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Abstract

The scope of this thesis is to study quantum systems exhibiting a continuous symmetry that
is broken on the level of the corresponding effective theory. In particular we are going to
investigate translation-invariant Bose gases in the mean field limit, effectively described by
the Hartree functional, and the Frohlich Polaron in the regime of strong coupling, effectively
described by the Pekar functional. The latter is a model describing the interaction between a
charged particle and the optical modes of a polar crystal. Regarding the former, we assume in
addition that the particles in the gas are unconfined, and typically we will consider particles
that are subject to an attractive interaction. In both cases the ground state energy of the
Hamiltonian is not a proper eigenvalue due to the underlying translation-invariance, while on
the contrary there exists a whole invariant orbit of minimizers for the corresponding effective
functionals. Both, the absence of proper eigenstates and the broken symmetry of the effective
theory, make the study significantly more involved and it is the content of this thesis to
develop a frameworks which allows for a systematic way to circumvent these issues.

It is a well-established result that the ground state energy of Bose gases in the mean field limit,
as well as the ground state energy of the Frohlich Polaron in the regime of strong coupling, is
to leading order given by the minimal energy of the corresponding effective theory. As part
of this thesis we identify the sub-leading term in the expansion of the ground state energy,
which can be interpreted as the quantum correction to the classical energy, since the effective
theories under consideration can be seen as classical counterparts.

We are further going to establish an asymptotic expression for the energy-momentum relation
of the Frohlich Polaron in the strong coupling limit. In the regime of suitably small momenta,
this asymptotic expression agrees with the energy-momentum relation of a free particle having
an effectively increased mass, and we find that this effectively increased mass agrees with the
conjectured value in the physics literature.

In addition we will discuss two unrelated papers written by the author during his stay at ISTA
in the appendix. The first one concerns the realization of anyons, which are quasi-particles
acquiring a non-trivial phase under the exchange of two particles, as molecular impurities.
The second one provides a classification of those vector fields defined on a given manifold
that can be written as the gradient of a given functional with respect to a suitable metric,
provided that some mild smoothness assumptions hold. This classification is subsequently
used to identify those quantum Markov semigroups that can be written as a gradient flow of
the relative entropy.
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CHAPTER

Introduction

It is a central observation that the fundamental physical laws are symmetric with respect
to the basic transformations of space, or equivalently, according to Noether's theorem, that
the total momentum as well as the total angular momentum are conserved under the time
evolution. Historically, symmetries and conserved quantities have been an important tool in
the mathematical analysis of physical systems, as they allow to reduce the available degrees
of freedom. This is especially relevant when it comes to low dimensional systems, where
symmetries have been used to identify exact solutions. In this thesis we are concerned with
theories that posses a large or infinite number of degrees of freedom instead, where exact
solutions are out of reach and effective theories gain relevance. In contrast to low dimensional
theories, the presence of continuous symmetries seems to rather complicate the mathematical
treatment of the physical systems under consideration, making novel techniques a necessity.

1.1 Translation-invariant Bose gases

The first physical system we shall discuss is an unconfined gas of interacting (bosonic)
particles. In the absence of any confinement, like a box or a trapping potential, we will
typically assume that the interaction is attractive in order to prevent the gas from diffusing
over the whole available space R?. As a concrete example we will investigate a (bosonic)
gas of gravitating particles, which can be considered as a model for a neutral (Bose) star.
In quantum physics, a gas of N particles is described by a wave-function ¥ ¢ L? (]RNXd),
where z = (z(V, ... ™) € RV*? contains the coordinate vectors 219 € R? of the various
particles, together with a self-adjoint operator Hy on L? (RNXd) that encodes the dynamical
information of the theory, referred to as the Hamiltonian of the system. In the following we
will consider Hamiltonians of the form
N 1 () _ 4
Hy = Y (=A); + N D (@D —a®)y, (1.1.1)

j=1 J<k

where v : R? — R is a given interaction potential and (—A); indicates that the Laplace

operator A acts on the j-th particle in the tensor product L*(RN*?) =~ L? (Rd)®N. Typically

we will take v to be negative with v(x) \I—) 0, describing an attractive interaction between
x|—00

the particles in the gas, and we use the non-relativistic kinetic energy —A for the sake of
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concreteness, even though our results are valid for a much larger class of translation invariant
operators including the (pseudo) relativistic kinetic energy v/m? — A. Due to the mean-field

scaling factor -, the interaction term in Eq. (1.1.1) is of the same order of magnitude as the

N-1'
kinetic energy, which gives rise to complex phenomena as a consequence of the competition
between the two contributions to the total energy. We further want to emphasize that the
interaction term <k (x(j) — x(’“)) in Eq. (1.1.1) only depends on the relative position

of the particles to each other, and consequently H y is invariant under the group of translations

in space (z, ..., ™) — () + v, ... ™) 1 v), where v € R%. Equivalently, the total
momentum P := Zjvzl 1V, commutes with the Hamiltonian Hy, i.e. [Hy,P] =0, and is

therefore conserved under the time evolution U, := eI~

Regarding Bose gases, we are primarily concerned with the behaviour of the ground state
energy of the Hamiltonian Hy in the parameter regime where the number of particles N in
the gas goes to infinity, i.e. we take an interested in the quantity

EN = \p;ﬁ\%ﬁ:1<HN>‘I” (112)
in the limit N — oo. To be more precise we shall establish an asymptotic two term expansion
of the form Ey = Na + b+ oy, (1), where a,b € R are (rather) explicit constants. Since
the infimum in Eq. (1.1.2) is reached by permutation symmetric ¥ : R¥*¢ — C only,
which we will refer to as bosonic wave-functions, we shall restrict ourself to such elements
U e Lgym(]RNXd) ~ [? (]Rd)®sN in the following, where ®, denotes the symmetric tensor
product. Based on the large dimension of the space RV*¢ finding an exact expression for the
ground state energy Fn seems to be out of reach and it becomes necessary to introduce an
effective theory. A suitable effective theory can be derived by restricting the test functions
U to a specific sub-manifold of L2 (R¥*?). In the case of a Bose gas, the most natural
permutation symmetric /N particle test functions are considered to be pure product states
U = u®N with u e L*(R?) satisfying |u| = 1. Due to the mean-field factor - in front
of the interaction v, and the absence of any scaling factor in the argument of v, the energy
of such a test function is proportional to /N, which leads to the definition of the Hartree

functional
1 1
Ealuli= - (Hidon = [ 1VauPds + 5 [ [ u@)Pote — ) futy) Pdody.

Clearly we obtain an upper bound on the ground state energy Ey by

1

NEN < uﬁil\\le gH[U] =. eqy.
A less trivial but well-established result is that the upper bound ey is asymptotically correct
in the regime of large NV, i.e. it is known that the ground state energy Ey is to leading order
given by Ex = Nep + on0(IN), see [7I]. In the presence of a confining box or trapping
potential, it is even known that the ground state Wqg, characterized (up to a phase) by
(Hy)y = Ey and ||[Ugs| = 1, is close to the pure product Was ~ u$” in a suitable topology,
where w is characterized (up to a phase) by Eufuo] = ey and |ug| = 1. As we will argue in
the subsequent paragraph, this picture is no longer valid in the translation invariant setting
studied in this thesis.

In order to understand the action of a continuous symmetry group on a quantum theory,
it is usually useful to find a fibre representation first, i.e. we want to find an identification
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Lfym(RNXd) ~ 2 (Rd,”H,N), where H is a suitable Hilbert space, as well as a collection of
operators { Hy(p) : p € R?} defined on Hy, such that the action of Hy reads (HyV), =
Hy(p)V, and the action of the total momentum operator is given by (P¥), = p¥,,. In the
case of a N particle gas, such a fibration can naturally be realized using the vector space of
relative coordinates Xy := {z € RN*?: Z;VZI 2\ = 0}. With the notation V; := V; =V,

at hand, we can rewrite Hy as

Hy —IPQ——ZVJkJr

— o (20 - 2,

i<k

where — > W2, + 530 v (29 — 2™) can naturally be seen as an operator acting
on L2, (Xy). Defining an identification of the spaces L2, (RV*?) =~ L2(R?, L2 (X))

sym sym
d

as U, (zM ... 2Ny = (g) : $pa P02 +y, ... 2™ + y) dy therefore yields the

desired fibration with the fibre Hamiltonian

sym (

pl? I 2 1 j k
Hy(p) = = — — Vie+ —— v(x(J)—x( ))
N TN & RN

i<k

acting on L2 (Xy). As an immediate consequence we observe that the joint spectrum

sym(
o(P, Hy) is given by the union of the parabolas F = % + A with A € o(Hy(0)), a
property which follows from the Galilean invariance of the non-relativistic kinetic energy.
Furthermore, assuming that Hy(0) has a ground state W, in L2, (Xy), the ground state
of Hy in L? (Rd L? (XN)) is formally given by p — do(p)W,e1, which corresponds to the

Sym

function Wqg(z™, ..., 2M) = (%)% Uy (2 — 2, 2™ — 7), with 2 := %Zj\; z0),
according to our identification L2, (RV*?) = L?(R?, Lfym(XN)). Clearly Wqg is non-zero
and translation invariant, i.e. Uag(z™ +y,..., 2™ +y) = Ugg(@®, ..., ™) for all
y € R?, which in particular means that Wgg does not have a finite L? norm and inf o(Hy) is
therefore not a proper eigenvalue. Furthermore this means that Wgg cannot be close to a
product state, since u®", as an L? function, is localized in space while ¥«g is constant along
every (non-compact) orbit {(z() +y, ... 2™ +9): y e R}

Since the fiber Hamiltonian Hy(0) contains all the spectral information of the original
Hamiltonian Hy, it is tempting to analyse the operator Hy(0) instead of Hy, especially
when we consider that Hy(0) might have a proper ground state and that we are effectively
removing d degrees of freedom by freezing the total momentum coordinate p = 0. However
we believe that the fibration in terms of relative coordinates is not beneficial when it comes
to the large N asymptotics of the ground state energy, as we are not aware of a natural
notion of products states in the L? space over the vector space of relative coordinates Xy,
and therefore it is not even clear how to recover the leading order asymptotics Ey &~ Ney,
originally obtained by a restriction to pure products.

We have seen so far that there is no straightforward way of comparing the ground state Wqg,
respectively its fibre counterpart W,.;, with the pure product state ©u®". We circumvent this
issue by relaxing our definition of a ground state, to be precise we say that a sequence of states
W is an approximate ground state in case <HN>\1'N = Enx+o0nw(l). Since we are interested
in the two term expansion of the ground state energy Ey = Ney +b+ on_00(1), where b e R
is a (rather) explicit constant, our definition of an approximate ground state uses indeed the

3
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correct scale. In contrast to the exact ground state, it is possible to construct an approximate
ground state which is close to the product state u$™, where u is a minimizer of the Hartree
functional &y. By the translation-invariance of Hy, it is clear that the Hartree functional £y
is translation-invariant as well and therefore u, € L?(IR?) defined as u,(z) := uo(z — y) is
again a minimizer of £5. As a consequence we can assume w.l.o.g. that ug is centred around
the origin in the sense that § _ |uo(z)|*dz = §, _|uo(z)]*dz = § for all i € {1,...,d}. In
the following we will break the translation-invariance of the true ground state W¢g in order to
construct an approximate ground state Wy that is confined around the origin as well.

In the light of the relative-coordinate fibration, it seems to be natural to construct an
approximate ground state by localizing the center of mass coordinate = = % Zjvzl 2 such
that |Z| < ky « 1 for all x € supp(¥y). However it turns out that this property is insufficient
to conclude ¥y =~ u$", as we shall illustrate in the subsequent paragraph. Let us first specify
the notion Wy =~ Wy as being equivalent to
Q(N—k ®(N—k
‘<Bk ®; 18R — (B @, 18N R 2 0

for all bounded k particle operators By. In case \TIN = u®V, we will also refer to this as
(complete) Bose-Einstein condensation with respect to u. In order to illustrate that a center
of mass localization is insufficient, let us define the test function Wy (), ... 2™} :=

wy (M) -y (VD) g (%) for t # 0. Clearly the center of mass 7 is localized around the

origin for Ky « 1. However since W contains a factor u; in every component except the
last one, it is easy to show that Uy ~ u®" as long as % & Ky, which especially in particular
means that ¥ cannot be close to u$". We conclude that the center of mass is not the right
statistical quantity for our localization procedure.

As it turns out, the median, respectively a hybrid between the median and the center of mass,
is a more robust statistical quantity. In order to see this, let us assume d = 1 for the sake of
simplicity and let Wy be a (permutation symmetric) test function having a median localized
around the origin. To be precise, let us assume that for any = € supp(¥y ), there are at least
(3 —en) N particles satisfying 1) < ey and at least (3 —ex )N particles satisfying 1) > —ey,
where €y « 1. As an immediate consequence we obtain limy_,q <1Lx(1)<EN]lz(2)>,EN>\PN = i.

This however means that ¥y cannot be close to u®" for ¢ = 0, since this would imply

. 1
dm Lo o, = [P (1= [ jw@Par) - |

=

and hence §__, |uo(x)[?dz = 3, which is a contradiction to our assumptions ¢ # 0 and

§,<o [to(x)[?dz = §, given that ug > 0. The concrete construction of a ¥ having a localized
median, the corresponding estimate on the energy penalty and the proof that ¥ indeed
satisfies Bose-Einstein condensation ¥y ~ u®" can be found in Chapter 2. Having an
approximate ground state Wy at hand will be a central prerequisite in establishing the two
term expansion Ey = Ney + b + oy_«(1), as we shall explain in the following.

In order to identify the sub-leading term in the expansion of E} it is useful to recast the
Hamiltonian H in the language of second quantization. For this purpose let us define the
Fock space over a given Hilbert space H as the direct sum F(H) := @), H®" and let us
define for any element f € H the creation operator a'(f) on F(H) as

a' ()W :=/h(n+1)f @, ¥ (1.1.3)
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for all &' € H®", where h > 0 is a given constant. Furthermore we denote the adjoint
operator as a(f) and refer to it as the annihilation operator. It can easily be checked that
creation and annihilation operators satisfy the (rescaled) canonical commutation relations
[a(f),a"(9)] = h{f|g)s- In the following we choose H := L*(R?) and h := +, and we
introduce the shorthand notation a; := a(f;), where {f; : j € N} is a basis of L*(R), which
allows us to express the Hamiltonian Hy as

1 S i S - t ot
NHN = ij0<fj| — Alfr) ajar + M_l)ijkzl;0<fi ® fio|fr ® fo) ajajaray,

where we denote v as the two body multiplication operator by v(z — y). Furthermore we can
naturally express the fact that Wy satisfies Bose-Einstein condensation Wy ~ uS” in the
language of second quantization. For this purpose, let us assume that the first basis element
is given by fo := ug. Since afay, restricted to L2 (Rd)®SN, is given by |ug) (ug| @, 191,
Bose-Einstein condensation immediately implies <aga0>\1,N =1+ 0N (1) by definition, or
equivalently (N'y )y = oy (1) with NV := Zj’;l a}aj. Heuristically, this means that we
should think of the modes a; with j > 1 as being small, while we do not have sufficient
information to determine the value of ay.

Making use of the fact that the number of particles
0
N = Z ala; (1.1.4)
=0

is fixed to N/ = N and the observation that Hy is gauge invariant, i.e. Hy stays invariant
under the transformation a; — eieaj with 6 € R, we see that one of the degrees of freedom
in our problem is redundant. Following the approach presented in [72], we can make this
statement rigorous by applying a unitary transformation Uy, referred to as the excitation
map. This map removes the dependence of the Hamiltonian Hx on the zero mode ag by

eliminating the particle number constraint, and it is defined as
UN (U()@ZO ®s U?” ®s e ®s un®;m) = u?ll ®s e ®s ug?;m (1'1'5)

for non-negative integers ig + --- + i,, = N, mapping LQ(Rd)®' into the Fock space
F ({uo}l) over modes orthogonal to u. It is an easy exercise to check that NV, stays invariant
under the excitation map, and therefore Bose-Einstein condensation implies <N+>UN\IIN =

Regarding the Hartree theory £y we can get rid of the norm constraint ||u| = 1 in a similar
fashion, by making use of the map z > 1(2) := /1 — ||2]? ug + 2, defined for z € {up}+
satisfying |z| < 1, leading to the study of the transformed functional z — Ex[i(2)]. Since
t(0) = wug is a minimizer of &y, i.e. Ey[u(z)] = en, we obtain by a formal Taylor expansion

Eul(z)] = en + Z (Qﬁk?jzk + Gjrzjzr + Gj,kéjék) + 0(2 zjzj> , (1.1.6)

k=1 j=1

where z; = (fj]2), Qjx = 3 (Onez; — 103mz; ) (Oezy + 10z, ) |:—0€m[L(2)] and Gy :=
% (5mezj — i(?gmzj) (Onez, — 109mz, ) |:=0€m[t(2)]. As we demonstrate in Chapter 2, the map ¢
and the excitation map Uy share similar properties, which enables us to use the same Taylor
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expansion as in Eq. (1.1.6) for the transformed operator Uy HyUy"' as well, i.e. one can
verify that

1 B 0 L e 6}

NUNHNUNI = ey + Z (ijka;ak + G, rajay + Gj’ka}al) + 0<2 a}aj> . (1.1.7)
7,k=1 j=1

where 0(23011 a}a]) is a symbolic expression for terms which are at least cubic in the operators

{a; : j = 1}. Since our approximate ground state satisfies Bose-Einstein condensation, i.e.

since we think of the modes a; as being small, we expect terms of higher order to be

negligible, leading to the two term expansion of the energy Ey ~ Ney + b with b := inf o (H)
and the Bogoliubov operator defined as H := Nkazl (Qj,ka;ak + Gjrajay + Gjﬁa}az).
Note that H is indeed independent of N due to the scaling in the commutation relations
[a(f),a%(g)] = % {flg). This approach of establishing the two term expansion of the ground
state energy has been carried out in [72] for Bose gases that are confined by a box or a
trapping potential.

A central tool in [72] is an operator inequality of the form > | a;aj < +H, which allows

one to absorb the error term O(Z;il a;aj) in Eq. (1.1.7) by the quadratic part H. In
the translation-invariant setting such an operator inequality is no longer possible, since the

. . . . . O Oz ;U
quadratic part H is degenerate in the directions f := 1 1zg”, v fa = ||a“u3|| and therefore

we can only absorb terms which are small compared to Z;’;dH a;aj. We circumvent this
issue by applying yet another unitary transformation Wy to our Hamiltonian as well as a
corresponding transformation F' to our effective theory. Essentially, F' flattens the manifold
of minimizers corresponding to z — Ex[i(2)], which leads to the improved Taylor expansion

Eul(F(2))] =en + 2 (QjnZjze + Ginzizn + GipZizn) + 0( Z zjzj> .

j,k=1 j=d+1

Again, Wy and F’ share similar properties, which we use in order to obtain an improved Taylor
expansion of the Hamiltonian

1 1 =
NWNUNHNUNQ/V;# =ey + NH + 0( Z &;C@) .
j=d+1

Absorbing the residuum O(Zﬁdﬂ a;a]) by the quadratic part H, then allows us to establish
the two term expansion of the ground state energy Ey = Ney + inf o(H) + o _0(1).

1.2 The Frohlich Polaron at Strong Coupling

The second physical system we shall discuss is the Frohlich Polaron, which is a model for a
charged particle, say an electron, interacting with a polarizable medium. The medium itself is
a crystal made of initially neutral particles, which become dipoles due to the electric field of
the charged particle travelling through the crystal. In the Fréhlich theory, the lattice spacing
is assumed to be vanishingly small, allowing for a continuous description of the crystal by a
polarization field y — ®(y), which measures the electric dipole moment of the medium at a
given point in space y € R3. Mathematically the Frohlich polaron, which is a quasiparticle
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consisting of the electron and a cloud of excitations of the polarization field attached to it, is
described by the Hamiltonian

H:=-A, + N —a(w,) —a' (w,) (1.2.1)

acting on the Hilbert space L*(R?) ® F (L?(R?)), where A, is the Laplace operator on
the Hilbert space of the electron L?(R?) and z is the position of the electron, the creation
and annihilation operators a and a' are defined in Eq. (1.1.3) with i := -5 acting on
the Hilbert space F (L*(R?)), the corresponding particle number operator A is defined in

Eq. (1.1.4) and the interaction w, : R* — R is given by w,(y) := —— Regarding the

3 .

w2 |y—z|?
physical interpretation, —A, is the kinetic energy of the electron and the particle number
operator \ represents the internal energy of the polarization field ®(z) := % (aw + al), where

a, is a symbolic expression for the distribution a(f) = {s f(z)azdz. The last terms in
Eq. (1.2.1) model the interaction between the electron, living in the Hilbert space L*(R?),

and the polarization field, living in the Hilbert space F (L?(R?)), where the constant o > 0
appearing in the canonical commutation relations [a(f),a'(g)] = =5 (f|g) is interpreted as

the interaction strength between the charged particle and the medium. We want to emphasize
that the interaction

a(w,) +a' (w,) = 23J 2w 5
72 Jps [T — Y|
only depends on the relative position between the electron and the argument y of the field
operator ®(y), and consequently the operator H is invariant under the group of translations
in space {7, : y € R}, characterized (up to a phase) by the transformation laws x — z + v,
iV, — 1V, and a, — a,_,, which in particular implies ®(z) — ®(z — y). Since the group
of translations is generated by the total momentum operators P = (IP;, P, P3) defined as

1
P:=-V+ aQJ ka}ardk,
1 R3

where we use the standard notation S]Rrj g(k‘)aiakdk as a symbolic expression for the operator

Y mmet <fn g (3V) ‘fm>aT(fn)a(fm) and {f,, : n > 1} is an orthonormal basis of L?(R3),

the translation invariance of the Hamiltonian H can equivalently be expressed as [H, P| = 0,
making the total momentum P a conserved quantity under the time evolution generated by H.

Regarding the polaron we are primarily interested in the low energy properties of H in the
regime of large coupling a between the electron and the polarizable medium. The first
main result, presented in Chapter 3, identifies the two term expansion of the ground state
energy E, := inf o(H) in the asymptotics of large v and the second main result, presented in
Chapter 4, establishes an asymptotic expression for the energy-momentum relation E,(P),
defined as E,(P) := inf olp_p(H) with olp_p(H) := {E : (P,E) € o(P,H)}. Since the
translation group is shifting the electron as well as the polarization field, but not the medium
itself, our theory is not fully Galilean invariant and therefore one can not expect the joint
spectrum o(IP,H) to consist of parabolas, as it was the case for the translation-invariant
(non-relativistic) Bose gas, making it an interesting object to study. In particular we confirm
that, asymptotically, the energy-momentum relation E,(P) of a polaron coincides with the
one of a free particle having an effectively increased mass which scales like a? in the limit of
large «v, which is a well known conjecture from 1948 in the physics literature due to Landau
and Pekar [63], however a rigorous mathematical proof has so far been out of reach.

7
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Again our methods rely on the usage of an effective theory that arises as a restriction to a
suitable manifold of test functions. In the case of the polaron, a suitable manifold is given by
states of the form ¥ = ¢ ® ), where ¢y € L*(R?) is an electron wave-function satisfying
|| =1 and Q, is a coherent state with basis p € L*(R?) characterized (up to a phase) by
a(f)Q, = {fleyQ, and [Q,]| = 1, i.e. Q, is an eigenvector of the annihilation operator
a(f) to the eigenvalue {f|¢). The expectation value of H with respect to such a state turns
out to be independent of «, leading us to the definition of the Pekar energy functional

E(, ) i= (M), = L@ V. + fR o JW fRs W) Reow) g g,

Il‘ —yl?

We clearly have the upper bound E, < inf,infy.jy-1 £(¢, ) = ePek . Furthermore it has
been established in [I], 29, [79] that th|s upper bound is sharp in the asymptotics of large a,
i.e. we have E, = e + 0, ,,(1).

In order to identify the subleading term in the energy expansion E, = e + 0,_,,(1) we
first introduce a finite dimensional version of H as

N N
Hg, = —A, + Z al a, — Z {fnlwe) (an + ail) ,
n=1 n=1

where {f, : ne {1,..., N}} is a real-valued orthonormal basis of a suitable finite dimensional
subspace Xz, < L*(R®) and we define a, := a(f,) as usual. Due to the ultraviolet
regularization techniques developed in [40] we have |E, — E,gn| < o 2 with E, g, =
inf o (Hgy, ), and hence it is enough to establish the two term expansion for the energy E, g,
of the regularized model. Following the methods in [40] we can furthermore eliminate the
electronic degrees of freedom for a lower bound. Let us first identify the Fock space F(Xsy)
over the finite collection of modes a1, . .., ay with L? (RN) such that the annihilation operators
read a, = A, + 5205, With A = (A,..., Ay) € RY. According to this identification we
obtain

N N
Hg, = —A, + Va(x Z > info ( A—l—V,\)—i-ZaILan
n=1 n=1
=—i262 +infa(—A+V)+i>\2—N (1.2.2)
dat A An A ~m 202 o
with Va(z) := =232 (fyJw.) A\, where we have used that ), 1 (an + af). Similarly we

can eliminate the dependence on the electronic degrees of freedom in the effective energy
functional &, leading to the study of the Pekar functional

FPek(p) = ||11p1ﬂlf1g(w ,p) =info (=A + V) + J () [Pdz
R3

with A, := % (¢, +3,) and ¢, := {fu|¢). In order to emphasize the structural similarity

between the Pekar functional F7* and the right hand side of Eq. (1.2.2) note that we can

write (o [o(x)*de = SV A2 for o = 3N\, fn, and by a (formal) Taylor expansion of

FPek around a minimizer ¢k we obtain

fPek Pek+ Z HPek \; _)\Pek)()\ _)\Pek) +O(|)\_)\Pek|2)

7,7=1



1.2. The Frohlich Polaron at Strong Coupling

with HP® := 10pep, Onep, FT ok and AP = (f;]pP). Consequently we have, at least
formally, the lower bound

Hy > P — yoel ZaA + Z HEE (= AP (= AP — —— 0 (]A=APR2) L (1.2.3)

2
= ] 2a

. N
Since the operator —1; >, 0% + Z” VHPE(NG = ATH) (A — APeR) — 555 is, up to a shift
in A, a collection of harmonlc oscillators, we can identify its ground state energy explicitly

s —ﬁTr [1 — HPek], leading to the conjectured two term expansion of the ground state
energy B, = e’ — ;L Tr [1 — HPek] + Oamsa(23).

In order to verify this conjecture, we have to make sure that the residuum o (|A — AP*<|?)
is small compared to the quadratic part in Eq. (1.2.3), i.e. we need the a priori information
that ) is close to AP®*. Following the strategy previously developed for the mathematical
treatment of translation-invariant Bose gases, we first construct an approximate ground state
U, that is confined around the origin. In this context we call a family of states {U,, : « > 0}
an approximate ground state in case (H), = E, + 0a-sw(2=). The confinement is achieved
by localizing a regularized version of the median, i.e. for any = € supp(¥,.,) S R™ 3, where

=@, V,, with U, , € L2(R3)®", there are at least (3 — €a)n particles satisfying
xéj) < €4 and at least (3 — a)n particles satisfying xg) > —€,, where k€ {1,2,3} and ¢, < 1.
As we demonstrate in Chapter 3, such a state is necessarily close to the coherent state Q¢Pek
where ¢k is a minimizer of the Pekar functional FF°, in the sense that W, is an approximate
eigenstate of the annihilation operators a,, with respect to the eigenvalue A°%. This implies in
particular that A\, — - is a small quantity, allowing us to absorb the error term o (|A — AP*k|?)

in Eq. (1.2.3) by the quadratic part — ;1 3™ | 23 —1—2” VHTE (G = AT (A — AT — A
at least after a suitable unitary transformat|on which is S|m||ar to the unitary Wy used in

Section [1.1/

The corresponding upper bound E, < P — 1 [ — Pek] + oa_,oo( ) has been

established in [40, [OI] by construction of a suitable test function. Combining lower and upper
bound then yields the two term expansion of the ground state energy

Eo=c™— Lmp 1= VEP |+ 0y (1> :
202 a?
Finally we shall derive a similar expression for the conditional ground state energy E,(P) :=
inf o|p_p(H). By using the method of Lagrange multiplier, we will first eliminate the
momentum restriction leading to a global minimization problem, which we will treat similarly
to the previous problem of finding an asymptotic expansion for the (unconditional) ground
state energy F,. Clearly we have

infa(H—i-/\(P—IP’)) = mf {EQ(P')—F)\(P—PI)}a

Pl

where \ € R3 is the Lagrange multiplier with which we multiply the momentum constraint
P = P, leading to the lower bound on the conditional ground state energy

Eo(P) = info(H + A\(P — P)) (1.2.4)
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in terms of the global minimum of H + A(P — IP). As it turns out, the lower bound in
Eq. (1.2.4) is insufficient, since H + A(P — P) is unbounded from below for A # 0. This
issue can be avoided by introducing an ultraviolet cut-off in the Hamiltonian H as well as
in the total momentum operator IP, leading to the study of the regularized operators H,.,
and PP, defined as the restriction (in the sense of quadratic forms) of the operators H and PP
to F(X,), which can naturally be seen as a subspace of F(L?*(R?)), with X, being defined
as the space of all functions ¢ which have their Fourier transformation supported in the ball
Ba(0). Making the optimal choice \ := ﬁ, and choosing a suitable A > 0, we shall verify

in Chapter 4 the lower bound Hieg + A(P — Preg) 2 €% — 5T [1 —V HPek] + % with

m =3IV

2 leading to the (asymptotically sharp) lower bound

|PI”

1
g (Hueg) 2 €7 = T [ 1= VEP | +

a2

info

(1.2.5)

2mat’

In order to compare the energy-momentum relation of the regularized model E,, ;o (P) with
E,(P), we apply the result in [40], respectively [97], which provide the estimate H = H, o+ N+
for a suitable choice of the regularization parameter A, where N'! is the particle number
operator on the Fock space ]-"(X,{). This yields

E.(P) z infolp_p (Hreg + ./\/L) = Pi/lrelﬂg3 { inf o

Preg=P" (Hreg) + inf ofp1_p_pr (NL)}

where P+ .= P — P.eg is the restriction of P to f(X/{), which can naturally be seen as a
subspace of F(L*(R%)). Using the elementary fact that inf o|p._p_p(N+) = 56p pr, where
dpp =1 for P =P’ and dpp := 0 otherwise, we obtain according to Eq. (1.2.5)

1 P'? 1
E,(P)z inf {e"* — —Tr [1—VHPek] + 7] + —d0ppr
2002 o?

P/eR3 2mat

_ ek Ly [1 - x/ﬁ] + min{ PP 1 } (1.2.6)

202 2mat’ o2

By the upper bound E,(P) < e’ — L Tr [1 — HPEk] + min{ PP 1 } + Oamsoo(23)

2mal’ o? o?
derived in [91], our lower bound in Eq. (1.2.6) is asymptotically sharp, leading to the main
result of Chapter 4

1 P? 1 1
E,(P) =¢e™ — —Tr [1—\/HPek]+min{ [Pl —}—i—oa_,oo — .
2a2 a?

2mat’ a?

For momenta P below the critical value P, := +/2ma we obtain in particular that the
energy-momentum relation of a polaron E,(P) — E,(0) ~ 2'2;4 coincides with the energy-
momentum relation of a (non-relativistic) free particle having mass ma®. In this sense we
confirm the celebrated conjecture by Landau and Pekar, claiming that the effective mass of a

polaron is given by M.z = ma™.

1.3 Main novel contributions of the Thesis.

In Chapter 2| we provide a two term expansion for the ground state energy 'y of a translation-
invariant, mean-field, Bose gas in Theorem 2.1.4, given that the mild Assumptions |2.1.1 and

10
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2.1.3 hold. As an intermediate result we confirm the existence of approximate ground states
satisfying Bose-Einstein condensation in Theorem [2.1.2.

In Chapter 3 we establish a lower bound on the ground state energy F, of the Frohlich
Hamiltonian in Theorem 3.1.1, which is asymptotically sharp up to the subleading order in
the limit of large coupling a@ — oo. While our result concerns the Frohlich polaron in R3,
corresponding results have been obtained previously for the Frohlich polaron in a bounded
region of space, see [40], as well as for the Frohlich polaron on the three dimensional torus,
see [37].

In Chapter 4 we provide a lower bound on the ground state energy E,(P) of the Frohlich
Hamiltonian as a function of the total momentum in Theorem 4.1.1, which is asymptotically
sharp up to the subleading order in the limit of large coupling o — oo. Together with
the corresponding upper bound derived in [91] and the results of Chapter 3, we obtain
an asymptotic expression for the energy-momentum increment E,(P) — E,(0), which is a
quantity related to the effective mass of a polaron.

Appendix A is the output of a first year rotation project in the group of Mikhail Lemeshko,
where we provide a numerical computation of the full low-energy spectrum of two anyons on
the sphere in Figure |A.1. Furthermore we show that a system of quasiparticles with anyonic
statistics can be realized in terms of linear molecules exchanging angular momentum with a
many-particle bath.

Appendix B is the output of a first year rotation project in the group of Jan Maas, where we
classify those vector fields which can be written as the gradient flow of a given functional with
respect to some smooth metric in Theorem B.1.1, given that the regularity Assumption B.2.1
holds. Subsequently we use this classification in Theorem B.1.2, to show that any ergodic
quantum Markov semigroup defined on a finite dimensional C'*-algebra can be written as the
gradient of the relative entropy, given that it respects a certain scalar product.

11






CHAPTER

Validity of Bogoliubov’s approximation
for translation-invariant Bose gases

ABSTRACT. We verify Bogoliubov's approximation for translation-invariant Bose gases
in the mean field regime, i.e. we prove that the ground state energy Ey is given by
En = Neg + inf o (H) + oy (1), where N is the number of particles, ey is the minimal
Hartree energy and H is the Bogoliubov Hamiltonian. As an intermediate result we show the
existence of approximate ground states Wy, i.e. states satisfying (Hy) v, = En + on-o0(1),
exhibiting complete Bose—Einstein condensation with respect to one of the Hartree minimizers.

2.1 Introduction and Main Results

We study the Hamiltonian Hy acting on the Hilbert space L2, (RV*?) ~ @2 L?(R?) of N
identical bosons in R? for d > 1, given by

N
1
Hy :227}4— N_lzv(x,-—xj), (2.1.1)
i=1 1<j
where T' is a non-negative and translation-invariant operator defined on the single particle
space L*(R?) and the interaction potential v is an even function. Typically we will think of T
as the non-relativistic energy T'= —A or the pseudo relativistic energy T' = v/m? — A —m,
and of the interaction v as being attractive. The most prominent features of this model
are the mean field scaling ﬁ of the interaction energy and the invariance of Hy under
translations, which especially means that the Hamiltonian H describes an unconfined system
of N bosons. By choosing a product state ¥ := u® as a test function, we obtain the trivial

upper bound on the ground state energy Ey := inf o (Hy) per particle

N By < Ny, =D, + 5 [ [ @)oo - g)lut)Pdedy =l

where Ey|u] is referred to as the Hartree energy functional. This upper bound is independent
of the particle number N due to the scaling by ﬁ of the interaction. It is known under
quite general assumptions on v and 7' that the upper bound

€H = inf SH[u] (212)

Jull=1
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on the ground state energy per particle is asymptotically correct in the mean field limit N — oo,
see [71]. Furthermore, the Bogoliubov approximation [13] predicts that the next order term
in the approximation Ey & N ey is of order one and given by the ground state energy of the
corresponding Bogoliubov Hamiltonian H, which is formally the second quantization of the
Hessian Hess|,,En at a minimizer ug. In the past decade, this conjecture has been proven
for a variety of mean field models [48], [72], 99, 115], and also for systems with more singular
interactions [27, [11], [12, [14, [15, [I00]. However, the rigorous verification of Bogoliubov's
approximation has so far been restricted to confined systems only. In the case of translation-
invariant models, we face the problem that minimizers of the Hartree energy functional £y
are not unique and that the Hessian Hess|,,Ey at a minimizer uy does not exhibit a gap,
i.e. we do not have an inequality of the form Hess|,,En = ¢ with ¢ > 0. Novel ideas and
techniques are required in order to deal with these translation-invariance specific problems,
which we will develop in the course of this paper allowing us to verify Bogoliubov's prediction
En = N eg +inf o (H) +ox(1) for translation-invariant systems. As an intermediate step, we
will construct a sequence of approximate ground states W satisfying complete Bose—Einstein
condensation, which we believe to be of independent interest.

Note that the situation is different for time-dependent problems, where it is already well-
known that fluctuations around a product state u®" evolve according to a (time-dependent)
Bogoliubov operator, even for translation-invariant systems [74].

Due to the translation-invariance, it is clear that Hy has no ground state and therefore we
have to restrict our attention to sequences of approximate ground states W,. We will use the
convention that states ¥ are normed Hilbert space elements, i.e. ||| = 1. In our first result
we show the existence of a sequence of approximate ground states W, with the property
that Wy is close to a product state u?N where uy minimizes the Hartree energy &y. In this
context, close means that the sequence W satisfies complete Bose—Einstein condensation
with respect to the state uqg, i.e. the corresponding one particle density matrices 7](\}) satisfy
<71(V1)>u0 foand 1. In general we define the k-particle density matrix yfl,k) corresponding to a
state ¥ € ®” L? (R?) by the equation Tr [yfpk) B] =(B®1®---®1), for all bounded
k-particle operators B. This means in particular that we use the normalization convention
Tr [7](\];)] = 1. In order to prove complete Bose—Einstein condensation, we need certain

assumptions concerning the kinetic energy operator T and the Hartree theory, as well as a
relative bound of the interaction potential v in terms of the kinetic energy.

Assumption 2.1.1. The kinetic energy is given by T := (m? — A)® —m? with m > 0 and
s € (0,1], the interaction potential v satisfies lim|y| . v(x) = 0 and the chain of inequalities

AN —A<v< || <AT+1) (2.1.3)

for some \ € (0,2) and A € (0,00). Furthermore, the Hartree energy defined in Eq. (2.1.2)
is strictly negative, i.e. ey < 0, and there exists a real-valued function uy € L? (Rd) that
minimizes the Hartree energy, i.e. ey = En|uo, and satisfies S[xr <1 lug(x)[* dz = % if and
only ift = 0, where x, is the r-th component of the vector x € R?. Up to a complex phase,

all other Hartree minimizers are given by translations of ug, i.e. all minimizers are of the form
eug; with 0 € [0,27),t € R? and ug +(x) == ug(z — t).

14
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By the translation-invariance of the Hartree energy, any shift of a Hartree minimizer ug(z — t)
is again a minimizer. Therefore, we can always choose the Hartree minimizer such that it
is centered around zero, i.e. such that § . [uo(z)* dz = s forallre{l,....d}. In
particular, in case the minimizers u of £y satisfy u > 0, the existence of a ug satisfying
S[:cr@t] lup(x)[* dz = 1 if and only if ¢ = 0 is always granted. Furthermore, most of our

proofs do not depend on the concrete structure T = (m? — A)® — m?® of the kinetic energy,
and it is sufficient to assume instead that the operator 71" is of the translation-invariant form

T = t(iV) for some t with ¢(p) o~ oo such that the Hartree approximation + Ey el
p|—00 —00

as well as the IMS localization formula in Lemma [2.2.2] hold.

With Assumption 2.1.1] at hand, we obtain our first main result Theorem [2.1.2, which we will
prove in Section 2.2.

Theorem 2.1.2. Given Assumption 2.1.1, there exists a sequence of states ¥ 5 € ®év L? (]Rd)
with (Hy )y, = EN+0n-x(1), exhibiting complete Bose—Einstein condensation with respect
to the state uy, i.e.

Gy 1L (2.1.4)

U N

Since Assumption 2.1.1 implies the validity of the Hartree approximation in the form ﬁEN o
—>00

en, see [71], it is clear that the product state u", which trivially satisfies perfect Bose—
Einstein condensation, approximates the ground state energy to leading order, i.e. <HN>U®N =
0

ENn + 0on0(N). In Theorem 2.1.2 we improve this result by constructing a Bose—Einstein
condensate that approximates Fy even up to terms oy, (1). Note, however, that Theorem
2.1.2 claims nothing about the rate of convergence in Eq. (2.1.4). One can improve this
result a posteriori by using the trial states in our proof of the upper bound in Theorem 2.1.4,

which yields for any given sequence cy T 0 a sequence of approximate ground states W
—>0
satisfying
~(1 CN
[V =1 < -

It follows from our proof of the lower bound in Theorem 2.1.4] that this result is optimal
in the sense that any sequence with |<%\P>u0 — 1] = Onooo (2) cannot be a sequence of
approximate ground states.

Furthermore it follows from the proof of Theorem 2.1.2 that for any sequence ¢y it there

exist states W’y exhibiting complete Bose—Einstein condensation with <HN>\I/’N <OOEN + .
Again it is a consequence of our proof of the lower bound that this result is optimal in
the sense that any sequence with <HN>\1/;V = En + Onoo (%) does not satisfy complete
Bose—Einstein condensation.

Proof strategy of Theorem 2.1.2. With Assumption 2.1.1 at hand, we can apply the
results in [71] which tell us that the Hartree asymptotics %EN o e holds true and that
—0a0

any sequence of approximate ground states Wy has a subsequence such that the k-particle
density matrices converge weakly to a mixture of not necessarily normed Hartree minimizers.
This means that there exists a probability measure p supported on functions u with |u| <1
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and Ex[u] = infy,—ju Eulv], such that the k-particle density matrix of the subsequence Wy,
satisfies

[ K] — J T (juy () ® K| o) (2.1.5)

for any compact k particle operator K. The proofs in [71] rely on the quantum de Finetti
theorem (see also [120} 55]), which identifies states on the infinite symmetric tensor product
as the convex hull of product states. In order to prove Theorem 2.1.2, we have to construct
a sequence of approximate ground states Wy such that the corresponding measure u in
Eq. (2.1.5) is equal to the delta measure d,,. In particular this means that p has to be
supported on the set of normed elements |u| = 1, or equivalently we have to make sure that
mass cannot escape to infinity. For confined systems satisfying a binding inequality, it has
been shown in [71] that p is always supported on normed elements. For translation-invariant

systems this is no longer the case, since one can always find yy € R? such that \TJN N 0
—00

where
Ty (20, a) =y (1) — g0 )

for all (z(), ..., 2™)) e RV*¢, and therefore the corresponding measure is supported on {0}
only. While one could circumvent this issue by factoring out the center-of-mass variable, we
avoid doing this since there is no straightforward analogue of product states and Bose—Einstein
condensation in the space of relative coordinates. Alternatively we overcome this problem by
localizing a sequence of approximate ground states W only to configurations that are centered
around zero. It turns out that the median of a configuration z = (2, ..., 2®™)) e R¥*¢,
respectively a regularized version of the median, is the right statistical quantity to measure
whether a configuration is centered around the origin or not. Furthermore, we will energetically
rule out configurations where the mass is split up in two or multiple parts, e.g. we will rule
out configurations where % particles are very far from the other % particles. We conclude
that the mass is concentrated at the origin and therefore it does not escape to infinity.

In order to identify the support of the measure 1 in Eq. (2.1.5), note that all Hartree minimizers
are up to a complex phase translations of the minimizer ug, which is a function centered
around zero. Consequently, up to this complex phase, ug is the only minimizer with the
property of being centered around zero. Using the support property of Wy, this already
suggests that the measure y should be supported on states of the form {¢“ug : 6 € [0, 27)}
only. Since |eugy) (e®ug| = |ug) {up| defines the same density matrix for all complex phases

e’ this support property of the measure i implies the convergence of the density matrix fy](\lf)

to a single condensate (|ug) <u0|)®k

Having a sequence of approximate ground states at hand that satisfies complete Bose—
Einstein condensation is a crucial prerequisite in identifying the sub-leading term in the energy

asymptotics Ey = N ey + o(N). In the following, let ug, us, ..., uq, ugs1,... be a real
orthonormal basis of L? (Rd), where u is the Hartree minimizer from Assumption 2.1.1] and
Uy, ..., uq a basis of the vector space spanned by the partial derivatives {0, uo, . .., 0z, o).

Since the functional & is invariant under a phase change u — eu, we can restrict ourself
to states w with {ug,uy > 0. Then, the Hessian Hess|,,Ey of the Hartree energy is a
real quadratic form defined on {ug}t < L2 (]Rd), and consequently there exist coefficients
Q@j,Gi’j e C, 4,5 € N, such that Hess|u05H[z] = ZOO (Qi,jgizj +éi7jzizj + Gi’jfizj),

i,j=1
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where z; are the coordinates of z € {ug}®. In order to define the Bogoliubov operator H,
let ai,aj be the annihilation/creation operators corresponding to the state u; € L? (Rd).
Following [72] we formally define H as the second quantization of the Hessian Hess|,,&y, i.e.

ee}

Hi= ) (QM ala; +Gij aiaj + Gi GM) : (2.1.6)

ij=1
For a rigorous construction see Definition 2.4.3.

Note that due to the translation-invariance, the Hessian Hess|,,Eu is degenerate in the
directions u; for j € {1,...,d}, i.e. Hess|,,Eulu;] = 0. The following Assumption makes
sure that Hess|,,Ex is non-degenerate in all other directions.

Assumption 2.1.3. The partial derivatives of uq are in the form domain of T', and there
exists a constant ) > 0 such that

Hess|,,Eulz] = n ||z||2 (2.1.7)

for all z of the form z = iZ?:l Sju; + 2=q with s; € R and 2.4 € {uo, 0y, uo, - . ., 8Idu0}i.
Furthermore, the Hartree minimizer uq is an element of H?*(R?).

With the Assumption [2.1.3| at hand, we arrive at our second main Theorem, which identifies
the sub-leading term in the energy asymptotics as the ground state energy inf o (H) of the
Bogoliubov operator H.

Theorem 2.1.4. Let Ey be the ground state energy of the Hamiltonian Hy defined in
Eq. (2.1.1), ey the Hartree energy defined in Eq. (2.1.2) and let H be the Bogoliubov operator
defined in Eq. (2.1.6). Given Assumption 2.1.1 and Assumption 2.1.3, we have

EN = N€H + inf o (H) + ON o (1) . (218)

Examples of systems satisfying both Assumptions 2.1.1/and 2.1.3, and hence our Theorem
2.1.4 applies to, are as follows.

Example (1). Let us first consider a system of N non-relativistic bosons in R? interacting
with each other via a Newtonian potential

N g !

with g > 0. Existence and uniqueness of the Hartree minimizer v, in the sense of Assumption
2.1.1, have been shown in [76]. Moreover, uy is strictly positive and smooth, hence satisfies
all the other requirements of Assumptions2.1.1 and 2.1.3. The non-degeneracy of the Hessian
follows from the results in [69] by standard arguments, see for instance [41]. Furthermore, it
is clear by a scaling argument that e < 0 and that we can bound the interaction energy in
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terms of the kinetic energy by ﬁ < —eA+ for all e > 0.

Example (I1). As a second example let us consider a system of N pseudo-relativistic bosons
in R? with positive mass m > 0, interacting with each other via a Newtonian potential

N
g 1
y =3 (i B m) - |

i=1

where we assume that the coupling strength satisfies g € (0, g,) for a suitable positive
constant g, > 0. It has been shown in [81] that there exists a Hartree minimizer v, as
long as the coupling g is below a critical value, in which case the Hartree approximation
limy e N'Ex = ey holds true. The chain of operator inequalities in Assumption 2.1.1
holds as long as the coupling is below the critical value 2, see [54] 58]. By restricting the
attention to possibly smaller couplings g € (0, g ) it has been shown in [69, 51] that minimizers
ug are unique in the sense of Assumption 2.1.1. Furthermore it follows from the results in
[69] 51] that the Hessian is non-degenerate in the sense of Assumption 2.1.3 for couplings g
below a critical value. We will verify this explicitly in Appendix 2.6, using an argument similar
to the one in [4I] for non-relativistic systems. (The argument in [41] is based on scaling the
coordinates and hence not directly applicable in the pseudo-relativistic case.)

Example (I11). As a third example let us consider the exactly solvable model of N non-
relativistic bosons on the real line R, interacting with each other via an attractive delta
potential

262_7 5( ])’

1<j

where A > 0, see [87] for an explicit expression of the ground state energy. In this case the
Hartree energy &y is given by

eulid = [ w@Pae =3 [ ol

—00 —o0

For d =1 we have § < —ed? + i for all ¢ > 0 in the sense of quadratic forms, and therefore
Eq. (2.1.3) in Assumption 2.1.1 holds. By a scaling argument it is clear that ey < 0 and
minimizers of the Hartree energy are unique in the sense of Assumption 2.1.1, see [62]
where the uniqueness of solutions to the corresponding Euler-Lagrange equation is verified.
Furthermore the coercivity assumption in Eq. (2.1.7) is a consequence of the slightly different
coercivity result in [129] (arguing, e.g., as in Appendix 2.6).

We remark that in Examples (1) and (111), the value of the coupling constant, and hence also the
factor 1/(IN — 1) in front of the interaction term, is irrelevant, since it can be replaced by any
other value by a simple scaling of the coordinates. This does not apply to Example (1), however.

Proof strategy of Theorem 2.1.4. We will verify the upper bound in our main result
(2.1.8) analogously to the proof of the energy asymptotics for confined systems in [72]. The
more difficult lower bound will be based on the correspondence between the Hartree energy
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&x and the Hamiltonian Hy. This correspondence becomes evident when we rewrite Hy in
the language of second quantization. For this purpose, let us define the rescaled creation
operators b} = \/Nal , Where we suppress the N dependence in our notation for simplicity.
Then we can write

N .
N~'Hy = Z T;; bib; + Y13 2 Dijke DIDIbRby, (2.1.9)

,j=0 i,k

where T; ; are the matrix entries of the operator 7" with respect to the basis {u; : i € Ny} and
;5 ke are the ones of the two body muItipIication operator © = v(x — y) with respect to the
basis {u; ® u; : i, j € No}. Up to the factor ~, the Hartree energy &n|u]

0
= Z Ti,jCiCjJr;Z@ij,uCiCjCk Ce
i,j=0 ij,ke
is represented by the same symbolic expression as in Eq. (2.1.9), i.e. we plug in the complex
numbers ¢; instead of the operators b;. Before investigating the next order term in the
energy asymptotics, let us discuss the next order expansion of the commutative counterpart
Eulu] = ex + o(|u —wugl|), which is given by the Hessian of the functional &y. Since
the Hartree energy is defined on the infinite dimensional manifold {u € L* (R?) : |u] =
1,{ug, uy = 0} = L* (R?), it is convenient to introduce the embedding

. {{2 € {uod® : 2] <1} — {ue L2 (RY) : u] = 1, (up, u) > 0},
2 1(2) 1= /1 —||2]? up + =.

Using the chart ¢, we can express the Hessian as Hess|,,En = D?|o (€g © ¢) and the second
order expansion at z = 0 is given by

Enlu(z)] = en + Hess|, Eulz] + o (|2]?) -

(2.1.10)

In contrast to confined systems, the Hessian for translation-invariant systems is always
degenerate in the directions uy, ..., uq, i.e. Hess|,,Eu|u;] = 0 for j € {1,...,d}. Itis
important to observe that the manifold of minimizers M := {z : &y[i(z)] = en} is not
contained in the null space of the Hessian {z : Hess|,,Eu[z] = 0}. Therefore, we do not have
the crucial estimate Ey|u(z)] = ex + (1 — €)Hess|,,En|z], 0 < € < 1, not even in an arbitrary
small neighborhood of zero. In order to obtain such an inequality, we will introduce yet
another transformation F on the ball {z € {ug}* : |z| < 1}, such that D|oF is the identity

and such that F' flattens the manifold of minimizers M, i.e. &y [(L o F) (ijltjuj)] = ey

for all t; € R. For a concrete construction of F' see Eq. (2.4.7) in Section 2.4. Under the
assumption that the Hessian is only degenerate in the directions u;, see Assumption 2.1.3, we
obtain for any fixed ¢ > 0 and z small enough the important estimate

Eul(to F)(z)] = en + (1 — €)Hess|,,Enlz]. (2.1.11)

Returning to the Hamiltonian Hy, we will introduce non-commutative counterparts to the
embedding ¢ and the transformation F'. The counterpart to ¢ is the excitation map Uy
introduced in [72], where it has already been used to verify the next order approximation of
the ground state energy for confined systems. It is defined as

Uy (4§ @ " @@l ) = o @ @ ul” (2.112)

19



2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

for non-negative integers 1o + - - - + i, = N, mapping the N particle space ®iv L? (Rd) into
the truncated Fock space F<y ({uo}*) := @,y Q. {uo}* over modes orthogonal to u,
where the symmetric tensor product ®; is defined as

\/mae;%}k (01) L, O'k))we(x(o'k+1)’ o 7I(akﬂ))

for ¢y, € Q@ L*(R?) and ¢y € ®. L?(R?), and S, is the set of permutations on {1,...,n}.
Regarding the transformation F', we construct the counterpart Wy in Definition 2.4.8 as a
certain transformation reminiscent of the Gross transformation in [49] [102], operating on the
space F ({ug}"). Based on these correspondences and the observation that the Bogoliubov
operator is the non-commutative analogue of the Hessian Hess|,,&w, we obtain the following
inequality analogous to Eq. (2.1.11)

Ue@sthe @V, aY) =

WxUxn) N"*Hy WrUy) ' 2 en + (1 — e)N7HHL (2.1.13)

We write = for two reasons: There are errors of order o ( ) coming from the non-commutative
nature of Hy; moreover Eq. (2.1.13) only holds for states W that satisfy a strengthened
version of Bose—Einstein condensation of the form UyV € Fpy,, ({uo}i) with My « N,
which corresponds to the fact that Inequality (2.1.11) only holds for small z. The rigorous
verification of inequality (2.1.13)) will be the content of Sections 2.4 and 2.5.

Our construction of Wy and the proof of Inequality (2.1.13) do not rely on the specific
structure of Hy or L?(R?), and they can be generalized for various mean field models with
continuous symmetries. The essential assumption is that the dimension of the symmetry
group agrees with the nullity of the Hessian, i.e. the Hessian is as non-degenerate as possible
in the presence of a continuous symmetry, see Assumption 2.1.3.

Outline. The paper is structured as follows. In Section 2.2 we construct a sequence of
approximate ground states satisfying complete Bose—Einstein condensation, which verifies our
first main Theorem 2.1.2. The methods and results of Section 2.2 can be read independently
of the rest of the paper, which is dedicated to the proof of our second main Theorem 2.1.4.
In Section 2.3, we will introduce the relevant Fock spaces as well as a useful notation for
second quantized operators, which we believe to be intuitive and natural for our problem.
With the basic notions at hand, we will follow the strategy in [72] and reformulate our problem
in a Fock space language using the excitation map Uy. In Section 2.4 we will discuss the
energy asymptotics of Hy, starting with a precise definition of the Bogoliubov operator H in
Subsection 2.4.1}, the verification of the upper bound in Subsection 2.4.2 and the proof of the
lower bound in Subsection 2.4.3, up to the proof of the main technical inequality Eq. (2.1.13).
The proof of the latter is the content of Section 2.5.

2.2 Bose—Einstein Condensation of Ground States

In this section we will prove Theorem 2.1.2 by constructing a sequence ¥ of approximate
ground states satisfying complete Bose—Einstein condensation. The concrete construction of
W will be part of Subsection 2.2.1, where we introduce a suitable localization method and
verify that mass does not escape to infinity. In the following Subsection 2.2.2, we will use this
to verify complete Bose—Einstein condensation of the sequence W .
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2.2. Bose—Einstein Condensation of Ground States

2.2.1 Localization of the Ground State

In the following we are constructing a sequence of states Uy, i.e. elements satisfying
|Wx| =1, localized only to configurations - € R¥*? centered at zero, such that (Hy)y =
EN 4+ on_x(1). For such a sequence we will verify that mass cannot escape to infinity. As
it turns out, the regularized median My, which we will define in the subsequent Definition
2.2.1} is the right statistical quantity to measure the center

Leenter += (MNJC (‘Tgl)’ s 7ng)) Yty MN,k: (l’&l), . ,I'EiN))) S Rd

of a configuration = = (2, ... 2™) € R¥*? where zU) = (asgj), . ,x(gj)> e R? is the
coordinate vector of the j-th particle.
Definition 2.2.1 (Localization). Given N € N and k such that k + & € N, we define the

regularized median My : RY — R as the unique permutation-invariant function that is
defined for all z(V < -+ < 2™ as

N
1 i
My (x(l),...,x(N)) = 2 ),

In the IMS-type estimate of the following Lemma [2.2.2, which has been proven in [70, Lemma
7], we will make use of the specific structure of the operator 7' = (m? — A)” — m?*. Note

that this is the only place where the specific structure is relevant for us.

Lemma 2.2.2. Let T = (m? — A)” — m? be as in Assumption 2.1.1 and let {x; : i € I} be
a family of W1 (R?) functions with ¥, x? = 1. With the definition C := m** Vs we have
for all states u € L? (R?)

DVl

iel

2T <D+ C

iel

0

Lemma 2.2.3. Let Ey denote the ground state energy of Hy and let ky be a sequence
with /N « ky « N such that ky + 5 € N. Then there exists a sequence of states Uy in
L2, (RY*4) with (Hy),,  — Ex >, 0 and a sequence 0 < ay « 1, such that

—>0

sym

| Mgy (289, 2| < an

for all z € supp (W) c R¥*® and r e {1,...,d}.

Proof. Let 0 < ay < 1 be a sequence with \k/—i Kany<landlety, :R—> R, leZ, bea
family of C® functions with Y., ., vZ = 1, supp(v,) € (( — 1,£ + 1) and vy(z) = vo(x — ).
Then we define the family of functions x;,. : RV*4 — R with € Z and 7 € {1,...,d} as

1
Xe,r (.T}) =1y (MN,kN (.Tg,l), Cen ,xg,N)))

QN

and for { = ({y,...,0q) € Z% we define x; 1= Xg.1---Xega- First of all Sz Xo =
(Xrezxtin) - (Xiez Xi,a) = 1. Furthermore, for any 2 € R¥*¢ the family of smooth
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functions {x; : £ € Z4} satisfies #{¢ € Z% : xp(x) # 0} = #[|*_ {2 € Z: x..(z) # 0} < 24
With the definition C; := 2¢C, where C' is the constant from Lemma 2.2.2, we obtain any
state U € L? (RV*9)

C d
Z<T>@>ZZ<TJ>W OdZsupHmm TP 2 Il

j=1rezd Jj=1rezd

where we used the fact that [Vyl? < S, [0,x,? < Sy b IV 1210, Mk 12

r=1 o
1 ! ! : A
i 0o X Lo © = 0 :
10; My lloo < 5 and [l |V} o for any z € Z. By our choice of ay it is clear
that ey := N%H%Hgo - 0. In the following let ®y be a sequence of states with
1
(Hn)g, — En e 0, and Iet us define py g := [[x,®n|* as well as Py := pp% XePw.

Since @y is a state, it is clear that >, pn ¢ = 1. We have the estimate

>, el N>¢NZ\Z< Doy + 8 + 77— 2,0 = 35))g, = (Hdgy + ex,

lez4 Z<J

and therefore there exists at least one I € Z¢ such that (Hy)g , < (Hn)g, + en. We

can finally define Wy (20, ..., 2™) = By, (2 + ¢, ..., 2™ +£) with £ := ayl. By
translation-invariance of Hy, we have (Hy )y = < (Hn)g, +€n and consequently (Hy )y, —
Ex —> 0. Furthermore, Uy ( N ,:L‘(N)) # 0 implies for all r € {1,...,d}

N—>w

1
—MN,;CN (acgl)—i-{:r, . ,ng)—i-&n) = —Mniy (I&l), o ,ng)) +4, € supp(vy, ),
anN an

and therefore My, (zV, ..., 2™) € (—an, ay). [ |
Recall the inequality — (AT + A) < v < |v| < A(T + 1) from Assumption 2.1.1. Let us
denote with ¥ := v(z — y) the two body multiplication operator associated to the interaction

potential v. Due to the translation-invariance of T, we can promote the one body operator
inequality from above to the two body operator inequality

As an immediate consequence of this inequality we have the following Lemma.

Lemma 2.2.4. Given Assumption|2.1.1, there exist constants ¢ and § > 0 such that

5%(7}—0)\ ZT—l—c

as well as = Y. [v(z; — z;)| < c(Hy + N).

i<j

Definition 2.2.5. Let us define ny,.; : R¥*¢ — R as the density of particles #() ¢ R?
that satisfy z/) > L, i.e. for a configuration z = (z(V,...,2®™) e RV*? with 2U) =

(a;@, o ,x((ij)) e R? we define
| X
nNrL : N; Loo) 37]
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2.2. Bose—Einstein Condensation of Ground States

Furthermore, let Qy, 15 be the set of all x € RY¥*? that satisfy ny,r(z) > J and
Mgy (29, 2M)) < &, where ky is the sequence introduced in Lemma 2.2.3 and
&o is some fixed positive number. Let Ey, 1 s denote the ground state energy of Hy restricted
to states @ with supp(®) < Qn 1.

Lemma 2.2.6. Given Assumption 2.1.1, there exist for all § > 0 constants vs > 0, Lo(9)
and Ny(0), such that for all r € {1,...,d}, L = Lo(d) and N = Ny(0)

ENV,ﬂ,L’(; = EN + ’75N. (221)

Proof. According to Definition 2.2.5, for any configuration x = (:1:(1), e ,w(N)) € QnyrLs
there are at least % — ky particles 1) such that () < &, and at least §N particles 2(*) such
that (*) > L. Heuristically, this means that % particles do not interact with /N particles
in case L — &, is large compared to the range of the interaction v. Since the interaction in
Eq. (2.1.1) scales like % the absence of % x 0N interaction pairs corresponds to an increase
in energy of order N. In order to make this rigorous, i.e. in order to verify Eq. (2.2.1), we
will apply the ideas of geometric localization from [73] [71]. In the first step, we decompose
the energy (Hy), of a state U into a term E_ covering contributions from the left side
x,(ﬂj) <&+ Rwith £ > & and £ + R < L, aterm E, covering contributions from the right
side 217) > ¢ and a localization error depending on the length R of the overlap [¢, ¢ + R] of
the two regions, which can be neglected for large separations R » 1. In the second step, we
will verify that the sum of the local energies E_ + E is indeed larger than the ground state
energy Ex by a contribution of order N, which corresponds to the observation that £_ + E,
does not involve any interactions between particles on the left side and particles on the right
side.

In the following let us fix an r € {1,...,d}, and let f_, f. : R —> [0, 1] be smooth functions
with f24+ f2 =1, f (t) = 1fort <0and f(t) = 1for t = 1. Then we define for { € R and
R > 0 the functions fe g+ : R? — [0,1] as feps(z) := fy (mrgg)_ This family of functions
clearly satisfies fep () = 1 for z, <&, fep—(x) = 0 for x, = £+ R, feri(z) =1
for z, = ¢ + R and ng+( ) = 0 for z, < & Furthermore, there exists a constant
k > 0 such that [V f¢r+|” < 4. By Lemma 2.2.2 we have the IMS localization formula

> fern - Tler- + fersTlens — L5, K := 2kC. For a state ¥ € @) L? (R?), let us
denote with v*) its reduced density matrices and with p(*) the corresponding density functions,

and let us further define the localized objects 7§2¢ = fg;’iv(k)fg);i and the corresponding

density functions pé }% (@, wg) = p® (2, fera (1) fer e ()2 Then,

—<HN>\I,—Tr 1)T JJ (z,y)v(x — y)dady
—Tr DT JJ 2) (z,y) ng +f5R+] (z) [fg,R,7+f§,R,+] (y) v(z — y)dady
> B+ Bt | [0 @) fen (o) (0 o(a—g)dody— .

where we define

E.=Tr [ JJP£R+ z,y)v(r — y)dzdy. (2.2.2)
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Note that we have vg := supy, > [v(7)] P 0 by Assumption 2.1.1, and therefore we can
—00

estimate the localization error | § p®® (2, y) fe.r,— (,)* fe r + (yr)*v y)| by
f f | ]p@) (€, 9) fe.r— (1) fert (v)?[v(z — y)|dedy + vg J j PPz, y)dxdy
Tr—yYr|<R

< JJ P (z,y)|v(z — y)|dzdy + vg,
|zr—&|<R]

where we used the fact that = € supp (fer—), ¥ € supp (fer+) and |z, —y| < R is
only possible in case |z, — £| < R. Let us now define for n € N and m < n the points
Em = & + 2Rm. Clearly, the intervals ||z, — &,,| < R] are disjoint and therefore Lemma
2.2.4 yields

JJ (z,y)|v(z— Z/)|dl’dy<ff @z, y)|v(x— y)|d:vdy< <HN>\I,+26
\xr—£m|<R

Hence, there exists an m, <nsuchthat {{,_ . . P (z, vz —y)| < 2 (Hy)y + %
e m*
We conclude that for n € N, there exists a £ with &y < & < & + 2nR such that

1 —l— K 2c

Let us now investigate the local energy contributions F. As a first step, we follow the
framework in [71] and define the mixed ¢ particle states

N N ad
Gt = <€>Tr€+1—>N [fg)li,i@) §®R+Z W) <Y ffR+®ff®R+l}

where we used the notion Tryy 1 ,n [ . | for the partial trace over the indices ¢/ +1,..., N.
These mixed states satisfy Tr[Gy | = Tr[Gx ¢ ] as well as 3, Tr[Gy, ] = 1. Furthermore,
it was shown in [71] that we can use these mixed states to express the localized density
matrices as

k N 1 14 (k)
ng+ ’Y(k) ng,i = (kz) Z (k)GZ,—H (2.2.4)

l=k

where ngl is the k-th reduced density matrix of G/ +. In the following, let us assume that
the state U satisfies supp (¥) < Q1,5 With § > 0 and Ly > & + R, i.e. all z € supp (V)
satisfy Mk, (x) < & and ny,.r,(x) = 6. The first condition My, (x) < & implies that
at most % + ky indices j satisfy #) > & and the second condition NNrL(T) = 0 is
equivalent to the fact that at most [(1 — §)N] indices satisfy #(/) < Ly. Let us denote
N,(N) := max (§ + kn,[(1 — §)N]). From the support properties of f r + we obtain for
all £ with § < € < Lo — R and z € supp (¥), that fep (zV) ... fers (289) = 0 for
all ¢ > N,(N) and fe g (V) ... fer— (z)) =0 for all N — ¢ > N,(N). Hence, we
obtain for all £ with either ¢ > N, (N) or { < N — N,(N), and { with {§y <& <Ly — R

N —1
(g) T [Geo] = T | f8, @ S8 W) (U] 18, @ 15, |

N f fers @) feora () fer @) fers (@) 0P da =0,

supp(¥)
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2.2. Bose—Einstein Condensation of Ground States

and since Gy 4 > 0 this implies G, 4 = 0 for all such ¢. Using Tr[G_] = Tr[Gn_r ], we

also obtain G,_ = 0 for all ¢ with ¢ > N,(N), respectively { < N — N, ().

Let us define rescaled versions He Z] T+ —ZK] Mv(z; — xj) of the Hamiltonian

Hy and let us denote the correspondmg ground state energy by E\V = inf o (H}). Note

that there exists a d-dependent ks < 1 and N; € N, such that ]\(, )1
1

N = N;. Applying Eq. (2.2.4) together with the identity Tr [G&ll T] N—% [Gg? f}] =

Ne < kg for all

£—1

Tr [éHg(N‘l) Gg’+:| yields for all N > N; and € with §, <& < Lo — R

EizTr[ JJpER+xy y)dxdyzﬁ Z Tlr[HN1 Gg’+‘|
(=N—Ny(N)
LR ) RN
= N Z EE Tr [Gé,i] = N Z ksEy Tr [Gg,i]
(=N—N4(N) I=N—Ny(N)

1 1 N
> ] _ _
= Kg £>ijl\£(N) (EEZ) N lzgoﬁ Tr [G&i],

where we used H(’\l) %H,QQ) for all \; < )\ as well as the fact that £, = E§1> < 0, which
is a direct consequence of the assumption ey < 0. Observe that

1N 1 X T N
N;)e Tr[Gg,_]—i—NlZ;)f Tr[G“]:NIZ]Jz Tr[Gy_] ZN 0) Tr[Gy_] =
and consequently we obtain for all N > N; and & with §; < £ < Ly — R the estimate
E_+FE, >ks; min EEZ, (2.2.5)

(>N—Ng(N)

where E is defined in Eq. (2.2.2). Furthermore, Assumption 2.1.1 enables us to apply the
results in [71], which tell us that lim, %E@ = ey, and since N — N, (V) T, 90 we obtain that
—>00

mings - n, (v ¢ e T enas well. For R > 0 and n € N, let us define Ly := &+ (2n+1)R.
Combining Inequalities (2.2.3) and (2.2.5), we obtain

.1 2c K 2¢
11m1an|:(1+n>ENrL05 EN] (/{g—l)eH———vR—;.

N—o RZ

Since k5 < 1 and eg < 0, we can choose Rs and ngs large enough, such that g5 :=
(ks — 1)en — 42 — VR, — i—‘; > 0. With the choice Ly(d) := &y + (2ns + 1) Rs we conclude
()

N—>w N—o ng

lim 111f]1[ [ENTL[)((;) 5 — EN] > lim inf]i[ (min l(l + 20) ENr10(5).,65 0] — EN)
> min (S5, —en) > 0.
[
Corollary 2.2.7. Let Assumption|2.1.1 hold and ¥ 5 be a sequence as in Lemma 2.2.3. Then,

hm lim sup (ny . L>\1/ =0
Low N,

for any r € {1,...,d}.
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Proof. In the following, let x : R — [0, 1] be a function with x(z) = 0 for x < 1 and
x(x) =1 for x = 2, such that y and /1 — x? are C®°. Then we define

1 & (220
Frnala) -=x<m;><( g ))

gvrna(®) = A= Fps and a = [ (XIS + 1VT=¥7[%). Note that we have
supp (fnrLs¥Un) QNJ,%’& Therefore the localization formula from Lemma 2.2.2| and the

result from Lemma 2.2.6 tell us that there exists a 75 > 0 such that for all L > 2L,(0) and

N = Ny(6)
4C
<HN>‘1/N = <HN>fN,r,L,5‘1’N + <HN>9N,7-,L,§‘1/N B 52NL2a
4C
> (En +9N) | v sOn ]+ Ex (1= fyreeUn]?) — NIZY

<HN>\1/N EN+

— NS 0. Furthermore, note that

N—w

x € supp (gn,rL,5) implies ny,. 1(7) < Zj X (21’7 )) < 26 and therefore

Consequently, 0 < ||fx,rsPn|? <

0 <nrpgy = i) gy s T ONLgn s suy < I frnsUn]? + 20 o 20

for all L = 2L(5). Hence hm limsup (nyz)y, =0 [ ]

—0 Noow

2.2.2 Convergence to a Single Condensate

It was shown in [71] that under quite general assumptions, including ours, on the decay and
regularity of the interaction potential v, there exists for any sequence of states ®, with
(Hn)g, = En + o(N) a probability measure v supported on the set of (not necessarily
normed) Hartree minimizers {u € H : Eufu] = eu(||u])}, where en(s) := infy, s Eulv], such

k
that a subsequence of the sequence ygii converges weakly to the state { (|u) <u|)® dv(u)

for all ke N, i.e.

1[4 B] - [0 (1w )™ B aviw) (2.26)

for any compact k particle operator B. In Lemma 2.2.8, we will lift this weak convergence
to a strong one for the sequence of approximate ground states Wy constructed in Lemma
2.2.3, by using the fact that mass cannot escape to infinity as a consequence of Corollary
2.2.7. In this context, strong convergence means that Eq. (2.2.6) holds for all bounded &
particle operators = 1 on the support of v.

Lemma 2.2.8 (Strong Convergence). Let Uy be the sequence from Lemma 2.2.3 and let

(k) denote the corresponding reduced density matrices. Given Assumption 2.1.1, there exists
a probab///ty measure i supported on R? and a subsequence N; i, such that for any bounded k
particle operator B

[ B — Ld 0 (Juo.y Cuod ) B| an(r).

where ug; is defined in Assumption |2.1.1.
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2.2. Bose—Einstein Condensation of Ground States

Proof. As was shown in [7I], any sequence of approximate ground states, such as ¥, has
a subsequence N, that converges weakly to a convex combination of product states over
Hartree minimizers, i.e. there exists a probability measure v supported on the set of Hartree
minimizers u with ||ul| < 1, such that Eq. (2.2.6) holds for any compact k particle operator
B. As the central step of this proof, we will verify that the measure v satisfies the identity
{ |ul*dv(u) = 1. By Corollary 2.2.7, we know that

lim limsup Tr ['yj(v) ]l[xT>L]] = hm lim sup (ny;, TL> = 0.
—00

—0 joo j—00
Since the reflected states x — Wy (—x) still satisfy the conditions of Corollary 2.2.7, we
obtain lim limsup Tr [7](\,) L <— L]] = (0 as well. Consequently,

—X  j 00

lim liminf Tr [%(v) ]l[,LL]d] =1.

L—oo  j—®

Since the operator 1[_, ;4 is not compact, we cannot immediately apply the convergence
(2.2.6) for B := 1_p rja. In order to obtain a convergence in a stronger sense, note that

by Lemma [2.2.4 we have a uniform bound on the kinetic energy of 7](\}],) , i.e. there exists a
constant C' < oo, such that

Tr [(T +1)2 (T + 1)%] <C

for all j € N. Since the trace class operators are the dual space of the compact operators,
there exists by the Banach-Alaoglu theorem a trace class operator v and a subsequence, which
we will still denote by NV, for the sake of readability, such that for any compact one particle
operator K
1) 1
Tr [(T+ 1)2 ) (T + 1) K] s Tr[y K.

J—0
This in particular yields Tr [7](\}) B] — Tr [(T +1) 2y (T+1)z B] for any compact
J Jj—00

B, and consequently (T'+ 1)72 v (T + 1)~z = {|uy{u|dv(u) by Eq. (2.2.6). Since

the kinetic energy is of the form T = ¢ (iV) with ¢(p) B~ oo, the operator K :=
p|—0

(T + 1)*% I_p e (T'+1) 2 is compact. Collecting all the results we have obtained
so far yields

-

1= lim liminf Tr[ ](V) ]l[,L7L]d] = lim liminf Tr [(T + 1) (1) (T + 1)% K]

L—ow j—© L—ow j—

. _1 _1 .
Jim Tr [(T+1) Sy (T + 1) n[_L,L]d] = lim fTr[|u><u| 1_p ] dv(u)

— [l Yo = [ et

As an immediate consequence we obtain that v is supported on Hartree minimizers u with
|u| = 1. By Assumption 2.1.1, we know that all such Hartree minimizers are given by ¢“u
with @ € [0,27) and t € R% Recall that |eug ) {ePug;| = |uo,y{uos| defines the same
density matrix for all complex phases €. Therefore, defining the measure p(A) := v ({uo; :
te A 0e0,2m)}) yields

2 B — fRd T | (Juo o) B | an(t) (227)
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

for all compact operators B. Since lim; Tr [fy](\}j] =1 = (o0 Tr[ fuosy (uoy| |du(t), this

convergence holds even in the strong sense, see [128], i.e. the convergence (2.2.6) holds for
all bounded operator B. [ |

Lemma 2.2.9. Let Uy be the sequence from Lemma 2.2.3. Foranye > 0 andr € {1,...,d},
consider the bounded two particle operator B, := 1z, < 1y, >—q + Ly, < Lz, Then

. 2) 1
hj{fn_)lczgf Tr [7N BE,T] > 5
Proof. With the help of the function fy ., := N(1\2f—1) Dz ]l[x(i)ée]]l[w@)?_e] we have

Tr [fy](\?)Bw} = J INer(@)]|Un|*de.

RN xd

Let a and ky be the sequences introduced in Lemma 2.2.3| and let IV be large enough such
that ay < e. Then, |[My, (21, ..., 2M)| < € for all z € supp (¥ ), and therefore at least
% — kn particles satisfy z, < € and at least % — kpn particles satisfy —e < x,.. Consequently

2 N ? 1
> = (S _ky) — o,
Iner®) 2w <2 N> N 2

and therefore lgrvnjgf Sansa fner(@)|¥n]? do = 1 [ ]

Lemma 2.2.10. The measure i from Lemma 2.2.8 is supported on {0} = R, i.e. j1 = &y.

Proof. Let us define the density function p(x) := |ug(z)|?, as well as the marginal density

function p.(z,) := {p(z) dzy...dz,_1dz,41...dzy and the marginal measure y,.(A4) :=
2

1t ([z, € A]). Note that the two particle density function corresponding to (|u,) <u07t|)® is

given by p(x — t)p(y —t), and therefore Lemmata 2.2.8 and 2.2.9 imply

1 i 2
5 < hjm Tr [7](3]_) Bey,} = fTr [(|u0’t><u0,t|)® Bﬁ,r] du(t)

]Rd
tr+e [oe]
=4 fmmmr jmmmem>
R —00 tr—e

e—0

=2 f fr(tr+€) (L= fr (tr =€) dpe(tr) —2 2 J frte) (L= fo(8:)) dpn(ir)

R

with the definition f,(s) := {*__ p,(x,) dz,, where we have used dominated convergence and
continuity of f,. Hence we obtain the inequality

1

| e 0= n) ane) = 5

Since the function h(q) := ¢(1 — ¢) is bounded by ; and attains its maximum only for ¢ = 1,
we conclude f,(s) = % (-almost everywhere. On the other hand, by Assumption 2.1.1 we
know that §*  p.(z,) dz, = 1 if and only if s = 0 and therefore f,(s) # 5 for all s # 0. This
together with the fact f,(s) = % (-almost everywhere, implies y,, = dg. Since this holds for
all marginal measures p, with r € {1,...,d}, we conclude p = . [
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2.3. Fock Space Formalism

By choosing the bounded one particle operator B as the projection onto the state ug, Theorem
2.1.2 is a direct consequence of Lemmata [2.2.8 and 2.2.10.

2.3 Fock Space Formalism

In order to prove Theorem 2.1.4, we will make use of the correspondence between the Hartree
energy &y and the Hamiltonian Hy. For a rigorous treatment of this correspondence, we first
need to formulate our problem in the language of second quantization. In the subsequent
Definition 2.3.1| we will define the necessary formalism including the relevant Fock spaces
with the corresponding creation and annihilation operators. Following [72], we will use the
excitation map Uy in order to arrive at an operator Uy HyUx' that only depends on modes
a;, © > 0, describing excitations, and not on the mode aq corresponding to the condensate uq.
The usefulness of this stems from the fact that all the modes a;, ¢ > 0, can be thought of as
being small due to Bose—Einstein condensation.

Before we start introducing the Fock space formalism, let us fix some notation. In the following
we will repeatedly use the notation A - B for the composition of an operator B : H1 —> Hs
with an operator A : Hy — H3, especially when we want to stress that the involved operators
map different Hilbert spaces. In order to have a consistent notation, we will occasionally write
expectation values as operator products by identifying an element u € L*(R) with a linear
map C — L*(R), e.g. we write u' -7 - u for the expectation value (T’ . Furthermore,

recall the real orthonormal basis wug, u1, ..., uq, ugs1, ... from the introduction, where uyg is

the Hartree minimizer from Assumption 2.1.1 and uq, ..., uy form a basis of the vector space

spanned by the partial derivatives 0,,uo, ..., 0;,uo. Moreover, let us define the spaces
H:=L*(RY),

HO L= {UO}L cH.

Definition 2.3.1. Let us denote with a; := a,; the annihilation operator corresponding to
u; € H and Nz, := Z;D:k a;faj. In the following, we will repeatedly use the Fock spaces
F = F(H), Fo := F(Ho) and Fepr = Lpv<anFo © Fo, where N := Ny, For any

k € Ny we define the operator axy, : dom (v/N=) — FQH as
o0
As) 1= Z a; @ uj,
j=k

as well as the re-scaled operator b=, = Z;D:k b @u; = ﬁa%, and the re-scaled and
restricted operator IL := %N‘RN : F<n —> F<n, where we suppress the N dependence

of b~; and L in our notation. Furthermore, given two operators X = Z;‘io X, ®u; :
dom(X) — F@H and Y = X7 YV, ®u; : dom(Y) — F ® H defined on subsets
dom(X),dom(Y) ¢ F, we define the product operator X ® Y : D — F ® H ® H, with
D:={VeF: ng‘:o | X:Y;¥|? < o0}, as
[0'e)
XQY:=XQ@ly-Y =) (X¥)®u®u,

1,5=0

where we use the convention that tensor products are performed before operator products, i.e.
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

Remark 2.3.2. Recall that T is an operator acting on the one particle space H and
0 :=v(x — y) is an operator acting on the two particle space H® H. Then, 1@ T is an
operator on F ® H and 1r ® v operates on F Q@ H ® H. With this, we have a convenient
way to express double and four fold sums of creation and annihilation operators

e}
Lo 17 @T -boo = ), Th; blby,

i,j=0

oo
(b=o ® bzo)T' lr®0-b20 Q@ bzg = Z Vijire bzbjbkbz-
i,kl=0
In order to avoid issues with operator domains, we will define products of the form (b>0 ® b>0)T-
1r®0-bsg ® bso as quadratic forms, i.e. we define the quadratic form

<(b>0 ® b>o)T. (1]:@@) . (b>0 ® b>0)>\1/ = <1f®@>

b;o@bzo\lf

For the sake of readability, we will suppress the tensor with the identity in our notation, i.e.
we will simply write b;o - T -bsp and (bso ® b>0)T - 0 bso & bso.

In the following, we will make use of the fact that we can express the Hamiltonian in Eq. (2.1.1))
in terms of the rescaled creation and annihilation operators as

N™Hy =bly- T-bsoo + (bso ® b=o) - D+ bag @ bso. (2.3.1)

o(N—1) 0

Since the Hamiltonian H ) is only defined on the subset ®2V"H < F, the equation above
only holds in this subspace of fixed particle number N. In order to focus on excitations above
the condensate, we follow the strategy in [72] and map the Hamiltonian Hy to an operator
which acts on the truncated Fock space F<y of modes orthogonal to ug with the help of
the excitation map Uy. We will think of this map Uy as the quantum counterpart to the
embedding of the disc {z € {ug}* : ||z] < 1} into the sphere {u € H : |u| = 1} via the map ¢
defined in Eq. (2.1.10). The proof of the following properties of Uy is elementary and is left
to the reader.

Lemma 2.3.3. Recall the definition of the operator 1L in Definition|2.3.1 and the excitation
map Uy : @Y H — Fey from Eq. (2.1.12)

iO il im 7"1 im
UN(u0® Rl Ry Qs u® ):ZU? R Qs u®™,

for non-negative integers iy + - -+ + i, = N. Under conjugation with this unitary map Uy,
we have for all i, j = 1 the following transformation laws

Uvbibo Uyt =1 -1,
Uy blbo Uy' = blV1—L,
Uy bib; Uy = blb;.
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2.3. Fock Space Formalism

We can summarize the transformation laws from Lemma [2.3.3 as follows: In any product
of the form b}bj we exchange by with the operator 4/1 — L. In analogy to this, the zero
component of the embedding ¢(z) defined in Eq. (2.1.10) is given by ) - «(z) = /1 — [2]2.
In order to express Uy HyUR", let us first compute

U (bLO-T-bZO) Uy = Uy Re | Too bob0+22n0 blbo + Z T, 0o, | UR!
=1 i,7=1
= Re [TOO (1-L +2ZTzO biv1—1L + 2 T, bTb]
i,7=1
:me[ug-T-uo (1—1L)+2b>1-T-u0-\/1—L+b>1-T-b>1],
where the real part of an operator is defined as Re [X] := X%XT Similarly, we can express

the transformed operator Uy (2<N ) (b=0 ® b>0) Db ® b>0> Uﬁl as

—

T

D ug @ ug fo (L) +2 (bs1 @ ug) - - up ® ug f1 (L)

(b>1 ® b>1)T D up ® up fo (L) + (b1 ® Uo)T 0 ba1 @ g f3 (L)
Uy ® b>1) bs1 ® g f1 (L) +2 (b1 @ b>1)T 0 - bzt @ ug f5 (L)

(b;l@bzl) Db @ bt o (1) |, (2.3.2)
)

with fo(z) := N 1l -z)1-z=N1), filz) = 50—z - N Y)W1-z folz) =
vaVl—z = NWil-u fi(z) = fulzr) == §5(1 —2), fs(z) = §5v1—z and
fo(z) := 5. In order to keep the notation compact, let us name the essential building
blocks involved in the expressions above.

Definition 2.3.4. We define A := uf - T -ug, Ay :=2bL, - T -ug and Ay := L, - T - bsy,

as well as By := (uo ® uo)Jr V- ug & ug and

%e[l (uo ® uo)

N

N | —

W
\_/

1
2
(b=1 ®U0) -0 up ® u,

=2 (0 >1 &
82:2(6217521)T'@'U0@U07 2(
1
l332 ZZ(b 5(

05

® &

'b>1 Uo,

b

@)

\v
\@

)
bor)'

With these building blocks at hand, we can express the transformed Hamiltonian as

.y

W

\®
(<43
®

1 1

\%

Uo)T 0 bz1 ® uo,

&

\Y%

2 6
UnN " H Uy = e [AM/l - LQ””] + N Re[B,f, (L)]. (2.3.3)
r=0 r=0

In the subsequent Lemma 2.3.5/ we will derive estimates for operator expressions of the form
B, f (). Such estimates will be useful for the identification of lower order terms in the energy
asymptotics in Eq. (2.1.8).

Lemma 2.3.5. Let us denote with 7y, the orthogonal projection onto ]-"< v - Given Assumption
2.1.1, there exists a constant c such that for functions f : |0,

oy Re [Buf (L)) mar < e sup [f ()] \/7 (2.3.4)

x<Al
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

for all M < N, and for all t > 0 and i € {2,3,4} we have

M
s Re [Bif W] may < esup [F@)] g5 (E+07 0L (T+1) b2,
xé% N

M
7 Re [Bs f (L)] my < ¢ sup |f(z)] N (t +t7 0L, (T +1) 'b>1> ;

M
TSN

M
bT>1 (/\ T+ A) b>1 T M Re [BG]

_ M
—oN bl (AT +A) by,

2N
where the constants \, A are as in Assumption 2.1.1.
Proof. Using the Cauchy—Schwarz inequality as in Lemma 2.8.1 with @ := 15, ® 0, A :=

b1 ® ugmy and B 1= 2uy & ug f (L) mpy, and defining k := (u0®u0)Jr 0] - up ® ug, we
obtain for any s > 0

tmp Re [Brf (L) = +Re[AT-Q - B <s A" Q|- A+s7' B'|Q|- B
=S Ty (b}l ® UO)]L . |@| . b>1 & ug T + 5714]%‘71']\4]‘. (L)QFM.
By Assumption 2.1.1, |#| < A 15 Q (T + 1). Let K := A ufy- (T + 1) - ug, then

M

M(b>1@U0)T'|@|'b>1@U0'7TM KWM5>1 boy my < KN

2
Using marf (L) Ty < (supmg% |f(x)|) and choosing s := 4/%supm<% |f(x)] yields
Eq. (2.3.4). The other inequalities can be derived similarly. |

The following two Lemmata will be useful tools in the verification of the lower bound of the
energy asymptotics in Theorem 2.4.13|

Lemma 2.3.6. There exist constants ¢, > 0, such that for N = 2
Sl T boy — < UyN"HyUR! (b;1 T boy + 1) . (2.3.5)

Let us further denote with P, the orthogonal projection onto 1 xr—n)Fo. Then there exists a
constant k, such that for N = 2

N
P, (UyN'HyUR") P, < k (UvN 'HyUy' + k) .

n=0

Proof. Recall from Lemma 2.2.4 that N "'Hy > %Z;VZITJ —dc =9 b;o T - bso — dc.
Therefore we have the estimate

UnNTHNUR' = 6 (uo- V1 — L+ b21) - T+ (ug- V1 — L+ bsy) — e

)
>§b;1-T-b>1—5ug-T-u0(1—1L) Se=0bL, T - boy — 7,
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2.3. Fock Space Formalism

with 8 := ¢ and ¢ := Sul) - T - ug + dc. The upper bound in Eq. (2.3.5) follows analogously.

In order to verify the second inequality note that the map A +— >, P, AP, is monotone and
S P, (b;1 T bgl) Po=bl, T3, P2=bL, T b.y. Hence,

N N
D P (UNN HNURY) Pa< D) Pa (bl Tobort¢) Py
M=0 M=0

=c b;l T by +c< 0 ' U]\/N_lH]\;U]§1 + (c+ 5_102).

In the subsequent Lemma we are going to verify that we can exchange the N-dependent
functions f; in Eq. (2.3.3) with N-independent functions /1 — x 7 for suitable B;, without
changing the operator substantially. This will be convenient in the lower bound of the energy
asymptotics, since there we have to verify an operator Taylor approximation, which will be
more convenient to do for the functions /1 — x % than for the functions fi

Lemma 2.3.7. Let éo =4, @1 =3, o :=P3:=p04:=2, B5:=1 and Bs := 0, and let us
define the operators Ay and By acting on Fq as

Ay : = i Re [ATMQ_T] , (2.3.6)
By:= ZG] Re [Brﬂﬁr] . (2.3.7)

Then, given Assumption |2.1.1, there exists a constant K such that for all M < N
~ o~ C |M
7 (UNN—lﬂNU];l—AN—BN) < A 7 (b;1 T boy + 1) . (2.3.8)
Proof. According to Eq. (2.3.3), we have
UnNHyUy' = Ay — By = 3 9Re [Br (fr (L)~ v1-L )] , (2.3.9)
r=0
with the functions fy, ..., f¢ from Eq. (2.3.2). Note that for all N > 2

+mpmBo (fo(L)—(1 —L)*) mar = i;ﬁoo,oo mar (fo(L)—(1 — L)?) mar

M

1 1
< — N — 1 - 2 < - D AT AN AT
2|Uoo,00| 535 | fo(z) = (1 —2)7| 2|UOO,OO| (N —1)N

=N

Furthermore, f, (z) = vI—2"" + O (+) and therefore we obtain with Lemma 2.3.5 and the
choice t =1

M
s, (L) ~vVI—a ™) mar < a3 (Bl T by 1),
for a constant C' and r € {1,...,6}. |
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

2.4 Asymptotics of the Ground State Energy

We start by making the formal definition of the Bogoliubov Hamiltonian H in Eq. (2.1.6)
rigorous in Subsection 2.4.1. In the following Subsection 2.4.2, we will verify the upper bound
in the energy asymptotics in Eq. (2.1.8). We will then discuss the proof of the lower bound in
Subsection 2.4.3| while the verification of the main technical Theorem [2.4.12 for the lower
bound will be postponed to Section 2.5.

2.4.1 Construction of the Bogoliubov Operator H

In the following Lemma [2.4.1 we will identify the Hessian Hess|,,En, and give a precise
definition of the Bogoliubov operator in the subsequent Definition 2.4.3. Furthermore, we
shall see that the operator H is indeed semi-bounded. In the following let us denote with
dom [A] := dom(v'A) the form domain of an operator A = 0.

Lemma 2.4.1. Given Assumption|2.1.1, the Hessian of the Hartree energy £y at the Hartree
minimizer uq is given by

;Hess|uO5H[z] — 2 Qu-z+ Gl 2@+ (2®2) - Gy, (2.4.1)

(A

where Gy := %@ U @ ug € Ho ®s Ho ' Is in the closure of Hy Qs Ho with respect to the

norm |G|l := |12 @ (T + 1)"2 - G|, and the operator Qy is defined by the equation
AQuozi=2 T 2+ 2Qu) b2 @up — 2T 2+ (e ®2)T D 2@

for all z € Hy ndom [T'], with py = u(T) T -ug + (ug ®@uo) 0+ ug @ug. Furthermore, Qy is
non-negative and satisfies v (T|y, + 1) < Qu + 1 < v(T|y, + 1) for some constant v > 0.

Remark 2.4.2. By Assumption 2.1.1, we know that ¥ -1y ®uy € Ho @s ’Ho”'H*, which follows
from the fact that 1 @ (T +1)"2 -9 - 13, ® (T + 1)~ is a bounded operator and that

up € dom [T']. For such elements G € Hy ®s HOH'”*, we have that G,e = 14 @ (T + 1)"2-G
is an element of Hy ®, Ho and therefore we can define for all z € dom [T']

Gl 2@z := Gieg-z®((T+1)% -z).

In a similar fashion, we define the operator G - b=1®b=1 := G, - 021® ((T +1)2 - b>1).

Proof of Lemma|2.4.1. With the help of the embedding ¢ defined in Eq. (2.1.10), we can
express the Hessian as Hess|,,En[z] = D?|o (€ o ¢) (2), where D?|,, f(z) denotes the second
derivative of a function f in the direction z evaluated at z;. An explicit computation yields
Eq. (2.4.1). Regarding the second part of the Lemma, observe that Qy = 0 follows from the
fact that we can always find a phase 6, such that

1 .
21 Qu-z= §Hess|uO8H[ewZz] > 0.
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2.4. Asymptotics of the Ground State Energy

Furthermore, note that |v| < A(T + 1) implies + (13, @ uo)" - 0 - 13, ® ug < ¢ 13, with
¢:=u} - A(T +1) - ugy and

(0@ 1ag) 8+ Ly, @ttp <~ (0@ agg) 9]0 @ Lygy + — (Ly @) [ Lgy @ig < 1
L\ Ho Ho 0 = 2 0 Ho 0 Ho 2 Ho 0 Ho 0 = Ho -
Hence Qu = 0 implies Qu+1 > Tl +1— 2c+|pu|+1) = Ty +1— (14 2¢+ p)(Qu + 1),
and therefore (2 4+ 2¢ + u)(Qu + 1) = Ty, + 1. Furthermore T' = 0 implies
Qu+1<T+ 2+ |p| < (14 2+ [pu))(T|p, +1).
|

Definition 2.4.3. Let the selfadjoint operator Qy and Gy € Hy ®s ”HOH'”* be as in Lemma
2.4.1. Then we define the Bogoliubov operator H as

H := aLl . QH “Qx1 T G;I A= @ a=1 + (Cl,)l @ a>1)T : GH (242)

Theorem 2.4.4. The quadratic form on the right side of Eq. (2.4.2) is semi-bounded
from below and closeable, and consequently defines by Friedrichs extension a selfadjoint
operator H with inf o (H) > —oo. Furthermore there exists a sequence of states V), €

dom [CLL1 (T +1)- a>1] N Feur, Y| = 1, such that

(H)g,, — info(H).

Additionally there exists a constant r, > 0 such that for all r < r, the operator H — rA
satisfies inf o (H — rA) > —oo as well, where

13 2
. i t
A= —4;1 (aj - aj) +aly, - (T+1) asqg. (2.4.3)

The proof of Theorem 2.4.4 is being carried out in Appendix 2.7. We emphasize that H is
degenerate, in the sense that 27 - Qu -2+ Gl - 2® 2+ (2 ®2)" - Gu = 0 for any z in the
vector space spanned by {uy,...,uy}, and therefore we cannot directly apply the results in
[98]. We also note that the semi-boundedness of Bogoliubov operators with degeneracies has
been verified in [59] under the additional assumption that @y is bounded.

2.4.2 Upper Bound

With the essential definitions at hand, we will derive the upper bound in Theorem 2.4.6 using
the representation of Uy HyUpy' derived in the previous section. We follow the strategy
presented in [72], by sorting the operator Uy HyUx" in terms of different powers in b~ and
identifying the zero component as the Hartree energy Ney defined in Eq. (2.1.2) and the
second order component as the Bogoliubov operator H defined in Eq. (2.4.2).

Lemma 2.4.5. Let Assumption 2.1.1 hold. Then there exists a constant C' such that

3
M\ 2
tmy (UNNT'HNUR' —en — N7'H) my < C (N) (1 +al, (T+1)- a>1)

for all M < N.
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

While Lemma 2.4.5 will be useful for proving the upper bound in Theorem 2.4.6, it is
insufficient for proving the corresponding lower bound. This is due to the fact that Bose—
Einstein condensation only provides the rough a priori information M = o(N), see also the
proof of Theorem 2.4.13.

Proof. Observe that uy minimizes the Hartree energy, and therefore

1
eq = ||iﬁl£15H[U] ZUS'T'UO—F§(UO®U0)T'@-UO®UO _ A+ B,

where A; and B; are defined in Definition 2.3.4. Since Exfuo] < Enfu] for |u| = 1, we obtain
by differentiation in any direction z 1 wuy

0=Dléulz)=uh -T-z+ 20T ug+ (zQup)" - 01 ®ug + (1o @ue) - 2@ uy,
and consequently uj T ug + (uy ®u0)T V- ug®ug =0 for all j = 1. Hence,
A+ By —2(b>1 T- u0+(b>1®u0) @-uo@uo) =0.
By Definition 2.4.3 and Lemma 2.4.1, we have
N 'H = Re [A2+Bg+Bg+B4—MH 5;1 '521]7

and consequently we can write for any M < N, using Eq. (2.3.3),

u (UNNTHNUN — en — NT'H) my = myRe [X] 7

with
4 6
X = By (fo (L)~1+2L)+ By (fi (L)=v1-L)+ > B, (f, L)-1)+ . B, f, (L),
r=2 r=>5
where we used A;v/1 — L = —B;+v/1 — L. In order to estimate the first contribution, note

that |fo(z) — 1+ 22| < 2 (N 1)N for all () x < & and therefore

M2

1
i?TMBO (f() (L) — 1 + 2L) ™ = i§@007007TM (f() (]L) — ]. + 2]14) T M < |@00700|m.

Recalling that b>; = ﬁa% and Lemma [2.3.5) yields

M M

tmp By (fi (L) —vV1—L)my < v\ N

Furthermore we obtain for r € {2, 3,4} by Lemma [2.3.5 with the choice ¢ = ﬁ together
with the bound sup, . x | fr(z) — 1] < C% for a constant C' > 0,

3

M=
By (fr (L) = Dy < Oy ( tal, (T +1)- a>1) .
The estimates for Bs f5 () and Bgfs (L) can be obtained analogously. [ |
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2.4. Asymptotics of the Ground State Energy

Theorem 2.4.6 (Upper Bound). Let Ey be the ground state energy of Hy, ey the Hartree
energy defined in Eq. (2.1.2) and let H be the Bogoliubov operator defined in Eq. (2.4.2).
Given Assumption |2.1.1, we have the upper bound

Ex < Neg+ me(H) + ON o (1) .

Proof. Let v be the constant from Lemma 2.4.1, such that the inequality Qg + 1 <
v (T|y, +1) holds. For all ¢ > 0, we know by Theorem 2.4.4 that there exists a state
U € Fyy with M < oo such that x := (al, - (T + 1) “az1)y < o and (H),, <info (H) +e.
Applying Lemma 2.4.5 yields the estimate

M
(Hygry <N en+Hyy +C My (14 by - (T +1) - az),)

M
<N€H+infU(H)+€+0MQ/W (1+r).

2.4.3 Lower Bound

In the following, we will give the proof of the lower bound in the energy asymptotics in
Eq. (2.1.8)). First of all let us define the operators ¢, p : dom [N] — Fy ® Hy as

d d
=Y gou =33 (b+i)eu, (2.4.4)
j=1 j=1
d 1
b Z ®Ug = ? Z (bj — b;f) ®Uj, (245)
j=1 =1

which satisfy the commutation relations [py, ¢¢] = 57+ 0k¢. Recall that due to the translation-

21N
invariance of &y, the Hessian Hess|,,, &y is degenerate on the real subspace {27:1 tjuj : t; € R},

Therefore the Bogoliubov operator H, which we have defined in Eq. (2.4.2) as the second
quantization of the Hessian Hess|,,&n, is degenerate with respect to the operator ¢, i.e. it
can be expressed only in terms of p, b-4 and bld. Due to this degeneracy, we cannot directly
apply the strategy pursued in [72] where the residuum of the Bogoliubov approximation
is being estimated by the Bogoliubov operator itself. The problem is that the residuum
UnHyUxR' — Ney — H includes contributions depending significantly on the modes q;, like qf,
which we cannot compare with the Bogoliubov operator H due to its degeneracy. Furthermore,
it is insufficient to compare the residuum with the (rescaled) particle number operator
%N, which indeed dominates terms like qj?, since we only have the a priori information
<N>UN\PN = o(N) provided by Bose—Einstein condensation. The novel idea of this Subsection
and the subsequent Section 2.5 is to apply a further unitary transformation Wy such that
the residuum WNUNHNU]?,lW]T,l — Neyg — H no longer includes this kind of contributions
and consequently we can compare the residuum with the Bogoliubov operator H.. This leads
to the important inequality in Eq. (2.1.13). As a consequence we observe that, in contrast to
the particle number operator V, the Bogoliubov operator satisfies (H);, i, = O(1), which,
a posteriori, justifies estimating the residuum by the Bogoliubov operator.
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

Before we are going to construct a unitary map Wy satisfying Eq. (2.1.13)), we are solving
the corresponding problem on a classical level, i.e. we are going to construct a map F which
satisfies Eq. (2.1.11). We will then define YWy as the quantum counterpart to F.

Definition 2.4.7. For any y € R let us recall the functions g, () := uo(x — y) defined in
Assumption [2.1.1 and let us define the map A : R — R?

AMy) = (u;r . uoyy)jl e RY.

Note that u; and ug, are real-valued functions, and therefore A is indeed R?-valued. Since
y > ugy is a C* (R, H) function by Assumption 2.1.3, D,A(0) has full rank and A(0) = 0,
there exists a local inverse A\™! : Bys(0) — R? for § > 0 small enough, where B,(0) = R?
denotes the ball of radius  centered around the origin. Let 0 < ¢ < 1 be a smooth function
with o|p,0) = 1 and supp(c) < Bss(0). Then we define the function f: R —

£t : = a(t) [uo,x_l(t)—(ug U et ) Zt uj] = D filu,  (246)

with f;(t) := o(t)ul - ugr-1(). Note that ¢ — f(t) is a C? (R% H,) function, due to the
regularity of y — ug,. Furthermore, f(0) = 0. We can now define the map F': Hy — H,

for all z = Z?Zl (tj +is;)uj + z=q € Ho with t,s € R? and 2-g € {u1,...,ug}* as
d
Z (t; +is)) uj + z=a + f (1), (2.4.7)
7j=1

where s = s; — Im [0; f(£)" - 2=

The essential property of F' is that ¢ o F', where ¢ is the embedding defined in Eq. (2.1.10),
maps the set {Z?Zl tjuj : [t| < &} into the set of Hartree minimizers

LOF<ZtU]> —L(Ztu]-l-f >—U0A (1)

for all |t| < §. This also implies the central inequality Eq. (2.1.11), as will be demonstrated
in the introduction of Section 2.5.

The arguments so far are based only on the fact that F' shifts the component 2.4 by an
amount f(t). The identity (v o F) (Z?thjuj) = g -1( would still hold if we used s;

instead of s, in Eq. (2.4.7). Nevertheless, it is natural that F' shifts the s component
as well, since this shift makes sure that dF' preserves the symplectic form w(zy, z2) =
Re[21]" - Tm[z] — Im[z]" - Re[z,]. Therefore it makes sense to look for a quantum
counterpart Wy, which we are going to define in the subsequent Definition [2.4.8. In analogy
to F' preserving the symplectic form w, the unitary map Wy is preserving the commutator

bracket.
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2.4. Asymptotics of the Ground State Energy

Definition 2.4.8 (Unitary Transformation Wy : Fy — Fy). Based on the fact that the
operators qi, . . ., qq defined in Eq. (2.4.4) commute, we can assign to a function h : R — H,
with components h;(t) := uj - h(t) an operator h(q) : Fo — Fo ® Ho

h(g) =D hilar,- - 4a) ®uj,
j=1

where the operators h;(qi,...,qq) are well defined via functional calculus. Let f be the
function defined in Eq. (2.4.6), then we can define the unitary map Wy : Fo — Fy as

Wy = exp [Nf(q)T vbsa — Nbld . f(q)] = exp [N i filar, ..., qq) (bj — b;)] ,

j=d+1
(2.4.8)

where we have used that uj - f(t) =0for je{l,...,d}. Note that ¢q,...,qqs and b4 have
an N dependence, which we suppress in our notation. Furthermore, we define the transformed
operators

p; L= Wij WJ:/'la

d
Pi=WypWy' =) 0 ®u;,
j=1

L' : = WyLWy,

where p is defined in Eq. (2.4.5) and L is defined in Definition 2.3.1. Note that the domain
of L' is WxnF<n, since L is only defined on F<y.

That the unitary map Wy is indeed a quantum counterpart to the classical map F' defined in
Eq. (2.4.7) can be seen from the transformation laws described in the following Lemma 2.4.9.

Lemma 2.4.9 (Transformation Laws). We have the following transformation laws

Wh b, Wi' = bj + fi(q) for j > d,
WNQJ'WZTII = dqj fijE {17"'7d}7
p; :p] _jm I:aujf(q)T 'b>d] forj € {]-7"'7d}7

and therefore Wy b= ng =q+ip +bqa+ f(q).

The proof of Lemma 2.4.9 is elementary and is left to the reader. Before we state the main
Theorems of this subsection, let us define what it means for a sequence of operators Xy to
be asymptotically small compared to another sequence Yy, in a suitable sense that is specific
to our problem.

Definition 2.4.10. We say that sequences of operators Xy, Y with Yy > 0 satisfy

XN = O*(YN)7

39



2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

in case for all € > 0 there exists a § > 0, such that |(Xx)y | < e (Vi) forall M, N with

% < 0 and all elements ¥ € Wy F<ps. Furthermore, we say that sequences of operators

XN, YN with YN =0 satisfy

in case there exists a constant C' and &y > 0, such that |(Xx)y | < C (Yy), for all M, N
with % < dp and all ¥ e Wy Fen.

Remark 2.4.11. Let us denote with 7y y 1= Wx T W]([l the orthogonal projection onto
the subspace Wy F<pyr © Fo. Then the statement Xy = O, (Yx) holds true if and only if
there exists a constant C' and dg > 0, such that

TM,N Re [/\XN] TM,N <C 7TM7NYN7TM,N (249)

for all A € C with [A| = 1 and 22 < &,. Similarly, Xy = o, (Yy) is equivalent to the existence
of a function € : R" — R* with (lsir% €(6) = 0, such that

M

Tu,.N Re [)\XN] TMN S € (N) TMNYNTMN (2.4.10)

for all Ae C with |A\| =1 and M < N.

Theorem 2.4.12. Recall the o,(-) notation from Definition 2.4.10, the Hartree energy ey
defined in Eq. (2.1.2) and the Bogoliubov operator H defined in Eq. (2.4.2), and let us define

1
Ty :=p -p+ bld- (T+1) by + N (2.4.11)

Then, given Assumptions 2.1.1 and |2.1.3, we have

WnUN) N Hy WaUy) ' = en + N7HH + 0, (Tw) .

The proof of Theorem 2.4.12|, which in particular gives rise to a rigorous version of the key
inequality Eq. (2.1.13)), will be the content of Section 2.5. With Theorem 2.4.12 at hand we
can verify the lower bound in the main Theorem 2.1.4.

Theorem 2.4.13 (Lower Bound). Let Ex be the ground state energy of Hy, ey the Hartree
energy defined in Eq. (2.1.2) and let H be the Bogoliubov operator defined in Eq. (2.4.2).
Given Assumptions|2.1.1 and |2.1.3, we have the lower bound

EN = NGH + 1nf0(H) + ONS o (1) .

Proof. According to Theorem 2.1.2, there exists a sequence of states W € ®év H,
such that <HN>\I'N < Ex + ay with ay e 0 and
—00

Uyl =1,

EN = <bT>1 'b>1>UNq;N = <b;1 'b>1>\pN Nj)oo 0.

Let us abbreviate ﬁIN = UNHNU]\_,1 and let 7, be the orthogonal projection onto the space
F<ur as before. Furthermore, let 0 < f, g < 1 be smooth functions with f2+¢* =1, f(z) =1
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2.4. Asymptotics of the Ground State Energy

for 2 < 3 and f(z) = 0 for z > 1, and let us define fy(x) := f (35) and gu(z) := g (55).
Then the generalized IMS localization formula in [78, Theorem A.1], in the form stated in
[72, Proposition 6.1], tells us that

Hy = far (N) Hy far (N) + gar (N) Hy gar (N) = Rasw,

with RMN < %Zf o Pr (ﬁ[N —EN) P,, where P, is the orthogonal projection onto
Fen N F N = 37 ala; and R := 16 (|f'|% +]¢'|2,). Let us define My as the

smallest mteger larger than /ey N and Ni. The exponent % is somewhat arbitrary and we

could use any sequence ¢y with Nz « Uy « N instead. Using the estimate 1 — fy;(2)? < %x
yields

2 2N 2
px == fary N)Dpyuy < m<N>UNwN = m@; b2y S N

Let us define @y = (1 — py) 2 fay (N)UnTy. Using Lemma 2.3.6 and the inequality
HN EN y|e|ds

Enx+ay= <EIN>UN\IIN =(1-pn) <ﬁ[N>¢N +PNEN— — </fHN+k‘2N ENduvuy -
(2 4. 12)

Since limy N™'Ey = ey, we obtain that Sy := -5 <kﬁIN + k2N — En)yyw, Satisfies
N

R4 (k= 1)Ey + kay + K*N) — 0.

<
BN\ N3 N-—o

We can now rewrite Inequality (2.4.12) as

~ an + By
> (H -
N < N><I’N 1— ON
Let > 0 be as in the assumption of Theorem 2.4.4 and recall the definition of A in Eq. (2.4.3).

Note that NTy = A + 1. By Theorem 2.4.12 and Remark 2.4.11, there exists a function €
with lims_,q €(d), such that

Fiya, = N et @y, ¢ (50) @+ Do,

v () ) ()
> N ey + inf o (H) + :e (%V) (info (H—rA) —info (H)) —e (]\]{;V)

for all N large enough such that 1 — %e (%) > 0. This concludes the proof, since

info (H —rA) > —oo by Theorem 2.4.4. |
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2.5 Taylor Expansion of (WxUy) Hy WxnUy)™"

This section is devoted to the verification of the main technical Theorem [2.4.12, which is the
rigorous version of inequality Eq. (2.1.13). Before we explain the proof, recall the definition of
¢ in Eq. (2.1.10) and F in Eq. (2.4.7), and let us verify the classical counterpart Eq. (2.1.11).
For this purpose we define the functional

E'z) :=Eu L (F(2))], (2.5.1)

which satisfies according to the definition of F' that & (t) = ey for all t € R? with ¢ :=
Z;l=1 tjuj, i.e. F flattens the manifold of minimizers of &y o t. We will verify Eq. (2.1.11)
by sorting the functional &£ in terms of powers in the variables s and z.4 for any z =
Z?:l (t; +isj)u; + 224 € Ho with 224 € {uy,...,uq}. In the following, let m(z) :=
Z?=1 isju; + z-q be the projection onto V := 7 (H,). We can now sort £'(z) in terms of
powers in s and z-4, i.e. in terms of powers in 7(z), using a Taylor approximation with
expansion point

E'z) =&t +n(2) =& (t)+ D, &(n(z)) + ;D2|t &'(m(z)) + { HigherOrders }
=&t )+ Dyl £'(2) + ;D%h &'(z) + { HigherOrders }, (2.5.2)

where D|,,E'(v) is the first derivative of £ in the direction v at 25, D?,,E'(v) is the
second derivative in the direction v, and Dy|,,& (v) := D|.,& (7(v)) and D}|.,E (v) :=
D?|,,& (m(v)) are the derivatives only with respect to directions in V. Using &' (t ) = ey,
Dyl & = 0 and the fact that D3|, &'(v) = (1—5) D}lo £'(v) for ¢ small enough by
continuity, we formally arrive at Eq. (2.1.11), which is claimed to hold only for small
2 = [t* + |7 (2)[* anyway.

By sorting the expression (WxUy) Hy WxUxy) ™" in terms of powers in the operators p and
b~q, we will verify that we end up with the same Taylor approximation we obtained by sorting
E'(2) in terms of powers in the variables s and z.;. More precisely, our goal is to verify that

) 1
(W Un)N"Hy (WyUy) " =E(q)+ Dy| € (bgl) +5DbE (b>1) to. (Ty) (2.5.3)
=ey + N 'H + o, (Ty),

where £ : dom [T'] — R is a differentiable extension to all of dom [T'] of the functional £’|, ,
restricted to the ball B, := {z € Hondom [T : ||z| < r} for a sufficiently small » > 0. Note
that the spectrum of the operators ¢y, ..., g4 is the whole real axis R. In order to even define

€ (q) and Dy‘qé' <b>1> with the help of functional calculus, it is therefore necessary that &,
in contrast to &’, is an everywhere defined and differentiable functional. For such a function
& we can define £ (¢) via functional calculus starting from the function ¢ — & (Z;l:l tjuj)

for t € R%. The so far formal objects DV‘qS (bzl) and %D%‘Oé' (bzl) are later defined in

Definition 2.5.4. Note that it is a necessity to restrict £’ to a sufficiently small ball B, first,
to be precise we require that |F(z)| < 1— 0 for all z € B, where 0 < 6 < 1, since &' itself
does not have a differentiable extension due to the square root appearing in the definition of
t, see Eq. (2.1.10).
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In order to reduce the technical efforts of proving Eq. (2.5.3), we will make use of the fact
that

WaUn) N Hy OWnUn) ™" = W AN W + Wy ByWR' + 0, (T),

which, as we will see in the proof of Theorem 2.4.12, is a consequence of Eq. (2.3.8). We
can then prove Eq. (2.5.3) separately for the operators Wy Ay Wx!' and Wy By Wi, In
fact, we are going to verify that

Wi ZlN ngl = 5,4( + DV‘ Eq (b>1) +2D ‘05,4 (b>1) N + 0, (TN), (254)

Wy By Wy' = €5 (g)+ Dyl £ <b>1) +§D$,\053 (b>1) - % +o,(Ty), (255)

where the constant ¢ arises due to the non-commutative nature of the operators ¢ and p, and
€ and &g are differentiable extensions of £y, : B, — C

Ez):i=ul - T u,, Ep(z) = ;(uz®uz)T 0 Uy ® Uy, (2.5.6)

where u, := ¢ (F(2)). The proofs of Egs. (2.5.4) and (2.5.5) will be carried out in Subsections
2.5.1 and 2.5.2, respect|vely We have to perform a variety of operator estimates, and
since WNANWN and WNBNWN involve factors of the form /1 — I with IL” defined
in Definition 2.4.8, we need in particular to estimate the Taylor residuum corresponding
to approximations of such terms. The operator estimates can be found in Appendix 2.8,
respectively Appendix 2.9 for the operator square root specifically.

2.5.1 Taylor Expansion of WN;ZKNW]Ql

In order to structure the analysis, we split the operator WN;lNW;,l into simpler operators H,
introduced in Definition 2.5.1, and we split the classical counterpart £4 defined in Eq. (2.5.6)
into atoms &, defined in Definition 2.5.2. In Lemma [2.5.3, we then explain how WNENWJQI
and £4 can be written in terms of H; and &, respectively.

Definition 2.5.1. Recall the function ¢ — f(¢) from Definition 2.4.7. For i € {0,...,4}, we
define operators h; : dom[N] — Fo ® H by hy := 15, ® uy and

d d
hii=q=3 4@u;,  hy=ip =i (= Im[0f(@)" - boa]) @,

where f(q) and 0; f(q) are defined according to Definition 2.4.8. Furthermore, for a multi-index
J = (i,j) with i,j € {0,...,4} we define an operator H; on Wy F<y as

mJj

Hy:=hi-T h (1—1L/) ’
where m; counts how many of the indices in J = (i, j) are zero.
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Definition 2.5.2. Let us decompose an arbitrary z € Hj as z = Z;l:l(tj +15;) uj + 2=q,
with ¢, s € R? and 2-4 € {uy,...,uq}*. Forie {0,...,4}, we define in analogy to Definition
2.5.1| the functions ¢; : Hy —> H by eo(z) := ug and

61(2)3227% u;, Z m[0if(tr, . ta) - 2])
ea(z) 1= f (1), eq(z) == 2=

With this at hand, we can write the transformation F' : Hy —> H, from Eq. (2.4.7) as

F(z) = e1(2) 4+ ea(2) + e3(2) + eq(2).

&

Furthermore, consider for m € {0, ..., 4} the functions

e (1—HF( )||) for even m, -

(PR (1= 1FG)2)* for odd m.
where y is a smooth function with 0 < x(x) < 1, supp (x) < [0,1) and x(z) = 1 for
|z| < 4. Then we can define for a multi-index J = (i, j) with 4, j € {0, ..., 4} the function
Er: Homdom[T] — C as

Es(2) = e(2)" - T e;(2) 1, (7)),

where m; counts how many of the two indices ¢, j are zero.

Lemma 2.5.3. Let us define for all i, j € {1,...,4} the coefficients Aoy := 1, Aii0) := 2,
A,y =1 and A\ := 0. Then

WN ZlN W&l = Z )\J Re [HJ] s (258)

where Ay is defined in Eq. (2.3.6). Furthermore, the functional £, defined as

Ealz) = D> A Re[&(2)], (2.5.9)

4| defined in Eq. (2.5. 6) where B, := {z € Ho ndom [T] : ||z| < r}
and r > 0 is a constant such that ||F(z)| < 5 for all z € 7—[0 with |z <.

Note that the operator Wy le Wﬁl involves terms with v/1 — I/ on the right side as well as
on the left side. In order to reduce the technical effort later, it will be convenient to have all
of them on one side, say the right side. This can be achieved by using the real part, e.g. we
can write for j € {1,...,4}

ML T VT 4 VT Ly - Ty = Re [h] - T - ugv/T = 17| = 2Re [Hps ]

Therefore we set all the coefficients Ao ;) in Lemma 2.5.3 to zero, since the (0, j)-contribution
is already included in the real part of the (j, 0)-contribution.
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Proof. Eq. (2.5.8) follows from the transformation law Wy b=y Wx' = hy + hy + hs + hy,
where h; is defined in Definition 2.5.1, and the definition I’ = Wy LW,"'. Similarly we
obtain £4(2) = &(z) for all z with ||z|| < r for r as above and the fact that

L(F(Z)) =(e1(2)+es(2)+es(z)+es(2)) = A/ 1—|F(2)|?e0+e1(2)+ea(z)+e3(z) +eq(2).
[ |

In order to prove the Taylor approximation in Eq. (2.5.4), we will verify that each of the
atoms H; can be approximated using the quantized Taylor coefficients of £;. The quantized

Taylor coefficients Dv‘q&] <b>1> and D%‘O Ey (b>1> are rigorously defined by the following
Definition.
Definition 2.5.4. Let L, : Hy — C be a bounded R-linear map for all t € R%, and let

w(t),W(t) be the unique elements in Hy such that L;(z) = w(t)' -z + 27 - W(t). Then we
define

Ly (bs1) := w(q)" - b=y + 0L, - W(g). (2.5.10)

Let furthermore A be an R—quadratlc form on Hy with a unique decomp05|t|on A(z) =
Q2+ G 2@+ (z®z) . G where @ is an operator on H, and G, G € H ®, Ho (or,
more generally, in Ho & Ho!'* as introduced in Lemma 2.4.1). Then we define A (b=1) as

Abz1) =011 - Q bay + GTboy @ by + (b @ b2y)' - G

In the following we want to verify that the residuum R; defined as

1

Ry:=H;—&;(q) — Dv‘qgj (b=1) — 5

C
~D}|,Es (b1) —NJ (2.5.11)

is small, where the constant c; are given by

d 1 &
C(O,O) L= Z ug T Uy = —g leagj‘tog(op) (t ),
Jj=
1 ¢ 1 ¢
- Moul - Tu; = < DA Ean (), (2.5.12)
j=1 j=1
ca3) 1= €31y = —C@ag3) and ¢y = 0 for all other J € {0,...,4}?, where t := Z?Zl tiu;.

The proof will be spit into two parts. In Lemma 2.5.6/ we derive an explicit representation of
the residuum R; by sorting the operator H; in terms of powers in p and b-,4, and in Theorem
2.5.7 we will make sure that this residuum is indeed small compared to the operator Ty
defined in Eq. (2.4.11), which is quadratic in the operators p and b~ 4.

In order to illustrate the emergence of the additional constants c; in the residuum R in
Eq. (2.5.11), let us first investigate the following toy problem.

Example. Consider the toy Hamiltonian Hy := bibl and the corresponding Hartree functional
Eoy : C—> (C given by Eoy[z] := |2]%. Using by = ¢1 + ip; and the commutation relation
lip1, 1] = 2N’ we obtain

1,1 N2 L, 1 1, 1n? 1
S b—b)——z —bb——b——(b) 2.5.1
ON Q14(1 1) “oy ~atyhibhm im0 Sy (2513)
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Let D) be the derivative with respect to the imaginary part and z =t + is € C, then

1 1 , 1 1 1_
§D\2,|0 Eroy(2) = §D2|O Eioy(is) = 8° = §|z|2 — 122 — 122.
With the definition ¢y 1= —%é’f‘tzogtoy[t] = —1 we can therefore rewrite Eq. (2.5.13) as

1 Cto
Htoy = gtoy[Ql] + §D\2}|Ogt0y(bl) + ]tvy-

Definition 2.5.5 (Taylor approximation of the square root). Let 7,, be the function defined
in Eq. (2.5.7) and let us define the constant c,, := ¢d. We then define the residuum

m

corresponding to the operator Taylor approximation of (1 — IL’) ?, for different degrees of
accuracy, as

m

2

— 1m () ,

)
E, = (1 - JL') = (@) = D] (1),
)

m

m 1 m
B = (1=L) " =0 (@) = Dy (b21) = 5 D3y (b51) = .

N

Lemma 2.5.6. Let J = (i,5) € {0,...,4}* be such that \; # 0, where \; is defined
in Lemma 2.5.3, and let R; be the residuum defined in Eq. (2.5.11). By distinguishing
different cases with the help of the index ey := |{{ € J : £ € {3,4}}| and the index m; :=
|{¢ € J: ¢ =0}, we can explicitly express R; as

In the case m; =2, i.e. J =1(0,0): Ry = (ug T uo) E2.

In the casee; =0 and my < 2: Ry = (hI-T-hj) E%l‘].

In the case e; = 1, there exists a constant C' and functions F; : RY — R with
|F;(t)] < Clt|, such that

F(q)
T

Ry = (h}-T 1) ES,, + (2.5.14)

For e; = 2 we distinguish further between the individual cases and obtain

Rz = (ip —ip)' - T-ip + (ip)' - T - (i — ip) ,
Ry = (ip —ip)' T bog = R,
R(4’4) = 0.

Proof. The Lemma can be verified by straightforward computations for the different individual
cases. For the purpose of illustration, we will explicitly carry out the computations for the
case J = (3,7) with j € {0,1,2}, i.e. we are going to verify Eq. (2.5.14) for this special case.
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Using the definition of EY in Definition 2.5.5, the observation h; = e;(g) and the fact that
(ip)" =Ly - (e — 0, f (@) — (ue — @0, f(g))" - b1, we obtain

Hy = (ip))' - T-e(q) (1 =L)% = (i)' - T ;(@)nla) + (i)' - T~ ;(a) B,
13 1
= 52 oLy - (wg—0u, f(@)u} - T-e5(q 52 te—3u, £ (@) T -boruf - T-e5(q) 1 (q)
=1 —1
+ (i)' T e;(q) B, (2.5.15)
where m := m;. Our goal is to commute b=y in (ug — éﬁwf(q))T boqu) - T - e5(q) mm(q) to
the right side, in order to obtain an expression which is of the same form as (2.5.10). We
define the corresponding functions w and @ as
14
wim =2 (uh- T (8 nn (8)) (e = 0 f 1)
=1
and w(t) := —w(t). The commutation law [g(q),(w—&u[f(q))T.b%] = [g9(q),ip] =

—ﬁégg(q), for C! functions g : R? — R then yields

1 1
—5 20 (0 = 00 f(@) b T (@) = w(@)' b + 530,

where y : R? — R is defined as y(t) :== —3 >, 0 (u¢ - T - €;(t )nm(t ). Furthermore

d
Dy, €5(2)=es(2)1-Te; (¢ Yt )=Z<i3m [(u@—ﬁt[f(t))T-z] W)T-T-ej ( )i (t)
=1
=wt)t -z + 2T ().
Consequently we can rewrite Eq. (2.5.15) as

1

= Dy, & (b=1) + y(@) + (i) T - e;(0) .

m
2

(@) T -ej(q) (1 - 1)
Note that &£, (t) = 0 and D}|,£; = 0. Therefore Eq. (2.5.14) follows from the fact that

F(t) := y(t) — ¢y is Lipschitz and F'(0) = 0, which implies that there exists a constant C
such that |F(t)| < Clt|. [ |

For the proof of the following Theorem, we will use various operator estimates derived in
Appendices 2.8 and 2.9.

Theorem 2.5.7. Let J € {0,...,4}* be such that \; # 0 and let R; be the residuum defined
in Eq. (2.5.11). Then,

RJ = Oy (TN) 3
with Ty defined in Eq. (2.4.11) and the o.(-) notation from Definition 2.4.10.
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Proof. Recall the definitions in Lemma 2.5.6 of ey := |{l € J : [ € {3,4}}|, which counts how
many of the indices in J = (i, ) are equal to 3 or 4, m; := |{l{ € J : | = 0}|, which counts
how many of the indices are zero, and the residuum R; defined in Eq. (2.5.11). In order
to prove the statement of the Theorem, we are going to verify R; = o, (Ty) for all J with
Ay # 0.

The case J = (0,0): In this case we have the identity R = (ug T uo) E2, hence we
have to verify F2 = o, (Tx). In order to do this, recall the function n(x) = 1 — || F(z)|J?

from Eq. (2.5.7) and let us compute using Lemma 2.4.9

L=L/ =1~ (g + f(a) +ip' +b0) - (a+ f(@) +ip' + Do)
=1-4¢"-q¢—f@" (@)~ F(@" boa—0L, f(a)

d
—bLy bea— (0" p) +ﬁ—pT-(p’—p)—(p’—p)T-p’
d
= 12(q) + DV‘qm(b)l) + Dy ma(b=1) + IN =) -p) 1,

2
where we used 15(q) = 1—q'-q— f(q)"- f(¢) and p"-p = iZ?Zl (Qb;bj — bjz — (b;) ) + ﬁ.

Note that R = ﬁ, where ¢, is the constant from Definition 2.5.5. Since p? < Ty, it is
clear that p? = O, (Ty). In Lemmata 2.8.6 and [2.8.5, we will verify that (p')> = O, (Tx)
and (p — p)® = 0, (T). Therefore we obtain by the operator Cauchy-Schwarz inequality in
the auxiliary Lemma 2.8.1 that p' - (p — p) as well as (' — p)" - 1’ are of order o, (Ty). We

conclude E2 = o, (Ty).

The case e; = 0, with J # (0,0): In this case m; € {0, 1} and the error is given by

R, = hz-T-hjE}nJ = ei(q)T-T-ej(q) Eiw'
We clearly have E} = 0. For m; = 1, let us define the function V(t) := ¢; (t )1 - T~ ¢, (¢ ),
which satisfies V' (t) < CJt| for a constant C'. In Lemma 2.9.2) we will then verify that
V(Q)Ell = Ox (TN)

The case e; = 1: In this case the error reads R; = (hz . T'hj) Efm + F‘§\(,Q), where

F;(t) < C|t| for some constant C'. Using Lemma 2.9.2 and Lemma 2.8.4 from the Appendix,
we obtain that (E?)" E? = o, (Ty) and £ — o, (1). Regarding the first term, note that
EQ = 0. Hence, we assume w.l.o.g. m; = 1. We are done once we can verify

(hj T hj) : (h} T hj)T — 0, (Ty) (2.5.16)

in case one of the indices i, j is in {3,4} and the other is zero. Let us first assume i € {3,4}.
Then h} T hj = hj ~w, with w := T - ug € H, and therefore Eq. (2.5.16) follows from
Lemma 2.8.6/in the case ¢ = 3 and from Lemma 2.8.5 in the case i = 4. The proof of the
case j € {3, 4} follows analogously.

The case e; = 2: In this case, the error is a linear combination of (ip’ — ip)T T - h; and
hi-T - (ip' —ip) with hy, h; € {p',b=q}. Note that A := /T (13 — 7-4) is bounded, and
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therefore
(ip' —ip)' - T - (i) —ip) = (ip' —ip)" - ATA - (ip/ — ip)
< |A|? (ip' —ip)" - (ip —ip) = 0. (Tx)

by Lemma 2.8.5. Similarly, we have (p')7 - T -p' < |A(Y)!-p' = O, (Ty) by Lemma
2.8.6. Hence Lemma 2.8.1 tells us that (ip’ — ip)" - T'- hj and b} - T - (ip/ — ip) are of order
Ox (TN) [ |

Corollary 2.5.8. Recall the functional €4 defined in Eq. (2.5.9) and let us define the constant

.....

~ 1 c
WNANW]?[I = SA(q) + Dy‘qu (b)l) + §D\2;‘05A (b)l) + N + 04 (TN) .
Proof. The statement follows from combining Lemma 2.5.3| and Theorem 2.5.7. |

2.5.2 Taylor Expansion of WyByW5'

Similar to the previous subsection, we introduce atoms H; in Definition 2.5.9 as well as their
classical counterparts &; in Definition 2.5.10. In Lemma [2.5.11 we explain how Wy ByWy'
and &g can be written in terms of H; and &;, respectively.

Definition 2.5.9. Recall the definition of h; : dom[N] — Fy ® H from Definition 2.5.1.
For a multi-index J = (i,7,k,¢) with 4,5, k,¢ € {0,...,4}, we define an operator H; on
WnFen as

my

2

Hy:= M @hj) - 0-hy @ he(1 —L)? |

where m; counts how many of the indices ¢, j, k, ¢ are zero.

Definition 2.5.10. Recall the definition of e, : Hy — H and 7, from Definition 2.5.2. For
a multi-index J = (4,7, k, ¢) with 4, j,k, ¢ € {0, ..., 4}, we define £; : Hy n dom[T] — C
i
E(2) = |eil2) @es(2) | -0+ en(z) @ eal=) i, (2),

where m ; counts how many of the indices ¢, j, k, ¢ are zero and 7, are the functions defined
in Eq. (2.5.7).

Lemma 2.5.11. Let us define for all i,j, k.0 € {1,...,4} the coefficients A ,0,0) := %
/\(i,0,0,0) = 2, )\(i,j,0,0) = A(i,O,k,O) = A(O,j,k,o) = ]_, /\(i7j,k,0) = 2, )\(i,j,k,é) = % and a// other
coefficients are defined as \j := 0. Then

WNENW]T[IZ Z )\J%Q[HJ].

Furthermore, the functional £ defined as

SB(Z) = Z )\] Re [SJ(Z)] s (2517)

is an extension ofSJ’B‘B defined in Eq. (2.5.6), where B, := {z € Ho ndom [T] : |z|| < r}

and r > 0 is a constant such that |[F(z)| < 5 for all z € Ho with |z| <.
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The proof of Lemma [2.5.11] works analogously to the proof of Lemma 2.5.3. Following the
strategy from Subsection 2.5.1/ we are going to verify that the residuum R

1 c
Ry:=Hy—&5(q) — Dy| & (bs1) - §D12;‘05J (b>1) — NJ (2.5.18)
is small, where the constant ¢, are given by c(0,0,0) := —% Zj;l 8752]_ ‘tzog(0,0,0,0) (t) and
14
C(3,3,0,0) -+ = —g Z atzj‘15:()4‘:(1,1,0,0) (t ) » C(3,1,0,0) ‘= —€(3,3,0,0), €(1,3,0,0) ‘= €(3,3,0,0)5
j=1
13
C(3,0,3,0) -+ = g Z afj‘tzog(l,o,l,o) (t ) ) €(1,0,3,0) = —€(3,0,3,00»  €(3,0,1,0) ‘= —C€(3,0,3,0)>
j=1
13
€(0,3,3,0) -+ = g Z a152].‘75:05(0,1,1,0) (t ) ) €(0,1,3,0) ‘= —€(0,3,3,0)s  €(0,3,1,0) ‘= —C€(0,3,3,0)>
j=1
(2.5.19)

and all other constants are defined as ¢; := 0. The proof will be split into two parts. In
Lemma 2.5.12/ we derive an explicit representation of the residuum R; by sorting the operator
H; in terms of powers in p and b.4, and in Theorem 2.5.16 we will make sure that this
residuum is indeed small compared to the operator T .

Lemma 2.5.12. Let J = (i, j,k, () € {0,...,4}* be such that \; # 0, where \; is defined in
Lemma|2.5.11, and let R; be the residuum defined in Eq. (2.5.18). By distinguishing different
cases with the help of the indices e; := [{{ € J : L € {3,4}}| and my :=|{{ € J : { = 0}|, we
can explicitly express R; as:

= In the case my = 4, i.e. J = (0,0,0,0): Ry = (h; ® h;)' -0 - hy @ hy E2.
» Inthecasee;=0andmy <4: R; = (hi@hj)T-f)-hk@th;J.

= In the case e; = 1, there exists a constant C' and functions F; : R* — R with
|F5(t)] < Clt|, such that Ry = (h; @ hj)" -9 hy @ hy B, + 24

= |n the case e; = 2 and mj = 2 when two of the indices are 4:

Ry=—(hi®@h)"-0-hy ® hy L.

= |n the case e; =2 and my =2 when one of the indices is 3 and another one is 4, let
us define hy :=p' —p and h, := h,. forr € {0,1,2,4}. Then,

~ ~ N\ T ~ ~
Rjz—(hi@hj)T-@-hk@th’+(hi@hj) T @ e

= |n the case e; = 2 and m; = 2 when two of the indices are 3, let us define the
coefficients Azgs,o,o) = —(u, ® u,d)T D up @ ug, Az;o,:a,o) = (u, ® uo)T DU @ g

and A&JT,;,S,O) = (up ® ur)T -0 - ur @ug. Then,

d
Ry=—(hi®h))" -0 e @he L'+ Y0 A5 [0, =p,) - prtpr - (0o —prr)] . (2.5.20)

ror/=1
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= |n the cases e; = 2 and mj < 2, respectively ey > 2: R; = H;.

Proof. Similar to the proof of Lemma 2.5.6, the proof of Lemma 2.5.12 follows from a
straightforward computation for the individual cases. For the purpose of illustration, we will
explicitly carry out the computations for the case J = (3,0, 3,0), i.e. we are going to verify
Eq. (2.5.20). Since &£(,0,3,0)(2) is quadratic in 7(z), we immediately obtain 030y (t ) =0
and Dy‘t €030 = 0. Let us define the coefficients A, , 1= (uq ®u0)T -0 - uy @ up, the
operator () = %me:l 000,40 Ua - uL and G € Ho® Ho by G = —i in=1 Da0,0 Ua @ Usy.
Then

D}, Esosn(2) =2 Q 2+ G202+ (:®2) -G

and therefore D%‘O 8(3’0,370) (b)l) = b;l : Q : b}l + GT : b}l ® b>1 + (b}l ®b>1) - G. This
concludes the proof of Eq. (2.5.20), since

d

Hy— @iy @uo)' - 0-ip' @ uo (<L) = > AY" [0} =) - Pl +pp - (s — )]
ror'=1
d 1 P 1
= (ip@uo)T-@-ip@uoz Z (ua®u0)T-@-u7®uo 5 (ba—bg) 5 (bw—bl)
a,y=1

Cran e
:bT>1'Q'bzl+(b>1@bzl)T'GJFGT'bzl@ber%’d’o)-

In the remainder of this subsection, we are going to verify that the residuum R is small
compared to the quadratic operator Ty . Note that the error term in the last case of Lemma
2.5.12|is quite different from the other cases, since it simply corresponds to the whole operator
H ;. This is not surprising, however, since the second order Taylor approximation of an object
that is already of an higher order than two is zero, i.e. the residuum coincides with the object
itself. With the help of the following three results in Lemma 2.5.13, Lemma 2.5.14 and
Theorem 2.5.15, we will systematically verify that H; is small compared to the quadratic
operator Ty in the cases e; = 2 and m; < 2, respectively e; > 2. Regarding all other cases,
we will verify the smallness of the residuum in Theorem [2.5.16. In order to do this, we will
repeatedly use results derived in Appendices 2.8/ and 2.9,

Lemma 2.5.13. For indices i,j € {0,...,4}, we have the following estimates:

= In case one of the indices is contained in {3,4}, we have
(hi @ hy)" - [] - by @ hy = O (Tw).

= In case one of the indices is contained in {3,4} and the other one is contained in
{1,...,4}, we have
(hi @ h)' - [0] - by @ hj = 0. (T).
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Proof. We will repeatedly use the inequality |v| < A (T + 1) =: S from Assumption 2.1.1,
which implies together with the translation-invariance of 7" the inequalities |0] < S ® 14 and
5] < 1x ®S.

The case i € {1,2} and j € {3,4}: Recall that hy, = ex(q) for k € {0, 1,2} and let us define
the function o(t) :=¢; (£ )7 - S - ¢; (t ). Using the inequality [d| < S ® 1y we obtain

(e:i(q) @ hy)'- 18] - ex(q) ® by < bl - o(q) - hy.

Since |p(t)| < C (|t| + |¢[?) for a constant C, we obtain h - p(q) - hs = o0, (Ty) and
W o(q) - hy = 04 (Ty) by Lemmata [2.8.4 and 2.8.6!

The case i € {3,4} and j € {1,2}: Making use of the commutation laws [b,,gs] = 0 and
[iDa, qs] = ﬁ&%g, this case follows from the previous one.

2

The casei = 3,j = 3: Let m<q := Y. , u, - ul. Since ()" p')” = 0. (Ty), we obtain

2

W er) 1ol-rer<@) - () )@ P < |rea ST (1) 1) = 0u (Tx).

The case i = 4 and j € {3,4}: Note that

(boa @ hy)" [0] - boa @ hy < 2(f(a) @ By)' - 0]+ Fla) @ Iy
+2((b>a+ f(2) @ hy)" - [0 - (ba + f(0)) @ Dy
By the previous case i € {1,2} and j € {3,4}, we know that (f(¢q) @ h;)"- 0| f(q) ® h; =

04 (Tn). For the second contribution, recall the definition of 75, x from Remark 2.4.11 and
let v be the orthogonal projection onto the subspace Wy FZ,, < Fo, where

e¢]
Fhu =T (Z al - aj> . (2.5.21)

j>d
Since we have by, iy N = Ay by Ty for k> d and [pl, Ty n] = 0 by Lemma 2.8.3, we
obtain using my v = Ty T (which follows from Wy Feay < WhF2y,)
T ((bsa + (@) @ hy)T - 0] - (b=a + f(q) ® by mrn
< TMN h; : (ﬁM,N (bq + f(Q))T (b=a + f(9) 7ATM,N) ® S - hjmu N

< N TM,N h; -S-hjmyny <C N TN TN TN

for a constant 0 < C' < oo, where we used h} -S-hj = O, (Ty) and and the characterization
of the O.(+) notation in Remark 2.4.11 for the last inequality. Using this characterization for

the inequality above yields ((b~q + f(q)) ® ;)" - |0] - (b=q + f(q)) ® hj = 0. (Tw).

The case i = 3 and j = 4: Making use of the commutation laws [ip),,b] = —5%0af(q), this
case follows from the previous one.
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The case i = 0 and j € {3,4}, respectively i € {3,4} and j = 0: Since hy = 15, ® ug
commutes with hy = ip’ and hy = b~4, we assume w.l.o.g. ¢ = 0 and j € {3,4}. With
A= uz) - S < ug, we obtain

[ |

Lemma 2.5.14. In the following, let G : R — H ® H be a differentiable function and let
us define the operators X,Y : dom[N] — Fy®@H as

0
Y = bld® 17.[ . G(q) = Z < Zijk@L) & uy.
j>
Then we have the estimates

xt. X<2[< NG Zii@ Gl*(q

YTy <ol 161 (g) - >d+*HG|| (a)-

The proof of Lemma 2.5.14 is based on the commutation relations [ba,bg] = %5”3 and
[P, 48] = 5ix0a,5, and is left to the reader.

Theorem 2.5.15. Let I be the operator from Definition 2.4.8. Then we have the following
estimates:

= In case at least two of the indices i, j, k,l € {1,...,4} are contained in {3,4}, we have
(hi @ hy)' -0 - by, @ he = 0, (T,
= In case at least two of the indices i, j, k € {0,...,4} are contained in {3,4}, we have
(hi @ hy)' -9 hy, @ ug L' = o, (Tw),
= In case at least two of the indices i,j, k € {1,...,4} are contained in {3,4}, we have
(hi @ h)T -9 he @ ug V1 =1/ = 0, (Ty).
Proof. Let us denote with e(, ;) the number of indices in (a, b) that are elements of {3,4}. In
the following, we will verify the theorem separately for the case ¢(; j) > 1 and e(; ¢ = 1, and

the case e ) = 0. Note that the case ¢(; jy = 0 is only possible for the first bullet point, and
the proof of the statement follows from the case ¢ ) = 0, since

T
[(hi@hj)f-@-hk@hg] — (e ®@h) b b @ by
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The case e(; jy = 1 and e(;, ) = 1: Let us define the operators A := h; ® h; and Q := 9,
and depending on the concrete bullet point let us define B as hy ® hy, hi ® ugl' or
hr ® ugv/1 —1'. In any case we have to verify

AT Q- B =o0,(Ty).

By Lemma 2.8.1, it is enough to verify that one of the operators A" - |Q|- A and BY-|Q|- B
is of order 0, (Ty), and the other one is of order O, (T ), which follows from Lemma 2.5.13
and the auxiliary Corollary 2.9.4.

The case e, ¢y = 0: In this case we have 4, j € {3, 4} for any of the bullet points. Let us define
the function G : R — H @ H by G(t) := 13 ® (T + 1)7% -0-er(t)®e(t). Note that
G(t) € H®H follows from Assumption 2.1.1. We define the operator X := (T + 1)% -h; and
depending on the concrete bullet point let us define Y := h} ® 1y - G(q) Z with Z := 15,
Z :=1'or Z := v/T—L'. In the following, we have to verify X' -Y = o, (Ty). Since
i€ {3,4}, we know that X' - X = O, (Ty). By the Cauchy—-Schwarz like result in Lemma
2.8.1, it is therefore enough to verify YT-Y = o, (Ty). Applying Lemma 2.5.14 yields in any
case

vy =71 (h}@ly-G(q))T : <h§®1H ' G(‘J)) 4

<27t Z,

1 d &
WG b+ IG@I + <5 D 10.G ()
r=1

and Corollary [2.9.4 then yields that Z7|G(q)|* Z and ZT + (Zle ||8,,G(q)|\2) 7 are of order

0+(1). Therefore, Z' +|G(q)|*Z and Z' -& (Zle H&TG(Q)\P) Z are both of order o, (Ty).

Finally, Z1 h} NG(@)|? - hj Z = 0, (Ty) follows from the auxiliary Lemmata 2.8.4 and 2.8.6,
and the auxiliary Corollary 2.9.4. |

Theorem 2.5.16. Let J € {0,...,4}* be such that \; # 0 and let R; be the residuum
defined in Eq. (2.5.18). Then,

RJ = Oy (TN)

Proof. Let J = (i,j,k,¢) be a multi index with \; # 0, and recall the index e; :=
|{l € J:1€e{3,4}}| and the index m; := |{l € J : | = 0} from Lemma 2.5.12 as well as the
residuum defined in Eq. (2.5.18). In order to prove the statement of the Theorem, we have
to verify Ry = o, (Tx) for all J € {0,...,4}*

The case e; = 0 and mj; = 0: In this case we have a trivial residuum R; = 0.

The case e; =0 and m; = 1: In this case, R; = V(q)E7, with V(t) := (e; (t ) Qe; (¢ ))T
D-ep(t )®eq (t). Since the C* function V satisfies F'(0) = 0, we obtain V(q)E} = 0, (Ty)
by Lemma 2.9.2.
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2.5. Taylor Expansion of (WxUy) Hy (WxUy) ™

The case e; = 0 and m; = 2: In this case Ry = V(q)E3, with V(t) := (&; (£ ) ®¢; (¢ ))T :
D-ep(t)®ep(t). We compute

d

B = (1= L) = (o) = Dyl e(b) = — (L bma+ ()14 = 5 )

By Lemmata 2.8.4 and 2.8.6/ we know that V(¢) bl -boq = V(q) bl - bog and V(¢) (p)" -/
are of order o, (Tx), and consequently V(q)E} = o0, (Tx).

The case e; = 0 and m; = 3: In this case R; = V(q)E}, with V() := (e; (¢t ) ®¢; (¢t ))T -
D-ep(t)®ep(t). We compute
By :=(1-L)V1-L —n3(q) — Dy| n3(b=)

= (1=12(q)) Ef — (f (@) bsg+b=a f(q)) E?_(bld'b>d+( Nt p_26]ZV> 11"

By Lemma 2.9.2, we know that V(¢)(1 — 12(¢))E} = 0, (Ty) and (E?)* = o, (Ty). Note
that we further have [V (q) (f(q)" - bsa + bsg - f(q))]2 = 0, (Ty), and therefore the product
V() (f(Q)T - bag + boa- f(q)) EY is of order o, (Ty) as well. By making use of Lemmata
2.8.4 and 2.8.6, and Corollary 2.9.4, we obtain

Vig) (bld'b>d+( ) ‘p _QCJlV) 1-L' =0, (Ty).

The case e; = 0 and m; = 4: In this case R; = (uo ®ug) - 0 - uo @ ug E2. We compute
Ef:=(1-L")" —nlq) - Dv‘qm (b=1) = D3| yna(b=1) — %
= (F@)" - boa+boa F@) +{F@)" - boa+ boa- F(@), 1)1+ 0Ly b
+ ((p’)T P bl b>d)2 + {na(q)a )"+l b>d}
v ) 20 ) - L
with the notation {A, B} :== AB + BA. Clearly L' = o, (Ty). From Lemmata 2.8.4, 2.8.5
and [2.8.6, we know that all the operators p' - (p’ — p), (p’ —p)T -, ((p’)T ) (bT d b>d)2,

(bT flg)+ fl@)f- )2 2(q )bid - b=q and n2(q) (10’)T - p'm2(q) are of order o, (Ty).
(

D), W) 0 by -bod) and {F(@)-boa+ b £(@), (1)1 0Ly b
are of order o, (Ty) as well.

Consequently, {7,

The case e; = 1: In this case, we have R; = (h; ® hj)T 0-hp ® hy ESU + FJT(Q). By Lemma
Lemma 2.8.4, we know that FJ(q) = 04 (Tx). Since we know that (ng)2 = 04 (Tn)

by Corollary 2.9.5, we are done once we can verify that X - XT, = 0, (Ty), where
Xy=(hi @ hj)' -0 hy @ hy.
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2. VALIDITY OF BOGOLIUBOV’S APPROXIMATION FOR TRANSLATION-INVARIANT BOSE GASES

With 3 € {i, j, k,}: Let us first assume j = 3, and define w(t) := ¢; (£ ) @1y -0 -ep (£ ) ®
er (). Clearly, X; = (ip!)" - w(q) and therefore X, X1 = O, (Ty) follows from 2.8.6. The
other cases i = 3,k = 3 and ¢ = 3 follows from the commutation relation [ip/,, 5] = 2%;%,,3-

With 4 € {i,j,k,£}: In any case, X is either equal to w(q)" - b=y or bl - w(q), where
w: RY — H with |w(t)]| < c|t]’ and j = 0. Note that we use the commutativity of ¢; and
b-q here. Therefore, Lemma 2.8.5 implies X - X} = O, (Ty).

The case e; = 2 and mj; = 2: In any case, we know by the second bullet point of Theorem
2.5.15, that (h; @ hj)' -0 - by, @ hy (=I/) = o0, (Ty). In case {7, j,k, £} = {0,4}, this is the
whole residuum R;. In case {i, 7, k, ¢} = {0, 3}, the residuum reads

d
Ry=(hi @h)) - 0-hp @ he (L) + > A [(ph = pr) - P+ pr - (P — por)].

ror/=1

Since any of the products (p!. —p,.) - pl, and p, - (pl, — p,») are of order o, (Ty), we conclude
Ry =0, (Ty). The case {i, j, k, ¢} = {0, 3,4} works similarly, and is left to the reader.

The cases e; = 2 and mj < 2, respectively e; > 2: We obtain for m; = 0 by the first bullet
point of Theorem 2.5.15, and for m; = 1 by the third bullet point, that

RJ:HJ:O*(TN).

Corollary 2.5.17. Recall the functional £g defined in Eq. (2.5.17) and the constant ¢ from
Corollary 2.5.8. Then,

~ 1 c
WNBNWK[l = EB(Q) + Dv‘qu (b;l) + §D]2;‘0 53 (b)l) - N + 0, (TN) .

-----

immediately yields

~ 1
WnByWy' = Es(q) + Dv‘qu (b=1) + §D12;‘0 Ep (bz1) +

¢

N + 04 (TN)

Recall the definition of ¢; in Eq. (2.5.12) for J € {0,...,4}?, respectively Eq. (2.5.19) for
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2.5. Taylor Expansion of (WxUy) Hy (WxUy) ™

J €{0,...,4}*. Making use of the observation that most of the c; are zero, we obtain
c+ C= Z )\JCJ + )\]CJ = )\(0’0)0(070) + )\(171) [6(1,3) + C(371) + 0(3,3)]
Je{0,...,4}2 Je{0,...,4}4

+ 20,0,0,0)¢(0,0,0,0) + A1,1,0,0) [’3(3,3,0,0) + ¢3,1.00) + C(1,3,0,0>]

+ A(1,0,1,0) [0(3,0,3,0) + ¢3,01,0) + C(1,0,3,0)} + A0,1,1,0) [0(0,3,3,0) + C0,1,3,0) + C(0,3,1,0)}

1 d
= —gé‘fj o Z ()\(070)5((),0) )+ a.n€a) () + X0,0.00)E0000 ()

Jj=1

+ A(1,1,0,0€(1,1,0,0) (t)+ A(1,0,1,00€(1,0,1,0) (t)+ A0,1,1,00€(0,1,1,0) (t ))

_ _;jiagj\to(& () +E5(t)) =0,

where we have used in the first equality of the last line that ai‘t=0)\J8J (t) =0 for
J ¢1{(0,0),(1,1),(1,1,0,0),(1,0,1,0),(0,1,1,0)}

and in the second equality of the last line that £4(t) + E5(t) = £ (t) = en for t small
enough, where £’ is defined in Eq. (2.5.1). |

Proof of Theorem |2.4.12. Making use of Eq. (2.3.8), we obtain
(WNUN) N_1HN (WNUN)_l = WNENW;;l + WNENW]T/I + 0, (TN) , (2522)
where we have used that Wy b;l T - bay W' < 2(X1 + Xy) with

Xi:=(q+ f(q)
Xy = (ip) + boy)

(g + f(q)) = 0.(1),

T
T (ip' +b=q) = O, (Ty),

see Lemmata [2.8.4/ and 2.8.6. Combining Corollaries 2.5.8 and 2.5.17| yields

N N |
Wi AWyt + Wy By Wy = € () + Dy| € (b>1> +5 D€ (b>1> + 0. (Ty),

with £ := €4 + Ep. Furthermore, note that £(z) = £'(z) for |z|| < r where &' is defined
in Eq. (2.5.1), see Lemmata 2.5.3 and 2.5.11. Therefore, £ (t) = ex and Dy|,€ = 0 for
t small enough. As we will show in Lemma 2.8.2, this implies £ (¢) = en + 0, (Ty) and

Dy‘qé’ (b>1) = 04 (Ty). Furthermore, we have %D%‘O & = Hess|,,&n and therefore

1
§D]2;‘0 g(b)l) == N_IH.
In combination with Eq. (2.5.22) this concludes the proof. |
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2.6 Coercivity of the Hessian in Example (1)

In the following we are going to verify that the Hartree energy of a system of pseudo-relativistic
bosons in R? interacting via a Newtonian potential, given by

<\/m2 A — m> (u@u)f 2|xg_y|-u®u,

satisfies the coercivity assumption in Eq. (2.1.7) for g small enough, see Example (I1) in the
introduction. Note that we are using the notation introduced in Section 2.3. Let us denote
with u, 5 the unique radial minimizer of the functional &; subject to the rescaled condition

|u| =1+ B, i.e. u,p is radial, and satisfies |u, 5| = 1+ 5 and &;[uy 5] = ” H1nl’f 55 [u]. Let
+

us further denote the normed minimizers by wu, := u, . By a scaling argument it is easy to
see that uy 5 = (1 4 B)ug4p)p. For real-valued functions f and & in {ug 3} we can express
the Hessian as jHess|,, ,&[f +ih] = (L, 5} +{Ly 5, where L 5 and L, ; are selfadjoint
operators given by

_ 9
Lygi=vVm? = A —m—jgp - (1®ugg)" Z—y L ®ug,g,

2
g -ugﬂ@l,

|z =y
with Hg,8 _<”m2 A— m> ugﬂ®ugﬂ)T |z yl

the operators associated to the normed minimizers u, by L;L = L;O. Note that

Ligi=Lys— (1Q@uggs) -

Uy 8®@ugp. Furthermore we denote

- 29
(Ly _L;>f:(f®ug)T'm'ug®f>0

for all f # 0, and consequently it is enough to verify the following Theorem 2.6.1 in order to
prove Eq. (2.1.7).

Theorem 2.6.1. There exist constants gy and n > 0 such that for all 0 < g < gy and
fe L* (RY) with f L {ug, Oz, uy, Ouytig, Onyug}

2
&, =nlfl*

In order to prove Theorem 2.6.1, we first need some auxiliary results regarding the minimizers

ug 5 subject to the rescaled condition |u, g =1 + f.

Lemma 2.6.2. Let us define Ry := u,3 — uy for € [0,1) (where 1 can be replaced by
any other positive number). Then there exist constants gy, C' > 0 such that

+
Lg Ryp = 04puy + €45,

with |8, 5] < CB and |e, 5]l < C||Ry /| for g € (0,g0) and 5 € [0,1).

Proof. Since the elements u, g are minimizers of £;, they satisfy the corresponding Euler-
Lagrange equations L su, 5 = 0. A straightforward computation yields

O:Lg_,ﬁug,ﬁ L; g Ug = Ly Rgﬁ 0g,8Ug — €g.8
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2.6. Coercivity of the Hessian in Example (I1)

with

09,6 1= Hg,p — Ig)
€9,8 *= (Mg,ﬁ - ,ug) Ry s+ (1® ug,B)T ’ H Ry ® Ry

+(1®R,4) fy| ‘Rys®@uy+ (1Q R, 5) - uy, @ Ryp  (26.1)

_9
| [z —y

Let us first investigate the contributions involving ‘ o From [69] Proposition 1] it is clear

that there exists a constant C' such that |u, 3|1 @®sy < C < oo for all g small enough and
S €]0,1). With the notation S := /1 — A we obtain

9

7 =y
—1 1 2 —1 1
< g|Sugpll |[1® S e |Rg )" < Cg|S 2] IRy,

Rg,ﬂ ® Rgﬂ

‘(1 ® ug,ﬁ)Jr : Ry ® Ry

= H(l ®Sug’5)T -1 ®S_1

g .
[z — y

where HS*%H is the operator norm of the bounded one-particle operator S‘li. Similarly,

the other contributions involving £, in Eq. (2.6.1) can be estimated by C'g HS 1|916| |Ry.5]
as well. The uniform control of the norm \\ugﬁ||H1 ®s) < C < oo furthermore implies
10g.8] = |tg.8 — 1tg] < C'f3 for some constant C'. Note that |R, — |ugll = B, and
consequently | (ugﬁ 11g) Ry 5] < CB|Ry5| < C|Ry )% We conclude that
~ 1
legsl < { € +3Cg|S Tl IRy,
|

Lemma 2.6.3. Let R, 3 and €, 3 be as in Lemma 2.6.2. Then there exists a constant gy > 0

such that hr%% = 0 and lim sup 7 - 15 ”‘ o < C for a suitable constant C' > 0 and
B— B—0

g€ (07 gU)

Proof. By the results in [69] we know that O is an isolated eigenvalue of L}, i.e. there

exists a constant 0 > 0 such that o (L)) n (—=4,6) = {0}, with corresponding eigenvectors

OpyUg, Oz, Ug, OzUg. Since ug g is radial, we know that Ry 5 L 0, u,, and therefore we obtain
by Lemma 2.6.2

5||Rg,ﬁ

<Ly Rgsll < C (B + | Rysl”) - (2.6.2)

Using [69, Proposition 1] again, it is clear that 1(1)m |Rg ] = 0 and therefore there exists

a constant go such that HRggH 2 for all g € (0,90) and 3 small enough. Consequently
Eq. (2.6.2) yields |R, 5] < Z83. Usmg the fact that [lu, | = 1 + /3, we further obtain

1428 < (14 )2 = 1+ 2uy. Ry + | Rosl? < 1+ 2Cuy, g5>+( )52
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and therefore

Y

leg,sl < (TC)
(ug, Ry 5) - (%) p? 50
|59,5| < Cp N
(ug, Ryp) — f—2(Z)? g2 50

Proof of Theorem|2.6.1. Let Q denote the projection onto the space {u,}*. Clearly there
exists a w € L*(R3) such that

L;f = QL;rf + <U), f> Ug

for all f e L*(R?). With R, 3,d,5 and €, 5 from Lemma 2.6.2 at hand, we obtain

L; wgﬂf - <w7f> Rg,ﬁ) = g,,BQL;Ff - <w>f> €g,85

and therefore | L (8,3 — (s £ Rys) | < 18,5 |QLE £ + 1] sl |- Using again that
there exists a constant § > 0 such that o (L") n(—d,8) = {0} with corresponding eigenvectors
Oy Ug, OpyUg, Oz Uy, see [69], and that R,z as a radial function is orthogonal to them, we
obtain for all f € {u,, 0., Uy, Orytiy, Orgtig}*

Ly (Og8f —<w, [) Ryp) || = 00g,8f — Cw, f) Ry gl = 6| {ug, Ry gy || {w, ).

Combining the estimates we have so far yields

19,61 [w] g sl
[Cw, )] < 7 1QLy fll + =1 =2 2| QLS f1 + ysl £
6| <u97 R9ﬁ> | ! 5| <u9’ R975> | " ’
By Lemma 2.6.3 we know that limsup|zg| < C' for some constant C' > 0 and yg S 0.
B0 -

Using again that o (L) n (—0,8) = {0}, we obtain

O < 1Ly I < NQL fI + [<w, Y] < (1 + 2) |QLy £ + ysl /1

and consequently [QL¥ f| = 22| f|. This holds for all (small) 3, hence 3 — 0 gives

= l+zg
IQL f = 1251 f]. Finally note that QL;Q > 0 since Ly, = tHessl,, & [f] = 0 for
real-valued f L ug, which concludes the proof. |

2.7 The Bogoliubov Operator

In the following we will prove Theorem [2.4.4, i.e. we are going to verify that the Bogoliubov
operator H constructed in Definition 2.4.3 is bounded from below and that its ground state
energy can be approximated by W € | J, oy dom[al, - (T + 1) - az1] 0 Feps with | = 1.
Our strategy is to decouple the degenerate modes from the non-degenerate ones and to apply
the general framework for non-degenerate Bogoliubov operators in [98].
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2.7. The Bogoliubov Operator

Definition 2.7.1. Let Qu = Y}, .-, Qi u;-u} and Gy = Y]

2.4.1, and let us denote the operator Q| := Zm.>d Qi U uj on Hy :=ug,uy,...,uq)
as well as G| := )] Giju; @ uj. Then we define the operator H, as

Gij u; @u; be as in Lemma
i

1,71

i,j>d
H, := CLLd'QL'a>d+29{e [Gl'a>d@a>d}-

Lemma 2.7.2. The operator H, is semi-bounded from below, ie. info (H,) > —oo.
Furthermore, there exists a constant R > 0 such that

H, <R (aLd QL asg+ 1) . (2.7.1)

Proof. Let us define the operator G, on #_ by the condition z'- G,y -z = 2GT - Z® 2, with
Z being the usual complex conjugation in L* (R?). Then, 27 Q. - z + 2Re [z" - G,y - 2] =
Hess|,,Eul2] = n||z|? for all z € H, with n > 0 by Assumption 2.1.3. As pointed out in
Section 2.1 in [72], this implies @, = r > 0 as well as

Q. G > N
o > 0,
( C¥op QL

where we have used that ), is a real operator. Since () > 0, this is further equivalent to
Gop Q' Gl < QlL Since Gy1 € Ho @ Ho' ™, where the |.|l+ norm is defined in Lemma 2.4.1,

O

N 1
and since 27 - Q2 -2 < cz'- (T +1)72 - z for a suitable constant ¢ and z € H, which is an
easy consequence of the operator inequality in Lemma 2.4.1 and the fact that Q| > r > 0,
we obtain

_1
T [Gop Q' GLy] = 1, ®Q1" - Cilfign < |Gl <0, (272)

i.e. Gop @, ? is a Hilbert-Schmidt operator. By the general results in [98], this implies that
H, is semi-bounded as well as the existence of a constant R > 0 such that Eq. (2.7.1)
holds. |
Lemma 2.7.3. Let us define P; := 2% (aj — a;) = \/Np; for j € {1,...,d}, the constant

co = Z?Zl G, ;, the quadratic function v(y) := —4 Z?kzl G;ry;yx for y € R? and the linear
H | valued function

d
WY1y .- Ya) 1= 42’2 Yj Z Gjrur € Hy.

j=1 k>d
Then we can rewrite the Bogoliubov operator H from Definition (2.4.3) as

H=co+v(P,....,P)+u(Py,....P) asg+al, - u(P,...,P)+H,. (27.3)

Proof. Since Hess|,,Eu[z] = 27 - Qu - 2 + 2Re [GL 2 ® z] is degenerate in the directions

Ui, ..., Uq, We obtain Q;, = —2G; in case j or kisin {1,...,d}. Writing H in coordinates
therefore yields

d d d
H:Z Gk (—Qa;{ak—i—ajak—i—a;aw +2 Z ZGM (aj—a;) ay—2 Z Z Gk (aj—a;) aj
k=1 j=1k>d j=1k>d

+ Z (Qj,ka;(lk + G rajar + Gj7ka}a2)

7,k>d
={co+v(Pr,....,P)}+u(Pr,...,P) asqg+aly u(Py, ..., Py) +H.,
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where we have used —2a] Ak + ajag + aTak = —4P;P; + d; in the second identity. [
Remark 2.7.4. In the subsequent Lemma 2.7.5, we want to get rid of the term u (P, . . ., Pd)T-
a-q+al,-u(P, ..., Py)in Eq. (2.7.3) by completing the square, i.e. by applying a shift
Usqg > asg+ w (P, ..., P;) where w(yy,...,yq) € H, is a suitable vector. In the following

we are going to construct such a w(y). Let us first define the R-linear map L : H, — H,
doLw) =2 QL w+2we2) -G,

for all z € H. Furthermore, let us define the real inner product (z,w)g := Re [z - w] on
H, . Clearly, L is symmetric with respect to this inner product. By Assumption 2.1.3 we have
forallwe H

(w, L(w))g = Hess|u,Eulw] = nfuw]?, (2.7.4)
and consequently we can define w(y) € H, for all y € R? as the solution of the equation
L-w(y) = —u(y). (2.7.5)
We note that w(y) € dom[Q, ] due to the improved coercivity
(w, L(w))g =Cw'- QL -w (2.7.6)

where C is a suitable constant, which follows from the fact that
Gy
2w @) G| < (e Qure NG w < e’ Qurwr T G 1y,

for all € > 0, where c is the constant in Eq. (2.7.2).

Lemma 2.7.5. Let w : R? — M be the function defined by Eq. (2.7.5) and let us define
the unitary transformation R : Fy — Fy

R :=exp [w(Pl,...,Pd)T-a>d—a1d-w(P1,...,Pd)] )
Then there exists a non-negative quadratic function n : R — R, s.t.
RHR ™ =co+n(Py,...,P) +Hy, (2.7.7)

where co and H | are as in Lemma |2.7.3 and Definition |2.7.1.

Proof. Let us define n(y1,...,va) := v(y1,...,ya) + <w(ys, ..., v d),u(yl, o Yd)r- With
7 and the vector valued function w at hand, we can rewrite Eq. (2.7.3

H=cotn(P,... P+ (a>d—w(P1,...,Pd))T-QL- (a>d—w(P1,...,Pd)>
+ 2%e [Gj - (a>d —w(P,, ..., Pd)) ® (a>d —w(Py,..., B )] . (2.7.8)
Eq. (2.7.7) follows now from the representation of H in Eq. (2.7.8) and the fact that
Ra=qR ' =a-g+w(P,...,Py).

In order to see that 7 is indeed non-negative, note that we can use n and w to complete
the square in Hess|,,Eu[z] as well, i.e. for z = Z?zl (tj +is;) uj + z=q with ¢, s € R? and
2-q € H, we can write Hess|,,Eu[z] as

1(s)+ (z2a—w(s)"- QL+ (za—w(s)) +2%Re [01 : (z>d—w(3))®(z>d—w(5))] .
Therefore, Hess|,,Eu[z] = 0 for all 2z implies n(s) = 0 for all s € R%. |
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2.8. Auxiliary Lemmata

Proof of Theorem|2.4.4. Since the function 1 in Lemma 2.7.5/is non-negative, we immediately
obtain the lower bound
inf o (H) = ¢p + info (H,) > —oc0.

In order to verify the bound from below for the operator H — rA, where A is defined in
Eq. (2.4.3), we will make use of the improved coercivity

d
Hess|y,Enlz] = 74 (23 +2L, (T +1)- z>d>, (2.7.9)

=1

where 7, is a suitable constant and z = ijl(tj + 15;)uj + 24 With z-4 € H,, which can
be verified analogously to Eq. (2.7.6) in Remark [2.7.4. With the definition 7, := r, — r for
r < r, we obtain, in analogy to Assumption 2.1.3,

d
Hess|y, Eulz] — <Z 24zl (T+1)- z>d> > .| 2|

j=1
for all z of the form z = iZj:1 sju; + 24 with s; € R and 2.4 € H . Therefore we can
repeat the proof of the lower bound for the operator H — A, which yields

H—7rA >info (H—rA) > —o0. (2.7.10)

Note that this further implies that the Friedrichs extension of the quadratic form H is well-
defined, i.e. H is semi-bounded and closeable, since H is comparable to the non-negative
selfadjoint operator A, i.e. there exist constants oy, as, 81, B2 > 0 with

&1A-51<H<&2A+BQ.

In order to verify that there exists an approximate sequence of ground states W, with
Uy € Feyr and ¥y, € dom [a>1 (T'+1)-a=1|, it is enough to prove that such states

are dense in dom [a>1 (T'+1)- a>1], the domain of the quadratic form which defines the

Bogoliubov operator H by Friedrichs extension, with respect to the norm | U] := (H + C),,
where C' > —inf o (H). The lower bound follows from Eq. (2.7.10), while the upper bound
follows from Eq. (2.7.3) and Inequality (2.7.1). Furthermore, we have

[Pl < ao (A)y + (B2 + O)T[* < |93,

for all W e Fy, where U2 := asdal, - (T +1)-az1)y + (B2 + C + 9| V|2 Clearly,
U, F<m ndom [a>1 (T'+1)- a>1} is dense in the domain dom [a>1 (T'+1)- a>1] with

respect to the norm |.|, and therefore it is also dense with respect to |.|u. |

2.8 Auxiliary Lemmata

In the following section we will derive various operator estimates involving powers of the
operators p, p’, b~4 and functions of ¢, with an emphasis on asymptotic results of the form
AN = 04(By), where the o0,(-) notation is introduced in Definition 2.4.10. It is a crucial
observation that all of our basic variables ¢;, p; and by, are of order 0,(1), and therefore the
product of a basic variable with an operator Ay should be of order 0,(Ay), which we will
verify for specific examples Ay . Let us first discuss an important tool, which we will repeatedly
use, given by the following Cauchy—Schwarz inequality for operators.
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Lemma 2.8.1. For any A € C with |A\| = 1, t > 0, linear operators A : H; — Hs and
B : Hy — H,, and selfadjoint operator () : Ho —> Ha, we have the operator inequality

Re[NAT-Q Bl <t A" |Q|- A+t B Q|- B. (2.8.1)

Furthermore, let Ay, By be sequences of linear operators Hi —> Ho, Q a selfadjoint
operator on Ho and Cy : H1 — H; a sequence of non-negative operators, which satisfy

AL - |Q]- Ay = O, (Cy) and BY, - |Q| - By = 0. (C). Then,

Al Q- By =0, (Cy),
Bl -Q-Ay =o0.(Cy).

Proof. Let QQ = U|Q| be the polar decomposition of Q. Inequality (2.8.1) immediately follows
from the inequality

i
0 < (ﬁA—ﬁAUB) -|Q|-<\/EA—\/E)\UB).

By our assumption A% - |Q|- Ay = O, (C) we know that there exist constants ¢, §, > 0,
such that 7y v A}V-|Q| Ay Ty < c{Cy)y forall % < 0. Furthermore, by our assumption
Bl -1Q| - By = 0, (Cy), there exists a function € : Rt — R* with (lsir%e(é), such that

TMN B]TV Q|- Bvmun <€ (%) Cy. Applying Inequality (2.8.1) with t := 4 /e (%) yields
for all X € C with [\| =1 and 2 < 4,

M
WM,N%Q I:)\ A}-\]QBN} 7TM,N< E() ON.
[ |

Consider a function g : RY — R. The following Lemma states that the operator g(q)
depends, up to an exponentially small error, only on the local data of g in an arbitrary small
neighborhood [—e¢, €]* of the origin, i.e. g(q) = G(q) + O, (e™°V) in case 9li—e.qt = Gl—eqd-
This property plays a key role in the proof of the main technical Theorem [2.4.12, since the
involved functions are (somewhat arbitrary) extensions of locally constructed functions with
specific properties, which the extensions no longer have, see for example the definition of
f :R? — H, in Definition 2.4.7.

Lemma 2.8.2. Let qy,...,qq be the operators defined in Eq. (2.4.4) and let g : R? — R be

a function such that g|_. g« = 0 for some € > 0. Furthermore, assume that g satisfies the
growth condition |g(t)| < C|t|*, with C > 0 and j € N. Then

g(q) = O, (e7°N)
for some § > 0.
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Proof. Using the elementary estimate |t|* = (Zr 1t$> < @ max;<,<qt% yields

d
9] < FC Y17 Loy ([t])

r=1

In the following we want to verify that there exist constants C', § > 0 and 9y > 0 such
that (¢¥1(c.00)(|¢r]))y < Ce " for all states U € WyF<y, V] = 1, with & < & and
re{l,...,d}. Since Wy ¢ Wy' = ¢, it is equivalent to verify this for U € F.,, instead.

Due to the reflection symmetry ¢, — —q, of ¢%, it is furthermore enough to verify that
<]1(€’OO)(qr)q$‘>qj < Ce™N for all states W € Fop, with & < dp. Note that the operators
Gr = \/;—N“’“}“T depend on N. In the following we will make use of the description of the
Fock space F<) in terms of Hermite polynomials h,, i.e. for r € {1,...,d} and ¥ € F<y
there exist states V,, € F<p—p, with a,V,, = 0, such that ¥ = Zi\f:o hn(“Tjgi) v, see for
example Eq. (1.26), respectively Exercise 1(ii), in [86]. Furthermore we define the density

1 z”+y

matrix 7y, (x,y) := Z%,m:o Wy s U By (x)hm(y)ﬁe_ > on L? (R). With ~, at hand
we have

0] 29
i T
<]l(€700)(qT)q72-J>\p = J;/ﬁ <m> %(ZE, :E)dx.

In order to estimate this quantity, let us define the harmonic oscillator Hamiltonian H :=

2
—& 1 2% on L2(R). Since 7, involves only eigenfunctions h,(z)e~ > of H with n < M, we
have the operator inequality v, < e?*1=#_ Using the Mehler kernel for e~ therefore yields

for ¢ := ﬁ and \ := coth(2) — cosech(2) > 0, and all M < €2AN/2
OO r \Y 2w [ r \? Az 2AN
Yo(z,z)de < cef f () e "dr =0y, (6*6 )
Lﬁs<v2N) (@) VaNe \V2N e

The following Lemma is an auxiliary result, which will be useful for the verification of various
asymptotic results involving the operator b-.

Lemma 2.8.3. Recall the operators Wy, ', p}; and f(q) from Definition 2.4.8 and the
definition of 7t y; v above Eq. (2.5.21). Then, q; and p'; commute with 7ty v for j € {1,. .., d},
ﬁ'M7N]L,\I’ = L,ﬁ'M,N\I/ for all U € WN.FgN, and bk ﬁM,N = ﬁ-M,N bk ﬁM,N for all k > d.
Furthermore, we have for all M < N the estimate

AN (bsa + f(q))T (bsq + f(q) Tun < ]\]\{,

TMN bT>d cbeg TN < 4. (2.8.3)

Proof. Recall N := 3| ala; and let us define NV, := - al-a;. Since N, commutes with
L and g;,p; for j € {1,...,d}, we obtain that #a; x = Wi Lo (N3) Wy' commutes with

q; = Wy q; Wy' and p;. = Wy p; Wy'. Similarly 7 yL'W = L'z nV for all W € Wy Fen.
Making use of the fact that b; = Wy (b; — f;(q)) Wy yields
b T = W (b = £3(@)) Tjo.any (N7) Wy'!
=Wy Lpo.ar (NV3) (05 — £3(@) Lo W) Wi = foarn b Far e
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Inequality (2.8.2) follows from (b4 + f(q))T (bsa+ fl@)) = W N Wy and

M

1
tarn (bsa+ f(@)" - (b=a + f(@) Fary = NWNNJ[&M] (Vo) WR' < v

In order to verify Inequality (2.8.3), note that f(¢)" - f(t) < 1 for all t. Applying the
Cauchy-Schwarz inequality as in 2.8.1 yields

Farn Oy boaFan <2farn (boa + F(@)' - (bsa + £(@) Farn+270n F(@)T F(@) Farn

M
<2—+2<4.
Nt

The proof of the main technical Theorem [2.4.12 consists of two steps: First one has to identify
the residuum R, which is carried out in the Lemmata [2.5.6/ and 2.5.12] and in the second
step one has to derive asymptotic results for these residua R;, which is carried out in the
Theorems 2.5.7, and 2.5.16. The following three Lemmata provide asymptotic results for the
types of operators most frequently encountered during our analysis of R ;.

Lemma 2.8.4. Let p, ® : RY — R be functions with |¢(t)| < C[t|* and |®(t)] < C(1+|t]F)
for some k = 1. Then, ¢(q) = 0.(1) and ®(q) = O,(1). Furthermore,

1
©(q) bT>d “bsg = 0y (bld “bog + N) , (2.8.4)

1
CI)( )bT d cbog = O, (bld cbog + N) . (285)

Proof. In the following, let 0 < 7 < 1 be a smooth function with supp (7) < B;(0) and 7(¢t) =
Lforallt € B1(0), and let 7,(t) := 7 () for r > 0. Clearly ¢(q) = 7.(q)¢(q)+(1—-7:(a))p(q)-
By our assumptions we know that |7,.¢| < €. with €, 2 0 and (1 — 7,)p is zero in a

neighborhood of zero, hence (1—7.(¢))¢(q) = Oy (e°V) by Lemma 2.8.2. We conclude that
lp(q)] < €& + O, (e7V) for all r > 0, and consequently (q) = 0.(1). The corresponding
statement for ®(g) follows from the fact that ®(q) < C + ¢(q) with ©(t) := [t|¥ and

©(q) = 04(1).

Let us write similar to before ¢(¢) bl ;- bog = 7.(q)p(q) by - bog + (1 — 70(q))0(q) b, - b-a.
In order to verify Eq. (2.8.5). First of all 7,.(q)@(q) bl - bog < b, - boy, where we use
that ¢ commutes with b.4. For the treatment of the second term, recall Inequality (2.8.3)
and T v (1 — ()| (@) Prarn < CPe N for 2 < § with C, 6 > 0, which follows from
Lemma [2.8.2. Hence,

TN (I=7(@)|e(@)| 0Ly - boa Ty =T v (1=70 (@) [@(@) | Ty BLy - boa Tar v

< |mun (1= (@)l (@)]| [Farw bl boaFar| < a0,

We conclude that my, yo(q)may < 4Ce N + el - by for & < 4, and therefore ¢ (q) =
04 (bld bsg + %) The corresponding statement for ®(g )b>d - b=q follows as above. W
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Lemma 2.8.5. Given w : R — H with |w(t)| < c [t|* and W : R? — H with
W@ < c¢(1+]t|*) for some ¢ > 0 and k > 1, we define X := W(q)" - b-q and

Y := w(q)"-boyq. Then, XX and XX are of order O, (bld cbag + %) and Y'Y and YY'T
are of order o, (bld “beg + %) Furthermore, for ® : R? — R with |®(t)| < ¢ (1 + [t]%),

we obtain

2 1
®(q) (b’;d - b>d) — o, (de by + N> .

Recall the operator p' from Definition 2.4.8. We have
1
@ —=p" @ —p) =o (bld “bsa + N> :

Proof. Let us define G(t) := W(t)" - W(t) and g(t) := w(t)" - w(t). Then we obtain by
Lemma 2.8.4 together with the inequality W (t) - W (¢)" < G(t) 14 the estimate

1
X'x = bT>d : W(Q) ) W(Q)T “bog < G(Q) bld “bog = O, (bld “bog + N) .

Similarly, YTY < g(q) bl ;- b-g = o0, (bld bsg + %) For the reversed order, we use the fact
that [G(q)[* = O. (1) and [g(q)[* = 0 (1)

1
XX = XX+ LG =0, (g s+ 1)

1
YY =Yy + = ||g(q)||2 = o, (de cbog + N) .

2
For the next statement, note that we have (bld . b>d) = bld . (bld “bag + ﬁ) - b-q and
by bod < 2(bsa+ f(q)" (boa+ f(q)) + 2f(9)- f(g), and consequently

? 1
®(q) (bid . b>d) = ®(q) bld . (bld cbayg + N) bey

< g (bt @)1 0L0) (bt 0)) b 20(0) (@) (@) gt AL g

Note that 2&(q) f(q)™f(¢) b% sb-q and ( Vbl by are of order o, (bld “bog + %) by Lemma
2.8.4. For the other term in the mequahty above, note that we have the estimate

T by |2(q) (b=a + F@)' - (ba+ F(@)] - baman

= TM,N bld . [@(Q)ﬁM,N(b>d + o) (boq + f(Q))ﬁM,N] “beqg TN

M d(q)bl, b <cM b bt

SN TMNPG) 05 g O5d TN = N7TM,N >d " U>d N TM,N

where we have used that 7y y®(q )b>d boamun < C Ty (bld cbag + %) TN for

ﬁ < dp < 1, see Lemma 2.8.4. In order to verify the last part of the Lemma, let us define
the operators Y, := 0,f(q)" - b~q. From the previous part of this Lemma we know

W -p)'--p) =

d
(=

1 1
Jm Vi)’ <5 )] (YiYe + YeYJ) = o, (de ‘boa + N) .

1 (=1
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For the following Lemma 2.8.6 as well as for the results in Appendix 2.9, it is convenient to
define the operator

1

Qun:i=p - p+bl, bog+ i (2.8.6)

Since Qny < Ty, where Ty is defined in Eq. (2.4.11), any sequence with Xy = O, (Qu),
respectively Xn = 0, (Qy), satisfies Xy = O, (Tx), respectively X = 0, (Ty), as well.

Lemma 2.8.6. Let p : R — R be a function with |p(t)| < ¢ |t|F and ® : R — R with
|®(t)| < ¢ (1 + [t|¥) for some constant ¢ and k > 1. Then

)" pla) -p =m&wx
@) ®(g) -1 = O, (Qu).
)

In case the partial derivatives d;(t), 0;®(t) and 0;,0;9(t) are bounded by ¢ (1 + |t|7), we also
have

w(q) ()P (@) = 0. (Qn),
o(q) [0 ] 2(a) = 0. (@)

Proof. Since p' - p < Qu and (pf _p)T -(p' —p) = 0, (Qy) by Lemma 2.8.5, we obtain
() -p' = O, (Qn) as well, i.e.

7TM,N(]U) PWMN Ch 7TMJ\/QN7TMJ\/

for all M, N with % < 01 < 1 where §; and ' are suitable constants. By Lemma [2.8.4,

we know that 7y y®(q)my v < Cy for all % < 0y < 1 where 0, and C5 are suitable
constants, and WMNw(q)WMN <e (%) with lims o €(d) = 0. Based on the observation
that p' mpy N = Tar41. v P TN, we obtain for all M, N that sat|sfy < 0 :=2min{dy, da}

TM,N (PI)T : (I)(Q) 'pl TM,N =TMN (JUI)T : 7TM+17N(I>((])7TM+1,N -p’ TM,N

<CiCy N Qn-TunN.

SimiIarIy, we have 7TM7N (p’)T ~o(q) P TN < Cle( ) TN Qn mar . Hence, (p’)T - O(q) -

P = 0, (Qy) and () -0(q)-p' = o (QN) In case we have a polynomial bound on the partial
derlvatlves as well, let us define w(t) := 3 L Gup(t) @ ug and W (t) := %ijl 0eD(t) ® uy.
Using the commutation relation [ip), g1] = 57’“ , we compute

i
o) (1) o(0) = (00 + @) - (el i+ @)

From the previous part, we know that (¢(q) - ip')" - ©(q) -ip’ = 0. (Qy). Furthermore, Lemma
2.8.4 tells us that w(q)" - w(q) = O, (1), and therefore +w(q)" - ~w(q) = 0. (Qu). Hence,

o(q) ()1 ¢(q) is of order o, (Qy) as well. The last estimate in the Lemma can be verified
analogously. [ |
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2.9 Analysis of the Operator Square Root

In the following section we derive asymptotic results for operators involving the square root
v1 =1, where I’ is defined in Definition 2.4.8, allowing us to prove a Taylor approximation

m
2

for the operators (1 —IL’) 2, see Definition [2.5.5. The easiest case m = 2 will be discussed
in the following Lemma 2.9.1, the case m = 1 is the content of Lemma [2.9.2 and the case
m = 3 is covered by Corollary 2.9.5/

Lemma 2.9.1. Recall the operator Qx from Eq. (2.8.6) and the function f from Definition
2.4.7, and let us define g(t) :== 3¢ 2+ f()T- f(t). Then,

[L' — g(q)]" = 0. (Qw).- (2.9.1)

Proof. Using the transformation laws in Lemma 2.4.9 we obtain

d

L' —g(q) = f(@)T - bog + 00, flo) + @) -+ 0L, bou— N

2 2

By Lemma 2.8.5, we know that [f(q)T bag+ b, f(q)] = 0, (Qn) and [bld : b>d] =
2

0« (Qn), and by Lemma [2.8.6 we know that [(p’)T -p'] = 0, (Qn). [

Lemma 2.9.2. Let Assumption |2.1.3 hold and recall the function 1, from Eq. (2.5.7). Then,

[VI-L —m(9)] = o. (Qv). (2.9.2)

Furthermore for any function V : R* — R with |V (t)| < c(|t| + |t|*) and bounded
derivatives |0,V ()| + 10,0,V (t)| < ¢ (1 + |t|*) for some k > 1, we have

V(C])[V 1—L"—m(q) — Dv\qm (521)] =0, (Qn) . (2.9.3)

Proof. Let us define h(z) := x (z) v/1 — x, where x : [0,00) — [0, 1] is the function from
the definition of 7, in Eq. (2.5.7), as well as the operator Q := ¢ - ¢+ f(q)" - f(q). By the
support properties of x we have for all % < % and ¥ € WyFeur

VI—L/U =h(L)0,

and therefore it is enough to verify the statements of this Lemma for h (I') instead of 4/1 — /.
With & at hand, we have 7,(¢) = h (| F(¢)|*) = h(Q) and

Dv‘qm(v) = w(g)"-v 40" w(q)
with w(t) := R/ (Z?th? + f)f- f(t)) f(t), for all v e Hy. Hence w(q) = k' (Q) f(q). In

the foIIowing, let h be the Fourier transform of the smooth function h, normalized such that
h(z) = {h(z) e”** dz. Then,
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In order to investigate the integrand, we use the following integral representation

oitl! _ pizQ _ ZJ el L' - Q) R qy
0

= ZJ Wl gilz—1)@Q dy (L' — Q) + ZJ el []L', ei(zfy)Q] dy.
0 0

Let us define the operators B, := i {; V"¢ 9@ dy and R, := i [ V" [L/, =99 dy.
Clearly, | B.| < |z|. Regardmg R., note that every term in the definition of IL/ commutes

with Q, except (p') - p/, which satisfies the relation [p, v(q)| = [ps. ¢(0)] = x5 (9;¢) (@)
We define the family of functions

pu(t) = e (Ein GHON) (2.9.4)

and compute

L, e9) = [(0) - P al@] = D) [ ()" 02(0)

We have the estimates [0;¢,(t)] < c|z| [t] and |03, (t)| < ¢ (1 + [z]*) (1 + |¢[?) for some
¢ > 0, where we use the fact that ¢t — f(¢) is a C? (Rd,’Ho) function, see Definition 2.4.7.
As before, let my v be the orthogonal projection onto Wy (F<ps). By Lemma 2.8.4

cle] | gl marn | < ¢,
c(L+2) | (1 +1al*) maun] <E(1+[2])

for some constant ¢ and all z € R and all M < N. Note that p}WN}gM < WnF<rs1 and

|0502(q)marw|
|65 0w (@)mr N

//\ N

M+1

| T | < , and consequently we have for all M < N —1

i 2 ]' d
I, €] mar |l < ¥ 0500 (a) maran | 17 7TM,N||+ﬁ 162 0a(q) Tl
=1 j=1
& @ 2
<N|9C|+fN2(1+|l’|) ( |z]?) .

| < ( + |2]3) for some constant C.

Let us define B := Sh(z)BZ dz and R := Sﬁ(z)Rz dz. From our estimates on B,, R., we
deduce |B| < §|h(z)] |2| dz := C1 < o0 and |Rrarn]| < S §1A(2)[ (1 + |2) dz = 2 <
. Hence, R'R = 0, (Qu). Since h (') —h (Q) = B (L' — Q) + R, we obtain the estimate
[2 (L) - h(@Q) = [B(L' - Q)+ RI'[B(L' - Q) + R
<2(L'—Q)B'B(L' - Q) +2R'R
<2(C)* (L - Q) +2R'R = 0, (Qy),

where we have used that (L' — Q)” is of order o, (Qy), see Lemma 2.9.1. This proves
Eq. (2.9.2).
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In order to verify Eq. (2.9.3) let us compute

=T = mlg) = Dyl (b=1) =h (L) =R (Q) = K Q) (tLy - F(@) +F(@)' - =)
[ ][ e @@yt ay - iz @ (0 bttty s@) | o
= e [ [ et vy Q) -is ¢ () sty £10))|
R+ th(z) f (e = @) 02 ay dz (I - Q) (2.9.5)

0

—i—iffz(z)zeiszZ(L' Q—f(@)'boa—bly flg ))

Let V' be a function that satisfies the assumptions of the Lemma. To complete the proof,
we need to verify that V' (q) [h (L") —h(Q) —h(Q) (f(q)T boa+ 0%, f(q ))] is of order
0. (Qn). By Lemma 2.8.4, we know that |V'|?(q) = 0,(1) and from the previous part it is clear
that my v RTRmamn = Ou(5). Hence, V(q)R = 0.(5) and especially V(q)R = 0,(Qu).
Regarding the second term in Eq. (2.9.5), recall that ¥ — W% = (L' — Q) Biy + Riy.
Therefore,

J J 1/ ZyQ eCYQ dy dz (I — Q)
j J BT R ] =9 qy dz (L' - Q)
[]L’ Q) B +R](L Q).

with B = —i{h(2) §; v =9B_, dy dz and R := —i{h(z) [ e P2R_, dy dz. In
the following we want to verify that V' (¢) [(L' - Q) B+ ET] (L' — Q) = 0. (Qn). Since

(L' —Q)* = o0, (Qn) by Lemma 2.9.1, it is enough to verify that V(q)fiTE’V(q) and

V(g) (' — Q) B'B (L' — Q) V(q) are of order 0, (Qn). Recall that we have the identity
R, =il e [L'—Q,e 9 dx =i ! e [(p) - P/, ¢u(q)] dz with the function ¢, from
Eq (2.9.4). We can further express [(p')" - 9/, 0. (q)]V (q) as

Z (Z,jlvﬁjgpx(q)V(q)p; — 21]\7253'%(61)53"/( ) — W&JQ pa(q )V(Q)> :

Similar to before, this leads to the estimate | R,V (¢)my ]| < % (1 + |z/|®) for some constant
(', and consequently | RV (q)mas | < €1 for some constant C'1. Hence we have V(q)INi’TEV(q) =

0. (Qx). Regarding the term V(q) (L' — Q) B' B (L' — Q) V(q), note that | B|? =: (s < .
Applying the Cauchy—-Schwarz yields

V) (- QB BL -Q Vi) <8 V(g (L' - QP V(o)
<50V (@) |F(@)" b bl F(@) +L i F0) f @) -boa+ () 9) 4 (bid-b>d)2+;§2]v<q>.
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Let us define the function w(t) := V() f(t). By Lemma 2.8.5 we obtain that

V(g) f(@)" - boa 0Ly f(@) V(g) = w(g)' - boa bL, - w(q) = 04 (Qu),
V(g)bly - £(@) F(@) b=aV(g) = bl - w(q) w(g)" - bog = 0x (Qu),

2

and V(q) (bld . b>d>2 V(q) = 0. (Qu). Furthermore, V(q) [(p’)T -p’} V(g) = 0. (Qn) by
Lemma [2.8.6. We conclude that V(q) (L' — Q) B'B (L'—=Q)V(q) = 0. (Qu).

Let us now verify that the final term V(q) (IL/ - Q- bT Tafl@)—fl@"- b>d) in Eq. (2.9.5)

is of order o, (Qy), where V(¢ V(t) Sh iz e#(Ziaa 5HIOM0) gy By the definition
of I’ and @), we have the |dent|ty

d

V(@) (L= Q= f@ boa =Ly F(@) = V@ly - bea+ Via) @)1 = SV (@)

The first term is of order o, (Qy) by Lemma 2.8.4, the second term is by Lemma 2.8.6/ and
regarding the last term we know that 5%V (¢) = 0, (Qy) by Lemma 2.8.4. |

Before we can verify the Taylor approximation for the operator (1 — ]L,)g in Corollary 2.9.5, we
need the following two results, which are of independent relevance for the proof of Theorem
2.5.16.

Lemma 2.9.3. We have (L')* = o, (1), and furthermore

V1I-L'QyV1-1L' = 0, (Qn), (2.9.6)
L/ @N L, = Oy (@N) ) (297)
Proof. Note that ||[L'myn| = 4 for all M < N, and therefore we immediately obtain

(')* = o, (1). In order to verify Equations (2.9.6) and (2.9.7), it is enough to prove that

VI (- €)VI—T1 = 0, (Qy) and L' (€7 - €) L/ = 0, (Qn) for € € {p/, b=a}.

The case £ = p’: In order to verify /1 — L/ (£7-¢) V1 —L" = O, (Qu), observe that we

have for all ¥ € Wy F<n_1 the commutation law

1-L— & +4/1 -1+ % 1-L—L - /1-Lr+ 4%
p;\/l—L’\Ifz\/ l \/ Np'.\Iur\/ al \/ N

2 J 2 I
_Tm/_ L /L
For M < N — 2, let us define the operators By, n := VI-L N+\/1 L+N7TM+17N and
Bux = VIV=R ISy e Note that [Bagy] < 1 and ||BMNH2 < < for all

M < 6, where C and 0 < 0 < 1 are suitable constants. Consequently
~ 2
TunV1—1L (p’)T-p’ V1-Lryny = ‘(BM,N®1H'I?/+BM,N®1H'Q) 7TM,N‘

2
) N
<2|Bun®ly-pmun|” +2 ‘BM,N® 1y -qman

C(d+1)

< TMN (p')T ' TN+ N2
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which concludes the proof of v1— L (p/)! - p' /1 — L' = O, (Qy). The estimate L’ (p')" -
p' L' = o0, (Qu) follows from an analogue commutation law.

The case £ = b-4: In order to verify /1 — 1L/ bld ~bagV/1—=L" = O, (Qn), note that
[V1-L —771(61)]2 = 0, (Qu) by 2.9.2, i.e. there exists a function € with €(0) — 0

6—0

and Ty N [\/1 -1/ —m(q)]QWM,N < 6(%) TN Qn Ty n. By Lemma 2.8.3, we know
that 7 n 0L, - bog@tary < C for a constant C. Furthermore [VI=L"—ni(q)| Apn =

v [VI =L —m(q)]. Let us define S :=[v/1 — L' —n:(q)] bl bey [V1—L"—n(q)],

and estimate

TuNSTuN = Tan [VI—L = m(q)] Farn bl beg Farn [V1I—L"—n(q)] mun

2 M
<4 7mynN [V 1-1L— Th(Q)] TN <4 € (N) TN Qn Ty N

Hence, S = 0, (Qn) and therefore
VI=TBL bea VI= T <2 (S 4 mi(g)bLy - beam(9) ) = Ou Q).

The proof of L' bld ~bog L' = 0, (Qn) can be carried out in a similar fashion. |

Corollary 2.9.4. Let Xy be a sequence with Xy = O, (Qy) and Yy a sequence with
YN = Oy (@N) Then,

V1I-L'XyvV1 -1 = 0, (Qn), (2.9.8)
V1I-L'YyV1—-L =0, (Qn), (2.9.9)
L'XyL' = 0, (Qn) . (2.9.10)

Proof. The Corollary follows from Lemma 2.9.3| and the fact that 7,y commutes with
v/1 =17 and I'. For the purpose of illustration, let us verify Eq. (2.9.8). By the assumptions
of the Corollary we know that there exist constants C' and § > 0, such that my; v Xy Ty <
Crmar,ny Qn mar,n. Consequently

WM,N\/l —IL/XN\/l _L/ﬂ-M,N = ’\/1 —LITFM7NXN7TM,N’\/1 — L
< CrynV1—LQyvV1 - L7y = 0, (Qn),

where we have used Eq. (2.9.6) from Lemma 2.9.3 in the last equality. [

Corollary 2.9.5. Let Assumption 2.1.3 hold and let n,, be the functions from Eq. (2.5.7),
with m € {0,...,3}. Then

2

(=LY% —nn(@)] = 0. @w).

Proof. The case m = 0 is trivial. The case m = 1 is the content of Lemma 2.9.2 and the
case m = 2 follows from Lemma 2.9.1| Let us now verify the statement in the case m = 3.
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Using the fact that 73(t) = n2(t)n:(t), we obtain

(1-LY)V1-L —ns(q) =[1 L") = ()] V1 =L + ma(q) [V1 =L = m(q)]

= (@ b bl £+ G5 b boa 5 ) VIS

+ 7:(Q)me(q) [V1I =L — ni(q)] + [L = 7(@)] m2(q) [VI =L/ = m ()],

where 7 : R* — R is a function with 7|p, ) = 0, T|ga\p,0) = 1 and 0 < 7 < 1. Since the
function 77 = (1 — 7)n; is bounded by a constant ¢, we obtain using Lemma 2.9.2

[VI-L —m(9)]7(q) [VI-L —m(g)] <ec [VI-L' - 771(61)]2 =0, (Qn) .

Note that 7/ := (7 1;)* is zero in a neighborhood of zero. Therefore, 7/(q) = O, (e™) and
n(q)n'(q) = O (e °N) for some § > 0 by Lemma 2.8.2. By Corollary 2.9.4, we obtain in

particular that /1 — L''(¢)v/1 — L' = 0, (Qu). Hence we have the estimate
VI-L'=ni(@)] 7' (@) [VI-L —m(q)] <2vV1-L'n'(¢)vV1-L/+2n7(q)' () =0« (Q) -

By Lemma 2.8.5, Lemma [2.8.6 and Corollary 2.9.4, we know that the operators

VIZL (b f(@) + F@)1 boa) VI

2
VI=L((p')f -p’)2 V1—1" as well as v/1 — L/ (bld : b>d) V1 =1 are of order o, (Qn)

as well, and therefore

d

V1I-L (bld F@) + @) baa+ ()P b by — oV

)2m:o*<@m.

We conclude that (1 — L) v/1 — L/ — n3(q) = Ty + Ty + T is a sum of terms with T} T} =
0. (Qu), and therefore [(1 —L')+v/1 - L' — ng(q)]2 = 0, (Qn). |
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CHAPTER

The Frohlich Polaron at Strong
Coupling — Part I: The Quantum
Correction to the Classical Energy

ABSTRACT. We study the Frohlich polaron model in R?, and establish the subleading term
in the strong coupling asymptotics of its ground state energy, corresponding to the quantum
corrections to the classical energy determined by the Pekar approximation.

3.1 Introduction and Main Results

This is the first part of a study of the asymptotic properties of the Frohlich polaron, which
is a model describing the interaction between an electron and the optical modes of a polar
crystal [44]. In the regime of strong coupling between the electron and the optical modes, also
called phonons, it is a well known fact [1}, 29, [79] that the ground state energy of the Frohlich
polaron is asymptotically given by the minimal Pekar energy [106], which can be considered
as the ground state energy of an electron interacting with a classical phonon field. This result
is motivated by using appropriately scaled units, see e.g. [116], which demonstrates that the
strong coupling regime is a semi-classical limit in the phonon field variables. In such units the
Frohlich Hamiltonian, acting on the space L*(R?) ® F (L*(R?)), reads

H:=-A, —a(w,) —a' (w,) + N, (3.1.1)

where the annihilation and creation operators satisfy the rescaled canonical commutation
relations [a(f),a'(g)] = a™2{f|g) for f,g € L*(R®) with a > 0 being the coupling strength,
the interaction is given by w,(z) := 73|z’ — 2| 2 and N is the corresponding (rescaled)
particle number operator, i.e. N := > a'(p,)a(p,) where {¢,, : n € N} is an orthonormal
basis of L?(IR?). The definition of the Fréhlich Hamiltonian in Eq. (3.1.1) has to be understood
in the sense of quadratic forms, see for example [116], due to the ultraviolet singularity in the
interaction w,. By substituting the annihilation and creation operators a and a' in Eq. (3.1.1)
with a (classical) phonon field ¢ € L2(R?), i.e. replacing a(f) with {f|¢) and a'(f) with
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{p|f), we arrive at the Pekar energy
E () s = (Y] = Ay = Cwel) — {plwe) + |0l ) (3.12)
= [ vt s~ [ we) () + 7@ @) da'de + [ o) P

where ¢ € L?(IR?) is the wave-function of the electron. We further define the Pekar functional
FPe(p) := infjyj-1 € (¥, ¢) and the minimal Pekar energy e := inf, F(). It is known
that the ground state energy E, := inf o (H), as a function of the coupling strength «, is
asymptotically given by the minimal Pekar energy e°f in the limit a — oo [1I, 29]. More

precisely, one has e > F, = e + O, (a*%), as shown in [79]. In this work we are

going to verify the prediction in the physics literature [123] 2 3] that the sub-leading term in
this energy asymptotics is actually of order a2 with a rather explicit pre-factor

1
Bo= % = ST |1 = VH™ | 4 04 (a72). (3.13)

where ¢ is a minimizer of 7'k and HP* is the Hessian of 7k at Pk restricted to
real-valued functions ¢ € L2(R?), i.e. H® is an operator on L*(R?) defined by

<§0|HPek|§0> — 11_{%612 (FPek(SDPek + EQD) _ ePek) (314)

for all ¢ € L2(R3). The prediction in Eq. (3.1.3) has been verified previously for polaron
models either confined to a bounded region of R? [40] or to a three-dimensional torus [37].
The methods presented there exhibit substantial problems regarding their extension to the
unconfined case, however. In this paper we present a new approach, which is partly based on
techniques previously developed in the study of Bose—Einstein condensation and the validity of
Bogoliubov's approximation for Bose gases [71], (72, [16] in the mean-field limit. We employ a
localization method for the phonon field, which breaks the translation-invariance and effectively
reduces the problem to the confined case, allowing for an application of some of the methods
developed in [40] 37]. Our main result is the following Theorem 3.1.1 where we verify the
lower bound on E, in Eq. (3.1.3) .

Theorem 3.1.1. Let E, be the ground state energy of H in (3.1.1). For any s < 5%

1
B> e — T [1 = VHP | — 0= (3.1.5)
(0%

for all o = a(s), where a(s) > 0 is a suitable constant.

As an intermediate result, which might be of independent interest, we will establish the
existence of a family of approximate ground states, by which we mean states whose energy
is given by the right side of (3.1.3), exhibiting complete Bose—Einstein condensation with
respect to a minimizer "¢ of the Pekar functional k. We refer to Theorem 3.3.13 for a
precise statement.

In contrast to the lower bound, the proof of the upper bound on E, in Eq. (3.1.3) is essentially
the same as for confined polarons [40, [37] and can be obtained by the same methods. It is
also contained as a special case in [91], where it has been verified that the ground state energy
E,(P) as a function of the (conserved) total momentum P can be bounded from above by
|PI”

1
Ea(P) < e — Ty [1 - VHPek] +

o’

+Cam3te, (3.1.6)

204m
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where m := 2| V|2 and € > 0, with C. a suitable constant. Since E, = E,(0) [50, 30,93],
Theorem 3.1.1 in combination with Eq. (4.1.3) for the specific case P = 0 concludes the
proof of Eq. (3.1.3). Combining (4.1.3) with Theorem 3.1.1, one further obtains an upper
bound on the increment E,(P) — E,, a quantity related to the effective mass of the polaron
[63] 77, 119 @]. In the second part [18] we will discuss, in analogy to Theorem 3.1.1, the
corresponding lower bound on E,(P).

The proof of Eq. (3.1.3) for confined systems in [40, [37] requires an asymptotically correct
local quadratic lower bound on the Pekar functional FY¢(y) for configurations close to a
minimizer, as well as a sufficiently strong quadratic lower bound valid for all configurations.
While our proof of Theorem 3.1.1 makes use of a local quadratic lower bound as well, we
believe that in the translation-invariant setting any globally valid quadratic lower bound cannot
be sufficiently strong, and therefore new ideas are necessary. As we explain in the following, we
circumvent this problem by constructing an approximate ground state W, which is essentially
supported close to a minimizer of the Pekar functional 7Y%, and consequently we only require
a locally valid quadratic lower bound.

Proof strategy of Theorem 3.1.1. Even though we want to verify a lower bound on E,,
let us first discuss how test functions providing an asymptotically correct upper bound are
expected to look like. In the following let (/7% oP°k) denote a minimizer of the Pekar energy
€ defined in Eq. (3.1.2). It has been established in [76] that all other minimizers are given by
translations 2% (z2') 1= P (2’ — ) and YLk (2') := ePyPeK(a" — x) of Pk and eypPek,
where 0 is an arbitrary phase. W.l.0.g. let us denote in the following by ()¢, ©F°) the unique
minimizer of £ such that ©"°* is radial and )¢ is non-negative. Then all the product states
of the form )L* @ Q rac with € R?, where Q pax is the coherent state corresponding to ¢F
(defined by a(w), = (w|p)Q, for all w e L*(IR?)), have the asymptotically correct leading
term in the energy (¢2* @ Qpe| H [¢E* @ Q pey = €. By taking convex combinations
of these states on the level of density matrices, we can construct a large family of low energy

states
Ly o= J [P ® Q¢59k><¢56k ® Qpex| dpa()
R3

for any given probability measure 1 on R?. Clearly, T',, exhibits the correct leading energy
(H)p, = e"*. Our proof of the lower bound given in Eq. (3.1.5) relies on the observation
that asymptotically as o — o0, any low energy state W is of the form I', with a suitable
probability measure z on R3. Since we only need this statement for the phonon part of ¥, we
will verify the weaker statement

Trelectron[ |\I[> <\I/| ] =~ j , |Q¢£ek> <Q¢§ek| du(x)
R

instead, see Theorem 3.3.2 for a precise formulation. This statement is analogous to a version
of the quantum de Finetti theorem used in [71] in order to verify the Hartree approximation
for Bose gases in a general setting. The main technical challenge of this paper will be the
construction of approximate ground states W where the corresponding measure is a delta
measure, 1 = g, i.e. the construction of states where the phonon part is essentially given
by a single coherent state {2 rec. The method presented here is based on a grand-canonical
version of the localization techniques previously developed for translation-invariant Bose gases
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in [16], and in analogy to the concept of Bose—Einstein condensation we say that such states
satisfy (complete) condensation with respect to the Pekar minimizer P°. Heuristically this
means that only field configurations ¢ close to the minimizer ¥ are relevant, hence the
translational degree of freedom has been eliminated and the system is effectively confined.

Based on this observation we can adapt the strategy developed for confined polarons in
[40, [37], which starts by introducing an ultraviolet regularization in the interaction w, with
the aid of a momentum cut-off A, leading to the study of the truncated Hamiltonian H,.
Using a lower bound on the excitation energy FFk(p) — Pk that is, up to a symplectic
transformation, quadratic in the field variables ¢ and valid for all ¢ close to the minimizer
"k one can bound the truncated Hamiltonian from below by an operator that is, up to a
unitary transformation, quadratic in the creation and annihilation operators. The lower bound
is only valid, however, if tested against a state satisfying (complete) condensation in (k.
Finally an explicit diagonalization of this quadratic operator yields the desired lower bound in

Eq. (3.1.5).

The symplectic transformation on the phase space L*(R?), respectively the corresponding
unitary transformation on the Hilbert space F (L?(IR?)), is one of the key novel ingredients in
our proof. It turns out to be necessary due to the presence of the translational symmetry,
which makes it impossible to find a non-trivial positive semi-definite quadratic lower bound on
FPek(p) — ePek. This issue has already been addressed in the study of a polaron on the three
dimensional torus [37], where a different coordinate transformation is used, however. The
symplectic/unitary transformation presented in this paper is an adaptation of the one used in
the study of translation-invariant Bose gases in [16].

Outline. The paper is structured as follows. In Section 3.2/ we will introduce an ultraviolet
cut-off as well as a discretization in momentum space, and provide estimates on the energy
cost associated with such approximations. Section [3.3 then contains our main technical result
Theorem 3.3.13, in which we verify the existence of approximate ground states satisfying
(complete) condensation with respect to a minimizer "¢ of the Pekar functional FFek.
Subsequently we will discuss a large deviation estimate for such condensates in Section 3.4,
quantifying the heuristic picture that only configurations close to the point of condensation
matter. In Section 3.5 we then discuss properties of the Pekar functional FYk. In particular,
we will discuss quadratic approximations around the minimizer ©"°* as well as lower bounds
that are, up to a coordinate transformation, quadratic in ¢. Together with the error estimates
from Section 3.2 and the large deviation estimate from Section 3.4, applied to the approximate
ground state constructed in Section [3.3, this will allow us to verify our main Theorem 3.1.1
in Section 3.6, The subsequent Section 3.7 contains the proof of Theorem 3.3.2, which can
be interpreted as a version of the quantum de Finetti theorem adapted to our setting. Finally,
Appendices 3.8 and 3.9 contain auxiliary results concerning the Pekar minimizer ©"** and the
projections introduced in Section 3.2, respectively.

3.2 Models with Cut-off

In this section we will estimate the effect of the introduction of an ultraviolet cut-off, as well
as a discretization in momentum space, on the ground state energy, following similar ideas
as in [79, [40] [37]. We will eventually apply these results for two different levels of coarse
graining, a rough scale used in the proof of Theorem 3.3.2 in Section 3.7, which applies to
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low energy states with energy ek + 0,_,,(1), and a fine scale precise enough to yield the
correct ground state energy up to errors of order 0, (@™2), see the proof of Theorem 3.1.1
in Section 3.6,

Definition 3.2.1. Given parameters 0 < ¢ < A, let us define for z € 20 Z3\{0} the cubes
C,i=|z1— b2y +0)x |20 —l, 2o+ 0) x |23 — {, 23 + (), and let 2!, .., 2 be an enumeration
of the set of all 2 = (21, 29, 23) € 20 Z3\{0} such that C, = B, (0), where B,(0) is the (open)
ball of radius r around the origin. Then we define the orthonormal system e, € L*(R?) as

. (x) . 1 J ezk.x 4k
T \/(27r)3gczn%dk e KL

||

as well as the translated system e, () := e,(x —y) and the orthogonal projection II} , onto
the space spanned by {e,1,...,e, n}. Furthermore we denote with II, the projection onto
the spectral subspace of momenta |k| < A

Lemma 3.2.2. Let w,(z') := 7 2|2/ — 2| 2. Then we obtain for 0 < { < A and z,y € R?
the following estimate on the L? norm

HHAwm — Hf’xﬁéwa < | — y|€ﬂ + /0.

Proof. With ~ denoting Fourier transformation, we have

) Dk L1
,;Pdk'fzn e e ®

N
V272 Hzfx’ewx Z /T
n=1 IC.n

where we have used that m(k) = mﬂBA(O)(k)' Defining the function o, (k, z,y) :=

etk (y—2) _ ik-(y—=z)

dK’ Sc n =2 dk’, we further have

SC n \kI‘Q
N — N 1 1
22 (H%lwx(k:) . Hwa(k:)) =N oulk,a, D)o (B) = i Lalh
n=1

with A := By (0)\ (Uﬁ:}:l Czn). Making use of the estimate |o,, (k, z, y)|* < |y—z|* maxpec., |K'—
k|? < 12|z — y|?¢? for k € C, we therefore obtain

N
Z J lon(k, z,y)| —2dk‘ 12|z — y|2€2f —2dk‘ = 487|x — y[22A.
P |k| |k|<A |k|

Since A © By U Bx\Ba_4¢ we consequently have SA ﬁdk‘ < /. |
Definition 3.2.3. For y € R?, 0 < ¢ < A, let us define the cut-off Hamiltonians

HY , = —A, —a (I§ qw,) — af (I jw.) + N,
Hy = —A, — a(Tyw,) — al T w,) + N
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These Hamiltonians can be interpreted as the restriction of H (in the quadratic form sense)
to states where only the phonon modes in IT§ ,L*(R?), respectively TI5 L*(R?), are occupied.
In particular, this implies that inf o(H} ,) > E, as well as inf o(Hy) = E,. In the following
we shall quantify the energy increase due to the introduction of the cut-offs.

Note that the a-dependence of the Hamiltonians H, Hi’w and H only enters through the
rescaled canonical commutation relations [a(f), a'(g)] = a™2(f|g) satisfied by the creation
and annihilation operators a' and @, and we will usually suppress the a dependency in our
notation for the sake of readability. In the rest of this paper, we will always assume that « is
a parameter satisfying & > 1 and, in case it is not stated otherwise, estimates hold uniformly
in this parameter for &« — o0, i.e. we write X <Y in case there exist constants C, ay > 0
such that X < CY for all o = «y.

The proof of the subsequent Lemma [3.2.4 closely follows the arguments in [80] [79], where it
was shown that H is bounded from below and well approximated by an operator containing only
finitely many phonon modes. For the sake of completeness we will illustrate the proof, which is
based on the Lieb—Yamazaki commutator method, see [80]. In the following Lemma 3.2.4, we
will use the identification L*(R?) ® F (L*(R?)) =~ L*(R3, F (L*(R?))), in order to represent
elements U € L*(R?) ® F (L*(R?)) as functions = — W(z) with values in F (L?(R?)),
allowing us to define the support supp (¥) as the closure of {z € R?: ¥(z) # 0}.

Lemma 3.2.4. We have for all 0 < { < A < K and L > 0, and states ¥ with supp (V) <
By (y) the estimate

KU [Hx — HY [¥)] < (LNKJr VI A+ //1\ — ;{) U =A, + N+ 1Py, (3.2.3)

Furthermore, there exists a constant d > 0 such that

Hy = —g —t (N +a7?), (3.2.4)
Hy > —d + ; (A, +N) (3.2.5)

forallt >0, K =20 and o > 1.

Proof. Let us define the functions u by u”(k) := ﬁﬂBK(o)\BA(O)(k’)%- We have
a(0p,u) — at (0p,u?) = [0y, a (u?)—al (u?)] and

In x x

4 [0, a () —al ()] < ~262 + = (aw)a(ul)+a(ua(u))
€
ez

€

1
<—2ed2 1= opr 4 0m2) <o (_agn N+ 204_2> |

where we have applied the Cauchy—Schwarz inequality in the first line and used the specific
choice € := |u?|| in the last identity. Note that the L*-norm |u”| is independent of z, and
furthermore we can express + (H?j\g — Hg) as

3
ta (HAwI—Hf’wwx) +af (Hwa—H%7ﬁwI) +1 Z (a (O, ul)— al (0 u"))

In Yx Tn Vx
n=1

3
< 2| Maw, — 1Y jwe | (1 +N) +2 max [ul] { =D, +3N + a2 ).
, ne{l1,2,3} 2
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This concludes the proof of Eq. (3.2.3), since we have HHwa — H?\,ewa < LI/ + /1 for

all x € supp (¥) by Lemma 3.2.2 and |[u”|? < + — +. The other statements in Eqs. (3.2.4)
and (3 2.5) can be verified similarly, usmg the decomposmon Mgw, = Hrpw, —i—Zn 1 1&‘%92
V\lnth g (k) = ﬁ]lBK(o)\BK,(o)(/f) \k\3 *~ where K’ < K is large enough such that [¢"| <
= |

12°

The subsequent Theorem [3.2.5 is a direct consequence of the results in [40] and [97, [37],
where multiple Lieb—Yamazaki bounds as well as a suitable Gross transformation are used in
order to verify that the energy cost of introducing an ultraviolet cut-off A = as(149) with
o > 0 is only of order 0, , (™2). Combined with an application of the IMS localization
formula, as was also done in [79], one obtains the following.

Theorem 3.2.5. Given a constant 0 < o < i let us introduce the momentum cut-off

A = a3+ a5 well as the space cut-off L := o'*?. Then there exists a sequence of states
W satisfying (U2 [Hy |V — E, < a~21%9) and supp (¥¢) < B (0), where E, is the ground
state energy of H.

Proof. We start by arguing that
info(Hy) —Ey SA 2 +a '"A2 +a A2 (3.2.6)

for large . An analogous bound was shown in [40, Prop. 7.1] in the confined case, where
additional powers of In A appear due to complications coming from the boundary. In the
translation-invariant setting on a torus, (3.2.6) is shown [37, Prop. 4.5], and that proof applies
verbatim also in the unconfined case considered here (as has been worked out also in [97]).

By our choice of A = as(1+9) we immediately obtain inf o (H,) — E, < o~ 2179 Hence
there exists a state U satisfying (U|H,|¥) — E, < a 2079 In order to construct a state
which is furthermore supported on the ball B7(0), let x be a non-negative H'(R?) function
with §x(y)2dy = 1 and supp (x) < B1(0). We define W, (z) := L~2x (L' (x — y)) ¥(x)
for y € R? and compute, using the IMS identity,

J(llfy|HA|\Ify> dy = (U|HA|T) + L3 JJ ‘VIX (L’l(x — y)) ‘2 dy ||\Il(x)|\2dx
= (U|HA|P) + L2|[VX|? = Ba + Oamseo (@ 20F9)) |

see also [79] where an explicit choice of y is used. Since { |¥,|?dy = 1, there clearly exists a
y € R3 such that the state U := | U, |1V, satisfies (W°|H, |V — E, < o 2(1+9). By the
translation invariance of H we can assume that y = 0. [ |

3.3 Construction of a Condensate

The purpose of this section is to construct a sequence of approximate ground states V¥, i.e.
states with (U, |HA|¥,) = E, + 0qe (@72) and A as in Theorem 3.2.5, that additionally
satisfy complete condensation with respect to a minimizer "¢ of the Pekar functional

FPek ie. the phonon part of W, is in a suitable sense close to a coherent state Qper with
2

Qe 1= 20T (75)~0%a(¢"¥) ) \yhere Q is the vacuum in F (L*(R?)), see Lemma 3.3.12

©
and Theorem 3.3.13. The construction will be based on various localization procedures of the
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phonon field with respect to operators of the form ' defined in the subsequent Definition
3.3.1. Before we start with the localization procedures, we will discuss an asymptotic formula
for the expectation value (¥, |F|V,) in Theorem 3.3.2 as well as the energy cost of localizing
with respect to such an operator F in Lemma 3.3.3.

Definition 3.3.1. Given a function F' : M (R?*) — R, where M (R3) is the set of
finite (Borel) measures on R3, let us define the operator F' acting on the Fock space

. © oo
F(LA(R?)) = (—D L, (R*>") as F @ W, := @ F"V,, where
n=0 n=0

(F"U,) (2!,...,2") = F <of2 Z 5$k> U, (2t ..., ")
k=1

and FyWy = F(0)Uy, i.e. F acts component-wise on 6—) L2, (R**™) by multiplication with

the real valued function (z',...,2") — F (a™23)_, 0 )

In order to keep the notation simple, we will allow F': M (R?®) — R to act on non-negative
L' (R3) functions ¢ : R® — [0 o) as well by identifying them with the corresponding
measure A € M (R3) defined as <& = ¢(x).

Before we discuss the asymptotic formula for the expectation value (¥, |F|W,), let us introduce
a family of cut-off functions x¢ (a < f(z) < b) where € = 0 determines the sharpness of the
cut-off. In the following let a, 8 : R — [0, 1] be C® functions such that o + 3* = 1,
supp (o) < (—o0,1) and supp (8) < (—1,00). For a given function f : X — R and
constants —o0 < a < b < o0, let us define the function x“(a < f <b): X — [0,1] as

f(z)-b f(z)—a
X€(a<f($)<b)::{a( € )6( € >7fore>0 (3.3.1)
]l[a,b] (f(l’)) ’ for e = 0.

Note that >, ; x“ (a; < f(z) < b;)* = 1 in case the intervals [a;,b;) are a disjoint partition
of R with —c0 < a; < b; < 0.

Similarly, we define the operator x“(a < T <b) := {x“(a <t <b) dE(t), where T is a
self-adjoint operator and FE is the spectral measure with respect to 1. Furthermore we
will write x (@ < f < b), respectively x (a < T < b), in case € = 0 as well as x“ (a < -) and
X (- < b) in case b = oo or a = —o0, respectively.

The proof of the following Theorem [3.3.2 will be carried out in Section 3.7. It is reminiscent
of the quantum de-Finetti Theorem, and establishes in addition that for low energy states
phonon field configurations are necessarily close to the set of Pekar minimizers given by

{@Eek }:ce]R3 .

Theorem 3.3.2. Given m e N,C > 0 and g € L*(R3), we can find a constant T > 0 such
that for all @ = 1 and states WU satisfying x (N < C) ¥ = VU and (U|Hg|¥) < e + de

with e = 0 and K > a2, there exists a probability measure 1. on R3, with the property

O )~ [ F (162F) duto

< T| ]l max {m,of%} (3.3.2)
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for all F': M (R®) — R of the form F (p) = §...§ f(x1,...,2n) dp(z1) ... dp(x,,) with
bounded f : R3*™ — R, and furthermore

‘<\IJ‘W W, ‘xp> J [Pk — g dp () <Tmax{\/&,of%}, (3.3.3)

where W, is the Weyl operator characterized by W;'a(h)W, = a(h) — (h|g).

In the subsequent Lemma 3.3.3 we introduce a generalized IMS-type estimate quantifying
the energy cost of localizing with respect to an F-operator, similar to the generalized
IMS results in [78, Theorem A.1] and [72, Proposition 6.1]. In order to formulate the
result, let us define for a given subset QO < M (R?) and a (quadratic) partition of unity
P={F: M(R’) — R:jeJ} ie. 0<F;<land}  ,F? =1, the variation of this
partition on (2 as

jeJ
Vo (P) :=a* sup Z‘F p+a” 5y)—Fj(p)‘2.
pEQ,YER3 jeJ

Lemma 3.3.3. There exists a constant ¢ > 0, such that for any partition of unity P = {F; :
M@ER}) —R:jeJ}, Qc M(R), K >0, a>1 and state U with 1oV = ¥

D F U Hg | F0) — (U[H 0| <

jeJ

< VKa Vo (P)(U[VN + a2 |T). (3.3.4)

Furthermore given M > 0, there exists a constant ¢’ > ( such that we have for any ¢ € L*(R?)
satisfying ||¢| < M, partition of unity {f; :R— R:je J}, K 21, a > 1 and state ¥

2 <Y k|9 — (U [H [P <

jeJ

IVEa Vmsy (P') <\If‘\/m‘\11>,

where we define U, := f; ( W ANW, ) U with W, being the corresponding Weyl operator
and P' 1= {F}: ./\/l (R3) _LR: j € J} with Fi(p) := f;(§dp).

Proof. By applying the IMS identity, we obtain
—— —_—~ 1 ——~
Y FHkE - He =5 | [FHe| B - me |7, (i) B
jeJ JjeJ
where we have used the fact that /; commutes with A and N in the last identity. Since
a state U is a function with values in F (L*(R?)) = (—D L2, (R**™), we can represent it

as U =@, ¥, where U, (y,z!,... . 2") is a functlon of the electron variable y and the
n phonon coordinates z* € R3?. In order to simplify the notation, we will suppress the
dependence on the electron variable 4 in our notation. By an explicit computation, we obtain

[Foa@)] Pl @i wa = - @7 /254w, with

n+1 n
v (2t ™) =J-[F <a2 Z 5mk) — ( Z )] "N (2t 2™ da™
k=1 k=1
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for ve L*(R?) and F : M (R?*) — R. By the definition of V5, (P) we obtain that

ot = B[ (0 ) - (o B 0)] <ot o)

for all 2! € R® and every ( Loo,z™) e R¥ with o 2),_ 0,» € Q. Hence we can
estimate <\I/‘ Zjej Re H ] ,}AWJ] ‘\I/>‘ using the notation X = (z!,... z"), by

n+1
\/ ﬁw ﬁ ) 0@ ) U (X, )| X

a Vo (P) Z Vn+1 J|\Ifn(X)| f [0(2011) Y 1(X, 20 1)|dz" X

< a™ Vo (P) o] Y Vit 1|0 Wi ] < Ve (P) Hv||<\lf \W \‘1’>
n=0

This concludes the proof of Eq. (3.3.4), using the concrete choice v := Il w,, since

2
||HmeH = 271-2 S\k\<K [k — 2K

In order to verify the second statement we apply the unitary transformation W, to the operator
Xi=Yes fi (WINW,) Hi f; (W' NW,,) — Hg and compute

wagzggﬂﬁW%Wﬂmnﬂﬂmﬂ

- S ][50 - e |0 - S [F 000 7

J
jedJ jeJ

where we defined v := ¢ — [Ixw, and applied the definition F’ = f; (S dp) We know
from the previous estimates that

£ %e| [ £ V) a0) |, £ ) | < 0™ Vagas) (P) ol VA + a2,

jeJ

Clearly |lv| < |l¢| + |[Hgw.| < VK for K =1, and consequently

2 <Y Hk | ¥ — (U [H | ¥)

JjeJ

< \/Ea74VM(R3) (P <@‘\/W<;1NW@ + a2 ‘\I!>
< \/EOFALVM(RS) (P) <\I"m ‘\I/>’

where we have used that W 'N'W, <2 (N + |¢[?) and the operator-monotonicity of the
square root. [ |

In the following let L := a!*? and A := o549 with 0 < o < 1, and let ¥, be a sequence
of states satisfying supp (¥?) < B..(0) and E, — E, < a2, where

— (U [HL |02 (3.3.5)
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The exponent 2% is chosen for convenience, as it allows to simplify the right hand side of
Eq. (3.3.2) to ||f|wa = (using that E, < ). For the proof of Theorem 3.1.1 we shall
use the specific choice U¢ from Theorem 3.2.5 for W?, but it will be useful in the second part
to have the first two localization procedures in Lemma 3.3.4 and 3.3.5 formulated for a more
general sequence U?.

In the following Eq. (3.3.6) and Eq. (3.3.10), we will apply localizations procedures to the
given sequence W’ in order to construct states having additional useful properties, which
we will use in Lemma 3.3.12 in order to construct a sequence of approximate ground states
satisfying complete condensation. Furthermore we will quantify the energy cost of these
localizations by (¥, |HA|¥,>— E, < a2 in the Lemmata 3.3.4/and 3.3.5. In Theorem 3.3.13
we will then apply a final localization procedure, in order to lift the (weak) condensation from
Lemma [3.3.12 to a strong one, following the argument in [72].

Having Lemma 3.3.3 at hand, we can verify our first localization result in Lemma 3.3.4} which
allows us to restrict our attention to states W/ having a (rescaled) particle number N between
some fixed constants c_ and c.. To be precise, for given c_, ¢, and ¢ we use the function
F.(p) = x* (c + € < {dp <cy —€) in order to define the states

v = Z7F,, (3.3.6)

with the corresponding normalization constants Z, := || F, ¥ |. By construction we have
X(c- SN <)V, =Wl as well as supp (V) < BL(O). In the following Lemma 3.3.4 we
derive an upper bound on the energy of ¥/, and in addition we will investigate the large «
behavior of Z,, which will be useful in the second part.

Lemma 3.3.4. Let U?, be the sequence introduced above Eq. (3.3.5). Then there exist
a-independent constants c_,c,,¢ > 0 such that the corresponding states V! defined in
Eq. (3.3.6) satisfy (U |HA|U. > — E, < a 2. Furthermore, Z, —> 1.

a—0

Proof. In the following let F, be the function defined above Eq. (3.3.6) and let us complete
it to a quadratic partition of unity P := {F_, F}, F'y} with the aid of the functions F_(p) :=

X (Sdp c_+¢€) and Fi(p) :== x° (c. — ¢ < {dp). Making use of Lemma 3.3.3 and
A — 3049 < o we then obtain

o (W, [HA W0, ) + Z5 (T, |HA|\P >+ 25 W [HAWas)
< (WO HA U2 + ca Vs (P) (Uo VN + a 2|02, (3.3.7)

where ¥, . := 7} ]3( y¥e,, with corresponding normalization factors Z, + := H}A?H)\I” |-
By Eq. (3.2.5) there exists a constant d s.t. (U V|, > <\I/' 2H, + d‘\IJ Y<d+a T,
where we have used the assumptlon (e, ]I-]IA‘\I! > = E, < E,— E, < a . The first
derivative of the functions (- <c_ +¢),x“(c. +¢ <-<cy —¢)and X (- <cy —¢€)is

uniformly bounded by some ¢'-dependent constant D, and consequently we have for all finite
measures p and p’ := p + « 2§, with y € R?, and o € {—, =, +},

. (0) = Fu (p)] < D ‘ [ar | dp‘ _ Do

This implies that VM(Rs) (P) < 1, and therefore the right hand side of Eq. (3.3.7) is bounded
by (U*|H, W) + Ca~2 for a suitable C' > 0. Since Z:_+Z2+ Z; =1, this means that
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at least one of the terms (¥, _|]H1A|\I/ >, <\If’ |HA|W!) or (W, |HA|Pq +) is bounded from
above by (U [H, |02 Y +Ca~2 = E,+Ca™2. We can however rule out that (U, _|[H |, ),
respectively <\Ila+|HA|\I!a ), satisfy th|s upper bound for all small c_, ¢ and Iarge a,cg,
since By < Eq+ Clar 5 < P 4+ C'a
and since we have by Egs. (3.2.4) and (3.2.5) for all't >0

d d Pek
(Ta [HA Vo) 2 (Vo | =55 =N +a7?) [ > = —t(e-+2¢+a?) 2=,
(3.3.8)
1 1
Wa, [HalWa,1) = (Wa| —d + §N|‘1/a,+> > —d+ §(C+ —2€) =0, (3.3.9)

where the last inequality in Eq. (3.3.8), respectively Eq. (3.3.9), holds for small ¢_, €' and

. d
c—+2¢ +oﬁ2

of Eq. (3.3.7) is bounded by (¥? |H,|¥2) + Ca~% together with Egs. (3.3.8) and (3.3.9),
and the fact that Hy > E, and E, < e, yields furthermore

large v, ¢, with the concrete choice t := ( >§ Using again that the right hand side

Pek Pek

62 ) +Z2E, < (1 _23)62 + Z2E, < E,+Ca™?,

(- 22) (Ea-

Pek

and therefore —(1 — Z2)." < E, — E, + Ca™3 —> 0. Since ek < 0, this immediately
implies Z, — 1. [ |

Regarding the next localization step in Lemma 3.3.5, let us introduce for given R and ¢ > 0
satisfying R > 2e the function Kr (p) := {{ x (R — € < |z — y|) dp(z)dp(y), which measures
how sharply the mass of the measure p is concentrated. It will be convenient in the second
part to have Ky defined for arbitrary ¢ > 0 even though we only need it for ¢ = 0 in the

following. We also define the function Fj (p) := x5 (KR (p) < %5) for R,0 > 0, as well as
the states

V! = ZpL Fpll, (3.3.10)

where U/ is as in Lemma 3.3.4 and Zg, := | FrW’ |. Since W, satisfies supp (V) < By (0),
we have supp (V") < B (0) as well. Furthermore x (]A(R < 5) U = U”. Heuristically this

means that we can restrict our attention to phonon configurations that concentrate in a ball
of fixed radius R.

Lemma 3.3.5. Let V! be the sequence from Lemma 3.3.4, and let ¢ = 0 and 6 > 0
be given constants. Then there exists a « independent R > 0, such that the states W’
defined in Eq. (3.3.10) satisfy (U |H,|¥") — E, < o2, where E, is defined in Eq. (3.3.5).

Furthermore, Zp, — 1.
7 a—0

Proof. Since P := {Fg,Gr} with Gp := /1 — F3 = X3 (2 < Kg(p)) is a partition of
unity, we obtain by Lemma 3.3.3

(FpW. [HA|F g0l ) +(G pV! [HA|GrW) < U [HA W S +ca Vo (P)W[y/er a2 [0
(3.3.11)

86



3.3. Construction of a Condensate

with Q:={p: {dp < c;}, where we have used x (N < c;) U/, = U/ and A < a. Since

d:z:X3 ( < x) and %Xg (x < %5) are bounded by some ¢-dependent constant D, we have

forall pe Q and p' := p+ a 25, with z € R3, and R > 2¢, the estimate

Fn(¢) = Fa(p)] < D|Kal#) - Kn(p)l =200 [ X (R~ ¢ < |y ) doly)
< 2Da %cy,

and the same result holds for Gg. Therefore we have by Eq. (3.3.11) and Lemma 3.3.4

7

(FRU |HA|FpT’> + (Grl, [Ha |GRU.) < (U |HA|T.S + Cra™2 < By + Cha™s
(3.3.12)

for suitable constants Cy,C; > 0. Since ||FR\I!’ 12 + ||GR\IJ’ ||2 1, this means that we
either have (U’ [Hp|U") < Eq + Coa 2 or (Ua|Hu|Uo) < Eq + Coa2, where U, :=
|GV, [ 'GRV’. In the following we are going to rule out the second case for R and
o large enough, to be precise we are going to verify (U |Hx|U,) > E, + da 2 for any
d > 0 and large enough R and « by contradlctlon In order to do this, let us assume
(U |HA W) < Eq A+ da” 3. Since B, < B, +Ca~# < P + Ca~2 by assumption for a
suitable constant C, U, satisfies the assumptions of Theorem 3.3.2 with de := (d + C)a~ %.
Hence there exists a measure i such that Eq. (3.3.2) holds. By the support properties of Gr
we obtain

2

g < (U, |Rp| W0 = JKR (165%F) dpt+ Onso (a7 %) (33.13)
— K (") + Oa (5. (33.14)

Since limp_,oo K (‘gppek‘z) = 0, Eq. (3.3.13) is a contradiction for large R and «, and

consequently we have (U, |H,|U,) > E, + da~ for such R and a. In combination with
Eq. (3.3.12) this furthermore yields

Zf%,aEa+(1—Z§7a)(Ea+da*%) < Z§7aEa+(1—Z§7a)(Ea+da*%) < BotCha i,
4 ~

and therefore 1 — 73 , < 27 (Ea — B, + Cya~ 3

d > 0 and « large enough, we conclude that Zp e 1. |

) < §+ %a%*%. Since this holds for any

The previous localizations in the Lemmas 3.3.4 and 3.3.5 will allow us to control the energy
cost of the main localization in the proof of Lemma |3.3.12. Before we come to Lemma 3.3.12
we need to define the regularized median m, in Definition 3.3.8 and verify Lemma 3.3.10,
which provides an upper bound on the variation Vi, (P) for partitions P = {F} : j € J} of
the form F;(p) = f; (my(p)). The following auxiliary Lemmas 3.3.6, 3.3.7 and 3.3.9 will be
useful in proving Lemma 3.3.10.

Lemma 3.3.6. Let us define the set O,y as the set of all p € M (R?) satisfying
J dp(z) < a?
;=1
forall t € R and i € {1,2,3}. Then Tq,_ W = for all U e F (L*(R?)).
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Proof. For given x = (x',...,2") € R®*™, let us define the measure p, := a 2> ,_, d,x.
Note that p, ¢ e if and only if there exists an i € {1,2,3} such that zF = 2% for
indices k # k'. Clearly the set of all such 2 € R3*" has Lebesgue measure zero. Hence the

multiplication operator by the function (z',...,2") — 1q,, (ps) is equal to the identity on
Lgym(R3X”), which concludes the proof according to Definition 3.3.1. [

Lemma 3.3.7. Let v,V be finite measures on R such that v ({t}) < e and V' ({t}) < € for
allt € R, and let x"(v) be the k-quantile of the measure v with 0 < k < 1, to be precise
x"(v) is the supremum over all numbers t € R satisfying LOO < k [ dv, where we use the

convention that the boundaries are included in the domain of integration SZ fdv = S[a o SV

Then
z" (V') z"(v)
‘J dy—f dl/‘ <2V — vy + €,
—0 —00

where [V — vl|lpy := sup [§fdv' —§ fdvl.

[flleo=1

Proof. We estimate

(') z"(v) z (V') (V')
J dl/—f dl/éf dv — & d1/<f dl/l-i-”I/,—I/TV—/{Jdl/

e o] —00 —00 e 0]

x| b et = viny =k [ dv <2l vl + 6

where we have used Sflu) dv = k {dv and Si()yl) dv' < k{dv' + €. The bound from below
can be obtained by interchanging the role of v and /. [ |

Definition 3.3.8. Let 2%(v) be the k-quantile of a measure v on R defined in Lemma 3.3.7
and let us denote K,(v) := [z2 %(v),22*(1)] for 0 < ¢ < 1. Then we define

1
o J Ldv(t) e R (3.3.15)
SKQ(V) dv Jr, )

my(v) =

for v # 0 and m,(0) := 0. Furthermore we define for a measure p on R? the regularized
median as m,(p) := (mq(pl),mq(pg),mq(p3)> € R3, where py, p» and p3 are the marginal

measures of p defined by p; (A) := p ([x; € A]).

Note that 2(v) is the largest value, such that both Siéy) dv > k{dv and S;(y) dv =

(1—k) {dv hold. As an immediate consequence, we obtain that the expression in Eq. (3.3.15)
is well-defined for v = 0 and 0 < ¢ < % since

23+9() w
J dUZJ dz/—i-fl dV—JdVZQquV>O. (3.3.16)
Ko(v) 0 #210)
Lemma 3. 3 9 Given constants R,c > 0 and 0 < § < % let p satisfy ¢ < {dp and
§{ dp(x < 0 and let q be a constant satisfying 0 < q < 3 — 5. Then we have for

lz—y|=R

all i€ {1,2,3} that 23 (p;) — R < 23 ~%(p;) < 2379(p;) < x

NI

(pi) + R.
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Proof. Since x* is translation covariant, i.e. " (v(- — t)) = 2"(v) +t, we can assume w.l.0.g.
that 22 (p;) = 0 for i € {1,2,3}. Then

dep )dp(y 2J dmwj;ggmw>Jth$£mw>>gL$£mwx

|lz—y|=R

where we have used that z2(p;) = 0 and {dp = c in the last two inequalities. Hence

o 0
J dp(y) < - < 5 | dp < J@
yisS—R ¢ ¢

for all & > % and consequently we have —R < z%(p;) for all such « by the definition of 2"(p;).

Similarly we obtain 2"(p;) < R for all  satisfying k < 1 — 5. Therefore |z2%9(p;)| < R for
5
1<5- 5 .

Lemma 3.3.10. Given constants R,c > 0 and 0 < § < % let Q) be the set of p € (eq
satisfying ¢ < {dp and  ({ dp(z dp( ) < 4. Then

|lz—y|=R

R

caq

‘mq (p+a7?8,) —m, (p)‘ <
forall peQ, veR3 and 0 < g < % — c%, where my is defined in Definition 3.3.5.

Proof. Since m, acts translation covariant on any p # 0, i.e. m, (p(- —y)) = my(p) +y, we
can assume w.l.o.g. that z2(p;) = 0 for i € {1,2,3}. By Lemma 3.3.9 we therefore obtain
l22%9(p;)] < R for pe Qand 0 < ¢ < 1 — 2. Note that the marginal measures p; and
pi, where p' 1= p + a24,, satisfy p; ({y}) < a2 and p} ({y}) < 2a™% by our assumption
p € Queg. Therefore 2% (p;) < 2(p}) < 2™ (p;) for pe Q and £ > 0, with K, ==k — 2La~?
and £* := k 4+ 31a~2 In particular, this implies lz2%9(pl)| < R for 0 < ¢ < 1/2 — §/c? and
« large enough. In the following it will be convenient to write the difference m, (p}) —m,(p:)
as

1 1 J 1
- Lpl () | taso-] ).
<SKq(p;) dp; SKq(Pi) dpi) Kq(p}) SKq Pi < Kq(p}) Kq(pi)

(3.3.17)

Making use of SKq(p.) dp; = 2qc, see Eq. (3.3.16), and K,(p}) = [ R, R] for all p € Q, we
can estimate the individual terms in Eq. (3.3.17) by

1 1 J'
tdpi(t)| < R
(SK dpl SKQ (pi) > Kq(pf)

| ‘S tdpi(t) =,y t dpilt ‘
(| taso-|  tan)] < B l -
Sk, 0o P \Jic ot Kq(pi) 2qc

Note that K,(p;) is contained in [—R, R] as well and consequently ¢ is bounded by R on
the subset K,(p;) U K,(p}). In order to verify the statement of the Lemma, it is therefore

Ty () = Ty @
2qc

Y
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sufficient to prove that ‘SKq(p{) f(t)dpi(t) —SKq(p,) () dpi(t)‘ < a™?| f|e for an arbitrary
measurable and bounded f : R — R. We estimate

<

f £(t) dol(t)— f £(t) dpu(t)
Kq(p})

Kq(Pi)

f £(t) dol(t) — f £(t) dpi(t)
Kq(p})

Kq(p)

<1l [ 164 = pillev + f ap: |,
Kq(P;)AKq(Pi)

where AAB := (A U B)\ (A n B) is the symmetric difference. Note that | o} — p;|ltv = a2
Furthermore we can estimate the expression SKq(p’.)AKq(p) dp; by

+

f £(t) dou(t) — f £(t) dpu(t)
Kq(P;)

Kq(Pi)

1

23 79(p)) 237 9(py) 239 239(p,)
J dpi — f dpi| + f dpi — J dpil .

—0a0 —0 —o0 —0o0

Since the distributions p; and p/ satisfy the assumptions of Lemma 3.3.7| with € := 2a2, we
conclude that every term in the sum above is bounded by 2|p" — p|rv + € = 4o 2. [ |

Before we state the central Lemma 3.3.12, let us verify in the subsequent Lemma 3.3.11 that
low energy states with a localized median necessarily satisfy (complete) condensation with
respect to a minimizer of the Pekar functional.

Lemma 3.3.11. Given a constant C > 0, there exists a constant T > 0, such that

<\Ij ‘ Wlp_Plek NW@Pck

\P><T(a_%+q+e>

for all states U satisfying (U|H|U) < P + a2 with K > o and 1« ¥ = U, where
Q* is the set of all p satisfying §dp < C and |m,(p)| < € with g,e > 0.

Proof. Let us begin by defining the functions

P(p) = (; | dp)2 - f ot f ) (3.3.18)

K3

Observe that |m,(p)| < € implies — < 22%9(p;) and 22 9(p;) < € for all such p which

additionally satisfy p # 0, see Definition 3.3.8. Therefore Pf(p) < (§ d,o)2 (-G - q)2) <q

for all p € Q2*, and consequently the measure 1 from Theorem 3.3.2| corresponding to the
state U satisfies | Pf (\wgekf) du(z) < (U|P;[¥) + Da~% < g+ a 5 for a suitable
D > 0, where we have used Eq. (3.3.2) in the first inequality. Furthermore we know that
gplek — Pk |2 < 32 pr (‘@5’*‘2) + ¢ by Lemma 3.8.3, hence

x

3
J”S%Pek_‘ﬁpek”Q dp(z) < ijf (‘g&iekf) dp(z)+e < q—i—of% +e.
i1

Therefore Eq. (3.3.3) immediately concludes the proof of Eq. (3.3.19). |
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3.3. Construction of a Condensate

Lemma 3.3.12. Given 0 < 0 < i, let A and L be as in Theorem 3.2.5. Then there exist
states U satisfying (0" |Hy |W"y — E, < =20+ supp (") < By (0) and

< \I]”I

where W e is the Weyl operator corresponding to the Pekar minimizer pPek.

nglek NWSOPek

xp'a”> <a B, (3.3.19)

Proof. It is clearly sufficient to consider only the case o« = «p for a suitable (large) «y,
since we can always re-define U := WU for o < ap where W is an arbitrary state satisfying
supp (V) < Byr(0). In the following let us use the concrete choice W?, := W?¢ for the sequence
in Eq. (3.3.5), where U¢ is defined in in Theorem 3.2.5, which is a valid choice since it
satisfies the assumptions supp (¥2) < B (0) and E, — E, < o209 < o~ 25. Furthermore
let {x. : 2 € Z*} be a smooth (quadratic) partition of unity on R3, i.e. 0 < y, < 1 and
ez X2 =1, with x.(z) = xo(x — 2) and supp (xo0) < B1(0). Then we define for z € Z*
and u,v > 2 with u + v < 1 the function F.(p) := x. (" ma-v(p)), as well as the states

U, . =2 F, 0" (3.3.20)

with Z, , 1= |F.0"| and ¥” as in Lemma 3.3.5/for e = 0 and 0 < 0 < % where ¢ := c_
is as in Lemma 3.3.4. Applying Lemma 3.3.3| with respect to P := {F, : z € Z3}, where
the functions F, are defined above Eq. (3.3.20) and (2 is defined as the set of all p € Q.

satisfying c < {dp <c; and  {§ dp(z)dp(y) <4, yields
lz—y|=R

372 (W JHA W) < (UAJHAWE) + ca™ Vo (P) y/ ey + a2, (3.3.21)

2€7Z3

where we used Lemma 3.3.6, A < a and 1o = U” by the definition of ¥” in Eq. (3.3.10).
Since the support of x, only overlaps with the support of finitely many other ./, we obtain
for v > 0 and « large enough

u - u 2
Vo (P) < a4suppeﬂ,yeR3 SUP,ez3 ‘Xz (Oz Mea—v (p +a 251/)) — Xz (& mea—v (P))‘
S C(2u+4SuppEQ,yeRi‘ ‘ma—” (p + 04725?4) — Mgy—v (p)‘2 $ Oé2(u+v)’
where we have used sup.czs |x: () — x= ()] < |Vxo|, |y — 2| in the first inequality and

Lemma 3.3.10|in the second one. Combining this with Eq. (3.3.21) and the fact that u+v < i
yields

322 (W [HA W) — (UUHL W) < a7 P (3.3.22)
2€73
Since >, ;s me = 1, this in particular means that there exists a z, € Z3 such that

(Wpo |HAY,, .. — By < a2179) and by the translation invariance of H, we obtain
(UM HA WS — By < a7 20%9) where U = T_-u, YV, ... Using the fact that 1o«¥” = ¥,
where Q* is the set of all p satisfying {dp < ¢4 and |m,—(p)| < o ¥, together with Lemma
3.3.11, immediately concludes the proof of Eq. (3.3.19).

Finally let us verify that supp (V) < B4.(0). By the definition of V2 = T_,-u, V..,
and the fact that supp (V,..) < Br(0), it is clear that supp (¥”) < Bp(—w,) with
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We = @ “z,. In the following we show that |w,| < 3L by contradiction for « large

enough, and therefore supp (V7)) < Br.jw,(0) < Bsyr(0). Assuming |we| > 3L, we
obtain supp (U”) < R3\B,.(0) and Corollary 3.9.7| consequently yields (U”|H, |0 >

Ey + (VNG 0| Y2 — \/%, where Np, () denotes the number operator in the ball B.(0)
(as defined in Cor. 3.9.7). Defining ¢r(x) := x (|z| < L) ¢"*(z), we further have

\I;I”>

WIS+ Slpnl? > ~Dad 4 Sl

(WIN, 0108 = (Wi,

< \I/”I

for a suitable constant D', where we have used the operator inequality Nz, ) + a(pr) +
a'(er) + [eL]? = =N + 3[¢r|? as well as Eq. (3.3.19). Therefore we obtain

Pek (NBL(O + a(()OL) + a (()OL) + H(pLH ) Pek

PekNW Pek

1 2 D
WA — B> Jlonl? = D'a~d =3[ — SI >0

where we have used that L = '™ —2, 0. This, however, is a contradiction to U Hp | 02—
Ea S @_2(1+U). [ ]

Following the method in [72], we are going to lift the weak condensation derived in Lemma
3.3.12 to a strong one in the subsequent Theorem 3.3.13, which represents the main result of
this section.

Theorem 3.3.13. Given 0 < 0 < i and h < 59 , let A and L be as in Theorem 3.2.5. Then

there exist states U, with (U, |Hy |V, > — E, s a~20+9) and supp (V,,) < By (0), satisfying
X (W;ng NW,pa < ofh) v, =0, (3.3.23)
for large enough «.

Proof. Using the states W from Lemma [3.3.12, we define for 0 < € < %
1
\Ija = ZOTIXE (ahwc;plekNW@Pek < 2) ‘Ij/a”

where 7, is a normalizing constant. Clearly the states ¥, satisfy the strong condensation
property x (nglckNWLpPek < a‘h) U, = W,. In order to control the energy cost of the

localization with respect to the operator W;plekNW@Pek, note that the partition P’ := {F’ G’}
with F'(p) := x (/" §dp < 1) and G'(p) := x° (5 < o {dp) satisfies

2
ol Jd(p + a’zéx) —a" Jdp
1 1

X y<d) —x(z<d) < H%XE(' < %) ||y — x| and the corresponding
estimate for x¢ ( ) Therefore we obtain by Lemma 3.3.3, using A < «
(

m‘\pm>
< ot Ouan (@7 207) 4 O (23) = Bt Oa (a7 2077)), (3.3.24)

2
. / 4 _2h
k= Viymsy (P') < Q'sup, yers = o?h,

W W)+ (1= Z2) (W [ Ha | By < QUL 92+ e 0"
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with \Tfa = 4/1— Z({l)(6 (% < OéhWL;plckNW@Pek) U”  Making use of the trivial lower bound
B, < (U, |HA|T,), Eq. (3.3.24) implies (W, [Ha|¥,) < Eq + Z5200 0 (a2+9)), which

concludes the proof since

1—Z§=<\11;”X6

1
(2 < ahW_plek./\/’Wchk> ‘\If”/

< \Ij///

< PekNW Pek

2
T \IJ’”> — a a” 2 — (.

3.4 Large Deviation Estimates for Strong Condensates

In this Section we will derive a large deviation principle for states with suitably small particle
number (compared to o), which can be interpreted as complete condensation with respect to
the vacuum. We will show that such states are, up to an error which is exponentially small in
a?, contained in the spectral subspace |a(f) + af(f)| < €, see Eq. (3.4.6). Note that taking
the point of condensation to be the vacuum is not a real restriction, since this is the case
after applying a suitable Weyl transformation. Before we can formulate the main result of
this section in Proposition [3.4.2, we need to introduce some notation.

For 0 < o < 1 let us define A := a3(1+9) 0= q=4(+9) and
H = H?\,E? (341)

see Definition 3.2.1, and let us identify F (ITL*(R?)) with L?(IRY) using the representation

of real functions o = 3 N\, € TIL2(R?) by points A = (A1,...,\y) € RN, where
N := dimIIL*(R?) and {¢1,..., N} is a real orthonormal basis of I1L?(IR3). We choose
this identification such that the annihilation operators a,, := a (,,) read

1
=\ — 4.2
ap, n T 202 6)\7“ (3 )

where )\, is the multiplication operator by the function A\ +— \, on L2 (RN). From the
construction one readily checks that N < (A/f)? < o for suitable p > 0.

In the following we will verify a large deviation principle for the density function p(\) := (A, A)
corresponding to a density matrix y on F (IIL%(R?)) that satisfies the strong condensation
condition

N
X <Z ala, < ofh) =" (3.4.3)
n=1

for some h > 0. This result is comparable to [16, Lemma C.2]. For this purpose, we define a
convenient norm | - |, on RY in the subsequent Definition.

Definition 3.4.1. Let |\ := 4/, A2 denote the standard norm on RY and let us define

the norm | - |, on RN, using the identification ¢ = 32_ X0, as

Al i= 2 sup f (-
zeR3 \| JBy(2)

‘ 2

o) )| dy. (3.4.4)
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The norm | - |, will again appear naturally in Section 3.5 where we investigate properties of
the Pekar functional FF°¢ (see Eq. (3.5.2) and the subsequent comment).

Proposition 3.4.2. Let 0 < s <min {2, 1(1—40)} and D > 0. Then there exist constants

B, ap > 0, such that we have for all &« = «y, € = Da*® and ~ satisfying Eq. (3.4.3)
J (14 M) p(\)dA < e7P9e7 (3.4.5)
[Mo=

where p(\) := (A, \) is the density function corresponding to the state ~y. Furthermore for

all (e RY and 3 < ﬁ there exists a constant o(f3, |£|) such that

J (14 A) p(\)dA < e Pee? (3.4.6)
NORVIE
for all « = a(f, |€]) and € = Da~*.

The restriction to the finite dimensional space TIL*(R?) will be essential in the proof of
Proposition 3.4.2, to be precise we will make use of the fact that N < o” for a suitable p > 0,
which in particular implies that N < e, uniformly in a, for any ¢ > 0. Before we prove
Proposition 3.4.2, we first need auxiliary results concerning the | - |, norm.

Definition 3.4.3. For z € R3 and r > 0, let us define T, A := —2x (|- —z| < 1) (—A)fé %)
1
and To, A := —2x(|-|=7)(~A)"2 ¢ with the above identification ¢ = 3V A, ¢,.

Furthermore let us define the operators A, := \/TJTI and A, := q/T£TT>r, as well
as the constant [y := infeps | As|| 2

Using the operators A, we can write |A|, = sup,cps |[AzA|, which is bounded by

o< osmax s AN, 4z} (3.4.7)

2€7Z3:|z|<r+1

for any r > 0. In order to see this, note that for any y € R3 there exists a z € Z3
with |y — 2| < 1. In case y € B.(0) n By(z), where z € R?, we see that z satisfies
|zl < r+1and |z — 2| < 2. Denoting the set of such z by M(z,r) = Z3, we obtain
Bi(7) © U.enr(ery B1(2) U (R\B,(0)). Consequently

Al < sup Z AN + |As A < sup (|M(w,r)| + 1) max{ sup |A\| |A>r)\|}.
x x zr )

zeM(z,r) zeM (z,r

This concludes the proof of Eq. (3.4.7), since there are at most 64 elements z € Z? satisfying
|z — 2| < 2.

Lemma 3.4.4. The constant By from Definition 3.4.3 is positive, uniformly in «, and

|Az|us < A uniformly in x € R3, where A is defined above Eq. (3.4.1). Furthermore there
exists a constant v > 0 such that |As,|us < % for all = 1 and r > 0.
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3.4. Large Deviation Estimates for Strong Condensates

Proof. Note that the space ITL*(IR?) is contained in the spectral subspace —A < A?, hence
1< (1+A%)(1—-A)", and therefore

2

M\»—‘

s =l (=l < ) | <4l —el <) (-a) Fa-ay

HS

[N

—4(1+A?) HX (-] <1)(=A)"2 (1 - A)

HS

1

Applying Eq. (3.9.5) with ¢ = x (].| < 1) yields that x (] -| < 1) (—A)fé (1—A)2is
Hilbert-Schmidt, hence ||A,|zs < A. In order to prove the uniform lower bound 5y > 0, it is
enough to verify the boundedness of x (|.| < 1) f(—A), where f(¢) := % An explicit

computation in Fourier space yields for ¢ € L?(R?)

Clf(—A)X (1] < 1) F(~A) ) = f - j » 1= 1) (= KEEBE) g o1

|| K]
f GG
0 |Jkl<1 |k|

Finally we are going to verify | A, |ns < % using that

M

<x(-I<s1D < el

N _1 2 «
Marlis =24 33 (12 1) (-8)F | s VN
n=1

for a suitable constant v > 0 by Corollary 3.9.2, where N is the dimension of TIL?(R?). This
concludes the proof, since N < o for some p > 0. [ |

< we obtain

Proof of Proposition|3.4.2. Making use of Eq. (3.4.7) and defining €, := &

JIM (T+AP)p(N)dA< ) J

|z|<r+17 [AzA[Zex

(LT+|A?) p(N)dA +J (T [A[?) p(N)dA,

[AzrA|Zex

where the sum runs over z € Z3 with |z| < r 4+ 1. In the following we are going to verify
that every contribution of the form S‘AW\|>6*(1+ IAI%)p(N)dA is exponentially small uniformly

in 7 € R®. As a consequence of Eq. (3.4.3), we have for ¢t > 0 the estimate

N
- t —hoy N Ir,n
<X(Za;an<w)<e<a Sa)
n=1

By our assumption on s, there exists a h’ such that 2s < ' < h. Consequently we obtain for
t := o) using Mehler's kernel,

Y Y 1 N 2 o
P =7\ N e e R dhan () ) = o " ( - ) (a w )

1_6_ah h T

o vz

—a?wa |2
)

(3.4.8)

’ ! . —n! o, . N
with w, := coth (o) —cosech (a"*"). Since Ne=""" —> 0, it is clear that (ﬁ)
a— —e—a
is bounded uniformly in «. Since w, = 0 is strictly increasing in «, we can choose
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0 < ' < Byinfa=1 w,, where [y is the constant from Definition 3.4.3. Consequently
’ ’ -1
|2 |A,?| < 1 uniformly in z € R® and a > 1, and in particular (1 — 5—|Ax|2) is a

bounded operator. Hence we obtain for z € R?

™

N
7 2 2
J (14 [A2) p(\)dA S e (a wa) 2 f (14 |A[?) e waPan

™

N
i 2 2
< (a wa) ? J (14 |AR) e (el 142012) g
RN

—1
-2 _ B 2
— €a2_h, Wa ta Tr (1 Wa |AI| ) efﬁ’ﬁiaQ

wWo det 4 /1 — %|Am|2

Furthermore, for a suitable, z-independent, constant p

—1

-2 _B 2
oo Wata Tr (1 o 1A ) et o
e <e

w,, det —15%|Az|2 det«/l—wﬁ—;|Az|2

7
a27hl+ lnaflTrln(lf—*B A 2)
=e P 2 wg [Ae] <e

2—h' 1 A2 2—h' CA2
a*™ " tpnatpldals < po” 7" Fplnatu ’ (3.4.9)

where we have used the rough estimate w, + a=2Tr (1 — wﬁ—;|Ax|2) B <1+ a™2N < aP for
a suitable exponent p > 0 in the first inequality and Lemma 3.4.4 in the last inequality. Note
that the exponent in Eq. (3.4.9) is of order are{zr s} 20 since A% = a5+ and
¢ > Da~* with s < min{%, 1(1 —40)}.

Defining r := o7 with ¢ > v, where v is the constant from Lemma 3.4.4 and making use of
the fact that the number of z € Z3 with |2| < r + 1 is of order r® = %, we obtain

f (1 + |)\|2) p(N)dAdz < 8907 PNt pON? =S 0? < ePea?
‘AZ)\|>€*

|z|<r+1

for B < ' and « large enough. We have |A-,|us —2, 0 by Lemma 3.4.4 and our choice

r = a®? with ¢ > v. Using Eq. (3.4.8), and an argument similar to the one in Eq. (3.4.9), we
can therefore estimate §, . (1 +[A[*) p(A)dA by

N

2 2
2—hn' a~w _ 2 2

1+ M2 p(\)d) < e « 14 [M?) e~ @ walM g
P
[AzrA|Zex n [AsrA|Zex
p
< " @ e—Bda? < oM pplnat| Az, s —F'Ga?
/
det /1 — 2| Az,

Again we observe that the exponent o> " + plna + p|As, |3 is small compared to €2a?,
which concludes the proof of Eq. (3.4.5).

The proof of Eq. (3.4.6) can be carried out analogously with the help of the operator

A = <C|/\>ﬁ using the fact that | A¢|us = |A¢| = |C] and the assumption § < ﬁ More
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precisely we obtain for 8 < ' < ﬁ

vz

™

' ? 2 2
J (1 + |/\|2) p(/\)d)\ < 6a2—h (Of wa) f (1 + |)\|2) e @ Wa |A| d\
I<CIAM =€ [AcA|=e
2-1/ aP

/.22 2—h' 2 7.2 2 2.2
< e e—ﬂs @ < e +plna+u|Acllis—8' ¢ a < e—ﬂe ot

det 4 /1 — Z|AJ?

3.5 Properties of the Pekar Functional

In this section we are going to discuss essential properties of the Pekar functional FFek,
and we are going to verify an asymptomatically sharp quadratic approximation for FYe(y),
which is valid for all field configurations ¢ close to a minimizer "¢, It has been proven in
[40] that a suitable quadratic approximation of FF°¢ holds for all configurations ¢ satisfying
|Vip—ppex|| « 1, where

V, = —2(=A) "2 Re . (3.5.1)

In the following we are showing that this result is still valid, in case we substitute the L?-norm
with the weaker | - |, norm, which is a hybrid between the L? and the L norm defined as

[V]lo := sup \/J V(y)? dy, (35.2)
zeR3 Bi(x)

where By () is the unit ball centered at z € R3. This will be the content of Lemma 3.5.2
and Theorem 3.5.4, respectively. We have [V, ||, = [Alo for ¢ = 3 X\, where | - |, is
the norm defined in Eq. (3.4.4). Before we come to the proof of Lemma 3.5.2, we first need
the subsequent auxiliary Lemma 3.5.1|

Lemma 3.5.1. There exists a constant C' > 0 such that the operator inequality
VZ<OIVI2(1—A)? (3.5.3)

holds for all (measurable) V : R® — R, where V? is interpreted as a multiplication operator.

Proof. As a first step, we are going to verify that Eq. (3.5.3) holds in case we use the L?
norm ||V | instead of |V||,. This follows from V? < ||[V (1 — A)_1H2HS (1 —A)? where | - | s
is the Hilbert-Schmidt norm, and

12
V-8 = [ [Viri - o2y = [ Kerave
with K'(y — x) being the kernel of the operator (1 — A)~*. Note that C" := { K (y)*dy is
finite, which concludes the first step. In order to obtain the analogue statement for ||V,

let x be a smooth, non-negative, function with supp (x) < B1(0) and {; x(y)*dy = 1.
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Defining x,(z) := x(z — y) for y € R? and using the previously derived inequality V? <
C'|V|? (1 — A)?, which holds for any V € L?(R?), we obtain

v :JXWQX@/ dy :ny (Loi)V) Xy dy < CIJH]lBl(y)VQXy (1-2)"x,dy
2
<CWE [ x (1- ady = CIVEE [ |1 - ) a

where |A]” = AT A. Furthermore (1 — A)y, = x,(1 —A) —2(Vx,) V — (Ax,), which yields
together with a Cauchy—Schwarz inequality the estimate

Jl0=apoPay < [ (=200 -2 =19 [V PV + 83 F)dy
=3(1—-A)* - 12V(J VX2 dy)V + 3J |Ax,|2dy < (1-A)%,
where we have used that {|Vx(y)[* dy and {|Ax(y)[* dy are finite. |

In the following we are going to use that we can write the Pekar energy as
FP,(p) = ol? +info (=A +V,), (3.5.4)

where V,, is defined in Eq. (3.5.1). As an immediate consequence of Eq. (3.5.3) we have
+V < V/C||V|, (1 — A) and consequently there exists a §, > 0 and a contour C = C, such
that C separates the ground state energy inf o (—A + V') from the excitation spectrum of
Hy := =A 4V for all V with |V — V_pel|ls < 0y, see also [40]. This allows us to further
identify FY°k(y) as

z dz

FPK(p) = ol + T L (3.5.5)

Z_HVW%

for all ¢ satisfying ||V,_pex|ls < dg. Following the strategy in [40], we will use Eq. (3.5.5) to
compare F7%*(p) with Pk = FPek(oFPek)  Before we do this let us introduce the operators

Pek ._ 1 _ pyPek _ 4 (_ A\=%  Pekl [P PN pe A3
KPS im 1= B = 4 (2 A) TRy e () (3.5.6)
LP = 4 (—A) 2 Pk (1 — A) Pk (—A) 7 (3.5.7)

where HY is defined in Eq. (3.1.4), uF := Pk — || oP°k|2 and 17k is the, non-negative,
ground state of the operator Hyrex with VFek := V. per, which we interpret as a multiplication
operator in Egs. (3.5.6) and (3.5.7). The following Lemma 3.5.2 can be proved in the same

way as [40, Proposition 3.3], using Lemma 3.5.1.
Lemma 3.5.2. There exist constants c,dy > 0 such that for all ¢ with |V,,_ e, < &9

‘fpek((p)—epek o <(p—gopek|1—KP6k|(p o (,OPek>‘ <C||V¢,¢PekHo <(P—90Pek|LPek|(P—30Pek>-

(3.5.8)

Proof. By taking &, small enough, we can assume for all V' with |V,__rex|, < &y that
V,_ ppek ———— 1 3.5.9
Voo s, < (359
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where || - |, denotes the operator norm. This immediately follows from

1 2
v

pPek 0
L H VPek — 2

~ H (V VPek) H Ovao—goPek ||§7

op

where we used Eq. (3.5.3) and the fact that the spectrum of Hyrec has a positive distance
to the contour C, allowing us to bound the operator norm of (1 — A) z——— uniformly in

Hy pex—
z € C. Given Eq. (3.5.9), it has been verified in the proof of [40, Proposi\’gion 3.3] that

z dz
‘”902 + TTL mfm _ 6Pek _ <<,D _ 90P6k|1 _ KPek|(,D _ (,DPek>
%]

< €<90 o gOPek|LPek|g0 o QOPek>

for e == supee { [ 51, + 125, + (1 - 2)F vy (1 - 22
A= (Vw_cpPek) ﬁ and B := (1 — |k <¢Pek|) AT In the following we want to verify

that € < |V,_,rex|s, which concludes the proof by Eq. (3.5.5). Since (1 — A)—f— is

Z_HvPek

uniformly bounded in z, |25 AHOp < % < | (Vi—yre) (1 — A lop < |Vip—ppex |0 by

Eq. (3.5.3). Similarly Hl BH < |V—ypex|o. Regarding the final term in the definition of ¢,
note that (1 — A)2

}, where we denote
op

(1 — A)z is uniformly bounded in z, and therefore

*H yPek
1 1 A 1 1 A 1 Al
1-A) 1-A):| s|(1-A): -0 =
R T i e R e E R I =
op op op
with A":=(1—A) 2 A(1 — A)2. Furthermore HIA’ \lﬂ,ﬂzp and
_1 _1 —
[ < | (1= A) % (Ve ra) (1 A) 2 S (Vi) = ) o 5 [V

Lemma 3.5.2| gives a lower bound on FFek (gopek + E) — eP%k in terms of a quadratic function
& > (€1 — (KT 4 eLPeK) [€) for ¢ satisfying | Ve |, < min{<,dp}. Due to the translation
invariance of FT°k this lower bound is however insufficient, since we have for all ¢ €

Span{ayl (pPek’ ayz (pPek ) ays SOPek }\{ 0}

€1 — (K" 4 eLP) [€) = Hess| pa FTH[E] — € (€|LTH|E) = —e (| LP¥|€) < 0,
(3.5.10)

i.e. the quadratic lower bound is not even non-negative. In order to improve this lower bound,
we will introduce a suitable coordinate transformation 7 in Definition [3.5.3. Before we can
formulate Definition 3.5.3 we need some auxiliary preparations.

In the following let T be the projection defined in Eq. (3.4.1) and let us define the real
orthonormal system

Hayn (pP k

Pn = W (3511)
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for n € {1,2,3}, which we complete to a real orthonormal basis {1, .., px} of IIL*(R?).
Furthermore let us write P (y) := Pk (y — x) for the translations of ©"°* and let us define
the map w : R?® — R3 as

w(x) = (<¢n|¢§ek>)i=1 e R?. (3.5.12)

Since ¢ € H1(R?), w is differentiable. Moreover, since ¢k is invariant under the action
of O (3) and since the operator I commutes with the reflections y; — —y; and permutations
yi < y;, it is clear that w(0) = 0. By the same argument we see that D|ow has full rank and
therefore there exists a local inverse ¢t — x; for |t| < 0, and a suitable constant J, > 0.

Definition 3.5.3. We define the map 7 : TIL*(R3) — TIL*(R?) as
(¢) = S0,

where t7 := ({p1|@), {p2|p), (psle) ) € R and f(t) is defined as
£0) = x(l < 6.) ( rot Zuwg.

The map 7 is constructed in a way such that it “flattens” the manifold of Pekar minimizers
{phek : x € R3}. More precisely, we have that 7 (IIl®) is for all small enough z € R? an
element of the linear space spanned by {1, 2, ¢3}. A similar construction appears in [16]
and, in a somewhat different way, in [37].

Recall the operators KTk and Lk from Egs. (3.5.6) and (3.5.7), and let T}, be the translation
operator defined by (T,,0)(y) := @(y—=x). Then we define the operators KL% := T, Ktk T_,
and L% .= T}, LP< T, as well as for |t| < e with € < J,

Jie 1= 7T<1 — (1 +€) (KL + eLy™) )7r, (3.5.13)

where 7 : L?(R3) — L?(R3) is the orthogonal projection onto the subspace spanned by
{©4,...,¢on}. Furthermore we define J;. := 7 for |[t| = €. In contrast to the operator
1 — (K" 4 eLP) from Eq. (3.5.10), the operator J, . is non-negative for € small enough,
as will be shown in Lemma 3.9.5 With the operator J, . and the transformation 7 at hand
we can formulate a strong lower bound for FF°¢(¢) — P in the subsequent Theorem 3.5.4,
where we use the shorthand notation J; ([¢] := (p|J; c|¢).

Theorem 3.5.4. There exist constants C' > 0, 0 < ¢g < 0, and 0 < D < 1 such that

FPk(p) = Pk 1, Jre) ] - (j H(l - PekH (3.5.14)

$w

for all 0 < € < ey and ¢ € IIL*(R?) satisfying |V,,_ve
defined in Eq. (3.5.13).

, <€D and [t?| < eD, where J; . is

Proof. In the following we use the abbreviation ¢ := t¥. Since “V¢pek orek|| < |7| and
|| < [t] for [t] < %, we have for all ¢ satisfying |V, rec|, < De and |t| < mm{De, 0
HVT—thDﬂpPek o HV —pBek], < Hvsoprek o T vapek @hek |y ~ Hvsofsop"'k o T 1| < De.
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Pek

By taking D small enough we obtain HVT,

_ < € where ¢ is the constant from Lemma
z PP S c

3.5.2. Let us define ¢ := min {050, %,6*}. Using the translation-invariance of FF°¢ and
applying Lemma [3.5.2] yields

fpek(@) _ePek _ J,—_-Pek (T—Jzt S0) _ Pek > <T—xt§0_ (,DPek | 1— (KPek + ELPek) |T—xt o— ('DPek>

— <SD preku (KPek + 6LPek) |90 SOxek>
> [l — L™ |? — (o — | KL + eLP* | — ol

> [ = M |* — (1 + €) {p — Loy “| K7 + eLys™|o — Ty ™)
= (L e ) A=) @ K™ + eL (L= i), (3.5.15)
where we have used the positivity of KL°¢ and LF¢, and the Cauchy-Schwarz inequality in

the last estimate. Note that by construction of x; as the local inverse of the function w from
Eq. (3.5.12), we have (g, | — IIp ™) = 0 for n € {1, 2,3} and therefore

o — L™ =7 (0 —Th™) =7 (o — f(1) = 7 (7 (¢))

with 7 being defined below Eq. (3.5.13), where we used |t| < d,. This concludes the proof
with C' := (1 + €) (| K |op + €0/ Lllop)- [ ]

3.6 Proof of Theorem 3.1.1

In the following we will combine the results of the previous sections in order to prove the lower
bound on the ground state energy E, in Theorem 3.1.1. We start by verifying the subsequent
Lemma 3.6.1, which provides a lower bound on E, in terms of an operator that is, up to a
coordinate transformation 7 and a non-negative term, a harmonic oscillator.

Let us again use the identification F (IIL*(R?)) = L?(RY) utilizing the representation of
real functions o = S_ N, € TIL3(R?) by points A = (), ... )\N) e RY, such that
the annihilation operators a,, := a(y,) are given by a, = A, + 5 6,\n where A, is the
multiplication operator by the function A — X, on L*(R"), see aIso Eq. (3.4.2), where TI
is the projection from Eq. (3.4.1) and {¢1,...,@n} is the orthonormal basis of TIL?(IR?)
constructed around Eq. (3.5.11). Let us also use for functions ¢ — g(¢) depending on

elements ¢ € TIL?(IR?) the convenient notation g()\) := g (ZN )\nSOn), where A € RY.

Lemma 3.6.1. Let C > 0and 0 < o < L, and assume s, h and o satisfy 2s < h and

4 . Furthermore let us define A := a5(1+") and L := o'™?. Then we obtain for any
state U sat/sfymg (UIHA|P) < C, supp (V) < By (0) and

-

X (Wg;plekNW@Pek < th) VU =1y, (3'6'1)
that
N
OB > 4 (8] 1 D8 o [0+ 3 ) -
n=1 n=1
L0 (as—%(lw) n a—2(1+0)> ’ (3.6.2)

where t¥ and 7(y) are defined in Lemma 3.5.3 and J; . is defined in Eq. (3.5.13). Furthermore,
there exists a 3 > 0, such that (U|1 —B|¥) < e """ where B is the multiplication
operator by the function X — x (|t*| < a ™).
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Proof. Applying Eq. (3.2.3) with A and ¢ as in the definition of TI, see Eq. (3.4.1), and
K := A, and utilizing Eq. (3.2.5), we obtain for a suitable C’

(U[HA|P) = (P|HS | 0) — C'a ™2, (3.6.3)

Making use of 3" afa, = 22;1( 208 +22) — & and a, + af, = 2),, we further
have the identity

N
—ZCLTG

n=1

N N
1
H?\,E = _AJ: -2 Z <90n|wz> >\n + Z <_Wa/2\" + Ai) T 5.2
N
= A, + W(z +Z(—8A"+>\i)—+ Z

with V, defined in Eq. (3.5.1). Clearly —A, + V) = info (A, + V3) = FPEO) =37 A2

n=1""n’
which yields the inequality H} , > K + N = > | afa, with
1 & N
Ki=—-—— 02 Pek()\) — —. 3.6.4
4044; ST 202 ( )
Combining Egs. (3.6.3) and (3.6.4), we obtain
N
<\11‘HA ~ N+ Y dla, xp> + Cla 2059 > (U[K|W) = (K), (3.6.5)
n=1

where v is the reduced density matrix on the Hilbert space F (IIL*(R?)) =~ L?(R")
corresponding to the state W, i.e. we trace out the electron component as well as all
the modes in the orthogonal complement of TIL?(R?),

v 1= Trrareerrars) »rForars) [ Y]]

Note that we have the inequality WHcpPek (Ziv Lal an) Wiper < Wg;plek NWwPek. The
operators on the left and right hand side commute, and consequently (3.6.1) implies
that y (Wﬁ;pek (ZN al an) Wi pa < a*h> U = W. This in particular means that the

n=1"n

transformed reduced density matrix 7 := WH@Pek”)/Wl—i’}pek satisfies

N
X (Z ala, < ofh> ¥y =5. (3.6.6)
n=1

Using the identification ¢ = ZNA Anon as before, the Weyl operator Wy pex acts as
(Wiirac¥) (A) = W (X + A7) with AP o= ([P .. {on ™) ). Dueto Eq. (3.6.6),
and the fact that 2s < h and o < 1 458, the assumptions of Proposition [3.4.2| are satisfied,
and therefore we obtain for any D > 0 the existence of a constant 5 > 0 such that for «
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large enough

r

(]_ + |)\ — Apek|2) p()\)dA = f (1 + |)\|2) ’ﬁ(}\)dA < 6_5a2(1—s)’
[Aloza—sD

[

IA—APek |, =a—5 D

(3.6.7)
- 3
(T4 A= APH2) p(A)dA < Y] J (14X = APK12) p(A)dA
Jt |za==D n=1YAn|>22D
3
S f (14 AR) BN < e 80, (3.6.8)
n=1 P‘RP%D

where p and p are the density functions corresponding to v and 7, respectively, and where we
have used t* = (A1, A2, \3) € R3. For the concrete choice D := 1, Eq. (3.6.8) immediately
yields the claim (¥|1 — B|¥) = SW%,S p(A)dA < e A7

In order to verify Eq. (3.6.2), we need to find a sufficient lower bound for the expectation value
(K).,, where K is the operator from Eq. (3.6.4). Recall the definition of the transformation
7 : [IL*(R?) —> M L?*(R3) from Definition 3.5.3 and the operator J; . from Eq. (3.5.13). As
a first step we will provide a lower bound on (F"*()))_, using Eq. (3.5.14) and the fact that

Sup)yj<q, | (1 — 11) @Efk\\z < a5 059 for t, small enough, which follows from Lemma 3.8.1
together with z; v 0. We define the operator A := x (|]A — AF|, < a7 D) (‘t’\‘ <a™*D),
where D is as in Theorem [3.5.4] and estimate

(FPEAy = (FPHEN) A, + (FH () (1= A)),
> (" + T a_s[T(A) JA) -+ R0 (L= 4)), +0 (a8 0)

— <epek+JtA, > <X> +0( 1+”) (3.6.9)

with X = (FPE(N) — Pk — i ,-[7(N) ]) (1 = A). Using Egs. (3.6.7) and (3.6.8) as well
as the fact that 1 — A < x (J]A — AP*|, = Da™*) + x (|t}| = Da~*), we obtain <X>

e=P2*""7 where we have used that F*%()\) and J o [7()) ] are bounded by C(1 + |A[?)
for suitable C' > 0. By Eq (3.6.9) we therefore have the estimate (F'*(})), > < Pek 4

Jix o >+O ( ”")> and consequently

(K, = P < 2 2t I >— 5+ 0 ( 8*%”0)) . (3.6.10)
Since <— Y. SN AR 1 0y ]> - <xp‘ LYV a2y Jﬂ,a,s[T(A)]‘@, this
concludes the proof together with Eq. (3%5) [

In the following, let W, be the sequence of states constructed in Theorem 3.3.13, satisfying
(Wo[HA W) — Eq < =249 supp (V) © By (0) with L = o'*7 and strong condensation
with respect to ©™°* ie. x (nglek NW jpec < ofh> v, =V, and furthermore let s < i

be a given constant and let us choose o and h such that 2s < h < 2 and J <o < 1= 55.
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Note that h < makes sure that the assumption of Theorem 3.3.13 is satisfied, while 2s < h

and o0 < =2 are necessary in order to apply Lemma 3.6.1. The final assumption J < o will

be useful Iater in Eq. (3.6.15) in order to make sure that =21+ < o~(2*+%) Making use of
3 z0and N = Z ! a,, we obtain by Lemma 3.6.1 that

4a4n1 n=1 %

Ea > ePek

1 ¥ N
Y Z a§n+‘]t*,a—3[7()\)]“I’a>—ﬁ+0 (a720%) (3.6.11)
n=4

for a suitable C, where we have used a5 (1%9) < o 2149 and E, — (U, |H, |V, =

—a~21%9)_In order to further estimate the expectation value in Eq. (3.6.11), let us define
N

the unitary transformation (UV) (A) := U (7' (\)) with 7/ ()) := (<g0n|7' (\) >) e RV,
n=1

Since 7' acts as a shift operator on each of the planes X; := {\: (A1, Ao, A3) = t} for t € R3,
it is clear that det D|,7" = 1, which in particular means that the operator U is indeed unitary,
and we have 0y, = U1\ U for n > 4. Furthermore we define the operator

t,e~_ Q4Za}\n+n;1 Jtenm n m
with (Jic),, . 1= {@n|Jic|om). Note that (J.), . = (Jic), , =0incasene {1,2,3}, ie.
the operator Q; . depends only on the variables A, for n > 4 and not on t* = (A\;, A2, A3),
hence it acts on the Fock space F(span{eu,...,¢n}) = L?(RV7?) only. Utilizing the

fact that U ' o-s[ T(A) |U = Jpp o=o[A] = an 1 (Jra=),,  AnAm, where we used that
U~ U = t*, we obtain

[t|<a—s

1 XN
LH(_W Z 5/2\7;,_ JtA,a—s[T()\)]>u = Qp o = Qp B> inf info(Qn+)B,
n=4

where B is as in Lemma 3.6.1. Here we have used Q; ,-s = 0, which follows from Lemma
3.9.5, as well as the fact that 1 — B is non-negative and commutes with Q;x ,—s. Applying

this inequality with respect to the state \Ifa =U"1T, yields

(v

e N ~
p |t‘1<r;fiinf0 (Qta-) —@@Pa\l — B[V, ) (3.6.12)

[t|<a—*

N
_41425§,L+th,a—s[7()\)]‘\1’a> > inf info Qto‘ ° <\Ij ‘B‘\Ij >
at —

where we have used J; < 1, and therefore inf o (Q;,) < % By Lemma 3.6.1, we know
that <\f’a‘1 — IB%‘\T/@> =V, |1 = B|¥,) < e P Combining Egs. (3.6.11) and (3.6.12),
and making use of the fact that N < o for some p > 0, yields

N
E,=e" + inf info(Qqs)— - +0 (a_2(1+”)) : (3.6.13)

lt|<a—s 2002

Since the operator Q; o= is quadratic in J,, and \,, we have an explicit formula for its
ground state energy, given by

nf o (Qos) — -0 = Trnso] L= v/ Joa] (3.6.14)

202 202 ’
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where we used the fact that J; ,—« = 0 for a large enough, as shown in Lemma 3.9.5/ Using
Eq. (3.9.7), we can approximate this quantity by

i

sup
[t|<a—s

TrHLQ(R?’)I: ’\/Jta e]—TI' |:1— \/HPek:HSOéis‘f‘Oéii,
where HY°k is defined in Eq. (3.1.4). Consequently Eq. (3.6.13) yields
o Pek+21Tr [1 \/HPek] > —a 240 _ =8 o~ (2+3), (3.6.15)

which concludes the proof, since all the terms on the right side are of order a~(2+s)

3.7 Approximation by Coherent States

This section is devoted to the proof of Theorem 3.3.2, which states that asymptotically the
phonon part of any low energy state is a convex combination of the coherent states ) pex
with 2 € R3, where the convex combination is taken on the level of density matrices. As a
central tool we will verify in Lemma 3.7.2/ an asymptotic formula for the expectation value
<\II‘F‘\I/> in terms of the lower symbol P, corresponding to the state ¥, see Eq. (3.7.6).
Furthermore we will make use of the inequality

inf o — @ [* s FPH(p) — ™ (3.7.1)

derived in [38, Lemma 7], which implies that the only coherent states 2, with a low energy
have their point of condensation ¢ close to the manifold of Pekar minimizers {¢F°f : 2 € R3}.
We start with the subsequent Lemma 3.7.1, which provides an asymptotic formula for F
operators in terms of creation and annihilation operators.

Lemma 3.7.1. Let m € N and C' > 0 be given constants, {g,, : n € N} an orthonormal basis
of L*(R3) and let us denote a,, := a(g,). Then there exists a constant T > 0 such that for
all functions F' of the form

J Jffla---, Ydp(xy) ... dp(zm), (3.7.2)

with f : R3*™ — R bounded, and states U satisfying x (N < C)¥ = U, we can
approximate the operator F' from Definition 3.3.1 by

CUIF|®) — Y fr{(0a], .. a] as, .. a5, |9 < T|floa, (3.7.3)

I,JeN™

where we interpret f as a multiplication operator on L2(R3)®" =~ L2(R3*™) and denote the
matrix elements fr ;= g5, ® - ® g1,,|fl95 @+ ® gs,.)-

Proof. By the assumption x (N < C)¥ = W, we can represent the state ¥ as U =
Doz Yn Where U, (y,z',...,2") is a function of the electron variable y and the n
phonon coordinates 2 € R3. As in the proof of Lemma 3.3.3, we will suppress the dependence
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on the electron variable y in our notation. Using the definition of I in Definition 3.3.1, as

well as the notation X = (z!,...,z™), we can write
ol - ZJ (o130 ) copax
n<Ca?

—am > fla™, . x|, (X)) 2dX.

n<Ca? ke{l,....n}™ R3™

Defining KC as the set of all k € {1,...,n}™ satisfying k; # k; for all ¢ # j, we can further
express the operator Y, ; ym f1.J a}l . .a}ma‘h ...ay, as

S O a8y = o 5 5[ gt b

I,JeNm n<Ca? kek RS”

W, (X)PdX.

Consequently we can identify the left hand side of Eq. (3.7.3) as

am Y > flak, . ,a:’“m)|\11n(X)|2dX‘

n<Ca? ke{l,...n}m\K YR

<|fle Y] (k ) Z}m\’ca2m> L@n 0, (X)|2dX.

n<Ca? \ke{l,..., n

! _ _ _ —
Since e 2 = g — ) g2 <2 a2 < 2 for n < Cla?
ke{l n} \K: (n—m)'

.....

and since > 2 Spsn [Wn(X)[?dX = ||¥[? = 1, this concludes the proof. [ |

In the following we are going to define the lower symbol P, corresponding to a state
Ve L2 (R3,F(L2(R3) )) Since we consider the Fock space over the infinite dimensional
Hilbert space L?(R?), we need to modify the usual definition of the lower symbol by introducing

suitable localizations. For 0 < s < % and y € R?, let us define ¢, := o~ 3% and A,
and the projection

Iy =TI}, 0. (3.7.4)

see Definition 3.2.1. We have N, := dimII,L*(R?) < (A./l)° < o® by our assumption
s < 5= Using the notation {e,1,..., ¢, n,} for the orthonormal basis of II,L*(R?) from
Definition [3.2.1, we introduce for ¢ € C™* the coherent states Qe = eQQ“T(Wyvf)*QQ“(“oyvf)Q,
where Q is the vacuum in F (IT,L?(R%)) and ¢, ¢ := 3%, &.e,n € 1L, L*(R?). Furthermore
we define wave-functions W, localized in the electron coordinates z as

_3 T —y
U, (x) == L. 2x 7 U(z), (3.7.5)
where 4 € R? and L, := a2, and x is a smooth non-negative function with supp (x) <
By(0) and {x(y)*dy = 1. For the following construction, note that we can identify

L2 (R3,I(L2(R3))> ~ F(I,L3(RY) ® L2(R3,]-“(HyL2(R3)i)>. Let us now define
measures P, on C* =~ R*N* corresponding to the state ¥, as
dP, 1

G o [©4.cWy |7, (3.7.6)
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where ©, ¢ is the orthogonal projection onto the set spanned by elements of the form Qy{@\fl
with U € 1.2 (R3, ]—"(HyLQ(RS)L )) Note that the coherent states €2, ¢ provide a resolution

of the identity —x §ony [Qy.e) (el A€ = 1711, L2m3)), see for example [79], and consequently
the projections O, ¢ satisfy - §.v, Oy d€ = 1. In particular we see that the total mass of
the measure P, is { dP, = ||V, |* and therefore

[ ey = [ 1w,y = o -

In the following Lemma 3.7.2/ and Corollary 3.7.3| we will provide an asymptotic formula for
the expectation value <\Ily‘F‘\I/y> respectively <\IJ‘F‘\I/> in terms of the measures PP,.

Lemma 3.7.2. Givenm e N, C > 0 and g € L*(R3), there exists a T > 0 such that for all
F of the form (3.7.2), y € R® and € > 0, and states ¥ satisfying x (N < C)¥ = ¥

N, _
D= [ F o) ap©)|< (55 + ) 0P+ a2 o),
(3.7.7)

1
T fllo

with NV = N =37, al ,ayn and ay, = a(e,,), and furthermore

1 N, -
7 [l A )~ [l —alPapy©) < (5 + ) 1oy e 0,
(3.7.8)

where W is the corresponding Weyl transformation.

Proof. Let {g, : n € N} be a completion of {e,1,...,e,n,} to an orthonormal basis of
L*(R3) and let us define a,, := a(g,). We further introduce an operator F' as

Z f[JCLII aI aj...ay, =Z(H§m’fﬂ‘§m)wa§1...a?majl...aJm. (3.7.9)

I Je{l ..... Ny }m I1,JeNm

In the following we want to verify that both || f] .. ‘<\Ify‘ﬁ v, — <\Ify‘]} v, >

and | f! ‘<\Ily‘1?7 U, > — §F (Joyel?) dP, (5)‘ are, up to a multiplicative constant, bounded

by the right hand side of Eq. (3.7.7). Applying the Cauchy—-Schwarz inequality, we obtain for
all e >0

+(f-IE" IO = £f (1-12") £ (1-11%") fIE" < €] floote | flloo (1-1127)
< € fllooteH Floo (=TT )1+ -+(1—Hy)m),

where (1 —1I,); means that the operator 1 —II, acts on the j-th factor in the tensor product.
Consequently we have the operator inequality

( Y Jroah o a, —f’*) < N + € flam My A

I,JeN™
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Making use of Eq. (3.7.3) and the fact that x (N < C) ¥, = U, further yields

<\Py|F|\Py>_ Z fIJ <\Ij |a]1 aImaJI sy

I,JeN™

Uy)| < da™? | fllo] Ty

for a suitable constant d > 0. We have thus shown the bound
Wy | P 10,0y [F[0,) < (da2eC™) [0, |2+ € mC KWy N2y, [,
(3.7.10)

Hf||oo }<

which is of the desired form.
In order to verify that W ‘<\I/y‘ﬁ 0,5 = §F (lpyel?) dP, (f)‘ is of the same order as the

right hand side of Eq. (3.7.7) as well, we will first compute F with reversed operator ordering,
i.e. we compute

Z fLJaJl...aJma;l...aRn = Z f[JCLh CLJI o ag, (3711)
I,Je{1,....Ng}™ I,Je{1,....Ng}m
LA |
i
a2\ T T
n=1 to,reS™n\I,J’ k#{o1,....,on} LE{T1,...; T}
where S™" is the set of all sequences o = (01, ...,0,) without repetitions having values
or € {1,...,m} and the coordinate matrices f77 are defined as
}‘/f}, = Z f[,J 51017‘]7'1 "‘6Ianv=]7'n H 5I’€’Illc H 5(]27(]é
ILJE{1,... .Ng}m k¢{o1,....,on} C¢{T1,...;Tn}

for I' € {1,..., N J{lmiMovwont and J' e {1,... N, }{LmMrem} - One can verify
Eq. (3.7.11) elther by iteratively applying the (rescaled) canonical commutation relations
[ai, a}] = 04_251'73-, or by using the fact that the operator ea_2V5V5, which is well defined on
polynomials in & and &, transforms the upper symbol into the lower symbol (see e.g. [107]),

and computing its action on P(§) := > ; Je(l Ny T, i€ - &, 6, aS

TP = PO+ Y]

2 (wa [T & [I sJé>.

"o, reS™mon \17,J’ k¢{o1,....on} L¢{T1,...;Tn}

In order to identify the left hand side of Eq. (3.7.11), we will make use of the resolution of

identity —x; §on, Oy d€ = 1, where ©, ¢ is defined below Eq. (3.7.6), which allows us to

rewrite the anti-wick ordered term ay, ... aJma;1 o a}m as

1 1 I
J aJl...aJ7n@y75a}1...a}mdf: J €J1"'nggh"'ngn@y,ﬁdg'
CNx% Ny

Here we have used that 4,0, = £,0,, for all i € {1,..., N,}. By the definition of P, in
Eq. (3.7.6) we can therefore rewrlte the expectation value of the first term on the left hand
side of Eq. (3.7.11) with respect to the state ¥, as

Zf],]<qjy‘@h GJmah ay |0, )= quf@h Eanln &, APy (€)

I,Je{l,.... Ng}m I,Je{l,...,Ng}tm

- f (BT £l P (€ f F (Jppel?) P, (€). (37.12)
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In order to control the terms in the second line of Eq. (3.7.11), we can estimate the norm
1f7 ] op < [Iflleo Ny for all o, 7 € S™", which follow from

@iy =" >0 frabn - On Ty = Y P fw®)

Jefl,..,Ny}m ke{1,..., Ny}
<Ifloo D5 1o | < [ f 1o N ol ],
ke{l,...,Ng}n
where I’ denotes the restriction of I to {1,...,m}\{o1,...,0,} and v is defined as (v*) , =

51017;{1 ... 01, k,vr, and J" and wk are defined analogue. Hence we obtain

1 o, T
Lyl T I1

g k¢{o1,....on} 0¢{T1,....,Tn }

N\ B
< 1fl () U, N,

(07

)

for n > 1. Since x (N < C) ¥, = U, and N, < o?, see the comment below Eq. (3.7.4), this
is a quantity of order || f[2% | ¥, | Combing this estimate with Eq. (3.7.11) and Eq. (3.7.12)

yields that W <\I/y‘ﬁ (0, > — S F (Jpyel?) dP, (5)‘ is, up to a multiplicative factor, bounded
by the right hand side of Eq. (3.7.7). Together with Eq. (3.7.10), this concludes the proof of
Eq. (3.7.7).

In order to verify Eq. (3.7.8), let us define G(p) := {dp. Note that W' N'W, = N —a(g) —

at(g)+ 9|2 = G —alg)—a'(g) + | g||2. Furthermore we have (Uyla(l,g) +al(Il,g) ¥, ) =
§ ({glpye) + {pyelgy) AP, (€), where we used that a(g) + a'(g) is anti-Wick ordered, and

(.

Hence, applying Eq. (3.7.7) with respect to the function G and using that {|¢, ¢ — g|*dP, =

§(G (puel) +<gleye) + (yel) dPy (€) + llg[*| Wy |* concludes the proof of Eq. (3.7.8).
|

< e UV, [Ty + ellg*[ 2, .

alg) + a'(g) - alll,g) — a' (M,g) ¥, )

Corollary 3.7.3. Given constants m € N,C > 0 and g € L*(R?), there exists a constant
T > 0 such that for all F' of the form (3.7.2) and states ¥ satisfying x (N < C)¥ = ¥ and
(U|Hg V) < eP* + de, with e = 0 and K > A, = %,

1
T fleo

and furthermore

WP [[ F ) ae, @t < Vit ratr @y

1 s 2
- ‘<\II‘W91NW9‘\I/> . ” lye — g 2dP, (€) dy‘ <Vie+tad+a? 2 (37.14)

Proof. Using the fact that we have <\If‘}A7 ‘\I/> = S<\Ily‘ﬁ ‘\Ify>dy and <\If‘Wg_1./\/'Wg‘\IJ> =
§ (| W N W, | W, ydy, and applying Eq. (3.7.7), respectively Eq. (3.7.8), immediately yields
that the left hand sides of Eqgs. (3.7.13) and (3.7.14) are bounded by

N, .
bt f U, IN o, |0, dy (3.7.15)
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for any € > 0. In order to bound {(¥,|NY . |W,>dy from above, let us first apply Eq. (3.2.3)
together with Eq. (3.2.5), which provides the auxiliary estimate

1B ) — L) [y < 0 1= A4 N 4 118, dy
<a J(\I!y|2HK T d+ 1|, dy.
Note that the assumptions of Eq. (3.2.3) are indeed satisfied, since K > A, and supp (¥,) <

Br,(y). In combination with the IMS identity §{ (U, |H|¥,)dy = (U|Hg|¥) + L,?|Vx]|?,
where x is the function from Eq. (3.7.5), this furthermore yields

[ s - O] <0 QU L), (3716)
where we have used L;? = a~*. Furthermore (U|Hg|¥) < Pk + de by assumption,

and consequently | §{W,[HY , [V,>dy — (VU[Hg|P)| < Da~*(de + 1) for a suitable D.
Consequently

(U |H |0 > f@ymz*,g* T,)dy — Da~*(e + 1)
> B, + f@y VY. [W,)dy — Da*(de + 1). (3.7.17)

where we have used that H} , > E, + Ny, in the second inequality. Using Eq. (3.7.17)
as well as the fact that E, — ™% > —a~5 > —a =, see [79], we obtain the upper bound

f (U N [W,) dy < (U[H D) — P 4 a~*(de + 1) < de + a™ (3.7.18)

Choosing € := v/de + a~* in Eq. (3.7.15) therefore concludes the proof together with the
observation that % <azs2, [ |

In the following Lemma 3.7.4 we are investigating the support properties of the lower symbol
IP,. In particular we derive bounds on the associated moments and verify that ¢, ¢ is typically
close to the manifold of minimizers {©l : z € R3}.

T .

Lemma 3.7.4. Given constants m € N and C' > 0, there exists a T > 0, such that
{§1g1PmdP, (€) dy < T for all U satisfying x (N < C') U = U, and furthermore we have for
all K = A, where A, is as in the definition of I1Y in Eq. (3.7.4),

1
7 |] it howe — o2 Pa, (© dy < OBy - P b ka3 710)
xTe

Proof. For m € N, let us define the function G(p) := ({dp(z))™ = {...{dp(z1)...dp(z),
which is clearly of the form given in Eq. (3.7.2). Consequently by Lemma 3.7.2

“ N, ,
i, © = [6 (ou) dp, € = G P + (55 +1) 10, + N2 )

= ooy (S )+ nnz iy < (e B o)
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3.7. Approximation by Coherent States

which concludes the proof of the first part, since N, < a? and {|¥,[?dy = || V|* = 1.

Regarding the proof of Eq. (3.7.19), we have the simple bound

Ny
le/\*,é* =-A,;—a(Ilw,) —a' (Iyw,) +N=-A,—a (Iyw,) —a' (Iyw,)+ Z a;,nay,n

n=1

N,
* N*
= -A, —a(lw,) — o' lw,) + Z ayma;n — (3.7.20)
n=1

Since all terms in Eq. (3.7.20) are represented in anti-Wick ordering, we can follow [79] and
express, similar as in the proof of Lemma 3.7.2, their expectation value as

Ny
<\I/ ‘ a(Il,w,)—a (Hywz)—i—z ayma;n
n=1

=051~ Ve 65+ B €
>f(mfo( Bat Vo) + lneP) B, O = [ P 0d8, (0, (3721

with w ﬁ where O, ¢ is defined below Eq. (3.7.6), F % is the Pekar functional

and V,, is defined in Eq. (3.5.1). Making use of Eq. (3.7.1) we obtain together with
Egs. (3.7.16), (3.7.20) and (3.7.21)

zeR3

N,
| [ it hone = cbegzam, (€ dy < [ o 0 dy - et 2

($3 N —S
$<\IJ|]H[K|\IJ>—ePk+§+Da ((U[Hg|UY +d+ 1),
for a suitable D > 0. This concludes the proof, since we have N, < azs, [ |

The bound in Eq. (3.7.19) suggests that ¢, ¢ is close to ¢rck with a high probability,
where z¥¢ is the minimizer of = — |, ¢ — ¢L°||. Motivated by this observation we

expect §§ F (|pyel’) dPydy ~ [ F (|o53k[°)
U, and therefore it seems natural to define the measure i in Theorem 3.3.2 as { fdu :=
{§ £ (%) dP,dy, allowing us to identify {{ F (\gpgg}g 2) dP,dy = (F (\gpg‘ekf) du. This
expression is however ill-defined, since the infimum inf,cgs [0, ¢ — ©L| is not necessarily

attained and it is not necessarily unique. In order to avoid these difficulties, we will slightly
modify the definition of the measure p in the proof of Lemma 3.7.5.

dP,dy for measures PP, for low energy states

Lemma 3.7.5. Given m € N,C > 0 and g € L*(R®) we can find a constant T > 0, such
that for all states ¥ satisfying x (N < C) ¥ = VU and (V[Hg|¥) < e + e, with de = 0
and K > A,, there exists a probability measure ;1 on R® with the property

177 ] G yam€an = [ auto

for all F' of the form (3.7.2), and furthermore

<Voe+ta i +aTl (37.22)

U loy.e — gl*dP, (&) dy — Jgopek g|Pdpu(z)| < Ve +a F +a . (3.7.23)
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Proof. For e > 0, let | J_, Ac, = C™* be a partition of C¥* consisting of non-empty
measurable sets A, having a diameter bounded by d(A.,) < e. Furthermore choose

Een € Acpn and ., € R? satisfying [poe, ., — wb| < infaeps [@oe, , — 5] + €. Then

Pek Pek Pek Pek

lye—0yte | = lvoe—Puiill < lPot, —Pucill+ 00— Poe.| < lpoe., —pusl+e
: Pek : Pek _ _, Pek
< inf llpoe., —9a ™[ +2e < inf o~ ™[ +3¢ = inf oy e~ ™| +3e. (3.7.24)

Let us now define the probability measure u on R?® by specifying its action on functions
feC(R? as

| ran = i [+ By ) ay - i | me (y + 2en) dP,dy.

Since {F (|py¢*)dP, (&) = 3% Su F (Ipyel?)dP, (), we can estimate the left hand side
of Eq. (3.7.22) with the aid of the triangle inequality by

niHA F (lpyel’) _F<

From the concrete form of the function F' given in Eq. (3.7.2), as well as the facts that

Iy I = lgo™ | is finite and [@y ¢l = |€], one readily concludes that

Pek
(py“!‘xe,n

2) ‘ dP, () dy. (3.7.25)

2 e 2 e 2m—1
\F(m,a )—F(\w‘;@e,n < 1F 1 Jone = b | 1+ leb™™

Using Eq. (3.7.24) we further obtain for any x > 0 and £ € A, ,,

Pek
HSOy,g o 90y+x€,n

(L4 I < (int e —ef ] + 3¢) (1 + Iy

B+ e ™2 4 3e (1 + g,

< -1 f _  Pekj2
R b foye—e ™" + 5

and therefore the expression in Eq. (3.7.25) can be bounded from above by
N , . K m—
e (s [ it e —2oPam, -+ s [ a4 )™ a0y
vaef[ @l ar, ).

By Lemma 3.7.4 this concludes the proof of (3.7.22) with € := k := Ve +a s +aF 2
Eq. (3.7.23) can be proven analogously, using the estimate

Pek

Pyt — Spy-&-a[:e,n (1 + |£|)

for £ € A . [

lene = gl = ol = o] < |

Combining Eq. (3.7.13), respectively Eq. (3.7.14), with Eq. (3.7.22), respectively Eq. (3.7.23),
immediately yields that the left hand side of Eq. (3.3.2), respectively Eq. (3.3.3), is of the
order v/de + a~3 4+ o151, Optimizing in the parameter 0 < s < % concludes the proof of
Theorem (3.3.2 with the concrete choice s := 2%.
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3.8. Properties of the Pekar Minimizer

3.8 Properties of the Pekar Minimizer

In the following section we derive certain useful properties concerning the minimizer " of

the Pekar functional ¥ in (3.5.4). We start with Lemma 3.8.1, where we quantify the
error of applying the cut-off II to a minimizer, where I is the projection defined in Eq. (3.4.1)
for a given parameter 0 < 0 < i. The subsequent Lemmas 3.8.2 and 3.8.3 then concern the
Pek‘2

concentration of the density ‘<p around the origin.

Lemma 3.8.1. For all r > 0 we have the estimates sup,, | (1 — II) t| < o 5(1+0)
(1 —1) 0, < a 3059 forn e {1,2,3}.

Proof. We can write ¢k = 4,/7 (— A)fé ‘@bpekf where "¢ is the ground state of the
operator Hy pex. Consequently Pk = 4. /7 (f, + g.) with the definitions
Pek |2 )
Fulk) = ]lBA(k)W |k|| ®) ik and a(k) = ]lRS\BA(k)W) |k|| ®) ik where = denotes the
Fourier transform. In the first step we are going to estimate || (1 — IT) g,|| = | g.| by
[Pk (k)‘ — 2 ] .
g$||2:f ‘dk<‘|k‘|2 1/}Pek ( f 7(1]{: 720[—?(14-0)7
wor P TG )
(3.8.1)
where we have used that ¢k € H?(IR?), see [76, [95], and therefore H|k|2 ‘@ZJPCkf (k)| < oo.
o0

In order to estimate the remaining part || (1 — IT) f, |, let us first compute

wPek‘ e (r—) 1
-~ z T dk’ —
fa(y)= /TW Jk|<A (2m)3

1 eik~(x+z—y)

1 2
— Pek d - _ Pek d
s ) 1 fu i e = o [ ) e

using the projection I, from Definition 3.2.1 and the function w, from Lemma [3.2.2,
Consequently we obtain by Lemma 3.2.2

eik~(x—y) Pek 2 ik
Lq 7 RSW (2)| €™ *dzdk

1 o 2
R R IO/ RONES FNEE

<Mf 2] [6P()[F d + VA e] + V2,

where we have used (1 —1II) I, = ITy —IT and {, [¢P*(z )‘2 dz = 1. This concludes the

proof of the first part, since the terms ¢+/A and /7 are all bounded by a5¢ 5(14+9) and the
state YP* satisfies §g |2|7 |7 (2 )‘ dz < oo for any p = 0, see [95].

In order to verify the second part, we write again 0,, 0" = 4\/7 (0, fo + 0, g0). In
analogy to Eq. (3.8.1) we have [0, 00]*> < & = « 5(1+") Furthermore 0., fo(z) =
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_\/% (o - (‘wpek(z)f) [Tyw,(x) dz, hence proceeding as above yields
| (1 —11) 8, fol < NKJRS 12]|0-, (‘¢Pek(z)‘2) |dz
+ (E\/K|x| + \/E) f 0., (\%Dpek )| )‘dz

This concludes the proof, since

| o (wr@P) 4z =2 [ lert @i @)l
< [ PP+ | Ver)Pds <o
R3 R3

and similarly with |z| replaced by 1. [ |

Lemma 3.8.2. There exists a constant C such that  § ‘(ppek(x)f dr < Ce for all
t<a; <t+e

teR,e>0andie{l,2,3}.

Proof. By the reflection symmetry of the Pekar minimizer, it is enough to prove the statement
for i = 1. For this purpose, let us define the function D : R — R as

D(t) := J ‘@Pek(t,ﬂfg,l'g)f dxodas
R2

In order to prove the Lemma, we are going to show that D is a bounded function. Since
D(t) — 0, we have | Dy < {1 D'(t)|dt and furthermore

t
J D' (t)|dt < JJ ‘at ‘@Pek(t,xg, xg)ﬂ dzodrgdt < J ‘Vgg ‘gopekﬂ dz
2 3
_ 2f Pek ‘ngoPek‘ dz < HSOPekHZ + Hv(pPekHQ < 0,
R3
where we have used that ¢* € H(R3). |

2 2 _u
Lemma 3.8.3. The Pekar minimizers v satisfy | bk — oP<|” < 377 | Ps (‘gogek‘ ) +a7Y,
where Pf is defined in Eq. (3.3.18).

(]

Procf. Since 1 — | 25| =2 | and [ 2 — P4 < Je [,

Peke _ PekH2 < min{|z|?,1}. Therefore it is enough to show that we have

Pek

we have H(,p

min{z?, 1} < Pf (‘gpxpekf) + €. By the reflection symmetry of ©"°k, we can assume w.l.o.g.

that i = 1. We identify W P (\ %Izek‘z)

1 1 f Pek ( 1 f Pek )
. dy S dy
4 |oPek|® Wl JoPe)? el

Y1<x1+€ Y15x1—€

- <;—F(:1:1)> + F(x1)(F(z1—€)— F(x1)) + (F(21)— F(z14€)) (1= F (2, — €))

> (;—F(:cl))Z + (F(z1—€)—F(x1)) + (F(z1)— F(z14¢€)) = (;—F(xl))Q —2C¢
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with F(t) := W $i<t ‘gpPEk(y)‘zdy, where C' is the constant from Lemma 3.8.2. Since
Pe

©P°k is radially decreasing, see [76], it is clear that |oP(z)|? = ¢ > 0 for all z € [=6,]?
where 0,¢ > 0 are suitable constants. Assuming z; > 0 w.l.o.g. we conclude that

ngPekHQ (F(z) - 1) = CSO<y1<x1 L1_s43(y) dy = 4co*min{zy, 6} = minfxy, 1}. o

3.9 Properties of the Projection 1]

In the following section we discuss properties of the Projections II defined in Eq. (3.4.1)
and Il defined in Definition 3.2.1. The first two results in Lemma 3.9.1 and Corollary
3.9.2 concern the space confinement of elements in the range of II, to be precise we show
that the associated potentials V,, defined in Eq. (3.5.1) are concentrated in a ball of radius
af for a suitable ¢ > 0. While Lemma [3.9.3 is an auxiliary result, we will show in the
subsequent Lemmas 3.9.4 and 3.9.5 that the operator J, . is an approximation of the Hessian
Hess| rac F'%, where J; . is the operator defined in Eq. (3.5.14). Finally, we will show in
Lemma [3.9.6 that the functions I1xw,, which appear in the definition of Hy in Eq. (3.2.2),
are confined in space around the origin. We will then use this result in order to quantify the
energy cost of having the electron and the phonon field localized in different regions of space,
see Corollary 3.9.7.

The proof of the following auxiliary Lemma 3.9.1 is an easy analysis exercise and is left to the
reader.

Lemma 3.9.1. There exists a constant C' > 0 such that for f € C*(R®) and K :=
(kl,kll) X (l{ig,ké) X (l{ig,ké) C RS with k‘z < k‘; < kl + 2

— [l
) @) < O i I G Tl

for all © = (z1,x2,x3) € R?, where || f|lcs(x) := maxXq<3 Sup,ex [0 f(x)| and ™ denotes the
Fourier transform.

Corollary 3.9.2. There exists a constant v > 0, such that for all r > 0 and ¢ € TIL*(R?)

[ Leog. Ve < a\/f, (3.9.1)

where 11 is defined in Eq. (3.4.1) and V, is defined in Eq. (3.5.1).

Proof. Let e, be the basis from Definition 3.2.1 corresponding to concrete choices of A and
¢ defined above Eq. (3.4.1). Given ¢ = 3" | \e, € IIL2(R?), ), € C, we have the rough
estimate

N
| Tra\5,.(0) V| < Z Al [Lr2\5,(0) Ve
n=1

-----

Since N < o for a suitable constant p, it is enough to verify Eq. (3.9.1) for ¢ = e,,. Making
use of V, = 1k, f with K,, := (27" — £, 27 + ) x (2§ — €, 28 +0) x (2§ — €,28 + ¢) and
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P = gy ae: and the fact that ( +£) = (s — ) = 20 < 2, we obtain by
i 1k[Z
Lemma 3.9.1
) o 1 2’ 1
]13 ‘/en Sapf dl’Sapfv
[tzra. Vel r (L 0P+ JaalP(L + Jas])? :

where we have used K,, © R*\By(0) and therefore ||f|cs(x) < (3A () = o for a
suitable p’ > 0. [ |

Lemma 3.9.3. For vy € L*(R3) and T > 0,

Bk :

dk'dk < |0|2T, 3.9.2

j f T ¥ (39.2)
- E)p o2

dk'dk < 3903

f f (L + k) WP T (3.9.3)

Furthermore, interpreting 1) as a multiplication operator we have

[0-2) 2022 <l (3.94)

[@—2)"2 )y y| = varly|. (3.95)

Proof. Eq. (3.9.2) and Eq. (3.9.3) immediately follow from the estimates

[k — k)P k=K 2
dk'dk < dk'dk = 47T
JJk'<T 1+ |/€| |]€'|2 JJk’<T |k’|2 H¢H L,
20— k) - A
dk'dk < k— EN|*dK' dk
ij/>T (1 + |k| ) |kj/|2 JJk’|>T 1 + |k| ) |k/|4 |¢( )|
1 J]?
X 3 7(1]{: 47
E (J T+ ) VT

By making use of the fact that the integral kernel of (1 — A) 24 (—A) 2 in Fourier space is

given as \/% Eq. (3.9.4) immediately follows from Eq. (3.9.3) and Eq. (3.9.2) with the

concrete choice 7' = 1. Finally Eq. (3.9.5) follows from the fact that the corresponding integral

. . — / 2
kernel is given by \}pl(HTTQIkI and the identity {§ ‘W k1+k"k‘\ 5 di'dk = Smdk )2 =

22, u

[N

Lemma 3.9.4. We have Tr[(1 —II) LP* (1 —T1)] < a5 for |z| < 1, where LE* s the
operator defined above Eq. (3.5.13).

Proof. With the definition ¢/P(y) := ¢P°(yy — x), we can express the operator LE% as
1 2 1 1
LPek = 2|(1 — A) 2Pk (~A)"2| . Since the integral kernel of (1 — A) 2 Pk (—A) 2

Pek /

. . k— k?) . . N ]lc n(k)ﬂc n (k)
is given by Y=_=5) iy Fourier space and since the one of II reads B
given by «/lelz\k’ P 21 T T dqlkl[¥]

(NI

116



3.9. Properties of the Projection 11

where C,» is as in Definition 3.2.1, we can further express the integral kernel of the operator
1 1
(1= A)" 2y (=A)"2 (1 - 1I) as

Pek

T (k k/) ’t/u (k q) d ~Pek
i Jeun * \/H\k\f\k' T ‘1]1 (k') + Yy (E—HK) \ ). (3.9.6)
n=1 Sczn qu e 1+ [k]2|F| R3\(U, Can)

In the following we need to show that the L?(IR3 x R?) norm of the expression in Eq. (3.9.6) is
of order 5. As in the proof of Lemma 3.2.2, we will use R\ (| ], C.n) < By U (R¥\By_4),
where A and ¢ are defined above Eq. (3.4.1). Applying Eq. (3.9.2) with 7" = 2¢ and Eq. (3.9.3)
with T = A — 4/ yields

kE—K)? 1
JJ WJ ( )| di'dk <20+ ——= < a”
R3\(U, Can)

(Sl

L+ |E2)|K? VA — 40
{0 Dy k=KD — Dy (k—q)% .
In order to estimate the L* norm of f(k, k') := 3 == ﬁ*"“%“:j'q e, (), let
. z" g
us define 1, 5, (y) := il -yesmypPek(y) for s e R,ne R® and € := g — K, and compute

~Pek ~Pek ! ~Pek 1,
Do k=K ) = (k—q) :J €V (k=K + s¢)ds = |g|f Dyse(b—K')ds.
0 0
1
Making use of the inequality S# (=3 for ¢ € C,» and the fact that £ = ¢ — k' €
Can 1q'|2

K :=(=20,20)3 for all k', q € Czn yields
~ 2
J 1‘1/)xs§k kl)‘def
A1+ k2|

N ‘wxsg k kl)‘ ‘wxsg k: kl)‘
< 2, Tea (k)80 f (1t R 50e <80 J @+ PR 259

where we have applied the Cauchy—Schwarz inequality. An application of Lemma 3.9.3 with
T =1 then yields

1
[ avar < e | [ juneelpasa < o 5
K JO

where we used that |1, ;.| < C for all |z| < 1 and a suitable constant C' < o0. |

Lemma 3.9.5. Recall the operator H'*® from Eq. (3.1.4). Then there exists a constant
¢ > 0 such that J, . = c for € small enough and o large enough. Furthermore

‘TrHLQ(Rg)P _ /Jt,e] Ty [1 — VHP* ” <e+a s (3.9.7)
for |t| < €, € small enough and « large enough.

Proof. Recall the definition of 7 and J; . in, respectively below, Eq. (3.5.13) for |t| < € <
04, Where 9, is defined before Definition 3.5.3. In the following we are going to verify
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that (1 + )7 (KL™ + L) 7l|op < 1 — ¢ for a suitable constant ¢ > 0, small ¢ and
|t| < €, which immediately implies J;. > cm. Let 1, be the orthogonal projection onto
{00, 05, 0, 0P 0,00k}, and let ¢, be defined in Eq. (3.5.11). Then we estimate

3 Pek
xn(px
Tr [|7T0 - 7Tx < E m (398)
3 Pek 3
1‘ ()0 537 (2027 -7371410 _2
§: n n §] Ien® <z 4 aE
| znsopek\l [ S | H@znsopekH

where we have used Lemma 3.8.1 in order to obtain |, ¢ — 114, o™ < a3 and
the fact that ¢ € H%(R?), Whlch yields |0y, 5 — 0, 0| < |#] Vs, o] < |a].

Hence Tr [|mg — s, |] < |t| + a5 for t small enough. It is a straightforward consequence of
(3.7.1) that the operator norm of o K", is bounded by |mo K|, < 1 (see also [91,
Lemma 1.1]). Therefore we obtain, using 7 = Ilmy = moll,

H(H—E)W(K};ek—keprfk)ﬂH < H (1+e€) WO(KPek—l—eLPek)WOHOp: HﬂoKffkﬂoHop—F O (e)
= |7 e KPm ] o O (€) = [moK ™|+ O () + O(a™F) <1-¢  (3.9.9)

for a suitable constant ¢ > 0, € small enough, |t| < ¢ and « large enough.

In order to verify Eq. (3.9.7), let |[t| < € and € be small enough such that J;. = 0, and let us
compute

TI"HL2(R3)[1 — 4/ Jt,e] =Tr [1 + 7y — \/1 — (14 e)m (KLPek + eLPek) n] ,

Furthermore we have the identity Tr [1 — /1 — KPek| =Tr [1 + 7 — V1 — WOKPekﬂ'O] =
Tr[1 — /1 — 7y, KE%7,, | + Tr[ng]. Using the definition of K7 in Eq. (3.5.6), we can

express TrHLz(Rg)[l — A /JLE] —Tr [1 — \/W] as

Tr [1 . \/1 — (1 + €)m (P 4 eLP) w] T [1 . \/1 - thgek%] . (3.9.10)

In the following let f be a smooth function with compact support satisfying f(z) =
1 —y1—xfor 0 < 2 < 1—¢ where cis as in Eq. (3.9.9), and let us define the
operators A := (1+€)m (KX*+eLF*) 7 and B := m,, KE®*r,,. Using Eq. (3.9.10) and
|(1+ e)m (KE* + eLE) 7rHOp < 1 —c for t and € small enough, we obtain

Tenen| 1 — /e | = T [ = VP || = [Tx [£(4) - £(B)])

1 ~
<|fAA) —fB)|, < —= | |tf(®)|dt|A - B|,, 3.9.11
[£(A) = F(B)ly mlef()l H Iy (3.9.11)
where | - |; is the trace norm and ¥ is the Fourier transformation of f. In order to estimate

the right hand side of Eq. (3.9.11), we write A — B = T + moTamy + wlsm with T} :=
(mo — o ) KE™ g + 70, Ky (0 — 7g,), To = (I1 = 1)KL + Ky 5(IT — 1) and Ty :=
€ (KE + (1 + )LL), Clearly we have the estimates |7 T3 |; < |T3]1 < € and |11 <
|mo — 72, s <t +a~F by Eq. (3.9.8), using the fact that KT is trace-class, which follows
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from K} < LP°* and the fact that LL°* is trace-class, see Eq. (3.9.4) with ¢ := ¢k,
Using Lemma 3.9.4 together with a Cauchy—Schwarz estimate for the trace norm, we can
bound the final contribution myTymg by

N|=

ImoTomol1 < | Tofr < 2T [ILKLFII] 2 Tr [(1 — I1) K, (1 — IT) |

The following Lemma 3.9.6/ is an auxiliary result, which we will use to quantify the energy
cost of having the electron and the phonon field localized in different regions of space, see
Corollary 3.9.7.

Lemma 3.9.6. Let wy(y) = W’%‘y% and let 1 be the projection defined in Definition|3.2.1.
Then there exist a constant D such that

[ 1ra\ 5, ) Hrwo| <

Sile

for all K,r > 0.
Proof. The Fourier transform of Il xwy is given by x&%é‘)_ Defining the function u via its

Xé(%‘fﬂjm, where € > 0 and x° is defined in Eq. (3.3.1), we

Fourier transform as u(k) :=
have

1 1 1 1 Ge
IMcwy — ul® < f dk+f —dk =
2m? [k|<3e |k:|2 2m? K—e<|k|<K+e |k|2 T

and consequently |[1gs\ g, o) 1Ixwo| < \/§ + |1rs\5,0yu|. Making use of the observation
that ﬁ]lRf’\Br(O) (y) < % yields

1

1 1
2 2 2 _ ~N2 2
Itz il < 7 | WPy = 5 19l = 5oz A = fol
with fi(k) = % and fo(k) := W. Clearly we can bound |fi]* <

7dk = 2. Furthermore we obtain, using | Vjx“ (2¢ < |k| < K)|, < 1,

S|k\>e T&[*
1 1 L :
f2$<f dk-i—f dk>:'
” 2” €2 e<|k|<3e |k|2 K—e<|k|<K+e |k|2 ‘

In combination this yields | Lgs\ g, 0)IIxwo||*> < € + =, which concludes the proof with the
concrete choice € := 1. [ |

Corollary 3.9.7. Given A = R3, let us define the operator Ny := D4 with Da(p) :=§,dp(y),
using the notation of Definition 3.3.1, i.e. >Ny counts the number of particles in the region

A. Furthermore let A’ = R3. Then given a constant C' > 0, there exists a constant D > (
such that for all states ¥ with supp (¥) c A" and x (N < C)¥ =¥

D
(U Hg|V) = E, + (UINA|T) — A m;
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Proof. Let us define the function v, := 1 4IIxw, and rewrite Hx — N4 as

Hi — Ny = =2, — a(Mgw, —vy) —a’ (Hgwy —vy) + N =Ny —a(v,) —a' (v,).

Identifying L? (R?’, F(LA(R?) )) ~ 12 (R3, ]-"(LQ(R?’\A) )) ®]—"<L2(A) ) we observe that
—A,—a (Hgw, —v,)—a’ (Hgw, —v,) +N =Ny is the restriction (in the sense of quadratic
forms) of H to states of the form ¥/ ®(2, where 2 is the vacuum in f(L2 (A) ) , and therefore

we have the operator inequality —A, — a (TTxw, — v,) — al gw, —v,) + N — Ny = E,.
Consequently

(UHg — N4 O = E, — (Tla (v,) + a' (v,) |¥) = E, —sup |Jv,| (1 +C),
ze A’
where we have used the operator inequality a (v,) + a' (v,) = —|v.] (1 + N), as well as the

assumptions supp (V) < A’ and x (N < C) ¥ = U, in the second inequality. This concludes
the proof, since [[v,[? = §, [Hrwo(y — 2)° dy < S|y‘>dist(A’A,) I wo(y)|” dy for all 2 e A’

and § o eiann I cwo(y)|” dy < T see Lemma 3.9.6. [ |
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CHAPTER

The Frohlich Polaron at Strong
Coupling — Part Il: Energy-Momentum
Relation and effective Mass

ABSTRACT. We study the Fréhlich polaron model in R3, and prove a lower bound on its
ground state energy as a function of the total momentum. The bound is asymptotically sharp
at large coupling. In combination with a corresponding upper bound proved earlier [91], it
shows that the energy is approximately parabolic below the continuum threshold, and that
the polaron’s effective mass (defined as the semi-latus rectum of the parabola) is given by the
celebrated Landau—Pekar formula. In particular, it diverges as o* for large coupling constant
a.

4.1 Introduction and Main Results

This is the second part of a study of the Fréhlich polaron [44] in the regime of strong coupling
between the electron and the phonons, which are the optical modes of a polar crystal. Our
goal is to quantify the heuristic picture that the mass of an electron in a polarizable medium
effectively increases due to an emerging phonon cloud attached to it. We are going to verify
that the energy-momentum relation of a polaron is asymptotically given by the semi-classical
formula E(P) — E(0) = 2';';, which agrees with the energy-momentum relation of a particle
having mass a*m, where a*m is the asymptotic formula conjectured by Landau and Pekar
[63] for the mass of a polaron in the regime where the coupling parameter @ goes to infinity.

Following the notation of the first part [17], where a second order expansion for the absolute
ground state energy of a polaron was verified, we are going to use creation and annihilation
operators satisfying the semi-classical rescaled canonical commutation relations [a(f), a'(g)] =
a2 {flg) for f,g € L*(R?), in order to introduce the Frohlich Hamiltonian acting on the
Fock space L*(R?) ® F (L*(R3?)) as

H:=-A, —a(w,) —a' (wy) + N,

where w,(z') := 7 2|2’ — 2| 2 and the (rescaled) particle number operator A’ equals
N =37 a'(pn)alpy,) for an orthonormal basis {¢, : n € N} of L*(R?). The Fréhlich
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Hamiltonian H commutes with the components (Py, Py, P3) of the total momentum operator

1
P:= iV+QQJ kalapdk

R?)

where we use the standard notation SR3 f(k)alakdk as a symbolic expression for the operator

Y immet <gon F(3V) ‘¢m>aT(gpn)a(gpm). Hence we can study their joint spectrum o (P, H) =
R*, and define the ground state energy E,(P) of H at total momentum P as E,(P) :=
inf {E : (P,E) € o (P,H) }. Our main result below is the proof of the asymptotic energy-
momentum relation

|P”

E.(P) = E,(0) + min{ 042} + Opoo (7)) (4.1.1)

2a4m’
where w > 0 is a suitable constant and m is the conjectured constant by Landau and Pekar.
In order to provide an explicit expression for m, let us first define the Pekar functional
FPR (o) :=|l¢|? + info (—A + V) for ¢ € L?(R?), where we define the potential V, :=

1
—2(—A)"2 Rep. If follows from the analysis in [76] that there exists a unique radial minimizer
0"k of the functional <. With this minimizer at hand, we can introduce the constant

m:=3 HVgpPekHQ in Eq. (4.1.1).

In order to formulate our main Theorem |4.1.1, let us further introduce the minimal Pekar
energy e’ := inf, F(p) as well as the Hessian H"°* of FF°k at the minimizer ¢
restricted to real-valued functions ¢ € L2(R3), i.e. we define HT°* as the unique self-adjoint
operator on L*(R?) satisfying

<90|HPek|90> _ 12%612 (J—_'Pek(goPek + 6(,0) o ePek)

for all p € L4(R?). With this notation at hand, we can state our main new result in Theorem
4.1.1. It provides a sharp asymptotic lower bound on the ground state energy E,(P) of the
operator H as a function of the total momentum P.

Theorem 4.1.1. There exists a constant w > 0 such that

|P?

202 204m’

1
E,(P) = " — —Tr [1 = \/HPek] + min { a2} — o Gt (4.1.2)

for all P € R3 and for all & = «, where vy is a suitable constant.

That the lower bound in Eq. (4.1.2) is indeed sharp follows from the corresponding asymptotic
upper bound established in [91], given by

|P”

204m’

1
E,(P)<eP™— —Tr [1 — \/HPek} + min{

202

oz2} + Ca 3%, (4.1.3)

where € > 0 is arbitrary and C, a suitable constant. In combination with Eq. (4.1.2) this
shows that

|P”

E,(P) = "™ — LTr [1 — \/Hpek] + min{

202

a2} + Onsroo (a’(“w))

204m’
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for all P € R3, which in particular proves Eq. (4.1.1). Note that a2 corresponds to the
continuum threshold; i.e., o(P,H) > R? x [E,(0) + a2, ), the latter corresponding to
states describing free phonons on top of the polaron ground state [937? ].

In particular, E,(P) has an approximate parabolic shape below the continuum threshold, i.e.,
for |P| < +/2ma. The Landau—Pekar formula for the effective mass appears in the limit
a — o0 as the semi-latus rectum of the parabola, in the sense that for any 0 < |P| < +/2m

m = lim o~ |aP|2

Y 2 (Ea(al) — Fal) (@14

It is common the define the polaron’s effective mass for fixed « as

i PP
P—02 (Eo(P) — E,(0))

The quantity on the right hand side of Eq. (4.1.4) is clearly related to the large « limit of
a~ Mg (), with the difference being that the limit P — 0 is taken before the limit o — 0.
While it is not clear at this point how to obtain the lower bound lim,_, oF4Meff(oz) =>m,
we can make use of the inequality £, (P) < E,(0) + 2]\‘4}:;2(&)
to verify the upper bound lim, . @ *M.g(a) < m. In fact, by applying Eq. (4.1.1) in the
special case of P satisfying | P| = v/2ma we have

recently proved in [110] in order

ma?

Meﬁr(Oé)’

1
Ea(0) + — + Oas (o=t = B,(P) < E,(0) +

which yields the claimed upper bound on Mg (). We formulate it as the subsequent Corollary.

Corollary 4.1.2. There exists a constant w > 0 such that M.g(a) < a*m + Op_on(a™v).

The remainder of this paper contains the proof of Theorem 4.1.1. In order to guide the reader,
we start with a short explanation of the main strategy.

Proof strategy of Theorem 4.1.1. Since (P, E,(P)) is an element of the joint spectrum
of the operator pair (P, H), there clearly exist states ¥, satisfying P¥, ~ PV, and HY, ~
E,(P)V,. In order to verify Theorem 4.1.1, it is therefore enough to show that (U, |H|V,)
is bounded from below by the right hand side of Eq. (4.1.2). For this to hold it is crucial to
use the additional information PV, ~ PV, on the momentum, since in general H, as an
operator, is not bounded from below by the right hand side of Eq. (4.1.2). It is not possible
to transform the constrained minimization problem to a global one by the usual method of
Lagrange multipliers, since the operators P are not bounded relative to H. More precisely,
while clearly

E.(P) =z info(H+ AP —P)) (4.1.5)

for any \ € R3, such a bound is insufficient as the right hand side is —oo for A # 0, which
follows easily from the fact that E,(P) is bounded uniformly in P (compare with Eq. (4.1.1)).

In order to improve the lower bound in Eq. (4.1.5), we introduce a wavenumber cut-off
A in the Hamiltonian H as well as in the momentum operator P, leading to the study of
the ground state energy E, A(P) of the truncated Hamiltonian H as a function of the
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truncated momentum P5. As we will show in the subsequent Section 4.2, it is enough to prove
Eq. (4.1.2) for the modified energy E, A(P) in order to verify our main Theorem 4.1.1. By
introducing the cut-off we manually exclude the radiative regime where a single phonon carries
the total momentum, which is responsible for the (approximately) flat energy-momentum
relation E,(P) above the threshold |P| = v/2ma and the resulting collapse of the quadratic

approximation E,(P) — E,(0) ~ % above this threshold.

In contrast, in the presence of the cut-off, it turns out that we can apply the method of
Lagrange multiplies. We shall follow the strategy developed in the first part [17], and construct
approximate eigenstates ¥, to the joint eigenvalue (P, E, o (P)) of the operator pair (Py, Hj),
which in addition satisfy (complete) Bose—Einstein condensation with respect to the minimizer
"k of the Pekar functional FF°k. In this context we call ¥, an approximate eigenstate
in case (U,|(Pa — P)?[Wa) = Oarse(@®™") and Ey p(P) = (Wa|Hp|Wo) + Ogose (= 37)
for some > 0. In order to verify that £, »(P) is bounded from below by the right hand side
of Eq. (4.1.2), it is consequently enough to show that

1 AP
<\IJ‘HA n )\(P . IPA) ‘\If> > Pk oy [1 . \/HPek] Loap = AR e

202 2
(4.1.6)
for all states U satisfying (complete) Bose—Einstein condensation with respect to the minimizer
"k providing the desired lower bound for the optimal choice \ = %, with the term %

in Eq. (4.1.6) arising naturally as the Legendre transformation of the quadratic approximation
|P|?
2atm

Since Eq. (4.1.6) claims a global lower bound, i.e. there is no constraint on the momentum
of U, we can utilize the methods developed in the first part [17], where a lower bound on
the total minimum E,, = inf o(H) was established. The basic idea is that we can find, up to

a unitary transformation, a lower bound on the operator H, + ml; (P — IPA) of the form
|P|?

ePek 4 31—+ Q4 Ousser (a_(2+”)), where Q is a system of harmonic oscillators, which holds
when tested against states satisfying (complete) Bose—Einstein condensation. The ground

state energy of (Q can then be computed explicitly, giving rise to the quantum correction
— LT [1 . \/HPek] in Eq. (4.1.2).

Outline. The paper is structured as follows. In Section 4.2 we shall show that it is sufficient
to prove Eq. (4.1.2) for a model including a suitable ultraviolet wavenumber cut-off in order to
verify our main Theorem 4.1.1. In the subsequent Section 4.3, we will construct approximate
eigenstates for the truncated model defined in Section 4.2, which in addition satisfy (complete)
Bose-Einstein condensation with respect to the state k. Section 4.4 is then devoted to the
proof of our main technical Theorem 4.2.1, where we use the method of Lagrange multipliers
in order to get rid of the momentum constraint. Finally, Appendix 4.5/ contains auxiliary
results on commutator estimates as well as properties of the Pekar minimizer ©"°*, which get
used in the proof.

4.2 Reduction to Bounded Wavenumbers

In this section we shall introduce the truncated Hamiltonian H,, which includes a wavenumber
restriction |k| < A, and we are going to state our main technical Theorem 4.2.1, which
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provides an analogue of Theorem 4.1.1 for the truncated model. While the proof of Theorem
4.2.1 is the content of Sections 4.3 and 4.4, we will verify in this Section that Theorem [4.1.1
is a consequence of Theorem 4.2.1, i.e. we will explain why it is enough to prove Eq. (4.1.2)

for a model including a wavenumber regularization. The quantum nature of our system, and

in particular the discrete spectrum o (N) = {0, é, %, . } of the number operator NV, is

essential for this argument to work. In contrast, in the classical case the effective mass is
infinite since there nothing prevents a priori the wavenumber from escaping to infinity without
an energy penalty, and one has to introduce a suitable regularization in order to observe the
expected asymptotics Mg = a*m + 0, o (), see [39].

Before formulating Theorem 4.2.1, we shall introduce some useful notation. Following [17],
we define for a function f : X — R, ¢ = 0 and —0 < a < b < o0, the function
X(a<f<b): X —1]0,1] as

f(z)—b f(z)—a
Xe(aéf(x)éb)::{a( € >6< € ),fore>0 (4.2.1)
]l[a,b] (f(.%')) s for e = O,

where a, 3 : R — [0, 1] are given C™ functions such that o + 3% = 1, supp (o) <
(—o0,1) and supp (5) < (—1,00). Similarly we define the operator x“(a <7 <b) :=
§x“(a <t <b)dE, where T is a self-adjoint operator and E the corresponding spectral
measure. Furthermore let us write x(a < f < b) in case € = 0 and x¢ (- < b), respectively
X (a <), in case a = —oo or b = o0, respectively. With this notation at hand, we define the
Hamiltonian H, with wavenumber cut-off A > 0 as

Hy = —A, —a(x (V] <M w,) —a (x (V] < A)w,) + N (4.2.2)

Theorem 4.2.1. Let E, A(P) be the ground state energy of the operator H as a function
of the (one-component of the) truncated total momentum

1
Py := ;VII + o Jxl (A k| < 2)ky ajaydk

and let A = a5+ with 0 < o < é. Then there exists a constant w > 0 such that for all
C>0,|P| <Caanday = alo,C)

1 P2
Ean(P) oPek _ Ty [1 A /HPek] + L — o), (4.2.3)

A\

where (o, C) is a suitable constant.

For technical reasons we use here the smooth cut-off x'(A™!|k;| < 2) instead of the sharp
cut-off x (A"!k;| < 1) in the definition of the momentum operator Py. Note also that the
momentum cut-off appears in (4.2.2)) only in the interaction term, and not in the field energy

N In the following we shall argue that, as a consequence of Theorem 4.2.1, Eq. (4.2.3) is

also valid with P, replaced by P} := 1V, + o? S|1<;|<A k; a}axdk having the sharp cut-off, and

i

with Hy replaced by the fully restricted Hamiltonian H'y := H, — alakdk. In order to

S\k\>A
see this, observe that P} and H, are the restrictions (in the sense of operators) of P, and

H, to states of the form U/ ® Q, where ¥’ € LQ(R3,.7-“<ranx(|V| < A))) and Q is the
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vacuum in f(ranx(|V| > A)) Hence

o (P, H)) < o (Py,H,),

and therefore we obtain as an immediate consequence of the previous Theorem 4.2.1 that
pek 1 |PJ? —(2+w)
E>ef*— Ty [1 - \/HPek] + 12— (4.2.4)
202 2a4m

for all (P, E) € o (P}, H) with |P| < Ca and a = ag(o, C). In the proof of Theorem 4.1.1
below it will be useful to have Eq. (4.2.4) for P} and H, instead of Eq. (4.2.3) for P5 and
Hjy.

In order to verify Theorem 4.1.1, it is convenient to introduce the ground state energy E7 , (P)
of the operator H, as a function of P. Note that in contrast to E, s (P), we do not use a
wavenumber cut-off in the momentum operator here, while we still have the cut-off in the
Hamiltonian Hy. In the following Lemma |4.2.2 we are going to utilize the results in [40, [97],
where the energy cost of introducing a wavenumber cut-off in the Hamiltonian is quantified,
in order to compare £ ) (P) with E,(P).

Lemma 4.2.2. Let A = o279 for o > 0. Then there exists a constant C' > 0, such that
for all P € R3 and o large enough

E.(P) = Ef \(P) — C'a™2(H),

Proof. By the results in [40, [97], there exists a C' > 0 such that for « large enough
Hy < H+ Ca 2079 (H? + 1) (4.2.5)

This was first shown in [40] for a confined polaron model on a bounded domain, but the
method extends in a straightforward way to the model on R3, as shown in [97] (see also [37]
for the corresponding result for a polaron model on a torus). In the following, let ¥, be a

state satisfying (23:1 (P, — P;)* < 62) U, = U, and (U |(H - Ea(P))2|\IIE> < €2, where

€ > 0. By Eq. (4.2.5) we therefore have
(U |HA W) < Eq(P) + Ca M) (U JHA W) + 1) + €
< Eo(P) + Ca M9 (2E,(P)? + 262 + 1) + € < B, (P) + C'a 2177 4 ¢

for 0 < € <1 and a suitable C’, where we used that E,(P) is uniformly bounded for P € R?
and a > 1 in the last inequality. Hence x (Hp < E,(P) 4+ C'a=21*9) + ¢) W, 5 0. Using

X (23:1 (P; — Pj)2 < 62) v, = U, we obtain
Ac:= 0 (P,Hy) N (B(P) x (—o0, Eo(P) + O ~21+0) | ) = .

Since Hy is bounded from below, (A.)p<c<1 is @ monotone sequence of non-empty compact
sets, i.e. A, € A, for €1 < €9, and consequently

o (P,Hy) n ({P} x (—00, Eo(P) + C'a2179)]) = ﬂ A, # &,

O<e<l

which is equivalent to EC*!,A(P) < E,(P) + C'a2049), -
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Given Theorem |4.2.1 we can now give a proof of Theorem 4.1.1.

Proof of Theorem|4.1.1. In the first step of the proof, we are going to verify Eq. (4.1.2) for
|P| < +/2ma. Due to the rotational symmetry, we can assume w.l.o.g. that P = (P;,0,0),
and by Lemma 4.2.2 we know that

E,(P) + C'a 29 > inf{E : (P},0,0, E) € o(Py, Py, P35, Hy)}
> inf{E : (P, E) € o(Py,H,)}. (4.2.6)

Making use of the fact that the operators P\, H,,P; — P} and H, — H, are pairwise

commuting and that P}, H), and P, — P}, H, — H, act on different factors in the tensor

product LQ(R?’,}"(ranx(|V| < A))) ®]—'(ranx(|V| > A)) their joint spectrum is well-
defined and satisfies o (P}, H),,P, — P}, H), — H)) = o(P},H}) x o(P; — P}, Hy — H)).
Hence we can rewrite the right hand side of Eq. (4.2.6) as

inf {E’+E: (P, E') € o(P,, ), (ﬁl,E)ea(Pl—Pg,HA—H'A)}.

P{+P1:P1

In order to verify that E/ + E is bounded from below by the right hand side of Eq. (4.1.2) for a
suitable w > 0 and |P;| < v/2ma, let us first consider the case F > a 2. Since £’ € o(H)}),
we have E' > inf o(H),) > inf o(H) = E,, and therefore

~ 1 )
E'+E>FE,+a 2>~ 53T [1 —\/W] a2 g2t
o
for a suitable w’ > 0, where we have used [17, Theorem 1.1]. Regarding the other case

E < a2, note that we have (Py, E) € o(P, — P}, H, — H,) = {(0,0)} u U2, R x {5},
and therefore £ = 0 and P; = 0. Hence |P}| = |P1| < v2ma and consequently

El—i-E:EIZGPek—

1 el DL L
—Tr[l— HPek]—i- —a )

202 20tm
Pek 1 |P1|2 —(24w)
=e ——Tr[l—\/HPek]—i- — ,
202 20tm

where we have used (P], E’) € o(IP}, H/,) together with Eq. (4.2.4). This concludes the proof
of Eq. (4.1.2) for |P| < v/2ma.

In order to verify Eq. (4.1.2) for |P| > v/2ma, we are going to use the fact that P+ E,(P)
is a monotone radial function, as recently shown in [110], and consequently E,(P) =
E, (\/%%) for | P| = v/2ma. This reduces the problem to the previous case, and hence
concludes the proof of Theorem |4.1.1. [ |

4.3 Construction of a Condensate

This section is devoted to the construction of approximate p ground states W, satisfying
complete condensation in ¢k which we will utilize in order to prove Theorem 4.2.1] in
Section 4.4. In this context, we call ¥, an approximate p ground state in case (U, |Hy|¥,) =
Eon(a?p) + Opsse (1)), where E, o(a?p) and H are defined in, respectively above,
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Theorem 4.2.1, and <\Ila‘ (Th — ‘\Ifa> —(2+w) with w > 0, where we define the
(rescaled and truncated) phonon momentum operator

Th = Jxl(A—1|k1| < 2)ky afardk .

Similarly to Hy, it also depends on « due to the rescaled canonical commutation relations
[a(f),a%(g)] = a~2{g|f) but we suppress the a dependence for the sake of readability.
Here and in the following, we write X < Y in case there exist constants C,ay > 0
such that X < CY for all @« > «ap. It is clear that there exist states ¥, that satisfy
both (Uo[Hx|¥a) — Ean(a?p) € a @) and (U,| (a 2Py —p)? o) < o) since
(p, Eaa(c®p)) is a point in the joint spectrum of (o 2Py, Hy). As part of the subsequent
Lemma 4.3.1 we are going to show that the contribution of 5V, in 2Py = 5V, + T,
is negligibly small, i.e., we shall show that it does not matter whether one uses Y, or a2 Py
in the definition of approximate ground states. In particular, this will imply the existence
of approximate p ground states. We will choose W, such that supp (V,) < B.(0) for a
suitable L, where we define the support using the identification L*(R?) ® F (L*(R?)) =~
L*(R3, F (L*(R?))) in order to represent elements ¥ € L*(R?) ® F (L?(R?)) as functions
x — U(z) with values in F (L*(R?)), i.e. supp (¥) refers to the support of the electron.

In the rest of this paper, we will always assume that o = 1. Most of the results in this Section
include E, 5 (a?p) < E, + C|p|* as an assumption for an arbitrary, but fixed, constant C' > 0,
where E,, denotes the ground state energy of H. For the purpose of proving Theorem 4.2.1this
is not a restriction, since we can always pick C' > - and therefore E, (a?p) > E, + C|p|?
immediately implies the statement of Theorem 4.2.1

1 2
Ean(0®p) > Eq + Clp)* = €7 — —Tr [1 — \/ﬁ] + |2M o),

202 m
where we used E, > P — -LTr [1 — HPek] — o~ (?*5) by [17, Theorem 1.1].

Lemma 4.3.1. Given 0 < 0 < i, let A = a5+ and L = o'+, and assume p satisfies

Ip| < € and E,a(a?p) < E, + C|p|* for a given C' > 0, Where E, is the ground state

energy of Hl. Then there exist states W?, 2 ‘\1;&> < a2 and

(Ut [HA WS — Eya(a?p) < o= 2149 as well as supp (V2 ) < BL(O)

Proof. Since (p, E, A(ap)) is an element of the Jomt spectrum o ( sV + TA,HA) there
exist states W satisfying (00| (-1, V,, + Ty — p)* |00 <

ia?

1
(UA[HA|WE) < Ean(a®p) + 5o 201, (4.3.1)

From [17, Lemma 2.4] we know that (¥%| — A, |U0% < 2(WY|H,|PY) + d for a suitable
constant d > 0, which implies that (Y| — A, |¥%% < 1 due to Eq. (4.3.1) and our assumption
Eon(a?p) < E, + Clp|* < Clp|* < %, and hence

1 2
g ( 2vx1 +TA—p)
1
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4.3. Construction of a Condensate

for a suitable ¢ > 0.

Let n : R* — [0, 00) be a smooth function that is supported on B;(0) and satisfies {n* = 1.
With this at hand we define ¥, (x) := L2y (LY (z — y)) ¥°(z) and Zy, = |¥,]|, as well as
the set S < R? containing all y satisfying

(U, [HA[W,) > Z2 (Eqn(a?®p) + (1 + | V) o 2179)). Making use of the IMS identity we
obtain

CUOEL|UE) = | €0, |9, dy — L2V
> L Z2dy (Ean(a®p) + (14| Vn|?) o 2049)) + (1 — L Z dy> E, — L?||Vn|P,

where we have used (¥, [Hx|¥,) > E, and §Z2dy = 1. Using Eq. (4.3.1) and L > =
~2(1+9) therefore yields

(Bar(?9) — Bt (1+ [9) a0 [ 220y

«

1
< Buaf®s) — B+ (5 + V07 ) @205

and consequently § Z2 dy < 1—7, with 7, := 3 N Ea;z;:@n“ Tyo27e7- Let us further
define S" = R? as the set of all y satisfying (W, | (Tx —p)* [V, ) > Z22a~*. Clearly we

have, using Eq. (4.3.2),
2c

L] A f (0] (T = P [y = (W8] (T = U2 < o,
and hence { , Z?dy < %. Consequently . ., Z>dy < § Z2dy +§, Z2dy <1 -2 < 1.
Since {Z7dy = 1, thls means in particular that there eX|sts ay ¢ Suls with Z, >
0, ie. Vg = Z 'V, sat|sf|es (Ue|HAP2Y < Eoa(a?p) + (1+]Vn)?) a=23+9) and
(U [(Ty - ‘\Ifa> 2ea™ < a® 1, where we have used F, x(a’p) — Eq < [p]* < a7?
in the last estimate. Moreover, we clearly have supp (V?) € B (y). By the translation
invariance of H and YT,, we can assume w.l.0.g. that y = 0, which concludes the proof. W

In the following Lemmas 4.3.2 and |4.3.4, we will use localization methods in order to construct
approximate p ground states with useful additional properties, which we will use in Lemma
3.3.12, together with an additional localization procedure, in order to show the existence of
approximate p ground states satisfying complete condensation. In Theorem 4.3.7 we will then
apply a final localization step in order to obtain complete condensation in a stronger sense,
following the argument in [72].

In order to formulate our various localization results, we follow [17] and define for a function
F: M (R?®) — R, where M (RS) is the set of all f|n|te (Borel) measures on R, the operator

F acting on F (L*(R3)) = Ei—) L2, (R**™) as F Ei—) v, Ei—) U* with W*(z!, ... 2") =
Fr(zt, . a0, (2. . ) Where

F'(z',... 2" = F <a2 i (Szk) (4.3.3)
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and Fy := F(0), i.e. F acts component-wise on El—) L

real-valued function (z',...,2") — F (a2} _, §$k).

2 m(R?*™) by multiplication with the

With this notation at hand, we define for given positive c_, ¢, and €’ the function F,(p) :=
X¢ (c- + € < {dp <cy —¢€) and the states

U= 7R, (4.3.4)

with normalization constants Z, := |[F, U |, where U is the sequence constructed in Lemma
4.3.1, Since N = G with G(p) := {dp, it is clear that the states U/, are localized to a region
where the (scaled) number operator A is between ¢ and ¢, , i.e. x(c. <K N <c¢) ¥, = U/,
The following Lemma 4.3.2 quantifies the energy and momentum error of this localization
procedure. The subsequent results in Lemmas 4.3.2, 4.3.4 and 3.3.12 as well as Theorem
4.3.7, which quantify the energy and momentum error of specific localization procedures,
are generalizations of the corresponding results in [17], where only the energy cost of such
localization procedures is discussed. In the following we will usually refer to the respective
results in [I7] when it comes to quantifying the energy error, and only discuss the localization
error of the momentum operator Y ,.

Lemma 4.3.2. Given0 < o < X, let A = o549 and L = o*°, and assume p satisfies
Ip| < E and E, z(a?p) < for a given C' > 0. Then there exist constants c_,Cy
and €, such that the states \If’a defined in Eq. (4.3.4) satisfy (.| (Ts —p)* [T) < a2~
and (V! |H LU S — E,a(a?p) < a~20+9),

Proof. By our assumptions we clearly have E, — E, < a~2 with E, := (U, |HA|\IJ;> and
therefore we can apply [17, Lemma 3.4], which tells us that we can choose c_, Ct and €, such
that (U [H,| W) — E, (a®p) < a21%9) and furthermore Z, —> 1. Since F, commutes

with Ta, we obtain with U, := 4 [\ =Ce @
22U (000 = P (W) + (1 = Z2) (] (0 — ) [T = 2| (T — ) [

Hence (W, | (s — p)? W1y < 27208 | (T, ) w2 < a2t -

When it comes to localizations with respect to more complicated functions F' compared
to the one used in Eq. (4.3.4), we first need to introduce some tools in order to quantify
the localization error of the momentum operator. Given a function F' : M (R?) — R,
Q< M (R?) and X > 0, let us define

2

IFI2, = sup sup [(F™)[* = sup sup J ;F”(t,x) dt, (4.3.5)
1<n< a2 TQy, l<n<ia? 26Q, Jr | AT
where z = (z!,...,2") € R3>*" with x (xl,x27x3) and T := (z3,z3,2%,...,2") €
R3*"~1 j.e. we define 7 such that z = (z ,f) n is the set of all z such that a 237" | d,5 €
Q and F™Y : R — R is defined as F™¥(t) := F"(t,y) for y € R®*" 1 where F" is as in
Eq. (4.3.3).
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4.3. Construction of a Condensate

Lemma 4.3.3. Given A > 0, there exists a constant T' > 0 such that we have for all quadratic
partitions of unity P = {F; : M(R®) — R : j € J}, i.e. families of functions satisfying
0< F; <1 and ZJGJF2 =1, A>0, [p| <A Q< M(R? and states U satisfying

X(Néx\)\I/:\Ifand]lg\If—\I/

2T (Ta =) [05) = ([ (T = p)* )

jeJ

<TAY IE; |

jedJ

~

where we define ¥, := F; V.

Proof. Using the IMS identity we can write

S| (T = ) [, — (U] (T = ) [0 = — 30| [ (0 = B | B [,

jeJ jeJ

Hence it suffices to show that +{ | H(TA —p)?, ﬁ] ,ﬁ] U < A|F[3,, for any bounded

F : M (R®) — R and state satisfying y (N < A) ¥ = ¥ and 10 = U. Let us start by
estimating

([t ) 7] - e B 7] 5]}

~72 F|? A T A2
[, B+ L (s =) + g [ 10 F] F

A

where {A, B} := AB + BA. By the definition of T, it is clear that % (Th —p)* <

2
AIF|20 (N + 1) for [p| < A, and consequently +(W|12x (v — py2[uy < A|F|2,.
Using that W is a function with values in Feyo2 (L*(R?)) := @ L2, (R**"), we are going

n<ia?
to represent itas W = @, _, > ¥, where U, (z, z' ) is a function of the electron variable
2z and the n phonon coordinates 27 € R? sat|sfy|ng \I/ (z zt o am) = 0forall (a!,... 2") ¢

Q.. In order to simplify the notation, we will suppress the dependence on the electron variable
z. We have [TA, f?] U =@ peree @ W) with U = 1377 [g (%VI{) ,F”] W,,, where
g(k) :==x"(A"1|k| < 2)k for k € R. Hence

(o = [rn B[ o) = |[xnBlu] = 5 awup<x Y pwp,

1<n<Aa? 1<n<\a?

and w3 < 253 o (49,) P wa] = ||g (4Va) . ] e,
the permutation symmetry of U,,. By Lemma 4.5.1 we know that

1 | 1d
o Gv) el o, [l ()]
[/ ! | zesupp(¥n) dt

and therefore

(o = B (o) s sup YY) [ = NALER,

2
1<n<a?,2edy, n<ia?

where we have used

Wl < \/KS;)p [CE™) 1),

op
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~T ~72

In order to estimate the expectation value of HTA, F] ,F] we proceed similarly, by writing

HTA,F] ﬁ] U = @,y 0, with T, — L3 [[g (%vz{) , Fn] , Fn] U, and
~7 ~72 ~ |2

estimating <\IJ‘ [[TA, F] ,F] ‘\If> <A oz | Pn

[ (55) -]

where we have again applied Lemma 4.5.1. This concludes the proof. [

as well as

< sup
zesupp(¥n)

g

W] < sup [(F™7) 7] W,
€,

op

With the subsequent localization step in Eq. (3.3.10), we want to restrict the state ¥/ to
phonon density configurations p which have a sharp concentration of their mass. To be precise,
for given R and €,0 > 0, let us define Ky (p) := {{ x“ (R — e < |z —y|) dp(x)dp(y) as well

as Fr(p) := x5 (KR (p) < %) and
V"= 7L Frll, (4.3.6)

where U/ is as in Lemma 4.3.2 and Zp, := |FRW’|. Clearly ToW” = W” where ) is the
set of all p satisfying SS\wyPR dp(z)dp(y) < 4. In the following Lemma 4.3.4 we are going
to quantify the energy and momentum cost of this localization procedure.

Lemma 4.3.4. Given 0 < 0 < 1 let A = a5(1%9) and [ = = a'"?, and assume p satisfies
Ip| < € and E, z(a®p) < Eq+ Clp|? for a given C > 0. Then for any €, > 0, there exists a
constant R > 0, such that the states !, defined in Eq. (4.3.6) satisfy (W%| (Tn — ‘\I/”> <
@375 and (U |HA|W") — Eqa(a?p) S a720%9),

Proof. By the results in [I7, Lemma 3.5], there exists a constant R > 0 such that
(UM HA WS — Eyp(a?p) < o~ 2149 and Z, — 1. Applying Lemma 4.3.3 yields

(FRUL|(Th = p)* |FRUY+(GRYL| (T — p)* |GRYL)
<a® a0 (| Fplymsy e, HIGRa@s) e, ) (4.3.7)
with G := /1 — F2, where we used (¥ | (T —p)* V") < a® % and x (N < c,) V!, =

W' . In order to estimate |Fr|aq(rs)c,. let us define the functions g(s) := Xi(s < E)

sC 1

and h(s) := x (R — ¢ < +/5). Then Fi(z) = g (a—4z;jj:1h(|xi — )

FR'(t) =g (O‘% 2iah ((t—ui)*+ 03) + py) with 0% = (y3 — yi) Y+ (yt — i) and g, =
a3 o h(ly' — ¢'J?). Consequently

3

and therefore

N———

n - N e B 2R3
[(FR*) | <4a 49'002\/le75|2 [P (82 + 6,) | de<da g oo (n = DI |oor | -
i—2
where we have used supp (7’) < [0, R?) in the second inequality. Hence |Fg|ms)c, =
SUD ) <p<c, 02 SUD epsxn | (FR™)'| < @ 2. Similarly we have |G g prsye, < @ 2. In combination
with Eq. (4.3.7) we therefore obtain

16

- o— o 4,16
<\I/gé‘(TA —p)Q‘\I’g> $ ZR?a( 2 4—|—Oés(1+ )(“FR“,%\/I(Rg),C++||GRH.2/\/I(R3),C+)) SO(S 5,
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Before we come to our next localization step in Lemma|3.3.12, we need to define the regularized
median of a measure v € M (R), see also [17], Definition 3.8], and derive a useful estimate
for it in the subsequent Lemma 4.3.5. In the following let 2" (v) := sup{t : {* _dv < s {dv}
denote the x-quantile, where we use the convention that boundaries are included in the domain
of integration SZ fdv = S[mb] fdv, and let us define for 0 < ¢ < % and v # 0

1
S hdu(h), 438
qu( (i (4.3.8)

my(v) :=
SKq(V)

where K, (v) := [2279(v), z2+9(v)], and m ¢(0) := 0. Furthermore we will denote the marginal
measures of p e M (R?) as p;, i.e. p;(A) := p([x; € A]), where A = R is measurable and
ie{1,2,3}.

Lemma 4.3.5. Let us define ey as the set of all p e M (R?) satisfying §, _, dp(z) < a™?

for t € R and i € {1,2,3}, and Q) as the set of all p € Q. satisfying ¢ < {dp and
SS|r—y|>R dp(x )dp( ) < 6 for given R,c,§ > 0. Furthermore let q be a constant satisfying

< 1 — 5. Then we have for any n > 1 and function of the form F(p) = f (mq(p1))

the estimate

!
SUDP,eq, H (Fn@)/H < 042%;0@, (4.3.9)

where m,, is defined in Eq. (4.3.8) and (2, below Eq. (4.3.5).

Proof. Given x € (,,, let us define v, := a2 (6t + Z? 9 I) which allows us to rewrite

F™®(t) = f(mg(11)). Let us first compute the derivative $mg (1) for t € R\{z?, ..., 27}. For
such ¢, there clearly exists an € > 0 such that (t —e¢, ¢ + e) < R\{z?,...,27}. It will be useful
in the following that the set Y := {z% ... 27} N Kq(VS) is independent of se(t—et+e),
with K, (v) being defined below Eq. (4.3.8). Furthermore we have for s € (t —€,t + €) that
s € K,(s) if and only if t € K,(t). Therefore a? SKq(US) hdvs(h) = Y ey b+ 51k 5 (s) =

Yoney h+ s, @ (t) and o SKq(US) dvs = [Y]+1g,5(s) = o SKq(Ut) du; for s e (t—e,t +e),

and consequently we obtain for t € R\{z?,..., 27}
d d h+ sl t 1 t
() = a7 — Dhey T, () _ o2 Ko(t) (1) '
dt dsls=t SKq(vt) dv, SKq(Ut) dyy
Note that due to our assumption p € Qreg, my(v¢) can be continuously extended from
R\{z%,..., 27} to all of R, and therefore $m, (1) = a‘Q% in the sense of distributions.
Kq(vt
Since SKq(vt) dyy > 2qc we conclude |(F™®)(t)| < a*Z%]qu(t)(t) for almost every ¢. In

order to obtain from this the upper bound on the L?*(R)-norm in Eq. (4.3.9), we are going to
verify that the support of ¢ — 1, ()(f) is contained in an interval of the form ({ — R, { + R)
for a suitable £ € R. Let us start by verifying that

o2

() = 2" e () (4.3.10)

for 0 < k < 1 and t;,t, € R. Note that any y € R satisfying the inequality SZOO dvy, <
(I{ — 0‘772) { duy,, also satisfies

Yy Yy a2
J dy, < a?+ J dy, < a2+ (/1 - ) detz < /ifdutz = /ifdutl,
c
—00 —00

133



4.

THE FROHLICH POLARON AT STRONG COUPLING — PART II: ENERGY-MOMENTUM

RELATION AND EFFECTIVE MASS

— a2
where we have used a2 < 2~ [du,, and therefore y < 2" (14,). Using that 2"~ < (1)
is the supremum over all such y, we conclude with the desired Eq. (4.3.10). Furthermore
observe that v, = p; with to := 21 and p:= a2} d,; € Q, and therefore we know by

[17, Lemma 3. 9] that there exists a & € R such that € — R < 22 7 (v,) < 2279 (1) < E+ R

for ¢ < 5 — 5. By our assumptions, ¢’ := q + —2 satlsfles this condition, and therefore we
obtain usmg Eq (4.3.10) with t1 :=t, ty :=tg and k= = — q, respectively t| := tg, to ;=1
and k= f+q+—that

E—R<z7 ) <z2t(y) <E+R
for all t € R, and consequently 1, ) (t) = 0 for [t —&| > R. |
Lemma 4.3. 6 Given 0 < o < § and C > 0, let A = o309 and L = o1*°, and assume p
satisfies |p| < € and E, s(a?p) < E, + C|p|? for a given C' > 0. Then there exist r',c, > 0

and states 0" with (U (T = p)? [T < o=@+, (UMHL U™ — B, a(a?p) < a3+,
supp (V%) < B,4(0) and x (N <) U =" such that

<\I[///
where W re. is the Weyl operator corresponding to the Pekar minimizer ok characterized
by ngleka(f)W pec = a(f) — {f|oPE) for all f e L2(R?).

Wg;plek NW@Pek

\Ifg’> <a™, (4.3.11)

©

Proof. For u > 0, let us define the functions fi(y) == x2 (-1 <aty <(+1) for ( €
Z satisfying (| < 3oL, as well as f_y(y) := X2 (aty < —|2a*L] = 1) and fo(p) :=
X7 (|2a*L] + L < a“y). With these functions at hand we define for i € {1,2,3} and
v > 0 the partitions P; := {Fg’i NS A}, where Fyi(p) := fo(ma—(p;)) and A :

{—oo, —|3a"L|,—|3a"L]+1,...,|3a"L|,c0} € ZU{—0w0, o0}, aswell as P := {F zeA3}
with F, := F,, 3F,, oF}, 1. In the following let ¥ be as in Lemma 4.3.4 with § < < and let
Qeg and €2 be the sets from Lemma 4.3.5 with 5 and R as in Lemma 4.3.4, q := a Y and
¢ := c_. Due to the straightforward result [17, Lemma 3.6] we have ]l/gztg\llg = U’ and by

the definition of ¥” in Eq. (4.3.6) it is clear that we furthermore have ]@\If’; = . Therefore
we can apply Lemma 4.3.3 together with Eq. (4.3.9) in order to obtain

Z <F p)’ ‘ﬁm,nﬂ’;><<@g| (Tp — p)? "5+ Tas o) Z o

e “ ZleA

16 é 6
5

5 4575t Sup Hle H Z 1< a50+2v+3u—5a—2
z1€EA

2
1
—4 Hle Hoo R

200~ 2v 2

(S

<o

—v a2 1 § ! U
for all « large enough such that o= + <3 where we have used sup, 4 Hf21 H < at,

aswellas ;. ., 1 <3(a"L+1) < a""'*7. Since the functions F7'; are independent of z;
for i € {2, 3}, we furthermore obtain

<ﬁz171\pg (T ‘le’ \Ij”> Z <FZ3 3FZ2 2le 1‘1’

22,2 23€A

(T p)2 ‘ﬁ23,3ﬁ22,2ﬁz1,1mg>

and therefore

22| (Yh = p)* 0. S st 2Hiig 2 (4.3.12)

2€A3
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with O, := Z71 0" and Z, := Hﬁxpg

Regarding the localization error of the energy, we obtain by [17, Lemma 3.3] and [17, Lemma
3.10] (see also the proof of [17, Eq. (3.22)]) that

D0 Z2(ULHL V. < (UAHATL) + Oaso (%) < Eqp (a®p) + Ca 249 (4313)

2zEA3

for a suitable constant C' > 0, as long as u + v < % In the following, let S be the set of
all z € A3 such that (U, |[H,|W.) > E, (a?p) + a~ %) for a given w > 0, and define
M=% _sZ2 By Eq. (4.3.13), we have

M (Eaa (0%p) + @~ @) + (1 = M)E, < By (a®p) + Ca™2049),

—(2+w)_c —2(1+0)

and therefore 1 — M = E':TA(QQp)ijJra_(Q‘*'“’)

and a suitable constant C';, where we have used the assumption E, A (onp) —F, <

Ip|> < a 2. Moreover, let us define S’ as the set containing all z € A3, such that
1/(9 B 1

(U, (T —p)?|0.) > a2 (Botzdu5) (=2 gng £ o= Y.es Z2. By Eq. (4.3.12) we see

1(9 1
that M’ < Cga§(5“+2”+3“_5) for a suitable constant C;. Consequently

> Cha™ for w < 20, « large enough

1(9 1
Z ZZZ, >1-—M— M > Clafw . C2a5(50+2v+311,—3)
2gSuS’
for « large enough. Since 0 < %, we can take u,v and w small enough, such that 2w +

%a +2v+3u < % and consequently Zz¢su5' Z2% > 0 for « large enough, which implies the
existence of a 2* ¢ S U S’ with Z,, > 0, i.e. (U «[Hp|V.+) < Eya (a®p) + a3 %) and
<\Dz*| (TA _p)2 |\Ijz*> < a%(%o+2v+3u—%)—2.

In order to rule out that one of the components z} is infinite, let us verify that (¥, |H, |V, ) >
B, (a?p) + a~®*+%) for o large enough in case there exists an i € {1,2,3} with z; = +0.

3
Note that p € supp (F_s,;) implies m,—(p;) < —3L and therefore S\x\>§L dp = S:EOL dp; =
2

ST;‘;“(F") dp; = (3 —a™) §dp. Similarly S‘I|>%L dp = (3 —a7) {dp for p € supp (Fiv,).
Consequently we have for any z with z; = +00 for some i € {1,2, 3}

1 —v
(W, 0110 > (5 ) LN,

where Ngs\p, (o) := G with G(p) == SM>§L dp. Therefore [17, Corollary B.7] together with
5 2
the fact that supp (¥,) < supp (V”) < B(0), yields

1 D 1
<\PZ|HA|\PZ>>EO¢ +(2_04_1><\I/Z|N|\I/Z>— ﬁ ZE(X"F (2 — Oé_v) c_—\V2Dqa—(1+0)
sL—

= Ea (Ozgp) + ; + Opsoo (oz_“) > Ean (a2p) + o~ @Fw)

for a suitable constant D > 0 and « large enough. Hence we obtain that all components z*

are finite, i.e. ma-v(p) € B 5, (@7"2*) € R? for p € supp (FZ§73FZ;72FZT71>.
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Let U := T _,—u.+V,«, where T is a joint translation in the electron and phonon component,

e. (T.0)(z) := U,¥(x — 2) with U, being defined by U 'a(f)U, = a(f.) and f.(y) :=
Fy — 2). Using the fact that (U_«|Hy|W.«) < E,p (a2p) + o~ @) < B, + a3 as well
as Lo« W2 = WY where Q* is the set of all p satisfying {dp < ¢ and m,—(p) € B j5,-.(0),
we can apply [17, Lemma 3.11], which yields

< \Ij/”

By taking ' > 0 small enough such that ' < 1 (l — % — —3u), r < w and 1’ <

-1
WwPek NW@Pek

_2 _ _
\I/’a”>§oz 2 +a "+ a .

235 5
min{Z, u,v}, we conclude that <\Ijg[,‘ch_plekNW@Pek‘\I]/a”> < a™. Since supp (V") <

Br(—a "z*) € Briq-u:#(0) © By (0), this concludes the proof. [ |

In the following Theorem 4.3.7, which is the main result of this section, we will lift the (weak)
condensation from Eq. (4.3.11) to a strong one without introducing a large energy penalty,
using an argument in [72]. We will verify that the momentum error due to the localization is
negligibly small as well.

Theorem 4.3. 7 Given0) <o < § andC >0, let A = a3(+9) and L = o1*°, and assume p
satisfies |p| < € and E, (a’p) < E + C|p|? for a given C > 0. Then there exists ar > (

and states W, with (W,|(Ty — p)’ W, < am @), (W, |H|W,) — Eqa(a?p) S a0
and supp (V,,) € By (0), such that

¥ (Wb e NWoraie < a77) 0o = 0, (4.3.14)
where £ := 2V, "% with V,, == x" (A7'|V,,| <2) V,,.

Note that & is small in magnitude, [¢]| < |p| < a™!. The statement of Theorem 4.3.7 is
also valid for § = 0, i.e., in case we conjugate by the Weyl transformation W pex instead of
W pex_;e. For technical reasons, it will however be useful in the proof of Theorem 4.2.1 to use

QPR — il ~ QP — i 2V, o' as a reference state, since the latter satisfies the momentum
constralnt <90Pek il Vxlgopek| V]l —i 2V, ol = p.

Proof. Let U be as in Lemma 4.3.6/and let us define for 0 < € < 3 and 0 < h < min {r, 1

1
v, = ZoleE <ahW4pP1ek_i£ NchPek,ig < 2) \Ifg:,

where Z, = [x¢ (OéhWQO_plekiigNW@Pek_ig < %) U”| is a normalization constant. Clearly
the states ¥, satisfy Eq (4.3.14) for r < h. Let us furthermore define the states U, =
ﬁx (2 < "W ek ngW Pek,1£> U”  An application of [17, Lemma 3.3] yields

Z2(Wa[HA W) +(1 — Z2) (U [HA W0y < (UL[HL|L) + Coa® % (U2|VA + 1|02
< Ea,A (azp) + Cla_(Q-Hﬂ)
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for suitable constants Cp, C; > 0 and 7" := min{r’, 2 — 2h} > 0. We have

1 2
XE (2 < O[hW@plek_igNW@Pekig) ‘\Ijg’>

\III”> <\IJ”/
1—2¢

1—Z§=<xp'g

< <\IJI”
1—2¢

<o (0 ) o
(6% (0% —
~1_2€ a—w

pek ZENW Pekfzf

4al||€)?
pekNW \I/I”> ||£||

1— 2e¢

where we used the operator inequality Ws;plek NW per_ie

l€? < [pl2|VePX|* < a2 and Eq. (4.3.11).
Eon(a®p) —Ey < |p? S o2

< 2 (WA W e + 7)),

Making use of (U, [H,|¥,) > E, and
, we therefore obtain

(oA W) — Ban(0%0) < 2% (Cra™®") 4+ (1 = 22) (Eun (o) ~ Eu)

S a4 (o' 4 077 (Bun(0’p) — Ea) £ 0”07
with 7 := min{r", " — h,2 — h} > 0.

In order to estimate (W, | (Ta — p)* [T, ), let us apply the IMS identity

ZH V(A=) | Wa >+ (1= Z2) Vo] (Ya—p)*|Wa = (W7 |(T s —p)? [T — 0| X [T,
(4.3.15)
where we define X =5 [[(Ta - »)’, Al A +2 [[(TA —

Ay = fl( i N pek%) and Ay = fo (W

1

3) and fy —X(%\

»)’, As], As] using the operators
pek NW Pek*lf) with .fl( ) = Xe (Ckhl' <
). In the following let us compute

2
I:[(TA _p)27 Aj]? AJ]: Wﬁplck Zfl l(W¢Peki§TAW¢P£k—iE - p) y fj (N)] 5 fj (N):|W¢Peki£
= Wik o [[(ra =5+ 2ea’ (9)°, O] £ W
where  := 1V, (P —i€) and = p—( P — €| 1V, | Pk — &) = p(

We have [p| < p| < Q since m = 2||Vgppek\|2 = 2|V, 07| =
discrete derivative 6fj( ) i=a?(fi(z +a7?) -

) = p(1-2 9 ")
2|V, 07|, Defining the
fi(x)), we can further write

|[(Ta =5+ 2%ea’ (9)°, N | HAD)| = 8 [Rea (), PN’
+2{TA—p+29%ea [[Sﬁea*(gp),fj M), iV )]}

= =80~ (Im (ol (9) 35 V)))° + 207 Ta B+ 20ea (), 9%e (o' () (01 (N)) |
)

where we used [Ty — P + 2Rea’ (¢), f;(N)] = 2[Red' (¢), f;(N)], [Real (¢), [;(NV)] =
a2idm (a! () 1,N) and [Bea’ (0). FHV)]» V)] = a-39Re (al () (6,)2(N)). Hence

= [[ (8 =7+ 2eal (), O | )] < 807 19m (ol () 1500))
+ 4a72 Re (ozT () ((5}‘}-)2(1\0)2 +a7? (TA — D+ 20Real (cp))2
< 2])® (270 £5112% + 20706 fi]% + 3a7) (2N + a7?) + 27a°N? + 3a7°|p|?

(4.3.16)

137



4.

THE FROHLICH POLARON AT STRONG COUPLING — PART II: ENERGY-MOMENTUM

RELATION AND EFFECTIVE MASS

where we have applied multiple Cauchy—Schwarz estimates and used 1% < \ 9a2N?2. Note that
the expression in the last line of Eq. (4 3.16) is of order a*—3 (N + 1), since |3 < o
and |¢|| < 1. Using W(;pik_ig (N + 1) Wpex_je < (N + 1)* we therefore obtain

2
;Z (Ta = )" Al 4j] < a2 (N +1)%.

Using this together with Eq. (4.3.15) and the observation <\Ifa‘(TA—p)2“Tla> > 0, yields

(Wa] (Ta=p)*[Way < 237 (QU|(Ca—p)*| W5y — QW[ W)

< a—(2+r) +a4h 3<\I/”" N+1 ‘\11/”> < —(2+7r") +a4h 3

Since h < % we have min{r’, 1 — 4h} > 0, and therefore we can choose r > 0 small enough
such that » < min{r’,1 — 4h}, » <" and r < h, which concludes the proof. ]

4.4 Proof of Theorem 4.2.1

In this section we shall prove the main technical Theorem 4.2.1, using the results of the
previous sections as well as the results in the previous part of this paper series [17]. Before
we do this let us recall some definitions from [17].

Definition 4.4.1 (Finite dimensional Projection II). Given o > 0, let A := a5+ and
¢ := a~*%9) and let us introduce the cubes C, := [z; — £,z + ) x [20 — £,z + {) X
[23 — €, 23 + () for z = (21, 29, 23) € 20Z3. Then we define IT as the orthogonal projection
onto the subspace spanned by the functions = — {_ |£|z dk for z € 207Z3\{0} satisfying
C, < Bx(0). Furthermore, let o, ..., N be a real orthonormal basis of TIL?(IR?), such that

IV, ¢
©n mforn€{123}

Definition 4.4.2 (Coordinate Transformation 7). Let oL (y) = o (y — ) and let
t — x; be the local inverse of the function z — ((p,|E*))3_, € R? defined for t €
Bs,(0) with a suitable 6, > 0. Note that we can take B;,(0) as the domain of the
local inverse, since {¢,|ot) = 0 for all n € {1,2,3} due to the fact that o'k and II
respect the reflection symmetry vy, — —v,. Then we define f : R® — TIL*(R?) as
Ft) = x ([t] < 8,) (b — 322 _ ¢,,) and the transformation 7 : [IL2(R?) — I1L*(R?)
as

() == [ ()

with 9 := ((p1]@) , (pal) , {p3lp)) € R®.

Definition 4.4.3 (Quadratic Approximation .J;.). Let us first define the operators

L [§re) g

Pek .__ Pek __ —1  Ppek Pek _1
KPS = 1 g ay g e Ay (a4
LPek = 4 (_A)—% wPek (1 . A)_l wPek (_A)—% ’ (442)
where VP = _9(—A)mapPek ek . oPek _ || Pek |2 5nd Pek s the, non-negative,

ground state of the operator —A + V< Furthermore let T}, be the translation operator,
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4.4. Proof of Theorem 4.2.1

ie. (Thp) (y) :=p(y—x), and let KPo := T, K¥*T_, and LY := T, LPcT . Then we
define

Jrer=m(1—(1+e) (K +ely™))m

for |t| < € and € < §,, where §, and z; are as in Definition 4.4.2 and 7 : L*(R3) — L?(R?)
is the orthogonal projection on the space spanned by {¢y,...,on} with ¢, as in Definition
4.4.1. Furthermore we define J; . := 7 for |t| = € and we will use the shorthand notation

Jielp] := (ol Jielw).

Recall the definition of £, o in Theorem 4.2.1. In the following we will assume that p satisfies
the assumption E, s(a’p) < E, + C|p[* of Theorem 4.3.7 with C' > .-, which we can do
w.l.o.g., since E, x(a?p) > E, + C|p|* immediately implies the statement of Theorem 4.2.1
(compare with the comment above Lemma 4.3.1). We shall also assume in the following that
Ip| < g Due to these assumptions we can apply Theorem 4.3.7, which yields the existence of

a sequence W, with <\Ifa‘ (T —p)2 ‘\Ila> < am @) (W, [HA W) — Eqx(a?p) < am )
and supp (V) € Buz(0) with L = a'*7, such that W, := W ¥, with £ = 2V, P
satisfies condensation with respect to <pP‘3k, i.e.

X (W;plekNWwpek < ofr) T, =0, (4.4.3)
Using 2 (p —T,) < a‘g% +ai(p—"Ta)” and |p| < € we therefore have

Ea,A (OCQP) = <\Ila

H, + % (p—Ta) ‘\Ifa> 4 Oy v (a‘(2+%)> , (4.4.4)

where £ formally acts as a Lagrange multiplier for the minimization of H, subject to the
constraint T, = p. In the rest of this Section we will verify that H, + % (p—"Tx) is
bounded from below by the right hand side of Eq. (4.2.3) when tested against a state W
satisfying supp (¥) < Byr,(0) and complete condensation with respect to ¢P®* —i& (where
we find it convenient to use ¢P* —i¢ instead of 'k for technical reasons). The momentum
constraint on W will not be needed for this; i.e., we have transformed our original constrained
minimization problem into a global one, which we handle similarly as in the previous part [17]
concerning a lower bound on the global minimum E, = inf o (H). As already stressed in
the Section 4.1} it is essential to work with the truncated Hamiltonian H, and the truncated
momentum T4 here, since in contrast to Hiy + £ (p — Ty) the operator H + £ (p — P) is
not bounded from below for p # 0.

Following [17], we will identify F (ILL?(R?)) with L?(R") using the representation of real-
valued functions ¢ = 27]:/:1 An@n by points A = (A1, ..., Ay) € RY. With this identification,
we can represent the annihilation operators a, := a(g,) as a, = A\, + ﬁ&‘,\n, where
A\, is the multiplication operator by the function A\ — )\, on L? (RN). Let us also use
for functions ¢ — g(¢) depending on elements ¢ € ITL*(R?) the convenient notation

g\ =g (ZN )xngon), where \ € RY.

n=1

It is essential for our proof that \fla satisfies complete condensation in "¢, see Eq. (4.4.3),
since it allows us to apply [17, Lemma 6.1] which states that in terms of the quadratic operator
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Ji. and the transformation 7 on IIL?(R?) in Definitions 4.4.3 and 4.4.2| we have

~ ~ ~ 1 X ~
(U [Hp W o) =em o+, — 1 DB A T T |+ Now|Tay— (4.4.5)
n=1

202
T O @)

for suitable w, sy > 0 and any 0 < s < sy, where we define Noy := N — Z]kV:1 aLak and t¥
is defined as in Definition 4.4.2 such that t* = (A1, Ay, A\3) € R3. Furthermore it is shown in
[17, Lemma 6.1], that there exists a 5 > 0, such that

22@

(U1 = BW,) < (4.4.6)
for all 0 < s < sg, where B is the multiplication operator by the function A — x(|t}| < a™%).
In the following we will always choose s < 1. We will use the symbol w for a generic, positive
constant, which is allowed to vary from line to line.

4.4.1 Quasi-Quadratic Lower Bound

In order to find a good lower bound on (¥,[Hy + £ (p —T,)|V,), and therefore on
E, A(ap), it is natural to conjugate Hy+2 (p—T4) with the Weyl transformation W pex ;¢ =
W pecW_se, since Pk — i€ is close to the minimizer P — i 2V, P of the corresponding
classical problem, see [39]. Since i is purely imaginary, the interaction term in H, is invariant
under the transformation

W_ie, ie. W_ieRe[a (x (IV] < A)w,)]WZe = Re[a (x (V] < A) w,)], and furthermore

W_ie TAW k= Ty —2%Re [a (i%mig)l +<¢§H%m i§> —T,—2%Re [a (%mg)] . (4.4.7)

where we have used <z§‘%%ml ‘Z€> = 0 (since <h|%%m1 |h) = 0 for any real-valued or imaginary-
valued function h e L?(R?)). Therefore conjugating H + £ (p—T,) with W_;, yields

- (9
Pek+<\l, ‘_4 - Za/\ +Jp _S[ ()\)]+N>N_7Z;TA‘CI}&>_%]:;

v ome(ifa (L0 6-i€) [B) + 24 jef? 1 0p s (om0,

where we have used Eq. (445) In the next step we apply the Weyl transformation W pex,
which satisfies W¢Pek)\W<;ptk = )\ + AP and hence

Worae L0k = 2t 4 o0te [a (Vo™ )| = L1y = 23e[ai€)]
Worate [a (29,6~ Zé)] e = 9e o (29,6-i¢) | - g,

where we have used Re (PPH| 2V, £—if) = (P 2V, &) = —|¢]%. Furthermore
Wrat MWV 3 ek = = (A + APk /\2 + AP A3 + APek) = (>\1, A2, Az) = t* with
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4.4. Proof of Theorem 4.2.1

APek . — (<<pn|Hg0Pek>) . Therefore defining U* := W@Pck/\\:[}oé = Wrek_ic ¥, and conjugating
with W pex yields the Iower bound

(WalHy + = (p = Ta) [Va) (4.4.8)

N
Z ePek+<\1;; _4;4 Z a/Q\n—i_JtA,Ops [T(>\+>\P6k)] + W pex >NWS;P1ck_%TA‘\I’Z>

(6%

2o (29.,) [2)+ 2o g2 0y (am5).

The advantage of conjugating with the Weyl transformation W pex_;c = W_pax W_;¢ stems
from the observation that we have an almost complete cancellation of linear terms, i.e., as we
will verify below, the term linear in creation and annihilation operators

9‘%2<\If; a (%%115) ‘\Ilz> in Eq. (4.4.8) is of negligible order, and the function A —
Jir - [T(A+AP) | vanishes quadratically at A\ = 0. The latter follows from the fact that
7(APK) = 0. Utilizing thNe inequalities (W3 N W2%) = (W W pa ; NWrac i Uo) < @,
see Eq. (4.3.14), and |2V, £ < [p|? where we have used that ¢™** € H?*(R?), see [76), 95],
we obtain that

29%<\I/*

(m mlg) ‘xp ><a BlpP<a (D) (4.4.9)

is indeed negligible small. Furthermore we can estimate, up to a term of order 07(2%),

W pex >NW<;pik from below by a proper quadratic expression

W Pek >NW pe =Non +a ((1 — H)gppek) +af ((1 Pek) H PekH2

> ;/\@N —2(1 = I)Pek|* = ; N + Oarco (of(?*g)) , (4.4.10)

where we have used [|(1 — IT)"%[2 < o 2+5), see [I7, Lemma A.1]. In the following let
us use the convenient notation e, := e 4 %. Combining Eq. (4.4.8) with Eq. (4.4.9),

Eq. (4.4.10) and the observation that %—HSHQ > %, and using the fact that E, A(a?p) >

—TA)‘\IJQ> + Opbso (of(%%)), see Eq. (4.4.4), we obtain

Ea,A(OéQP) Pek+<\p*

Za s [T AT 45 LY. pn‘\p >

_ gz T Qg (0740 (4.4.11)

The right hand side of Eq. (4.4.11) is up to a coordinate transformation in the argument of
Jir o-s quadratic in creation and annihilation operators. In the next subsection we will apply
a unitary transformation in order to arrive at a proper quadratic expression.

4.4.2 Conjugation with the Unitary U/

In order to get rid of the coordinate transformation 7 in the argument of Jx ,—s, let us
define the unitary operator U on F (IIL*(R?)) = L*(R") as U (V) () := W (E(N)), where

RN — RN is defined as Z()) := T(A 4 APek) e TIL%(R?) =~ RV. Note that the inverse

(1]

141



4.

THE FROHLICH POLARON AT STRONG COUPLING — PART II: ENERGY-MOMENTUM

RELATION AND EFFECTIVE MASS

of 7 is simply given by 77(¢) = ¢+ f(t¥) where f : R® — I1L*(R?) is defined in Definition
4.4.2, which can be checked easily using the fact that {y,|f(t)) = 0 for n € {1,2,3} and
consequently ¢7(¥) = t#. Hence

UM U = {77 = AP = N, 4 (o | f (1)) — APk (4.4.12)

and therefore U1 MU = ({1771 (A)) — ATk (o mTH ) — APR) = (g, ..., A3) =t
Defining the matrix (Ji(),, ., := {@n|Jt,e[m) we furthermore have

N
U Tp o TN JU = T oA = Y5 (Trams),0 A

n,m=4

as well as U~Yid,, U = i0), for 3 <n < N, which immediately follows from the observation
that = is a t* = (A1, A2, \3)-dependent shift. In the following let us extend {1, ..., pN}
to an orthonormal basis {¢, : n € N} of L?(R?) and introduce a, := a(p,) for all n € N,
and let us extend the action of U to all of F (L*(R?)) such that Y 'a,U = a, forn > N.
Defining W/, := U 'U¥, we obtain by Eq. (4.4.11)

Eoa(a®p)=e, ™+ <\IJ;

1 3 1 N N
—172 2
o n§=1u AU= 1= n§:4a“+ >0 (Ira=) o Andm

n,m=4

1 1P N —(2+w
+ Ny —U %TAu\q@ = 57 Oarvo (a7 CH) . (44.13)
Using Eq. (4.4.12) and U 'i0,, U = i), for 3 < n < N, we further obtain the transformation
law U ta, U = a, + {pn|f(t*) — TP for all n > 3.

In order to express U‘lﬁTA U, let us introduce the operators ¢, defined as ¢,, := ﬁu—la& U
for n € {1,2,3} and ¢, := a, for n > 3, as well as g(t) := f(t) — TL"* + 32  t,0, €
[IL?(R3) and g,,(t) := {pn|g(t)). With these definitions at hand we obtain

1 1
L{_lanu = Z/[_1 (Wﬁ,\n + )\n) U= @Z/{_la)\nu + )\n = Cp +gn(t>\) , for 1 <n< 3,

U anUd = an +{op| fY) =" ) = ¢, + g, () , ford<n< N

and U 'a, U = ¢, = ¢, + go(t") for n > N, and therefore U 'a, U = ¢, + g, (t*) for all
n € N. In the following we want to think of ¢, as being a variable of magnitude o~ ! and *
as being of order a™" for some r > 0, and consequently we think of g, (tk) as being of order
a~" as well, since g(0) = 0. While the former will be a consequence of the proof presented
below, the control on t* follows from our assumption that we have condensation with respect
to the state k.

In the following we want to show that for suitable w,w’ > 0, 2T, is bounded by
€ (—ﬁ Zizlbflﬁinu +3N dla, +N>N) with € = a~*, up to a term of negligible
magnitude, see Eq. (4.4.16). Since —ﬁ Zizluflé‘fmu and N- y appear in the expression

on the right hand side of Eq. §V4.4.13) as well, and since they are non-negative, this will leave
us with the study of — 17 > " | 8§n+zﬁm:4 (Jra—s) AAn — e ala, for a lower

n=4"n

bound on the expression on the right hand side of Eq. (4.4.13). Using the representation
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pTA _an 1<Q0n|zm x1|50m>a Ay, WE obtain

U R U= ol Ll (e + 0u(1) (e + ()

n,m=1

_Z <‘Pn - x1|@m>c Cm + Z <90n - x1|90m> (CL gm(tk) + gn(tk) Cm) 5

n,m=1 n,m=1

(4.4.14)

where we have used >} (onl N o [0m) G () g (1) = (g () |2V [9 () = 0, see
the comment below Egq. (4 4.7). Using the bound on the operator norm H%%mHOp < %3/\ =

Ip\3&5(1+0) < as(1+o)- ! yields

0
Z <90n =V lom) chem < asto- Z el cn. (4.4.15)

nm=1

For the bound in Eq. (4.4.15) it is essential that we are using the truncated momentum
T, defined in terms of the bounded operator %m instead of the unbounded operator V.
Defining the coefficients h,,(t) :== > _, <90n|%%x1 |©m) gm(t) and applying Cauchy-Schwarz
furthermore yields for all € > 0

M8

Z <90n Vo, [@m) (¢, g (1) + g (1) ) =

n,m=1 . . n=1 X
<e e +a12\hn (N[ =X de 1 2V
n=1 n=1

Note that H%%mg(t) H < ‘% [Vg(t)|. Making use of Vg(t) = VIIn(t) with

(cLhn (t)‘) + mcn)

‘2

3
Vo, 0"
t) = t < 5* Pek Pek + t t Tn Pek
n(t) := x (Jt] < 8a) (0" — ") + x (0x < [t]) Z ”Hvxn(ppeku — ",

we obtain |[Vg(t)| < |[Vn(#)| + a4 |n(t)| by Lemma 4.5.3. Using again o™k € H2(RR?),
we have [n(t)[+] V(1) < 1+]t], as well as [ V(1) | = [Vioge =V || < [z] | A" < [¢]

29,00 < Colp (It + 0~ +)(1 4 |1]) for a suitable

min{ 7

for |t| < 04. Consequently,

constant Cy. The choice € := o~ 1} yields for « large enough

o8]
iU_IETAU <a™v Z clen + CoC? (oz_Qamin{g’l} ‘t’\‘Q + a0 (1 + ‘t’\‘ )2>
m n=1

(4.4.16)

with w’ < min{%,1— 2(1 + o)}. In the following let o be large enough such that o~ < 1.

Then we have

a Z clcnzaw,<2 an——ZU 15)\” >\ “Noy— o 422/1 1(9/\2/1

n¢{4,....N} n>N
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Using Eq. (4.4.13), Eq. (4.4.16) and (W’ ||t*]*|¥!) = <\ia||t)\|2|\ia> < <\TJQ|N|\T/Q> + % <
a "+ ;’7 see Theorem 4.3.7 for the last estimate, we obtain for a suitable w > 0

yPel Z@/\n—i— Z T =) Andm
n,m=4
Sl

E,a(a’p) = ef;ek + <\I/'a

N > _ 2]; + O (0 (2+w))

=% + (1 — oz_“’) <\I/;

with Qf, := —ﬁ ZnN=4 R+ —H ZN ((Jte) — H(Sn,m) AnAm, Where we made use of

n,m=4

N _
the fact that >, ala, = —@ Z a,\n + Zn 4% ]goﬂg'

Q. - @\‘W + Osen (0 +)

4.4.3 Properties of the Harmonic Oscillators Q},

Let 7 be the projection from Definition 4.4.3 and note that J; . > c7 for suitable ¢ > 0, €
small enough and « large enough by [17, Lemma B.5]. Therefore Qtof(;i”s > 0 for « large

enough. Since J; . < 1, we furthermore have (1—k) inf o (Qte) <2 <a? (?)3 < aoffora

suitable exponent g, see Def|n|t|on 4.4.1. Combining this with the estimate (V! |1 — B|V. ) =
(V|1 —B|¥,) < e #°™ for a suitable 8 > 0, where B := y(|t}| < a %), see Eq. (4.4.6),
yields

inf info (Qm_s> (¥, |B|T,) > mf info (Qt a_;) + Og—oo (aqe*m%%) .

[t|l<a—s

Therefore we obtain for a suitable w > 0

/ ! N
Eoa(a®p) = elf;ek + (1 — a’w) <\If'a Qi o-sB — —2‘@;> + Oy sop (047(2+w))

= e?ek + (1 — a’“") ( inf info (Qt a_s) (U, |B|¥,) — N ) + Oy oo ( (2+w))

[t|<a—s

> e + (1 — ofw/) ( inf info (Qta ;) - N) + Oao0 (of(zﬂ”)) : (4.4.17)

|t|<a—s 202

Since Qf, is a harmonic oscillator, we can write its ground state energy explicitly as

, . Jie — KT
lnfO' (Qt,e) = @TI'HLQ(R:S) 71 —
. 1 Jt €
=info (@?6) + WTran(RS)[ . Jy e]

Using J;.m = Ji, and therefore [J; ., 7] = 0, and again the fact that J; . > c7 for € small
enough and « large enough, as well as |[/z — /y| < \%|x —y|forx > 0and y = ¢, we
obtain for such ¢, a, and Kk < ¢

e Ji e — KT
iTrHLQ(RZS)[ tl . /\/ ] TrHL2 ]RJ) % - Jt,e
__ " 7 | Jie — 7| = MTr [KPek + ELPek] < L7
Ve(l = k) ’ Vel — k) 11—k
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where we have used that KP°% and LF* defined in Definition 4.4.3| are trace-class. Combining
what we have so far with the bound
N 1 1
info (Q7,) = %2 24 1T [1 \/HPek] - D (04_26 + a’(“%))
’ a
for small ¢, |t| < € and large «, and a suitable D > 0, see [17, Lemma B.5], yields
! N 1 1 ’
inf info (Qm s) — = +-=1r [1—\/HPek} 2 —(a_(2+5) +a~(25) 4 o )> .
[t|<os 202 202
In combination with Eq. (4.4.17) we therefore obtain for a suitable w > 0
1 frs
Ea,A(&Qp) 2 e]lj’ek - ﬁTr |:1 - HPek:| + Oaaoo (a7(2+w))’
a

which concludes the proof of Eq. (4.2.3).

4.5 Auxiliary Results

Lemma 4.5.1. Let g(k) :=x' (K~ k| < 2)k for k € R. Then there exists a constant C' > 0
such that for any bounded function f : R — R with f' € L*(R) and K > 0, the double
commutator is bounded by

[l G) 0] 700

where we write f(t) for the multiplication operator with respect to the function t — f(t).
Furthermore we can choose the constant C' > 0 such that |[g(+<) H < CVEK|f'.

<CIf*,

op

Proof. Let us start by defining the sequence f,(t) := x* (% < 2) f(t), which is compactly

supported and therefore f,, € H'(Br(0)) by our assumptions. Hence there exist smooth
and compactly supported f, such that [f, — f,|w + [(fa)" = (f)']| - 0. Clearly the

sequence ?n is uniformly bounded and approximates f(¢) in the strong operator topology, and

consequently Hg (L4) . %, (t)] ,}n(t)] approximates [[g (3 &), f(¢)], f(¢)] in the strong

operator topology as well. Hence |[[g (3&), F(t)], f(t ]Hop is bounded from above by

lim sup,, H [[ (14, 7. (t)] ,7n(t)] ‘Op. Together with the observation |/ — (f, )] — 0,

i dt n—>00
we can therefore assume w.l.o.g. that f is smooth and compactly supported.

Going to Fourier space and defining M (k, k') :=sup, |[g(p + k + K)—g(p+ k)—g (p + k') +

p) |, we can write

o G) 0] s0]] = | [rm @”“”@(li+k+k)
_g(%;+k)_ (1;;@ (10 o]
jk’|<Kjk|<K k:)‘ |kkk/kl dkdk + fk/<ka|>K )‘dedk’

+ LDK fww PR [ M (K, ) dkdk
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: M (kK
Making use of the fact that ‘ ,gk, ) < ¢l <

4] gl < K, we obtain

L PR < 2t <1 and [M(E. )| <

2l ). PO 0 < ( [ rlar)

2
+2f \k’}(k’)\dk:’f L3 \dk+KU LkFk \dk:)
|k <K |k|>K |k| |k|>K |k|
2 AR kf(k)|dk 2
<= kf(k)|d =
e (o FT0108) (L>K|k|‘f )

2
< f’Q(J dk+2Kf dk)<8f’2.
” H K |k|<K |k|>K |k|2 H ”

In order to estimate the operator norm of [g(44

smooth and compactly supported. We compute

), f(t)], we can assume as above that f is

vl () 0], = oot (5 +4) = ()|
<l | 0l + 2ol J, . teF L
|k|<K >K
< V2K g, f||+\/7g|| 11
Using ||¢']., < 1 and |g|.,, < K concludes the proof. |

Lemma 4.5.2. For K > 0 we have the estimate |x (|V| > K) V"™ < =

Proof. We can write "% = 4,/7 (—=A) 2 ‘wpek‘z where 1/1Pek is as in Definition 4.4.3. Hence

the Fourier transform of Vo' reads Vgppek( ) =1 @ZJPek‘ , and therefore
— P — 2 !
(V> 109 = [ P ) ak < e Pw| [ s
|k|>K |k|> K k| K’
where we used )% € H?(R3) and consequently ‘|k|2 ‘wPek‘Q (k)| < co. [ |
oo

Lemma 4.5.3. With 11 the projection defined in Definition 4.4.1, we have

IV, < @™ *CF).

op <
Proof. Using the Fourier transformation, we can write T/IZO(k:) = SN {Fal®) fulk), with the

help of non-negative functions f,, having pairwise disjoint support, which additionally satisfy
If2] =1 and supp (f,.) © B 501040 (2") for some 2" € R*. Therefore

V], 11 i(<fn|so>|k| {fn

VTe)) falt j Falk)RR) (K = [E1) Qb £, (0
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Using that the functions f,, have disjoint support, as well as the fact that ||k| — ||| <
2v/3a~40+9) for k. k' € supp (f,), we obtain furthermore

2

019 11| = f \ [ - ar| 15w
2
< 120707 ), f L) 1) K| < 1207305 ]2 = 12050492,
where we have used that f,, is an orthonormal system. [
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APPENDIX

Molecular Impurities as a Realization of
Anyons on the Two-Sphere

ABSTRACT. Studies on experimental realization of two-dimensional anyons in terms of
quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however,
that the geometry and topology of space can have significant effects on quantum statistics
for particles moving on it. Here, we have undertaken the first step towards realizing the
emerging fractional statistics for particles restricted to move on the sphere, instead of on
the plane. We show that such a model arises naturally in the context of quantum impurity
problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two
linear bosonic/fermionic molecules immersed in a quantum many-particle environment can
coincide with the anyonic spectrum on the sphere. This paves the way towards experimental
realization of anyons on the sphere using molecular impurities. Furthermore, since a change
in the alignment of the molecules corresponds to the exchange of the particles on the sphere,
such a realization reveals a novel type of exclusion principle for molecular impurities, which
could also be of use as a powerful technique to measure the statistics parameter. Finally, our
approach opens up a simple numerical route to investigate the spectra of many anyons on the
sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of
a Dirac monopole field.

The study of quasiparticles with fractional statistics, called anyons, has been an active field of
research in the past decades. This field has gained a lot of attention, due to the possible usage
of these quasiparticles in quantum computation [60] 82, 42, [101]. In contrast to bosons and
fermions, anyons acquire a phase "™ under the exchange of two particles, where the statistical
parameter « is not necessarily an integer. The integer cases & = 0 and a = 1 represent
bosons and fermions, respectively. For non-integer o, the transformation law ¥ — ™ W
under the exchange of two particles, can only be realized by allowing the wave function ¥ to
be multivalued. The idea is that the multiple values keep book of the different possible ways
the particles could “braid" around each other. Due to the triviality of the braid group in 3 + 1
dimensions, these particles are a purely low-dimensional phenomenon.

Although anyons are predicted to be realized in certain fractional quantum Hall systems [126),
64, 6, 121], 57, [46], 52, 83|, they have not yet been unambiguously detected in experiment.
Indeed there has been a recent upsurge in interest concerning the realization of anyons as
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emergent quasiparticles in experimentally feasible systems [25], 134, 135, 04, 127, [26]. For
instance, it has been recently shown in Refs. [131], [I32] how these quasiparticles emerge
from impurities in standard condensed matter systems. Nevertheless, all these works focus
on the particles moving on the two-dimensional plane, i.e., on R?. Since the theory of
anyons and their statistical behavior are strongly dependent on the geometry and topology
of the underlying space, investigations on curved spaces reveal novel features of quantum
statistics [122, [31) 32] (109, [104), [124] 125], [111]. In particular, theoretical discussions of the
fractional quantum Hall effect (FQHE) for systems having various geometry and topology
have widened our understanding of the FQHE [53) [64].

In the present Letter, we explore the possibility of emerging fractional statistics for particles
restricted to move on the sphere, S?, instead of on the plane. We show that such quasiparticles
naturally arise from a system of impurities exchanging angular momentum with a many-particle
bath. As a prototypical example, we consider two linear bosonic/fermionic molecules immersed
in a quantum bath. In the regime of low energies, we identify the spectrum of this system with
that of two anyons. This does not only allow us to realize anyons on the sphere, but also to
open up various numerical approaches to investigate the spectrum of /N anyons on the sphere.
To illustrate this, we present the spectrum of two anyons on the sphere in the presence of a
Dirac monopole field, extending the recent result of Ref. [104, [111]. Furthermore, the anyonic
behavior of molecular impurities suggests that a novel type of exclusion principle holds, which
concerns the alignment of the molecules, instead of the exchange of their actual position.

We start by considering a system of N free anyons on the two-sphere. The Hamiltonian
is given by the sum of the Laplacian of the jth particle on the sphere: Hy = —Zj.v:l \%
which acts on a multivalued wave function W. By performing a singular gauge transformation,
U — e (see Refs. [130, [96] [65, (103, [112]), one can get rid of the multivaluedness and the
free anyon Hamiltonian on the sphere Hy becomes equivalent to

anyon = Z i — ZA (AO].)

which now acts on single valued bosonic/fermionic wave functions. Here anyons are depicted
as bosons/fermions interacting with the magnetic gauge field A, which explains that the
calculation of the anyonic spectra is very hard [84]. Note that A = V3 is an almost pure gauge,
up to the singularities of 3, where the particles meet, and it can be found as the variational
solution of the Chern-Simons (CS) Lagrangian Lgz = };; (A-q; + Ao) — (4ma)™t §, dQ A A
dA, where g; is the position of the nonrelativistic point particle coupled to the CS field, Ag
the time component of the gauge field, and A the wedge product. For anyons on the plane,
one can always find a single magnetic potential A as a solution. However, due to the non
trivial homology of S?, the CS Lagrangian on the sphere can only be solved in two different
stereographic coordinate charts: north and south patches, A" and A°. As the fields A" and
A% should be a single object in the overlap patch, we require them to be gauge equivalent.
This equivalence is given by the Dirac quantization condition (N — 1)« € Z [65, 103].

In what follows, in order to simplify our expressions, we represent the stereographic coordinates
(x,y) as a complex number, z = x + iy. In these coordinates, we define the gauge
transformation I = ¢, with the exponent ((z1,..,2y) = —ia ), log(j L ) The

—z
i<k d

corresponding connections (gauge fields) can be written as
. a(l+|z —1 a(l+|z 1
Ay, =iD. f=—WED Y (z-%) " and A, =iD, = TED Y (- z) 7
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where we encode the contribution from the metric on S? in the following differential operators:
Dz = (14 |2*)0:;, and D, = (1 + |%|*)0.,; see Ref. [24]. In the language of connections,
F represents the holonomy of A, and it is discontinuous along the lines which connect the
particles with the north (south) pole, usually called the Dirac lines. Without loss of generality,
we consider the north pole, which corresponds to the choice of z; = cot(6;/2) exp(ip;), with
spherical coordinates ¢; and ¢;. These lines represent the magnetic potential in the singular
gauge, by assigning the particle an additional phase factor whenever it crosses them. The
Dirac quantization condition makes sure that the Dirac lines are invisible, in the sense that
one cannot distinguish between the theory where the lines run to the north pole and theories
where they run to any other point. This means that our system is rotational invariant, up to
gauge equivalences.

The anyon Hamiltonian in our complex stereographic coordinate system can be written as
N
Honyon = — Y, (D2, = % — A)) (Ds, — As)) (A.0.2)
j=1

Direct calculations to investigate the spectra of Hnyon turn out to be problematic, when
the spectrum is calculated from the bosonic end. This is due to the fact that the matrix
elements of AZjAzj for certain bosonic states are singular, which is similar to the case of
anyons on the plane [I32]. To overcome this difficulty we will use a different representation
of the free anyon Hamiltonian, with the help of the non-unitary singular pseudo-gauge
transformation ¥ — e®2s<k1°8(%i=2)§ The advantage is that one of the two magnetic
potentials AL = aD;log(z) is zero, since log(z) is a holomorphic function. Therefore, the
Hamiltonian simplifies to

N
Hipon == (Dzj - A;j) D:,. (A.0.3)
j=1

The non-zero magnetic potential is given by A’Zi = 2A.,. Note that I is a similarity

anyon

transformation of H,uyon, i.e., H;nyon = eaZKklog|Z‘7_Z’C‘Hany0ne_o‘zi<k1°g|z-7'_z’“|, therefore

these two operators have the same eigenvalues. The cost for the simplification is that H, .,
is self-adjoint in a weighted L? space. As we discuss below, while the first form of the anyon
Hamiltonian (A.0.2) allows us to realize anyons in natural quantum impurity setups, the
Hamiltonian (A.0.3)) provides powerful numerical techniques to calculate the spectra of anyons

on the sphere within the simplified impurity models.

We will now consider a general impurity problem of N bosonic/fermionic impurities on S?
interacting with some Fock space F. Within the Bogoliubov-Frohlich theory [45, 13| [108],
the impurity Hamiltonian is given by

M=

Hinp = — Y, (D2, = %) Dz, + Y wublb, (A.0.4)

=1
+ Z )\U(Zh . ZN) (e—iﬁw(zhu,ZN)bl + eiﬁu(zhn,ZN)bv) 7
v

where b} b, are the bosonic creation and annihilation operators in F, w, is the energy of
the corresponding mode v, and the coefficients A, (21, .., zny) and S,(z1, .., zv) describe the
interaction of the impurities with the Fock space, depending on their coordinates z, .., zy. In
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the limit of w, — oo (the adiabatic limit), one can justify that the lowest spectrum of Hi,,, is
described by the Born-Oppenheimer (BO) approximation; see Ref [132] for an analysis of this
assumption in the planar case. The projection of the Hamiltonian to the smaller Hilbert space
manifests itself as a minimal coupling of the otherwise free particles with effective magnetic

potentials A,,,.., A,
Himp acts on the vacuum sector.

and a scalar potential . Therefore, it is sufficient to understand how

Accordingly, we first apply the transformation S(z1,..,2y) = e~ T Bublbe 1o Eq. (A.0.4),
and then project the transformed Hamiltonian onto the coherent state |p(z1,..,2y)) =

vy Mt . . . . . .
e VE 2w by (o bv) |0>. The emerging magnetic potential in complex coordinates is then given

by

. A\ 2
AZ;}I’ﬂZ(J) D., By

v (2

see Ref [132] for the details concerning the derivation of the emerging gauge field in the

analogous planar case. Let us consider the specific choice

R o . . im 1 12 —1
Bu(21, -, 28) = —ip, ;klog (\ZQZl) which results in AT = %Zk# (2 — z1)
j

Wy

2 .
with a(z1, .., 2n) = D, Do (A—”) . We thus see that Az is the sought CS gauge field and

obeys the Dirac quantization condition if a(z1, .., zy) is a constant and satisfies (N —1)a € Z.
We emphasize, however, that for the values of a which do not satisfy the Dirac quantization
condition, the impurity Hamiltonian (A.0.4) is still well-defined. The only difference for these
values is that the theory is no longer fully rotational invariant, but, instead, it is invariant
under rotation around the z axis. In other words, the Dirac lines, which emerge together with
the statistical gauge field, are not invisible [I05] and they puncture the sphere. These features
have drastic effects on the physical realization of anyons on the sphere in terms of quantum

impurities, in comparison to emergent anyons on the plane studied in Ref. [132].

In general, the impurity Hamiltonian (A.0.4) corresponds to interacting anyons due the
presence of the scalar potential ®. An impurity Hamiltonian whose lowest-energy spectrum
is governed by the anyon Hamiltonian in the pseudo-gauge (A.0.3), on the other hand,
describes free anyons, as the scalar potential vanishes with Az = 0. Although such an impurity
Hamiltonian is not Hermitian and may be harder to realize experimentally, considered as a
toy model its non-Hermiticity is harmless for our purposes and it opens up simple numerical

approaches to calculate the spectra of anyons on the sphere.

Our numerical tools work for an arbitrary number of particles. Nevertheless, we will here
study only the two-anyon case, since the computational effort strongly scales with the number
of particles. Furthermore, we investigate a configuration where the impurities are subjected
to a Dirac monopole field B. This allows us to investigate the spectrum for all values of
«, as the Dirac quantization condition in the presence of a Dirac monopole field is given by

2B — (N — 1)a € Z [104, 111]. Accordingly, we consider the following simple model
H.  =Hp+w (b7b+ O‘)

imp
p

+ \/aw (e—plog(Z1—22)bT + eplog(Z1—Z2)b) :
p
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Figure A.1: Numerical computations of the energy of two anyons on the sphere in the presence
of a Dirac monopole in terms of the relative statistics parameter, i.e., & = 0 corresponds to
fermions and o = 1 to bosons. We set 2B = « and consider spherical harmonics with the
angular momentum up to [y, = 8 for the numerics. Compare Fig. 1 in Ref. [111].

where the Hamiltonian Hg = Hy + Z?=1A2Déj governs the bosonic/fermionic particles
interacting with the Dirac monopole field B generated by the gauge field AZ =2Bz;, pis
an integer, and we subtracted the vacuum energy, —wa/p, of the pure Fock space part of the
Hamiltonian.

For a direct calculation, one could use, for instance, the orthonormal basis |S(A);n),
where [S(A)) = |1, m, ®s(a) Yio,m,,) are the impurity basis with Y7, being the spherical
harmonics, ®g(4) the (anti-)symmetric tensor product, and |n) the n-particle state in the
Fock space. Then, one could calculate the lowest spectrum of Hj by diagonalizing the
matrix (S(A);n| H,, |S'(A");n’). Instead of this direct diagonalization technique, we first
diagonalize the Fock space part of the Hamiltonian with the displacement operator. The
anyon Hamiltonian (A.0.3) in the presence of a Dirac monopole field, which emerges in the

limit of w — o0, is, then, given by

, (A.0.7)

Hgfyon = Hp + 2 (eplog(z1fzz)Hoefplog(mfZQ) _ HO)
see Supplemental Material for the derivation. We underline that a similar form of the
Hamiltonian (A.0.7) for anyons on the plane has been previously introduced in Ref. [132],
where the second term of the right hand side was written in terms of composite bosons/fermions
for an even integer p. Extending this approach we use here Bose-Fermi mixtures which enable
us to set p = 1. Within such a simple choice Eq. (A.0.7) can be written as the following
matrix equation

EZ on = Evos + 2BWs + a (27 Egee Z — Epos) (A.0.8)

anyon
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where the elements of the matrices are given by Eyos = (S| Hy |S"), Fter = (A| Hy|A"), W =
(S| 25:1 z;Ds,|S"), and Z71 = (S| z; — 22| A). As the latter two terms are straightforward
to calculate numerically, and the matrix Z can be obtained by taking the (pseudo)inverse of
Z~1, Eq. (A.0.8) opens up a powerful route to calculate the anyonic spectrum. The spectrum
from the fermionic end in terms of the relative statistics parameter can be calculated simply

with the replacement of the basis |S(A)) — |A(S)) in Eq. (A.0.8).

As an example, we compute the eigenvalues for v ranging from 0 to 1. For an easier comparison
with the result existing in Ref. [111], we calculate the spectrum from the fermionic end. The
result presented in Fig. A.1 is consistent with the one shown in Ref. [I1I], where the spectrum

was calculated only for the subset of energy levels with unit total angular momentum.

The general form of the impurity Hamiltonian (A.0.4) allow us also to physically realize
anyons on the sphere in terms of quantum impurities. First of all, the kinetic energy of the
particles on the sphere, which is given by the Laplacian — (Dzj — E:j) D:;, can be realized
as the angular momentum operator L?. The latter can be considered as the Hamiltonian of
linear molecules, which enables us to map rotation of molecules to motion of point particles
on the sphere. Consequently, instead of point-like impurities, which have been considered
for the planar case in Ref. [I32], we consider here linear molecules and explore the angular
momentum exchange with the bath. Such a realization exposes a novel correlation between
molecular impurities. Specifically, the exchange of the particles on the sphere corresponds to a
change in the alignment of the molecules, but not the exchange of the molecules themselves,
see Fig. A.2 (Top). Therefore, the emerging statistical interaction manifests itself in the

alignment of molecules.

To illustrate this in a transparent way, we consider the simple impurity Hamiltonian (A.0.6) in
the absence of the Dirac monopole. We investigate the alignment {(cosf; — cosf)*) as a
function of the statistics parameter for two molecules. In Fig. |A.2 (Bottom) we present the
alignment for the ground state, which is obtained from Eq. (A.0.8) for the case of B = 0. We
note that the Hamiltonian is still well-defined for the values of o which do not satisfy the Dirac
quantization condition as we discussed before. Thus, the alignment of the molecules could be
used as an experimental measure of the statistics parameter. Such a measurement can be
performed, for instance, within the technique of laser-induced molecular alignment [43) [66].
Further discussion of the alignment of molecules as a consequence of the statistical interaction

will be the subject of future work.

A physical realization of the interaction between the molecules and a bath is also natural in
the context of quantum impurity problems. Indeed, it was shown that the molecular impurities
rotating in superfluid helium can be described within an impurity problem [113, 114, [67]. The
resulting quasiparticle, which is called the angulon, represents a quantum impurity exchanging
orbital angular momentum with a bath of quantum oscillators, and serves as a reliable model
for the rotation of molecules in superfluids [68]. Therefore, we consider the following angulon

Hamiltonian [133] [75]

2
Hangulon = Z L? + V(q17 q2) + Z wkl,mb};,l,mbk,l»m

j=1 k,l,m

+ Z )\k,l,m(QhCIQ) (ef’i,gk,l,m((ILQQ)bLl,m + H.C.) 7
k,,m

o 2 . . G . .
where b, ;. and by, are the bosonic creation and annihilation operators written in the
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Figure A.2: (Top) Realization of anyons on the sphere in terms of linear molecules immersed
in a quantum many-particle environment. A change in the alignment of the molecules
(dumbbells), which is depicted by the white arrows, corresponds to the exchange of the
particles on the sphere (dots), shown by the curvy black arrows. (Bottom) The alignment
{(cos ) — cos B)*) as a function of the absolute statistics parameter for the ground state. The
curve follows the bosonic state |Yp o ®g Yo0) at @ = 0 to the fermionic state |Y; o ®4 Yo,0)
at @ = 1. We consider spherical harmonics with the angular momentum up to [,,., = 8 for
the numerics.

spherical basis [113], ¢; = (0;, ;) are the angular coordinates representing the molecular
rotation of the ¢-th molecule, V' is a confining potential, and H.c. stands for Hermitian
conjugate. Note that the coupling terms might depend on the intermolecular distance, as
well. For heavy molecules the BO approximation can be justified with a gapped dispersion
Wk1.m- Furthermore, following our previous reasoning and Eq. (A.0.5), if the impurity-bath

Ak, l,m
Wk, l,m
of the two linear molecules immersed in the bath coincide with the spectrum of two anyons
on the sphere. In principle, such an interaction is feasible with the state-of-art techniques in

the physics of superfluid helium as well as ultracold molecules.

2
coupling satisfies the relation ZZklm ( ) D, Brim = Azj, the lowest-energy spectrum

In order to present a simple and intuitive realization, we first neglect the intermolecular
distance. This enables us to define the interaction term simply as A ;. (q1, qg)e_iﬂk’lvm(ql"p) =
Uk Z§=1 Y,.m(q;) with the impurity-bath coupling uy;. For a physical configuration, we
consider molecular impurities in superfluid helium nanodroplets. The corresponding coupling
captures the details of the molecule-helium interaction. For the form of the coupling and the
relevant parameters we refer the reader to Supplemental Material and Ref. [22, 23], where
the model has been used in order to describe angulon instabilities and oscillations observed in
the experiment. Furthermore, the dispersion relation of superfluid helium allows us to achieve
a gapped dispersion at the roton minimum w, [67]. Following the experimental realization
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Figure A.3: The dependence of the statistical parameter « on the relative angle 6. The

computation is performed for the parameters modeling the molecule-helium interaction, given
in Supplemental Material. The other parameters are w, = 1, 2 = 1.1, and [;,.x = 20.

proposed in Ref. [132] for anyons on the plane, we also couple the impurities to an additional
constant magnetic field and rotate the whole system at the cyclotron frequency €2, which
breaks time reversal symmetry so that anyons can emerge on the lowest-energy spectrum.

A priori, the emerging statistics parameter o = «(f) depends on the relative angle 6 between
the points ¢; and ¢y. However, with a careful choice of the model parameters, o becomes
approximately constant with the condition /. /w, » 1, see Supplemental Material. The
condition imposes that the cyclotron frequency should be at the order of the roton minimum.
This implies that molecular impurities should be subjected to a strong magnetic field at
the order of Mw, with M being the mass of the molecules. The 6 dependence of « is
demonstrated in Fig. A.3. In general, the statistics parameter does not satisfy the Dirac
quantization condition. Therefore, the molecular impurities correspond to anyons interacting
with the magnetic potential depicted by the Dirac lines, with broken rotational symmetry. We
also note that with the additional confining potential, V/, the particles are confined to one of
the half spheres so that the statistics parameter becomes accessible to the experiment.

Thus, we see that a system of two linear molecules exchanging angular momentum with a
many-particle bath can give rise to a system of quasiparticles with anyonic statistics, and
can be realized by considering molecular impurities in superfluid helium droplets. It would
be interesting to continue this approach and investigate, whether one can generalize the
results above e.g. to non-Abelian Chern-Simons particles with the help of a higher order
Born-Oppenheimer approximation.
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APPENDIX

Characterisation of Gradient Flows for a
given Functional

ABSTRACT. Let X be a vector field and Y be a co-vector field on a smooth manifold
M. Does there exist a smooth Riemannian metric g,g on M such that Y3 = g,3X*? The
main result of this note gives necessary and sufficient conditions for this to be true. As an
application of this result we show that a finite-dimensional ergodic Lindblad equation admits
a gradient flow structure for the von Neumann relative entropy if and only if the condition of
BKM-detailed balance holds.

B.1 Introduction

This paper deals with the following general question:

Let X* e I'(T'M) be a vector field and Y € I'(T* M) be a co-vector field on a
smooth manifold M. Does there exist a smooth Riemannian metric g,z on M
such that Yz = g, X7 !

Clearly, this is not always true: X“ and Y3 will have to satisfy some compatibility conditions.
Firstly, X and Y} need to have the same set of zeroes (critical points). Secondly, at all
other points m € M, they need to satisfy X*Y,|,, > 0. A third (and slightly less obvious)
compatibility condition is obtained by differentiating the equation Y3 = g,3X“: at each
critical point m € M there should exist a scalar product g,5 € T, M ®s T, M such that
VaoYy|m = QBWVaXﬂm for some (equivalently, any) connection V. This condition does not
hold automatically: it represents a compatibility constraint on X* and Y3 with a natural
interpretation in some examples below.

While these three conditions are clearly necessary, it is not obvious that they are also sufficient.
The main result of this paper shows that this is indeed the case, under mild smoothness and
non-degeneracy assumptions; namely, at all critical points, we require non-degeneracy of the
derivative of Y3 and we assume that X and Y} are real analytic in suitable local coordinates;
cf. Section [B.2 for the details.

Throughout the paper we use index notation and Einstein’s summation convention. Greek letters denote
abstract indices, Roman letters denotes concrete indices.
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B. CHARACTERISATION OF GRADIENT FLOWS FOR A GIVEN FUNCTIONAL

Theorem B.1.1 (Main result). Let X* € I'(T'M) and Yz € I'(T* M) satisfy Assumption
B.2.1 below. Then there exists a metric g,5 € I'(T*M QT* M) satisfying Y = 9o X* if and
only if the following conditions hold:

(i) For all m € M with Y|, # 0 we have XY, |, > 0;
(i7) For all m € M with Yg|,, = 0 we have X*|,, =0,

(4ii) For all m € M with Ysl|,, = O there exists a scalar product g, € T} M ®g T}, M such
that

VoYalm = G5, VaX .

The choice of the connection V in (iii) is arbitrary.

We shall also prove a variant of this result where X and Y} are of class C**1 for some k € N.
In this case, the metric g,z is of class C*: see Theorem B.2.6 below.

While Theorem B.1.1 is of independent interest, our motivation comes from an open question
on gradient flow structures for dissipative quantum systems, that will be discussed below.

Let us first briefly sketch the structure of the proof. To prove the sufficiency of conditions
(i)—(iii), it suffices to construct a local metric around every point of M. The global metric can
then be constructed using a partition of unity. Around non-critical points the construction is
straightforward: in local coordinates, it corresponds to constructing a positive definite matrix
that maps one given vector to another one. However, it is not trivial to construct a smooth
metric satisfying Y3 = g3 X“ in a neighbourhood of a critical point.

To solve this problem, we assume that the sought metric has a power series expansion in
a suitable chart around the critical point. We then derive an infinite hierarchy of tensor
equations, which express power series coefficients of degree N in terms of coefficients of
degree at most N — 1 for N > 1. Solvability of the lowest order equation is guaranteed
by compatibility condition (iii). We then prove that higher order equations can be solved
iteratively. Moreover, the norms of the solutions are exponentially bounded in the degree,
which allows us to construct a convergent power series that satisfies the desired equation in a
neighbourhood of the critical point.

Application to gradient structures

Consider now the special case where Y € I'(T*M) is the derivative of a smooth function
feC® ie Yz =Vgzf. Then our question becomes: Does there exist a smooth Riemannian
metric gop such that X is the gradient of f with respect to the metric g, i.e., X® = g*’V f?
In other words, the question is whether the ODE % = — X (u) on M can be formulated as a
gradient flow equation w(t) = —V f(u(t)) for a suitable Riemannian metric. Our main result
yields necessary and suffcient conditions.

Gradient flows describe motion in the direction of steepest descent of the function f in the
geometry defined by the metric g. The identification of an ODE as a gradient flow equation is
often fruitful, as there are powerful techniques available for the analysis of gradient flows [4].

As an application of our main result, we address an open question on the gradient flow
structure of finite-dimensional dissipative quantum systems. To put this result into context,
let us first discuss the corresponding classical setting.
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B.1. Introduction

Classical Markov semigroups

Consider an irreducible continuous-time Markov chain on a finite set X with transition rates
Quy = 0 for x,y € X with x # y. The associated Markov semigroup (F;);>¢ is a Cy-semigroup
of positive operators on R that preserves the constant functions. Its infinitesimal generator
L :RY¥ — R% is given by

(L) (@) = . qoy (U () — 0 (2)).

yeX

As time evolves, the marginal law of the Markov chain describes a curve (pi;)i~o in Z.(X), the
simplex of probability densities with positive density. It evolves according to the Kolmogorov
forward equation (KFE)

Qe = L*pe,  where (L*p)(x) = > () aye — 1(2)ay

y#x

for pe 2(X). Let m € Z,(X) be the unique stationary distribution. It is well known and
easy to verify that the relative entropy

Entr (1) := Y () log (ggg)

zeX

decreases along trajectories of the KFE.

Much more is true if the Markov chain is reversible, i.e., the detailed balance condition
TGy = TyQyy holds for all o # y. Equivalently, this means that the generator L is selfadjoint
in the Hilbert space L*(X, ). In this case, it was shown in [85, [88] that the KFE can be
written as the gradient flow equation of Ent, with respect to a Riemannian metric on Z,(X).
The associated Riemannian distance is given by a discrete dynamical optimal transport
problem, in the spirit of the Benamou—Brenier formulation for the Wasserstein distance [8].
This gradient flow structure is a discrete version of the Wasserstein gradient flow structure
for the Fokker—Planck equation discovered by Jordan, Kinderlehrer, and Otto [56]. This
construction has been the starting point for the development of discrete Ricci curvature based
on geodesic convexity with applications to functional inequalities [34} 90, 135, [36] 33]

It was shown by Dietert [28] that the reversibility assumption is also necessary: if the KFE
can be written as gradient flow equation for Ent, with respect to some Riemannian metric
on Z,(X), then the underlying Markov chain is necessarily reversible. Combined with the
results from [85], B8], this result characterises reversible Markov chains as exactly those that
admit a gradient flow structure for the relative entropy Ent,.

In this paper we provide a noncommutative analogue of this result.

Quantum Markov semigroups

Let ()0 be a quantum Markov semigroup on a finite-dimensional C*-algebra A, i.e.,
(P})i=0 is a Cy-semigroup of linear operators on A such that 7,1 = 1 and the operators
P, are completely positive, i.e., &, ® I, is a positive operator on A ® M, (C) for all n > 1.
(Here, 1 € A denotes the unit element, and I,, denotes the identity operator on the algebra of
n x n-matrices M,,(C).) The infinitesimal generator of (Z;);=¢ will be denoted by .Z.
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B. CHARACTERISATION OF GRADIENT FLOWS FOR A GIVEN FUNCTIONAL

Let (2]),=0 be the adjoint semigroup with respect to the duality pairing (A, BY = Tr[A*B].
This is a Cy-semigroup of completely positive and trace-preserving linear operators with
generator £, In particular, the operators @f map the set of density matrices 3 := {p €
A : p=0and Tr[p] = 1} into itself. Here we restrict our attention to the ergodic setting:
we assume that there exists a unique stationary state, i.e., a unique density matrix o € 3
satisfying .70 = 0. We shall assume that o is invertible.

The non-commutative analogue of the KFE is the Lindblad equation 0,p, = £ p;. It is well
known [117] [118] that the von Neumann relative entropy

Hoy(p) := Tr[p(log p —log o)]

decreases along solutions to this equation. Moreover, following the earlier works [19] 89)], it
was shown in [20, 92| that the Lindblad equation ¢;p = .-#Tp can be written as gradient flow
equation for H, under the condition of GNS-detailed balance. This condition means that the
generator . is selfadjoint with respect to the weighted L2-type scalar product

(A, BYi™ .= Tr[c A* B]

named after Gelfand, Naimark, and Segal. As in the discrete setting above, the associated
Riemannian metric is related to a dynamical optimal transport problem.

It is now natural to ask whether the condition of GNS-detailed balance is also necessary for
the existence of a gradient flow structure for the von Neumann relative entropy. However, it
was shown in [21I] that a different symmetry condition is necessary, namely the condition of
BKM-detailed balance. This condition corresponds to the selfadjointness of .Z with respect
to another weighted L2-type scalar product

1

(A, B)I™ = J Tr[o' *A*0®B] ds,

0
named after Bogoliubov, Kubo, and Mori. As the condition of BKM-detailed balance is strictly
weaker than GNS-detailed balance [21], there was a gap between the known necessary and
sufficient conditions. As an application of Theorem B.1.1 we prove the following result, which
closes this gap.

Theorem B.1.2. Let £ be the generator of an ergodic quantum Markov semigroup on
a finite dimensional C*-algebra A, and let o € 3. be its stationary state. The following
statements are equivalent:

(1) The operator £ is selfadjoint with respect to the BKM scalar product {-, )5,

(2) There exists a Riemannian metric on the interior of 3 for which the Lindblad equation
p; = ZLTp, is the gradient flow equation of the von Neumann relative entropy H,,.

The implication (2) = (1) was proved in [2I, Theorem 2.9]. The converse implication is new.

Structure of the paper

Section |B.2 contains the main result and a reformulation of the result in the gradient case.
The proof of the main result is contained in Section B.3, except for the construction of the
local metric, which is presented in Section B.4. Section B.5 deals with the construction of a
metric of class C* under the assumption that the fields X and Y} are of class C**1. The
application to quantum Markov semigroups is contained in Section |B.6.
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B.2. Main results

B.2 Main results

Let X* € I'(T'M) be a vector field and Yz € I'(T* M) be a co-vector field on a smooth
manifold M. Let Ny := {me M : Y|, = 0} be the set of critical points of Y.

In the sequel we impose the following mild assumptions on the fields X and Y.

Assumption B.2.1. (i) (Non-degeneracy) The bilinear form ¥V ,Y3|,, is non-degenerate
for all m € Ny for some (equivalently, any) connection V.
(17) (Real analyticity) For all m € Ny there exists a neighbourhood U,,, 3 m, an open set
Q) < R", and a coordinate chart v, : U,, — €}, such that the fields X" = Xeo cp;f :
Q2 — R and EN/a =Y, 0. 1:Q — R have a converging power series expansion around
om(m) forallae{l,... n}.

Remark B.2.2. The choice of the connection in (i) above is irrelevant, since the difference of
two connections V and V satisfies VY3 — VY3 = I');Y;, where I} 5 is a (1,2) tensor. In

particular, %aYg = V,Y3 for m € Ny. For the same reason, the choice of the connection is
irrelevant in (iii) in the following result.

Using the notation introduced above, we restate our main result (Theorem B.1.1) for the
convenience of the reader.

Theorem B.2.3 (Main result). Let X* € I'(T'M) and Y3 € I'(T* M) satisfy Assumption
B.2.1. Then there exists a smooth metric g,5 € I'(T* M @ T*M) satisfying Yz = gopX*®, if
and only if the following conditions hold:

(i) X*Yy|m > 0 for all m e M\Ny;

(17) X%, =0 for all m € Ny,
(49i) For all m € Ny there exists a scalar product g, € T M ®g T);, M, such that

VaY7|m = Lz]ﬁryvaXﬂma
where V, is an arbitrary connection.

Remark B.2.4. As the necessity of the three conditions has been discussed above, it remains
to prove their sufficiency. This will be done in Section B.3 below.

In the special case where the co-vector field Y,, := V,F € I'(T* M) is the derivative of a scalar
function f : M — R, the above result admits a convenient reformulation. Assuming that f
attains its minimum at a unique critical point m € M, the next results shows that property (iii)
above is equivalent to the symmetry and positivity of the linearised map A : T;;, M — T;, M,
Z +— VX, at the critical point m. The relevant scalar product is given by the Hessian of f.

Corollary B.2.5 (Gradient case). Let f € C*(M) be a function and X € I'(T'M) be a
vector field, such that X® and Y, := Vf satisfy Assumption|B.2.1. Suppose that Y has a

unique zero, m € M, at which f attains its minimum. Then there exists a Riemannian metric
Gap € D(T*M ® T* M) satisfying

Vaf = gapX®,

if and only if the following conditions hold:
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(i) Vxaflm <0 forallme M withm # m;
(i) X% =0;

(iii) The linear map A := NV, X"\ : T, M — Ty M is positive and symmetric with respect
to the Hessian scalar product hap := V.V f|m on Tz M.

Proof. It is clear that the conditions (i) and (ii) match the corresponding conditions in
Theorem B.2.3.

Suppose now that condition (iii) from Theorem |B.2.3 holds, for some scalar product g** €
TaM Qg T M. We have to show that

hag(AZ)*WF = hosZ*(AW)? for all Z*, W% e T;,M, and
has(AZ)*ZP > 0 for all Z* € TpM, Z* # 0.

To show this, note that (AZ)* = Z7V.,X® = Z7g*°hs, for Z* € T M. Hence, for
W e Tz;M, we see that the expression

hag(AZ)* WP = hopg* hs, Z7WP

is invariant under interchanging Z and W, which proves the desired symmetry. Moreover, this
expression implies that haB(AZ)O‘ZB = QaﬁZaZg where Z, = hagZﬁ. Since hqp is invertible
by Assumption |B.2.1 and g*” is positive definite, it follows that h,s(AZ)*Z" > 0 whenever
Z% #0.

Conversely, suppose that condition (iii) of the corollary holds. For all Z* W € T}; M it follows
that hag(AZ)*WP =G, Z°W? for a positive and symmetric tensor §,5 € T%M ®g T M.
Since hag(AZ)*W?P = hasZ?V, X*W? we infer that 5 = h.sV,X"7. Now define

§*7 = h*Gs, WP € Ty M @ Ty, M.

Since g, is positive and symmetric and h is invertible, g*® defines a scalar product.
Moreover, we have the desired identity V,X?|; = §%7h,,, which completes the proof. W

In the special case were Yj is the derivative of a scalar function f, the existence of a metric
satisfying Vs f = gap X was proved in [7] on the complement of the set of critical points.
The existence of a metric with the desired property on the whole manifold was stated as
an open question [7, Question 1]. Subsequently, under an additional assumption, which
corresponds to (iii) in Theorem B.2.3, the existence of a continuous extension of g,z to
all of M was obtained in [10]; cf. Section B.5| below for more details. However, the metric
constructed [10] is in general not differentiable, even if the fields X* and Yj are smooth; see
Example B.5.2 below.

Here we show that C*-regularity of the metric can be obtained if the fields X* and Y} are
assumed to be of class C**1,

Theorem B.2.6 (Existence of a metric of class C¥). Let X and Y be of class C**! on
M for some k € N and assume that V,Yj3|,, is non-degenerate for all m € Ny for some
(equivalently, any) connection V. Then there exists a metric g,p of class C* on M satisfying
Ys = gapX® if and only if conditions (i), (ii), and (iii) of Theorem|B.2.3 hold.

The proof of this result will be given in Section B.5 below. It relies on the construction based
on tensor equations that we develop in the proof of Theorem B.2.3.
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B.3 Proof of the main result

Our main result (Theorem B.2.3) relies on two local versions of this result. First we construct
a local solution around any non-critical point m € M\Ny. In the special case were Y} is the
derivative of a scalar function, a different construction of a metric away from critical points
was carried out in [7]; see Section B.5 below.

Theorem B.3.1 (Local solutions around non-critical points). Suppose that X* € I'(T'M)
and Yz € I'(T* M) satisfy X*Y,|m > 0 for some m € M. Then there exists a neighbourhood
U of m and a smooth local metric gop : U — T*M @ T*M such that

Xm = 9" Y|m (B.3.1)

for allme U.

Proof. Since XY, |, > 0, we have Y,|,, # 0. Therefore, we can complete the co-vector
field e} := Y, € T*M to a dual frame F := (e}, ... ,e") in a neighbourhood V" of m, i.e.,

Pe’s

(€Ll .. €% |m) is a basis of T* M for all m € V. The coordinates of X with respect
to this frame are given by X7 := X%J : V — R for j = 1,...,n. Since X!|; > 0, the
set U := V n {X! > 0} is still a neighbourhood of m. Let us define X : U — R"! and
f:U—Rby

X = (X2 ..., X", f= —+—|X|2

We then define the bilinear form ¢*? in coordinates G = (¢)"._

1 v T
G = X: X ,
X f[nfl

where [, is the identity matrix. Since the matrix G is symmetric, the bilinear form g is
symmetric as well. To verify that G > 0, we write

o | V¥

Xl
X[ p XIX] [0 fI, o, —
X—1 0

2 _
B 0 (f - %|X|2)In—1

0

2
X1

XX

=

Xl
=—1,>0,
|-

as desired. To complete the proof, note that the coordinates of Y,, are given by Y; = 1 and
Y; = 0 for j # 1. Consequently,

(97Yp)" ZQJY =g = X",
which shows (B.3.1). |

The second local version of Theorem [B.2.3! concerns the construction of a smooth local metric
in a neighbourhood of a critical point.
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Theorem B.3.2 (Local solutions around critical points). Let X* € I'(T'M) and Yz € I'(T* M)
satisfy Assumption B.2.1. Suppose that X*|; = Y,|m = 0 for some m € M, and suppose
that there exists a scalar product g € Ti;; M ®g Ti7 M, such that

VX5 = 37VY, |-

Then there exists a neighbourhood U of m and a smooth local metric gop : U — T*M QT* M
such that

X = ¢""Yalm

for allme U.

The proof of Theorem B.3.2|is the main challenge of this paper and will be carried out in
section B.4l

We now show that the main result (Theorem B.2.3) follows readily from the local Theorems
B.3.1 and B.3.2 using a partition of unity argument; see, e.g., [47, Theorem 1.131] for the
existence of a partition of unity.

Proof of Theorem B.2.3. The local results Theorems B.3.1 and B.3.2 guarantee that for any
m € M there exists a neighbourhood U, and a local metric g,43 defined on U,,, such that
the desired identity

X — gaﬁyﬁ’
holds on U,,,.

Let {fi}ren be a partition of unity subordinated to the cover {U,, : m € M} of the manifold
M, i.e., there exists a locally finite open covering {V} }ren of M, such that each V} is contained
in U, for some m;, € M, each function f; : M — R is nonnegative and smooth and its
support is contained in Vj, and we have Y},  fi(m) = 1 for all m € M (where the sum is
finite for each m). We then define

g*% = fegl.

keN

As ¢°# is a finite convex combination of the scalar products g%i, it is a scalar product. By

linearity, g® satisfies the desired equation X* = g*/V}. |

B.4 Local solutions around critical points

In this section we give the proof of Theorem B.3.2, which deals with the construction of the
metric around critical points.

Fix m e M and let ¢ : U — () be a coordinate chart which maps a neighbourhood U of m
onto an open set {2 = R™. Using this chart we can identify the vector field X* € I'(T'M)
defined on U < M with the function X" 0ov.= R™, where X" = X°o oL, Similarly,
the co-vector field Y3 € I'(T* M) defined on U < M can be identified with a function
Y5 :Q — V* and the metric gos € I'(T*M ®g T*M) can be identified with a function
ﬁaﬁ 2 = V*®g V*. In the remainder of this section, we will work on a fixed chart and
remove the tildes to lighten notation.
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B.4.1 Motivation of the tensor equations

Let Z € Q be such that Y|z = 0, and suppose that the identity X® = ¢*’Y; holds in a

neighbourhood of Z. For N € N and all indices ¢1,...,cn € {1,...,n} we will derive a system
of equations that the partial derivatives Tgb_,,cN 1= 04+ 0oy g satisfy at z = 7.

Taking partial differentives 0, for c € {1,...,n} yields
0 X" = 0:g™Yy + g™0.Ys.
Since Y|z = 0, we find that
0X" = g"0.Y,
at z = . Taking second order derivatives, we find, for ¢;, ¢ € {1,...,n},
0y 0, X = 0,00, 0™V + 06, 90y Vo + 0y 0™00, Yy + 9002, 00, Vs

As Y|z = 0, the first term on the right-hand side vanishes, and we infer that the tensor of
first-order derivatives 7% := 0,.g" is a solution to the system

UCQbTZb + Ucleng = RZLICQ,
t= 0p) 00, X — g0, 0., V).
More generally, for N = 1,2, ..., we find

acl ... aCNXa _ Z acsg“bac[N]\SYb,
SC[N]

where Uy, := 0,Y;, and R*

c1c2

where we use the shorthand notation d. = 0, -+ 0, for S = {i1,... i} = {1,..., N}
with 7, # ¢, for pu # v. Since Y, = 0, the term with |S| = N vanishes. Thus, the derivatives

of order (N — 1), given by Tc@‘f’,,,cwl 1= 0y ++* Ouy_, g solve the system
N
DU ey = R (B.4.1)
i1

where Uy, := .Y}, and
RE 1= O 0oy X = Y 0esg™ 0y Yo
SC[N]
[S|<N-1

depends on (derivatives of) X and Y, and on derivatives of g of order at most N — 2. The
notation 7% . means that the index ¢; is removed.

oG
The identity (B.4.1) suggests an iterative scheme to construct a local solution ¢g* to the
equation X = g*Y} around a critical point 7 € U as a power series

e o]

. 1, N N
N=0 """

with coefficients T,%/?,,,YN € V®s2® (V*)®N The idea is to define, for N = 0, T% := g,

where g € TXM ®g T2 M is the scalar product satisfying
ach|§: = gab acYE)|507

which exists by assumption. Higher order Taylor coefficients TfﬁnCN

iteratively solving a system of tensor equations of the form (B.4.1).

are then constructed by

Section B.4.2| deals with the existence of a solution to these equations. The construction and
the convergence of the iterative scheme is contained in Section B.4.3.
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B.4.2 Solving the tensor equations
We start by formulating an explicit solution to the tensor equation (B.4.1) of order N = 2.

Lemma B.4.1. Let V be a finite-dimensional vector space, and let RO‘ eV V*®sV*)
and Uyg € V* @ V™ be given. We assume that U,g is invertible with inverse UBecVRV.
Then the tensor T$5 e (V®V)®V* defined by

1 ,
af . _ B pa ad pB ad 1788
T’Y .= §<U R’Y6 + U R,y(; - U’V'Y/U U R /B/)
satisfies the equations T = T’* and

Uss T2 + U,sT5" = RS

Y6

(B.4.2)

Proof. The fact that 797 = T/* follows readily from the definition. To show that (B.4.2)
holds, note that by definition of T,

2UssT% = R + UsgU“R?, — U, U RY,, (B.4.3)
2U,5T5" = Ry, + U,sU* R}, — Usy U R, (B.4.4)

Relabeling indices on the right-hand side and using the symmetry of R, we observe that the
second term in (B.4.3) equals the third term in (B.4.4), and the second term in (B.4.4) equals
the third term in (B.4.3). Summing these identities, we thus obtain (B.4.2). |

We also need the following multilinear generalisation.

Lemma B.4.2. Fix N > 2. Let V be a finite-dimensional vector space, and let Rﬁl.,,w €

V@ (V8N and U,s € V* Q@ V* be given. We assume that U, is invertible with inverse
U € V®V. Then the tensor TS5~ € V2@ (V*)® W1 defined by

Y1 YN

1 N—
o . B6 %) ad 7788 i
T’Yl""YNfl N (U R5“/1 An-1 T U R571 NS N — ] : : U“/Z'Y (U UTT R, o By YN 1)
(B.45)

satisfies
71"'71""YN Y1 YN T

N
DUSTY L =R (B.4.6)

Proof. The fact that T belongs to V®:2 ® (V*)®:(N=1) follows readily from the definition.
To show that (B.4.6) holds, note that

1 N
afs _ Bé ad
Z U lﬁT TN NZ {U%.gU R&yrw oy T U%ﬁU R5’71""Y o
i=1
N Z U ZBU 'y]’y UOCO[ R /B//yl...ryl...ryj...r\/N}
] J#L
= N Z; {R'\ﬂ""‘/l\’ + U’YL U Ré"/l""y ""YN N _ Z ’YJ’YI U Oé ’Yl""Y 'YN}
= j SES

This yields the result, as the first term has the desired form, and the second term cancels
against the third term, as can be seen by renaming indices (a’, /) into (9, 3). |
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B.4.3 Iterative construction of the power series & Proof of
Theorem B.3.2

We now place ourselves in the setting of Theorem B.3.2. Thus, let X* € I'(T'M) and
Y5 € T'(T*M) satisfy Assumption B.2.1, and suppose that X¢|; = Y, |5 = 0 for some fixed
m € M. We assume that there exists a scalar product g € T;;, M ®g T;;, M satisfying

VX5 = 37V, |-

Our goal is to construct the local metric g®* around m as a convergent power series centered

at = = p(m). We now present the definition of its coeffients Tgllf,,CN, which is motivated

by the equations (B.4.1). Our computations will be performed in a fixed chart ¢ : U — Q
around m which satisfies Assumption B.2.1.

Definition B.4.3 (The power series coeffients 7% ). Write U,p := VY3l for brevity.

Cren
= Initialisation: We define the initial tensor T*? € V ®g V of our iteration as

Tab = E—]ab‘

= lterative step (special case N = 2): We first define R; € V @ (V* ®s V*) by
RY, = 0.04X" — T™0.0,Yy
and then define T¥ € (V ®s V) ® V* as the solution to the system
Ua T + Ua Ty = RS,

constructed in Lemma B.4.1.

= lterative step (N = 2,3,...): We first define R e V® (V*)®N in terms of the

Y1 YN
lower order tensors T°7, T%B, e ’T%@mv_z by
a o a ab
Ry 1= Ocyn Oey X — Z T25 Ocpny s Yo (B.4.7)
Sc[N]
[S|<N-1
Here we use the shorthand notation Ti.y :=T¢, .., for S := {i1,. .. ix} withi, # 1,
for ;v # v. Then we define the tensor T%@WN_I e VOsWN-1) & (V*)®s? 35 the solution

to the system

C1CiC c1-CN?

N
ZUcibTab ey = R®
=1

constructed in Lemma |B.4.2.

Remark B.4.4. The nondegeneracy assumption on the derivative V,Yj3|s is crucially used in
this construction, as the application of Lemmas B.4.1 and B.4.2 requires the invertibility of
Uag.
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Our next aim is to show that the power series
(z —x)N

(x — )4

&1
ab ab
9z = Z —T
| Tcien
o M
converges and defines a Riemannian metric in a neigbourhood of x. For this purpose we equip
the spaces V& ® (V*)® with the norm
pi...B - bi-b
HWozll ai H o gﬁi{’ ‘Wa; ai

where W(fllgi are the coordinates of W/1::5¢ in the standard basis of R™. For brevity, let us
write
Bl and ity = (TS0 e
We then obtain the following crucial growth bound on the power series coefficients
< CNWYN for all N

Lemma B.4.5. There exist constants C,p < oo such that ty

Proof. Recall that we work in a chart for which Assumption |B.2.1 holds. Therefore, the real
analyticity assumption implies that there exist constants C’, ¢ < oo such that
< C'MgM (B.4.8)

1Oy - 0y X |2] < O'MIGM and |04, -+ 0y, Vala| <
n}; see, e.g., [61, Proposition 2.2.10]

for all m € N and all ¢,
Since U,p is non-degenerate by Assumption B.2.1, we have

K = maX{HUaﬁ”ooa HUOﬁHfD} <0

Using the bounds on the power series coefficients from (B.4.8) and the definitions of 7" and
R from (B.4.5) and (B.4.7), we obtain the following relations between the norms 74 and

.,CME{]_,..

—|s])!

C/

N| " Sc[N]
|S|<N-1
’
_ ot N 1 N
=C'¢" + = k=0(k> N—k)=Cq <1+n2k' k)
K
= 7’]"
N N>

and
1 3.3
tn 1<—(2nK7°N—|—Knr )

where K < o depends on K and n. Using these estimates we shall now prove the desired
Cp” holds for all k < N,

result by induction.

We thus assume, for some N > 0, that the desired inequality ¢, /!

with suitable constants C, p < c0. We will now show that ¢y, /(N + 1)! < Cp"*!. Indeed
N

using the inequalities above and the induction assumption, we obtain
Ny N N
: ) (J’KqN+2<1+CnZ( ) >
q

n];)k!qk

k=0

K N
) Tnye < C'K gV T2 (1 +

INt1 -
(N+1)! = (N +2)!
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Assuming, without loss of generality, that C' > 1 and p > ¢, this yields

tN L~ N+1 N—k+1 ~ (q ng
(N_:ll)!<CpN+1C'Kq<<> +n Z( ) > <CpN+lCKq(p+H)

By choosing p sufficiently large, the last term in brackets can be made smaller than (C”[N(q)*l
This yields the result. [ |

Corollary B.4.6. There exists a neigbourhood U 3 I, such that the power series

0
1 7\ 7\
g™, = Z N,Tgf g (@ —T) (= T)Y (B.4.9)

converges for all x € U, its inverse defines a Riemannian metric, and the equality X¢|, =
9°PYg)|, holds for all x € U.

Proof. The definitions yield

Tocy (@ = 2) - (2 = )| < M| TH0 ol — 27

where |yl := X, [y°| for y € V*. Since [T95_ |lo < CNIp" by Lemma B.4.5, we infer

Y1 YN
that the power series (B.4.9) converges for ||z — Z||; < 1/(pn).

To verify that ¢®° defines a metric, note first that g% = ¢** by construction. To show that
g*” is positive definite when z is close enough to 7, it suffices to note that g®’|; = g*° is
positive definite and the map o — ¢g*?|, is continuous.

Since the tensor fields X, Y3, and g*? are given by convergent power series, and since
Xz = g*’Yp|z by assumption, it is enough to verify that all derivatives at Z coincide, i.e.,

Ocy *+* Oey X = 0y + ey (gabyb)

forall Ne Nandall ¢1,...,cx € {1,...,n}. To prove this identity, we use the notation from
Definition B.4.3|, to obtain at x = Z,

Ocy *+ Oey (gabY;)) = Z acgg N]\s

N
— (aq .. '5cNgab)Yb n ; (601 ey Oy aCNgab) 0.Ys

N Z Oes g™ ey s Vo (B.4.10)
SE[N]
\S\<N 1

=0+ Z UCz T;ib“ﬂl"-CN (601 Tt aCNXa - R(cll CN)

= aCl < aCNXa.

To obtain the third equality, we use that x is a critical point, together with the definitions of
R, T, and U in Definition B.4.3. In the final step we use the tensor equation (B.4.6). [ |

The proof of Theorem |B.3.2is now complete, as the metric ¢g®° constructed above can be
pushed back to M using the chart .
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B.5 Construction of a metric of class C*

Let X be a vector field and Y3 be a co-vector field on a smooth manifold M. As before, let
Ny :={me M : Y|, = 0} be the set of critical points of Y. In this section we weaken
the regularity assumptions on X and Y. In Proposition |B.5.1 these fields are assumed to be
merely differentiable. Subsequently we provide the proof of Theorem B.2.6, which deals with
fields of class C**! for k € N.

The following result, which does not require an iterative scheme, is known in the special case
where Y} is the derivative of a scalar function [7, [10]. In this setting, the existence of a metric
with the desired property away from critical points is proved in [7]. The construction of the
metric below is taken from there. It relies on the unique decomposition of vector fields into
a component parallel to X and a component annihilating Y, which only works away from
critical points. The proof of the existence of a continuous extension to all of M is adapted
from [10].

Proposition B.5.1 (Existence of a continuous metric). Let X and Y3 be differentiable
fields on M and suppose that the bilinear form ¥V ,Y3|,, is non-degenerate for all m € Ny for
some (equivalently, any) connection V. Suppose that the following conditions hold:

(1) XValy > 0 for all m € M\Ny;
(17) X%, =0 for all m € Ny,
(#ii) For all m € Ny there exists a scalar product g,, € T,,M ®s T,,M, such that
VaYslm = 95, VaX |,

where V, is an arbitrary connection.
Then there exists a continuous metric g,z on M satisfying Yz = gos X .

Proof. Let m € M\Ny be a non-critical point, hence X|,, # 0 and Y|,, # 0 by (ii). The
assumption (i) implies that we have the direct sum decomposition 7, M = Y- @ span{X,,},
hence every vector Z € T,,M can be uniquely decomposed as

_ 4 Y

— 7<Xm,ym>Xm € span{X,,}.

Z=279470  with zOey!r and 2zW:
Let g = gap be an arbitrary continuous metric on M satisfying g|,, = g,,, at all critical points
m € Ny. Following [7], we construct a perturbation of § as follows:

W Y) wh.y)

VA — (7O )
AW = (20, W) 1 ST S,

(B.5.1)

for Z, W e T'(TM). In view of (7), it readily follows that g defines a continuous metric on
M\Ny. It remains to show that § can be continuously extended to all of M.

It will be convenient to use abstract index notation. Taking into account that (Z(1) Y =
(Z,Y) and (WD Y = (W,Y), it follows from the definition that
~ YaYg — ga,yXVY[g — gﬁ/gXVYa g,y(;XVX(SYaYg
9o = Gap + 5 5V \2
XY, (X0Y;)
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B.5. Construction of a metric of class C*

Introducing the deficit Rg := Y3 — g3 X, we can write
~ N R.Ys + RgYo R, X7Y.Yj
9o = Yop XY, (X%Y)2

(B.5.2)

Fix a critical point m € Ny. Using assumptions (i) and (zii) we shall show that §|,, — g|m
as m — m, following the arguments in [10]. Using the notation from Section B.4, we shall
perform a Taylor expansion of the terms in (B.5.2) in a fixed chart, where m € M corresponds
to z € R". As X and Y are differentiable, and Z is a critical point, it follows from (ii) that

Xz) =V XUT)(x —2)° +o(|Jr — z]) and Yy(z) = V.Y, (@) (2 — 2)° + o]z — Z|).
(B.5.3)
Since g,,(7) is a scalar product, there exists £ > 0 such that g, (Z)v™® > kv|? for all
v € R™. Furthermore, V,X“ is non-degenerate by assumption (iii) and the non-degeneracy
assumption on V,Y®. Therefore, |V, X%|? > K|v|? for some constant ¥ > 0. Using these
inequalities, together with (7i7), yields
XY, (z) = VpX*(2)V.Ya(2)(x — 2)"(2 — 2)° + o[z — z|?)
= G,(Z)VeX*(Z)V X (Z)(x — 2)"(x — 2)° + o|z — z|*)
> 5|V X47)(x — 2)") + o]z — 7[?)

> kRl —Z° + o]z — ),

(B.5.4)

which bounds the denominator in (B.5.2) from below. As for the terms in the numerator, we
first note that X“(z) = O(|Jz — Z|) and Y;(z) = O(|z — Z|). These bounds trivially imply
that Ry(x) = O(|z — Z|) as well, but this is not sufficient. The key point of the proof is that
this bound can be improved. Indeed, using (ii7) and the continuity of g at Z, we obtain

Ry(x) = (Vs — g X“) (2)
= VoY () (2 = 7)° = gan (1) Ve X (T) (2 — 2)° + o(|x — )
= (gab(x) - gab(x))cha(i')(x - i’)c + 0(|£L’ — ii’|)
= of|z — z|).

(B.5.5)

It now follows from (B.5.4) and (B.5.5) together with the bounds on X and Y, that the
fractions in (B.5.2) vanish as © — Z. This shows that § can be continuously extended to A

by setting o, (Z) 1= gap(T). u

While the metric § constructed in the proof of Proposition B.5.1|is continuous, it is not in
general differentiable, even if the background metric g,3 and the vector fields X and Y} are
smooth. Here is an explicit counterexample.

Example B.5.2. Let M be the open unit ball in R?2. We work in cartesian coordinates. Set
X(z) =Y (x) = x for z € M, and consider the background metric g,s defined by

Jab(2) = ll J[)xz (1)]

for x = (x1,22) € M. Since g is smooth and g|o = I, it is a valid background metric. An
explicit computation yields

5 5

- T N 175
=14+—"22_ and V )= —-4—"=—.
911( ) (x% +CL‘%)2 1911( ) (%% +£L‘%)3
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The latter is a non-constant homogeneous function and as such discontinuous at = 0, thus
Gop does not belong to C'.

Theorem B.2.6 shows that better regularity properties can be obtained by a careful choice
of the background metric g,s3. In the following proof we define g,s by making use of the
construction in Section B.4, which yields improved bounds on the deficit s := Y3 — gogX“
around critical points. This allows us to construct a metric g, of class C* whenever X and
Yy are of class CF+1,

Proof of Theorem B.2.6. First we note that the necessity of conditions (i) and (ii) was
already observed in the introduction. The necessity of (zii) follows, even when g is assumed
to be merely continuous, from the expansions for X and Y in (B.5.3) and the expansion
g(z) = g(T) + o]z — T|) in local coordinates around a critical point Z. Therefore it remains
to show that these three conditions are also sufficient.

As in Proposition B.5.1, we construct a metric of the form (B.5.2) on the non-critical set
M\Ny:
~ N R.Ys+ RgYo R, X7Y,Yj
Jas = Yap XY, (X0Y;)2

(B.5.6)

where Rg := Y3 — gos X denotes the deficit, and g,3 is a background metric on M that will
be carefully chosen below. As noted before, it is immediate to verify that the desired identity
Y3 = Go3X“ holds on M\Ny.

Construction of the background metric. Fix m € Ny. As in Section B.4/ we work in a fixed
coordinate chart where m corresponds to € R™. In these local coordinates we then define
the background metric by

k
a 1 a =\ C ~)C
g2(x) = Z ﬁTclbch('r_x) Lo (=)W
N=0 """

for z in a small neigbourhood around z. It is crucial that we use the tensors T%/?’..W that
were constructed in Definition B.4.3] Note that T%@,,W is indeed well defined for N < k due
to our assumption that X and Yj are k + 1 times continuously differentiable. As 7 is
positive definite, it follows that (g ). defines a metric in a neighbourhood of z.

For each cricitical point m, this construction yields a Riemannian metric in an open neighbourhood
Vi of m. By the non-degeneracy assumption, we may assume that the sets {V}men, are
pairwise disjoint. Let U; be an open neighbourhood of m satisfying Uy < Vi and let
fm : M — [0,1] be a smooth function on M satisfying fi|u,, = 1 and fi|any,, = 0. Using
an arbitrary metric (g«)as on M and the function Fi=1- D meNy Jimn we define

Gop = Y, fr(gm)as + [Gap: (B.5.7)
meNy

which yields a C* metric gos on M satisfying gaslm = (9m)aslm for all m € Ny and m € Uy,.

The crucial property of this background metric g, which will be used below, is that the deficit
Rp := Y3 — gopX“ satisfies

Oey 0o, Rglmn = 0 (B.5.8)
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B.5. Construction of a metric of class C*

for all m € Ny and p < k + 1. This follows from the definition of the tensors 7%

ey USING
the computation (B.4.10).

Differentiability of the metric. To verify that g, is k times continuously differentiable, we
will show that the partial derivatives
R,Yj3 R, XY, Y3
Usger o 1= Op -0, It Ce’f
5 1.--Cp 1 pX5Y6 P (X(S)/E)Q
can be continuously extended from AM\Ny to all of M for p < k. In view of (B.5.6) this
yields the desired result.

and  Vige,..cp = Oy *** Oc

We use the notation from Definition B.4.3, thus 0.y = 0., -~ 0., for S = {i1,... i} S
{1,...,p} with 4, # 4, for u # v. With this notation we have

P (=)
UsBey..c, = L0, (XOV) - Beg (XOV5) 0oy R 0cyy Y3,
Bei...cp ZZO{SL.__’S%,B}E;VP (X(gy(s)@rl sl( 6) Sg( 6) A BB
1% -3 CD o (0512 o, (XOV3) 200, 80XV,
aﬁcl...cp—;]{s S%B}EXW e, (X°Y5) ™+ 0 (XOV5) 00 4Ry Oep( X Yo Y3),
= 1000508543, P
where &), is the collection of all possible partitions of {1, ..., p}.

Let us fix a critical point m € Ny and let z be the corresponding point in R™. Recall from
(B.5.4) that

(X°;) (@) = O(|z — 2| 2).
Furthermore, since X“|; = 0 and Y, |z = 0, Taylor's formula yields, for any S < {1,...,p},
Oes (X°V5) () = Ol = 7 1D%), 0, V() = Oz — 2| 1¥0+),
Oes (X%5)*(2) = O(Jz — 2[@D+) | 0, (X7Y,Y5) (2) = O — 27150+,

To estimate 0., R, (z) we use the crucial point, observed in (B.5.8), that our background
metric is constructed so that d.,R3(Z) = 0 when |S| < k + 1. This ensures that

Ocs Ra () = O(|z — z|FT*19).

Combining these bounds, we estimate the right-hand sides of U,s¢,..c, and Vige,..c, as
follows:
1

e !
(X%¥5) - 0ug (XOY5)” OeuRy 0up(X7YaY3) = O (| — 7[°),

XOVA) 00y (XOV5) ey R 80y ¥i = O(fe — 2],
where the exponents u and v satisfy
u==200+1)+ 2S5, +...+2—=1%l), + (k+2—1[Sal) + (1 —-1S8]), ,
v=—4l+ 1)+ (4—=1S), +. .+ @ —=15), + (k+2—18a) + (3—1S5]), -

Since |S1|+---+|Si|+|A|+|B| = p for {S1,...,5, A, B} € X,, weobtainu > k—p+1>1
and v > k—p+ 1> 1, which shows that

Usgercy = O(Jz = Z]) and Vigey., = O(Jz — T).
Therefore Uage,...c, and Vige,..c, can be extended continuously to all of M by assigning the

value zero for m € Ny-. [ |
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B.6 Application to Quantum Markov Semigroups
(QMS)

In this section prove Theorem B.1.2| by an application of Corollary B.2.5. As in Section
B.1, let .Z be the generator of an ergodic quantum Markov semigroup (Z)=0 on a finite
dimensional C*-algebra A with stationary state o € 3, . The manifold under consideration is
the set of strictly positive density matrices

P ={peP : p>0}
Note that B3, is a relatively open subset of the affine space 0 + T < A, where
T:={Ae A : A= A" Tr[A] =0}.

Therefore, the tangent space of 3, can be naturally identified with 7". We will apply Corollary
B.2.5| to the triple (M, f, X') where M := B, and

[P —R, f(o) == H(p) = Tr[p(log p — log 7)],
X: P, T, X(p) :=Z"p.

The functional H, is everywhere strictly positive, except at its global minimum o. Moreover,
a standard computation shows that, for p P, and A€ T,

EE‘EZOHU(;) +eA) = Tr[(log p — log o) A], (B.6.1)
Therefore, the differential of H, is everywhere non-zero except at ¢, so that we are in a
position to apply Corollary B.2.5.
Recall that we are interested in the BKM-scalar product on A given by
1

(A, BY™ = Tr[A*,(B)], where .4, (B) = J 1= Bo* ds,

0

for A, B € A. We refer to [5] for a recent study of this scalar product. It is natural to also
consider the inner product on A defined in terms of the inverse operator .Z, ' : A —> A
given by
o o0
(A, By .= Tr|A* 4, (B)], where ;" (B) := f (t+0) 'B(t+o)"dt
0

We will use the following simple result.

Lemma B.6.1. For a linear operator % : A — A the following assertions are equivalent:

1. & s selfadjoint with respect to the inner product (-, -y2*M.

_>§1?1\71
o

2. H1 is selfadjoint with respect to the inner product (-,

Proof. It is readily seen that both assertions are equivalent to .#,. % = # . #,. [ |

174



B.6. Application to Quantum Markov Semigroups (QMS)

The entropy production functional I, : 3, — R is defined by
I,(p) = — Tx[(log p — log 0).Z" ]

for p € B,. Note that indeed %Ho.(;@jp) — —I,(2]p). The functional I, is nonnegative and
convex [117) [118]. The following result shows the strict positivity of the entropy production
(except at stationarity) under the assumption of BKM-detailed balance.

Proposition B.6.2. Let £ be the generator of an ergodic quantum Markov semigroup on a
finite dimensional C*-algebra A, with invariant state o € 3. If BKM-detailed balance holds,
then 1,(p) > 0 for all p € P, with p # 0.

Proof. As remarked above, I, is nonnegative and convex. Therefore, it suffices to show that
1, is strictly convex at its minimum o. Take A € T' with A # 0.

For p € P, we set p. := p + €A for |¢| sufficiently small to ensure that p. € B, . Using the
standard identities

0

Oz log pe = L (t+p) " AE+p) T At and O _(s+p) T = =(s+p) T Als + )7

for s > 0, we obtain
0
8€‘€:Olg(p€) = Tr[(log p — log 0) LT A] + Tr [J (t+p) At +p) L L dt],
0
and

32| Io(ps) = 2Tx H (t+p) LAt +p) LA dt]
0

—2Tr “:O(t +p) At +p) TA(E +p) T LT dt].

In particular, for o, := o + €A, we obtain

0:|ecolo(oe) = 2Tx U (t+0) T A(t +0)7 2TA dt] — oA, LA

0
Since I, is convex, this identity implies that (A, 2T A > .

On the other hand, .Z! is selfadjoint with respect to (-,-Y*® by Lemma B.6.1 and the
assumption of BKM-detailed balance. Moreover,ibe restriction of ' to T is invertible by
the ergodicity assumption. Therefore, (A, £TAYM = (),

We thus conclude that (A, ZT AP > 0, which yields the result. |

Proof of Theorem|B.1.2. First we will translate condition (zii) of Corollary B.2.5, namely the
selfadjointness of the linearised operator A with respect to the Hessian scalar product . We
claim that this is exactly the assumption of BKM-detailed balance in our setting.

Indeed, since .#7 is a linear operator, its linearisation A : ' — T appearing in condition (i)
is simply given by A := .#". Moreover, the Hessian of p — H,(p) at p = o is given by

OOTr[ Lo, B]ds=<A,B>m

s+o0 s+o 7

WA, B) 1= 0.]._y0|, o Ha(o +cA+1nB) = f
0
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B. CHARACTERISATION OF GRADIENT FLOWS FOR A GIVEN FUNCTIONAL

for A, B € T. Hence the Hessian scalar product in condition (74i) is the BKM-scalar product.
Thus, condition (iii) is the BKM-selfadjointness of .#’f. By Lemma B.6.1 this corresponds to
the BKM-selfadjointness of ., which is the assumption of BKM-detailed balance.

This argument shows that the necessity of BKM-detailed balance for the gradient flow structure
follows from Corollary B.2.5. To show that BKM-detailed balance is also sufficient, we note
first that condition (i) of Corollary B.2.5 is simply the stationarity condition .#o = 0, which
holds by assumption. Thus, it remains to show that condition (i) of Corollary B.2.5|is implied
by the assumption of BKM-detailed balance. Then the existence of the gradient flow structure
follows by applying Corollary B.2.5|in the opposite direction.

For this purpose, recall that f = H, and X = .Z', so that
Vxf=Tr[(logp —logo) L p] = —1,.

Hence, condition (7) is the strict positivity of the entropy production I,(p) or p # o, which
follows from the assumption of BKM-detailed balance by Proposition |B.6.2. |
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