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Abstract
A graph game is a two-player zero-sum game in which the players move a token throughout a graph
to produce an infinite path, which determines the winner or payoff of the game. In bidding games,
both players have budgets, and in each turn, we hold an “auction” (bidding) to determine which
player moves the token. In this survey, we consider several bidding mechanisms and their effect on
the properties of the game. Specifically, bidding games, and in particular bidding games of infinite
duration, have an intriguing equivalence with random-turn games in which in each turn, the player
who moves is chosen randomly. We summarize how minor changes in the bidding mechanism lead to
unexpected differences in the equivalence with random-turn games.
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1 Introduction

Games on graphs are a central class of games in formal verification [2] and have deep
connections to foundations of logic [17]. They have numerous applications including reactive
synthesis [16], verification [10], and reasoning about multi-agent systems [1]. Theoretically,
graph games give rise to interesting and challenging problems. For example, solving parity
games is a rare problem that is in NP and coNP [11], not known to be in P, and for which a
quasi-polynomial algorithm was only recently discovered [8].

A graph game proceeds as follows. We place a token on one of the vertices of a graph
and allow the players to move it to produce an infinite path that determines the winner or
payoff of the game. Several modes of moving the token have been studied [2], and the most
popular is turn-based graph games in which the players alternate turns in moving the token.
We study the bidding mode of moving [13, 12]: players have budgets and in each turn, an
“auction” (bidding) determines which player moves the token. Bidding games are a class of
concurrent graph games [1]. They combine graph games with auctions, a central topic of
research in algorithmic game theory (e.g., [14]).
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Objectives. We stress that bidding is the mode of moving the token and it is orthogonal to
the players’ objectives. We consider the qualitative objectives reachability and parity, and
the quantitative objective mean-payoff.

2 Bidding Mechanisms

In all the bidding mechanisms that we consider, in each turn, both players simultaneously
submit bids that do not exceed their available budget, and the higher bidder “wins” the
bidding and moves the token. The bidding mechanisms differ in two orthogonal properties:
1. Who pays: in first-price bidding only the higher bidder pays; in all-pay bidding both

players pay their bids.
2. Where are the bids paid: in Richman bidding (named after David Richman), bids are

paid to the opponent; in poorman bidding bids are paid to the “bank”, thus the budget is
lost.

▶ Remark 1. A well-known auction mechanism is second-price bidding in which the highest
bidder pays the second highest bid. We point out that bidding games under first- and
second-price bidding coincide, since the players in second-price bidding can follow the same
optimal strategies they use in first-price bidding to guarantee the same values.

The central quantity in bidding games regards the ratio between the two players’ budget,
formally defined as follows.

▶ Definition 2 (Budget ratio). Assuming Player i’s budget is Bi, for i ∈ {0, 1}, then Player 1’s
ratio is B1/(B1 + B2).

Random-turn games. A random-turn game [15] is similar to a bidding game only that
instead of bidding for moving, in each turn, we decide which player moves according to a
(possibly biased) coin toss. For a bidding game G and p ∈ [0, 1], we denote by RT(G, p) the
random-turn game that is obtained from G using a coin with bias p. Formally, random-turn
games are a subclass of stochastic games [9]. To obtain a random-turn game from G, we
proceed as follows. For every vertex v in G, we add two vertices vMax and vMin owned by the
respective players. To simulate the coin toss at v, we add probabilistic edges from v to vMax
with probability p and to vMin with probability 1 − p. To simulate the choice of the player
who wins the bidding, we add edges from both vMax and vMin to every u that is a neighbor
of v in G. The objective of RT(G, p) coincides with the objective of G.

3 Qualitative bidding games

The main question considered in qualitative bidding games regards the threshold budgets,
which intuitively represent a necessary and sufficient initial budget ratio that suffices for
winning the game. Formally,

▶ Definition 3 (Threshold ratio). Consider a qualitative bidding game G and a vertex v in G.
The threshold ratio in v, denoted Th(v), is such that:

If Player 1’s initial ratio is strictly greater than Th(v), he has a winning strategy from v.
If Player 1’s initial ratio is strictly less than Th(v), Player 2 has a winning strategy
from v.
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3.1 Reachability first-price bidding games
The focus in [13, 12] was on first-price reachability bidding games. An intriguing equivalence
between reachability games with first-price Richman bidding with random-turn games, and,
interestingly, only for this bidding mechanism. We formally state the result below and
illustrate it in Fig. 1.

▶ Theorem 4 ([13, 12]). Consider a reachability bidding game with target states t1 and t2.
Threshold ratios exist. Moreover, Th(t1) = 0 and Th(t2) = 1, and for any other vertex v, let
v− and v+ be the neighbors of v such that Th(v−) ≤ Th(v′) ≤ Th(v+), for every neighbor v′

of v. Then:
Richman bidding: Th(v) = 1

2 (Th(v+) + Th(v−)) and Th(v) coincides with the value of the
vertex v in the random-turn game RT(G, 0.5).
Poorman bidding: Th(v) = Th(v+)

1−Th(v−)+Th(v+) .
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Figure 1 Left: A reachability bidding game G with threshold ratios, under first-price Richman
and poorman bidding.
Right: The (simplified) unbiased random-turn game RT(G, 0.5) is a Markov chain. The value of a
vertex is the probability of reaching t1. Note that under Richman bidding, for every vertex v, we
have Th(G, v) = 1 − val

(
RT(G, 0.5), v

)
. Moreover, under poorman bidding, ratios are irrational thus

such an equivalence is unlikely to exist.

3.2 Reachability all-pay bidding games
In [6], reachability games under all-pay bidding are shown to be technically much more
challenging than under first-price bidding. Some positive results are shown; namely, an
approximation algorithm based on discretization in games played on DAGs and results on the
threshold for surely winning. Most results, however, are negative and fundamental problems,
including proving that the value of the game always exists, remain open.

▶ Theorem 5 ([6]). Optimal strategies in reachability all-pay poorman bidding are sometimes
mixed and draw bids from infinite-support distributions.

3.3 Parity bidding games
We state a key property of parity bidding games played on strongly-connected graphs.

▶ Theorem 6 ([4, 5, 7]). Consider a parity game G played on a strongly-connected graph in
which the highest parity index is odd. Under first-price Richman and poorman bidding, the
threshold ratios are 0 in all the vertices; namely, Player 1 can win with any positive initial
budget. Under all-pay Richman and poorman bidding, with any positive initial ratio, Player 1
has a mixed strategy that guarantees satisfying the parity objective with probability 1.

For first-price bidding games, Theorem 6 gives rise to the following simple reduction from
parity to reachability bidding games. Given a parity game G, first reason about the bottom
strongly-connected components and classify them into those that are “winning” for Player 1

MFCS 2022
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and those that are “winning” for Player 2. Then, construct a reachability bidding game
in which each player’s goal is to force the game to a winning bottom strongly-connected
component. A similar reduction applies to all-pay bidding, however reachability games under
those bidding mechanisms are not yet understood.

4 Mean-Payoff Bidding Games

In this section we consider mean-payoff games played on strongly-connected graphs. We
show intricate equivalences between mean-payoff bidding games and random-turn games.

1 0

vMax vMin

1 0

vMax vMin

p 1− p

1− p

p

Richman poorman
First-price RT(G, 1

2 ) [4] RT(G, r) [5]
All-pay Pure Mixed Pure Mixed

[7] RT(G, 0) RT(G, 1
2 ) RT(G, 2r−1

r
) RT(G, 3r−1

r
)

Figure 2 Left: On top, the mean-payoff bidding game G▷◁. The payoff of a player in G▷◁ is the
long-run ratio of the biddings won. On bottom, for p ∈ [0, 1], the (simplified) random-turn game
RT(G▷◁, p) is a weighted Markov chain. The expected payoff in RT(G▷◁, p) is p; we expect that a
random walk stays ratio p of the time in vMax.
Right: The equivalence relates the optimal payoff in a strongly-connected mean-payoff game with
the expected payoff in a random-turn game, where for all-pay poorman bidding we omit the cases of
r ≤ 0.5.

Mean-payoff value. Each play of a mean-payoff game has a payoff, which is Player 1’s
(Max) reward and Player 2’s (Min) cost. We illustrate the definition of the mean-payoff
objective. Consider the game G▷◁ that is depicted in the top left of Fig. 2. It models the
following setting. Max and Min represent two advertisers. In each day, an auctioneer holds
an auction to determine which ad shows that day. Max’s goal is to maximize the payoff,
which coincides with the number of days that his ad appears in a very long time (say, a
year). Alternatively, the payoff in G▷◁ can be seen as the ratio of the biddings that Max
wins in the long run. Formally, the payoff of an infinite sequence of weights w1, w2, . . . is
lim infn→∞

1
n

∑
1≤i≤n wi.

▶ Definition 7 (Mean-payoff value in bidding games). Consider a strongly-connected mean-
payoff bidding game G and a budget ratio r ∈ (0, 1). The mean-payoff value of G w.r.t. r,
denoted MP(G, r), is c ∈ R if independent of the initial vertex,

when Max’s initial ratio exceeds r, he has a strategy that guarantees a payoff of c − ε, for
every ε > 0, and
Max cannot do better: with a ratio that exceeds 1 − r, Min can guarantee a payoff of at
most c + ε, for every ε > 0.

Similarly, we use asMP to denote the almost-sure value, which is defined as the payoff
that Max can guarantee with a mixed strategy with probability 1.

Consider a strongly-connected mean-payoff game G and p ∈ [0, 1]. Recall that RT(G, p)
denotes the random-turn game that is constructed from G in which in each turn, Max moves
the token with probability p. We denote by MP(RT(G, p)) the mean-payoff value of RT(G, p),
which is defined as the expected payoff when both players play optimally, and it is well-known
to exist in stochastic games.
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▶ Theorem 8. Consider a strongly-connected mean-payoff game G and a ratio r ∈ (0, 1).
First-price Richman bidding [4]: For all r ∈ (0, 1), we have MP(G, r) = MP

(
RT(G, 0.5)

)
.

First-price poorman bidding [5]: MP(G, r) = MP
(
RT(G, r)

)
.

All-pay Richman bidding [7]:
Under pure strategies, MP(G, r) = MP

(
RT(G, 0)

)
.

Under mixed strategies, asMP(G, r) = MP
(
RT(G, 0.5)

)
.

All-pay poorman bidding [7]:
Under pure strategies, if r > 0.5, then MP(G, r) = MP

(
RT(G, 2r−1

r )
)
, and if r ≤ 0.5,

then MP(G, r) = MP
(
RT(G, 0)

)
.

Under mixed strategies, if r > 0.5, then MP(G, r) = MP
(
RT(G, 3r−1

r )
)
, and if r ≤ 0.5,

then MP(G, r) = MP
(
RT(G, 1−r

r )
)
.

In the following example, we illustrate the results stated in Theorem 8 on G▷◁ that is
depicted in Fig. 2.

▶ Example 9. First, let p ∈ (0, 1). The mean-payoff value of RT(G▷◁, p) is p since intuitively,
a random walk is expected to stay portion p in vertex vMax.

We start with first-price bidding. Here, optimal strategies are pure (deterministic). Under
Richman bidding, the initial ratio does not matter and the optimal payoff is 0.5, matching
the mean-payoff value of RT(G▷◁, 0.5). That is, for every ε > 0, Max can guarantee a payoff
of at least 0.5 and he cannot do better even when his ratio is 1 − ε.

The equivalence for mean-payoff Richman-bidding games can be seen as an extension
of the equivalence of reachability Richman-bidding games. Since no equivalence is known
for reachability poorman-bidding games, we find the equivalence for mean-payoff poorman-
bidding particularly surprising. The optimal payoff Max can guarantee with a ratio of
r ∈ (0, 1) in G▷◁ is r. For example, when the initial budgets are ⟨3, 1⟩, Max’s ratio is 3

4 , and
he can guarantee a payoff arbitrarily close to 3

4 (in a similar manner to Richman bidding
above). This means that in the long-run, Max can win 3 times more biddings than Min.
Thus, given the option to choose between first-price Richman and poorman bidding, Max
prefers using first-price poorman bidding when his budget exceeds Min’s budget.

We turn to illustrate the results for all-pay bidding. Again, since reachability all-pay
bidding games are technically involved, we find the equivalences in mean-payoff games to be
particularly good news. First, under all-pay Richman, pure (deterministic) strategies are
“useless”. Using mixed strategies, first-price and all-pay coincide. Specifically, using a pure
strategy, Max cannot guarantee a payoff greater than 0 in G▷◁, and he has a mixed strategy
that guarantees an almost-sure payoff of 0.5. Thus, given a choice between all-pay and
first-price Richman, Max would not have a preference between the two bidding mechanisms.

Surprisingly, the properties of all-pay poorman bidding are quite different. First, in
contrast to all-pay Richman bidding, pure strategies are “useful” under all-pay poorman when
r > 1

2 . For example, when r = 3
4 , Max can guarantee a payoff of 2

3 with a pure strategy. Not
too far from 3

4 , the optimal payoff under first-price poorman bidding. Second, when allowing
mixed strategies, given the choice between all-pay and first-price poorman bidding, when
r > 1

2 , Max prefers all-pay poorman! With a ratio of r = 3
4 , Max has a mixed strategy that

can guarantee an almost-sure payoff of 5
6 ; higher than the optimal payoff under first-price

poorman.

MFCS 2022
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