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Abstract

Modern machine learning tasks often require considering not just one but multiple objectives. For example, besides the
prediction quality, this could be the efficiency, robustness or fairness of the learned models, or any of their combinations.
Multi-objective learning offers a natural framework for handling such problems without having to commit to early trade-
offs. Surprisingly, statistical learning theory so far offers almost no insight into the generalization properties of multi-
objective learning. In this work, we make first steps to fill this gap: We establish foundational generalization bounds for the
multi-objective setting as well as generalization and excess bounds for learning with scalarizations. We also provide the
first theoretical analysis of the relation between the Pareto-optimal sets of the true objectives and the Pareto-optimal sets of
their empirical approximations from training data. In particular, we show a surprising asymmetry: All Pareto-optimal

solutions can be approximated by empirically Pareto-optimal ones, but not vice versa.

Keywords Machine learning - Multi-objective optimization - Generalization bounds - Pareto-front

1 Introduction

Traditionally, statistical machine learning has concentrated
on solving one single-objective optimization problem: to
minimize the average loss over a given training set.
Additional quantities of interest, such as model complexity,
had to be either addressed implicitly by the choice of
model class, or integrated into the main objective via
weighted regularization terms. Recently, however, addi-
tional quantities of interest have made it into the focus of
the machine learning community, such as the fairness,
robustness, efficiency or interpretability of the learned
models. Optimizing these can be in conflict with the goal of
low training loss, and task-specific trade-offs need to be
made. Unfortunately, hard-coding such trade-offs can have
undesirable consequences, and model-selecting them is a
cumbersome process when multiple objectives are
involved.
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To avoid the need for a priori trade-offs, multi-objective
learning has recently received increasing attention. Using
multi-objective optimization, it either finds promising
trade-off parameters at the same time as training the actual
model, or it computes multiple solutions that reflect dif-
ferent trade-offs, ideally along the complete Pareto-front."
While multi-objective optimization and learning are algo-
rithmically rich fields, their theory is much less well
explored. In particular, learning-theoretic results, such as
generalization bounds, are almost completely missing.

In this work, we aim at putting multi-objective learning
on solid theoretic foundations. Specifically, we present
three results of fundamental nature for understanding the
properties of learning with multiple objectives. (1) We
show that generalization bounds of individual learning
objectives carry over also to the situation when learning
with multiple objectives simultaneously. (2) We provide
generalization and excess bounds that hold uniformly
across a broad range of scalarization techniques. (3) We
analyze in what sense the set of models that are empirically
Pareto-optimal (i.e., optimal with respect to a training set)
approximates the set of models that are actually Pareto-
optimal (i.e., optimal with respect to the data distribution).
Our results provide theoretical justifications for the use of

! We define the technical terms Pareto-front Pareto-optimal and
scalarization in Sect. 2.
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scalarization-based as well as Pareto-based multi-objective
optimization in a learning context, though with some
caveats that have no analog in single-objective learning.

2 Notation and background

In this section, we introduce our notation and provide
background information on multi-objective optimization
and learning, as well as statistical learning theory. Our
description follows standard textbooks, such as Miettinen
[1] and Wright [2] for optimization, and Mohri et al. [3]
and Shalev-Shwartz and Ben-David [4] for machine
learning. More details and derivations can be found there.

2.1 Single- and multi-objective optimization

At the heart of most modern machine learning algorithms
lies an optimization step. In standard (single-objective)
optimization, one is given an input set, (0, and an objective
function, f : Q — R. Because the objective values are just
real numbers, they are totally ordered: Any two points
w, " € Q are comparable in the sense that at least one of
the relations f(w) <f(w') or f(') <f(w') holds. Conse-
quently, it is a natural question to ask which w* € Q
achieve the smallest objective value, if any. A plethora of
single-objective optimization methods have been developed
to answer this question, let it be gradient-based [2, 5] or
derivative-free [6, 7).

In multi-objective optimization, one is given multiple
objective functions, fi,f2,...,fy : Q@ — R, or equivalently,
F:Q—RY  with
F(w) = (fi(®),....fv(w)). We can again define an asso-
ciated order relation:

one vector-valued function,

Definition 1 For w,®w’ € Q we say that @ weakly domi-
nates o' if fj(w) <fj(«') for all j € [N]. We say w strongly
dominates o' if additionally f;(w) <f;(«') for at least one
J € [N].

Because of the multi-dimensional nature, these order-
ings are only partial [?]. There are pairs w, w’ € Q that are
uncomparable, i.e., neither F(w)<F ('), nor F(w')<F(w)
holds. Consequently, in multi-objective optimization it
typically makes no sense to look for absolute best solu-
tions. Instead, one searches for Pareto-optimal solutions.

Definition 2 A point * € Q is called Pareto-optimal if
there is no other point w € Q that strongly dominates it.
The set of all Pareto-optimal points is called Pareto-opti-
mal set. The set of corresponding objective value vectors is
called Pareto-front.
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A large number of algorithms have been developed also
for multi-objective optimization. When trying to find
solutions across the complete Pareto-front, meta-heuristics
such as evolutionary algorithms [8] are often employed. If
a single Pareto-optimal solution suffices, scalarizations in
combination with single-objective optimization can be
used [9]. A scalarization function, U : Rﬁ — R, combi-
nes the individual objective values into a single one.
Prominent examples are weighted p-norms:

UP (xp,. . .xy) = (e |wixi|”)1/p for p € (1,00), and
,wherew € W C Rfisa
vector of weights that encode a trade-off between the dif-
ferent objectives.

Arguably the most popular choice of scalarization is the
L'-norm with weights in the probability simplex

U (xp,.. . xy) = max;e|y) [wix;

Ay = {w € RY : 3°,w; = 1}. This means, one forms con-
vex combinations of the individual objectives [10]. For any
nonzero choice of weights, minimizers of this resulting
scalarized objective will be Pareto-optimal [9]. However,
the set of solutions obtainable by varying the weights might
not recover the complete Pareto-front, unless the opti-
mization problem is convex [11]. In contrast, the choice
p = oo (called weighted Chebyshev norm) allows recov-
ering the complete Pareto-front when varying the weights
in Ay [1, Chapter 3.4]. Figure 1 illustrates these concepts.

2.2 Single- and multi-objective learning

Our analysis in this work applies to supervised as well as
unsupervised learning. Therefore, we adopt a notation that
allows expressing both of these cases in a single concise
way. Let p(z) be a fixed but unknown data distribution over
a data space Z. We denote by H a hypothesis set and
{:ZxH— Ryi aloss function. For supervised learning
with HC{h: X — Y}, one uses Z=X x)Y, and
U(z,h) = L(y,h(x)), where L:Y x) — R, measures,
e.g., the classification or regression error. For unsupervised
learning, one uses Z =X, and ¢ measures, e.g., the
reconstruction error of a clustering or dimensionality
reduction step.

Single-objective learning. Standard (single-objective)
learning has the goal of identifying a hypothesis with small
risk (expected loss), L(h) = E,cz[¢(z, h)]. To approximate
this uncomputable quantity, the learner uses a training set,
S={z,...,24} to compute the empirical risk,
L(h) =15 6z h).

Statistical learning theory studies how well the empir-
ical risk approximates the true risk and under which con-
ditions minimizing the (computable) empirical risk is a
good strategy for finding solution with low true risk. Many
corresponding results are known. In particular, under well-
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(a) Linear scalarization

Fig. 1 For general multi-objective optimization problems the Pareto-
front (bold curves) can be disconnected and non-convex. a Linear
(convex) scalarization can find Pareto-optimal solutions on the

understood conditions on H and S, one can prove that, with
high probability over the sampling of S, the true risk is well
approximated by the empirical risk, uniformly across all
hypotheses. Mathematically, such a guarantee has the form
of a generalization bound:

Vo € (0,1) Pr{Vh € H:|L(h) — L(h)| <Cn, H, 5)} >1-0.
(1)

The problem-dependent generalization term C(n,H,0)
typically consists of a complexity component that reflects
the expressive power of the hypothesis class, and a confi-
dence component that reflects the uncertainty due to finite
sampling effects. Ideally, both components will converge
to 0 when the number of samples grows to infinity. Among
the most well-known complexity components are for
instance the Rademacher complexity or VC dimension
(see, e.g., [3]).

From bounds of the form (1), one can derive guarantees
that, with high probability, solutions obtained by mini-
mizing the empirical risk have close to optimal true risk.

Formally, for = argmin Z(h), an excess risk bound
heH

holds:
Vo € (0,1) Pr{c(h“*) < inf £(h) + C’(n,H,é)} >1-4,
€
(2)

where C'(n,H, §) is another generalization term as above.

Multi-objective learning. In multi-objective learning,
multiple target objectives, Ly, ..., Ly, characterize differ-
ent properties of interest of the hypotheses. Estimating
them from a (single) dataset yields empirical objectives,

Zl,...,ZN. In contrast to the single-objective situation
where the objective function is almost always related to a
measure of prediction quality, the multi-objective setting
provides a principled framework for expressing also other
relevant quantities of a machine learning model, such as

(b) Chebyshev

scalarization (c) Ensemble method

convex hull of the front. b Chebyshev scalarization can find solutions
everywhere on the front. ¢ Ensemble methods compute many
solutions, aiming for the complete Pareto-front to be represented

efficiency, robustness or fairness. Consequently, we allow
the objectives to also have other forms than just expected
values over per-sample loss functions, and their empirical
estimates are not restricted to per-sample averages. As
discussed in Sect. 2.1, the multi-objective setting does not
induce a total ordering of the hypotheses. Consequently, a
priori there will be no overall best hypothesis anymore.
Instead, there are two sets of Pareto-optimal hypotheses:

Definition 3

a) A hypothesis h € H is called empirically Pareto-
optimal if it is Pareto-optimal with respect to the
multi-objective optimization problem of minimizing

Zl(h), - ZN(h) (with are computed from some
training set S). The set of all such hypotheses we call
the empirically Pareto-optimal set.

A hypothesis h € H is called (truly) Pareto-optimal
if it is Pareto-optimal with respect to the multi-
objective optimization problem of minimizing
Li(h),...,Ly(h). The set of all such hypotheses we
call the (truly) Pareto-optimal set.

b)

Analogously to single-objective learning, we are most
interested in finding truly optimal hypotheses (here, e.g.,
the truly Pareto-optimal set), as these can be expected to
work well on future data. However, we can only compute
solutions to the empirical problem (the empirically Pareto-
optimal set). If solutions to the latter problem approximate
the former, it is called multi-objective generalization.

In recent years, multi-objective learning has received
increasing attention in the machine learning community,
and a number of algorithms have been proposed for it. In
their easiest form, one simply picks a scalarization method
and solves the resulting single-objective optimization
problem with fixed scalarization weights or one optimizes
over those as well [12—-14]. Alternatively, one can search
for hypotheses along the complete (empirically) Pareto-
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front, using, e.g., ensemble techniques [15, 16], model
conditioning [17] or hypernetworks [18].

Given the long tradition and algorithmic diversity, one
could expect multi-objective statistical learning theory also
to be a rich field that provides precise quantifications of the
relations between true and empirical objective (general-
ization bounds), as well as relation between the empirical
and true Pareto-optimal sets (excess bounds). Surprisingly,
this is not the case, and hardly any such results exist in the
literature.

3 Related work

Solving problems with multiple objectives has a long tra-
dition in artificial intelligence [19-22], game the-
ory [23, 24] and economics [25, 26]. Since the 1990 s it
has also attracted attention from the machine learning
community, e.g., Fieldsend and Singh [27], Goldberg [28],
Jin [29]. Existing works predominantly study the problem
from an algorithmic perspective, in particular proposing
and analyzing new optimization techniques. Mirroring the
corresponding developments in multi-objective optimiza-
tion, this includes methods for efficiently finding individual
Pareto-optimal solutions, e.g., Cortes et al. [12], Van
Moffaert and Nowé [30], Ye et al. [31], as well as
exploring the complete Pareto-front [17, 18, 30, 32-35].
Works in both directions implicitly assume that better
results of the empirical learning task should translate to
better results on future data. So far, this generalization
aspect was studied only empirically. Theoretical results
rather focused on the optimization aspect, e.g., studying
computational —complexity [36, 37] or convergence
rates [38], but not statistical generalization. A notable ex-
ception is Cortes et al. [12], which we discuss in detail in
the Sect. 5.3.

4 Main results

In this section, we formally state and discuss our main
results: generalization and excess bounds for scalarizations
and for Pareto-fronts. For maximal generality, we formu-
late the results on the generic level introduced in Sect. 2.
We will discuss instantiations that either improve over
related existing work or provide new insights in Sects. 5
and we provide a high-level overview of potential addi-
tional applications in Sect. 6.

Assumptions. Because the multi-objective setting strictly
generalizes the single-objective one, multi-objective gen-
eralization is not possible unless at least single-objective
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generalization holds. Therefore, for all our results we adopt
the following assumption.

Assumption A For each objective i € [N] individually, a
generalization bound of the form (1) with generalization
term C;(n,H, o) holds.

Note that Assumption A is technically easy to fulfill, at
least for bounded objectives, by setting the required gen-
eralization terms, C;(n, H,d) for i € [N], to large enough
constants. Our results do hold for such a choice, but their
interpretation would mostly not be very interesting.
Therefore, whenever we want to interpret results in the
light of their approximation quality, we additionally make
the following assumption.

Assumption B For each i € [N] and for each 6 € (0, 1), it
holds that C;(n, H,d)"=

— 0.

As we detail in Sect. 6, Assumption A and Assump-
tion B are fulfilled for many quantities of interest related to
the accuracy, fairness, robustness or efficiency of machine
learning systems. Noteworthy special cases are objectives
that are data-independent functions of only the hypothesis,
for example, regularization terms. We say that such

objectives generalize trivially, because they fulfill L(h) =

L (h) for all datasets and all & € H, and therefore, gener-
alization bounds of the form (1) hold for them trivially with
0 as generalization term.

4.1 Multi-objective generalization

Our first result states that if generalization bounds hold
individually for each objective, then they hold also jointly
in the multi-objective setting, where the empirical objec-
tives are computed from a single dataset, at only a minor
loss of confidence.

Lemma 1 (Multi-Objective Generalization Bound) Let Ny
be the number of non-trivial objectives. Let S be a random

dataset of size n. For each i € [N, let L; be an empirical
estimate of L; based on a subset S; C S of size n;. The sets
S; are arbitrary. In particular, they are not necessarily
disjoint. Then it holds with probability at least 1 — 0,

Vi € [N], Vh € H : |Li(h) — Li(h)| < Ci(ni, H, 5/ Ny).
(3)

Lemma 1 is in fact a straightforward consequence of
Assumption A, requiring only a union-bound argument as
proof. We state it explicitly nevertheless because it has not
appeared in this form in the literature so far.
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4.2 Generalization and excess bounds
for scalarizations

A common way for learning in a multi-objective setting is
by performing single-objective learning for one or multiple
scalarizations. To keep the notation concise, for any
scalarization U : Rﬁ — R, and h € H, we abbreviate
Ly(h) :=ULi(h),...,Ly(h)),

Ly(h) :==U(L(h),..., Ly(h)). We also remind the reader
that a norm || - || in RY is monotonic, if for all x,y € RY if
il < [yilVi € [N], then [lx]| <[y

Theorem 2 (Generalization and Excess Bounds for
Scalarizations) Assume the same setting as for Lemma 1.
Let W = {U : RN — R, } be a set of scalarizations, each of
which is Jy-Lipschitz continuous with respect to some
monotonic norm || - ||,,. Then, for all 6 > 0 the following
two statements hold with probability at least 1 — 6.

(@) Forallid € Wand h € H:
| Lui(h) — Lu(h)| < ]| (Cr (1, H, 0/ Nuy),

...,CN(nN,H, 5/an)) (4)

e

(b) Forall i € U, for all hZ € argmin Zu(h) and for all
heH

heH:
Lu(ly) < Lua(h) + 22| (Cr (n1, H, 0/ Nu),

(5)
ceey CN(I’lN, H, 5/Nm)) HZ/{

Proof sketch. We provide the main arguments of the
proofs here. The complete proofs are provided in Appen-
dix A. a) The Lipschitz property implies that the difference
of scalarized objectives is upper bounded by the norm of
the differences in objective values. By the norm’s mono-
tonicity and Lemma 1, this is again bounded by the norm
of the generalization terms. b) from Zu(hZ) < Zu(h) it
follows  that Ly () — Lo(h) < Lo(hy,) — Lu(hy,)+
Zu(h) — Ly(h). Using a) we can bound the difference
between the first two terms as well as the difference
between the last two terms on the right-hand side each by
the norm of the generalization terms.

Remark. We formulate the theorem with scalarization-
dependent norms || - ||, because in some scenarios using a
single (e.g., Euclidean) norm for all scalarizations would
yield sub-optimal bounds. For instance, if U(x) =
SV wilx|, then this is itself a norm and it is optimal to
choose || - ||, = U to get the tightest bound.

Discussion. Theorem 2 establishes generalization and ex-
cess bounds for the situation of scalarization-based multi-
objective learning. Their relevance lies not only in the

inequalities (4) and (5) themselves, which have the stan-
dard single-objective form, but also in the fact that these
hold uniformly over all scalarizations U € . This implies
that one can solve an arbitrary number of scalarized
problems without suffering a loss of confidence in the
theoretical guarantees. That is in contrast to other situations
of repeated learning, e.g., hyperparameter tuning on a
validation set, where the statistical guarantees deteriorate
with the number of hypotheses considered, because of the
multiple hypothesis testing phenomenon [4, Chapter 11].
Despite its simplicity, the theorem improves over prior
work, Cortes et al. [12], which proved guarantees that
depend on the size of . For a more detailed discussion, see
Sect. 5.3.

4.3 Pareto excess bounds

We now provide a formal analysis of the relation between
the set of Pareto-optimal hypotheses and the set of
empirically Pareto-optimal hypotheses. First, we show that
any two elements of the two Pareto-optimal sets fulfill an
excess-type inequality with respect to at least some of the
objectives.

Theorem 3 Assume the same situation as for Lemma 1.
Then, for any 6 > 0, it holds with probability at least
1 —0: For all Pareto-optimal h*€H and empirically

Pareto-optimal B €M there exists a non-empty subset
I C [N], such that

Viel: Li(R)<Lih*)+2Ci(ni, H,0/Ny). (6)

Proof sketch. The proof works by contradiction: assume

that a pair (h*, hx) exists such that for no index set
inequality (6) would hold. Then, using Lemma 1, one

could show that 7* strongly dominates B with respect to
the empirical objectives, which is a contradiction to the

optimality of k. For the formal steps, see Appendix A.
Like the sketch, the formal proof does not actually make
use of the optimality of A*. This implies that Theorem 3
holds in fact for all & € H, making it even more apparent
that excess bound with respect to individual objectives are
of limited use for studying multi-objective generalization.

For multi-objective learning, the most relevant question
is if there is an analog of Theorem 3 for the case of I = [N],
i.e., if by finding the empirical Pareto-curve one also
approximately recovers the true Pareto-curve with respect
to all objectives. This is formalized in the following
theorem.
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Theorem 4 (Pareto Excess Bound) Assume the same set-

ting as for Lemma 1. Then, for any 6 > 0, it holds with

probability at least 1 — 0.

(a) For all Pareto-optimal #* € H there exists an empir-
ically Pareto-optimal # €H with

Vie[N]: Lih)<Lih*) +2Ci(n, H,0/Ny).
(7)
(b)  Assume that the Pareto-front is ray complete, i.e., for

all Re{(r,...,rn):1i>0fori€[N]}, there
exists an h € P with (L(h),...,Ly(h)) o« R. Then,
for all empirically Pareto-optimal h" €H, there exists
a Pareto-optimal h* € H with
Vie[N]: Lih')<Lih*)+2Ci(n, H,0/Ny).

(8)

Proof sketch. To prove part a), we make use of the fact
that #* € ‘H is dominated with respect to the empirical
objectives by some empirically Pareto-optimal h* € 'H, i.e.,
Li(h") < Li(h*) for all i € [N]. Statement (7) follows by
applying Lemma 1 to both sides of this inequality and
rearranging terms.

The main insight for proving part b) is that h e

argmin Zu(h) for the Chebyshev  scalarization
heH
U(xy, ..., xy) = max;ey) wix; with weights w; = <1— for

Lj(h)
j€[N], as long as L;(h*) > 0 for all i € [N]. With i* €

argmin L£y(h) it  follows from Theorem 2 that

heH

maxjey| wjﬁj(hmk) < maxepy) wiLi(h*) + 2 maxe ) w;Ci(n;,
H,0/Ny) . For any ie€[N], it holds that
wiﬁi(hw) < maxje(y) wjﬁj(h*), and the assumption of ray
completeness ensures that, w;L;(h) = max;e|y] wiLi(h).
In combination, one obtains the same statement as (8),
except with a potentially weaker generalization term
= max;e(y) w;Cj(nj, H,d/Nu). To obtain the desired result,
one creates additively shifted objective functions that result
in a learning setting equivalent to the original one, but in
which all terms w;C;(n;, H, 6 /Ny) for j € [N] are identical,
such that, in particular,
max;ey) w;Ci(nj, H, 8/Nu) = wiCi(ni, H, /Ny ). For com-
plete proofs, see Appendix A.

Discussion. The theorems in this section clarify the relation
between the true Pareto-optimal set and its empirical
counterpart. When looking a single objective at a time, the
relation is nearly trivial: Theorem 3 establishes that any
empirically Pareto-optimal hypothesis is not much worse
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than any truly Pareto-optimal hypothesis with respect to at
least one of the objectives.

More interesting is the situation when studying all
objectives simultaneously. Theorem 4 provides a multi-
objective analog of the classical empirical risk minimiza-
tion principle [39]. Solving the empirical multi-objective
learning problem makes sense as a learning strategy,
because for every truly Pareto-optimal hypothesis there is
an empirically Pareto-optimal one that has not much larger
(true) objective values, jointly across all of the objectives.
Reversely, every empirically Pareto-optimal hypothesis is
not substantially worse than some Pareto-optimal one, if
we make an additional assumption on the geometry of the
Pareto-front.

The employed ray completeness assumption is quite
restrictive, and we do not expect it to be fulfilled in most
real-world situations. For example, it is violated already
whenever one of the objectives is bounded from below by a
constant bigger than 0.

In the two-objective situation, ray completeness does
hold if the Pareto-front is a continuous curve between some
point on the £;-coordinate axis and some point on the £,-
coordinate axis, excluding the origin. An example where
such a situation can happen is a classification task in the
realizable setting with classification error and (suitably
defined) computational cost as objectives. For a sufficiently
rich hypothesis set, the smallest achievable error will be a
continuous and monotonically decreasing function of the
specified computational budget. Consequently, the Pareto-
front will be a continuous curve between a point (a, 0),
where a is the classification error of the classifier with
minimal budget, and a point (0, b), where b is the smallest
computational cost for a classifier achieving minimal
classification error. Note that realizability is necessary.
Otherwise, the curve would still be monotonic, but the
second point in the above construction would not lie on the
L>-coordinate axis. Consequently, ray completeness would
not be fulfilled.

While sufficient, ray completeness is certainly not a
necessary condition. For example, if both the real objective
and the empirical objective are bounded away from zero by
the same constant, substracting this constant from both
objectives could yield a situation that is equivalent in terms
of multi-objective learning, but in which ray completeness
might be fulfilled. Furthermore, from the Theorem’s proof
one can see that a weaker condition would suffice, namely
that every ray through the empirical Pareto-front also
intersects the actual Pareto-front. This formulation would
complicate the condition, though, as it introduces a
dependence on the dataset and would nevertheless still not
be a mathematically necessary condition. Therefore, we
leave the task of identifying a condition that is necessary as
well as sufficient to future work.
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The following theorem shows that some additional
assumption is required for Theorem 4 to hold.

Theorem 5 Let N> 2. Then, for any C > 0 there exists a
learning problem that fulfills Assumptions A and B with
Ci(ni,H,0) =0 for i € [N — 1], but for which with prob-
ability at least % there exists an empirically Pareto-optimal

n € H, such that for all Pareto-optimal h* € H, it holds
Vie[N—1]: Li(h)> Lih")+C. (9)

Proof We prove the theorem by constructing a concrete
counterexample that exploits the classic overfitting (or
bias-variance trade-off) phenomenon of single-objective
supervised learning [39].

First, we look at the case N =2. Let Z = X x ) with
X =[0,1] and Y = {0, 1}, p(x) be the uniform distribution
and p(ylx) =1 Let H={h: X — Y} be the set of
piecewise-constant functions that consist of at most K
segments. We choose the number of jumps as £; and the 0/
1-loss as £,. Then, Assumption A and Assumption B are
fulfilled: ‘H is known to have VC-dimension 2k [4], so a
classical generalization bound holds for £,. L£; even
generalizes trivially.

We observe that every hypothesis in 4 € H fulfills
L,(h) = 1. Consequently, the two Pareto-optimal solutions,
h, are the constant classifiers, which fulfill £,(h) = % and
Li(h) =0.

Empirically, however, for sufficiently many points, with
high probability, the empirical loss Zz(h) will be strictly

monotonically decreasing with respect to Zl(h), as more
segments allow to better fit the training data. Consequently,
the set of empirically Pareto-optimal solutions will contain
elements with Zl(h) =k for any k € [K], i.e., arbitrarily
far from all solutions in the truly Pareto-optimal set.
Figure 2 shows a visualization of this situation.

For larger N, we use the analogous construction in RV~
Hypotheses have at most K jumps in each coordinate

A loss

s E O R -
% ¥ ¥ EEE G Y

#segments
5 ; t t t t t t >
1 2 3 4 5 6 7

Fig. 2 Illustration of the counterexample proving Theorem 5 for
N=2

dimension. Objectives 1 to N — 1 are the number of jump
per coordinate; objective N is the classification 0/1-loss. [

Discussion. Theorem 5 establishes that the asymmetry
between the statements a) and b) of Theorem 4 is an
intrinsic property of the multi-objective setting, not a
limitation of our proof techniques. There can indeed be
hypotheses in the empirically Pareto-optimal set that are
not in an excess relation with any hypothesis in the truly
Pareto-optimal set. Note that despite the fact that multi-
objective learning includes single-objective learning as a
special case, there is no contradiction to the classical
symmetric result. For N = 1, the fact that I C [N] is non-
empty in Theorem 3 makes its statement identical to
Theorem 4 b) without the additional assumption. Theo-
rem 5 holds only for N > 2.

4.4 Summary

In combination, the results of this section establish a
detailed picture of similarities and differences between the
generalization properties of single-objective and multi-
objective learning. In particular, it highlights a fundamental
difference between single-objective learning and Pareto-
based multi-objective learning: In the single-objective
setting, empirical risk minimization is a good learning
strategy, because with growing data, the every minimizer
of the empirical risk also has close to optimal true risk. In
the multi-objective setting, scalarized learning has the
same properties, but the resulting guarantees hold only with
respect to the scalarization of the objectives, not each of
them individually. Joint statements across all objectives
hold as well, thereby justifying Pareto-based learning.
However, without additional assumptions excess guaran-
tees can only be given for a subset of the empirical
solutions.

5 Applications

Our results of the previous section provide new tools for
analyzing learning tasks in which multiple, potentially
competing, quantities are of simultaneous interest, such as
fairness, robustness, efficiency and interpretability. So far,
the generalization properties of these quantities have been
studied either not at all, or only with task-specific tools.
Similarly, we expect that multi-task, multi-label and meta-
learning, as well as AutoML will potentially be able to
benefit from the multi-objective view.

In the rest of this section, we sketch three exemplary
applications. In Sect. 5.1 we show how our results on
empirical versus true Pareto-optimality can provide new
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insights for a well-known method. In Sect. 5.2 we
demonstrate how our results on scalarized learning provide
a simple and flexible way for constructing new single-ob-
jective generalization bounds. In Sect. 5.3, we improve an
existing generalization bound for the multi-objective set-
ting, which thanks to our results of Sect. 4 requires only a
few lines of proof. For a more high-level discussion of
other application scenarios, see Sect. 6.

5.1 Simultaneous feature selection
and regression

The classical LASSO method [40] learns a linear regres-
sion function by solving the following regularized risk
minimization problem

. 1
min = (v — B x)* + Bl

10
min > (10)

Here {(x1,y1),. ., (X, y2)} C R? x R is a given training
set and A € R* is a free parameter that trades off the data
fidelity on the training set with the sparsity of the coeffi-
cient vector f at its optimum. LASSO is particularly
popular because it not only learns a regression function but
also performs feature selection and therefore can give rise
to more interpretable regression models than other regres-
sion techniques. The set of all solutions obtained by min-
imizing (10) for different values of A is called the solution
path. A number of efficient techniques for computing it
have been developed [41-43].

We can interpret the LASSO problem equivalently as
the linear scalarization of a two-objective learning prob-
lem. The first objective is the expected squared loss

Li(B) = Eqy(y — B7x)°, which has £(B) =130 (vi —

[fx,-)2 as empirical counterpart. When the data and coef-
ficient vector come from bounded domains, standard gen-

eralization bounds are known to hold that relate £; and C 1>
see, e.g., Mohri et al. [3, Theorem 11.11]. The second

objective is the regularizer, Ly(f) = L2(B) = (1811 115
which generalizes trivially.

The (single-objective) generalization properties of
LASSO’s squared loss term are well understood. The
multi-objective view, however, adds insight into its relation
with the regularizer, which reflects the sparsity and thereby
the interpretability of the solutions. First, we observe that
the underlying optimization problem is convex, so each
empirically Pareto-optimal solution can be recovered by
solving (10) for some value of A. Therefore, existing so-
lution path methods can readily be used to identify the
empirical Pareto-front.

Theorem 4 a) now ensures that each truly Pareto-opti-
mal solution can be approximately recovered this way. This
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means, we can be sure that no solutions exist that are
substantially sparser at equal accuracy or more accurate at
identical sparsity with respect to the true objectives than
some in the solution path.

However, Theorem 5 reminds us that not all solutions
found by solving (10) will necessarily be close to truly
Pareto-optimal. In particular, this means, while each indi-
vidual element of the solution path will have optimal
sparsity for the empirical accuracy it achieves, its sparsity
might be far from optimal compared to other solutions of
similar true accuracy. Consequently, if optimal sparsity is
important for the task at hand, the solutions on the regu-
larization path should be further evaluated, e.g., using
validation data.

The latter comment does not apply if the true underlying
regression task is actually linear, such that a coefficient
vector, f§, exists with vanishing objective, L£;(f) = 0.
Because the same property holds for £, (trivially achieved
by f=0), and the regularization path is a connected
set [44], the condition of ray completeness would be ful-
filled. Theorem 4 b) then guarantees that in fact all
empirically Pareto-optimal solutions are also approxi-
mately truly Pareto-optimal.

5.2 Tilted empirical risk minimization

Tilted empirical risk minimization (TERM) [45] has
recently been proposed as a widely applicable technique
for making learning problem more robust or more fair. In
its group-based form, TERM consists of minimizing an
exponentially weighted risk functional

N
J,(f):%log(%Ze’Rm) with  Ri(f)
= (11)
=1 Y )

(xy)€S;

for a loss function ¢ and training data given as N potentially
overlapping groups, Si,...,Sy. For simplicity of exposi-
tion, we assume all groups to be of identical sizes, n. The
tilt parameter ¢ € R\ {0} determines how much and in
which direction the tilt influences the training process.
Positive values of ¢ make J; behave like a soft maximum
operation that puts more weight on large values of R; than a
plain average. For t — oo, TERM converges to max; R;(f).
As a consequence, minimizing (11) with # > 0 encourages
fair solutions, in the sense that none of the groups should
have a much larger values of R; than the others.
Conversely, negative values of  make J, behave like a
soft minimum operation that puts less weight one large
values of R;. For t — —oo, TERM converges to min; R;(f).
Such a behavior is desirable if some of the groups can be
expected to be outliers with large values for R;, even if the
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others terms are small. Minimizing (11) with <0 can be
used to find solutions that are robust against such outlier
groups.

Theorem 2 readily allows us to make statements about
the generalization properties of TERM, not just for one
value of ¢ but all possible ones simultaneously. For any
value of ¢, the functional J; in (11) can be seen as a
scalarization of empirical objectives Rj,...,Ry. A direct
check confirms that each such J; is 1-Lipschitz with respect
to the L* norm. Assuming that generalization bounds hold
for each individual group, then Theorem 2 guarantees that
a generalization bound of the same structure holds also for
J;, simultaneously across all values of z.

Hierarchical TERM (hTERM) [45] uses the same
exponentially weighted functional J;, but the per-group
terms Ry, ..., Rk that it combines are not averages across
samples as in (11), but TERM losses themselves with
individual tilt parameters 7i,...,Tx. From our previous
analysis, we know generalization bounds for each of those.
Consequently, by the same construction as above, we
readily obtain a generalization bound for h\TERM, which in
fact holds uniformly across all combinations of tilt
parameters.

5.3 Agnostic learning with multiple objectives

Cortes et al. [12] study the generalization properties of
multi-objective learning for the case of a special scalar-
ization obtained by minimizing over convex combinations.
To allow for an easier comparison, we state their result in
our notation.”

Theorem 6 (Theorem 3 in Cortes et al. [12]) Let H be a
hypothesis set for a supervised learning problem with input
set X and output set Y that fulfills ||(h(x'),y") —
(h(x),V)|| <D for some constant D >0 and for all
(x,9), (", Y) € X x Y. Let ; : Y x Y — Ry fori € [N] be
loss functions that are M;-Lipschitz and upper bounded by
M. Set  Li(h) = Ey[l(y, h(x)] Li(h) =
S (i, h(x;)) for a dataset Sl‘rlifl‘p(x,y) of size n. For a
set of scalarization weights, W C Ay, let Ly(h) =
maxXyew vazl Wiﬁi(h) ZW(h) =
max,,cw va:l wizi(h). Assume that Zivzl wiM; < 8 for all
w= (wi,...,wy) € W.

Then, for any ¢ >0 and 6 € (0, 1), with probability at
least 1 — 0, the following inequality holds for all h € H:

and

and

2 Our formulation also has slightly different constants in the
generalization term, which we believe to be necessary based on the
theorem’s proof. We multiply the rightmost term by 3 and the |W,| by
2.

Luw(h) < Lw(h) + 2p%Rs(H) + Me + 3BDy /;—nlog [@] (12)

where ifis(H) is the empirical Rademacher complexity of
the hypothesis class H with respect to S, and |W,| is the
size of a minimal e-cover of W.

One can see that inequality (12) precisely matches the
form of our excess bound in Theorem 2 for a specific
scalarization. Indeed, we can derive an analogous theorem
using our results of Sect. 4.

Theorem 7 Make the same assumptions as in Theorem 6.
Then, for any o € (0, 1), with probability at least 1 — J the
following inequality holds for all h € H:

log%v
2n

(13)

Ly (h) < Lw(h) + 2pRs(H) + 3D

Proof The Lipschitz assumptions imply standard Rade-
macher-based generalization bounds for each objective
individually [3, Theorem 11.3]: With probability at least
1 — ¢ it holds for all h € H:

~ - log2
Li() < La(h) + 2M;Rs(H) + 3M;Dy /%.
n

We now apply Theorem 2 for the family of linear scalar-

(14)

izations, U, (x1,...,xy) = va:l wix; with w € W, and we
insert that w;M; < f3. Finally, taking the maximum over w
on both sides of the inequality yields (13). O

Because of the power of the introduced multi-objective
framework, the proof of Theorem 7 is much shorter than
the original one of Theorem 6. Nevertheless, our result has
a number of advantages. First, our bound is structurally
simpler. It holds without need for an e-parameter that
additively enters the right-hand side of (12), yet also
influences the size of the rightmost confidence term. Sec-
ond, the right-hand side of our bound is independent of the
size of W, with the confidence term only depending on the
number of objectives. As a consequence, our bound is
substantially tighter, except for trivially small sets W. For
example, for the common case of convex combinations,
W = Ay, the covering size |W|, is of order (1/¢)""'. This
makes the generalization term in (12) of order \/N/n,
indicating that to preserve confidence the amount of data
has to grow linearly with the number of objectives con-
sidered. In contrast, the right-hand side of our bound (13) is
independent of the size of W and its confidence term grows
only logarithmically with respect to N. Finally, our proof is
not only simpler than the original one but also more flex-
ible: It readily extends to other generalization bounds
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rather than just Rademacher-based ones, and to other
scalarization besides linear combinations.

6 Further application scenarios

In Sect. 5 we highlighted some specific examples in which
our proposed multi-objective generalization theory pro-
vides new insights into existing methods. In this section,
we provide more high-level background and discuss addi-
tional quantities that we believe will or will not benefit
from a multi-objective analysis.

Fairness. Algorithmic (group) fairness asks to create
classifiers that are not only accurate but also do not dis-
criminate against certain protected groups in their deci-
sions. Formally, this property can be expressed by different
(un)fairness measures, such as demographic parity,
equality of opportunity or equalized odds [46]. Because
accuracy and fairness can be in conflict with each other,
fairness-aware learning is a prototypical candidate for
multi-objective learning [47-50]. This view also extends
naturally to integration of multiple fairness measures [51],
which might be incompatible with each other [52-54].
Generalization bounds for the empirical estimation of
unfairness measures have been developed [55, 56]. Con-
sequently, our results from Sect. 4 apply, yielding a unified
understanding of the generalization properties of fairness-
aware learning, e.g., regularization-based [57], constraint-
based [58] or Pareto-based [18, 51]. The multi-objective
view also allows us to conjecture that methods that seek
fair hypotheses by other means, such as preprocessing [59]
or post-processing [60], might not reach (empirically)
Pareto-optimal solutions. If generalization guarantees do
actually hold for these, other ways for proving them would
be required.

Robustness. It has been observed that deep network clas-
sifiers in continuous domains such as image classification
are susceptible to adversarial examples, i.e., they are not
robust against small perturbation of the input data. Two
main research directions have emerged to overcome this
limitation: Adversarial training [61] adds a robustness-
enforcing loss term to the training problem. Generalization
bounds for such terms have been derived, e.g., Yin et al.
[62]. Consequently, multi-objective learning can be used in
this setting with the guarantees and caveats discussed
above. Lipschitz-networks [63] restrict the hypothesis class
to functions with a small Lipschitz constant, typically 1.
Afterward, one solves a training problem that tries to
enforce a large margin between the predicted class label
and the runner-up. From the achieved margins, one can
infer how large an input perturbation the classifier can
tolerate without changing its decision [64]. We are not
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aware of existing theoretical studies of such certified
robustness techniques. However, margin-based loss func-
tions have a long tradition in machine learning, and a
number of generalization bounds exist which are applicable
in the described situation, such as Kuznetsov et al. [65],
Koltchinskii and Panchenko [66].

Efficiency. Large machine learning models, in particular
deep networks, often have high computational demands,
not only at training but also at prediction time [67, 68].
Consequently, a number of techniques have been devel-
oped that aim at reducing the computational cost. Param-
eter sparsification [69] and quantization [70] are widely
used methods for reducing the number of operations
required to evaluate a model. As data-independent prop-
erties, they can readily be used as trivially generalizing
objectives in a multi-objective learning framework [35].
Alternatively, speedup can also be achieved by encourag-
ing as many zero values as possible to occur as part of the
internal computation steps of a deep network. Such acti-
vation sparsity [71] is a data-dependent quantity that can
also be shown to generalize using standard techniques.
Therefore, it as well can be handled in a multi-objective
way. Adaptive computation methods, such as ensem-
bles [72, 73], classifier cascades [74] or multi-exit archi-
tectures [75, 76], evaluate different subsets of a larger
model depending on the input sample. For suitable design
choices, generalization bounds for the resulting computa-
tion time can be proven, and our results will apply.

Multi-task and multi-label learning. Multi-task learning
has recently been put forward as a multi-objective task,
where each task’s loss is treated as a separate objec-
tive [77-80]. This setting is of a non-standard form, as
each task typically has a dedicated training set, and
objectives are not necessarily competing with each oth-
ers [81]. Nevertheless, our framework can handle this
setting as well, making use of the property that we allow
the empirical estimates of different objectives to be derived
from different subsets of the available data. Pareto-based
guarantees are particularly relevant then, because at pre-
diction time, for each sample one is interested in only one
of the objectives, namely the one of the task to which this
sample belongs. In the related problems of multi-label
learning [82] and extreme classification [83], the goal is to
predict multiple outputs (labels) for each sample. Each
label has an associated classifier objective, and the losses
are estimated either from the total dataset or from (typi-
cally overlapping) subsets [84]. Again, our framework is
flexible enough to handle this setting. At prediction time,
all labels are meant to be predicted, and the quality is
typically judged by a task-dependent aggregate measure,
making scalarization approaches of particular interest in
this setting.
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Limitations. Despite its generality, some multi-objective
learning settings do not lend themselves to an analysis
using our results. For example, in the learning-to-rank
setting [85] solutions are typically judged by two mea-
sures: precision and recall. A priori, this makes it a
promising setting for multi-objective analysis [86, 87].
Unfortunately, we are not aware of generalization bounds
for the precision objective. Given that its value fluctuates
heavily in the low-recall regime, it is in fact possible that
Assumption B might not be fulfillable. Also in the context
of ranking, two other common objectives are true positive
rate (TPR) and false positive rate (FPR), which together
trace out the receiver operating characteristic (ROC)
curve. TPRs and FPRs can summarized into a single value
by the area under the ROC curve (AUC) [88], for which
indeed generalization bounds have been derived [89].
However, the AUC is not a scalarization in the sense of
Sect. 2.1, so Theorem 2 does not apply to it. Finally,
besides the uniform generalization bounds of Assump-
tion A, other guarantees of generalization have been
developed, e.g., based on PAC-Bayesian theory [90, 91], or
algorithmic stability [92, 93]. We see no principled reasons
why results similar to ours should not hold for such settings
as well, but other techniques would be required that lie
outside of the scope of this work.

7 Conclusion

In this work, we proved a number of foundational results
for the generalization theory of multi-objective learning. In
particular, we showed that generalization bounds for the
individual objectives imply generalization and excess
bounds for multi-objective learning using scalarizations.
Our second main result is an analysis of the relation
between the Pareto-optimal sets of the empirical and the
true learning problem. This justifies the use of Pareto-based
methods on empirical data to approximately find all truly
Pareto-optimal solutions. However, there is a caveat that
some of the solutions found might be close to Pareto-op-
timal ones only with respect to some of the objectives, not
all of them.

We formulated our results on a high level of generality
that applies not only to measures of per-sample prediction
quality, for which generalization bounds were originally
developed, but also many other quantities of interest for
modern machine learning systems, such as fairness, ro-
bustness and efficiency. While initial results for some of
these specific domains exist, we expect that more and
stronger guarantees will be possible by more refined
objective-specific analyses.

On a technical level, we see two directions for poten-
tially improving our results. First, it would be desirable to

have an explicit rather than implicit relationship between
Pareto-optimal hypotheses and their best empirically Par-
eto-optimal approximations. Theorem 4 does not provide
this. Even though its proof contains an explicit procedure,
it relies on uncomputable quantities, such as the true
objective values. Second, given that Theorem 5 establishes
that there can be empirically Pareto-optimal hypotheses
that do not approximate any truly Pareto-optimal hypoth-
esis with respect to all objectives, it would be desirable to
have an algorithmic procedure for testing which hypothe-
ses these are. We see these as interesting directions for
future work.

Appendix A

Appendix—proofs of the main results

Proof of Theorem 2 With probability at least 1 — ¢ for the
dataset S, the relations of Lemma 1 will hold. By studying
only these cases, we again obtaining results that hold with
probability at least 1 — §.

For statement a), for any U € 1l we obtain by the
Lipschitz property of the scalarization and Lemma 1 that
for all h € H:

| Co(h) — Ly(h)| < Zul| (L1 (h) — L1 (h),

| (A1)
co Ln(h) = Ly () |l

<2ul(1£3() = 220 1Ly (h) = Zu(B))y  (A2)

< Jull(Ci(n1, H, 8 /Nu), (A3)

cey CN(nN7 H, 5/Nnt)) ”Z,{

where the last two inequalities hold because of the norms’
monotonicity, i.e., the fact that it is non-decreasing under
increases of the input vector components [94]. In combi-
nation, this proves statement a).

Statement b) follows by arguments mirroring the proof

of classic excess risk bounds [3]. Let hAZ, € argmin Zu(h)
Then, it holds for arbitrary h € H that "
Loi(ly) — Lu(h) < Lo(hy) — Lulhy) + Lu(h) — Lu(h)
(A4)
< 2“ (Cl (nm,H, 5/Nnt)a D CN(nN7 H, 5/Nnt)) ||u (AS)

where the first inequality holds because Zu(hZ) < Lu(h)
by construction of hz and the second inequality one fol-

lows from applying (4) twice, once for 7 and once for h?,.
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The statement of the theorem now follows by moving the
term containing A to the right-hand side.

Proof of Theorem 3 We again only study the case in the
inequalities of Lemma 1 are fulfilled, so the results we
achieve hold with probability at least 1 — §.

We prove the remaining part of the theorem by
contradiction. The negation of the statement reads: there

exists an empirically Pareto-optimal hypothesis heH

and a hypothesis heH such that Li(h') -

Li(h) > 2C;i(n;,H,0/Ny) for all i € [N].

For these &~ and h, it follows that for all i € [N]:

Li(h) — Li(K) < Li(h) — Li(k") +2C;(ni, H, 8 /Nyy) <O.
(A6)

For the first inequality, we applied Lemma 1 twice, and the

second inequality follows from the assumption. However,

(A6) establishes that & empirically strongly dominates h

which is a contradiction to the assumption that h was

empirically Pareto-optimal. O

Proof of Theorem 4 We again only study these case in
which the dataset fulfills the inequalities of Lemma 1, so
the results we achieve holds with probability at least 1 — 6.

Statement a) is a consequence of Lemma 1 and the
definition of (empirical) Pareto-optimality. Let #* € H be
Pareto-optimal. If it is also empirically Pareto-optimal,

inequality (7) holds trivially with i~ = h*. Otherwise, there

exists an empirically Pareto-optimal /' that dominates h*
with respect to the empirical objectives, i.e., in particular

Li(h) < Z,-(h*) for all i € [N]. From this, we obtain for all
i € [N], analogously to the proof of Theorem 2b):
L) = Li(h*) < Li(RY) — Li(R) + Li(h*) — Li(h7)
S 261'(”1') Ha 5/Nm)
(A7)

Before proving statement b), we introduce additively
shifted objectives as the main tool.

Definition 4 For an objective £(h) with empirical esti-
mate £(h) and a constant K, we call £LX(h) = L(h) + K
and L*¥(h)=L(h)+K their K-additively shifted
variants.

Generalization and Pareto-optimality are unaffected by
additive shifts.

Lemma 8

a) For any constant K, if a generalization bound of the
form (1) holds for an objective £ and its empirical
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estimate Z then a bound with identical generaliza-

tion term also holds for £ and £1X.

b) For any constants Kj,...,Ky, a solution h € H is
Pareto-optimal for £;,...,Ly if and only if it is
Pareto-optimal for £%' ... £, The analogous
relation holds for empirically Pareto-optimality.

The proofs are elementary: For a), the additive terms
cancel out in the generalization bound. For b) Pareto-op-
timality depends only on the relative order of objective
values, which is not affected by additive shifts.

Lemma 9 Let h* € 'H be a Pareto-optimal solution with
Li(h) >0 for all i € [N]. Then h* is a minimizer to the
Chebyshev scalarization U™ (h) = max;ejy wiLli(h) with

weights w; = %for i € [N]. Furthermore, for any other

minimizer, hT, of the scalarization it holds that E;(hT) =
Li(h*) for all i€ [N]). The analogous result holds for
empirically Pareto-optimal hypotheses.

Proof We prove the lemma by contradiction. First,
assume 4 to be a hypothesis with strictly smaller value for
the scalarization. By construction w;L;(h*) =1 for all
i € [N], therefore w;L;(h)<1 for all i € [N] must hold.
This, however, would imply £;(h) <L;(h*) for all i € [N],
which is impossible because h* is Pareto-optimal. For hT,
we know w,-,C,-(hT) <1 and therefore E,-(hT) < L;(h*) for
all i € [N]. Because of h*’s Pareto-optimality, none of these
inequalities can be strict, which proves the statement. The
same line of arguments holds in the empirical situation. [

We now turn to the proof of Theorem 4 b). Let h be an
empirically Pareto-optimal solution for L, ..., Ly. For a
more concise notation, we abbreviate ¢; = C;(n, H, 0 /Ny).

First, we consider the case where none of the objectives
is trivially generalizing, i.e., ¢; >0 for all i € [N]. By
Lemma 8, we know that h* is also empirically Pareto-op-

timal for the shifted objectives £;%',..., £/ with
Ki = CCi — Z,(l’l*) for C
1~ S (A8)
=2+ max[—(£;(h") — min £;(h))]
J J

An explicit calculation confirms that £;%(h)>2¢; > 0,
which by assumption implies £;%/(h)>¢; >0, for all
i € [N]. By Lemma 9 we know that #* is a minimizer of the

Chebyshev scalarization with weights w; = f%ﬁz) = é

for all i € [N']. Let h* be a minimizer of the scalarization of
the true objectives with same weights w;. The assumption
of ray completeness together with Lemma 9 implies

ML) = = () = max Wil ()
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. The Chebyshev scalarization is a weighted L(°*)-norm and
1-Lipschitz with respect to itself. Therefore, by Theorem 2:

max wj[,.JrKj (hA*) < max Wjﬁ;LKj (h*) +2 ?el[?\’)]( wiCj (A9)

jeny jelv]
Consequently, we obtain the component-wise inequalities:

Vi € [N] wilL () < w5 () + Zm[a)]( wjcj
jelv

(A10)

Now, inserting the definition Kj;, subtracting w;K; from both
sides and dividing by w; we obtain

Li(h) < Li(h*) + Emax wjc;.

Vi € [N] o, max

(A11)
By construction, wjc; =¢ for all j € [N]. Therefore,
W%maxje[N] wjcj = % = 2¢;. Because ¢; = Ci(n;, H,0/Ny)
this concludes the proof.

For the general situation, assume that there are Ny, non-
trivially and N — Ny, trivially generalizing objectives. If

M =0, then L;(h) = L;(h) forall i =1,...,N and for all
h € 'H. Then, Pareto-optimal and empirically Pareto-opti-
mal sets coincide, and i = h* fulfills the statement of the
theorem.

Otherwise, assume without loss of generality that the
objectives are ordered such that, C;(n;,H,/Ny) > 0 for
i € [Ny and Ci(n;, H,0/N;,) =0 fori € {Ny+1,...,N}.
Let G={hecH:Lih)=Lih)foric {Nu+1,...,
N}}.  Note that also G={heH:Lih) =
Li(h*) fori € {Ny +1,...,N}}, because Ly, i1,...,Ly
are trivially generalizing. G is a subset of H that is non-
empty (because h e G). Consequently, the inequalities of
Lemma 1 and Theorem 2 hold also as statements for all
g € G rather than & € H. Because n s empirically Pareto-
optimal within H with respect to Zl, cen ZN, it is also
empirically Pareto-optimal in G with respect to
Zl,...,ZM. Applying the result from the case without
trivially generalizing objectives to this situation, we obtain
that there exists &* € G such that for all i € [Ny

Li(h) < Li(h") + Ci(ni, M, 3/Ny) (A12)

For i€ {Ny+1,...N}, we have Li(h)=Lih),
because i* € G. Consequently, inequality (A12) holds also
for these (with C;(n;, H,5/Ny) = 0), which concludes the
proof.
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