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Abstract

Allometric settings of population dynamics models are appealing due to their parsimonious

nature and broad utility when studying system level effects. Here, we parameterise the size-

scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency,

facilitating an in depth analytic study of the equations which incorporates scaling parame-

ters’ contributions to coexistence. We define the functional response term to match empiri-

cal findings, and examine situations where metabolic theory derivations and observation

diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing

the distribution of size-abundance equilibria, the scaling of period and amplitude of popula-

tion cycling, and relationships between predator and prey abundances, are consistent with

empirical observation. Our parameterisation is an accurate minimal model across 15+

orders of mass magnitude.

Introduction

Allometric scaling relationships have been the subject of scrutiny and debate since the connec-

tion between organism size and its metabolic rate was first defined by Rubner in 1883 [1–4].

These models, which link some characteristic y to the size x of an organism via the power law y
= axb (where a, b are scalar constants), are appealing due to their capacity to capture a multi-

tude of relationships despite their simplicity. Scaling laws have been used to express a variety

of biological rate measures, such as metabolism, consumption, and birth or death rates [5–8].

Allometry is also utilised in modelling behavioural traits and bioenergetic characteristics, such

as movement behaviour or locomotory costs [7, 9–11]. At broad scales, such laws have been

applied to ecosystem-level properties, including predictions of organism population density

and carrying capacity [12–14]. However, despite scaling laws’ wide utility and intensive study,
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there has been a limited exploration of the properties of minimally constructed, size-general-

ised predator-prey models [15–17].

Many authors have examined the empirical relationship between organism and population

sizes [12, 13, 18–20]. Reported exponents fall between −1 and −1/4 depending on factors such

as taxonomy or environment. The classical −3/4 value describing global size-density relation-

ships is the direct inverse of Kleiber’s 3/4 law for metabolic scaling [2, 13], leading to the ‘ener-

getic equivalence’ hypothesis: that is, the net energy contained within each size class is

invariant [18, 20]. This conjecture has been widely debated, particularly with respect to

whether this invariance is cause or effect of other bioenergetic drivers [21]. However, despite

disagreement over underlying mechanisms, there is broad consensus that the consistency of

size-density scaling within empirical data likely reflects fundamental physical constraints [5,

21]. To examine what drives limitations in macro-scaling behaviour, it is possible to use

dynamical size-based models incorporating organism traits that scale across the size range [6,

15, 16]. This approach facilitates the investigation of critical breaks in ecosystem-level scaling

laws within a global framework, and the exploration of potential impacts from changes that

may affect many organisms in a similar way—for example, warming temperatures or emergent

hypoxia in the oceans [22, 23]. However, perturbing parameters across 15+ orders of magni-

tude in size poses challenges. For example, coexistence regions of size-generalised predator-

prey models are dominated by scaling exponents [16].

It is more straightforward to keep model behaviour stable, thus resolving the coexistence

issue, by using the 4-parameter Lotka-Volterra model, but that setting is too simple for some

applications [6, 17]. Alternately, a series of models may be solved piece-wise for different size

classes, yet this means that they are not truly generalised. In the most comprehensive study to

date, a size-based paramaterisation of the Rosenzweig-MacArthur system places restrictions

on the relationships between the exponents of each parameter [16]. However, this in turn lim-

its the types of perturbations that may be applied or investigated. Finally, there are discrepan-

cies in the treatment of the functional response term between the theoretical and empirical

literature. The theoretical literature broadly assumes that the limit of maximal consumption

ties predator production to the prey’s and thus scales negatively to match prey production,

however, there is empirical biological evidence for positive scaling [6].

Here, we present an alternate approach of paramaterising size-based predator-prey interac-

tions for the classical Rosenzweig-MacArthur differential equations. Under this framework,

we use multiple forms of analysis to create a robust picture of parameter sensitivity and

required ranges for species coexistence in the context of real-world observations. We are able

to show that, despite the number of assumptions inherent within this style of modelling, the

mathematical restrictions are closely related to biological observations. Finally, we describe the

conditions required to create an entirely size-invariant model, and show how empirically

derived parameters generate ODE solutions that match real-world size-abundance

distributions.

Methods

Parameterisation of the model

We begin with the Rosenzweig-MacArthur ODEs [24] and Holling II functional response,

dR
dt
¼ rR 1 �

R
K

� �

�
bR

1þ hbR
C

dC
dt
¼ �

bR
1þ hbR

C � dC:
ð1Þ
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We have variables R for resources and C for consumers. The parameters r and δ are birth and

death rates respectively. Carrying capacity is given by K, interaction rate b, handling time h
and the conversion efficiency �. To investigate the system across the full size range we scale the

parameters by mass. Organism size (in g) is given by SR for resources and SC for consumers.

We depart from [16] by constructing the functional response term in line with parameterisa-

tions used within experimental research [6, 25, 26]. Hence, the strictly positive parameters are

expressed as

r ¼ r0S
ar
R

K ¼ K0S
aK
R

b ¼ b0S
ab
C

h ¼ h0S
ahR
R SahCC

d ¼ d0S
ad
C ;

ð2Þ

where for each parameter i, the coefficients i0 may be standardised (Appendix A in S1 Appen-

dix), and αi denotes the scaling exponent. Next, we define the prey-predator mass ratio as ρ,

where ρ> 0. We may then relabel the parameters r, h and K in terms of the consumer,

r̂ ¼ r0ðrSCÞ
ar ¼ r0r

ar SarC

ĥ ¼ h0ðrSCÞ
ahRSahCC ¼ h0r

ahRSahRþahCC

¼ h0r
ahRSahC

K̂ ¼ K0ðrSCÞ
aK ¼ K0r

aK SaKC :

ð3Þ

With this approach we extend the results of [16] by placing no restrictions on the exponents,

allowing h to be an independent term which may be matched to empirical observations. We

now also follow standard practice by setting �/ ρ, that is, the conversion efficiency is propor-

tional to the prey-predator mass ratio [16]. Next, we use a standard rescaling of (1) to reduce

the number of parameters and simplify analyses. We set ~R ¼ 1=ðbĥÞ, ~C = �=ðbĥÞ, m ¼ K̂bĥ,

and define u ¼ R=~R and v ¼ C=~C. After scaling time by r̂ such that t ¼ r̂s, and defining g ¼

�=ðĥr̂Þ and o ¼ d=r̂ , we arrive at the new system

du
ds
¼ u 1 �

u
m

� �

�
guv

1þ u
dv
ds
¼

guv
1þ u

� ov:
ð4Þ

The parameters in (4) are also all strictly positive and scale across the size range. For complete-

ness, we provide the explicit relationship between the old and new parameters in Table 1, and

Table 1. Relationship between parameters in original and rescaled Rosenzweig-MacArthur system. Here, αh = αhR
+ αhC.

Definition Coefficient Exponent

μ K̂ ĥb m0 ¼ K0h0b0r
aKþahR αμ = αKs + αh + αb

γ �=ĥr̂ g0 ¼ �=ðr0h0r
arþahR Þ αγ = −αh − αr

ω d=r̂ o0 ¼ d0=ðr0r
ar Þ αω = αδ − αr

https://doi.org/10.1371/journal.pone.0279838.t001
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the system of equations with substituted terms is

du
ds
¼ u 1 �

S� ah � ab � aKC

K0h0b0r
aKþahR

u
� �

�
�S� ah � arC

h0r0r
arþahR

uv
1þ u

dv
ds
¼

�S� ah � arC

h0r0r
arþahR

uv
1þ u

�
d0S

ad � ar
C

r0r
ar

v:
ð5Þ

The expression SR = ρSC facilitates interpretability in downstream analyses. All exponent

terms may be collected within SC, which we henceforth refer to as S. This provides simplified

expressions within Table 1 and (5), yet we may still examine the impacts of perturbations to

any one parameter. Table 2 summarises parameter exponent ranges within empirical research.

Code used to generate the following results and figures is available at https://github.com/

jcmckerral/universalallometry.

Results and discussion

Coexistence & sensitivity

The non-trivial equilibrium of interest (coexistence) is obtained by equating the right side of

(4) to zero and solving for u = u� and v = v�, yielding

u� ¼
o

g � o

v� ¼
mg � mo � o

mðg � oÞ
2
:

ð6Þ

Table 2. Literature bounds on parameter values. The top portion of the table outlines scalars. The second block summarises scaling exponents, and the third block the

full exponent range for Eq (4) where extreme min-max limits are given for completeness. However, there is consensus that αr, αδ’ −1/4, also verified in a substantial recent

review [27]. Similarly, despite the potential range for αb and αh, in large generalised studies typically 1/2� αb� 1 [25, 26], and αh� 1/8 [6, 25, 26] which significantly con-

strain the exponent ranges in (4). The bottom section of the table therefore provides exponent values in the rescaled system based on upper/lower bounds for the most

plausible generalised empirical scaling values for (2) (as determined by cited articles), i.e. those found from studies with large quantities of data, across broad taxonomic

and size ranges, and/or named outliers being excluded [6, 22, 25–29].

Symbol Parameter Minimum Maximum References

ρ Prey-predator mass ratio 1E-4 1E2

S (Consumer) mass, g 1E-10 1E7

� Conversion efficiency 0 ρ

αr Birth rate -0.81 -0.25 [6, 15, 16, 22, 27–31]

αδ Death rate -0.35 -0.22 [6, 15, 16, 22, 27–31]

αb Interaction rate -0.25 1.58 [6, 17, 25, 26, 29]

αK Carrying capacity -0.88 -0.74 [6, 16, 31]

αhR Handling time (resource) 0 1 [15, 25, 26]

αhC Handling time (consumer) -1.1 0 [6, 15, 25, 26]

αμ (maximal range) -2.2 1.84

αγ (maximal range) -0.75 1.92

αω (maximal range) -0.1 0.59

αμ (likely range) -1.38 0.18 [6, 25, 26, 29]

αγ (likely range) 0 1.25 [6, 25–27]

αω (likely range) -0.05 0.05 [22, 27, 28]

https://doi.org/10.1371/journal.pone.0279838.t002
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For there to be non-negative values for (u�, v�), we require that

g > o or
g

o
> 1 ð7aÞ

and

m >
o

g � o
: ð7bÞ

For the Jacobian of the right side of (4) evaluated at the equilibrium point (u�, v�), the condi-

tion det> 0 is also fulfilled by (7b). We may express (7b) as γ/ω> 1+ 1/μ. As all parameters

are strictly positive, if (7b) is satisfied, it immediately follows that (7a) is satisfied also. The

inequality

g

o
<
mþ 1

m � 1
ð8Þ

determines the sign of the trace of the aforementioned Jacobian, which dictates whether the

system converges to a point or to a stable limit cycle, and there is a Hopf bifurcation at equality.

The dynamical characteristics of the Rosenzweig-MacArthur system have been explored in

depth elsewhere (such as [24, 32, 33] and references within). Our focus is the interplay between

biological and mathematical constraints. We now interrogate the behaviour of the system and

inequalities (7) and (8) using a series of complementary analyses, and discuss the mathematical

implications in the context of empirical observations.

Handling time. The condition from (7a) is equivalent to

�

h0d0Sahþad
> 1: ð9Þ

When investigating coexistence across the large size ranges considered in this study (>15

orders of magnitude), the coefficients on the left hand side of this inequality will have negligi-

ble impact relative to the scaling exponents of the parameters, as in log space they may trans-

late the intercept of the defined line but cannot change its slope. Therefore, we instead

examine the exponents given in (9) and observe that if αδ + αh< 0 the condition may fail for

small organisms. As αδ is tightly constrained (Table 2, and comprehensively reviewed in [27]),

to better understand the contribution of handling time to coexistence constraints, we now

investigate system behaviour when varying the scaling of h, under the assumption that other

exponents are either fixed or undergo only minor perturbations; their relative contributions to

coexistence properties are explored in later sections.

Handling time’s classical null model from Yodzis & Innes [15] based on metabolic theory is

equivalent to h / S1
RS
� 3=4

C , or ĥ / S1=4 as derived in [25]. A null model derivation assumes the

maximal consumption rate of the predator—the inverse of handling time—scales with meta-

bolic demand S3=4

C , and the per-prey metabolic demand is therefore S3=4

C S� 1
R . This matches the

assumptions of [16, 17], where the birth rate of the predator in the presence of unlimited

resources is assumed to scale with the birth rate of prey, though it should be noted that other

interpretations of the same model either do not normalise against prey mass e.g. [31] or do so

implicitly e.g. [6]. However, consideration of physiological traits’ nuanced impact on maximal

consumption, and equivalently handling time, has since led to a departure from the traditional

metabolic framework. Attacking, killing, then eating and digesting prey all impact the parame-

ter h [26] and the prey’s contribution to the process should be incorporated [25, 26]. Handling

time has therefore been recast to the more biologically representative form we use in this

study: h / SahRR SahCC , where typically 0� αhR� 1 and −1� αhC� 0 [25, 26]. The exponents αhR,
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αhC have been empirically determined in several reviews and display considerable variability

[6, 25, 26, 34]. We now discuss the implications this variability has for coexistence under the

inequalities in (7a) and (7b).

Two of the three reviews listed above conclude that the predator-prey components of han-

dling time scale more gently (whether positive, or negative) than null models predict. How-

ever, the resultant exponent for ĥ is positive (’1/3) for arthropod functional responses [25],

but negative (’−1/8) when examining broader taxonomic groups [26]. Most of the organisms

in [26] display negative scaling for ĥ in taxa-specific breakdowns due to gentler scaling of the

resource exponent. Only αhC is assessed in [6], which is calculated across a wide range of taxa

for 2D and 3D environments and for a larger mass range than in [26]; for the 2D and 3D case

αhC’ −1.1. The authors account for the steeper scaling relative to metabolic expectation by

noting that feeding is an active process scaling with maximal rather than basal metabolism [6].

To calculate the scaling of ĥ from the empirical assessment in [6], we use the assumption αhR =

1, which is the parameter’s upper limit. This implies the exponent αh� −0.1, and that ĥ scales

below the value of 1/4 assumed by previous theoretical work on the model. Conceptually, this

indicates that the parameter may be constrained by physical processes rather than a bioener-

getic flux balance. Note that despite the phenomenological formulation of the functional

response predator production is implicitly constrained by the prey density. We next examine

coexistence condition (7b), which may be expressed as γ/ω> 1 + 1/μ meaning ln(γ/ω) > ln(1

+ μ−1); if we then substitute the original parameters we arrive at the inequality

lnðc1Sah � adÞ > lnð1þ c2S� aK � ah � abÞ; ð10Þ

where c1, c2 are constants derived from the coefficients. Considering (10) together with the

empirical behaviour of ĥ, if αh’ −1/5 or less across the size range, smaller organisms may vio-

late this condition (Fig 1).

Similar to the behaviour of the first inequality (9) in this section, significantly perturbing

the coefficients does not qualitatively change this behaviour. For example, a change of 3 or 4

Fig 1. Graphical representation of coexistence condition (7b). Rearranging (10):

lnðS� ah � ad Þ � lnð1þ c2S� aK � ah � ab Þ > � lnðc1Þ. We denote the left side of the inequality as f(S); if f(S) > −ln(c1), there is

coexistence. Under the feasible values in Table 2, here αK and αb have less effect than αh; we thus set αK = −3/4 and αb =

1/2.

https://doi.org/10.1371/journal.pone.0279838.g001
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orders of magnitude in the coefficient ratios will result in a vertical translation of the line ln(c1)

of 3 to 4, which may impact results if one were to consider the point of intersection with f(S)

for restricted size ranges (e.g. within restricted taxonomic groups), but do not affect the global

behaviours of the complete size distribution considered in this study. In addition, even if the

coefficients were to vary by an arbitrarily large amount, should the variation remain propor-

tionally consistent, the ratios would remain constant; that is, the position of the coexistence

line would not change. Conversely, Fig 1 shows that a relatively small perturbation of 0.6 in αh

alters the value of the term f(S) by over 10 across the size range, with a particularly significant

impact on the smallest organisms. Therefore, provided that αh’ −αδ then all sizes will fulfil

the condition, allowing coexistence across the full span of the model. There is empirical sup-

port for these observations. The taxonomic group breakdowns in [26] indicate that smaller

taxa may display positive scaling for ĥ as concluded in [25] and the strongly negative scaling is

observed in macro-organisms, particularly vertebrates. The notable exception of unicellular

marine organisms (αh’ −1/3) has a very small sample size; further experimental studies and

especially those which generate larger data sets may potentially reach alternate conclusions

and we leave this for future work.

Next, we examine the contributions of the carrying capacity and interaction rate parameters

K and b to coexistence and dynamical properties of the model.

Carrying capacity and scaling of population cycling. As the right side of (7b) is equal to

u�, the coexistence condition may also be expressed as

m0Sam ¼ m0SaKþahþab > u�; ð11Þ

where u� / Sadþah . If we combine (7b) and (8), we obtain

m0Sam ¼ m0SaKþahþab > 1: ð12Þ

Together, (11) and (12) indicate the carrying capacity must be sufficiently high for a sustain-

able prey population, and that predator attack rates must be high enough to compensate for

mortality across all sizes. Assuming reasonable values for αK, αb such as those given in the

body and caption of Table 2 respectively, these inequalities will generally hold. Whilst the

lower bound of αb’ 1/2, estimates of the ‘universal’ value from comprehensive reviews sug-

gest a number in the range 0.6< αb< 0.9 [25, 26]. This concurs with the properties of inequal-

ity (12), which—even if worst-case values are set for K and h—allows for coexistence across the

full size range provided αb does not exceed 0.9 by a significant margin, or equivalently, αμ does

not exceed’0.2. Smaller (or even negative) values of αb serve to improve coexistence proper-

ties, suggesting that generalised empirical values for αb conform well to the mathematical

properties of the model, sitting at an upper bound of’0.9. Under the original system (1) and

assuming coexistence, resource equilibria will scale with size as R� / Sad � ab and consumer

equilibria will scale as C� / Sar � ab . Despite their importance for the coexistence domain, the

carrying capacity and half saturation do not meaningfully impact equilibria abundances in

allometric paramaterisations. However, they do impact some properties of the limit cycle.

Allometric settings of the Rosenzweig-MacArthur system usually result in oscillating solu-

tions due to size-scaled parameter values relative to the constraints in (8) [28]. Using data

extracted from the literature for a broad range of taxa (Appendix A in S1 Appendix, Fig 2b),

we find stronger empirical support than in previous work for a S1/4 scaling signal for the period

τt [28], noting that τt indicates that we are considering period under the timescale of variable t.
Expressions for theoretical scaling whereby tt / ðSadþarÞ

� 1=2
have previously been given in the

literature [15, 28] and an exact equation for τt in [16], but to our knowledge a complete deriva-

tion for the equation in [16] has not previously been published. For the reader’s interest we
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provide one in Appendix B in S1 Appendix, where we show that, under the assumption that SC
/ SR,

tt ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ðĥdÞ þ 1

r̂dð�=ðĥdÞ � 1Þ

s

; ð13Þ

matching the findings of [16]. We find the theory agrees well with observed values, as our

empirical data has a relationship t� 1
t / S� 0:2 (Fig 2b). Whilst multiple factors are proposed to

affect cycle behaviour, these factors are made up of internal and external effects [17, 35, 36]. In

particular, cycle periods are proposed to be predominantly driven by internal physiology such

as maternal generation time, whereas cycle amplitude is thought to be dominated by external

effects such as predation or other environmental influences [37]. With some caveats due to a

temperature dependency and clear contribution of life history traits, at a broad scale maternal

effects (i.e. generation times) are suggested to mirror the inverse of the maximal growth rates

r, that is, the period should fall close to S1/4 as predicted by the model [35, 38, 39]. The empiri-

cal evidence for 1/4 power scaling is particularly strong for mammals [28, 35, 37, 39]. We note

that most prior work has been restricted to specific taxonomic groups or across smaller size

ranges than we consider here, as we include prokaryotes, protists, invertebrates as well as her-

bivorous and carnivorous mammals in our dataset (Appendix A in S1 Appendix). The notable

exception of [38], with a generously sized and wide-ranging dataset, finds a slightly steeper

scaling of τt/ S0.31 across aggregated taxa groups. However, the within-group exponents (con-

sidering insects, zooplankton/protists, and vertebrates independently) are shallower at’0.2

on average, which may suggest that there were challenges associated with aggregating data

across different studies. That being said, period scaling of 0.2 to 0.3 across various taxa groups

is within expected empirical variability, especially when studies have limited data, and we

expect that the generation and synthesis of large, broad datasets may shed light on the validity

of the τt/ S1/4 Rosenzweig-MacArthur model prediction in future.

With respect to the cycle amplitudes, previous work has found that the ratio of maximum

to minimum densities is size-invariant [28], indicating that the oscillation amplitude decreases

with increasing size. Further qualitative support that this mathematical behaviour is aligned

Fig 2. Properties of the limit cycle. Unless stated otherwise, scaling parameters are αK = -3/4, αr = αd = −1/4, αb = 1/2, and αh = −1/8. (a) Predator (purple)-

prey (yellow) oscillations for a 10g predator (b) Limit cycle period scaling for numerical (circles), empirical (triangles) and analytic (solid line) results. Only

predators are shown. Data is from population study time series [17, 40–47]; periods were calculated by using supplied data files or extracting data from figures

[48], and averaging time between peaks. (a)-(b) use empirical scaling of ĥ, where αh = −1/8. (c) Dynamics of the rescaled system under different parameter

values (i.e. all exponents are perturbed). Here, Γ = γ/ω, which is plotted against μ. The region below the solid line indicates no coexistence, between the solid

and dashed lines denotes a sink to the equilibrium point, and above the dashed line a stable limit cycle. Colour indicates the difference between the (log)

maximum and minimum predator abundances.

https://doi.org/10.1371/journal.pone.0279838.g002
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with features of real-world biological systems is given by the fact that log-transformed size-

density relationships demonstrate near-constant variance across 15+ orders of magnitude [13,

27]. Under our paramaterisation the log-scaled oscillations are relatively sinusoidal and may

be constrained between one to three orders of magnitude (Fig 2a). Hence, they are more realis-

tic than allometric Lotka-Volterra dynamics which push predator populations to unreasonably

low levels with fluctuations exceeding 15 orders of magnitude [17]. Unfortunately early efforts

to find analytic approximations of the oscillation amplitude of the Rosenzweig-MacArthur sys-

tem have not been generalised [49]. Recent results have only been derived for specific—and

restricted—parameter values [50]. However, the rescaled system (4) provides scope for us to

examine the effects of perturbations in a simplified manner. In Fig 2c, we show through simu-

lation that perturbations to all parameters impact the magnitude of the fluctuation of the limit

cycle. However, unless these perturbations are applied to αr or αδ, the oscillation amplitude

will, within a small noise factor, remain invariant with respect to the mean population density,

which reflects empirical findings [28]. Ecological theory and observation suggest that oscilla-

tion amplitudes are impacted by a myriad of environmental factors, reflecting the fact that the

fluctuation size in the system may be impacted by changes to any parameter. Thus, the qualita-

tive behaviour of the Rosenzweig-MacArthur’s limit cycle better reflects known biology than

the Lotka-Volterra system [17, 37]. We next use a sensitivity analysis to assess the system’s

robustness to different forms of perturbation.

Sensitivity. A local sensitivity analysis provides a first-order approximation of the relative

impact of changing parameters on the solutions of (4) near the system’s equilibria. We adhered

to the methodology described in [51]. In order to check how sensitive the system, _x, is to small

changes in parameters, λi, we construct a sensitivity function, S(t), such that

SðtÞ ¼
@

@l
xðt; lÞ ð14Þ

and x(t, λ) is a solution of _x. Next, we characterise the solution to the sensitivity equation given

by

_SðtÞ ¼ Aðt; l0ÞSðtÞ þ Bðt; l0Þ; Sðt0Þ ¼ 0: ð14Þ

Applying (14) to (4), A is the Jacobian of (4) with respect to variables u and v, and B is the Jaco-

bian of (4) with respect to parameters μ, γ, and ω, both of which are evaluated at nominal

parameter values. After setting initial conditions u0 and v0, we obtain numerical solutions for

(14). Fig 3 shows the trajectories for two initial conditions, noting that these are not the trajec-

tories of the rescaled Rosenzweig-MacArthur system (4), but instead show the relative impacts

of perturbing different parameters on the long term evolution of its solutions. Firstly, we show

u0 and v0 in the neighborhood of u�, v� respectively (Fig 3a and 3b), and secondly for u0, v0 an

order of magnitude greater/smaller than u�, v� respectively (Fig 3c and 3d). The qualitative

behaviour remains the same in both cases. For an initial state near the equilibrium (Fig 3a and

3b), there is monotonic behaviour as the system converges to the limit cycle. In the case of Fig

3c and 3d the limit cycle emerges after some critical time tc. This analysis reflects the globally

stable nature of the Rosenzweig-MacArthur equations and shows that the system is least sensi-

tive to μ, providing further support that perturbations to r and δ have the largest potential

impacts on its dynamics. The qualitative behaviour is similar for other nominal parameter val-

ues, provided they are not set on the other side of the bifurcation boundary. The exponents

with the least empirical variation—by a significant margin—are αr and αδ, mirroring the math-

ematical constraints. That is, the dynamical behaviour of the system is relatively robust to per-

turbing the functional response parameters displaying the highest empirical variance.
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Applications

The rescaled parameter definitions in Table 1 may be used to determine a size-invariant sys-

tem by balancing the exponents. This is desirable as it is straightforward to set coexistence for

an arbitrary size range: the rescaled system remains fixed, and transforming back to the origi-

nal parameter space merely translates and stretches (or squashes) the dynamics in the base co-

ordinates. This facilitates analytic study of the equations as it greatly simplifies the task at

hand: only one equation (the size-invariant version of (4), which has constant parameters)

needs be studied to understand the dynamical behaviour of (1) for any sized predator or prey.

This is certainly mathematically expedient and we note that the majority of allometric studies

to date have used this approach. To determine the scaling values necessary, the definition of

o ¼ d=r̂ indicates that the size scaling of r must match δ, both of which consistently display an

exponent of −1/4. It immediately follows that αh = 1/4 as g ¼ �=ĥr̂ . Assuming that carrying

capacity scales with a −3/4 exponent, and using the definition m ¼ K̂ ĥb it follows that αb = 1/2.

Indeed, previous analytic research into scaling dynamics of the Rosenzweig-MacArthur system

places limitations around scaling values using similar principles, which reduces the complexity

of the analysis but potentially decreases the model’s applicability to real-world systems [16]. In

particular, given the tenuous empirical support for ĥ / S1=4, it may be more biologically sound

to assign a value where αh� 0; furthermore, our results from Sections 3.1.1 and 3.1.2 indicate

that coexistence across the domain should be feasible under this condition. We find that it is

still possible to generate a full size-abundance distribution when αh� 0. A recent size-density

scaling analysis indicates that the relationship follows N� / S−1 rather than the canonical N� /

Fig 3. Sensitivity of rescaled system. x-axis denotes time (au). (a-b): Sensitivity of the solutions of (4) to perturbations

to each of the parameters under an initial condition near the point (u�, v�). (c-d): As above, except under an initial

condition (10u�, 0.1v�); the trajectory also converges to the limit cycle.

https://doi.org/10.1371/journal.pone.0279838.g003
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S−3/4 (where N� is population density) [27], and we will show that we are able to reproduce this

when choosing empirical scaling values across all parameters.

Having assessed coexistence properties in previous sections, we now note a possible exten-

sion to parameter b (interaction rate) and also consider whether our treatment of � (conver-

sion efficiency) is reasonable for the model. Whilst a static value in the range 0.6< αb< 0.9 is

accepted as a reasonable generalised exponent based on major reviews [25, 26], a limitation of

our treatment of b is that we place no restrictions on the interactions between a predator and

any arbitrary-sized prey. Predator-prey interaction processes are complex and increasing evi-

dence suggests they follow a ‘hump-shaped’ curve with the predator-prey mass ratio [25]. A

natural extension to our model would be to introduce a term reliant on ρ to the parameter b,

where b ¼ f ðr; b0ÞSab , and f(ρ, b0) is a function assigning probability of prey capture based on

the prey-predator size ratio. While a form for f(ρ) has been proposed [16], it would be possible

to use a function encoding a broader range of life history traits for the tradeoff of introducing

more parameters. Relevant processes to consider may include habitat effects on foraging, prey

refuges, and optimal size ratios, resulting in further constraints on coexistence [25, 26, 34].

However, as this would introduce additional complexity, for the purpose of this study we

assign a constant value for the coefficent, meaning that interaction rates are consistent across

different prey-predator mass ratios and the exponent αb = 2/3.

Our final consideration is the contribution of ρ to the conversion efficiency �. The empirical

distribution of ρ is approximately lognormal peaking at’0.02 [29]. Equilibria population

ratios do not follow a 1:1 relationship with the size ratio of prey and predator when using the

relationship � = ρ (solid white line, Fig 4). For a fixed predator size and increasing prey size,

organisms become less efficient at converting biomass. However, this result does not align

with observed data. A review of 15,000+ predator-prey pairs concludes that size differences

between predator and prey has an upper limit, potentially due to inefficiencies when the size

discrepancy becomes too extreme [52]. Furthermore, the larger the predator, the more gener-

alist its feeding strategies [25]; increases in prey biomass—which could indicate predators

feeding on smaller prey—do not translate to a proportionate increase in predator biomass

[53]. We therefore apply the assumption that energetic reward (and biomass conversion) for

Fig 4. Impact of perturbing conversion efficiency � by setting a function on ρ. Here, � = ρψ, where −1/2< ψ< 3/2.

Colours map to the value of ψ, and the white line depicts ψ = 1. Y-axis shows the ratio of the predator-prey equilibria

populations. Result is size invariant.

https://doi.org/10.1371/journal.pone.0279838.g004
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predator effort declines as the size difference increases, and that the scaling of ρ with equilibria

population ratios is superlinear. We can implicitly capture the result by assigning a function �

= aρψ, where ψ is a scalar. For simplicity, we set a to 1, and in Fig 4, we assess the predator-

prey population ratios for varying ψ.

A value of ψ> 1 increases the difference between the predator-prey populations; ψ< 1

reduces it. More sophisticated functional forms may include favourable size ratios or introduce

a size dependency to the value of �. However, there is limited empirical research on scaling

properties of � [13, 19, 30]. A theoretical investigation of optimal predator-prey size ratios

together with more complex functional response formulations reflecting alternate foraging/

feeding strategies may yield interesting results. We leave this question open for future work.

To generate the size-abundance distribution shown in Fig 5, we use empirically motivated

values where ψ’ 1.3, αr = αδ = −1/4, αh = −0.1, αK = −3/4 and αb = 2/3. Coefficients are stan-

dardised to boundary values (Appendix A in S1 Appendix). The model’s distribution scales to

−0.95, matching the value observed in [27]. The inset (generated from identical parameter val-

ues) shows the predator-prey density relationship, scaling at 0.76, close to the’3/4 findings in

[53]. Our choice of ρ = 0.02 was motivated by the fact it is the most commonly observed prey-

predator size ratio [52]. Changing the value of ρ will slowly perturb the predator-prey density

slope due to ψ influencing the maximum and minimum values in the limit cycles in a nonlin-

ear fashion (also seen in Fig 2c).

We propose that the interplay between scaling of ρ and predator-prey density slopes will

have mathematically rich behaviours, especially as there is not yet a general solution for limit

cycle amplitude in the Rosenzweig-MacArthur system [49, 50], but it is beyond the scope of

this work to interrogate this question in detail. Our empirically-driven paramaterisation for

Fig 5. Main: Size-abundance data generated from the model. Circles depict prey abundances, and crosses predators.

The parameter ρ was randomly selected within the interval of 1E-4 and 1E2. Parameter values are ψ’ 1.3, αr = αδ =

−1/4, αh = −0.1, αK = −3/4 and αb = 2/3. The full size-abundance distribution from the model scales to −0.95, matching

the empirical distribution in [27] of −0.95. Inset: each pair of points are the maximum and minimum abundances

attained by the predator/prey during limit cycle oscillations, under the same parameter values as for the main figure.

We show examples of five predator sizes: 1E-6 (�), 1E-4(×), 1E-2 (+), 1E0 (4), and 1E2g (�). For each ρ = 0.02. The

slope within each symbol group’0.76. That is, increasing prey density does not result in a 1:1 increase in predator

density. The scaling relationship is sublinear, matching the observations of [53].

https://doi.org/10.1371/journal.pone.0279838.g005
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our model generates a theoretical size-abundance distribution matching the largest data study

to date [27], and we note that to generate Damuth’s law [12], simply changing the scaling of

one parameter b such that αb = 1/2 results in exponents of −0.81 and 3/4 for the size-abun-

dance and predator-prey density scaling respectively. This sensitivity of the slope to interaction

rate is reflected in biology. Variability in hunting and feeding strategies is a plausible reason

that taxonomy-specific size-abundance distributions have exponents ranging from -1 to -1/4

as interaction rates are a critical driver for obtaining the energy for reproduction [12, 13, 18–

20]. The functional response literature implies that the scaling of b is shallower for terrestrial

endotherms than across broad taxonomic groups [26], which is precisely reflected by the mod-

el’s size-abundance scaling behaviour: Damuth’s original research focussed on mammals [12],

yet Hatton et al.’s incorporates the full spectrum of eukaryotes [27]. We therefore suggest that

the Rosenzweig-MacArthur system is suitable not only for large scale studies such as this, but

that our results may be modified for subsets of taxa by using parameter scaling specific to

those organisms, creating biologically meaningful models that may be used for prediction.

Conclusions

Here, we investigate the links between empirical and theoretical allometric literature. The

resource size dependency is eliminated from the system by explicitly encoding the prey-preda-

tor mass ratio, ρ. This simplifies analyses, allowing us to extend previous theoretical work by

removing all restrictions on parameter relationships when examining properties of coexistence

and macro scaling behaviours. Taxon-specific applications (which are far more sensitive to

perturbations in coefficients due to the small size ranges under consideration) are likely to fall

within the noise factor of the large size domains considered in this paper, however our meth-

odology may still provide a parsimonious base for customising the equations in those settings.

This may be useful for food web or trophic modelling, especially to mitigate against overfitting

challenges [54]. Interrogating the model behaviour through three separate analyses provides a

level of robustness to the finding that the mathematical constraints complement empirical

observation. Contrary to most previous studies, we use an empirically determined parameteri-

sation of the functional response term. Our results suggest that the standard approach of set-

ting exponents based on metabolic theory may need to be reassessed [16]. The handling time

parameter shows the greatest departure from those assumptions, and the highest variance,

which is consistent with the massive trait variation in foraging strategies. Nevertheless, we find

that results generated from an empirical setting agree with results in recent reviews of size-

abundance scaling. This work may be extended in several ways. Firstly, one could incorporate

temperature effects, for example after [22, 55], which may further stabilise the model by reduc-

ing the interaction strengths [30]. Secondly, additional empirical data on functional responses

at the size extrema could more accurately define the scaling of ĥ and b. Type I, Type III, or gen-

eralised functional responses may also be examined, although we note that system behaviour

usually remains qualitatively similar over large size ranges [6, 31].

The broad limitation of allometry is that a generalist strategy can be a poor predictor of

taxon-specific outcomes. Challenges to the framework arise not only from biological differ-

ences but also from physical or spatial processes, such as prey patchiness or heterogeneous

habitat distribution [56]. Thus, care over interpretation and the applicability of results must be

taken, particularly at the size limits in either direction. For example, prokaryotic reproduction

rates fall between minutes and millenia [57, 58]. Furthermore, large organisms such as whales

play a critical role in nutrient recycling; assuming a single species may be defined as a resource

or consumer alone does not account for the intrinsic complexities within natural environ-

ments [59]. However, despite these caveats, allometric approaches have been found to
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outperform those explicitly encoding organisms’ individual and life-history traits when inves-

tigating a system’s macro properties [25]. Classical population dynamics models remain a

powerful tool in ecology, and the consistency across many allometric laws suggest self-organis-

ing processes we are yet to unravel. We propose that systematically assessing where theoretical

and empirical properties of allometric modelling diverge may assist in identifying plausible

mechanisms governing these phenomena.
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