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Abstract

We study the eigenvalue trajectories of a time dependent matrix Gt = H + itvv∗ for
t ≥ 0, where H is an N × N Hermitian random matrix and v is a unit vector. In
particular, we establish that with high probability, an outlier can be distinguished at
all times t > 1 +N−1/3+ε, for any ε > 0. The study of this natural process combines
elements of Hermitian and non-Hermitian analysis, and illustrates some aspects of
the intrinsic instability of (even weakly) non-Hermitian matrices.
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Figure 1: Trajectories of bulk eigenvalues for H a 100× 100 GUE matrix.

Introduction

Rank-one perturbations of random matrices appear naturally in a variety of contexts,
an overview of which was recently provided by [6]. An important example is the
celebrated phenomenon of BBP transition (for Baik-Ben Arous-Péché: see [3, 16]), which
arises when the perturbation is a positive rank-one Hermitian matrix, and so slightly
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Dynamics of a rank-one perturbation of a Hermitian matrix

‘pushes’ the spectrum to the right, to the point where one outlier is clearly separated
from the bulk. Another example is that of non-Hermitian perturbations of a Hermitian
matrix, which play an important role in scattering theory (for a general presentation
of this application, see Chapter 34 of [1] and [11]). The questions we consider here
can be summarized as follows: what can be rigorously established about rank-one anti-
Hermitian perturbations of a random Hermitian matrix considered dynamically, that is,
when the coupling parameter is interpreted as time? And more specifically, what can be
said about the eventual outlier? Questions of a dynamical nature have been considered
early on in the physics litterature (e.g. [19]), and the distribution of eigenvalues in
such models has recently been the subject of much mathematical work (see for instance
[15, 17, 18]). However, the question of the exact timescale at which the outlier appears
seems to have not been adressed until now.

Throughout the paper, the essential assumption is that H be a random Hermitian
matrix for which the uniform isotropic local law (Theorem 2.1) is known to hold. For
the sake of definiteness, say that we consider the Wigner ensemble with the following
standard assumptions: entries hij , i ≤ j are independent, off-diagonal (resp. diagonal)
entries are identically distributed with continuous distribution on C (resp. R) such
that Ehij = 0, E|hij |2 = 1/N and finite moments, i.e. E|

√
Nhij |p ≤ Cp for all p. These

are the Wigner matrices with which we work by default – although the method and
results also hold under more general conditions, such as those of [4]. As the entries of
H are assumed to have a continuous distribution, it holds almost surely that H has N
distinct real eigenvalues µ1 < · · · < µN ; and we denote by (ui)

N
i=1 a choice of associated

normalized eigenvectors.
We consider the following process, which is a rank-one perturbation of H:

Gt := H + itvv∗, t ∈ R, (0.1)

where v is a random unit vector, chosen uniformly on the sphere and independent of H.
However, the randomness of v is not a very relevant feature (as long as independence
holds). The main results, indeed, are proved for any fixed v; only the proofs of some pre-
liminary facts are greatly simplified when stating them with respect to the randomness
in v.

It is straightforward to check that the eigenvalues of Gt lie in the upper half-plane
for t > 0, and that G−t = G∗t , so that the eigenvalue trajectories for t < 0 and t > 0

are symmetric to the real axis. Another deterministic property is that, as t → ∞, the
spectrum is composed of one outlier that diverges (λjout(t) ≈ it) andN−1 eigenvalues that
converge to specific locations on the real line. Note that the distribution of eigenvalues
at any fixed t is known when H is taken from an integrable ensemble such as GUE or
GOE (see for instance [7, 12]). However, the questions we ask here are of a dynamic
nature: we are interested in the evolution of the spectrum {λ1(t), . . . , λN (t)} of Gt when
t ∈ [0,+∞), and in particular in the emergence of a single outlier (Theorem 2.4). The fact
that indices can be given consistently to form N continuous trajectories is a consequence
of the non-intersection of trajectories (Theorem 1.3); we choose these indices so that
λi(0) = µi.

Section 1 introduces some basic properties of these dynamics, either determinis-
tic or probabilistic. In particular, it is established that trajectories are almost surely
non-crossing (Theorem 1.3); moreover, they are everywhere differentiable and satisfy
remarkable systems of differential equations of first and second order with singularities
(Theorem 1.5). Seen from this angle, the system appears to be extremely unstable, so
that an alternative approach is needed.

Section 2 relies on the isotropic local law (Theorem 2.1), borrowed from the existing
literature on Hermitian random matrices, to give more precise high-probability estimates
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Dynamics of a rank-one perturbation of a Hermitian matrix

on these trajectories. Most importantly, we establish in Theorem 2.4 that the outlier is
distinctly separated from the rest of the spectrum at all times t > 1+N−1/3+ε, with ε > 0.
This timescale for the emergence of the outlier happens to coincide with the critical
timescale of BBP transition. Inspired by the present work, Fyodorov, Khoruzhenko and
Poplavskyi [8] provided clear evidence that this timescale is indeed optimal, when H is
GUE distributed, based upon an explicit formula for the density of the eigenvalues [10].

A natural question that is left open is that of the origin of the outlier: from which
eigenvalue µj of H is this particular trajectory more likely to originate? In the context
of a Hermitian perturbation, the answer is trivial; for an anti-Hermitian perturbation
it becomes very subtle. Heuristic arguments as well as numerical simulations seem
to imply that the eigenvalues closer to the origin are much more likely to become the
outlier when t increases. However, the absence of a local law very near the spectrum
prevents us from turning this phenomenology into a rigorous statement.

Notations and conventions

We introduce the following standard definition.

Definition 0.1 (High Probability). A sequence of events (AN )N≥1 is said to happen with
high probability if for any D > 0 the inequality

P (AcN ) < N−D

holds for sufficiently large N .

It is customary, when working with Wigner matrices, to define the function msc on
C\[−2, 2], the Stieltjes transform of the Wigner semicircle distribution ρsc(x) = 1

2π

√
4− x2

on [−2, 2]. This function is the natural approximation of the resolvent on both the
upper and lower half-planes. Note that msc has a jump discontinuity on [−2, 2] and
msc(z) = msc(z). In this paper we need a slight modification of this function on the lower
half-plane that is holomorphic through [−2, 2], i.e. we define

m(z) =
−z +

√
z2 − 4

2
(0.2)

which is holomorphic on C\(−∞,−2]∪ [2,+∞) with the appropriate choice of branch-cut
for the square root, such that =(

√
z2 − 4) > 0 for every z in this domain. In particular,

m = msc on the upper-half plane. It is a solution to the equation m(z)2 + zm(z) + 1 = 0,
so that m defines a bijection from C\(−∞,−2] ∪ [2,+∞) to its image with

z = −1 + m(z)2

m(z)
. (0.3)

We also define, for any t > 0,

t∗ := t− 1

t
, such that m(it∗) =

i

t
. (0.4)

It is a very important fact (for most results in Section 2) that the holomorphic function
m(z) − i/t has only one zero at z = it∗, with multiplicity one; this zero being in the
upper-half plane if and only if t ≥ 1. The role of the quantity t∗ as an approximation to
the resonant eigenvalue was already noted, see for instance [11, p.1950].

1 First properties of trajectories

In this section, we consider a fixed matrix H. The results are either deterministic, or
stated with respect to Pv, the randomness in v, a uniform unit vector.

ECP 28 (2023), paper 13.
Page 3/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP516
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Dynamics of a rank-one perturbation of a Hermitian matrix

1.1 Weighted resolvent and non-intersection of trajectories

For now, one can assume that the indices of the eigenvalues λj(t) of Gt are given
arbitrarily for each t. One of the goals of the following results is to establish that the
indices can be given in a consistant way, with λj(t) being ‘the’ trajectory such that
λj(0) = µj .

Definition 1.1. We define the weighted resolvent associated to H and the unit vector v
by

W (z) :=

N∑
j=1

|〈uj |v〉|2

µj − z
= 〈v|(H − z)−1v〉. (1.1)

The name weighted resolvent refers to the fact that W (z) can be considered as a
weighted sum with weights |〈uj |v〉|2 that sum up to one. Since Ev|〈uj |v〉|2 = 1

N , where
expectation is with respect to the uniform unit vector v, so EvW (z) is the usual trace of
the resolvent of H.

Proposition 1.2. For any t 6= 0,

z ∈ Sp (Gt) ⇔ W (z) =
i

t
. (1.2)

As a consequence, the trajectories of eigenvalues for the system (0.1) are given by the
zero level lines of the real part of the weighted resolvent W :

N⋃
j=1

{λj(t) : t ∈ R∗} = {z ∈ C\SpH : <W (z) = 0}. (1.3)

In particular,

∀j, t, µ1 ≤ <λj(t) ≤ µN (1.4)

with equality happening only for t = 0, or if |〈u1|v〉|2 = 1 (resp. |〈uN |v〉|2 = 1).

Proof. For any z /∈ R, the matrix (H − z)−1vv∗ has rank 1, and in particular its trace
W (z) is its only non-zero eigenvalue. We write:

det(Gt − z) = det(H − z) det
(
IN + it(H − z)−1vv∗

)
= det(H − z) (1 + itW (z)) . (1.5)

The result follows, as z ∈ Sp(Gt) is equivalent to 1 + itW (z) = 0. This is equivalent to
z = E + iη being a solution to the equation

N∑
j=1

|〈uj |v〉|2
µj − E

(µj − E)2 + η2
= 0. (1.6)

and (1.4) follows by inspection, all terms having the same sign outside the vertical strip
{µ1 ≤ <z ≤ µN}.

We now prove that the trajectories almost surely do not cross. This is in fact true for
any N ; we give below a concise argument that requires N ≥ 5, which is enough for our
purpose, as subsequent results concern large values of N .

Theorem 1.3. We assume N ≥ 5, and that H has distinct real eigenvalues µ1 < · · · < µN .
Almost surely with respect to Pv, the randomness in v, the trajectories of the system
(0.1) do not intersect, nor do they self-intersect: that is, for all i 6= j,

Pv (∃t, s ≥ 0, λi(t) = λj(s)) = 0 & Pv (∃t, s ≥ 0, t 6= s, λj(t) = λj(s)) = 0. (1.7)
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Dynamics of a rank-one perturbation of a Hermitian matrix

Proof. If for some j1, j2, λj1(t) = λj2(s) = z, then by Proposition 1.2,

W (z) =
i

t
=
i

s
(1.8)

and so t = s (if t or s = 0, (1.8) is understood as meaning that z is a pole of W ). This
rules out self-intersection, as well as intersection of two distinct trajectories for different
times. Intersection of two trajectories at t = 0 is ruled out by the eigenvalues of H
being distinct. The remaining possibility is that two trajectories intersect at the same
time t > 0, which implies that W − i/t vanishes at z /∈ R with multiplicity at least 2; in
particular W ′(z) = 0. This is to say that an intersection point z is such that the two
conditions

<W (z) = 0 & W ′(z) = 0 (1.9)

are met. We will prove that almost surely, there is no z that checks both conditions. First,
note that

W ′(z) =

N∑
j=1

|〈uj |v〉|2

(µj − z)2
(1.10)

and so the condition W ′(z) = 0 is equivalent to z being the root of a real polynomial of
degree 2N − 2 (almost surely) that does not vanish on the real line. There is a finite
number of such points: namely, almost surely N − 1 conjugated pairs that we denote
(Zk, Zk)N−1k=1 , with =Zk > 0, counted with multiplicity. For any z /∈ R, let us define the
real vectors:

Y1(z) :=

(
< 1

µj − z

)N
j=1

, Y2(z) :=

(
< 1

(µj − z)2

)N
j=1

, Y3(z) :=

(
= 1

(µj − z)2

)N
j=1

,

(1.11)
and notice that the first condition of (1.9) can be written as

〈X | Y1(z)〉 = 0 (1.12)

where X := (|〈uj |v〉|2)Nj=1, and the second one similarly as

〈X | Y2(z)〉 = 0, 〈X | Y3(z)〉 = 0. (1.13)

We will rely on the (deterministic) fact that Y1(z) is not in the R-span of Y2(z), Y3(z) for
any z ∈ C\R.

Lemma 1.4. Assuming N ≥ 5, for any z = E + iη /∈ R, Y1(z) /∈ SpanR(Y2(z), Y3(z)).

Proof. For any z = E + iη with η 6= 0, we denote

aj + ibj =
1

µj − z
. (1.14)

In particular, every pair (aj , bj) solves

bj = η(a2j + b2j ) (1.15)

which is the equation of the circle Cη with center i
2η and radius 1

2η , in the (a, b) plane.
Moreover, the µj ’s being distinct, (aj , bj) are N distinct points on Cη.

Moreover, assuming that Y1(z) = αY2(z) + βY3(z) for some α, β ∈ R, we have

aj = α(a2j − b2j ) + 2βajbj , (1.16)
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which is the equation of a hyperbola Hα,β (including the degenerate case, that yields a
union of two lines). By general theory (e.g. Bézout’s theorem for curves), we have

N ≤ |Cη ∩Hα,β | ≤ 4, (1.17)

which is a contradiction.

For any fixed z ∈ C\R, conditionally on (1.13), the probability that (1.12) holds as
well is zero, as Y1(z) is linearly independent of Y2(z), Y3(z) and X has a continuous
distribution on the simplex(x1, . . . , xN ) : xj ≥ 0,

N∑
j=1

xj = 1

 .

So what the above argument allows to conclude is that

∀z ∈ C\R, Pv (<W (z) = 0 | W ′(z) = 0) = 0. (1.18)

Considering that there are finally many points (Zi, Zi)
N−1
i=1 such that W ′(z) = 0, and that

these can be assumed to be exchangeable (for instance, by reshuffling their indices by a
uniform random permutation), it follows by classical probabilistic arguments that

Pv (∃z ∈ C\R, <W (z) = 0 & W ′(z) = 0) = 0. (1.19)

which concludes the proof.

An important consequence of Theorem 1.3 is the possibility of choosing an coherent
indexation such that each λj(t) is a (uniquely defined) distinct continuous trajectory. We
now study the deterministic behavior of these trajectories.

1.2 Deterministic evolution

The main features of these N almost surely non-crossing continuous trajectories are
as follows:

(i) At t = 0, all eigenvalues are real.

(ii) For t > 0, all eigenvalues are in the upper-half plane.

(iii) When t→∞, one eigenvalue (‘the outlier’ λjout) diverges with =λjout −−−→
t→∞

∞ and

bounded real part, and the rest of the spectrum converges to N − 1 distinct points
on the real line.

The first two properties immediately follow from the definition of Gt. The last one can be
easily established by the Schur complement identity, that also allows to identify the limit
points as the eigenvalues of the projection of the operator H on the space orthogonal
to v. Another remarkable deterministic fact is that this evolution of eigenvalues can be
described by two closed systems of differential equations: indeed, both first and second
derivatives can be expressed in terms of lower order terms, as we now state.

Theorem 1.5 (First and Second Order Differential Equations). Let H be a Hermitian
matrix with simple eigenvalues (µj)

N
j=1 and associated unit eigenvectors (uj)

N
j=1. The

evolution of the eigenvalues (λj(t))
N
j=1 ofGt = H+itvv∗ can be described by the following

closed system of equations, as long as the eigenvalues are distinct1. The initial condition
is λj(0) = µj . For t = 0, one has

λ′j(0) = i|v∗uj |2, (1.20)

1This is almost surely the case when v is a random unit vector, by Theorem 1.3.
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and for t > 0,

λ′j(t) =
i=λj(t)

t

∏
k 6=j

λj(t)− λk(t)

λj(t)− λk(t)
. (1.21)

Moreover, the following second order equation holds, for t > 0:

λ′′j (t) = 2λ′j(t)
∑
k 6=j

λ′k(t)

λj − λk
. (1.22)

Note that the product in the right hand side of (1.21) is exactly the value of the
diagonal overlaps Ojj (see formula (11) in [9]). Remarkably, the second order equation

(1.22) is valid more generally for the eigenvalues of G(θ)
t = H + eiθtvv∗ with any θ

including the fully Hermitian case θ = 0; the proof is the same.

Proof. If the row vectors Li and the column vectors Rj are respectively the left and right
eigenvectors of Gt, chosen with the biorthogonality condition

LiRj = δij , (1.23)

which is always possible when the corresponding eigenvalues are distinct, and if we call
X the matrix with columns R1, . . . , RN and Y the matrix with rows L1, . . . , LN , then it
follows in particular that:

Y X = I, GtX = X∆, Y Gt = ∆Y. (1.24)

where ∆ = Diag(λ1, . . . , λN). Differentiating with respect to t yields

∆′ = Y G′tX + [∆, Y X ′]. (1.25)

In the present case, G′t = ivv∗, and so equation (1.25) gives, on the diagonal,

λ′j(t) = LjG
′
tRj = iLjvv

∗Rj . (1.26)

For t = 0, G0 = H and Rj = Lj = uj , so that equation (1.20) follows. For t > 0, we first
notice that the quantity L1vv

∗R1 is invariant under a unitary change of basis, so we can
compute it for a Schur form of Gt. As this Schur form T is conjugated to Gt by a unitary
change of variable, we have

T = H̃ + itṽṽ∗ (1.27)

with H̃ = UHU∗, ṽ = Uv. We will simply continue to denote these by H and v in order to
not overload notations. As T is upper-triangular, we have

∀a < b, Tba = Hba + itvbva = 0, (1.28)

which implies

∀a < b, Tab = Hab + itvavb = Hba + itvavb = 2itvavb, (1.29)

and on the diagonal, Taa = λa = Haa + it|va|2, which implies

<λa = Haa, =λa = t|va|2. (1.30)

This Schur form can be chosen so that any given eigenvalue is the first on the diagonal,
and so we work now with λ1 (i.e. we prove (1.21) for j = 1) without loss of generality.
Another consequence of T being triangular is that R1 = e1 and so v∗R1 = v1. We now
compute L1v; in the following argument, we denote L1 = (1, `2, . . . , `N ), and L

(d)
1 =
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(1, `2, . . . , `d) so that L1 = L
(N)
1 ; similarly v(d) stands for (v1, . . . , vd). The numbers `k

satisfy a simple recursion, which follows from the definition of L1, and T being triangular.
Together with (1.29), this gives

`k+1 =
1

λ1 − λk+1
L
(k)
1 τk+1 =

2itvk+1

λ1 − λk+1
L
(k)
1 v(k), (1.31)

where τk+1 is the column vector of the first k entries of the (k + 1)th column of T . The
recursion for L1v is then initiated by

L
(1)
1 v(1) = v1,

and continued in the following way:

L
(k+1)
1 v(k+1) = L

(k)
1 v(k) + `k+1vk+1

= L
(k)
1 v(k) +

2it|vk+1|2

λ1 − λk+1
L
(k)
1 v(k)

= L
(k)
1 v(k)

(
1 +

2it|vk+1|2

λ1 − λk+1

)
where we replaced `k+1 using (1.31). Eq. (1.30) gives us 2it|vk+1|2 = λk+1 − λk+1, so
that

L
(k+1)
1 v(k+1) = L

(k)
1 v(k)

(
1 +

λk+1 − λk+1

λ1 − λk+1

)
= L

(k)
1 v(k)

λ1 − λk+1

λ1 − λk+1
, (1.32)

and finally

L1v = L
(N)
1 v = v1

N∏
k=2

λ1 − λk
λ1 − λk

.

It now follows from (1.26) that

λ′1(t) = iL1vv
∗R1 = i|v1|2

N∏
k=2

λ1 − λk
λ1 − λk

,

and eq. (1.30) allows us to obtain the equation (1.21), that is a function of eigenvalues
only, valid for any t > 0.

In order to prove of (1.22), we look at the off-diagonal terms of (1.25):

∀i 6= j, (λi − λj)LiR′j = −LiG′tRj (1.33)

So that, expressing the derivative of right (resp. left) eigenvectors in the basis of the
right (resp. left) eigenvectors,

R′j =

N∑
k=1

αj,kRk, & L′j =

N∑
k=1

βj,kLk (1.34)

we find

∀k 6= j, αj,k = LkR
′
j =

1

λj − λk
(LkG

′
tRj) (1.35)

and

∀k 6= j, βj,k = L′jRk = −LjR′k =
1

λj − λk
(LjG

′
tRk) (1.36)

we also note that as LkRk = 1, βkk = L′kRk = −LkR′k = −αkk, and so

R′j =
∑
k 6=j

1

λj − λk
(LkG

′
tRj)Rk + αjjRj & L′j =

∑
k 6=j

1

λj − λk
(LjG

′
tRk)Lk − αjjLj
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Differentiating eq. (1.25) on the diagonal using that G′t = ivv∗, G′′t = 0:

λ′′j (t) = iL′jvv
∗Rj + iLjvv

∗R′j = i
∑
k 6=j

(βj,k(Lkvv
∗Rj) + αj,k(Ljvv

∗Rk))

=
∑
k 6=j

2

λj − λk
(iLjvv

∗Rk)(iLkvv
∗Rj)

=
∑
k 6=j

2

λj − λk
(iLjvv

∗Rj)(iLkvv
∗Rk) = 2λ′j(t)

∑
k 6=j

λ′k(t)

λj − λk
,

which is (1.22).

2 Properties of trajectories via isotropic local law

In this section we state a few estimates on the trajectories of the system (0.1), based
on the approximation of the weighted resolvent W (z). The unit vector v is assumed to be
fixed in this entire section, and all results are stated with respect to PH , the randomness
of H, a Wigner matrix.

We let T ≥ 2 be an arbitrary fixed constant; the small time (t ≤ T ) and large time
(t > T ) behavior will be analysed somewhat differently.

For any ζ, L > 0, we consider the following spectral domains:

Sζ := {z = E + iη ∈ C : |E| < 3, N−1+ζ ≤ η < N100}, (2.1)

Sζ,L := {z = E + iη ∈ C : |E| < 3, N−1+ζ ≤ η < L}, (2.2)

and
Rζ := {z = E + iη ∈ C : |E| < 3, 0 ≤ η < N−1+ζ}. (2.3)

The essential input in this section is the uniform isotropic local law, taken over from
the existing literature. Local laws in general aim at approximating the resolvent by some
deterministic quantity (msc times the identity matrix for Wigner matrices); ‘isotropic’
refers to scalar products 〈v, (H − z)−1v〉 with some fixed vector v, i.e. to the weighted
resolvent W , and ‘uniform’ refers to uniformity in the parameter z. An isotropic local
law, for a given z in a bounded domain, was first given in [14]. We need its following
version:

Theorem 2.1 (Uniform Isotropic Local Law). For any ζ, ε,D > 0 and fixed unit vector v,

PH

(
∃z ∈ Sζ , |W (z)−m(z)| > Nε

√
Nη(1 + η2)3/4

)
< N−D. (2.4)

Proof. In the bulk spectrum, |<z| ≤ 2− ε, this result was stated in Thm 2.1, eq. (2.6a)
and (2.7a) of [4] even for much more general Hermitian random matrices with possibly
correlated entries. The edge regime was settled in Eq. (2.6a) of [2], where the optimal
bound is in fact slightly better than (2.4). Together, these references provide an isotropic
local law for any fixed z ∈ Sζ . Uniformity in z can be achieved by Lipschitz continuity of
the functions at stake and using a dense grid of fixed spectral parameters.

We will use this isotropic local law together with the following classical theorem.

Rouché’s Theorem: Let f and g be two holomorphic functions on a domain Ω ⊂ C
with closed and simple boundary ∂Ω. If |f(z)− g(z)| < |g(z)| on ∂Ω, then f and g have
the same number of zeros in Ω, counted with multiplicity.

The following proofs all have in common that we determine a domain on which the
inequality |f − g| < |g| holds, with f = W − i/t and g = m − i/t. The conclusion then
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either follows immediately, as this strict inequality clearly prevents f = 0 on the relevant
domain, or by applying Rouché’s theorem on a Jordan curve: the (deterministic) zeros of
g being known, this allows us to draw some conclusions as to the (random) zeros of f .

Theorem 2.2. For any ε, ζ > 0, it holds with PH -high probability that all eigenvalues
λi(t), for any time t ∈ (0, T ), lie in the domain Et,ε ∪Rζ , where

Et,ε := {z = E + iη ∈ C : E2 + (η − t∗)2 < Nε

Nη
, |E| < 3, 0 ≤ η < T}. (2.5)

Corollary 2.3. For any ε > 0, with PH -high probability, all trajectories up to time T are
in the domain

Hε :=
{
z = E + iη ∈ C : ηE2 < N−1+ε, |E| < 3, 0 ≤ η < T

}
. (2.6)

Proof of Theorem 2.2. It was proved in (1.4) that µ1 ≤ <λj(t) ≤ µN for all j and t > 0,
and it holds with PH -high probability that −3 < µ1 < µN < 3 (any number larger than 2

would do), so that the bound |<λj(t)| < 3 follows immediately. Similarly, with probability
one, 0 < =λj(t) < t < T for all j.

We now justify the main inequality, which results from the following observations.
First, by the uniform isotropic law (Theorem 2.1) for any ε, ζ > 0, with PH -high probabil-
ity

∀z ∈ Sζ , |W (z)−m(z)| < Nε/4

√
Nη

. (2.7)

Second, using (0.3), we write:

|z1 − z2| =
∣∣∣∣1 + m(z1)2

m(z1)
− 1 + m(z2)2

m(z2)

∣∣∣∣ ≤ |m(z1)−m(z2)|
(

1 +
1

|m(z1)m(z2)|

)
. (2.8)

We apply this to z2 = it∗, z1 = E + iη with |E| < 3, t < T, η < 2T and conclude that in the
bounded domain Sζ,2T ,

|z − it∗| < CT

∣∣∣∣m(z)− i

t

∣∣∣∣ (2.9)

with a constant CT that only depends on T . Finally, for any z ∈ Sζ,2T \Et,ε, we have (by
definition of Et,ε)

|z − it∗| > Nε/2

√
Nη

, (2.10)

and therefore the following sequence of inequalities holds for z ∈ Sζ,2T \Et,ε, bringing
together (2.7), (2.10), and (2.9).

|W (z)−m(z)| < Nε/4

√
Nη

< N−ε/4|z − it∗| <
∣∣∣∣m(z)− i

t

∣∣∣∣ , (2.11)

using CT ≤ Nε/4. As noticed above (see (0.3)), m(z) − i/t has only one zero at z = it∗,
which is trivially outside Sζ\Et,ε. The conclusion is that W (z) does not take the value i/t
on Sζ\Et,ε, which is to say that all eigenvalues at time t are in Et,ε ∪Rζ .

Proof of Corollary 2.3. We apply Theorem 2.2 and note that⋃
0<t<T

Et,ε ⊂Hε, (2.12)

which proves that for any ε, ζ > 0 all trajectories lie in Hε ∪Rζ ; choosing ζ < ε ensures
that Rζ ⊂Hε, so that with PH -high probability all trajectories lie in Hε.
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Figure 2: Shape of the domain (2.5) when t increases (picture not to scale). The first
two images correspond to some t1 < t2 < 1 + N−1/3−ε; the last one corresponds to
t4 > 1 +N−1/3+ε, when the outlier can be isolated by applying Rouché’s theorem around
the upper connected component.

The above argument relied directly on the strict inequality (2.11). For the next result,
we rely on Rouché’s theorem in order to isolate one particular eigenvalue, which we
can do as soon as the relevant domain has a bounded connected component in Sζ,2T , as
illustrated on Fig. 2.

Theorem 2.4 (Emergence of an outlier). For any ε > 0, with PH -high probability, at

all times t ∈ (1 +N−1/3+ε, T ) the outlier is in the disk D
(
it∗, N

ε/4
√
Nt∗

)
, whereas all other

eigenvalues satisfy =λj(t) < Nε

N(t∗)2 . In particular they are well separated from the

outlier2.

Proof. We consider some ε′ > 0 such that ε′ < ε/2, and the domain Et,ε′ similarly as in
(2.5). We go through the same steps as in the proof of Theorem 2.2 and note that the
inequalities (2.7), (2.9), (2.10), and therefore also (2.11) hold on Sζ,2T \Et,ε′ , allowing
us to invoke Rouché on any Jordan curve inside this domain. We further note that, for
t > 1 +N−1/3+ε and N large enough, the domain Et,ε′ has two connected components,
which is a direct calculation. Let us prove that one connected component lies in the disk

D
(
it∗, N

ε/2
√
Nt∗

)
. First, it∗ ∈ Et,ε′ by inspection. Then, note that t > 1 + N−1/3+ε implies

t∗ > N−1/3+ε, so that for N large enough,

Nε/4

√
Nt∗

<
1

3
t∗, (2.13)

which implies that for any z = E + iη ∈ ∂D(it∗, N
ε/4

√
Nt∗

),

η ≥ t∗ − Nε/4

√
Nt∗

>
2

3
t∗ (2.14)

and so, for any point on that disk,

E2 + (η − t∗)2 =
Nε/2

Nt∗
>
Nε′

Nη
. (2.15)

This and other direct considerations show that ∂D(it∗, N
ε/4

√
Nt∗

) ⊂ Sζ,2T \Et,ε′ . We can apply

Rouché on this circle. Owing to the fact that m− i/t has only one zero at it∗, this proves
the first statement about the outlier.

The second statement follows from checking that the second connected component

2Recall that t∗ = t− 1/t, and so t∗ ∼ 2(t− 1) in any regime s.t. t ∼ 1.
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is below height Nε

N(t∗)2 . First, as t∗ > N−1/3+ε, we have

t∗ − Nε

N(t∗)2
>

2

3
t∗. (2.16)

Therefore, for any z = E + i Nε

N(t∗)2 ,

ηE2 + η(η − t∗)2 > 4

9
(t∗)2

Nε

N(t∗)2
>
Nε′

N
(2.17)

for any ε′ < ε. This is valid outside Rζ for some ζ > 0; the second statement follows by
choosing ζ < ε.

We finally present two complements of our main theorem, before and after the
timescale at which the outlier can be isolated. The bounds we obtain for small t, up to
slightly below the relevant 1 +N−1/3 timescale, are given in Proposition 2.5, whereas
the bounds for t ≥ T are given in Proposition 2.6.

Proposition 2.5 (Small t bounds). For any ζ, ε > 0, with PH -high probability, at all times
t < 1 +N−1/3−ε, all eigenvalues satisfy =λj(t) < N−1/3+ε. Moreover, for t < 1−N−1/3+ε,

∀j =λj(t) < max

(
Nε

N(t∗)2
,
Nζ

N

)
. (2.18)

Proof. These bounds are direct consequences of Theorem 2.2 applied for a well chosen
ε′. For instance, if t < 1, then t∗ < 0 and the inequality in (2.5) implies η3 < η(η − t∗)2 <
N−1+ε

′
, from which the bound =λj < N−1/3+ε follows if ε′ < ε. It is a calculus exercise

to check that this inequality still holds as long as 1 ≤ t < 1 +N−1/3−ε, when choosing
an appropriate ε′. If t < 1−N−1/3+ε, it can be directly checked that the domain (2.5) is
connected and contains the origin, so that any line that is not contained in it actually
bounds it. Together with the fact that in that regime,

Nε

N(t∗)2
� |t∗|

one can check that the line {η = Nε

N(t∗)2 } is not in Et,ε, and therefore all eigevalues are
below this threshold, or in Rζ .

Proposition 2.6 (Large t bounds). For any ζ > ε > 0, with PH -high probability, at
all times t ∈ [T,N99], the outlier is in the small disk D(it∗, N−1/2+ε), while all other
eigenvalues are in Rζ .

Proof. The only difference with the previous proofs is the change of domain, from a
bounded one close to the real line, to a domain far away from the real line. There are two
consequences of this change: on the one hand, the isotropic law gives a better bound,
but on the other hand the inequality (2.9) has to be replaced by a weaker one. For this,
we apply the inequality (2.8) this to z2 = it∗, z1 = E + iη with η ∈ [t/2, 2t],

|z − it∗| <
∣∣∣∣m(z)− i

t

∣∣∣∣ (1 +
t

|m(z)|

)
< Nε/2η2

∣∣∣∣m(z)− i

t

∣∣∣∣ . (2.19)

In the domain
Ft,ε := {|E| < 3, t/2 < η < 2t, |z − it∗| ≥ N−1/2+ε}, (2.20)

which is a rectangle with a small disk removed, we have the sequence of inequalities:

|W (z)−m(z)| < Nε/2

η2
√
N
≤ N−ε/2 |z − it

∗|
η2

<

∣∣∣∣m(z)− i

t

∣∣∣∣ (2.21)
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Dynamics of a rank-one perturbation of a Hermitian matrix

and so we can apply Rouché on ∂D(it∗, N−1/2+ε). We recall that the comparison function
m− i/t has exactly one root, which is at it∗. This proves that W − i/t also has exactly one
root inside the disk, which is the outlier. As for the other eigenvalues, the argument from
Theorem 2.4 works the same; as we assume ζ > ε, the region Rζ contains the second
connected component of (2.5).
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