

E
À α�

2
29 � α�u � α�v.

By taking r1 ¡ 0 small enough such that r1 ¤ 1
2

�1
5 � 9

5σ � 2v � 3u
�
, r1 ¤ w and r1 ¤

mint 2
29 , u, vu, we conclude that

A
Ψ3
α

���W�1
φPek NWφPek

���Ψ3
α

E
À α�r

1 . Since supp pΨ3
αq �

BLp�α�uz�q � BL�α�u|z�|p0q � B4Lp0q, this concludes the proof. ■

In the following Theorem 4.3.7, which is the main result of this section, we will lift the (weak)
condensation from Eq. (4.3.11) to a strong one without introducing a large energy penalty,
using an argument in [72]. We will verify that the momentum error due to the localization is
negligibly small as well.

Theorem 4.3.7. Given 0   σ   1
9 and C ¡ 0, let Λ � α

4
5 p1�σq and L � α1�σ, and assume p

satisfies |p| ¤ C
α

and Eα,Λpα2pq ¤ Eα � C|p|2 for a given C ¡ 0. Then there exists a r ¡ 0
and states Ψα with

@
Ψα

�� pΥΛ � pq2 ��Ψα

D À α�p2�rq, xΨα|HΛ|Ψαy � Eα,Λpα2pq À α�p2�rq

and supp pΨαq � B4Lp0q, such that

χ
�
W�1
φPek�iξ NWφPek�iξ ¤ α�r

	
Ψα � Ψα, (4.3.14)

where ξ :� p
m

∇r x1φ
Pek with ∇r x1 :� χ1 pΛ�1|∇x1 | ¤ 2q∇x1 .

Note that ξ is small in magnitude, }ξ} À |p| À α�1. The statement of Theorem 4.3.7 is
also valid for ξ � 0, i.e., in case we conjugate by the Weyl transformation WφPek instead of
WφPek�iξ. For technical reasons, it will however be useful in the proof of Theorem 4.2.1 to use
φPek � iξ � φPek � i p

m
∇x1φ

Pek as a reference state, since the latter satisfies the momentum
constraint xφPek � i p

m
∇x1φ

Pek|1
i
∇|φPek � i p

m
∇x1φ

Peky � p.

Proof. Let Ψ3
α be as in Lemma 4.3.6 and let us define for 0   ϵ   1

2 and 0   h   min
 
r1, 1

4

(
Ψα :� Z�1

α χϵ
�
αhW�1

φPek�iξ NWφPek�iξ ¤
1
2



Ψ3
α ,

where Zα :� }χϵ
�
αhW�1

φPek�iξ NWφPek�iξ ¤ 1
2

	
Ψ3
α} is a normalization constant. Clearly

the states Ψα satisfy Eq. (4.3.14) for r ¤ h. Let us furthermore define the states Ψrα :�
1?

1�Z2
α

χϵ
�

1
2 ¤ αhW�1

φPek�iξ NWφPek�iξ
	

Ψ3
α . An application of [17, Lemma 3.3] yields

Z2
α xΨα|HΛ|Ψαy�p1� Z2

αq xΨrα|HΛ|Ψrαy ¤ xΨ3
α |HΛ|Ψ3

αy � C0α
2h� 7

2 xΨ3
α |
?

N � 1|Ψ3
αy

¤ Eα,Λ
�
α2p

�� C1α
�p2�r2q
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for suitable constants C0, C1 ¡ 0 and r2 :� mintr1, 3
2 � 2hu ¡ 0. We have

1� Z2
α �

A
Ψ3
α

���χϵ�1
2 ¤ αhW�1

φPek�iξNWφPek�iξ


2 ���Ψ3
α

E
¤ 2αh

1� 2ϵ

A
Ψ3
α

���W�1
φPek�iξNWφPek�iξ

���Ψ3
α

E
¤ 4αh

1� 2ϵ

A
Ψ3
α

���W�1
φPekNWφPek

���Ψ3
α

E
� 4αh}ξ}2

1� 2ϵ
À 1

1� 2ϵ

�
αh�r

1 � αh�2
	
ÝÑ
αÑ8 0,

where we used the operator inequality W�1
φPek�iξNWφPek�iξ ¤ 2

�
W�1
φPekNWφPek � }ξ}2

	
,

}ξ}2 ¤ |p|2}∇φPek}2 À α�2 and Eq. (4.3.11). Making use of xΨrα|HΛ|Ψrαy ¥ Eα and
Eα,Λpα2pq � Eα À |p|2 À α�2, we therefore obtain

xΨα|HΛ|Ψαy � Eα,Λ
�
α2p

� ¤ Z�2
α

�
C1α

�p2�r2q � p1� Z2
αq
�
Eα,Λ

�
α2p

�� Eα
�	

À α�p2�r
2q �

�
αh�r

1 � αh�2
	 �
Eα,Λ

�
α2p

�� Eα
� À α�p2�r

3q

with r3 :� mintr2, r1 � h, 2� hu ¡ 0.

In order to estimate
@
Ψα

�� pΥΛ � pq2 ��Ψα

D
, let us apply the IMS identity

Z2
α

@
Ψα

��pΥΛ�pq2
��Ψα

D�p1�Z2
αq
@
Ψrα��pΥΛ�pq2

��ΨrαD�@
Ψ3
α

��pΥΛ�pq2
��Ψ3

α

D�@Ψ3
α

��X��Ψ3
α

D
,

(4.3.15)

where we define X :� 1
2

��pΥΛ � pq2 , A1
�
, A1

�� 1
2

��pΥΛ � pq2 , A2
�
, A2

�
using the operators

A1 :� f1

�
W�1
φPek�iξ NWφPek�iξ

	
andA2 :� f2

�
W�1
φPek�iξ NWφPek�iξ

	
with f1pxq :� χϵ

�
αhx ¤

1
2

�
and f2 :� χϵ

�1
2 ¤ αhx

�
. In the following let us compute��pΥΛ�pq2, Aj

�
, Aj

��W�1
φPek�iξ

���
WφPek�iξΥΛW

�1
φPek�iξ � p

	2
, fjpN q

�
, fjpN q

�
WφPek�iξ

� W�1
φPek�iξ

���
ΥΛ � pr� 2Re a: pφq�2

, fjpN q
�
, fjpN q

�
WφPek�iξ

where φ :� 1
i
∇r x1

�
φPek � iξ

�
and pr :� p�xφPek � iξ|1

i
∇r x1 |φPek � iξy � p

�
1� 2

m
}∇r x1φ

Pek}2�.
We have |pr| ¤ |p| ¤ C

α
since m � 2

3}∇φPek}2 � 2}∇x1φ
Pek}2 ¥ 2}∇r x1φ

Pek}2. Defining the
discrete derivative δfjpxq :� α2�fjpx� α�2q � fjpxq

�
, we can further write���

ΥΛ � pr� 2Re a: pφq�2
, fjpN q

�
, fjpN q

�
� 8

�
Re a: pφq , fpN q�2

� 2
!

ΥΛ � pr� 2Re a: pφq , ��Re a: pφq , fjpN q� , fjpN q� )
� �8α�4 �Im �

a: pφq δfjpN q��2 � 2α�4
!

ΥΛ � pr� 2Re a: pφq ,Re
�
a: pφq pδfjq2pN q� )

where we used
�
ΥΛ � pr� 2Re a: pφq , fjpN q� � 2

�
Re a: pφq , fjpN q�, �Re a: pφq , fjpN q� �

α�2iIm
�
a: pφq δfjpN q� and

��
Re a: pφq , fjpN q� , fjpN q� � α�4Re

�
a: pφq pδfjq2pN q�. Hence

�
���

ΥΛ � pr� 2Re a: pφq�2
, fjpN q

�
, fjpN q

�
¤ 8α�4Im

�
a: pφq δfjpN q�2 (4.3.16)

� 4α�3 Re
�
a: pφq pδfjq2pN q�2 � α�5 �ΥΛ � pr� 2Re a: pφq�2

¤ 2}φ}2 �2α�4}δfj}2
8 � 2α�3}δfj}4

8 � 3α�5� �2N � α�2�� 27α�3N 2 � 3α�5|pr|2
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where we have applied multiple Cauchy–Schwarz estimates and used Υ2
Λ ¤ 9α2N 2. Note that

the expression in the last line of Eq. (4.3.16) is of order α4h�3 pN � 1q2, since }δfj}8 À αh

and }φ} À 1. Using W�1
φPek�iξ pN � 1q2 WφPek�iξ À pN � 1q2 we therefore obtain

�X � �1
2

2̧

j�1

��pΥΛ � pq2, Aj
�
, Aj

� À α4h�3 pN � 1q2 .

Using this together with Eq. (4.3.15) and the observation
@
Ψrα��pΥΛ�pq2

��ΨrαD ¥ 0, yields@
Ψα

��pΥΛ�pq2
��Ψα

D ¤ Z�2
α

�@
Ψ3
α

��pΥΛ�pq2
��Ψ3

α

D� @
Ψ3
α

��X��Ψ3
α

D�
À α�p2�r

1q � α4h�3@Ψ3
α

��pN � 1q2 ��Ψ3
α

D À α�p2�r
1q � α4h�3.

Since h   1
4 we have mintr1, 1� 4hu ¡ 0, and therefore we can choose r ¡ 0 small enough

such that r ¤ mintr1, 1� 4hu, r ¤ r3 and r ¤ h, which concludes the proof. ■

4.4 Proof of Theorem 4.2.1
In this section we shall prove the main technical Theorem 4.2.1, using the results of the
previous sections as well as the results in the previous part of this paper series [17]. Before
we do this let us recall some definitions from [17].

Definition 4.4.1 (Finite dimensional Projection Π). Given σ ¡ 0, let Λ :� α
4
5 p1�σq and

ℓ :� α�4p1�σq, and let us introduce the cubes Cz :� rz1 � ℓ, z1 � ℓq � rz2 � ℓ, z2 � ℓq �
rz3 � ℓ, z3 � ℓq for z � pz1, z2, z3q P 2ℓZ3. Then we define Π as the orthogonal projection
onto the subspace spanned by the functions x ÞÑ ³

Cz
ei k�x
|k| dk for z P 2ℓZ3zt0u satisfying

Cz � BΛp0q. Furthermore, let φ1, . . . , φN be a real orthonormal basis of ΠL2pR3q, such that
φn � Π∇xnφ

Pek

}Π∇xnφ
Pek} for n P t1, 2, 3u.

Definition 4.4.2 (Coordinate Transformation τ). Let φPek
x pyq :� φPekpy � xq and let

t ÞÑ xt be the local inverse of the function x ÞÑ pxφn|φPek
x yq3n�1 P R3 defined for t P

Bδ�p0q with a suitable δ� ¡ 0. Note that we can take Bδ�p0q as the domain of the
local inverse, since xφn|φPek

0 y � 0 for all n P t1, 2, 3u due to the fact that φPek and Π
respect the reflection symmetry yn ÞÑ �yn. Then we define f : R3 ÝÑ ΠL2pR3q as
fptq :� χ p|t|   δ�q

�
ΠφPek

xt �°3
n�1 tnφn

�
and the transformation τ : ΠL2pR3q ÝÑ ΠL2pR3q

as

τ pφq :� φ� f ptφq
with tφ :� pxφ1|φy , xφ2|φy , xφ3|φyq P R3.

Definition 4.4.3 (Quadratic Approximation Jt,ϵ). Let us first define the operators

KPek :� 1�HPek � 4 p�∆q� 1
2 ψPek 1� |ψPeky xψPek|

�∆� V Pek � µPekψ
Pek p�∆q� 1

2 , (4.4.1)

LPek :� 4 p�∆q� 1
2 ψPek p1�∆q�1 ψPek p�∆q� 1

2 , (4.4.2)

where V Pek :� �2p�∆q� 1
2φPek, µPek :� ePek � }φPek}2 and ψPek is the, non-negative,

ground state of the operator �∆ � V Pek. Furthermore let Tx be the translation operator,
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i.e. pTxφq pyq :� φpy � xq, and let KPek
x :� TxK

PekT�x and LPek
x :� TxL

PekT�x. Then we
define

Jt,ϵ :� π
�
1� p1� ϵq �KPek

xt � ϵLPek
xt

��
π

for |t|   ϵ and ϵ   δ�, where δ� and xt are as in Definition 4.4.2 and π : L2pR3q ÝÑ L2pR3q
is the orthogonal projection on the space spanned by tφ4, . . . , φNu with φn as in Definition
4.4.1. Furthermore we define Jt,ϵ :� π for |t| ¥ ϵ and we will use the shorthand notation
Jt,ϵrφs :� xφ|Jt,ϵ|φy.

Recall the definition of Eα,Λ in Theorem 4.2.1. In the following we will assume that p satisfies
the assumption Eα,Λpα2pq ¤ Eα � C|p|2 of Theorem 4.3.7 with C ¥ 1

2m , which we can do
w.l.o.g., since Eα,Λpα2pq ¡ Eα � C|p|2 immediately implies the statement of Theorem 4.2.1
(compare with the comment above Lemma 4.3.1). We shall also assume in the following that
|p| ¤ C

α
. Due to these assumptions we can apply Theorem 4.3.7, which yields the existence of

a sequence Ψα with
@
Ψα

�� pΥΛ � pq2 ��Ψα

D À α�p2�rq, xΨα|HΛ|Ψαy � Eα,Λpα2pq À α�p2�rq

and supp pΨαq � B4Lp0q with L � α1�σ, such that Ψrα :� W�iξΨα with ξ � p
m

∇r x1φ
Pek

satisfies condensation with respect to φPek, i.e.

χ
�
W�1
φPekNWφPek ¤ α�r

	
Ψrα � Ψrα. (4.4.3)

Using p
m
pp�ΥΛq ¤ α�

r
2
|p|2
4m2 � α

r
2 pp�ΥΛq2 and |p| ¤ C

α
, we therefore have

Eα,Λ
�
α2p

� ¥ A
Ψα

���HΛ � p

m
pp�ΥΛq

���Ψα

E
�OαÑ8

�
α�p2� r

2q
	
, (4.4.4)

where p
m

formally acts as a Lagrange multiplier for the minimization of HΛ subject to the
constraint ΥΛ � p. In the rest of this Section we will verify that HΛ � p

m
pp�ΥΛq is

bounded from below by the right hand side of Eq. (4.2.3) when tested against a state Ψ
satisfying supp pΨq � B4Lp0q and complete condensation with respect to φPek � iξ (where
we find it convenient to use φPek � iξ instead of φPek for technical reasons). The momentum
constraint on Ψ will not be needed for this; i.e., we have transformed our original constrained
minimization problem into a global one, which we handle similarly as in the previous part [17]
concerning a lower bound on the global minimum Eα � inf σ pHq. As already stressed in
the Section 4.1, it is essential to work with the truncated Hamiltonian HΛ and the truncated
momentum ΥΛ here, since in contrast to HΛ � p

m
pp�ΥΛq the operator H � p

m
pp� Pq is

not bounded from below for p � 0.

Following [17], we will identify F pΠL2pR3qq with L2�RN
�

using the representation of real-
valued functions φ � °N

n�1 λnφn by points λ � pλ1, . . . , λNq P RN . With this identification,
we can represent the annihilation operators an :� a pφnq as an � λn � 1

2α2Bλn , where
λn is the multiplication operator by the function λ ÞÑ λn on L2�RN

�
. Let us also use

for functions φ ÞÑ gpφq depending on elements φ P ΠL2pR3q the convenient notation
gpλq :� g

�°N
n�1 λnφn

	
, where λ P RN .

It is essential for our proof that Ψrα satisfies complete condensation in φPek, see Eq. (4.4.3),
since it allows us to apply [17, Lemma 6.1] which states that in terms of the quadratic operator
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Jt,ϵ and the transformation τ on ΠL2pR3q in Definitions 4.4.3 and 4.4.2 we have

xΨrα|HΛ|Ψrαy¥ePek�@Ψrα��� 1
4α4

Ņ

n�1
B2
λn� Jtλ,α�s

�
τpλq ��N¡N

��ΨrαD� N

2α2 (4.4.5)

�OαÑ8
�
α�p2�wq

�
for suitable w, s0 ¡ 0 and any 0   s   s0, where we define N¡N :� N �°N

k�1 a
:
kak and tφ

is defined as in Definition 4.4.2 such that tλ � pλ1, λ2, λ3q P R3. Furthermore it is shown in
[17, Lemma 6.1], that there exists a β ¡ 0, such that

xΨrα|1� B|Ψrαy ¤ e�βα
2�2s (4.4.6)

for all 0   s   s0, where B is the multiplication operator by the function λ ÞÑ χp|tλ|   α�sq.
In the following we will always choose s   1. We will use the symbol w for a generic, positive
constant, which is allowed to vary from line to line.

4.4.1 Quasi-Quadratic Lower Bound
In order to find a good lower bound on xΨα|HΛ � p

m
pp�ΥΛq |Ψαy, and therefore on

Eα,Λpα2pq, it is natural to conjugate HΛ� p
m
pp�ΥΛq with the Weyl transformation WφPek�iξ �

WφPekW�iξ, since φPek � iξ is close to the minimizer φPek � i p
m

∇x1φ
Pek of the corresponding

classical problem, see [39]. Since iξ is purely imaginary, the interaction term in HΛ is invariant
under the transformation
W�iξ, i.e. W�iξRe ra pχ p|∇| ¤ ΛqwxqsW�1

�iξ � Re ra pχ p|∇| ¤ Λqwxqs, and furthermore

W�iξΥΛW
�1
�iξ�ΥΛ�2Re

�
a

�
1
i
∇r x1iξ


�
�
A
iξ
���1
i
∇r x1

���iξE�ΥΛ�2Re
�
a
�

∇r x1ξ
	�
, (4.4.7)

where we have used
A
iξ
���1
i
∇r x1

���iξE � 0 (since xh|1
i
∇r x1 |hy � 0 for any real-valued or imaginary-

valued function h P L2pR3q). Therefore conjugating HΛ� p
m
pp�ΥΛq with W�iξ yieldsA

Ψα

���HΛ� p

m
pp�ΥΛq

���Ψα

E
�
A

Ψrα���HΛ� p

m
ΥΛ �2Re

�
a
� p
m

∇r x1ξ�iξ
	����ΨrαE� |p|2

m
�}ξ}2

¥ ePek�@Ψrα��� 1
4α4

Ņ

n�1
B2
λn�Jtλ,α�s

�
τpλq ��N¡N � p

m
ΥΛ

��ΨrαD� N

2α2

� 2Re
A

Ψrα���a� p
m

∇r x1ξ�iξ
	 ���ΨrαE� |p|2

m
�}ξ}2 �OαÑ8

�
α�p2�wq

�
,

where we have used Eq. (4.4.5). In the next step we apply the Weyl transformation WφPek ,
which satisfies WφPekλW�1

φPek � λ� λPek and hence

WφPek
p

m
ΥΛW

�1
φPek � p

m
ΥΛ � 2Re

�
a
� p

im
∇r x1φ

Pek
	�

� p

m
ΥΛ � 2Re ra piξqs ,

WφPekRe
�
a
� p
m

∇r x1ξ�iξ
	�
W�1
φPek � Re

�
a
� p
m

∇r x1ξ�iξ
	�
� }ξ}2,

where we have used Re xφPek| p
m

∇r x1ξ�iξy � xφPek| p
m

∇r x1ξy � �}ξ}2. Furthermore
WφPektλW�1

φPek � pλ1 � λPek
1 , λ2 � λPek

2 , λ3 � λPek
3 q � pλ1, λ2, λ3q � tλ with
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λPek :� �xφn|ΠφPeky�N
n�1. Therefore defining Ψ�

α :� WφPekΨrα � WφPek�iξΨα and conjugating
with WφPek yields the lower bound

xΨα|HΛ � p

m
pp�ΥΛq |Ψαy (4.4.8)

¥ ePek�
A

Ψ�
α

���� 1
4α4

Ņ

n�1
B2
λn�Jtλ,α�s

�
τ
�
λ�λPek���WφPekN¡NW�1

φPek� p

m
ΥΛ

���Ψ�
α

E
� N

2α2 � 2Re
A

Ψ�
α

���a� p
m

∇r x1ξ
	 ���Ψ�

α

E
� |p|

2

m
�}ξ}2�OαÑ8

�
α�p2�wq

�
.

The advantage of conjugating with the Weyl transformation WφPek�iξ � WφPekW�iξ stems
from the observation that we have an almost complete cancellation of linear terms, i.e., as we
will verify below, the term linear in creation and annihilation operators
Re

A
Ψ�
α

���a� p
m

∇r x1ξ
	 ���Ψ�

α

E
in Eq. (4.4.8) is of negligible order, and the function λ ÞÑ

Jtλ,α�s
�
τ
�
λ�λPek�� vanishes quadratically at λ � 0. The latter follows from the fact that

τ
�
λPek� � 0. Utilizing the inequalities xΨ�

α|N |Ψ�
αy � xΨα|W�1

φPek�iξNWφPek�iξ|Ψαy ¤ α�r,
see Eq. (4.3.14), and } p

m
∇r x1ξ} À |p|2, where we have used that φPek P H2pR3q, see [76, 95],

we obtain that

2Re
A

Ψ�
α

���a� p
m

∇r x1ξ
	 ���Ψ�

α

E
Àα� r

2 |p|2Àα�p2� r
2 q (4.4.9)

is indeed negligible small. Furthermore we can estimate, up to a term of order α�p2� 2
5 q,

WφPekN¡NW�1
φPek from below by a proper quadratic expression

WφPekN¡NW�1
φPek � N¡N � a

�p1� ΠqφPek�� a:
�p1� ΠqφPek�� ��p1� ΠqφPek��2

¥ 1
2N¡N � 2

��p1� ΠqφPek��2 � 1
2N¡N �OαÑ8

�
α�p2�

2
5 q
	
, (4.4.10)

where we have used }p1 � ΠqφPek}2 À α�p2�
2
5 q, see [17, Lemma A.1]. In the following let

us use the convenient notation ePek
p :� ePek � |p|2

2m . Combining Eq. (4.4.8) with Eq. (4.4.9),
Eq. (4.4.10) and the observation that |p|2

m
�}ξ}2 ¥ |p|2

2m , and using the fact that Eα,Λpα2pq ¥A
Ψα

���HΛ� p
m
pp�ΥΛq

���Ψα

E
�OαÑ8

�
α�p2� r

2q
	

, see Eq. (4.4.4), we obtain

Eα,Λpα2pq ¥ ePek
p �

A
Ψ�
α

���� 1
4α4

Ņ

n�1
B2
λn�Jtλ,α�s

�
τ
�
λ�λPek��� 1

2N¡N � p

m
ΥΛ

���Ψ�
α

E
� N

2α2 �OαÑ8
�
α�p2�wq

�
. (4.4.11)

The right hand side of Eq. (4.4.11) is up to a coordinate transformation in the argument of
Jtλ,α�s quadratic in creation and annihilation operators. In the next subsection we will apply
a unitary transformation in order to arrive at a proper quadratic expression.

4.4.2 Conjugation with the Unitary U
In order to get rid of the coordinate transformation τ in the argument of Jtλ,α�s , let us
define the unitary operator U on F pΠL2pR3qq � L2�RN

�
as U pΨq pλq :� Ψ pΞpλqq, where

Ξ : RN ÝÑ RN is defined as Ξpλq :� τ
�
λ� λPek

	
P ΠL2pR3q � RN . Note that the inverse
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of τ is simply given by τ�1pφq � φ�fptφq where f : R3 ÝÑ ΠL2pR3q is defined in Definition
4.4.2, which can be checked easily using the fact that xφn|fptqy � 0 for n P t1, 2, 3u and
consequently tτpφq � tφ. Hence

U�1λn U � xφn|τ�1pλqy � λPek
n � λn � xφn|fptλqy � λPek

n (4.4.12)

and therefore U�1tλ U � pxφ1|τ�1pλqy � λPek
1 , . . . , xφ3|τ�1pλqy � λPek

3 q � pλ1, . . . , λ3q � tλ.
Defining the matrix pJt,ϵqn,m :� xφn|Jt,ϵ|φmy we furthermore have

U�1Jtλ,α�s
�
τ
�
λ�λPek� �U � Jtλ,α�s

�
λ
� � Ņ

n,m�4

�
Jtλ,α�s

�
n,m

λnλm

as well as U�1iBλn U � iBλn for 3   n ¤ N , which immediately follows from the observation
that Ξ is a tλ � pλ1, λ2, λ3q-dependent shift. In the following let us extend tφ1, . . . , φNu
to an orthonormal basis tφn : n P Nu of L2pR3q and introduce an :� a pφnq for all n P N,
and let us extend the action of U to all of F pL2pR3qq such that U�1an U � an for n ¡ N .
Defining Ψ1

α :� U�1Ψ�
α, we obtain by Eq. (4.4.11)

Eα,Λpα2pq¥ePek
p �

A
Ψ1
α

���� 1
4α4

3̧

n�1
U�1B2

λnU � 1
4α4

Ņ

n�4
B2
λn�

Ņ

n,m�4

�
Jtλ,α�s

�
n,m

λnλm

� 1
2N¡N � U�1 p

m
ΥΛ U

���Ψ1
α

E
� N

2α2 �OαÑ8
�
α�p2�wq

�
. (4.4.13)

Using Eq. (4.4.12) and U�1iBλn U � iBλn for 3   n ¤ N , we further obtain the transformation
law U�1an U � an � xφn|fptλq � ΠφPeky for all n ¡ 3.

In order to express U�1 p
m

ΥΛ U , let us introduce the operators cn defined as cn :� 1
2α2 U�1Bλn U

for n P t1, 2, 3u and cn :� an for n ¡ 3, as well as gptq :� fptq � ΠφPek �°3
n�1 tnφn P

ΠL2pR3q and gnptq :� xφn|gptqy. With these definitions at hand we obtain

U�1an U � U�1
�

1
2α2Bλn � λn



U � 1

2α2 U�1Bλn U � λn � cn � gn
�
tλ
�

, for 1 ¤ n ¤ 3,

U�1an U � an � xφn|fptλq � ΠφPeky � cn � gn
�
tλ
�

, for 4 ¤ n ¤ N

and U�1an U � cn � cn � gn
�
tλ
�

for n ¡ N , and therefore U�1an U � cn � gn
�
tλ
�

for all
n P N. In the following we want to think of cn as being a variable of magnitude α�1 and tλ
as being of order α�r for some r ¡ 0, and consequently we think of gn

�
tλ
�

as being of order
α�r as well, since gp0q � 0. While the former will be a consequence of the proof presented
below, the control on tλ follows from our assumption that we have condensation with respect
to the state φPek.

In the following we want to show that for suitable w,w1 ¡ 0, p
m

ΥΛ is bounded by
ϵ
�
� 1

4α4

°3
n�1 U�1B2

λnU �°N
n�4 a

:
nan �N¡N

	
with ϵ � α�w

1 , up to a term of negligible
magnitude, see Eq. (4.4.16). Since � 1

4α4

°3
n�1 U�1B2

λnU and N¡N appear in the expression
on the right hand side of Eq. (4.4.13) as well, and since they are non-negative, this will leave
us with the study of � 1

4α4

°N
n�4 B2

λn�
°N
n,m�4

�
Jtλ,α�s

�
n,m

λnλm � ϵ
°N
n�4 a

:
nan for a lower

bound on the expression on the right hand side of Eq. (4.4.13). Using the representation
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p
m

ΥΛ �
°8
n,m�1 xφn| pim∇r x1 |φmy a:nam, we obtain

U�1 p

m
ΥΛ U�
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n,m�1
xφn| p

im
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�
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�
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(4.4.14)

where we have used
°8
n,m�1 xφn| pim∇r x1 |φmy gn

�
tλ
�
gm

�
tλ
� � xg�tλ� | p

im
∇r x1 |g

�
tλ
�y � 0, see

the comment below Eq. (4.4.7). Using the bound on the operator norm } p
m

∇r x1}op ¤ |p|
m

3Λ �
|p|
m

3α 4
5 p1�σq À α

4
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xφn| p

im
∇r x1 |φmy c:ncm À α

4
5 p1�σq�1

8̧

n�1
c:ncn. (4.4.15)

For the bound in Eq. (4.4.15) it is essential that we are using the truncated momentum
ΥΛ defined in terms of the bounded operator ∇r x1 instead of the unbounded operator ∇x1 .
Defining the coefficients hnptq :� °8

m�1 xφn| pim∇r x1 |φmy gmptq and applying Cauchy–Schwarz
furthermore yields for all ϵ ¡ 0

�
8̧

n,m�1
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im
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.

Note that
��� pm∇r x1gptq

��� ¤ |p|
m
}∇gptq}. Making use of ∇gptq � ∇Πηptq with

ηptq :� χ p|t|   δ�q
�
φPek
xt � φPek�� χ pδ� ¤ |t|q

�
3̧

n�1
tn

∇xnφ
Pek

}Π∇xnφ
Pek} � φPek

�
,

we obtain }∇gptq} À }∇ηptq}�α�4p1�σq}ηptq} by Lemma 4.5.3. Using again φPek P H2pR3q,
we have }ηptq}�}∇ηptq} À 1�|t|, as well as }∇ηptq} � }∇φPek

xt �∇φPek} ¤ |xt|}∆φPek} À |t|
for |t|   δ�. Consequently,

��� pm∇r x1gptq
��� ¤ C0|p|

�|t| � α�4p1�σqp1� |t|q� for a suitable
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(4.4.16)

with w1   mint r2 , 1� 4
5p1� σqu. In the following let α be large enough such that α�w1 ¤ 1

2 .
Then we have
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Using Eq. (4.4.13), Eq. (4.4.16) and xΨ1
α||tλ|2|Ψ1

αy � xΨrα||tλ|2|Ψrαy ¤ xΨrα|N |Ψrαy � 3
2α2 ¤

α�r � 3
2α2 , see Theorem 4.3.7 for the last estimate, we obtain for a suitable w ¡ 0
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Ņ

n�4
B2
λn�

Ņ
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4.4.3 Properties of the Harmonic Oscillators Qκ
t,ϵ

Let π be the projection from Definition 4.4.3 and note that Jt,ϵ ¥ c π for suitable c ¡ 0, ϵ
small enough and α large enough by [17, Lemma B.5]. Therefore Qα�w

1

t,α�s ¥ 0 for α large
enough. Since Jt,ϵ ¤ 1, we furthermore have p1�κq inf σ

�
Qκ
t,ϵ

� ¤ N
2α2 À α�2 �Λ

ℓ

�3 ¤ αq for a
suitable exponent q, see Definition 4.4.1. Combining this with the estimate xΨ1

α|1� B|Ψ1
αy �

xΨrα|1� B|Ψrαy ¤ e�βα
2�2s for a suitable β ¡ 0, where B :� χp|tλ|   α�sq, see Eq. (4.4.6),

yields
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Therefore we obtain for a suitable w ¡ 0
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. (4.4.17)

Since Qκ
t,ϵ is a harmonic oscillator, we can write its ground state energy explicitly as

inf σ
�
Qκ
t,ϵ

� � 1
2α2 TrΠL2pR3q

c
Jt,ϵ � κπ

1� κ

� inf σ
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t,ϵ

�� 1
2α2 TrΠL2pR3q

�c
Jt,ϵ � κπ

1� κ
�a

Jt,ϵ

�
.

Using Jt,ϵπ � Jt,ϵ, and therefore rJt,ϵ, πs � 0, and again the fact that Jt,ϵ ¥ c π for ϵ small
enough and α large enough, as well as |?x � ?

y| ¤ 1?
c
|x � y| for x ¥ 0 and y ¥ c, we

obtain for such ϵ, α, and κ ¤ c

�TrΠL2pR3q

�c
Jt,ϵ � κπ

1� κ
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1� κ
,
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where we have used that KPek and LPek defined in Definition 4.4.3 are trace-class. Combining
what we have so far with the bound

inf σ
�
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� ¥ N

2α2 �
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2α2 Tr
�
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?
HPek

�
�D

�
α�2ϵ� α�p2� 1
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for small ϵ, |t|   ϵ and large α, and a suitable D ¡ 0, see [17, Lemma B.5], yields
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In combination with Eq. (4.4.17) we therefore obtain for a suitable w ¡ 0

Eα,Λpα2pq ¥ ePek
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2α2 Tr
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?
HPek

�
�OαÑ8

�
α�p2�wq

	
,

which concludes the proof of Eq. (4.2.3).

4.5 Auxiliary Results
Lemma 4.5.1. Let gpkq :�χ1pK�1|k| ¤ 2qk for k P R. Then there exists a constant C ¡ 0
such that for any bounded function f : R Ñ R with f 1 P L2pRq and K ¡ 0, the double
commutator is bounded by������g�1

i

d
dt



, fptq

�
, fptq

�����
op
¤ C}f 1}2,

where we write fptq for the multiplication operator with respect to the function t ÞÑ fptq.
Furthermore we can choose the constant C ¡ 0 such that
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��
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K}f 1}.
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|t|
n
¤ 2

	
fptq, which is compactly

supported and therefore fn P H1pBRp0qq by our assumptions. Hence there exist smooth
and compactly supported frn such that }fn � frn}8 � }pfnq1 � pfrnq1} ÝÑnÑ8 0. Clearly the
sequence frn is uniformly bounded and approximates fptq in the strong operator topology, and
consequently
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�
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�
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. Together with the observation }f 1�pfrnq1} ÝÑnÑ8 0,
we can therefore assume w.l.o.g. that f is smooth and compactly supported.
Going to Fourier space and defining Mpk, k1q :� supp
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Making use of the fact that
���Mpk,k1q

kk1

��� ¤ }g2}8 À 1
K

,
���Mpk,k1q

k1
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In order to estimate the operator norm of rgp1
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dtq, fptqs, we can assume as above that f is

smooth and compactly supported. We compute
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Using }g1}8 À 1 and }g}8 À K concludes the proof. ■

Lemma 4.5.2. For K ¡ 0 we have the estimate }χ p|∇| ¡ Kq∇φPek} À 1?
K

.

Proof. We can write φPek � 4
?
π p�∆q� 1

2
��ψPek

��2, where ψPek is as in Definition 4.4.3. Hence

the Fourier transform of ∇φPek reads ∇φPek{ pkq � ik
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where we used ψPek P H2pR3q and consequently
����|k|2 ��ψPek

��2{ pkq
����
8
  8. ■

Lemma 4.5.3. With Π the projection defined in Definition 4.4.1, we have

}r|∇|,Πs}op À α�4p1�σq.

Proof. Using the Fourier transformation, we can write Πφx pkq � °N
n�1 xfn|φpy fnpkq, with the

help of non-negative functions fn having pairwise disjoint support, which additionally satisfy
}fn} � 1 and supp pfnq � B?

3α�4p1�σq pznq for some zn P R3. Therefore

r|∇|,Πsφ{ pkq�
Ņ

n�1

�
xfn|φpy |k|�Afn���|∇|φzE	

fnpkq�
Ņ

n�1

»
fnpk1qφppk1qp|k|�|k1|q dk1fnpkq.
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4.5. Auxiliary Results

Using that the functions fn have disjoint support, as well as the fact that ||k| � |k1|| ¤
2
?

3α�4p1�σq for k, k1 P supp pfnq, we obtain furthermore

}r|∇|,Πsφ}2 �
Ņ

n�1

» ����» fnpk1qφppk1qp|k|�|k1|q dk1
����2 |fnpkq|2dk

¤ 12α�8p1�σq
Ņ

n�1

����» fnpk1q |φppk1q| dk1����2 ¤ 12α�8p1�σq }|φp|}2 � 12α�8p1�σq}φ}2,

where we have used that fn is an orthonormal system. ■
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APPENDIX A
Molecular Impurities as a Realization of

Anyons on the Two-Sphere

Abstract. Studies on experimental realization of two-dimensional anyons in terms of
quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however,
that the geometry and topology of space can have significant effects on quantum statistics
for particles moving on it. Here, we have undertaken the first step towards realizing the
emerging fractional statistics for particles restricted to move on the sphere, instead of on
the plane. We show that such a model arises naturally in the context of quantum impurity
problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two
linear bosonic/fermionic molecules immersed in a quantum many-particle environment can
coincide with the anyonic spectrum on the sphere. This paves the way towards experimental
realization of anyons on the sphere using molecular impurities. Furthermore, since a change
in the alignment of the molecules corresponds to the exchange of the particles on the sphere,
such a realization reveals a novel type of exclusion principle for molecular impurities, which
could also be of use as a powerful technique to measure the statistics parameter. Finally, our
approach opens up a simple numerical route to investigate the spectra of many anyons on the
sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of
a Dirac monopole field.

The study of quasiparticles with fractional statistics, called anyons, has been an active field of
research in the past decades. This field has gained a lot of attention, due to the possible usage
of these quasiparticles in quantum computation [60, 82, 42, 101]. In contrast to bosons and
fermions, anyons acquire a phase eiπα under the exchange of two particles, where the statistical
parameter α is not necessarily an integer. The integer cases α � 0 and α � 1 represent
bosons and fermions, respectively. For non-integer α, the transformation law Ψ Ñ eiπαΨ
under the exchange of two particles, can only be realized by allowing the wave function Ψ to
be multivalued. The idea is that the multiple values keep book of the different possible ways
the particles could “braid" around each other. Due to the triviality of the braid group in 3� 1
dimensions, these particles are a purely low-dimensional phenomenon.

Although anyons are predicted to be realized in certain fractional quantum Hall systems [126,
64, 6, 121, 57, 46, 52, 83], they have not yet been unambiguously detected in experiment.
Indeed there has been a recent upsurge in interest concerning the realization of anyons as
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A. Molecular Impurities as a Realization of Anyons on the Two-Sphere

emergent quasiparticles in experimentally feasible systems [25, 134, 135, 94, 127, 26]. For
instance, it has been recently shown in Refs. [131, 132] how these quasiparticles emerge
from impurities in standard condensed matter systems. Nevertheless, all these works focus
on the particles moving on the two-dimensional plane, i.e., on R2. Since the theory of
anyons and their statistical behavior are strongly dependent on the geometry and topology
of the underlying space, investigations on curved spaces reveal novel features of quantum
statistics [122, 31, 32, 109, 104, 124, 125, 111]. In particular, theoretical discussions of the
fractional quantum Hall effect (FQHE) for systems having various geometry and topology
have widened our understanding of the FQHE [53, 64].

In the present Letter, we explore the possibility of emerging fractional statistics for particles
restricted to move on the sphere, S2, instead of on the plane. We show that such quasiparticles
naturally arise from a system of impurities exchanging angular momentum with a many-particle
bath. As a prototypical example, we consider two linear bosonic/fermionic molecules immersed
in a quantum bath. In the regime of low energies, we identify the spectrum of this system with
that of two anyons. This does not only allow us to realize anyons on the sphere, but also to
open up various numerical approaches to investigate the spectrum of N anyons on the sphere.
To illustrate this, we present the spectrum of two anyons on the sphere in the presence of a
Dirac monopole field, extending the recent result of Ref. [104, 111]. Furthermore, the anyonic
behavior of molecular impurities suggests that a novel type of exclusion principle holds, which
concerns the alignment of the molecules, instead of the exchange of their actual position.

We start by considering a system of N free anyons on the two-sphere. The Hamiltonian
is given by the sum of the Laplacian of the jth particle on the sphere: H0 � �°N

j�1 ∇2
j ,

which acts on a multivalued wave function Ψ. By performing a singular gauge transformation,
Ψ Ñ eiβΨ (see Refs. [130, 96, 65, 103, 112]), one can get rid of the multivaluedness and the
free anyon Hamiltonian on the sphere H0 becomes equivalent to

Hanyon � �
Ņ

j�1
p∇j � iAjq2 , (A.0.1)

which now acts on single valued bosonic/fermionic wave functions. Here anyons are depicted
as bosons/fermions interacting with the magnetic gauge field A, which explains that the
calculation of the anyonic spectra is very hard [84]. Note that A � ∇β is an almost pure gauge,
up to the singularities of β, where the particles meet, and it can be found as the variational
solution of the Chern-Simons (CS) Lagrangian LS2 � °

j

�
A � q9 j � A0

��p4παq�1 ³
S2 dΩ A^

dA, where qj is the position of the nonrelativistic point particle coupled to the CS field, A0
the time component of the gauge field, and ^ the wedge product. For anyons on the plane,
one can always find a single magnetic potential A as a solution. However, due to the non
trivial homology of S2, the CS Lagrangian on the sphere can only be solved in two different
stereographic coordinate charts: north and south patches, AN and AS. As the fields AN and
AS should be a single object in the overlap patch, we require them to be gauge equivalent.
This equivalence is given by the Dirac quantization condition pN � 1qα P Z [65, 103].

In what follows, in order to simplify our expressions, we represent the stereographic coordinates
px, yq as a complex number, z � x � iy. In these coordinates, we define the gauge
transformation F � eiβ, with the exponent βpz1, .., zNq � �iα°

j k
log

�
zj�zk
|zj�zk|

	
. The

corresponding connections (gauge fields) can be written as
Az̄j � iDz̄jβ � �αp1�|zj |2q

2
°
k�j pz̄j � z̄kq�1 and Azj � iDzjβ � αp1�|zj |2q

2
°
k�j pzj � zkq�1,
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where we encode the contribution from the metric on S2 in the following differential operators:
Dz̄j � p1� |zj|2qBz̄j and Dzj � p1� |zj|2qBzj ; see Ref. [24]. In the language of connections,
F represents the holonomy of A, and it is discontinuous along the lines which connect the
particles with the north (south) pole, usually called the Dirac lines. Without loss of generality,
we consider the north pole, which corresponds to the choice of zj � cotpθj{2q exppiφjq, with
spherical coordinates θj and φj. These lines represent the magnetic potential in the singular
gauge, by assigning the particle an additional phase factor whenever it crosses them. The
Dirac quantization condition makes sure that the Dirac lines are invisible, in the sense that
one cannot distinguish between the theory where the lines run to the north pole and theories
where they run to any other point. This means that our system is rotational invariant, up to
gauge equivalences.

The anyon Hamiltonian in our complex stereographic coordinate system can be written as

Hanyon � �
Ņ

j�1

�
Dzj � z̄j � Azj

� �
Dz̄j � Az̄j

�
. (A.0.2)

Direct calculations to investigate the spectra of Hanyon turn out to be problematic, when
the spectrum is calculated from the bosonic end. This is due to the fact that the matrix
elements of AzjAz̄j for certain bosonic states are singular, which is similar to the case of
anyons on the plane [132]. To overcome this difficulty we will use a different representation
of the free anyon Hamiltonian, with the help of the non-unitary singular pseudo-gauge
transformation Ψ Ñ eα

°
j k logpzj�zkqΨ. The advantage is that one of the two magnetic

potentials A1
z̄ � αDz̄ logpzq is zero, since logpzq is a holomorphic function. Therefore, the

Hamiltonian simplifies to

H 1
anyon � �

Ņ

j�1

�
Dzj � z̄j � A1

zj

	
Dz̄j . (A.0.3)

The non-zero magnetic potential is given by A1
zj
� 2Azj . Note that H 1

anyon is a similarity
transformation of Hanyon, i.e., H 1

anyon � eα
°
j k log |zj�zk|Hanyone

�α°j k log |zj�zk|, therefore
these two operators have the same eigenvalues. The cost for the simplification is that H 1

anyon
is self-adjoint in a weighted L2 space. As we discuss below, while the first form of the anyon
Hamiltonian (A.0.2) allows us to realize anyons in natural quantum impurity setups, the
Hamiltonian (A.0.3) provides powerful numerical techniques to calculate the spectra of anyons
on the sphere within the simplified impurity models.

We will now consider a general impurity problem of N bosonic/fermionic impurities on S2

interacting with some Fock space F . Within the Bogoliubov-Fröhlich theory [45, 13, 108],
the impurity Hamiltonian is given by

Himp � �
Ņ

j�1

�
Dzj � z̄j

�
Dz̄j �

¸
v

ωvb
:
vbv (A.0.4)

�
¸
v

λvpz1, .., zNq
�
e�iβvpz1,..,zN qb:v � eiβvpz1,..,zN qbv

�
,

where b:v, bv are the bosonic creation and annihilation operators in F , ωv is the energy of
the corresponding mode v, and the coefficients λvpz1, .., zNq and βvpz1, .., zNq describe the
interaction of the impurities with the Fock space, depending on their coordinates z1, .., zN . In
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A. Molecular Impurities as a Realization of Anyons on the Two-Sphere

the limit of ωv Ñ 8 (the adiabatic limit), one can justify that the lowest spectrum of Himp is
described by the Born-Oppenheimer (BO) approximation; see Ref [132] for an analysis of this
assumption in the planar case. The projection of the Hamiltonian to the smaller Hilbert space
manifests itself as a minimal coupling of the otherwise free particles with effective magnetic
potentials Az1 , .., AzN and a scalar potential Φ. Therefore, it is sufficient to understand how
Himp acts on the vacuum sector.

Accordingly, we first apply the transformation Spz1, .., zNq � e�i
°
v βvb

:
vbv to Eq. (A.0.4),

and then project the transformed Hamiltonian onto the coherent state |φpz1, .., zNqy �
e
� 1?

2
°
v
λv
ωv

pb:v�bvq |0y. The emerging magnetic potential in complex coordinates is then given
by

Aimpzj
� i

¸
v

�
λv
ωv


2

Dzjβv ; (A.0.5)

see Ref [132] for the details concerning the derivation of the emerging gauge field in the
analogous planar case. Let us consider the specific choice
βvpz1, .., zNq � �ipv

°
j k

log
�
zj�zk
|zj�zk|

	
, which results in Aimp

zj
� αp1�|zj |2q

2
°
k�j pzj � zkq�1

with αpz1, .., zNq �
°
v pv

�
λv
ωv

	2
. We thus see that Aimp

z̄j is the sought CS gauge field and
obeys the Dirac quantization condition if αpz1, .., zNq is a constant and satisfies pN �1qα P Z.
We emphasize, however, that for the values of α which do not satisfy the Dirac quantization
condition, the impurity Hamiltonian (A.0.4) is still well-defined. The only difference for these
values is that the theory is no longer fully rotational invariant, but, instead, it is invariant
under rotation around the z axis. In other words, the Dirac lines, which emerge together with
the statistical gauge field, are not invisible [105] and they puncture the sphere. These features
have drastic effects on the physical realization of anyons on the sphere in terms of quantum
impurities, in comparison to emergent anyons on the plane studied in Ref. [132].

In general, the impurity Hamiltonian (A.0.4) corresponds to interacting anyons due the
presence of the scalar potential Φ. An impurity Hamiltonian whose lowest-energy spectrum
is governed by the anyon Hamiltonian in the pseudo-gauge (A.0.3), on the other hand,
describes free anyons, as the scalar potential vanishes with Az̄ � 0. Although such an impurity
Hamiltonian is not Hermitian and may be harder to realize experimentally, considered as a
toy model its non-Hermiticity is harmless for our purposes and it opens up simple numerical
approaches to calculate the spectra of anyons on the sphere.

Our numerical tools work for an arbitrary number of particles. Nevertheless, we will here
study only the two-anyon case, since the computational effort strongly scales with the number
of particles. Furthermore, we investigate a configuration where the impurities are subjected
to a Dirac monopole field B. This allows us to investigate the spectrum for all values of
α, as the Dirac quantization condition in the presence of a Dirac monopole field is given by
2B � pN � 1qα P Z [104, 111]. Accordingly, we consider the following simple model

H 1
imp � HB � ω

�
b:b� α

p



(A.0.6)

�
c
α

p
ω
�
e�p logpz1�z2qb: � ep logpz1�z2qb

�
,
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Figure A.1: Numerical computations of the energy of two anyons on the sphere in the presence
of a Dirac monopole in terms of the relative statistics parameter, i.e., α � 0 corresponds to
fermions and α � 1 to bosons. We set 2B � α and consider spherical harmonics with the
angular momentum up to lmax � 8 for the numerics. Compare Fig. 1 in Ref. [111].

where the Hamiltonian HB � H0 �
°2
j�1 A

B
zj
Dz̄j governs the bosonic/fermionic particles

interacting with the Dirac monopole field B generated by the gauge field ABzj � 2Bz̄j, p is
an integer, and we subtracted the vacuum energy, �ωα{p, of the pure Fock space part of the
Hamiltonian.

For a direct calculation, one could use, for instance, the orthonormal basis |SpAq;ny,
where |SpAqy � |Yl1,m1 bSpAq Yl2,m2y are the impurity basis with Yl,m being the spherical
harmonics, bSpAq the (anti-)symmetric tensor product, and |ny the n-particle state in the
Fock space. Then, one could calculate the lowest spectrum of H 1

imp by diagonalizing the
matrix xSpAq;n|H 1

imp |S 1pA1q;n1y. Instead of this direct diagonalization technique, we first
diagonalize the Fock space part of the Hamiltonian with the displacement operator. The
anyon Hamiltonian (A.0.3) in the presence of a Dirac monopole field, which emerges in the
limit of ω Ñ 8, is, then, given by

H 1B
anyon � HB � α

p

�
ep logpz1�z2qH0e

�p logpz1�z2q �H0
�
, (A.0.7)

see Supplemental Material for the derivation. We underline that a similar form of the
Hamiltonian (A.0.7) for anyons on the plane has been previously introduced in Ref. [132],
where the second term of the right hand side was written in terms of composite bosons/fermions
for an even integer p. Extending this approach we use here Bose-Fermi mixtures which enable
us to set p � 1. Within such a simple choice Eq. (A.0.7) can be written as the following
matrix equation

EB
anyon � Ebos � 2BWS � α

�
Z�1EferZ � Ebos

�
, (A.0.8)
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where the elements of the matrices are given by Ebos � xS|H0 |S 1y, Efer � xA|H0 |A1y, WS �
xS|°2

j�1 z̄jDz̄j |S 1y, and Z�1 � xS| z1 � z2 |Ay. As the latter two terms are straightforward
to calculate numerically, and the matrix Z can be obtained by taking the (pseudo)inverse of
Z�1, Eq. (A.0.8) opens up a powerful route to calculate the anyonic spectrum. The spectrum
from the fermionic end in terms of the relative statistics parameter can be calculated simply
with the replacement of the basis |SpAqy Ñ |ApSqy in Eq. (A.0.8).

As an example, we compute the eigenvalues for α ranging from 0 to 1. For an easier comparison
with the result existing in Ref. [111], we calculate the spectrum from the fermionic end. The
result presented in Fig. A.1 is consistent with the one shown in Ref. [111], where the spectrum
was calculated only for the subset of energy levels with unit total angular momentum.

The general form of the impurity Hamiltonian (A.0.4) allow us also to physically realize
anyons on the sphere in terms of quantum impurities. First of all, the kinetic energy of the
particles on the sphere, which is given by the Laplacian � �

Dzj � z̄j
�
Dz̄j , can be realized

as the angular momentum operator L2
j . The latter can be considered as the Hamiltonian of

linear molecules, which enables us to map rotation of molecules to motion of point particles
on the sphere. Consequently, instead of point-like impurities, which have been considered
for the planar case in Ref. [132], we consider here linear molecules and explore the angular
momentum exchange with the bath. Such a realization exposes a novel correlation between
molecular impurities. Specifically, the exchange of the particles on the sphere corresponds to a
change in the alignment of the molecules, but not the exchange of the molecules themselves,
see Fig. A.2 (Top). Therefore, the emerging statistical interaction manifests itself in the
alignment of molecules.

To illustrate this in a transparent way, we consider the simple impurity Hamiltonian (A.0.6) in
the absence of the Dirac monopole. We investigate the alignment xpcos θ1 � cos θ2q2y as a
function of the statistics parameter for two molecules. In Fig. A.2 (Bottom) we present the
alignment for the ground state, which is obtained from Eq. (A.0.8) for the case of B � 0. We
note that the Hamiltonian is still well-defined for the values of α which do not satisfy the Dirac
quantization condition as we discussed before. Thus, the alignment of the molecules could be
used as an experimental measure of the statistics parameter. Such a measurement can be
performed, for instance, within the technique of laser-induced molecular alignment [43, 66].
Further discussion of the alignment of molecules as a consequence of the statistical interaction
will be the subject of future work.

A physical realization of the interaction between the molecules and a bath is also natural in
the context of quantum impurity problems. Indeed, it was shown that the molecular impurities
rotating in superfluid helium can be described within an impurity problem [113, 114, 67]. The
resulting quasiparticle, which is called the angulon, represents a quantum impurity exchanging
orbital angular momentum with a bath of quantum oscillators, and serves as a reliable model
for the rotation of molecules in superfluids [68]. Therefore, we consider the following angulon
Hamiltonian [133, 75]

Hangulon �
2̧

j�1
L2
j � V pq1, q2q �

¸
k,l,m

ωk,l,mb
:
k,l,mbk,l,m (A.0.9)

�
¸
k,l,m

λk,l,mpq1, q2q
�
e�iβk,l,mpq1,q2qb:k,l,m � H.c.

	
,

where b̂
:
k,l,m and b̂k,l,m are the bosonic creation and annihilation operators written in the
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Figure A.2: (Top) Realization of anyons on the sphere in terms of linear molecules immersed
in a quantum many-particle environment. A change in the alignment of the molecules
(dumbbells), which is depicted by the white arrows, corresponds to the exchange of the
particles on the sphere (dots), shown by the curvy black arrows. (Bottom) The alignment
xpcos θ1 � cos θ2q2y as a function of the absolute statistics parameter for the ground state. The
curve follows the bosonic state |Y0,0 bS Y0,0y at α � 0 to the fermionic state |Y1,0 bA Y0,0y
at α � 1. We consider spherical harmonics with the angular momentum up to lmax � 8 for
the numerics.

spherical basis [113], qi � pθi, φiq are the angular coordinates representing the molecular
rotation of the i-th molecule, V is a confining potential, and H.c. stands for Hermitian
conjugate. Note that the coupling terms might depend on the intermolecular distance, as
well. For heavy molecules the BO approximation can be justified with a gapped dispersion
ωk,l,m. Furthermore, following our previous reasoning and Eq. (A.0.5), if the impurity-bath
coupling satisfies the relation i

°
k,l,m

�
λk,l,m
ωk,l,m

	2
Dzjβk,l,m � Azj , the lowest-energy spectrum

of the two linear molecules immersed in the bath coincide with the spectrum of two anyons
on the sphere. In principle, such an interaction is feasible with the state-of-art techniques in
the physics of superfluid helium as well as ultracold molecules.

In order to present a simple and intuitive realization, we first neglect the intermolecular
distance. This enables us to define the interaction term simply as λk,l,mpq1, q2qe�iβk,l,mpq1,q2q �
uk,l

°2
j�1 Yl,mpqjq with the impurity-bath coupling uk,l. For a physical configuration, we

consider molecular impurities in superfluid helium nanodroplets. The corresponding coupling
captures the details of the molecule-helium interaction. For the form of the coupling and the
relevant parameters we refer the reader to Supplemental Material and Ref. [22, 23], where
the model has been used in order to describe angulon instabilities and oscillations observed in
the experiment. Furthermore, the dispersion relation of superfluid helium allows us to achieve
a gapped dispersion at the roton minimum ωr [67]. Following the experimental realization
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Figure A.3: The dependence of the statistical parameter α on the relative angle θ. The
computation is performed for the parameters modeling the molecule-helium interaction, given
in Supplemental Material. The other parameters are ωr � 1, Ω � 1.1, and lmax � 20.

proposed in Ref. [132] for anyons on the plane, we also couple the impurities to an additional
constant magnetic field and rotate the whole system at the cyclotron frequency Ω, which
breaks time reversal symmetry so that anyons can emerge on the lowest-energy spectrum.

A priori, the emerging statistics parameter α � αpθq depends on the relative angle θ between
the points q1 and q2. However, with a careful choice of the model parameters, α becomes
approximately constant with the condition Ω lmax{ωr " 1, see Supplemental Material. The
condition imposes that the cyclotron frequency should be at the order of the roton minimum.
This implies that molecular impurities should be subjected to a strong magnetic field at
the order of Mωr with M being the mass of the molecules. The θ dependence of α is
demonstrated in Fig. A.3. In general, the statistics parameter does not satisfy the Dirac
quantization condition. Therefore, the molecular impurities correspond to anyons interacting
with the magnetic potential depicted by the Dirac lines, with broken rotational symmetry. We
also note that with the additional confining potential, V , the particles are confined to one of
the half spheres so that the statistics parameter becomes accessible to the experiment.

Thus, we see that a system of two linear molecules exchanging angular momentum with a
many-particle bath can give rise to a system of quasiparticles with anyonic statistics, and
can be realized by considering molecular impurities in superfluid helium droplets. It would
be interesting to continue this approach and investigate, whether one can generalize the
results above e.g. to non-Abelian Chern-Simons particles with the help of a higher order
Born-Oppenheimer approximation.
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APPENDIX B
Characterisation of Gradient Flows for a

given Functional

Abstract. Let X be a vector field and Y be a co-vector field on a smooth manifold
M . Does there exist a smooth Riemannian metric gαβ on M such that Yβ � gαβX

α? The
main result of this note gives necessary and sufficient conditions for this to be true. As an
application of this result we show that a finite-dimensional ergodic Lindblad equation admits
a gradient flow structure for the von Neumann relative entropy if and only if the condition of
bkm-detailed balance holds.

B.1 Introduction
This paper deals with the following general question:

Let Xα P ΓpTMq be a vector field and Yβ P ΓpT �Mq be a co-vector field on a
smooth manifold M . Does there exist a smooth Riemannian metric gαβ on M
such that Yβ � gαβX

α? 1

Clearly, this is not always true: Xα and Yβ will have to satisfy some compatibility conditions.
Firstly, Xα and Yβ need to have the same set of zeroes (critical points). Secondly, at all
other points m P M , they need to satisfy XαYα|m ¡ 0. A third (and slightly less obvious)
compatibility condition is obtained by differentiating the equation Yβ � gαβX

α: at each
critical point m P M there should exist a scalar product ḡαβ P T �

mM bS T
�
mM such that

∇αYγ|m � ḡβγ∇αX
β|m for some (equivalently, any) connection ∇α. This condition does not

hold automatically: it represents a compatibility constraint on Xα and Yβ with a natural
interpretation in some examples below.

While these three conditions are clearly necessary, it is not obvious that they are also sufficient.
The main result of this paper shows that this is indeed the case, under mild smoothness and
non-degeneracy assumptions; namely, at all critical points, we require non-degeneracy of the
derivative of Yβ and we assume that Xα and Yβ are real analytic in suitable local coordinates;
cf. Section B.2 for the details.

1Throughout the paper we use index notation and Einstein’s summation convention. Greek letters denote
abstract indices, Roman letters denotes concrete indices.
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B. Characterisation of Gradient Flows for a given Functional

Theorem B.1.1 (Main result). Let Xα P ΓpTMq and Yβ P ΓpT �Mq satisfy Assumption
B.2.1 below. Then there exists a metric gαβ P ΓpT �M bT �Mq satisfying Yβ � gαβX

α if and
only if the following conditions hold:

piq For all m PM with Yβ|m � 0 we have XαYα|m ¡ 0;

piiq For all m PM with Yβ|m � 0 we have Xα|m � 0;

piiiq For all m PM with Yβ|m � 0 there exists a scalar product ḡαβ P T �
mM bS T

�
mM such

that

∇αYγ|m � ḡβγ∇αX
β|m.

The choice of the connection ∇ in (iii) is arbitrary.

We shall also prove a variant of this result where Xα and Yβ are of class Ck�1 for some k P N.
In this case, the metric gαβ is of class Ck; see Theorem B.2.6 below.

While Theorem B.1.1 is of independent interest, our motivation comes from an open question
on gradient flow structures for dissipative quantum systems, that will be discussed below.

Let us first briefly sketch the structure of the proof. To prove the sufficiency of conditions
(i)–(iii), it suffices to construct a local metric around every point of M . The global metric can
then be constructed using a partition of unity. Around non-critical points the construction is
straightforward: in local coordinates, it corresponds to constructing a positive definite matrix
that maps one given vector to another one. However, it is not trivial to construct a smooth
metric satisfying Yβ � gαβX

α in a neighbourhood of a critical point.

To solve this problem, we assume that the sought metric has a power series expansion in
a suitable chart around the critical point. We then derive an infinite hierarchy of tensor
equations, which express power series coefficients of degree N in terms of coefficients of
degree at most N � 1 for N ¥ 1. Solvability of the lowest order equation is guaranteed
by compatibility condition (iii). We then prove that higher order equations can be solved
iteratively. Moreover, the norms of the solutions are exponentially bounded in the degree,
which allows us to construct a convergent power series that satisfies the desired equation in a
neighbourhood of the critical point.

Application to gradient structures
Consider now the special case where Y P ΓpT �Mq is the derivative of a smooth function
f P C8, i.e, Yβ � ∇βf . Then our question becomes: Does there exist a smooth Riemannian
metric gαβ such that X is the gradient of f with respect to the metric g, i.e., Xα � gαβ∇βf?
In other words, the question is whether the ODE u9 � �Xpuq on M can be formulated as a
gradient flow equation u9 ptq � �∇f

�
uptq� for a suitable Riemannian metric. Our main result

yields necessary and suffcient conditions.

Gradient flows describe motion in the direction of steepest descent of the function f in the
geometry defined by the metric g. The identification of an ODE as a gradient flow equation is
often fruitful, as there are powerful techniques available for the analysis of gradient flows [4].

As an application of our main result, we address an open question on the gradient flow
structure of finite-dimensional dissipative quantum systems. To put this result into context,
let us first discuss the corresponding classical setting.
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Classical Markov semigroups

Consider an irreducible continuous-time Markov chain on a finite set X with transition rates
qxy ¥ 0 for x, y P X with x � y. The associated Markov semigroup pPtqt¥0 is a C0-semigroup
of positive operators on RX that preserves the constant functions. Its infinitesimal generator
L : RX Ñ RX is given by �

Lψ
�pxq :�

¸
yPX

qxy
�
ψpyq � ψpxq�.

As time evolves, the marginal law of the Markov chain describes a curve pµtqt¡0 in P�pX q, the
simplex of probability densities with positive density. It evolves according to the Kolmogorov
forward equation (KFE)

Btµt � L�µt, where
�
L�µ

�pxq � ¸
y�x

µpyqqyx � µpxqqxy

for µ P PpX q. Let π P P�pX q be the unique stationary distribution. It is well known and
easy to verify that the relative entropy

Entπpµq :�
¸
xPX

µpxq log
�µpxq
πpxq

	
decreases along trajectories of the KFE.

Much more is true if the Markov chain is reversible, i.e., the detailed balance condition
πxqxy � πyqyx holds for all x � y. Equivalently, this means that the generator L is selfadjoint
in the Hilbert space L2pX , πq. In this case, it was shown in [85, 88] that the KFE can be
written as the gradient flow equation of Entπ with respect to a Riemannian metric on P�pX q.
The associated Riemannian distance is given by a discrete dynamical optimal transport
problem, in the spirit of the Benamou–Brenier formulation for the Wasserstein distance [8].
This gradient flow structure is a discrete version of the Wasserstein gradient flow structure
for the Fokker–Planck equation discovered by Jordan, Kinderlehrer, and Otto [56]. This
construction has been the starting point for the development of discrete Ricci curvature based
on geodesic convexity with applications to functional inequalities [34, 90, 35, 36, 33]

It was shown by Dietert [28] that the reversibility assumption is also necessary: if the KFE
can be written as gradient flow equation for Entπ with respect to some Riemannian metric
on P�pX q, then the underlying Markov chain is necessarily reversible. Combined with the
results from [85, 88], this result characterises reversible Markov chains as exactly those that
admit a gradient flow structure for the relative entropy Entπ.

In this paper we provide a noncommutative analogue of this result.

Quantum Markov semigroups

Let pPtqt¥0 be a quantum Markov semigroup on a finite-dimensional C�-algebra A, i.e.,
pPtqt¥0 is a C0-semigroup of linear operators on A such that Pt1 � 1 and the operators
Pt are completely positive, i.e., Pt b In is a positive operator on AbMnpCq for all n ¥ 1.
(Here, 1 P A denotes the unit element, and In denotes the identity operator on the algebra of
n� n-matrices MnpCq.) The infinitesimal generator of pPtqt¥0 will be denoted by L .
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Let pP:
t qt¥0 be the adjoint semigroup with respect to the duality pairing xA,By � TrrA�Bs.

This is a C0-semigroup of completely positive and trace-preserving linear operators with
generator L :. In particular, the operators P:

t map the set of density matrices P :� tρ P
A : ρ ¥ 0 and Trrρs � 1u into itself. Here we restrict our attention to the ergodic setting:
we assume that there exists a unique stationary state, i.e., a unique density matrix σ P P
satisfying L :σ � 0. We shall assume that σ is invertible.
The non-commutative analogue of the KFE is the Lindblad equation Btρt � L :ρt. It is well
known [117, 118] that the von Neumann relative entropy

Hσpρq :� Trrρplog ρ� log σqs
decreases along solutions to this equation. Moreover, following the earlier works [19, 89], it
was shown in [20, 92] that the Lindblad equation Btρ � L :ρ can be written as gradient flow
equation for Hσ under the condition of gns-detailed balance. This condition means that the
generator L is selfadjoint with respect to the weighted L2-type scalar product

xA,Bygns
σ :� TrrσA�Bs

named after Gelfand, Naimark, and Segal. As in the discrete setting above, the associated
Riemannian metric is related to a dynamical optimal transport problem.
It is now natural to ask whether the condition of gns-detailed balance is also necessary for
the existence of a gradient flow structure for the von Neumann relative entropy. However, it
was shown in [21] that a different symmetry condition is necessary, namely the condition of
bkm-detailed balance. This condition corresponds to the selfadjointness of L with respect
to another weighted L2-type scalar product

xA,Bybkm
σ :�

» 1

0
Trrσ1�sA�σsBs ds,

named after Bogoliubov, Kubo, and Mori. As the condition of bkm-detailed balance is strictly
weaker than gns-detailed balance [21], there was a gap between the known necessary and
sufficient conditions. As an application of Theorem B.1.1 we prove the following result, which
closes this gap.

Theorem B.1.2. Let L be the generator of an ergodic quantum Markov semigroup on
a finite dimensional C�-algebra A, and let σ P P� be its stationary state. The following
statements are equivalent:

(1) The operator L is selfadjoint with respect to the bkm scalar product x�, �ybkm
σ .

(2) There exists a Riemannian metric on the interior of P for which the Lindblad equation
ρ9 t � L :ρt is the gradient flow equation of the von Neumann relative entropy Hσ.

The implication (2) ñ (1) was proved in [21, Theorem 2.9]. The converse implication is new.

Structure of the paper
Section B.2 contains the main result and a reformulation of the result in the gradient case.
The proof of the main result is contained in Section B.3, except for the construction of the
local metric, which is presented in Section B.4. Section B.5 deals with the construction of a
metric of class Ck under the assumption that the fields Xα and Yβ are of class Ck�1. The
application to quantum Markov semigroups is contained in Section B.6.
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B.2 Main results
Let Xα P ΓpTMq be a vector field and Yβ P ΓpT �Mq be a co-vector field on a smooth
manifold M . Let NY :� tm PM : Y |m � 0u be the set of critical points of Y .

In the sequel we impose the following mild assumptions on the fields Xα and Yβ.

Assumption B.2.1. piq (Non-degeneracy) The bilinear form ∇αYβ|m is non-degenerate
for all m P NY for some (equivalently, any) connection ∇.

piiq (Real analyticity) For all m P NY there exists a neighbourhood Um Q m, an open set
Ω � Rn, and a coordinate chart φm : Um Ñ Ω, such that the fields Xr a

:� Xa � φ�1
m :

Ω Ñ R and Yr a :� Ya � φ�1
m : Ω Ñ R have a converging power series expansion around

φmpmq for all a P t1, . . . , nu.
Remark B.2.2. The choice of the connection in (i) above is irrelevant, since the difference of
two connections ∇ and ∇r satisfies ∇r αYβ �∇αYβ � ΓγαβYγ, where Γγαβ is a p1, 2q tensor. In
particular, ∇r αYβ � ∇αYβ for m P NY . For the same reason, the choice of the connection is
irrelevant in (iii) in the following result.

Using the notation introduced above, we restate our main result (Theorem B.1.1) for the
convenience of the reader.

Theorem B.2.3 (Main result). Let Xα P ΓpTMq and Yβ P ΓpT �Mq satisfy Assumption
B.2.1. Then there exists a smooth metric gαβ P ΓpT �M b T �Mq satisfying Yβ � gαβX

α, if
and only if the following conditions hold:

piq XαYα|m ¡ 0 for all m PMzNY ;

piiq Xα|m � 0 for all m P NY ;

piiiq For all m P NY there exists a scalar product ḡαβ P T �
mM bS T

�
mM , such that

∇αYγ|m � ḡβγ∇αX
β|m,

where ∇α is an arbitrary connection.

Remark B.2.4. As the necessity of the three conditions has been discussed above, it remains
to prove their sufficiency. This will be done in Section B.3 below.

In the special case where the co-vector field Yα :� ∇αF P ΓpT �Mq is the derivative of a scalar
function f : M Ñ R, the above result admits a convenient reformulation. Assuming that f
attains its minimum at a unique critical point m̄ PM , the next results shows that property (iii)
above is equivalent to the symmetry and positivity of the linearised map Λ : Tm̄M Ñ Tm̄M ,
Z ÞÑ ∇ZX, at the critical point m̄. The relevant scalar product is given by the Hessian of f .

Corollary B.2.5 (Gradient case). Let f P C8pMq be a function and Xα P ΓpTMq be a
vector field, such that Xα and Yα :� ∇αf satisfy Assumption B.2.1. Suppose that Y has a
unique zero, m̄ PM , at which f attains its minimum. Then there exists a Riemannian metric
gαβ P ΓpT �M b T �Mq satisfying

∇βf � gαβX
α,

if and only if the following conditions hold:
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B. Characterisation of Gradient Flows for a given Functional

(i) ∇Xαf |m   0 for all m PM with m � m̄;

(ii) Xα|m̄ � 0;

(iii) The linear map Λ :� ∇αX
β|m̄ : Tm̄M Ñ Tm̄M is positive and symmetric with respect

to the Hessian scalar product hαβ :� ∇α∇βf |m̄ on Tm̄M .

Proof. It is clear that the conditions (i) and (ii) match the corresponding conditions in
Theorem B.2.3.
Suppose now that condition (iii) from Theorem B.2.3 holds, for some scalar product ḡαβ P
Tm̄M bS Tm̄M . We have to show that

hαβpΛZqαW β � hαβZ
αpΛW qβ for all Zα,Wα P Tm̄M, and

hαβpΛZqαZβ ¡ 0 for all Zα P Tm̄M, Zα � 0.

To show this, note that pΛZqα � Zγ∇γX
α � Zγ ḡαδhδγ for Zα P Tm̄M . Hence, for

Wα P Tm̄M , we see that the expression

hαβpΛZqαW β � hαβ ḡ
αδhδγZ

γW β

is invariant under interchanging Z and W , which proves the desired symmetry. Moreover, this
expression implies that hαβpΛZqαZβ � ḡαβZrαZrβ where Zrα � hαβZ

β. Since hαβ is invertible
by Assumption B.2.1 and ḡαβ is positive definite, it follows that hαβpΛZqαZβ ¡ 0 whenever
Zα � 0.
Conversely, suppose that condition (iii) of the corollary holds. For all Zα,Wα P Tm̄M it follows
that hαβpΛZqαW β � grαβZαW β for a positive and symmetric tensor grαβ P T �

m̄M bS T
�
m̄M .

Since hαβpΛZqαW β � hαβZ
γ∇γX

αW β we infer that grαβ � hγβ∇αX
γ. Now define

ḡαβ :� hαδgrδγhγβ P Tm̄M b Tm̄M.

Since grαβ is positive and symmetric and hαδ is invertible, ḡαβ defines a scalar product.
Moreover, we have the desired identity ∇αX

β|m̄ � ḡβγhαγ, which completes the proof. ■

In the special case were Yβ is the derivative of a scalar function f , the existence of a metric
satisfying ∇βf � gαβX

α was proved in [7] on the complement of the set of critical points.
The existence of a metric with the desired property on the whole manifold was stated as
an open question [7, Question 1]. Subsequently, under an additional assumption, which
corresponds to piiiq in Theorem B.2.3, the existence of a continuous extension of gαβ to
all of M was obtained in [10]; cf. Section B.5 below for more details. However, the metric
constructed [10] is in general not differentiable, even if the fields Xα and Yβ are smooth; see
Example B.5.2 below.
Here we show that Ck-regularity of the metric can be obtained if the fields Xα and Yβ are
assumed to be of class Ck�1.

Theorem B.2.6 (Existence of a metric of class Ck). Let Xα and Yβ be of class Ck�1 on
M for some k P N and assume that ∇αYβ|m is non-degenerate for all m P NY for some
(equivalently, any) connection ∇. Then there exists a metric gαβ of class Ck on M satisfying
Yβ � gαβX

α if and only if conditions piq, piiq, and piiiq of Theorem B.2.3 hold.

The proof of this result will be given in Section B.5 below. It relies on the construction based
on tensor equations that we develop in the proof of Theorem B.2.3.
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B.3 Proof of the main result
Our main result (Theorem B.2.3) relies on two local versions of this result. First we construct
a local solution around any non-critical point m PMzNY . In the special case were Yβ is the
derivative of a scalar function, a different construction of a metric away from critical points
was carried out in [7]; see Section B.5 below.

Theorem B.3.1 (Local solutions around non-critical points). Suppose that Xα P ΓpTMq
and Yβ P ΓpT �Mq satisfy XαYα|m̄ ¡ 0 for some m̄ PM . Then there exists a neighbourhood
U of m̄ and a smooth local metric gαβ : U Ñ T �M b T �M such that

Xα|m � gαβYβ|m (B.3.1)

for all m P U .

Proof. Since XαYα|m ¡ 0, we have Yα|m � 0. Therefore, we can complete the co-vector
field e1

α :� Yα P T �M to a dual frame E :� pe1
α, . . . , e

n
αq in a neighbourhood V of m, i.e.,

pe1
α|m, . . . , enα|mq is a basis of T �

mM for all m P V . The coordinates of Xα with respect
to this frame are given by Xj :� Xαejα : V Ñ R for j � 1, . . . , n. Since X1|m̄ ¡ 0, the
set U :� V X tX1 ¡ 0u is still a neighbourhood of m̄. Let us define X̄ : U Ñ Rn�1 and
f : U Ñ R by

X̄ :� pX2, . . . , Xnq, f :� X1

2 � 2
X1 |X̄|2.

We then define the bilinear form gαβ in coordinates G � pgijqni,j�1 as

G :�
�
X1 X̄

⊺

X̄ fIn�1

�
,

where In is the identity matrix. Since the matrix G is symmetric, the bilinear form g is
symmetric as well. To verify that G ¡ 0, we write

G �
�� b

X1

2b
2
X1 X̄

���b
X1

2

b
2
X1 X̄

⊺
�
�
�
X1

2 0
0 fIn�1 � 2

X1 X̄X̄
⊺

�

¥
�
X1

2 0
0

�
f � 2

X1 |X̄|2
�
In�1

�
� X1

2 In ¡ 0,

as desired. To complete the proof, note that the coordinates of Yα are given by Y1 � 1 and
Yj � 0 for j � 1. Consequently,

pgαβYβqi �
¸
j

gijYj � gi1 � X i,

which shows (B.3.1). ■

The second local version of Theorem B.2.3 concerns the construction of a smooth local metric
in a neighbourhood of a critical point.
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Theorem B.3.2 (Local solutions around critical points). Let Xα P ΓpTMq and Yβ P ΓpT �Mq
satisfy Assumption B.2.1. Suppose that Xα|m̄ � Yα|m̄ � 0 for some m̄ P M , and suppose
that there exists a scalar product ḡ P Tm̄M bS Tm̄M , such that

∇αX
β|m̄ � ḡβγ∇αYγ|m̄.

Then there exists a neighbourhood U of m and a smooth local metric gαβ : U Ñ T �MbT �M
such that

Xα|m � gαβYβ|m
for all m P U .

The proof of Theorem B.3.2 is the main challenge of this paper and will be carried out in
section B.4.

We now show that the main result (Theorem B.2.3) follows readily from the local Theorems
B.3.1 and B.3.2 using a partition of unity argument; see, e.g., [47, Theorem 1.131] for the
existence of a partition of unity.

Proof of Theorem B.2.3. The local results Theorems B.3.1 and B.3.2 guarantee that for any
m P M there exists a neighbourhood Um and a local metric gαβ defined on Um, such that
the desired identity

Xα � gαβYβ,

holds on Um.

Let tfkukPN be a partition of unity subordinated to the cover tUm : m PMu of the manifold
M , i.e., there exists a locally finite open covering tVkukPN of M , such that each Vk is contained
in Umk for some mk P M , each function fk : M Ñ R is nonnegative and smooth and its
support is contained in Vk, and we have

°
kPN fkpmq � 1 for all m P M (where the sum is

finite for each m). We then define

gαβ :�
¸
kPN

fkg
αβ
mk
.

As gαβ is a finite convex combination of the scalar products gαβmk , it is a scalar product. By
linearity, gαβ satisfies the desired equation Xα � gαβYβ. ■

B.4 Local solutions around critical points
In this section we give the proof of Theorem B.3.2, which deals with the construction of the
metric around critical points.

Fix m̄ PM and let φ : U Ñ Ω be a coordinate chart which maps a neighbourhood U of m̄
onto an open set Ω � Rn. Using this chart we can identify the vector field Xα P ΓpTMq
defined on U �M with the function Xr α

: Ω Ñ V :� Rn, where Xr α
:� Xα � φ�1. Similarly,

the co-vector field Yβ P ΓpT �Mq defined on U � M can be identified with a function
Yrβ : Ω Ñ V �, and the metric gαβ P ΓpT �M bS T

�Mq can be identified with a function
grαβ : Ω Ñ V � bS V

�. In the remainder of this section, we will work on a fixed chart and
remove the tildes to lighten notation.
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B.4.1 Motivation of the tensor equations
Let x̄ P Ω be such that Yβ|x̄ � 0, and suppose that the identity Xα � gαβYβ holds in a
neighbourhood of x̄. For N P N and all indices c1, . . . , cN P t1, . . . , nu we will derive a system
of equations that the partial derivatives T abc1���cN :� Bc1 � � � BcNgab satisfy at x � x̄.
Taking partial differentives Bc for c P t1, . . . , nu yields

BcXa � BcgabYb � gabBcYb.
Since Yb|x̄ � 0, we find that

BcXa � gabBcYb
at x � x̄. Taking second order derivatives, we find, for c1, c2 P t1, . . . , nu,

Bc1Bc2X
a � Bc1Bc2g

abYb � Bc1g
abBc2Yb � Bc2g

abBc1Yb � gabBc1Bc2Yb.

As Yb|x̄ � 0, the first term on the right-hand side vanishes, and we infer that the tensor of
first-order derivatives T abc :� Bcgab is a solution to the system

Uc2bT
ab
c1 � Uc1bT

ab
c2 � Ra

c1c2 ,

where Uab :� BaYb and Ra
c1c2 :� Bc1Bc2X

a � gabBc1Bc2Yb.

More generally, for N � 1, 2, . . ., we find
Bc1 � � � BcNXa �

¸
S�rNs

BcSgabBcrNszSYb,

where we use the shorthand notation BcS � Bci1 � � � Bcik for S � ti1, . . . , iku � t1, . . . , Nu
with iµ � iν for µ � ν. Since Yb � 0, the term with |S| � N vanishes. Thus, the derivatives
of order pN � 1q, given by T abc1���cN�1

:� Bc1 � � � BcN�1g
ab solve the system

Ņ

i�1
UcibT

ab
c1���ciq ���cN � Ra

c1���cN , (B.4.1)

where Ucb :� BcYb, and
Ra
c1���cN :� Bc1 � � � BcNXa �

¸
S�rNs
|S| N�1

BcSgabBcrNszSYb

depends on (derivatives of) X and Y , and on derivatives of g of order at most N � 2. The
notation T abc1���ciq ���cN means that the index ci is removed.
The identity (B.4.1) suggests an iterative scheme to construct a local solution gαβ to the
equation Xα � gαβYβ around a critical point x̄ P U as a power series

gab|x̄ :�
8̧

N�0

1
N !T

ab
c1���cN px� x̄qc1 � � � px� x̄qcN

with coefficients Tαβγ1���γN P V bS2 b pV �qbSN The idea is to define, for N � 0, T ab :� ḡab,
where ḡ P T �

x̄M bS T
�
x̄M is the scalar product satisfying

BcXa|x̄ � ḡab BcYb|x̄,
which exists by assumption. Higher order Taylor coefficients T abc1...cN

are then constructed by
iteratively solving a system of tensor equations of the form (B.4.1).
Section B.4.2 deals with the existence of a solution to these equations. The construction and
the convergence of the iterative scheme is contained in Section B.4.3.
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B.4.2 Solving the tensor equations
We start by formulating an explicit solution to the tensor equation (B.4.1) of order N � 2.

Lemma B.4.1. Let V be a finite-dimensional vector space, and let Rα
γδ P V b pV � bS V

�q
and Uαβ P V � b V � be given. We assume that Uaβ is invertible with inverse Uαβ P V b V .
Then the tensor Tαβγ P pV b V q b V � defined by

Tαβγ :� 1
2

�
UβδRα

γδ � UαδRβ
γδ � Uγγ1U

αα1Uββ1Rγ1
α1β1

	
satisfies the equations Tαβγ � T βαγ and

UδβT
αβ
γ � UγβT

αβ
δ � Rα

γδ. (B.4.2)

Proof. The fact that Tαβγ � T βαγ follows readily from the definition. To show that (B.4.2)
holds, note that by definition of T ,

2UδβTαβγ � Rα
γδ � UδβU

αϵRβ
γϵ � Uγγ1U

αα1Rγ1
α1δ, (B.4.3)

2UγβTαβd � Rα
δγ � UγβU

αϵRβ
δϵ � Uδδ1U

αα1Rδ1
α1γ. (B.4.4)

Relabeling indices on the right-hand side and using the symmetry of R, we observe that the
second term in (B.4.3) equals the third term in (B.4.4), and the second term in (B.4.4) equals
the third term in (B.4.3). Summing these identities, we thus obtain (B.4.2). ■

We also need the following multilinear generalisation.

Lemma B.4.2. Fix N ¥ 2. Let V be a finite-dimensional vector space, and let Rα
γ1���γN P

V b pV �qbsN and Uαβ P V � b V � be given. We assume that Uαβ is invertible with inverse
Uαβ P V b V . Then the tensor Tαβγ1���γN�1

P V bs2 b pV �qbspN�1q defined by

Tαβγ1���γN�1
:� 1

N

�
UβδRα

δγ1���γN�1
� UαδRβ

δγ1���γN�1
� 1
N � 1

N�1̧

i�1
Uγiγ1iU

αα1Uββ1R
γ1i
α1β1γ1���γiq ���γN�1



(B.4.5)

satisfies
Ņ

i�1
UγiβT

αβ
γ1���γiq ���γN � Rα

γ1���γN . (B.4.6)

Proof. The fact that T belongs to V bs2 b pV �qbspN�1q follows readily from the definition.
To show that (B.4.6) holds, note that

Ņ

i�1
UγiβT

αβ
γ1���γiq ���γN �

1
N

Ņ

i�1

"
UγiβU

βδRα
δγ1���γiq ���γN � UγiβU

αδRβ
δγ1���γiq ���γN

� 1
N � 1

¸
j:j�i

UγiβU
ββ1Uγjγ1jU

αα1R
γ1j
α1β1γ1���γiq ���γj|���γN

*

� 1
N

Ņ

i�1

"
Rα
γ1���γN � UγiβU

αδRβ
δγ1���γiq ���γN �

1
N � 1

¸
j:j�i

Uγjγ1jU
αα1R

γ1j
α1γ1���γj|���γN

*
.

This yields the result, as the first term has the desired form, and the second term cancels
against the third term, as can be seen by renaming indices pα1, γ1jq into pδ, βq. ■
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B.4.3 Iterative construction of the power series & Proof of
Theorem B.3.2

We now place ourselves in the setting of Theorem B.3.2. Thus, let Xα P ΓpTMq and
Yβ P ΓpT �Mq satisfy Assumption B.2.1, and suppose that Xα|m̄ � Yα|m̄ � 0 for some fixed
m̄ PM . We assume that there exists a scalar product ḡ P Tm̄M bS Tm̄M satisfying

∇αX
β|m̄ � ḡβγ∇αYγ|m̄.

Our goal is to construct the local metric gαβ around m̄ as a convergent power series centered
at x̄ � φpm̄q. We now present the definition of its coeffients T abc1���cN , which is motivated
by the equations (B.4.1). Our computations will be performed in a fixed chart φ : U Ñ Ω
around m̄ which satisfies Assumption B.2.1.

Definition B.4.3 (The power series coeffients T abc1���cN ). Write Uαβ :� ∇αYβ|m̄ for brevity.

• Initialisation: We define the initial tensor Tαβ P V bS V of our iteration as

T ab :� ḡab.

• Iterative step (special case N � 2): We first define Rα
γδ P V b pV � bS V

�q by

Ra
cd :� BcBdXa � T abBcBdYb

and then define Tαβγ P pV bS V q b V � as the solution to the system

UdbT
ab
c � UcbT

ab
d � Ra

cd

constructed in Lemma B.4.1.

• Iterative step (N � 2, 3, . . .): We first define Rα
γ1���γN P V b pV �qbSN in terms of the

lower order tensors Tαβ, Tαβγ1 , . . . , T
αβ
γ1���γN�2

by

Ra
c1���cN :� Bc1 � � � BcNXa �

¸
S�rNs
|S| N�1

T abcS BcrNszSYb. (B.4.7)

Here we use the shorthand notation TcS :� Tci1 ���cik for S :� ti1, . . . , iku with iµ � iν
for µ � ν. Then we define the tensor Tαβγ1���γN�1

P V bSpN�1q b pV �qbS2 as the solution
to the system

Ņ

i�1
UcibT

ab
c1���ciq ���cN � Ra

c1���cN ,

constructed in Lemma B.4.2.

Remark B.4.4. The nondegeneracy assumption on the derivative ∇αYβ|m̄ is crucially used in
this construction, as the application of Lemmas B.4.1 and B.4.2 requires the invertibility of
Uαβ.
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Our next aim is to show that the power series

gab|x :�
8̧

N�0

1
N !T

ab
c1���cN px� x̄qc1 � � � px� x̄qcN .

converges and defines a Riemannian metric in a neigbourhood of x̄. For this purpose we equip
the spaces V bk b pV �qbℓ with the norm��W β1...βℓ

α1���αk
��
8 :� max

a1,...,ak,b1,...,bℓ

��W b1���bℓ
a1���ak

��,
where W b1���bℓ

a1���ak are the coordinates of W β1...βℓ
α1���αk in the standard basis of Rn. For brevity, let us

write

rN :� }Rα
γ1���γN }8 and tN :� }Tαβγ1���γN }8.

We then obtain the following crucial growth bound on the power series coefficients.

Lemma B.4.5. There exist constants C, p   8 such that tN ¤ CN !pN for all N ¥ 1.

Proof. Recall that we work in a chart for which Assumption B.2.1 holds. Therefore, the real
analyticity assumption implies that there exist constants C 1, q   8 such that��Bc1 � � � BcMXr a|x̄

�� ¤ C 1M !qM and
��Bc1 � � � BcMYr a|x̄�� ¤ C 1M !qM (B.4.8)

for all m P N and all c1, . . . , cM P t1, . . . , nu; see, e.g., [61, Proposition 2.2.10].

Since Uαβ is non-degenerate by Assumption B.2.1, we have

K :� max
 }Uαβ}8, }Uαβ}8

(   8.
Using the bounds on the power series coefficients from (B.4.8) and the definitions of T and
R from (B.4.5) and (B.4.7), we obtain the following relations between the norms rk and tk:

rN
N ! ¤ C 1qN � C 1n

N !
¸

S�rNs
|S| N�1

t|S|qN�|S|
�
N � |S|�!

� C 1qN � C 1n
N !

N�2̧

k�0

�
N

k



tkq

N�kpN � kq! � C 1qN
�

1� n
N�2̧

k�0

tk
k!qk



and

tN�1 ¤ 1
N

�
2nKrN �K3n3rN

	
�: K

r
N
rN ,

where Kr   8 depends on K and n. Using these estimates we shall now prove the desired
result by induction.

We thus assume, for some N ¥ 0, that the desired inequality tk{k! ¤ Cpk holds for all k ¤ N ,
with suitable constants C, p   8. We will now show that tN�1{pN � 1q! ¤ CpN�1. Indeed,
using the inequalities above and the induction assumption, we obtain

tN�1

pN � 1q! ¤
Kr

pN � 2q!rN�2 ¤ C 1Kr qN�2
�

1� n
Ņ

k�0

tk
k!qk



¤ C 1Kr qN�2

�
1� Cn

Ņ

k�0

�p
q

	k

.
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Assuming, without loss of generality, that C ¥ 1 and p ¡ q, this yields

tN�1

pN � 1q! ¤ CpN�1C 1Kr q��q
p

	N�1
� n

Ņ

k�0

�q
p

	N�k�1


¤ CpN�1C 1Kr q�q

p
� nq

p� q



.

By choosing p sufficiently large, the last term in brackets can be made smaller than pC 1Kr qq�1.
This yields the result. ■

Corollary B.4.6. There exists a neigbourhood U Q x̄, such that the power series

gab|x :�
8̧

N�0

1
N !T

ab
c1���cN px� x̄qc1 � � � px� x̄qcN (B.4.9)

converges for all x P U , its inverse defines a Riemannian metric, and the equality Xα|x �
gαβYβ|x holds for all x P U .

Proof. The definitions yield��T abc1���cN px� x̄qc1 � � � px� x̄qcN �� ¤ nN}Tαβγ1���γN }8}x� x̄}N1 ,
where }y}1 :� °

a |ya| for y P V �. Since }Tαβγ1���γN }8 ¤ CN !pN by Lemma B.4.5, we infer
that the power series (B.4.9) converges for }x� x̄}1   1{ppnq.
To verify that gαβ defines a metric, note first that gab � gba by construction. To show that
gαβ is positive definite when x is close enough to x̄, it suffices to note that gαβ|x̄ � ḡαβ is
positive definite and the map x ÞÑ gαβ|x is continuous.

Since the tensor fields Xα, Yβ, and gαβ are given by convergent power series, and since
Xα|x̄ � gαβYβ|x̄ by assumption, it is enough to verify that all derivatives at x̄ coincide, i.e.,

Bc1 � � � BcNXa � Bc1 � � � BcN pgabYbq
for all N P N and all c1, . . . , cN P t1, . . . , nu. To prove this identity, we use the notation from
Definition B.4.3, to obtain at x � x̄,

Bc1 � � � BcN pgabYbq �
¸

S�rNs
BcSgabBcrNszSYb

�
�
Bc1 � � � BcNgab

	
Yb �

Ņ

i�1

�
Bc1 � � � Bci�1Bci�1 � � � BcNgab

	
BciYb

�
¸

S�rNs
|S| N�1

BcSgabBcrNszSYb

� 0�
Ņ

i�1
UcibT

ab
c1���ciq ���cN �

�
Bc1 � � � BcNXa �Ra

c1���cN

	
� Bc1 � � � BcNXa.

(B.4.10)

To obtain the third equality, we use that x̄ is a critical point, together with the definitions of
R, T , and U in Definition B.4.3. In the final step we use the tensor equation (B.4.6). ■

The proof of Theorem B.3.2 is now complete, as the metric gαβ constructed above can be
pushed back to M using the chart φ.
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B.5 Construction of a metric of class Ck

Let Xα be a vector field and Yβ be a co-vector field on a smooth manifold M . As before, let
NY :� tm P M : Y |m � 0u be the set of critical points of Y . In this section we weaken
the regularity assumptions on X and Y . In Proposition B.5.1 these fields are assumed to be
merely differentiable. Subsequently we provide the proof of Theorem B.2.6, which deals with
fields of class Ck�1 for k P N.

The following result, which does not require an iterative scheme, is known in the special case
where Yβ is the derivative of a scalar function [7, 10]. In this setting, the existence of a metric
with the desired property away from critical points is proved in [7]. The construction of the
metric below is taken from there. It relies on the unique decomposition of vector fields into
a component parallel to X and a component annihilating Y , which only works away from
critical points. The proof of the existence of a continuous extension to all of M is adapted
from [10].

Proposition B.5.1 (Existence of a continuous metric). Let Xα and Yβ be differentiable
fields on M and suppose that the bilinear form ∇αYβ|m is non-degenerate for all m P NY for
some (equivalently, any) connection ∇. Suppose that the following conditions hold:

piq XαYα|m ¡ 0 for all m PMzNY ;

piiq Xα|m � 0 for all m P NY ;

piiiq For all m P NY there exists a scalar product ḡm P TmM bS TmM , such that

∇αYγ|m � ḡβγ∇αX
β|m,

where ∇α is an arbitrary connection.

Then there exists a continuous metric gαβ on M satisfying Yβ � gαβX
α.

Proof. Let m P MzNY be a non-critical point, hence X|m � 0 and Y |m � 0 by piiq. The
assumption piq implies that we have the direct sum decomposition TmM � Y K

m ` spantXmu,
hence every vector Z P TmM can be uniquely decomposed as

Z � Zp0q � Zp1q, with Zp0q P Y K
m and Zp1q :� xZ, Ymy

xXm, YmyXm P spantXmu.

Let g � gαβ be an arbitrary continuous metric on M satisfying g|m � ḡm at all critical points
m P NY . Following [7], we construct a perturbation of gr as follows:

grpZ,W q :� gpZp0q,W p0qq � xZp1q, Y y xW p1q, Y y
xX, Y y , (B.5.1)

for Z,W P ΓpTMq. In view of piq, it readily follows that g defines a continuous metric on
MzNY . It remains to show that gr can be continuously extended to all of M .

It will be convenient to use abstract index notation. Taking into account that xZp1q, Y y �
xZ, Y y and xW p1q, Y y � xW,Y y, it follows from the definition that

grαβ � gαβ � YαYβ � gαγX
γYβ � gγβX

γYα
XδYδ

� gγδX
γXδYαYβ

pXδYδq2 .
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B.5. Construction of a metric of class Ck

Introducing the deficit Rβ :� Yβ � gαβX
α, we can write

grαβ � gαβ � RαYβ �RβYα
XδYδ

� RγX
γYαYβ

pXδYδq2 . (B.5.2)

Fix a critical point m̄ P NY . Using assumptions piiq and piiiq we shall show that gr|m Ñ g|m̄
as mÑ m̄, following the arguments in [10]. Using the notation from Section B.4, we shall
perform a Taylor expansion of the terms in (B.5.2) in a fixed chart, where m̄ PM corresponds
to x̄ P Rn. As X and Y are differentiable, and x̄ is a critical point, it follows from piiq that

Xapxq � ∇cX
apx̄qpx� x̄qc � o

�|x� x̄|� and Ybpxq � ∇cYbpx̄qpx� x̄qc � o
�|x� x̄|�.

(B.5.3)

Since ḡabpx̄q is a scalar product, there exists κ ¡ 0 such that ḡabpx̄qvavb ¥ κ|v|2 for all
v P Rn. Furthermore, ∇bX

a is non-degenerate by assumption piiiq and the non-degeneracy
assumption on ∇bY

a. Therefore, |∇bX
av|2 ¥ κr|v|2 for some constant κr ¡ 0. Using these

inequalities, together with piiiq, yields

XaYapxq � ∇bX
apx̄q∇cYapx̄qpx� x̄qbpx� x̄qc � o

�|x� x̄|2�
� ḡadpx̄q∇bX

apx̄q∇cX
dpx̄qpx� x̄qbpx� x̄qc � o

�|x� x̄|2�
¥ κ

��∇bX
apx̄qpx� x̄qb��2 � o

�|x� x̄|2�
¥ κκr|x� x̄|2 � o

�|x� x̄|2�,
(B.5.4)

which bounds the denominator in (B.5.2) from below. As for the terms in the numerator, we
first note that Xapxq � O

�|x � x̄|� and Ybpxq � O
�|x � x̄|�. These bounds trivially imply

that Rbpxq � O
�|x� x̄|� as well, but this is not sufficient. The key point of the proof is that

this bound can be improved. Indeed, using piiiq and the continuity of g at x̄, we obtain

Rbpxq �
�
Yb � gabX

a
�pxq

� ∇cYbpx̄qpx� x̄qc � gabpxq∇cX
apx̄qpx� x̄qc � op|x� x̄|q

� �
ḡabpxq � gabpxq

�
∇cX

apx̄qpx� x̄qc � op|x� x̄|q
� o

�|x� x̄|�.
(B.5.5)

It now follows from (B.5.4) and (B.5.5) together with the bounds on X and Y , that the
fractions in (B.5.2) vanish as xÑ x̄. This shows that gr can be continuously extended to M
by setting grabpx̄q :� ḡabpx̄q. ■

While the metric gr constructed in the proof of Proposition B.5.1 is continuous, it is not in
general differentiable, even if the background metric gαβ and the vector fields Xα and Yβ are
smooth. Here is an explicit counterexample.
Example B.5.2. Let M be the open unit ball in R2. We work in cartesian coordinates. Set
Xpxq � Y pxq � x for x PM , and consider the background metric gαβ defined by

gabpxq :�
�
1� x2 0

0 1

�
for x � px1, x2q P M . Since g is smooth and g|0 � I, it is a valid background metric. An
explicit computation yields

gr11pxq � 1� x5
2

px2
1 � x2

2q2
and ∇1gr11pxq � �4 x1x

5
2

px2
1 � x2

2q3
.
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B. Characterisation of Gradient Flows for a given Functional

The latter is a non-constant homogeneous function and as such discontinuous at x � 0, thus
grαβ does not belong to C1.

Theorem B.2.6 shows that better regularity properties can be obtained by a careful choice
of the background metric gαβ. In the following proof we define gαβ by making use of the
construction in Section B.4, which yields improved bounds on the deficit Rβ :� Yβ � gαβX

α

around critical points. This allows us to construct a metric grαβ of class Ck whenever Xα and
Yβ are of class Ck�1.

Proof of Theorem B.2.6. First we note that the necessity of conditions piq and piiq was
already observed in the introduction. The necessity of piiiq follows, even when g is assumed
to be merely continuous, from the expansions for X and Y in (B.5.3) and the expansion
gpxq � gpx̄q � o

�|x� x̄|� in local coordinates around a critical point x̄. Therefore it remains
to show that these three conditions are also sufficient.

As in Proposition B.5.1, we construct a metric of the form (B.5.2) on the non-critical set
MzNY :

grαβ � gαβ � RαYβ �RβYα
XδYδ

� RγX
γYαYβ

pXδYδq2 , (B.5.6)

where Rβ :� Yβ � gαβXα denotes the deficit, and gαβ is a background metric on M that will
be carefully chosen below. As noted before, it is immediate to verify that the desired identity
Yβ � grαβXα holds on MzNY .

Construction of the background metric. Fix m̄ P NY . As in Section B.4 we work in a fixed
coordinate chart where m̄ corresponds to x̄ P Rn. In these local coordinates we then define
the background metric by

gabm̄ pxq :�
ķ

N�0

1
N !T

ab
c1���cN px� x̄qc1 � � � px� x̄qcN

for x in a small neigbourhood around x̄. It is crucial that we use the tensors Tαβγ1���γN that
were constructed in Definition B.4.3. Note that Tαβγ1���γN is indeed well defined for N ¤ k due
to our assumption that Xα and Yβ are k � 1 times continuously differentiable. As Tαβ is
positive definite, it follows that pgm̄qαβ defines a metric in a neighbourhood of x̄.

For each cricitical point m̄, this construction yields a Riemannian metric in an open neighbourhood
Vm̄ of m̄. By the non-degeneracy assumption, we may assume that the sets tVm̄um̄PNY are
pairwise disjoint. Let Um̄ be an open neighbourhood of m̄ satisfying Um̄ � Vm̄ and let
fm̄ : M Ñ r0, 1s be a smooth function on M satisfying fm̄|Um̄ � 1 and fm̄|MzVm̄ � 0. Using
an arbitrary metric pg�qαβ on M and the function fr :� 1�°

m̄PNY fm̄, we define

gαβ :�
¸
m̄PNY

fm̄pgm̄qαβ � frgrαβ, (B.5.7)

which yields a Ck metric gαβ on M satisfying gαβ|m � pgm̄qαβ|m for all m̄ P NY and m P Um̄.

The crucial property of this background metric g, which will be used below, is that the deficit
Rβ :� Yβ � gαβX

α satisfies

Bc1 � � � BcpRβ|m̄ � 0 (B.5.8)
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for all m̄ P NY and p ¤ k � 1. This follows from the definition of the tensors T abc1���cN using
the computation (B.4.10).

Differentiability of the metric. To verify that grαβ is k times continuously differentiable, we
will show that the partial derivatives

Uαβ c1...cp :� Bc1 � � � Bcp
RαYβ
XδYδ

and Vαβ c1...cp :� Bc1 � � � Bcp
RγX

γYαYβ
pXδYδq2

can be continuously extended from MzNY to all of M for p ¤ k. In view of (B.5.6) this
yields the desired result.
We use the notation from Definition B.4.3, thus BcS � Bci1 � � � Bciq for S � ti1, . . . , iqu �
t1, . . . , pu with iµ � iν for µ � ν. With this notation we have

Uαβ c1...cp �
p̧

ℓ�0

¸
tS1,...,Sℓ,A,BuPXp

p�1qℓℓ!
pXδYδqℓ�1BcS1

�
XδYδ

� � � � BcSℓ�XδYδ
� BcARα BcBYβ,

Vαβ c1...cp �
p̧

ℓ�0

¸
tS1,...,Sℓ,A,BuPXp

p�1qℓℓ!�
XδYδ

�2pℓ�1qBcS1

�
XδYδ

�2 � � � BcSℓ
�
XδYδ

�2BcARγ BcB
�
XγYαYβ

�
,

where Xp is the collection of all possible partitions of t1, . . . , pu.
Let us fix a critical point m̄ P NY and let x̄ be the corresponding point in Rn. Recall from
(B.5.4) that �

XδYδ
��1pxq � O

�|x� x̄|�2�.
Furthermore, since Xα|x̄ � 0 and Yα|x̄ � 0, Taylor’s formula yields, for any S � t1, . . . , pu,

BcS
�
XδYδ

�pxq � O
�|x� x̄|p2�|S|q��, BcSYβpxq � O

�|x� x̄|p1�|S|q��,
BcS

�
XδYδ

�2pxq � O
�|x� x̄|p4�|S|q��, BcS

�
XγYαYβ

�pxq � O
�|x� x̄|p3�|S|q��.

To estimate BcSRαpxq we use the crucial point, observed in (B.5.8), that our background
metric is constructed so that BcSRβpx̄q � 0 when |S| ¤ k � 1. This ensures that

BcSRαpxq � O
�|x� x̄|k�2�|S|�.

Combining these bounds, we estimate the right-hand sides of Uαβ c1...cp and Vαβ c1...cp as
follows:

1
pXδYδqℓ�1BcS1

�
XδYδ

� � � � BcSℓ�XδYδ
� BcARα BcBYβ � O

�|x� x̄|u�,
1

pXδYδq2pℓ�1q BcS1

�
XδYδ

�2 � � � BcSℓ
�
XδYδ

�2 BcARγ BcB
�
XγYαYβ

� � O
�|x� x̄|v�,

where the exponents u and v satisfy
u � �2pℓ� 1q � �

2� |S1|
�
� � . . .� �

2� |Sℓ|
�
� �

�
k � 2� |SA|

�� �
1� |SB|

�
� ,

v � �4pℓ� 1q � �
4� |S1|

�
� � . . .� �

4� |Sℓ|
�
� �

�
k � 2� |SA|

�� �
3� |S|�� .

Since |S1|�� � ��|Sℓ|�|A|�|B| � p for tS1, . . . , Sℓ, A,Bu P Xp, we obtain u ¥ k�p�1 ¥ 1
and v ¥ k � p� 1 ¥ 1, which shows that

Uαβ c1...cp � O
�|x� x̄|� and Vαβ c1...cp � O

�|x� x̄|�.
Therefore Uαβ c1...cp and Vαβ c1...cp can be extended continuously to all of M by assigning the
value zero for m̄ P NY . ■

173



B. Characterisation of Gradient Flows for a given Functional

B.6 Application to Quantum Markov Semigroups
(QMS)

In this section prove Theorem B.1.2 by an application of Corollary B.2.5. As in Section
B.1, let L be the generator of an ergodic quantum Markov semigroup pPtqt¥0 on a finite
dimensional C�-algebra A with stationary state σ P P�. The manifold under consideration is
the set of strictly positive density matrices

P� � tρ P P : ρ ¡ 0u.

Note that P� is a relatively open subset of the affine space σ � T � A, where

T :� tA P A : A � A�, TrrAs � 0u.

Therefore, the tangent space of P� can be naturally identified with T . We will apply Corollary
B.2.5 to the triple pM, f,Xq where M :� P� and

f : P� Ñ R, fpσq :� Hσpρq � Trrρplog ρ� log σqs,
X : P� Ñ T, Xpρq :� L :ρ.

The functional Hσ is everywhere strictly positive, except at its global minimum σ. Moreover,
a standard computation shows that, for ρ P P� and A P T ,

Bε
��
ε�0Hσpρ� εAq � Trrplog ρ� log σqAs, (B.6.1)

Therefore, the differential of Hσ is everywhere non-zero except at σ, so that we are in a
position to apply Corollary B.2.5.

Recall that we are interested in the bkm-scalar product on A given by

xA,Bybkm
σ :� TrrA�MσpBqs, where MσpBq :�

» 1

0
σ1�sBσs ds,

for A,B P A. We refer to [5] for a recent study of this scalar product. It is natural to also
consider the inner product on A defined in terms of the inverse operator M�1

σ : A Ñ A
given by

xA,Bybkm�
σ :� TrrA�M�1

σ pBqs, where M�1
σ pBq :�

» 8

0
pt� σq�1Bpt� σq�1 dt.

We will use the following simple result.

Lemma B.6.1. For a linear operator K : A Ñ A the following assertions are equivalent:

1. K is selfadjoint with respect to the inner product x�, �ybkm
σ .

2. K : is selfadjoint with respect to the inner product x�, �ybkm�
σ .

Proof. It is readily seen that both assertions are equivalent to MσK � K :Mσ. ■
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B.6. Application to Quantum Markov Semigroups (QMS)

The entropy production functional Iσ : P� Ñ R is defined by

Iσpρq � �Trrplog ρ� log σqL :ρs
for ρ P P�. Note that indeed d

dtHσpP:
t ρq � �IσpP:

t ρq. The functional Iσ is nonnegative and
convex [117, 118]. The following result shows the strict positivity of the entropy production
(except at stationarity) under the assumption of bkm-detailed balance.

Proposition B.6.2. Let L be the generator of an ergodic quantum Markov semigroup on a
finite dimensional C�-algebra A, with invariant state σ P P�. If bkm-detailed balance holds,
then Iσpρq ¡ 0 for all ρ P P� with ρ � σ.

Proof. As remarked above, Iσ is nonnegative and convex. Therefore, it suffices to show that
Iσ is strictly convex at its minimum σ. Take A P T with A � 0.

For ρ P P� we set ρε :� ρ� εA for |ε| sufficiently small to ensure that ρε P P�. Using the
standard identities

Bε
��
ε�0 log ρε �

» 8

0
pt� ρq�1Apt� ρq�1 dt and Bε

��
ε�0ps� ρεq�1 � �ps� ρq�1Aps� ρq�1

for s ¡ 0, we obtain

Bε
��
ε�0Iσpρεq � Trrplog ρ� log σqL :As � Tr

� » 8

0
pt� ρq�1Apt� ρq�1L :ρ dt

�
,

and

B2
ε

��
ε�0Iσpρεq � 2 Tr

� » 8

0
pt� ρq�1Apt� ρq�1L :A dt

�
� 2 Tr

� » 8

0
pt� ρq�1Apt� ρq�1Apt� ρq�1L :ρ dt

�
.

In particular, for σε :� σ � εA, we obtain

B2
ε

��
ε�0Iσpσεq � 2 Tr

� » 8

0
pt� σq�1Apt� σq�1L :A dt

�
� 2xA,L :Aybkm�

σ .

Since Iσ is convex, this identity implies that xA,L :Aybkm�
σ ¥ 0.

On the other hand, L : is selfadjoint with respect to x�, �ybkm�
σ by Lemma B.6.1 and the

assumption of bkm-detailed balance. Moreover, the restriction of L : to T is invertible by
the ergodicity assumption. Therefore, xA,L :Aybkm�

σ � 0.

We thus conclude that xA,L :Aybkm�
σ ¡ 0, which yields the result. ■

Proof of Theorem B.1.2. First we will translate condition piiiq of Corollary B.2.5, namely the
selfadjointness of the linearised operator Λ with respect to the Hessian scalar product h. We
claim that this is exactly the assumption of bkm-detailed balance in our setting.

Indeed, since L : is a linear operator, its linearisation Λ : T Ñ T appearing in condition piiiq
is simply given by Λ :� L :. Moreover, the Hessian of ρ ÞÑ Hσpρq at ρ � σ is given by

hpA,Bq :� Bε
��
ε�0Bη

��
η�0Hσ

�
σ � εA� ηB

� � » 8

0
Tr

� 1
s� σ

A
1

s� σ
B
�

ds � xA,Bybkm�
σ
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B. Characterisation of Gradient Flows for a given Functional

for A,B P T . Hence the Hessian scalar product in condition piiiq is the bkm�-scalar product.
Thus, condition piiiq is the bkm�-selfadjointness of L :. By Lemma B.6.1 this corresponds to
the bkm-selfadjointness of L , which is the assumption of bkm-detailed balance.

This argument shows that the necessity of bkm-detailed balance for the gradient flow structure
follows from Corollary B.2.5. To show that bkm-detailed balance is also sufficient, we note
first that condition piiq of Corollary B.2.5 is simply the stationarity condition L :σ � 0, which
holds by assumption. Thus, it remains to show that condition piq of Corollary B.2.5 is implied
by the assumption of bkm-detailed balance. Then the existence of the gradient flow structure
follows by applying Corollary B.2.5 in the opposite direction.

For this purpose, recall that f � Hσ and X � L :, so that

∇Xf � Trrplog ρ� log σqL :ρs � �Iσ.

Hence, condition piq is the strict positivity of the entropy production Iσpρq or ρ � σ, which
follows from the assumption of bkm-detailed balance by Proposition B.6.2. ■
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