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Abstract
Modern machine learning tasks often require considering not just one but multiple objectives. For example, besides the

prediction quality, this could be the efficiency, robustness or fairness of the learned models, or any of their combinations.

Multi-objective learning offers a natural framework for handling such problems without having to commit to early trade-

offs. Surprisingly, statistical learning theory so far offers almost no insight into the generalization properties of multi-

objective learning. In this work, we make first steps to fill this gap: We establish foundational generalization bounds for the

multi-objective setting as well as generalization and excess bounds for learning with scalarizations. We also provide the

first theoretical analysis of the relation between the Pareto-optimal sets of the true objectives and the Pareto-optimal sets of

their empirical approximations from training data. In particular, we show a surprising asymmetry: All Pareto-optimal

solutions can be approximated by empirically Pareto-optimal ones, but not vice versa.
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1 Introduction

Traditionally, statistical machine learning has concentrated

on solving one single-objective optimization problem: to

minimize the average loss over a given training set.

Additional quantities of interest, such as model complexity,

had to be either addressed implicitly by the choice of

model class, or integrated into the main objective via

weighted regularization terms. Recently, however, addi-

tional quantities of interest have made it into the focus of

the machine learning community, such as the fairness,

robustness, efficiency or interpretability of the learned

models. Optimizing these can be in conflict with the goal of

low training loss, and task-specific trade-offs need to be

made. Unfortunately, hard-coding such trade-offs can have

undesirable consequences, and model-selecting them is a

cumbersome process when multiple objectives are

involved.

To avoid the need for a priori trade-offs, multi-objective

learning has recently received increasing attention. Using

multi-objective optimization, it either finds promising

trade-off parameters at the same time as training the actual

model, or it computes multiple solutions that reflect dif-

ferent trade-offs, ideally along the complete Pareto-front.1

While multi-objective optimization and learning are algo-

rithmically rich fields, their theory is much less well

explored. In particular, learning-theoretic results, such as

generalization bounds, are almost completely missing.

In this work, we aim at putting multi-objective learning

on solid theoretic foundations. Specifically, we present

three results of fundamental nature for understanding the

properties of learning with multiple objectives. (1) We

show that generalization bounds of individual learning

objectives carry over also to the situation when learning

with multiple objectives simultaneously. (2) We provide

generalization and excess bounds that hold uniformly

across a broad range of scalarization techniques. (3) We

analyze in what sense the set of models that are empirically

Pareto-optimal (i.e., optimal with respect to a training set)

approximates the set of models that are actually Pareto-

optimal (i.e., optimal with respect to the data distribution).

Our results provide theoretical justifications for the use of
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scalarization-based as well as Pareto-based multi-objective

optimization in a learning context, though with some

caveats that have no analog in single-objective learning.

2 Notation and background

In this section, we introduce our notation and provide

background information on multi-objective optimization

and learning, as well as statistical learning theory. Our

description follows standard textbooks, such as Miettinen

[1] and Wright [2] for optimization, and Mohri et al. [3]

and Shalev-Shwartz and Ben-David [4] for machine

learning. More details and derivations can be found there.

2.1 Single- and multi-objective optimization

At the heart of most modern machine learning algorithms

lies an optimization step. In standard (single-objective)

optimization, one is given an input set, X, and an objective

function, f : X ! R. Because the objective values are just

real numbers, they are totally ordered: Any two points

x;x0 2 X are comparable in the sense that at least one of

the relations f ðxÞ� f ðx0Þ or f ðx0Þ � f ðx0Þ holds. Conse-

quently, it is a natural question to ask which x� 2 X
achieve the smallest objective value, if any. A plethora of

single-objective optimization methods have been developed

to answer this question, let it be gradient-based [2, 5] or

derivative-free [6, 7].

In multi-objective optimization, one is given multiple

objective functions, f1; f2; . . .; fN : X ! R, or equivalently,

one vector-valued function, F : X ! RN with

FðxÞ ¼
�
f1ðxÞ; . . .; fNðxÞ

�
. We can again define an asso-

ciated order relation:

Definition 1 For x;x0 2 X we say that x weakly domi-

nates x0 if fjðxÞ� fjðx0Þ for all j 2 ½N�. We say x strongly

dominates x0 if additionally fjðxÞ\fjðx0Þ for at least one

j 2 ½N�.

Because of the multi-dimensional nature, these order-

ings are only partial [?]. There are pairs x;x0 2 X that are

uncomparable, i.e., neither FðxÞ4Fðx0Þ, nor Fðx0Þ4FðxÞ
holds. Consequently, in multi-objective optimization it

typically makes no sense to look for absolute best solu-

tions. Instead, one searches for Pareto-optimal solutions.

Definition 2 A point x� 2 X is called Pareto-optimal if

there is no other point x 2 X that strongly dominates it.

The set of all Pareto-optimal points is called Pareto-opti-

mal set. The set of corresponding objective value vectors is

called Pareto-front.

A large number of algorithms have been developed also

for multi-objective optimization. When trying to find

solutions across the complete Pareto-front, meta-heuristics

such as evolutionary algorithms [8] are often employed. If

a single Pareto-optimal solution suffices, scalarizations in

combination with single-objective optimization can be

used [9]. A scalarization function, U : RN
þ ! Rþ, combi-

nes the individual objective values into a single one.

Prominent examples are weighted p-norms:

UðpÞ
w ðx1; . . .; xNÞ ¼

�P
i2½N� jwixijp

�1=p
for p 2 ð1;1Þ, and

Uð1Þ
w ðx1; . . .; xNÞ ¼ maxi2½N� jwixij, where w 2 W � RN

þ is a

vector of weights that encode a trade-off between the dif-

ferent objectives.

Arguably the most popular choice of scalarization is the

L1-norm with weights in the probability simplex

DN ¼ fw 2 RN
þ :

P
i wi ¼ 1g. This means, one forms con-

vex combinations of the individual objectives [10]. For any

nonzero choice of weights, minimizers of this resulting

scalarized objective will be Pareto-optimal [9]. However,

the set of solutions obtainable by varying the weights might

not recover the complete Pareto-front, unless the opti-

mization problem is convex [11]. In contrast, the choice

p ¼ 1 (called weighted Chebyshev norm) allows recov-

ering the complete Pareto-front when varying the weights

in DN [1, Chapter 3.4]. Figure 1 illustrates these concepts.

2.2 Single- and multi-objective learning

Our analysis in this work applies to supervised as well as

unsupervised learning. Therefore, we adopt a notation that

allows expressing both of these cases in a single concise

way. Let p(z) be a fixed but unknown data distribution over

a data space Z. We denote by H a hypothesis set and

‘ : Z �H ! Rþ a loss function. For supervised learning

with H � fh : X ! Yg, one uses Z ¼ X � Y, and

‘ðz; hÞ ¼ Lðy; hðxÞÞ, where L : Y � Y ! Rþ measures,

e.g., the classification or regression error. For unsupervised

learning, one uses Z ¼ X , and ‘ measures, e.g., the

reconstruction error of a clustering or dimensionality

reduction step.

Single-objective learning. Standard (single-objective)

learning has the goal of identifying a hypothesis with small

risk (expected loss), LðhÞ ¼ Ez2Z ½‘ðz; hÞ�. To approximate

this uncomputable quantity, the learner uses a training set,

S ¼ fz1; . . .; zng to compute the empirical risk,

bLðhÞ ¼ 1
n

Pn
i¼1 ‘ðzi; hÞ.

Statistical learning theory studies how well the empir-

ical risk approximates the true risk and under which con-

ditions minimizing the (computable) empirical risk is a

good strategy for finding solution with low true risk. Many

corresponding results are known. In particular, under well-
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understood conditions on H and S, one can prove that, with

high probability over the sampling of S, the true risk is well

approximated by the empirical risk, uniformly across all

hypotheses. Mathematically, such a guarantee has the form

of a generalization bound:

8d 2 ð0; 1Þ Pr
n
8h 2 H : jLðhÞ � bLðhÞj � Cðn;H; dÞ

o
	 1� d:

ð1Þ

The problem-dependent generalization term Cðn;H; dÞ
typically consists of a complexity component that reflects

the expressive power of the hypothesis class, and a confi-

dence component that reflects the uncertainty due to finite

sampling effects. Ideally, both components will converge

to 0 when the number of samples grows to infinity. Among

the most well-known complexity components are for

instance the Rademacher complexity or VC dimension

(see, e.g., [3]).

From bounds of the form (1), one can derive guarantees

that, with high probability, solutions obtained by mini-

mizing the empirical risk have close to optimal true risk.

Formally, for ĥ
� 2 argmin

h2H
bLðhÞ, an excess risk bound

holds:

8d 2 ð0; 1Þ Pr
n
Lðĥ�Þ� inf

h2H
LðhÞ þ C0ðn;H; dÞ

o
	 1� d;

ð2Þ

where C0ðn;H; dÞ is another generalization term as above.

Multi-objective learning. In multi-objective learning,

multiple target objectives, L1; . . .;LN , characterize differ-

ent properties of interest of the hypotheses. Estimating

them from a (single) dataset yields empirical objectives,

bL1; . . .; bLN . In contrast to the single-objective situation

where the objective function is almost always related to a

measure of prediction quality, the multi-objective setting

provides a principled framework for expressing also other

relevant quantities of a machine learning model, such as

efficiency, robustness or fairness. Consequently, we allow

the objectives to also have other forms than just expected

values over per-sample loss functions, and their empirical

estimates are not restricted to per-sample averages. As

discussed in Sect. 2.1, the multi-objective setting does not

induce a total ordering of the hypotheses. Consequently, a

priori there will be no overall best hypothesis anymore.

Instead, there are two sets of Pareto-optimal hypotheses:

Definition 3

a) A hypothesis h 2 H is called empirically Pareto-

optimal if it is Pareto-optimal with respect to the

multi-objective optimization problem of minimizing

bL1ðhÞ; . . .; bLNðhÞ (with are computed from some

training set S). The set of all such hypotheses we call

the empirically Pareto-optimal set.

b) A hypothesis h 2 H is called (truly) Pareto-optimal

if it is Pareto-optimal with respect to the multi-

objective optimization problem of minimizing

L1ðhÞ; . . .;LNðhÞ. The set of all such hypotheses we

call the (truly) Pareto-optimal set.

Analogously to single-objective learning, we are most

interested in finding truly optimal hypotheses (here, e.g.,

the truly Pareto-optimal set), as these can be expected to

work well on future data. However, we can only compute

solutions to the empirical problem (the empirically Pareto-

optimal set). If solutions to the latter problem approximate

the former, it is called multi-objective generalization.

In recent years, multi-objective learning has received

increasing attention in the machine learning community,

and a number of algorithms have been proposed for it. In

their easiest form, one simply picks a scalarization method

and solves the resulting single-objective optimization

problem with fixed scalarization weights or one optimizes

over those as well [12–14]. Alternatively, one can search

for hypotheses along the complete (empirically) Pareto-

Fig. 1 For general multi-objective optimization problems the Pareto-

front (bold curves) can be disconnected and non-convex. a Linear
(convex) scalarization can find Pareto-optimal solutions on the

convex hull of the front. b Chebyshev scalarization can find solutions

everywhere on the front. c Ensemble methods compute many

solutions, aiming for the complete Pareto-front to be represented
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front, using, e.g., ensemble techniques [15, 16], model

conditioning [17] or hypernetworks [18].

Given the long tradition and algorithmic diversity, one

could expect multi-objective statistical learning theory also

to be a rich field that provides precise quantifications of the

relations between true and empirical objective (general-

ization bounds), as well as relation between the empirical

and true Pareto-optimal sets (excess bounds). Surprisingly,

this is not the case, and hardly any such results exist in the

literature.

3 Related work

Solving problems with multiple objectives has a long tra-

dition in artificial intelligence [19–22], game the-

ory [23, 24] and economics [25, 26]. Since the 1990 s it

has also attracted attention from the machine learning

community, e.g., Fieldsend and Singh [27], Goldberg [28],

Jin [29]. Existing works predominantly study the problem

from an algorithmic perspective, in particular proposing

and analyzing new optimization techniques. Mirroring the

corresponding developments in multi-objective optimiza-

tion, this includes methods for efficiently finding individual

Pareto-optimal solutions, e.g., Cortes et al. [12], Van

Moffaert and Nowé [30], Ye et al. [31], as well as

exploring the complete Pareto-front [17, 18, 30, 32–35].

Works in both directions implicitly assume that better

results of the empirical learning task should translate to

better results on future data. So far, this generalization

aspect was studied only empirically. Theoretical results

rather focused on the optimization aspect, e.g., studying

computational complexity [36, 37] or convergence

rates [38], but not statistical generalization. A notable ex-

ception is Cortes et al. [12], which we discuss in detail in

the Sect. 5.3.

4 Main results

In this section, we formally state and discuss our main

results: generalization and excess bounds for scalarizations

and for Pareto-fronts. For maximal generality, we formu-

late the results on the generic level introduced in Sect. 2.

We will discuss instantiations that either improve over

related existing work or provide new insights in Sects. 5

and we provide a high-level overview of potential addi-

tional applications in Sect. 6.

Assumptions. Because the multi-objective setting strictly

generalizes the single-objective one, multi-objective gen-

eralization is not possible unless at least single-objective

generalization holds. Therefore, for all our results we adopt

the following assumption.

Assumption A For each objective i 2 ½N� individually, a
generalization bound of the form (1) with generalization

term Ciðn;H; dÞ holds.

Note that Assumption A is technically easy to fulfill, at

least for bounded objectives, by setting the required gen-

eralization terms, Ciðn;H; dÞ for i 2 ½N�, to large enough

constants. Our results do hold for such a choice, but their

interpretation would mostly not be very interesting.

Therefore, whenever we want to interpret results in the

light of their approximation quality, we additionally make

the following assumption.

Assumption B For each i 2 ½N� and for each d 2 ð0; 1Þ, it
holds that Ciðn;H; dÞ !n!1

0.

As we detail in Sect. 6, Assumption A and Assump-

tion B are fulfilled for many quantities of interest related to

the accuracy, fairness, robustness or efficiency of machine

learning systems. Noteworthy special cases are objectives

that are data-independent functions of only the hypothesis,

for example, regularization terms. We say that such

objectives generalize trivially, because they fulfill LðhÞ ¼
bLðhÞ for all datasets and all h 2 H, and therefore, gener-

alization bounds of the form (1) hold for them trivially with

0 as generalization term.

4.1 Multi-objective generalization

Our first result states that if generalization bounds hold

individually for each objective, then they hold also jointly

in the multi-objective setting, where the empirical objec-

tives are computed from a single dataset, at only a minor

loss of confidence.

Lemma 1 (Multi-Objective Generalization Bound) Let Nnt

be the number of non-trivial objectives. Let S be a random

dataset of size n. For each i 2 ½N�, let bLi be an empirical

estimate of Li based on a subset Si � S of size ni. The sets

Si are arbitrary. In particular, they are not necessarily

disjoint. Then it holds with probability at least 1� d,

8i 2 ½N�; 8h 2 H : jLiðhÞ � bLiðhÞj � Ciðni;H; d=NntÞ:
ð3Þ

Lemma 1 is in fact a straightforward consequence of

Assumption A, requiring only a union-bound argument as

proof. We state it explicitly nevertheless because it has not

appeared in this form in the literature so far.

24672 Neural Computing and Applications (2025) 37:24669–24683

123



4.2 Generalization and excess bounds
for scalarizations

A common way for learning in a multi-objective setting is

by performing single-objective learning for one or multiple

scalarizations. To keep the notation concise, for any

scalarization U : RN
þ ! Rþ and h 2 H, we abbreviate

LUðhÞ :¼ UðL1ðhÞ; . . .;LNðhÞÞ,
bLUðhÞ :¼ UðbL1ðhÞ; . . .; bLNðhÞÞ. We also remind the reader

that a norm k � k in RN is monotonic, if for all x; y 2 RN if

jxij � jyij8i 2 ½N�; then kxk�kyk:

Theorem 2 (Generalization and Excess Bounds for

Scalarizations) Assume the same setting as for Lemma 1.

Let U ¼ fU : RN ! Rþg be a set of scalarizations, each of

which is kU -Lipschitz continuous with respect to some

monotonic norm k � kU . Then, for all d[ 0 the following

two statements hold with probability at least 1� d.

(a) For all U 2 U and h 2 H:
��LUðhÞ � bLUðhÞ

��� kU
���C1ðn1;H; d=NntÞ;

. . .; CNðnN ;H; d=NntÞ
���

U
:

ð4Þ

(b) For all U 2 U, for all ĥ
�
U 2 argmin

h2H
bLUðhÞ and for all

h 2 H:

LUðĥ
�
UÞ�LUðhÞ þ 2kU

���C1ðn1;H; d=NntÞ;
. . .; CNðnN ;H; d=NntÞ

���
U
:

ð5Þ

Proof sketch. We provide the main arguments of the

proofs here. The complete proofs are provided in Appen-

dix A. a) The Lipschitz property implies that the difference

of scalarized objectives is upper bounded by the norm of

the differences in objective values. By the norm’s mono-

tonicity and Lemma 1, this is again bounded by the norm

of the generalization terms. b) from bLUðĥ
�
UÞ� bLUðhÞ it

follows that LUðĥ
�
UÞ � LUðhÞ�LUðĥ

�
UÞ � bLUðĥ

�
UÞþ

bLUðhÞ � LUðhÞ. Using a) we can bound the difference

between the first two terms as well as the difference

between the last two terms on the right-hand side each by

the norm of the generalization terms.

Remark. We formulate the theorem with scalarization-

dependent norms k � kU because in some scenarios using a

single (e.g., Euclidean) norm for all scalarizations would

yield sub-optimal bounds. For instance, if UðxÞ ¼
PN

i¼1 wijxij; then this is itself a norm and it is optimal to

choose k � kU 
 U to get the tightest bound.

Discussion. Theorem 2 establishes generalization and ex-

cess bounds for the situation of scalarization-based multi-

objective learning. Their relevance lies not only in the

inequalities (4) and (5) themselves, which have the stan-

dard single-objective form, but also in the fact that these

hold uniformly over all scalarizations U 2 U. This implies

that one can solve an arbitrary number of scalarized

problems without suffering a loss of confidence in the

theoretical guarantees. That is in contrast to other situations

of repeated learning, e.g., hyperparameter tuning on a

validation set, where the statistical guarantees deteriorate

with the number of hypotheses considered, because of the

multiple hypothesis testing phenomenon [4, Chapter 11].

Despite its simplicity, the theorem improves over prior

work, Cortes et al. [12], which proved guarantees that

depend on the size of U. For a more detailed discussion, see

Sect. 5.3.

4.3 Pareto excess bounds

We now provide a formal analysis of the relation between

the set of Pareto-optimal hypotheses and the set of

empirically Pareto-optimal hypotheses. First, we show that

any two elements of the two Pareto-optimal sets fulfill an

excess-type inequality with respect to at least some of the

objectives.

Theorem 3 Assume the same situation as for Lemma 1.

Then, for any d[ 0, it holds with probability at least

1� d: For all Pareto-optimal h� 2H and empirically

Pareto-optimal ĥ
� 2H there exists a non-empty subset

I � ½N�, such that

8i 2 I : Liðĥ
�Þ�Liðh�Þ þ 2Ciðni;H; d=NntÞ: ð6Þ

Proof sketch. The proof works by contradiction: assume

that a pair ðh�; ĥ�Þ exists such that for no index set

inequality (6) would hold. Then, using Lemma 1, one

could show that h� strongly dominates ĥ
�
with respect to

the empirical objectives, which is a contradiction to the

optimality of ĥ
�
. For the formal steps, see Appendix A.

Like the sketch, the formal proof does not actually make

use of the optimality of h�. This implies that Theorem 3

holds in fact for all h 2 H, making it even more apparent

that excess bound with respect to individual objectives are

of limited use for studying multi-objective generalization.

For multi-objective learning, the most relevant question

is if there is an analog of Theorem 3 for the case of I ¼ ½N�,
i.e., if by finding the empirical Pareto-curve one also

approximately recovers the true Pareto-curve with respect

to all objectives. This is formalized in the following

theorem.
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Theorem 4 (Pareto Excess Bound) Assume the same set-

ting as for Lemma 1. Then, for any d[ 0, it holds with

probability at least 1� d.

(a) For all Pareto-optimal h� 2H there exists an empir-

ically Pareto-optimal ĥ
� 2H with

8i 2 ½N� : Liðĥ
�Þ�Liðh�Þ þ 2Ciðni;H; d=NntÞ:

ð7Þ

(b) Assume that the Pareto-front is ray complete, i.e., for

all R 2 fðr1; . . .; rNÞ : ri [ 0 for i 2 ½N�g, there

exists an h 2 P with
�
L1ðhÞ; . . .;LNðhÞ

�
/ R. Then,

for all empirically Pareto-optimal ĥ
� 2H, there exists

a Pareto-optimal h� 2H with

8i 2 ½N� : Liðĥ
�Þ�Liðh�Þ þ 2Ciðni;H; d=NntÞ:

ð8Þ

Proof sketch. To prove part a), we make use of the fact

that h� 2 H is dominated with respect to the empirical

objectives by some empirically Pareto-optimal h� 2 H, i.e.,

bLiðĥ
�Þ � bLiðh�Þ for all i 2 ½N�. Statement (7) follows by

applying Lemma 1 to both sides of this inequality and

rearranging terms.

The main insight for proving part b) is that ĥ
� 2

argmin
h2H

bLUðhÞ for the Chebyshev scalarization

Uðx1; . . .; xNÞ ¼ maxj2½N� wjxj with weights wj ¼ 1

bL jðh�Þ
for

j 2 ½N�, as long as bLiðh�Þ[ 0 for all i 2 ½N�. With h� 2

argmin
h2H

LUðhÞ it follows from Theorem 2 that

maxj2½N� wjLjðĥ
�Þ� maxj2½N� wjLjðh�Þ þ 2maxj2½N� wjCjðnj;

H; d=NntÞ . For any i 2 ½N�, it holds that

wiLiðĥ
�Þ� maxj2½N� wjLjðĥ

�Þ, and the assumption of ray

completeness ensures that, wiLiðĥ
�Þ ¼ maxj2½N� wjLjðĥ

�Þ.
In combination, one obtains the same statement as (8),

except with a potentially weaker generalization term
2
wi
maxj2½N� wjCjðnj;H; d=NntÞ. To obtain the desired result,

one creates additively shifted objective functions that result

in a learning setting equivalent to the original one, but in

which all terms wjCjðnj;H; d=NntÞ for j 2 ½N� are identical,
such that, in particular,

maxj2½N� wjCjðnj;H; d=NntÞ ¼ wiCiðni;H; d=NntÞ. For com-

plete proofs, see Appendix A.

Discussion. The theorems in this section clarify the relation

between the true Pareto-optimal set and its empirical

counterpart. When looking a single objective at a time, the

relation is nearly trivial: Theorem 3 establishes that any

empirically Pareto-optimal hypothesis is not much worse

than any truly Pareto-optimal hypothesis with respect to at

least one of the objectives.

More interesting is the situation when studying all

objectives simultaneously. Theorem 4 provides a multi-

objective analog of the classical empirical risk minimiza-

tion principle [39]. Solving the empirical multi-objective

learning problem makes sense as a learning strategy,

because for every truly Pareto-optimal hypothesis there is

an empirically Pareto-optimal one that has not much larger

(true) objective values, jointly across all of the objectives.

Reversely, every empirically Pareto-optimal hypothesis is

not substantially worse than some Pareto-optimal one, if

we make an additional assumption on the geometry of the

Pareto-front.

The employed ray completeness assumption is quite

restrictive, and we do not expect it to be fulfilled in most

real-world situations. For example, it is violated already

whenever one of the objectives is bounded from below by a

constant bigger than 0.

In the two-objective situation, ray completeness does

hold if the Pareto-front is a continuous curve between some

point on the L1-coordinate axis and some point on the L2-

coordinate axis, excluding the origin. An example where

such a situation can happen is a classification task in the

realizable setting with classification error and (suitably

defined) computational cost as objectives. For a sufficiently

rich hypothesis set, the smallest achievable error will be a

continuous and monotonically decreasing function of the

specified computational budget. Consequently, the Pareto-

front will be a continuous curve between a point (a, 0),

where a is the classification error of the classifier with

minimal budget, and a point (0, b), where b is the smallest

computational cost for a classifier achieving minimal

classification error. Note that realizability is necessary.

Otherwise, the curve would still be monotonic, but the

second point in the above construction would not lie on the

L2-coordinate axis. Consequently, ray completeness would

not be fulfilled.

While sufficient, ray completeness is certainly not a

necessary condition. For example, if both the real objective

and the empirical objective are bounded away from zero by

the same constant, substracting this constant from both

objectives could yield a situation that is equivalent in terms

of multi-objective learning, but in which ray completeness

might be fulfilled. Furthermore, from the Theorem’s proof

one can see that a weaker condition would suffice, namely

that every ray through the empirical Pareto-front also

intersects the actual Pareto-front. This formulation would

complicate the condition, though, as it introduces a

dependence on the dataset and would nevertheless still not

be a mathematically necessary condition. Therefore, we

leave the task of identifying a condition that is necessary as

well as sufficient to future work.
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The following theorem shows that some additional

assumption is required for Theorem 4 to hold.

Theorem 5 Let N	 2. Then, for any C[ 0 there exists a

learning problem that fulfills Assumptions A and B with

Ciðni;H; dÞ ¼ 0 for i 2 ½N � 1�, but for which with prob-

ability at least 1
2
there exists an empirically Pareto-optimal

ĥ
� 2 H, such that for all Pareto-optimal h� 2 H, it holds

8i 2 ½N � 1� : Liðĥ
�Þ[Liðh�Þ þ C: ð9Þ

Proof We prove the theorem by constructing a concrete

counterexample that exploits the classic overfitting (or

bias-variance trade-off) phenomenon of single-objective

supervised learning [39].

First, we look at the case N ¼ 2. Let Z ¼ X � Y with

X ¼ ½0; 1� and Y ¼ f0; 1g, p(x) be the uniform distribution

and pðyjxÞ ¼ 1
2
. Let H ¼ fh : X ! Yg be the set of

piecewise-constant functions that consist of at most K

segments. We choose the number of jumps as L1 and the 0/

1-loss as L2. Then, Assumption A and Assumption B are

fulfilled: H is known to have VC-dimension 2k [4], so a

classical generalization bound holds for L2. L1 even

generalizes trivially.

We observe that every hypothesis in h 2 H fulfills

L2ðhÞ ¼ 1
2
. Consequently, the two Pareto-optimal solutions,

h, are the constant classifiers, which fulfill L2ðhÞ ¼ 1
2
and

L1ðhÞ ¼ 0.

Empirically, however, for sufficiently many points, with

high probability, the empirical loss bL2ðhÞ will be strictly

monotonically decreasing with respect to bL1ðhÞ, as more

segments allow to better fit the training data. Consequently,

the set of empirically Pareto-optimal solutions will contain

elements with bL1ðhÞ ¼ k for any k 2 ½K�, i.e., arbitrarily
far from all solutions in the truly Pareto-optimal set.

Figure 2 shows a visualization of this situation.

For larger N, we use the analogous construction in RN�1.

Hypotheses have at most K jumps in each coordinate

dimension. Objectives 1 to N � 1 are the number of jump

per coordinate; objective N is the classification 0/1-loss. h

Discussion. Theorem 5 establishes that the asymmetry

between the statements a) and b) of Theorem 4 is an

intrinsic property of the multi-objective setting, not a

limitation of our proof techniques. There can indeed be

hypotheses in the empirically Pareto-optimal set that are

not in an excess relation with any hypothesis in the truly

Pareto-optimal set. Note that despite the fact that multi-

objective learning includes single-objective learning as a

special case, there is no contradiction to the classical

symmetric result. For N ¼ 1, the fact that I � ½N� is non-
empty in Theorem 3 makes its statement identical to

Theorem 4 b) without the additional assumption. Theo-

rem 5 holds only for N	 2.

4.4 Summary

In combination, the results of this section establish a

detailed picture of similarities and differences between the

generalization properties of single-objective and multi-

objective learning. In particular, it highlights a fundamental

difference between single-objective learning and Pareto-

based multi-objective learning: In the single-objective

setting, empirical risk minimization is a good learning

strategy, because with growing data, the every minimizer

of the empirical risk also has close to optimal true risk. In

the multi-objective setting, scalarized learning has the

same properties, but the resulting guarantees hold only with

respect to the scalarization of the objectives, not each of

them individually. Joint statements across all objectives

hold as well, thereby justifying Pareto-based learning.

However, without additional assumptions excess guaran-

tees can only be given for a subset of the empirical

solutions.

5 Applications

Our results of the previous section provide new tools for

analyzing learning tasks in which multiple, potentially

competing, quantities are of simultaneous interest, such as

fairness, robustness, efficiency and interpretability. So far,

the generalization properties of these quantities have been

studied either not at all, or only with task-specific tools.

Similarly, we expect that multi-task, multi-label and meta-

learning, as well as AutoML will potentially be able to

benefit from the multi-objective view.

In the rest of this section, we sketch three exemplary

applications. In Sect. 5.1 we show how our results on

empirical versus true Pareto-optimality can provide newFig. 2 Illustration of the counterexample proving Theorem 5 for

N ¼ 2
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insights for a well-known method. In Sect. 5.2 we

demonstrate how our results on scalarized learning provide

a simple and flexible way for constructing new single-ob-

jective generalization bounds. In Sect. 5.3, we improve an

existing generalization bound for the multi-objective set-

ting, which thanks to our results of Sect. 4 requires only a

few lines of proof. For a more high-level discussion of

other application scenarios, see Sect. 6.

5.1 Simultaneous feature selection
and regression

The classical LASSO method [40] learns a linear regres-

sion function by solving the following regularized risk

minimization problem

min
b2Rd

1

n

Xn

i¼1

ðyi � b>xiÞ2 þ kkbkL1 : ð10Þ

Here fðx1; y1Þ; . . .; ðxn; ynÞg � Rd � R is a given training

set and k 2 Rþ is a free parameter that trades off the data

fidelity on the training set with the sparsity of the coeffi-

cient vector b at its optimum. LASSO is particularly

popular because it not only learns a regression function but

also performs feature selection and therefore can give rise

to more interpretable regression models than other regres-

sion techniques. The set of all solutions obtained by min-

imizing (10) for different values of k is called the solution

path. A number of efficient techniques for computing it

have been developed [41–43].

We can interpret the LASSO problem equivalently as

the linear scalarization of a two-objective learning prob-

lem. The first objective is the expected squared loss

L1ðbÞ ¼ Eðx;yÞðy� b>xÞ2, which has bL1ðbÞ ¼ 1
n

Pn
i¼1ðyi �

b>xiÞ2 as empirical counterpart. When the data and coef-

ficient vector come from bounded domains, standard gen-

eralization bounds are known to hold that relate L1 and bL1,

see, e.g., Mohri et al. [3, Theorem 11.11]. The second

objective is the regularizer, L2ðbÞ ¼ bL2ðbÞ ¼ kbkL1 ,
which generalizes trivially.

The (single-objective) generalization properties of

LASSO’s squared loss term are well understood. The

multi-objective view, however, adds insight into its relation

with the regularizer, which reflects the sparsity and thereby

the interpretability of the solutions. First, we observe that

the underlying optimization problem is convex, so each

empirically Pareto-optimal solution can be recovered by

solving (10) for some value of k. Therefore, existing so-

lution path methods can readily be used to identify the

empirical Pareto-front.

Theorem 4 a) now ensures that each truly Pareto-opti-

mal solution can be approximately recovered this way. This

means, we can be sure that no solutions exist that are

substantially sparser at equal accuracy or more accurate at

identical sparsity with respect to the true objectives than

some in the solution path.

However, Theorem 5 reminds us that not all solutions

found by solving (10) will necessarily be close to truly

Pareto-optimal. In particular, this means, while each indi-

vidual element of the solution path will have optimal

sparsity for the empirical accuracy it achieves, its sparsity

might be far from optimal compared to other solutions of

similar true accuracy. Consequently, if optimal sparsity is

important for the task at hand, the solutions on the regu-

larization path should be further evaluated, e.g., using

validation data.

The latter comment does not apply if the true underlying

regression task is actually linear, such that a coefficient

vector, b, exists with vanishing objective, L1ðbÞ ¼ 0.

Because the same property holds for L2 (trivially achieved

by b ¼ 0), and the regularization path is a connected

set [44], the condition of ray completeness would be ful-

filled. Theorem 4 b) then guarantees that in fact all

empirically Pareto-optimal solutions are also approxi-

mately truly Pareto-optimal.

5.2 Tilted empirical risk minimization

Tilted empirical risk minimization (TERM) [45] has

recently been proposed as a widely applicable technique

for making learning problem more robust or more fair. In

its group-based form, TERM consists of minimizing an

exponentially weighted risk functional

Jtðf Þ ¼
1

t
log

� 1

N

XN

i¼1

etRiðf Þ
�

with Riðf Þ

¼ 1

n

X

ðx;yÞ2Si
‘ðy; f ðxÞÞ

ð11Þ

for a loss function ‘ and training data given as N potentially

overlapping groups, S1; . . .; SN . For simplicity of exposi-

tion, we assume all groups to be of identical sizes, n. The

tilt parameter t 2 R n f0g determines how much and in

which direction the tilt influences the training process.

Positive values of t make Jt behave like a soft maximum

operation that puts more weight on large values of Ri than a

plain average. For t ! 1, TERM converges to maxi Riðf Þ.
As a consequence, minimizing (11) with t[ 0 encourages

fair solutions, in the sense that none of the groups should

have a much larger values of Ri than the others.

Conversely, negative values of t make Jt behave like a

soft minimum operation that puts less weight one large

values of Ri. For t ! �1, TERM converges to mini Riðf Þ.
Such a behavior is desirable if some of the groups can be

expected to be outliers with large values for Ri, even if the
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others terms are small. Minimizing (11) with t\0 can be

used to find solutions that are robust against such outlier

groups.

Theorem 2 readily allows us to make statements about

the generalization properties of TERM, not just for one

value of t but all possible ones simultaneously. For any

value of t, the functional Jt in (11) can be seen as a

scalarization of empirical objectives R1; . . .;RN . A direct

check confirms that each such Jt is 1-Lipschitz with respect

to the L1 norm. Assuming that generalization bounds hold

for each individual group, then Theorem 2 guarantees that

a generalization bound of the same structure holds also for

Jt, simultaneously across all values of t.

Hierarchical TERM (hTERM) [45] uses the same

exponentially weighted functional Jt, but the per-group

terms R1; . . .;RK that it combines are not averages across

samples as in (11), but TERM losses themselves with

individual tilt parameters s1; . . .; sK . From our previous

analysis, we know generalization bounds for each of those.

Consequently, by the same construction as above, we

readily obtain a generalization bound for hTERM, which in

fact holds uniformly across all combinations of tilt

parameters.

5.3 Agnostic learning with multiple objectives

Cortes et al. [12] study the generalization properties of

multi-objective learning for the case of a special scalar-

ization obtained by minimizing over convex combinations.

To allow for an easier comparison, we state their result in

our notation.2

Theorem 6 (Theorem 3 in Cortes et al. [12]) Let H be a

hypothesis set for a supervised learning problem with input

set X and output set Y that fulfills kðhðx0Þ; y0Þ �
ðhðxÞ; yÞk�D for some constant D[ 0 and for all

ðx; yÞ; ðx0; y0Þ 2 X � Y. Let ‘i : Y � Y ! Rþ for i 2 ½N� be
loss functions that are Mi-Lipschitz and upper bounded by

M. Set LiðhÞ ¼ Eðx;yÞ½‘ðy; hðxÞ� and bLiðhÞ ¼
1
n

Pn
i¼1 ‘ðyi; hðxiÞÞ for a dataset S �i:i:d:pðx; yÞ of size n. For a

set of scalarization weights, W � DN , let LWðhÞ ¼
maxw2W

PN
i¼1 wiLiðhÞ and bLWðhÞ ¼

maxw2W
PN

i¼1 wi
bLiðhÞ. Assume that

PN
i¼1 wiMi � b for all

w ¼ ðw1; . . .;wNÞ 2 W.

Then, for any �[ 0 and d 2 ð0; 1Þ, with probability at

least 1� d, the following inequality holds for all h 2 H:

LWðhÞ� bLWðhÞ þ 2bR̂SðHÞ þM�þ 3bD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2n
log

h 2jW�j
d

ir

; ð12Þ

where R̂SðHÞ is the empirical Rademacher complexity of

the hypothesis class H with respect to S, and jW�j is the

size of a minimal �-cover of W.

One can see that inequality (12) precisely matches the

form of our excess bound in Theorem 2 for a specific

scalarization. Indeed, we can derive an analogous theorem

using our results of Sect. 4.

Theorem 7 Make the same assumptions as in Theorem 6.

Then, for any d 2 ð0; 1Þ, with probability at least 1� d the

following inequality holds for all h 2 H:

LWðhÞ� bLWðhÞ þ 2bR̂SðHÞ þ 3bD

ffiffiffiffiffiffiffiffiffiffiffiffi
log 2N

d

2n

s

: ð13Þ

Proof The Lipschitz assumptions imply standard Rade-

macher-based generalization bounds for each objective

individually [3, Theorem 11.3]: With probability at least

1� d it holds for all h 2 H:

LiðhÞ� bLiðhÞ þ 2MiR̂SðHÞ þ 3MiD

ffiffiffiffiffiffiffiffiffi
log 2

d

2n

s

: ð14Þ

We now apply Theorem 2 for the family of linear scalar-

izations, Uwðx1; . . .; xNÞ ¼
PN

i¼1 wixi with w 2 W , and we

insert that wiMi � b. Finally, taking the maximum over w

on both sides of the inequality yields (13). h

Because of the power of the introduced multi-objective

framework, the proof of Theorem 7 is much shorter than

the original one of Theorem 6. Nevertheless, our result has

a number of advantages. First, our bound is structurally

simpler. It holds without need for an �-parameter that

additively enters the right-hand side of (12), yet also

influences the size of the rightmost confidence term. Sec-

ond, the right-hand side of our bound is independent of the

size of W, with the confidence term only depending on the

number of objectives. As a consequence, our bound is

substantially tighter, except for trivially small sets W. For

example, for the common case of convex combinations,

W ¼ DN , the covering size jW j� is of order ð1=�Þ
N�1

. This

makes the generalization term in (12) of order
ffiffiffiffiffiffiffiffiffi
N=n

p
,

indicating that to preserve confidence the amount of data

has to grow linearly with the number of objectives con-

sidered. In contrast, the right-hand side of our bound (13) is

independent of the size of W and its confidence term grows

only logarithmically with respect to N. Finally, our proof is

not only simpler than the original one but also more flex-

ible: It readily extends to other generalization bounds

2 Our formulation also has slightly different constants in the

generalization term, which we believe to be necessary based on the

theorem’s proof. We multiply the rightmost term by 3 and the jW�j by
2.
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rather than just Rademacher-based ones, and to other

scalarization besides linear combinations.

6 Further application scenarios

In Sect. 5 we highlighted some specific examples in which

our proposed multi-objective generalization theory pro-

vides new insights into existing methods. In this section,

we provide more high-level background and discuss addi-

tional quantities that we believe will or will not benefit

from a multi-objective analysis.

Fairness. Algorithmic (group) fairness asks to create

classifiers that are not only accurate but also do not dis-

criminate against certain protected groups in their deci-

sions. Formally, this property can be expressed by different

(un)fairness measures, such as demographic parity,

equality of opportunity or equalized odds [46]. Because

accuracy and fairness can be in conflict with each other,

fairness-aware learning is a prototypical candidate for

multi-objective learning [47–50]. This view also extends

naturally to integration of multiple fairness measures [51],

which might be incompatible with each other [52–54].

Generalization bounds for the empirical estimation of

unfairness measures have been developed [55, 56]. Con-

sequently, our results from Sect. 4 apply, yielding a unified

understanding of the generalization properties of fairness-

aware learning, e.g., regularization-based [57], constraint-

based [58] or Pareto-based [18, 51]. The multi-objective

view also allows us to conjecture that methods that seek

fair hypotheses by other means, such as preprocessing [59]

or post-processing [60], might not reach (empirically)

Pareto-optimal solutions. If generalization guarantees do

actually hold for these, other ways for proving them would

be required.

Robustness. It has been observed that deep network clas-

sifiers in continuous domains such as image classification

are susceptible to adversarial examples, i.e., they are not

robust against small perturbation of the input data. Two

main research directions have emerged to overcome this

limitation: Adversarial training [61] adds a robustness-

enforcing loss term to the training problem. Generalization

bounds for such terms have been derived, e.g., Yin et al.

[62]. Consequently, multi-objective learning can be used in

this setting with the guarantees and caveats discussed

above. Lipschitz-networks [63] restrict the hypothesis class

to functions with a small Lipschitz constant, typically 1.

Afterward, one solves a training problem that tries to

enforce a large margin between the predicted class label

and the runner-up. From the achieved margins, one can

infer how large an input perturbation the classifier can

tolerate without changing its decision [64]. We are not

aware of existing theoretical studies of such certified

robustness techniques. However, margin-based loss func-

tions have a long tradition in machine learning, and a

number of generalization bounds exist which are applicable

in the described situation, such as Kuznetsov et al. [65],

Koltchinskii and Panchenko [66].

Efficiency. Large machine learning models, in particular

deep networks, often have high computational demands,

not only at training but also at prediction time [67, 68].

Consequently, a number of techniques have been devel-

oped that aim at reducing the computational cost. Param-

eter sparsification [69] and quantization [70] are widely

used methods for reducing the number of operations

required to evaluate a model. As data-independent prop-

erties, they can readily be used as trivially generalizing

objectives in a multi-objective learning framework [35].

Alternatively, speedup can also be achieved by encourag-

ing as many zero values as possible to occur as part of the

internal computation steps of a deep network. Such acti-

vation sparsity [71] is a data-dependent quantity that can

also be shown to generalize using standard techniques.

Therefore, it as well can be handled in a multi-objective

way. Adaptive computation methods, such as ensem-

bles [72, 73], classifier cascades [74] or multi-exit archi-

tectures [75, 76], evaluate different subsets of a larger

model depending on the input sample. For suitable design

choices, generalization bounds for the resulting computa-

tion time can be proven, and our results will apply.

Multi-task and multi-label learning. Multi-task learning

has recently been put forward as a multi-objective task,

where each task’s loss is treated as a separate objec-

tive [77–80]. This setting is of a non-standard form, as

each task typically has a dedicated training set, and

objectives are not necessarily competing with each oth-

ers [81]. Nevertheless, our framework can handle this

setting as well, making use of the property that we allow

the empirical estimates of different objectives to be derived

from different subsets of the available data. Pareto-based

guarantees are particularly relevant then, because at pre-

diction time, for each sample one is interested in only one

of the objectives, namely the one of the task to which this

sample belongs. In the related problems of multi-label

learning [82] and extreme classification [83], the goal is to

predict multiple outputs (labels) for each sample. Each

label has an associated classifier objective, and the losses

are estimated either from the total dataset or from (typi-

cally overlapping) subsets [84]. Again, our framework is

flexible enough to handle this setting. At prediction time,

all labels are meant to be predicted, and the quality is

typically judged by a task-dependent aggregate measure,

making scalarization approaches of particular interest in

this setting.
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Limitations. Despite its generality, some multi-objective

learning settings do not lend themselves to an analysis

using our results. For example, in the learning-to-rank

setting [85] solutions are typically judged by two mea-

sures: precision and recall. A priori, this makes it a

promising setting for multi-objective analysis [86, 87].

Unfortunately, we are not aware of generalization bounds

for the precision objective. Given that its value fluctuates

heavily in the low-recall regime, it is in fact possible that

Assumption B might not be fulfillable. Also in the context

of ranking, two other common objectives are true positive

rate (TPR) and false positive rate (FPR), which together

trace out the receiver operating characteristic (ROC)

curve. TPRs and FPRs can summarized into a single value

by the area under the ROC curve (AUC) [88], for which

indeed generalization bounds have been derived [89].

However, the AUC is not a scalarization in the sense of

Sect. 2.1, so Theorem 2 does not apply to it. Finally,

besides the uniform generalization bounds of Assump-

tion A, other guarantees of generalization have been

developed, e.g., based on PAC-Bayesian theory [90, 91], or

algorithmic stability [92, 93]. We see no principled reasons

why results similar to ours should not hold for such settings

as well, but other techniques would be required that lie

outside of the scope of this work.

7 Conclusion

In this work, we proved a number of foundational results

for the generalization theory of multi-objective learning. In

particular, we showed that generalization bounds for the

individual objectives imply generalization and excess

bounds for multi-objective learning using scalarizations.

Our second main result is an analysis of the relation

between the Pareto-optimal sets of the empirical and the

true learning problem. This justifies the use of Pareto-based

methods on empirical data to approximately find all truly

Pareto-optimal solutions. However, there is a caveat that

some of the solutions found might be close to Pareto-op-

timal ones only with respect to some of the objectives, not

all of them.

We formulated our results on a high level of generality

that applies not only to measures of per-sample prediction

quality, for which generalization bounds were originally

developed, but also many other quantities of interest for

modern machine learning systems, such as fairness, ro-

bustness and efficiency. While initial results for some of

these specific domains exist, we expect that more and

stronger guarantees will be possible by more refined

objective-specific analyses.

On a technical level, we see two directions for poten-

tially improving our results. First, it would be desirable to

have an explicit rather than implicit relationship between

Pareto-optimal hypotheses and their best empirically Par-

eto-optimal approximations. Theorem 4 does not provide

this. Even though its proof contains an explicit procedure,

it relies on uncomputable quantities, such as the true

objective values. Second, given that Theorem 5 establishes

that there can be empirically Pareto-optimal hypotheses

that do not approximate any truly Pareto-optimal hypoth-

esis with respect to all objectives, it would be desirable to

have an algorithmic procedure for testing which hypothe-

ses these are. We see these as interesting directions for

future work.

Appendix A

Appendix—proofs of the main results

Proof of Theorem 2 With probability at least 1� d for the

dataset S, the relations of Lemma 1 will hold. By studying

only these cases, we again obtaining results that hold with

probability at least 1� d.
For statement a), for any U 2 U we obtain by the

Lipschitz property of the scalarization and Lemma 1 that

for all h 2 H:

jLUðhÞ � bLUðhÞj � kUk
�
L1ðhÞ � bL1ðhÞ;

. . .;LNðhÞ � bLNðhÞ
�
kU

ðA1Þ

� kUk
�
jL1ðhÞ � bL1ðhÞj; . . .; jLNðhÞ � bLNðhÞj

�
kU ðA2Þ

� kUk
�
C1ðn1;H; d=NntÞ;

. . .; CNðnN ;H; d=NntÞ
�
kU

ðA3Þ

where the last two inequalities hold because of the norms’

monotonicity, i.e., the fact that it is non-decreasing under

increases of the input vector components [94]. In combi-

nation, this proves statement a).

Statement b) follows by arguments mirroring the proof

of classic excess risk bounds [3]. Let ĥ
�
U 2 argmin

h2H
bLUðhÞ.

Then, it holds for arbitrary h 2 H that

LUðĥ
�
UÞ � LUðhÞ�LUðĥ

�
UÞ � bLUðĥ

�
UÞ þ bLUðhÞ � LUðhÞ

ðA4Þ

� 2k
�
C1ðn1;H; d=NntÞ; . . .; CNðnN ;H; d=NntÞ

�
kU ðA5Þ

where the first inequality holds because bLUðĥ
�
UÞ� bLUðhÞ

by construction of ĥ
�
U , and the second inequality one fol-

lows from applying (4) twice, once for h and once for ĥ
�
U .
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The statement of the theorem now follows by moving the

term containing h to the right-hand side.

Proof of Theorem 3 We again only study the case in the

inequalities of Lemma 1 are fulfilled, so the results we

achieve hold with probability at least 1� d.
We prove the remaining part of the theorem by

contradiction. The negation of the statement reads: there

exists an empirically Pareto-optimal hypothesis ĥ
� 2 H

and a hypothesis h 2 H such that Liðĥ
�Þ �

LiðhÞ[ 2Ciðni;H; d=NntÞ for all i 2 ½N�.
For these ĥ

�
and h, it follows that for all i 2 ½N�:

bLiðhÞ � bLiðĥ
�Þ�LiðhÞ � Liðĥ

�Þ þ 2Ciðni;H; d=NntÞ\0:

ðA6Þ

For the first inequality, we applied Lemma 1 twice, and the

second inequality follows from the assumption. However,

(A6) establishes that h empirically strongly dominates ĥ
�

which is a contradiction to the assumption that ĥ
�
was

empirically Pareto-optimal. h

Proof of Theorem 4 We again only study these case in

which the dataset fulfills the inequalities of Lemma 1, so

the results we achieve holds with probability at least 1� d.
Statement a) is a consequence of Lemma 1 and the

definition of (empirical) Pareto-optimality. Let h� 2 H be

Pareto-optimal. If it is also empirically Pareto-optimal,

inequality (7) holds trivially with ĥ
� ¼ h�. Otherwise, there

exists an empirically Pareto-optimal ĥ
�
that dominates h�

with respect to the empirical objectives, i.e., in particular

bLiðĥ
�Þ � bLiðh�Þ for all i 2 ½N�. From this, we obtain for all

i 2 ½N�, analogously to the proof of Theorem 2b):

Liðĥ�Þ � Liðh�Þ�Liðĥ�Þ � bLiðĥ�Þ þ bLiðh�Þ � Liðh�Þ
� 2Ciðni;H; d=NntÞ:

ðA7Þ

Before proving statement b), we introduce additively

shifted objectives as the main tool.

Definition 4 For an objective LðhÞ with empirical esti-

mate bLðhÞ and a constant K, we call LþKðhÞ ¼ LðhÞ þ K

and bLþKðhÞ ¼ bLðhÞ þ K their K-additively shifted

variants.

Generalization and Pareto-optimality are unaffected by

additive shifts.

Lemma 8

a) For any constant K, if a generalization bound of the

form (1) holds for an objective L and its empirical

estimate bL, then a bound with identical generaliza-

tion term also holds for LþK and bLþK .

b) For any constants K1; . . .;KN , a solution h 2 H is

Pareto-optimal for L1; . . .;LN if and only if it is

Pareto-optimal for LþK1

1 ; . . .;LþKN

1 . The analogous

relation holds for empirically Pareto-optimality.

The proofs are elementary: For a), the additive terms

cancel out in the generalization bound. For b) Pareto-op-

timality depends only on the relative order of objective

values, which is not affected by additive shifts.

Lemma 9 Let h� 2 H be a Pareto-optimal solution with

LiðhÞ[ 0 for all i 2 ½N�. Then h� is a minimizer to the

Chebyshev scalarization U ð1Þ
w ðhÞ ¼ maxi2½N� wiLiðhÞ with

weights wi ¼ 1
Liðh�Þ for i 2 ½N�. Furthermore, for any other

minimizer, hy, of the scalarization it holds that LiðhyÞ ¼
Liðh�Þ for all i 2 ½N�. The analogous result holds for

empirically Pareto-optimal hypotheses.

Proof We prove the lemma by contradiction. First,

assume h to be a hypothesis with strictly smaller value for

the scalarization. By construction wiLiðh�Þ ¼ 1 for all

i 2 ½N�, therefore wiLiðhÞ\1 for all i 2 ½N� must hold.

This, however, would imply LiðhÞ\Liðh�Þ for all i 2 ½N�,
which is impossible because h� is Pareto-optimal. For hy,
we know wiLiðhyÞ� 1 and therefore LiðhyÞ�Liðh�Þ for

all i 2 ½N�. Because of h�’s Pareto-optimality, none of these

inequalities can be strict, which proves the statement. The

same line of arguments holds in the empirical situation. h

We now turn to the proof of Theorem 4 b). Let ĥ
�
be an

empirically Pareto-optimal solution for L1; . . .;LN . For a

more concise notation, we abbreviate ci ¼ Ciðn;H; d=NntÞ.
First, we consider the case where none of the objectives

is trivially generalizing, i.e., ci [ 0 for all i 2 ½N�. By

Lemma 8, we know that h� is also empirically Pareto-op-

timal for the shifted objectives bLþK1

1 ; . . .; bLþKN0
N 0 with

Ki :¼ Cci � bLiðh�Þ for C

¼ 2þmax
j
½1
cj
ðbLjðh�Þ �min

h

bLjðhÞÞ�
ðA8Þ

An explicit calculation confirms that bLþKi
i ðhÞ	 2ci [ 0,

which by assumption implies LþKi
i ðhÞ	 ci [ 0, for all

i 2 ½N�. By Lemma 9 we know that h� is a minimizer of the

Chebyshev scalarization with weights wi ¼ 1

L
þKi
i ðh�Þ

¼ 1
Cci

for all i 2 ½N 0�. Let h� be a minimizer of the scalarization of

the true objectives with same weights wi. The assumption

of ray completeness together with Lemma 9 implies

w1L
þK1

1 ðh�Þ ¼ . . . ¼ wNL
þKN

N ðh�Þ ¼ max
j2½N�

wjL
þKj

N ðh�Þ
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. The Chebyshev scalarization is a weighted Lð1Þ-norm and

1-Lipschitz with respect to itself. Therefore, by Theorem 2:

max
j2½N�

wjL
þKj

j ðĥ�Þ� max
j2½N�

wjL
þKj

j ðh�Þ þ 2max
j2½N�

wjcj ðA9Þ

Consequently, we obtain the component-wise inequalities:

8i 2 ½N� wiL
þKi
i ðĥ�Þ�wiL

þKi
i ðh�Þ þ 2max

j2½N�
wjcj

ðA10Þ

Now, inserting the definition Ki, subtracting wiKi from both

sides and dividing by wi we obtain

8i 2 ½N� Liðĥ
�Þ�Liðh�Þ þ

2

wi
max
j2½N�

wjcj: ðA11Þ

By construction, wjcj ¼ 1
C for all j 2 ½N�. Therefore,

2
wi
maxj2½N� wjcj ¼ 2Cci

C ¼ 2ci. Because ci ¼ Ciðni;H; d=NntÞ
this concludes the proof.

For the general situation, assume that there are Nnt non-

trivially and N � Nnt trivially generalizing objectives. If

M ¼ 0, then LiðhÞ ¼ bLiðhÞ for all i ¼ 1; . . .;N and for all

h 2 H. Then, Pareto-optimal and empirically Pareto-opti-

mal sets coincide, and ĥ
� ¼ h� fulfills the statement of the

theorem.

Otherwise, assume without loss of generality that the

objectives are ordered such that, Ciðni;H; d=NntÞ[ 0 for

i 2 ½Nnt� and Ciðni;H; d=N 0
ntÞ ¼ 0 for i 2 fNnt þ 1; . . .;Ng.

Let G ¼
	
h 2 H : bLiðhÞ ¼ bLiðĥ

�Þ fori 2 fNnt þ 1; . . .;

Ng


. Note that also G ¼

	
h 2 H : LiðhÞ ¼

Liðh�Þ fori 2 fNnt þ 1; . . .;Ng


, because LNntþ1; . . .;LN

are trivially generalizing. G is a subset of H that is non-

empty (because ĥ
� 2 G). Consequently, the inequalities of

Lemma 1 and Theorem 2 hold also as statements for all

g 2 G rather than h 2 H. Because ĥ
�
is empirically Pareto-

optimal within H with respect to bL1; . . .; bLN , it is also

empirically Pareto-optimal in G with respect to

bL1; . . .; bLM . Applying the result from the case without

trivially generalizing objectives to this situation, we obtain

that there exists h� 2 G such that for all i 2 ½Nnt�

Liðĥ
�Þ�Liðh�Þ þ Ciðni;H; d=NntÞ ðA12Þ

For i 2 fNnt þ 1; . . .;Ng, we have Liðĥ
�Þ ¼ Liðh�Þ,

because h� 2 G. Consequently, inequality (A12) holds also

for these (with Ciðni;H; d=NntÞ ¼ 0), which concludes the

proof.
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