
From Stateflow Simulation to Verified
Implementation: A Verification Approach and A

Real-Time Train Controller Design
Yu Jiang1,2, Yixiao Yang2, Han Liu2, Hui Kong3, Ming Gu2, Jiaguang Sun2, Lui Sha1

Department of Computer Science, University of Illinois at Urbana-Champaign, USA1

Institute of Science and Technology, Austria3

School of Software, Tsinghua University, China2

Abstract—Simulink is widely used for model driven devel-
opment (MDD) of industrial software systems. Typically, the
Simulink based development is initiated from Stateflow modeling,
followed by simulation, validation and code generation mapped
to physical execution platforms. However, recent industrial trends
have raised the demands of rigorous verification on safety-critical
applications, which is unfortunately challenging for Simulink.

In this paper, we present an approach to bridge the Stateflow
based model driven development and a well-defined rigorous
verification. First, we develop a self-contained toolkit to translate
Stateflow model into timed automata, where major advanced
modeling features in Stateflow are supported. Taking advantage
of the strong verification capability of Uppaal, we can not only
find bugs in Stateflow models which are missed by Simulink De-
sign Verifier, but also check more important temporal properties.
Next, we customize a runtime verifier for the generated non-
intrusive VHDL and C code of Stateflow model for monitoring.
The major strength of the customization is the flexibility to collect
and analyze runtime properties with a pure software monitor,
which opens more opportunities for engineers to achieve high
reliability of the target system compared with the traditional
act that only relies on Simulink Polyspace. We incorporate these
two parts into original Stateflow based MDD seamlessly. In this
way, safety-critical properties are both verified at the model level,
and at the consistent system implementation level with physical
execution environment in consideration. We apply our approach
on a train controller design, and the verified implementation is
tested and deployed on a real hardware platform.

Index Terms—Model Driven Development, Simulink Stateflow,
Formal Verification, Timed Automaton, Runtime Verification.

I. INTRODUCTION

Simulink is a widely used tool for model driven develop-
ment of industrial software systems, which provides delicate
support for graphical Stateflow modeling, interactive model-
level simulation, some basic design validation, along with
C, C++, and VHDL code generation and verification [1]. In
practice, Simulink has been successfully applied across various
industry applications such as manufacturing control and signal
processing systems, where Simulink Design Verifier [2] and
Simulink Polyspace [3] are taking the responsibility to uncover
design defects and implementation defects, respectively.

However, with respect of safety-critical applications such
as medical devices and avionics, Simulink is still insufficient.
Specifically, the verification capability of Simulink Design
Verifier is limited to basic properties. It detects errors in the
model that result in the integer overflow, dead logic, array ac-
cess violations, division by zero, and violation of requirement

assertions described by Simulink verification block. Handling
complex temporal properties (e.g. something has to hold at the
next state) of those applications is currently infeasible because
of the limited descriptive ability of Simulink verification block.
Moreover, although Simulink Polyspace offers the flexibility
to check correctness over the implementation code using
abstract interpretation techniques, we still lack the knowledge
to analyze the interaction between the target software and
dynamic physical execution environment. Consequently, to
guarantee the correctness of the whole system stays non-trivial.
Hence, supporting tools with more verification power such as
Uppaal [4] is expected here to check the properties of Stateflow
model and more rigorous formal techniques such as runtime
verification [5] should be applied to monitor and ensure the
correctness of the automatically implemented systems.

However, the major challenge for applying those formal
verification techniques to support a wider range of properties
is that the execution semantics of Stateflow is too complex,
which is described in a 1366 pages user guide informally
[6]. Advanced modeling feature such as event stack, event
interruption, complex state activating and deactivating mecha-
nism, boundary transition, and transitional action etc., are non-
straightforward to formalize for verification. Although there
are many existing works on translation based verification of
Stateflow model, most of them are efficient and work well
covering the most related modeling features within their own
domains [7]. Few address the temporal part and consistency
verification of properties on the generated code running in an
unexpected dynamic physical environment, which is essential
for safety critical applications, such as anti-missile system 1.

In this paper, we present an approach to address the veri-
fication challenge in both model and implementation level of
Stateflow based MDD. In terms of model-level verification,
we develop a tool STU, to translate Stateflow model into
timed automata for formal analysis based on model checking
tool Uppaal [8]. Timed automata can be used to model and
analyze timing behavior of systems, and the methods for
checking both safety and liveness properties of timed automata
have been well developed and intensively studied in Uppaal.
Most frequently used Stateflow modeling features (composite

1The Patriot anti-missile system failure during Gulf War was caused by the
incongruence between the timer module and the new application environment.
http://fas.org/spp/starwars/gao/im92026.htm



state, boundary transition, junction, event, conditional action,
transitional action, timer, and implicit event driven stack)
are addressed in the translation tool with discussions and
validations with engineers from Mathwork.

With a wider range of Stateflow modeling features captured
in STU, and the strong verification capability of Uppaal, more
comprehensive validations are feasible. Potential errors that
may not be detected in simulation or Simulink Design Verifier
would be found via Uppaal verification. If errors are detected,
Stateflow model needs to be analyzed and revised with the help
of mapping dictionary for translation. As a result, the code
generated from the verified model will be more reliable and
can be analyzed through Simulink Polyspace. Furthermore,
because Simulink Polyspace checks the implementation code
using abstract interpretation techniques which provide little
support for temporal properties, we customize the runtime
verification to monitor properties on code integration and
system deployment running in a dynamic physical execu-
tion environment, which contributes many safety hazards for
system failure. Within this part, we are able to not only
translate some safety critical properties verified by Uppaal to
the property descriptions of runtime monitor for consistency
checking, but also add some system level properties such as
platform-dependent delay that couldn’t be described based on
the abstract Stateflow model. The overall procedure about the
proposed extended approach is presented in Figure 1.

Stateflow
Model

STU
Translator

Uppaal
Model

Simulink
Validation

Simulink Code
Generation

Stateflow 
Model Revision

No

Yes

YesNo

Original 
MDD

Extended 
Verification

Generated 
Code

Run‐time
Verifier

Uppaal
Verification

Yes

Extra System 
Property

Model
Level

System
Code Level

Property

Fig. 1. Integrate STU and runtime verification into Stateflow based MDD.

The rest of paper is organized as follows. Some backgrounds
about Stateflow, timed automata and runtime verification are
introduced in Section 2. Related works about the verification
of Stateflow and runtime verification are discussed in Sec-
tion 3. Section 4 shows the design and implementation of
the proposed approach, including Stateflow to Uppaal timed
automata translation, customization of runtime verification and
interfaces among them. Evaluation results on artificial exam-
ples and real train controller system design are presented in
Section 5, and we conclude in Section 6 with more discussions
about the approach.

II. BACKGROUND

In this section, we present background information on the
elements and semantics of Stateflow and timed automata, and
some introduction to runtime verification.

A. Simulink Stafeflow

The model in Fig. 2 is an example of a Stateflow diagram
which covers most advanced modeling features. The outmost
composite state Container is parallelly decomposed into three
sub-composite states A, B and C. State A and C is further
serially decomposed in two automatic states, respectively,
where the initial automatic state such as A1 is attached with
an arrow. State B is further serially decomposed into two
automatic states (B1 and B3), a sub-composite state (Count)
and a junction denoted by a small cycle. There is a cross-
boundary transition from the junction into the initial automatic
state of the sub-composite state (Count). Statements attached
on state such as Container and Count are entry, during and
exit actions. Statements attached on transitions includes guard,
common action and conditional action. The model realizes a
counter task that, for every 2 seconds, state A dispatches a
‘switch on’ event, and for every ‘switch on’ event, state B will
increase the variable x by 1. The statement x = x + 1 is a
conditional action, so it will be executed immediately when
the event ‘switch on’ is dispatched. On the other hand, the
statement y = y + 1 is a transitional action which can only
be executed when a valid path between two states is detected.
So at the end of execution, the value of y is only increased for
one time to 1 and the value of x is 3. At the same time, the
boolean variable result is set to be true, because the activation
of state B2 will trigger the activation of parent state Count
first. During the activation of state Count, the entry action
result = true is executed.

[after(2,sec)]/{switch_on} Switch_on{x=x+1;}/{y=y+1;}

[x>=3]

[y>=3]

[result]

Count
entry:result=true

Container
entry:x=int32(0);y=int32(0);CLK=int32(0);result=false;
during:CLK=CLK+1;

A

C

A1 A2

C1 C2

B

B1 B3

B2

Fig. 2. A Stateflow example for counter task which covers most advanced
modeling features.

More specifically, Stateflow model is an extended hierarchi-
cal state machine which contains sequential decision logic and
synchronization events to represent system behaviors. There
are mainly six frequently-used modeling elements: State, Tran-
sition, Junction, event, Action and Timer.
State: It represents operating mode of the system. The
occurrence of an event will trigger the execution of Stateflow
model by making states active or inactive depending on
conditions during simulation. The state can be defined hierar-
chically, and may contain two types of decomposition which
are connected in parallel or serial. The serial decomposing
state must have at least one default transition with only one
sub-state activated, while the parallel decomposing state does
not have any default transition with all sub-states activated
at one time. That is speaking, within a composite state (or
a chart), no two exclusive serial sub-states can be active at
the same time, while any number of parallel sub-states can be
simultaneously activated.
Transition: It is the edge between two states or junctions,
representing the mode change from the source state to the



destination state. Each transition is attached with four charac-
terizations:

[event] [condition] [conditional action] / [common action]

Where event specifies explicit or implicit signal that triggers
execution of transition, condition is a boolean expression that
allows the transition to be taken with value true, the con-
ditional action is the operation that is immediately executed
when the condition is met, and common action is the operation
that will be executed when the condition is met and there is
a non-interrupted valid path between source state and target
state. Each transition also has an implicit priority of execution,
determined by the information such as hierarchy level of
destination state, and position of transition source, etc.
Event: There are two types of event used to trigger exe-
cution of a Stateflow diagram. An explicit event is defined
by users, and it can be an input from Simulink, an output
to Simulink, or local within a diagram. An implicit event is
a built-in event that broadcasts automatically during diagram
execution. Three commonly used implicit events are system
tick, enter(state name), and exit(state name): tick indicates
the moment when a Stateflow diagram awakens, and the other
two occur when the specified state of state name is entered
or exited, respectively. Event broadcasting is a common com-
munication technique in Stateflow. When an event is globally
broadcast, the evaluation of the event starts from a Stateflow
diagram that is the root of all its components and follows the
hierarchy of states in a top-down manner. An event can also
be directly broadcast from one state to another to synchronize
parallel states, and the evaluation of the event is within the
destination state.
Action: It contains two kinds of operation attached on
transition (conditional action and common action), and three
kinds of operations attached on state (entry action, during
action and exit action). Entry action is executed when the
state is activated, During action is executed when the state is
already active and stays in, and Exit action is executed when
the state changes from active to inactive.
Junction: It contains two types, connective junction and
history junction, where the former enables the representation
of different possible transition paths for a single transition,
and the later represents historical decision points based on
historical data relative to state activity.
Timer: It is used to specify time related behaviors of system,
which is characterized as:

[TmOp (Num,Event)]

where TmOp contains three types of time related operation
before, after, and at, Num is the number used to quantify
the length of time period, and Event consists of three system
reserved keywords: sec, msec, and usec which represents
second, millisecond, and microseconds, respectively.

B. Uppaal Timed Automata
The model in Fig. 3 is an example of a network of timed

automata which covers most advanced modelling features.
The model consists of three parallel automata A, B and C.
A channel switch on is declared for synchronisation among
different automata, and a clock variable t is declared in timed

automaton A for time modelling. Every two time units, the
action switch on! is synchronized with the action switch on?,
and the variable x will increase by 1 in automaton B. If the
value of x and y is smaller than 3, automaton B will return to
state B1 immediately for next synchronization from automaton
A. After six time units, the transition from state B4 to B2 in
automaton B would be triggered, and the value of variable
result should be set to be true, which would immediately
trigger the transition from C1 to C2 contained in automaton
C. Note that the state with the double cycle is the initial state.

/switch_on?/x:=x+1

y>=3/ /y:=y+1

A
A1 A2

B

B1 B3

B2

t>=2/ switch_on!/t:=0

t<=2

x>=3/ /y:=y+1, result:=true x<3,y<3/ /
result==true /  /

C
C1 C2

B4

Timed automata

Fig. 3. Manually constructed timed automata for counter.

Formally, a timed automaton is a finite state machine
extended with clock variables. It uses a dense-time model
where clock variables evaluate to real numbers, and all clocks
progress synchronously. It can be defined as a tuple consists of
six elements: (L, l0, C,A, I, E), where L is a set of locations,
l0 is the initial location, C is a set of clocks, A is a
set of actions, B(C) is a set of conjunctions over simple
conditions of the form x ./ c or x − y ./ c (x, y ∈ C, and
./∈ {<,≤,=,≥, >} ), I is a set of invariants on the location,
and E ⊆ L×A×B(C)× 2C ×L denotes a set of transition
edges. The edge connects two locations with an action, a
guard and a set of clocks, formalized as (l −−−→g, a, r l

′
) when

(l, a, g, r, l
′
) ∈ E. The transition represented by an edge can

be triggered when the clock value satisfies the guard labeled
on the edge. The clocks may reset when a transition is taken.

A system can be modeled as a network of timed automata in
parallel with synchronous actions defined on channel ch. The
input action ch? represents receiving an event from the channel
ch, while the output action ch! stands for sending an event on
the channel ch. Automata in the network execute concurrently.
They can communicate via shared variables, as well as via
events over those synchronous channels. In the general case,
an edge from location l1 to location l2 can be described in
a form (l1

−−−→
g, φ, r l

′
), if there is no synchronization over

channels (φ denotes an “empty” action), or (l1
−−−−−→
g, ch∗, r l

′
).

Here, ch∗ denotes a synchronization label over channel ch
with ∗ ∈ {!, ?}, g represents a guard for the edge and r denotes
the reset operations performed when the transition occurs.

Then, the state of the system is defined by the locations of
all automata, and the values of clocks and discrete variables.
Every automaton may fire a transition separately, or synchro-
nize with another automaton with the channel action ch! and
ch? as below:
• (l, u)→ (l[l

′

i/li], u
′
),

if (li −−−→g, a, r l
′

i), u ∈ g, u, = [r 7→ 0]u, u, ∈ I(l[l′i/li]).
• (l, u)→ (l[l

′

i/li, l
′

j/lj ], u
′
),

if ∃ i 6= j, (li
−−−−−→
g, ch?, r l

′

i), (lj
−−−−→
g, ch!, r l

′

j), u ∈
gi ∧ gj , u, = [ri ∪ rj 7→ 0]u, u, ∈ I(l[l′i/li], l[l

′

i/li]).
where l denotes a vector of current locations of the automata
network, u is as usual a clock assignment recording the current



values of the clocks in the system, and l[l
′

i/li] denotes the
vector l with li being substituted with l

′

i. The model checker
Uppaal jointly developed by Uppsala University and Aalborg
University is based on the theory of timed automata, and the
query language used to specify properties to be checked, is
a subset of TCTL (timed computation tree logic). It has been
applied successfully ranging from communication protocols to
real-time embedded applications.

C. Runtime Verification

Runtime verification can be used for many purposes, such as
debugging, or safety policy monitoring, verification, behavior
modification, etc. It aims to be a lightweight verification
technique complementing other verification techniques such
as model checking and theorem proving, by analyzing only
one or a few execution traces and by working directly with
the actual system, thus scaling up relatively well and giving
more confidence in the results of the analysis. Following the
descriptions in [9], it can be defined as:

”Runtime verification is the discipline of computer sci-
ence that deals with the study, development, and applica-
tion of those verification techniques that allow checking
whether a run of a system under scrutiny satisfies or
violates a given correctness property.”

Technically speaking, in runtime verification, a correctness
property, is typically automatically translated into a monitor.
Such a monitor is then used to check the current execution of a
system or a finite set of recorded execution with respect to the
property. Moreover, through its reflective capabilities, it can
be made as an integral part of the target system, monitoring
and guiding its execution. Researchers usually use Aspect-
oriented Programming as a technique for defining program
instrumentation in a modular way for the specified monitor.

III. RELATED WORK

Last decades, a variety of computation models and the
corresponding toolkits have been proposed to facilitate the
design of embedded system, among which the two most widely
used are SCADE suite based on safety state machine [33] and
Simulink toolkit based on Stateflow [1]. Both of them have
been successfully applied in a variety of applications.

The underlying computation model safety state machine
of SCADE is formally defined and provides a mathematical
basis for the complete formal analysis of systems. Hence, the
SCADE suit, including graphical modelling, test automation,
SAT-based verifier, and certified code generator, provides a
systemic solution for developing extremely safety critical
systems such as avionics. Accompanied with the certified code
generator, the SAT-based SCADE Design Verifier (DV) plays a
very important role in ensuring the correctness of the model,
to formally express and assess safety requirements and find
bugs early in the development process. Properties to verify are
defined with SCADE observer itself. The boolean outputs are
the proof objectives for DV that then automatically produces
counter-examples. However, while SCADE verifier performs
very well for certain verification tasks, it can fail badly
for others due to complexity problems and the descriptive
limitation of the observer. There are many efforts trying to
enhance the verification ability of SCADE [34], [35]. Besides,

while mainly focusing on embedded software, the certificated
code generator currently has few support for the synthesis of
hardware with 20,0000 US dollars for a single licence.

Similar to SCADE suit, Simulink also supports system
design with Stateflow modelling, simulation, validation and
code generation. Because Stateflow has no formal semantics
for rigours formal verification, plenty of attempts have touched
the topic to assist Simulink Design Verifier in acquiring cor-
rectness of Stateflow model, which can be classified into two
categories, simulation-based techniques and verification-based
techniques. Simulation based technique is adopted widely,
while the main challenge is to solve the coverage of simulation
patterns. Many researchers have developed test generation
tools for Simulink designs including Reactis [10], T-VEC [11],
Beacon Tester [12], and AutoMOTgen [13] etc. These tools
use combinations of randomization and constraint solving
techniques to generate test cases, to guarantee that coverage
goals over model elements are satisfied. Recently, the symbolic
analysis has also been successfully applied to improving the
simulation coverage of Simulink Stateflow model [14].

For verification based techniques, the main challenge is that
Simulink Stateflow lacks a formal and rigorous definition of
its semantics. Many researchers have defined several types
of formal semantics for Stateflow, and developed many spe-
cialized tools for translating subsets of model to pushdown
automata [15], Lustre [16], SMV [17], PAT [18], hoare logic
and SAL [19], which can be verified through the corresponding
supporting tools. Most of them performs well within their own
domain while abstracting some domain unrelated modeling
features. For example, in SMV based translation, they focus
and provide a well-defined framework to ensure the function
correctness, while the hierarchical states and events are out of
their considerations. In PAT [7] based verification technique,
they covered most advanced features of Stateflow, while with
limited support of event interrupt dispatch mechanism and
time operation support. Besides, there is also some nice work
translating Uppaal timed automata to Simulink Stateflow for
simulation and code generation [20], [21]. Since the semantics
of timed automata is simpler than that of Stateflow, the
translation procedure is different from our setting, because we
need to deal with the priority, event stack, transitional action
etc of Stateflow during our reverse transformation. Also, based
on their tool, we can build an interface to connect to our
transformation to form a closed loop.

Compared to previous works, we try to cover most Stateflow
advanced modeling features, including the timing mechanism
that has never been addressed before, and make use of the
strong verification tool Uppaal to diagnose more properties.
We also formalize the complex event stack and executions
interrupt mechanism which is limitedly supported before.
Uppaal is chosen because timed automata can be used to model
and analyze timing behavior of systems, and the methods for
checking both safety and liveness properties of timed automata
have been well developed and intensively studied, which has
been successfully applied in verification of many safety-critical
systems. Besides, because Simulink Polyspace mainly detects
common errors such as overflow, division by zero, and out-
of-bound pointers, and provides little support for temporal
properties, we customize runtime verification on the generated



code to assist Simulink Polyspace, so that the properties during
model validation and extra runtime related properties can be
consistently verified and monitored on the executable system.
They are integrated into Stateflow based MDD lifecycle to
acquire higher confidence in safety critical applications. Then,
we apply the enhanced MDD to the implementation of a real
train controller, which is premier studied in [31, 32]. In [31],
the author proposes a heterogeneous modeling language to
model both data-oriented and control-oriented behavior of train
controller. In [32], the author uses timed automata to model
and verify the real time protocol used for communication of
controller. Based on their description about the train controller
system, we will show how the enhanced Stateflow MDD
construct a Stateflow model, find bugs through translated
verification, generate code for real platform implementation,
and insert runtime monitor to the system.

IV. EXTENDED MDD APPROACH

In this section, we introduce the kernel components pre-
sented in Figure 1 : the transformation rules and implementa-
tion of STU, and the customization of runtime verification.

A. Formal Verification of Stateflow

When translating Simulink Stateflow to Uppaal timed au-
tomata for verification, the most important and difficult task
is to overcome the gap between their execution semantics. As
introduced in background, key differences between Stateflow
and timed automata are :
(1) Stateflow transition is driven by event. Execution of every

event is in deterministic sequential order, and interruptible
with stack. While timed automata is executed in parallel,
and driven by the channel synchronization without the
support of stack.

(2) Stateflow supports hierarchy structure which is combined
with recursive activation-deactivation mechanism, transi-
tional action, and conditional action very closely. While
timed automata support single state.

To bridge the gaps above and simulate complex execution
semantics of Simulink Stateflow, an array based data structure
for event and some cooperative mechanisms are designed and
introduced for Uppaal timed automata.

1) Event Stack Basis: In Stateflow, the event dispatching
and processing mechanism is interruptible. However, in timed
automata, there is only synchronous channel among parallel
automata and no stack at all. The key idea to simulate
Stateflow event stack mechanism is to build a virtual stack
in Uppaal. We use a structured array in Uppaal to build the
event virtual stack. The element of the array is a data structure
defined in the listing 1 below, which records all information
related to an event in Stateflow. Each element in the structure
node is described as:

Structure Event {
int Event;
int Dest;
int DestCrossPosition;
int AutomatonType;
bool Valid;

}

Listing 1. Definition of the Event Structure

1) Event is the variable used to label and distinguish
different events in Stateflow. We assign a unique integer
number to this variable for each Stateflow event.

2) Dest is the variable used to map a Stateflow event to
a corresponding Uppaal controller automata originated
from a Stateflow state with decomposition or attached
actions. This kind of state will be translated into four
cooperative automata (controller, action, condition and
common automata).

3) DestCrossPosition is the variable used to imply the cor-
responding Uppaal controller automata state originated
from Stateflow cross-boundary transition.

4) AutomatonType is the variable used to map the event to
the four types of corresponding Uppaal automata.

5) Valid is the variable used to denote whether this event
is valid or not at present. If the event is on the top
of the stack and is invalid, the event will be deleted
by the extra daemon automata, which is responsible
for deleting invalid event on the top of the stack, and
dispatching the System Event when the stack is empty.

The virtual stack is the basic element to simulate Stateflow
semantics. It is initialized as empty in the translated Uppaal
timed automata, and is dynamically pushed and popped during
runtime simulation. When Stateflow generates an event within
a transition or a state operation, the translated Uppaal timed
automata will take a corresponding transition with an attached
action to dispatch and push an Event element into the stack
dynamically. Each transition starting from an active state of
controller automata will check whether the Dest of the top
element of event stack equals to the label of automata or not. If
yes, the transition will be triggered, and the Event element will
also be popped corresponding to the end of a simulation cycle
of Stateflow. The procedure above is mainly accomplished
through five encoded functions DispatchEvent(), PushEvent(),
PopEvent(), EventSentToMe(), and StackTopEvent(), with an
example of DispatchEvent() presented as below.

void DispatchEvent(Event E)
{

PushEvent(E.Event, E.Dest, -1,
E.AutomatonType, true);

}
void PushEvent(int Event, int Dest,

int Cross, int Automaton,
bool Valid)

{
Top++ ;
Stack[Top].Event = Event;
Stack[Top].Dest = Dest;
Stack[Top].DestCrossPosition = Cross;
Stack[Top].Valid = Valid;
Stack[Top].AutomatonType = Automaton;

}

Listing 2. Dispatch and push an event

Daemon automata have two duties. The first is to delete
invalid event on the top of the virtual stack, and the second
is to dispatch System Event to keep the automata running
when the virtual stack is empty. System Event is reserved
in Stateflow which refers to the default event generated by
Simulink to drive the suspended model periodically. To delete
an invalid event, daemon automata needs a self-cycle transition
with attached action to continuously check whether the value
Event.Valid of the element of the top stack is false or not. If



yes, Stack[Top] will be deleted through function PopEvent(),
as encoded in function DeleteInvalidEvent(). To generate a
System Event, daemon automata needs a self-cycle transition
with attached action to continuously check the whether the
stack is empty or not. If yes, a predefined event element will
be pushed onto the top of the empty stack, as presented in the
function GenerateSystemEvent().

void DeleteInvalidEvent()
{

if (Stack[top].Valid == false){
PopEvent(Stack[]);

}
}

Listing 3. Delete an invalid event

void GenerateSystemEvent()
{

if (Top==0){
PushEvent(SE.Event, 1, -1,

SE.AutomatonType, true);
}

}

Listing 4. Generate a system event

Based on the structured virtual stack, we translate Stateflow
into Uppaal timed automata automatically. As introduced in
the background, there are six most frequently-used elements
in Stateflow, where the event and action elements are attached
on state, and the transition, junction and timer element can
be scanned through transition. Hence, we demonstrate the
transition rules for state and transition, with other elements
embedded into them.

2) State Transformation Rule: For a regular simple state
without decomposition or attached actions, the transformation
is straightforward. We just directly map simple Stateflow state
sf to Uppaal timed automata state su. But for those complex
Stateflow state with decomposition or attached actions, we
need to translate it to four cooperative parallel automata:

1) Controller automata is used to simulate the event pro-
cessing mechanism within this complex Stateflow state.
It controls how to dispatch the hierarchical active and
deactive related event by initializing, popping, and push-
ing elements of the virtual stack.

2) Action automata is responsible for handling the three
kinds of attached actions (entry, during, exit). For the
composite state without attached actions, this automata
will not be generated.

3) Condition automata is used to execute the conditional
action, handle the junction, test the guard and priority
on each transition contained in this composite state, and
store the boolean results.

4) Common automata is used to execute the transitional
action, and read the guard related array initialized by
condition automata to execute the satisfied transition
contained in this composite state.

Controller automata: For the activation of state sf in State-
flow, it should estimate whether its upper-level state slf is
activated or not. If not, slf should be activated first, this
is especially true for cross-boundary transitions. In order to
simulate this semantics, the corresponding controller automata
should push an activation event corresponding to state sf itself

onto the stack first, and recursively pushe the activation event
associated with the automata originated from slf onto the
stack, until the top composite state arrives. The deactivation
of Stateflow state, is a reversal of activation procedure. In
controller automata, these two tasks are translated to two self-
cycle transitions attached with actions StateActivationLogic()
and StateDeactivationLogic().

Let us look at StateDeactivationLogic() presented in Alg 1
in detail, there are two sub-functions cooperating to accom-
plish the task. The first sub-function DispatchDeactivation-
ToChild() is used to deactivate refined sub-states contained in
current state. If the current state is refined in parallel sub-states,
the deactivation event for sub-state with the lowest priority
is pushed into stack through DispatchEvent() function first,
then the parallel sub-states with higher priorities are handled
sequentially. If the current state is refined in serially connected
sub-states, the deactivation event for current active sub-state
is pushed into the stack directly. The second sub-function
HandleDeactivation() is used to handle the logic of action
attached on the current state. If there is exit action attached
on the state, it will dispatch an event to the corresponding
action automata. If the current state is also a sub-state, it will
also generate an event to notify its upper-level state that current
state has been exited. The algorithm StateActivationLogic() for
activation can be encoded and interpreted in the same way.
Action automata: For detail execution of entry, during, and
exit action attached on Stateflow state, it will be captured by
the translated action automata with three self-cycle transitions.

Algorithm 1: Composite State deactivation logic
Void StateDeactivationLogic(int state sf )
{

DispatchDeactivationToChild(state sf );
HandleDeactivation(state sf );

}

void DispatchDeactivationToChild(int state sf )
{
SubStates[ ] ← Substate(sf );
if (SubStates[ ] are active) then

if (SubStates[ ] are in parallel) then
while (i ≤ length.PrioritySort(SubStates[ ])) do

DispatchDeactivationToChild(SubStates[i]);
i++;

end while
else

DispatchEvent(Event DeactivationEvent);
end if

end if
}
void HandleDeactivation(int state sf )
{
if (sf has attached exit action) then

Event DeactivationEvent.AutomatonType = action;
DispatchEvent(Event DeactivationEvent).

end if
if (sf is a sub-state) then

int UpperLevelDest = AutomatonID(Parstate(sf ));
Event DeactivationEvent.Dest = UpperLevelDest;
DispatchEvent(Event DeactivationEvent);

end if
}



After the execution of controller automata on the logic of
state active or deactivate, action automata will continually read
the stack top event for the test of the guard. The guard on
the three transitions are StackTop().Event == ActivationEvent,
StackTop().Event == DuringEvent and StackTop().Event ==
DeactivationEvent. Then, the transition with satisfied guard
will take, and corresponding action statements in Stateflow are
translated to action statements attached on the three transitions.

An example for the translated controller automata and
action automata for a composite state A is presented in Figure
4. For condition automata and common automata, they are
mainly used for Stateflow transitions contained in composite
state, and will be described in the following paragraph.

[x=2]/{x=x‐2;}/{x=x+10}

A
entry: x=int32(0);
during: x=x+1;
exit: x=int32(0);

A1

A2

Controller
automata

Action
automata

StackTop().Event == 
DuringEvent

X=x+1

StackTop().Event == 
ActivationEvent

DispatchEvent()

StackTop().Event == 
DeactivationEvent

X=0

StateDeactivationLogic()

StateActivationLogic()

Controller automata and action automata

Fig. 4. The controller and action automata for a composite state transfor-
mation, capturing activation and deactivation.

3) Transition Transformation Rule: Within Stateflow, each
transition is attached with four characterizations: event, condi-
tion, conditional action, and transitional action. We incorpo-
rate them into the condition and common automata of the high-
level composite state that contains this transition as below.

1) event is transformed into a unique integer as described
in the event stack transformation.

2) condition is transformed into the guard of transition in
the corresponding condition automata.

3) conditional action is transformed into the action of
transition in the corresponding condition automata.

4) transitional action is transformed into the action of
transition in the corresponding common automata.

When there are multiple transitions starting from a Stateflow
state, we should maintain the determinism execution sequence
of Stateflow in timed automata. First, we initialize an int array
PathSelect[ ] to store the priority of transition, where the array
index represents the depth of source state or junction node
of transition. As presented in Figure 5, the depth of state or
junction is defined as the minimum transition number to a pre-
state. Besides, a boolean array PathGuard[ ] is initialized to
store the condition test result of every transition, where the
array index is the id of Stateflow transition.
Condition automata: For a Stateflow transition tf1 : sf1 →
sf2 with conditional action afc and condition gf , we build
condition automata as below. An intermediate state sui is
added between the corresponding timed automata state su1 and
su2 . Based on which, three automata transitions are defined,
tu1 : su1 → sui , tu2 : sui → su2 and tu3 : sui → su1 . The guard on
transition tu1 is PathSelect[i] == Priority, which ensures
that the transition is executed by its priority order. The guard

on transition tu2 is the condition gf from Stateflow transition
tf1 . The action on transition tu2 is from conditional action afc
of the Stateflow transition tf1 , and an additional assignment
of the boolean array element PathJudge[i] with value true.
In this way, conditional action can be executed immediately
whether there is a legal transition path between two Stateflow
states or not. Transition tu3 is used to roll back to the source
state for further test of transitions with lower property, and
PathGuard[i] is set as false to show that this transition could
not be taken in common automata. Also, if sf2 is a Stateflow
junction node, a transition is added tu4 : su2 → su1 for roll back
of non-complete path. This roll back transition is controlled
by the guard pathSelect[i] == n, where i is the depth of the
junction node, n is the number of outgoing transitions from
the junction, and each negative test of the guard on outgoing
transition will increase the value of pathSelect[i] by 1.

The timer of Stateflow is also captured in condition au-
tomata. Time operation is based on event and is usually used
as a time related condition on transition. As described in the
background section, it is described as [TmOp(Num, Event)].
We count the appearance times (Num) of the event (Event),
and store the value using an int array Times[ ]. The index of
the array is the integer ID assigned to the event. When an
event is dispatched, the value of Times[Event] is increased by
1. The translation rules for the four types of time operations
are below. Then, each translated guard is attached on the
corresponding transition contained in condition automata.

after(Num,Event) → T imes[Event] >= Num

before(Num,Event) → T imes[Event] <= Num

at(Num,Event) → T imes[Event] == Num

every(Num,Event) → T imes[Event]%Num == 0

Common automata: For a Stateflow transition tf1 : sf1 → sf2 ,
we build common automata to capture its transitional action
aft , based on the array PathGuard[ ] initialized in condition
automata. Stateflow transition tf1 is directly mapped to an
automata transition tu1 : su1 → su2 . The guard and action on
automata transition tu1 are from the expression PathGuard[ ]
== true and transitional action aft respectively. It is almost
the same as the graphical structure of Stateflow model, with
abbreviated guard and transitional action. An example for the
translated common automata and condition automata of the
composite state A is presented in Figure 5.

Condition and common automata

[x==2]{x=x+1;}

depth=0

A

A0 A1

A2

/{x=0;}

[x==3]/{x=5}
depth=1

depth=2

PathGuard[1] PathGuard[2]
x=0

PathGuard[3]
x=5

PathSelect[1]++

PathGuard[1]=true
x=x+1

Common
automata

Condition
automata

PathGuard[0]=false

PathGuard[2]=true

PathGuard[2]=false

true

false

x==2

x!=2

PathSelcet[0]==1 PathSelect[1]++
PathSelcet[2]==1

x==3
PathGuard[3]=truePathGuard[3]=false

x!=3PathSelcet[1]==3

PathSelect[1]++
PathSelcet[1]==1

Fig. 5. The common and condition automata for a composite state
transformation, capturing internal transition.



Tool Implementation: Based on above transition rules, we
implement a tool for automatically translation from Stateflow
to Uppaal timed automata. The tool STU consists of a parser,
translator, and storer, and is implemented in 14590 lines
of java code with two supporting libraries (JDOM used for
read and write XML file, and Antlr used for abstract syntax
tree construction and update). The parser extracts Stateflow
model from Simulink project file into memory. The translator
transfers Stateflow model and reconstructs the abstract syntax
tree in memory according to transition rules. The storer outputs
the updated abstract syntax tree to Uppaal model file. The
three parts are seamlessly integrated in STU to support the
formal analysis of Stateflow model based on Uppaal, and can
be downloaded in website [22].

B. Runtime Verification of System
The key technical ingredient in runtime verification is to

specify dynamic runtime environment related properties that
couldn’t be easily described based on the abstract Stateflow
model, and choose proper run-time monitoring tools according
to adopted programming language. Over the past decade,
tremendous of efforts have been invested in developing pro-
gram runtime verification systems [23]. Most of these works
can be regarded as an extension of AspectJ [24]. Some
exceptions are ARACHNE [25] and RMOR [26]. ARACHE
performs runtime weaving into the binary code of C programs
with a limited form of regular expressions, while RMOR moni-
tors the execution of C programs against state machines using
aspect-oriented pointcut language to connect events to code
fragments. For hardware runtime verification, the property
specification is usually translated into a hardware description
such as VHDL and Verilog, which is then synthesized and
loaded into reconfigurable blocks of the FPGA [27].

Within Stateflow based MDD, we can generate VHDL and
C code from the verified Stateflow model with the code
generator of Simulink. Those two languages are widely used
in industrial system design. For the generated C code, we
can apply RMOR directly. For the generated VHDL code, we
can also customize tools for hardware runtime verification.
But, the separation of hardware monitor and software monitor
may increase the complexity of proposed approach and bring
challenges to verify properties related with their interactions.

FSM property 
specification

RMOR
C program for 
Hardware 

port reading

C code for 
property 
monitor

Instrumented
C program

Data‐centered 
property 

specification

C program for 
VHDL interface 

reading

Fig. 6. Hardware runtime verification customisation on Software

Based on the complexity reduction idea presented in our
previous work [28] and the observation that VHDL has well-
defined interface of input and output data ports, we customize
a data-centered runtime verification technique, into software
monitor for runtime verification of VHDL. In [29], we have
designed data-centered domain description language DRTV
and translated the data-centered model to property monitors,

based on which, main customization is presented in Figure 6.
From the data description part of DRTV, which is easy to be
derived from the VHDL interface, we derive the additional
C program to read the data value of pin bounded to the
interface of VHDL. From the property description part of
DRTV, which is defined on events based on values of data,
we derive the event definition and state machine property
definition in the format of RMOR. Then, those specifications
and accompanied C program are input to RMOR to generate
the software monitor and instrumented C program. In this way,
we make use of the monitor running on the software processor
to verify the behavior of hardware.

V. EXPERIMENT RESULTS

In order to evaluate the proposed approach, we apply it
to some artificial Stateflow based MDD and a real-time train
controller design. The presented Steteflow models, translated
timed automata, and properties specifications could be down-
loaded in website [22]. Some implicit bugs in Stateflow model
that can not be detected in Design Verifier are detected in
Uppaal verification based on the translated timed automata,
and some violations that can not be supported in Polyspace
can be specified and detected in runtime verification monitor.
Artificial Examples: The first artificial example is the
switch on counter example designed to count how many
times the event switch on happens. As presented in Figure
7, when the Stateflow model enters the composite state B,
there is a potential error of division by 0 contained in the
transitional action z = x/y. So, we may verify the property
non-division by zero in Design Verifier, and the model passes
the verification. But according to manual analysis, the value
of y would be zero after 6 seconds. Design Verifier failed to
detect this implicit but general bug contained in the model.

[after(2,sec)]/{switch_on} switch_on{x=x+1;}/{y=y‐3;}

[x==3] /{z=x/y}

[y>=10]

[result]

Count
entry:result=true

Container
entry:x=int32(0);y=int32(0); z=int32(0);CLK=int32(0);result=false;
during:CLK=CLK+1;

A

C

A1 A2

C1 C2

B

B1 B3

B2

Division by zero

{y=y+1}

Potential division by zero

Fig. 7. Manual model for validation testing

Then, we translate the Stateflow model to timed automata
through the developed tool STU. The translation is accom-
plished within 0.1 seconds. In the translated timed automata,
the integer variable y in Stateflow is mapped to an integer
variable Chart y, and the junction node in Stateflow is mapped
to a state with the name Process Chart Container B.SSID49.
Then, property about error of division by 0 within this model
can be described as in Table I.

TABLE I
PROPERTY LIST

Property Formula Time(second)

P1 E<>Process Chart Container B.SSID49
and Chart y == 0 and Chart x == 3 0.01



Where “E <>” is a temporal keyword which means even-
tually, “Process Chart Container B.SSID49” is automata state
name corresponding to the Stateflow junction node, “Chart x
== 3” is automata value test corresponding to the guard
“x==3” of Stateflow transition from junction node to state B2,
and “Chart y == 0” is also automata value test corresponding
to the Stateflow action z = x/y attached on the transition from
junction node to state B2. The property consists of a serial
combination of previous predicates, and means that y may be
set to be 0 when the transition is enabled, which will cause
the error of division by 0. Verification result shows that the
property is satisfied and the error can be triggered. Then, we
can define a reverse property using temporal keyword “A[ ]”
to get the counter example to help locate the bug. Hence, we
need to return back to the original Stateflow model to correct
the bug by adding an additional condition y! = 0 in front of
the action. From the verification of this property, we can see
that Uppaal also checks the reachability of state, which can
be used to detect deadlock of Stateflow model.

For runtime verification, we specify the FSM property in the
input format of RMOR, as abstracted in listing 5. The property
specification is based on the generated C code of Stateflow
model. The three pointcut expressions mean the value for the
current state, variable related to guard, and variable related to
action of the potential transition, respectively. If all of them
are satisfied, an error of division by 0 will be triggered. The
property description above is used to generate executable C
monitor, which will also be encoded into the generated code of
Stateflow model with RMOR. Some other safety and liveness
temporal properties are also supported, and overall procedure
is similar to Figure 6.
Real-time Train Controller : We apply the proposed ap-
proach to a real industrial application of Stateflow based MDD
of train communication control system. According to IEC
Standard 61375 [30], the control system consists of many mul-
tifunction vehicle bus (MVB) controllers which interconnect
devices within a vehicle. MVB master controller broadcasts
a master frame, which carries an identifier of process data
frame for the rest of MVB slave controllers. At the end of a
predefined macro period, current MVB master controller will
give up control ability, and an MVB slave controller will be
rotated as the new master to control message communications.

Traditionally, the world most widely used MVB controller
D113 is developed by implementing the underlying C and
VHDL codes manually, according to the discussion with
the engineers from Duagon company. Recently, China CNR
corporation and Tsinghua University cooperate to develop their
MVB controller based on our proposed approach, and the
result controller is named TiMVB. First, we build Stateflow
model strictly according to the description of IEC Standard
61375. The overall structure of the model is presented in
Figure 9, and we get permission to make the module master
rotation and part of memory traffic control public. Given
master rotation as an example, the master transfer logic de-
scribed in page 260 and Figure 105 of IEC 61375 are modeled
as Stateflow model, the main logic and accompanied timer
of which are presented in [22]. After preliminary Stateflow
validation on two MVB controller instances, we translate the
main logic and some accompanied Stateflow models into 32

corresponding parallel timed automata within 0.3 seconds and
verify some properties described in table II. Those properties
are derived from real potential hazards of system failure.
For example, in the MVB master and slave rotation process,
there may be inconsistence such that two masters appear at
the same time. In the communication process, there may be
inconsistencies such that the frame sequences are out of order
or not satisfied with time requirements.

TABLE II
PROPERTY LIST

Property Formula Time(second)

P1

A[ ] Process Chart OneMVB1(2) LOGIC
.Chart OneMVB1 LOGIC Rrgular Master

and
Process Chart OneMVB2(1) LOGIC

.Chart OneMVB2 LOGIC Standby Master

32.93

P2

A[ ] not (Process Chart OneMVB1 LOGIC
.Chart OneMVB1 LOGIC Rrgular Master)

and
Process Chart OneMVB2 LOGIC

.Chart OneMVB2 LOGIC Rrgular Master

29.34

P3

A[ ] not (Process Chart OneMVB1 LOGIC
.Chart OneMVB1 LOGIC Standby Master)

and
Process Chart OneMVB2 LOGIC

.Chart OneMVB2 LOGIC Standby Master

33.02

The first property is violated during verification, which
means that there exists a path that two MVB controllers may
simultaneously reach “Regular Master” state, or simultane-
ously reach “Standby Master” state. The first situation will
lead to master collision and the second will lead to no master
throughout train communication network. Then, we design the
second and third property to differentiate the counter example
of the two situations, respectively.

Through manual analysis of counter examples demonstrated
in Uppaal, we trace back to Stateflow model. For the coun-
terexample of the first situation, initially, there is one MVB
controller in state “Regular Master” and the other in state
“Standby Master”. If the “Standby Master” MVB controller
receives no master frame because of packet loss on bus,
it will trigger a timeout T standby event and go to state
“Regular Master”. While the other MVB controller is still
in state “Regular Master”, there will be two masters at the
same time. For the counterexample of the second situation, if
both MVB controllers are in state “Regular Master”, they will
send master frame separately, and master collision event would
be triggered. They will transit to the state “Standby Master”
when they receive the master collision event, and there will
be no master within network.

Furthermore, these two problems can be traced back to the
handling logic of timeout event and master collision event
described in Figure 105 of IEC standard. For the first problem,
we propose to add a handshake before standby master changes
to regular master because of the timeout. For the second
problem, when a collision happens, we propose to withdraw
the responsibility of MVB master controller that is the slave in
the previous cycle. Those changes are captured in the revision
of Stateflow model, and the translated Uppaal timed automata
of the revised Stateflow model passes verification.

In master and slave frame communication process, there
may be inconsistencies such that the frame sequences are out



of order. Part of the master frame generator logic described
from page 236 of IEC 61375 are modelled as Stateflow model
in [22]. Properties about master and slave communication
process defined on the translated Uppaal timed automata of
other parts of Stateflow model are verified, and the violations
such as incorrect packet retransmission presented in our pre-
vious work [31], [32] are reproduced in this approach. We
revise Stateflow model as well as the backend IEC standard
according to analysis results of counter examples. These bugs
and ambiguousness have already been submitted, proved and
would be revised in the new version of IEC standard.

Following the implementation style of D113, that data frame
processing logic and process data communication logic are
implemented in VHDL, and message data communication
logic and master transfer logic are implemented in C. We
generate C code and VHDL code from the indirectly verified
Stateflow model. Before synthesizing those codes in FPGA
and ARM processor directly, we encode some lightweight
runtime monitors into the generated code first. As described
in section IV-B, we use data centered software monitor to
verify some dynamic environment related behaviors that are
not easy verify in model level. As described in IEC standard,
the suggested time constraint on an MVB slave controller
between the finish of a master frame receiving and the start of
a slave frame responding should be less than 4us, and the time
constraint on an MVB master controller between the finish of
a master frame sending and the start of a response slave frame
receiving should be less than 42.7us. Those two properties are
not easy to capture in model level, because it is not easy to
model dynamic transmission delay of data on MVB bus in
Stateflow, even with a preliminary channel model.

Those constraints are described with data centered runtime
verification property below. Variables are related to interfaces
of VHDL code, which are configured to pins of the hardware
platform. Those variables will be continuously loaded by
accompanied C functions. Then, the property and accompanied
C functions are transformed and input to RMOR to get the
instrumented code. At last, generated VHDL codes, C codes,
and monitor codes are synthesized to system platform with
eCos for final testing, as presented in Figure 8 and 9.

DataCenter Monitor TimeConstraints()
{

......
event TimeoutReply =
((T_Master_Receive - T_Slav_Send_)<4)
event TimeoutResponse =
((T_Master_Send - T_Slav_Receive)<42.7)
event Trigger =

TimeoutReply || TimeoutResponse;

state safe{
When Trigger -> error;
}

}

Listing 5. Runtime Monitoring for Time Interval Between Master and Slave
Frames.

Unfortunately, the runtime monitor reports an error be-
cause of TimeoutReply event. The time is 6.4us, which is
greater than 4us. We solve the problem by changing the time-
consuming GPIO operation of notifying the arrival of master
frame to direct hardware interrupt, and change the arbitration
mechanism for reading access of register pool for slave master

data. So the slave MVB controller can response more quickly
and the time is about 3.4us for the revised one, as in Figure
9. The implemented TiMVB based on the proposed approach
is now deployed in real trains of China and Argentina.

TiMVB controller
and  industrial computer MVB system bus

D113 MVB controller
and  industrial computer

Frames on link layer

Generated VHDL code

Loaded in to FPGA processor

Generated  C code 
and runtime verifier

Loaded in  to ARM processor

Fig. 8. Real system platform simulation between D113 controller and TiMVB
controller. The left is the implemented TiMVB, and the right is D113.

Fig. 9. We use oscilloscope to test the result that we get from the monitor.
The left is the system for the GPIO operation which is 6.4us, and the right
for the hardware interrupt and higher access priority one which is 3.4us.

VI. CONCLUSION AND DISSCUSSION

In this paper, we present an approach to address the ver-
ification challenge of Stateflow based MDD. By translating
Stateflow model to timed automata, Uppaal can be incor-
porated to assist Simulink Design Verifier for more safety
and liveness properties verification. With customizing runtime
monitors to generated codes of Stateflow model, RMOR can
be incorporated to assist Simulink Polyspace for verification of
more concrete properties, even related with physical platform.
In this way, properties are not only satisfied at the model level,
but also consistently verified at the implementation level with
dynamic the physical execution environment in consideration.
Discussion and Ongoing Work: Right now, our approach
covers all semantic examples in Stateflow user guide [6]
except for examples with encoded Matlab function. We plan
to capture the translation of function next step. Translated
timed automata are about 6 times larger than the original
Stateflow model, in terms of state and transition numbers.
This is mainly caused by complex event stack of Stateflow,
and hieratical, crossover and interruptible execution logic. We
plan to optimize our translating strategy to get more com-
passed timed automata and add some position information to
make the translated timed automata well displayed in Uppaal.
Automatical trace back tools from the counterexample of
Uppaal timed automata to Stateflow model will be researched.
Besides, because execution semantics of Stateflow is described



in informal natural languages based on examples, it is not
possible to formally prove the equivalence and correctness
of the transformation. We acquire correctness by carefully
compare simulation results of the translated model, including
the value and state sequence step by step, in the same way
as previous works. Furthermore, we have also checked with
engineers from MathWorks to validate our translation.

As for runtime verification, we make use of existing tools
and previous data-centered runtime verification technique,
and customize them onto the automatically generated codes
of the validated model directly. Currently, runtime verified
properties need to be written manually, which is sometimes
time-consuming because properties are related with underlying
codes. We plan to study the relationship and mapping rules
between Stateflow model and generated codes, and try to
automatically generate and infer the specification of runtime
verification properties, from those verified at the model level.

ACKNOWLEDGEMENT

This work is supported in part by NSF CNS 13-30077, NSF
CNS 13-29886, NSF CNS 15-45002, NSFC 61303014, NSFC
61202010, and NSFC 91218302.

REFERENCES

[1] P. Caspi and etc., “From simulink to scade/lustre to tta: a layered ap-
proach for distributed embedded applications,” in ACM Sigplan Notices,
vol. 38, no. 7. ACM, 2003, pp. 153–162.

[2] SimulinkDesignVerifier. http://www.mathworks.com.
[3] SimulinkPolySpace. http://www.mathworks.com.
[4] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in

Formal methods for the design of real-time systems. Springer, 2004,
pp. 200–236.

[5] F. Chen and G. Roşu, “Mop: an efficient and generic runtime verification
framework,” in ACM SIGPLAN Notices, vol. 42, no. 10. ACM, 2007,
pp. 569–588.

[6] I. The MathWorks, “Stateflow user guide,” www.mathworks.com.
[7] C. Chen, J. Sun, Y. Liu, J. S. Dong, and M. Zheng, “Formal modeling

and validation of stateflow diagrams,” International Journal on Software
Tools for Technology Transfer, vol. 14, no. 6, pp. 653–671, 2012.

[8] R. Alur, “Timed automata,” in Computer Aided Verification. Springer,
1999, pp. 8–22.

[9] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293–303, 2009.

[10] S. Sims and D. C. DuVarney, “Experience report: the reactis validation
tool,” in ACM SIGPLAN Notices, vol. 42, no. 9. ACM, 2007, pp.
137–140.

[11] M. R. Blackburn and R. D. Busser, “T-vec: A tool for developing
critical systems,” in Computer Assurance, 1996. COMPASS’96, Systems
Integrity. Software Safety. Process Security. Proceedings of the Eleventh
Annual Conference on. IEEE, 1996, pp. 237–249.

[12] B. Tester, “Applied dynamics international,” www.adi.com/.
[13] A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S. Mohalik, and

K. Shashidhar, “Automotgen: Automatic model oriented test genera-
tor for embedded control systems,” in Computer Aided Verification.
Springer, 2008, pp. 204–208.

[14] R. Alur, A. Kanade, S. Ramesh, and K. Shashidhar, “Symbolic analysis
for improving simulation coverage of simulink/stateflow models,” in
Proceedings of the 8th ACM international conference on Embedded
software. ACM, 2008, pp. 89–98.

[15] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of
pushdown automata: Application to model-checking,” in CONCUR’97:
Concurrency Theory. Springer, 1997, pp. 135–150.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[17] K. L. McMillan, “The smv system,” in Symbolic Model Checking.
Springer, 1993, pp. 61–85.

[18] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible verification
under fairness,” in Computer Aided Verification. Springer, 2009, pp.
709–714.

[19] H. Wernli, M. Paulat, M. Hagen, and C. Frei, “Sal-a novel quality
measure for the verification of quantitative precipitation forecasts,”
Monthly Weather Review, vol. 136, no. 11, pp. 4470–4487, 2008.

[20] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “From
verification to implementation: A model translation tool and a pacemaker
case study,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2012 IEEE 18th. IEEE, 2012, pp. 173–184.

[21] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam, “Safety-
critical medical device development using the upp2sf model translation
tool,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 13, no. 4s, p. 127, 2014.

[22] J. Yu, in Uiuc. https://sites.google.com/site/jiangyu198964/home.
[23] F. Chen and G. Roşu, “Java-mop: A monitoring oriented programming

environment for java,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2005, pp. 546–550.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in ECOOP 2001Object-Oriented
Programming. Springer, 2001, pp. 327–354.

[25] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-
Devillechaise, and M. Südholt, “An expressive aspect language for
system applications with arachne,” in Transactions on Aspect-Oriented
Software Development I. Springer, 2006, pp. 174–213.

[26] K. Havelund, Runtime verification of C programs. Springer, 2008.
[27] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, “Hardware

runtime monitoring for dependable cots-based real-time embedded sys-
tems,” in Real-Time Systems Symposium, 2008. IEEE, pp. 481–491.

[28] L. Sha, “Using simplicity to control complexity,” IEEE Software, no. 4,
pp. 20–28, 2001.

[29] Y. Jiang and L. Sha, “Use Runtime Verification to Improve the Quality
of Medical Care Practice,” in 38th International Conference on Software
Engineering, 2016.

[30] I. Commission et al., “Iec 61375,” Train Communication Network.
[31] Y. Jiang, H. Zhang, X. Song, W. N. Hung, M. Gu, and J. Sun, “Verifica-

tion and implementation of the protocol standard in train control system,”
in Computer Software and Applications Conference (COMPSAC), 2013
IEEE 37th Annual. IEEE, 2013, pp. 549–558.

[32] Y. Jiang, H. Zhang, H. Liu, X. Song, M. Gu, and J. Sun, “Design of
mixed synchronous/asynchronous systems with multiple clocks,” 2014.

[33] G. Berry, “Synchronous Design and Verification of Critical Embedded
Systems Using SCADE and Esterel,” in Formal Methods for Industrial
Critical Systems, 2007.

[34] J. Qian et al., “Modeling and Verification of Zone Controller: the
SCADE Experience in China?s railway systems,” in ?2015 IEEE/ACM
International Workshop on Complex Faults and Failures in Large
Software Systems.

[35] H. Basoldet al., “An Open Alternative for SMT-Based Verification of
SCADE Models,” in ?2014 Formal Methods for Industrial Critical
Systems.


