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Abstract. We give a simplified proof of the nonexistence of large nuclei in the liquid drop
model and provide an explicit bound. Our bound is within a factor of 2.3 of the conjec-
tured value and seems to be the first quantitative result.
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We consider the minimization problem

E(A)= inf{E(�): |�|= A}

over all measurable set �⊂R
3 with the energy functional

E[�]=Per�+ 1
2

∫∫
�×�

dx dy
|x − y| .

Here � can be interpreted as a nucleus in the liquid drop model with density 1,
and hence the volume |�|= A is the number of nucleons (protons and neutrons) in
the nucleus. Mathematically, A is not necessarily an integer. The perimeter Per� is
taken in the sense of De Giorgi, namely

Per�= sup
{∫

�

div F(x)dx | F ∈C1
0(R

3,R3), |F |≤1
}

,

which boils down to the surface area of � when the boundary is smooth. The
Coulomb term describes the proton repulsion in the nucleus, where the proton
charge has been normalized appropriately. The liquid drop model goes back to the
pioneering works of Gamow [9], von Weizsäcker [16] and Bohr [2] in 1930s, and
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recently it has gained renewed interest from many authors, see for instance [1,3–
6,8,10–12].

It is well known that among all measurable sets of a given volume, balls mini-
mize the perimeter (by the isoperimetric inequality [7]) and maximize the Coulomb
self-interaction energy (by the Riesz rearrangement inequality [15]). This energy
competition makes the liquid drop model highly nontrivial. It is generally assumed
in the physics literature and conjectured in the mathematics literature [6] that E(A)

is minimized by a ball up to

Ac = 2−22/3

22/3 −1
· |B| PerB
1
2

∫∫
B×B |x − y|−1 dx dy

=5 · 2−22/3

22/3 −1
≈3.518,

(see also [8]) and that for A> Ac there is no minimizer.
The fact that there is no minimizer for large A has been shown only recently in

remarkable works of Knüpfer–Muratov [10] and Lu–Otto [12]. Their methods are
inspired by techniques from geometric measure theory and seem to lead to rather
large constants. In the present paper, we will provide a direct and simple proof of
the nonexistence and give an explicit bound on the maximal size of a nucleus. Our
main result is

THEOREM. If A>8, then E(A) has no minimizer.

This is within a factor of 2.3 of the conjectured value and seems to be the first
quantitative result. We also emphasize that balls are locally stable up to A=10 [3].
Our proof builds on ideas in [12,14], which were originally developed to deal with
the nonexistence in the Thomas–Fermi–Dirac–von Weisäcker theory.

For every ν ∈S
2 and �∈R we consider the plane

Hν,� := {x ∈R
3 | ν · x =�}

as well as the half-spaces

H+
ν,� := {x ∈R

3 | ν · x >�}, H−
ν,� := {x ∈R

3 | ν · x <�}.
For a set �⊂R

3 we denote

�±
ν,� =�∩ H±

ν,� .

We use the following simple result from the theory of sets of finite perimeter.

LEMMA. Let �⊂R
3 have finite perimeter and ν ∈S

2. Then for almost every �∈R,

Per�+
ν,� +Per�−

ν,� =Per�+2H2(�∩ Hν,�) .

Here H2 denotes the two-dimensional Hausdorff measure.

Proof of Lemma. For a set E ⊂R
3 of finite perimeter and its characteristic func-

tion χE we consider the measure μE = −∇χE and note that PerE = |μE |(R3).
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According to [13, Ex. 15.13], for almost every �∈R,

μ�−
ν,�

=μ�|H−
ν,�

+νH2|�∩Hν,�
.

As in the proof of [13, Lem. 15.12], the measures on the right side are mutually
singular and therefore

|μ�−
ν,�

|= |μ�||H−
ν,�

+H2|�∩Hν,�
.

Thus,

Per�−
ν,� =|μ�|(H−

ν,�)+H2(�∩ Hν,�) .

Adding this and the corresponding equality for −ν and −� we obtain the lemma.

Proof of Theorem. Let � be a minimizer for E(A) for some A>0. By minimality
of � and subadditivity of E , we have for every ν ∈S

2 and �∈R,

E(�+
ν,�)+E(�−

ν,�)≥ E(|�+
ν,�|)+ E(|�−

ν,�|)≥ E(A)=E(�) .

By the lemma, for almost every �∈R this is the same as

2H2(�∩ Hν,�)≥
∫∫

H+
ν,�×H−

ν,�

χ�(x)χ�(y)

|x − y| dx dy .

We integrate this inequality over �∈R and use the fact that
∫
R

H2(�∩ Hν,�)d�=|�|= A

(by Fubini’s theorem) and
∫
R

χ{ν·x>�>ν·y} d�= (ν · (x − y))+ ,

to get

2A≥
∫∫

R3×R3
χ�(x)

(ν · (x − y))+
|x − y| χ�(y)dx dy .

Finally, we average the bound with respect to ν ∈S
2 and use the fact that, for any

a∈R
3,

(4π)−1
∫
S2

(ν ·a)+ dν = |a|
2

∫ π/2

0
cos θ sin θ dθ = |a|

4

to conclude that

2A≥ 1
4

∫∫
R3×R3

χ�(x)χ�(y)dx dy= A2

4
.

Thus, A≤8, which proves the theorem.



1036 RUPERT L. FRANK ET AL.

Acknowledgements

Open access funding provided by Institute of Science and Technology Austria.
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