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Abstract
We study a new discretization of the Gaussian curvature for polyhedral surfaces. This
discrete Gaussian curvature is defined on each conical singularity of a polyhedral
surface as the quotient of the angle defect and the area of the Voronoi cell correspond-
ing to the singularity. We divide polyhedral surfaces into discrete conformal classes
using a generalization of discrete conformal equivalence pioneered by Feng Luo. We
subsequently show that, in every discrete conformal class, there exists a polyhedral
surface with constant discrete Gaussian curvature. We also provide explicit examples
to demonstrate that this surface is in general not unique.

Keywords Delaunay triangulation · Discrete Gaussian curvature · Discrete
conformal equivalence · Hyperbolic geometry · Piecewise linear metric
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1 Introduction

The Yamabe problem asks if every closed Riemannian manifold is conformally equiv-
alent to one with constant scalar curvature. More precisely:

Yamabe Problem Let g be a Riemannian metric on a closed smooth manifold M.
Does there exist a smooth function u on M such that the Riemannian metric e2u g has
constant scalar curvature?

For two-dimensional manifolds the scalar and the Gaussian curvature are equiv-
alent, and thus the Yamabe problem is answered by the celebrated Poincaré–Koebe
uniformization theorem, which states that any closed oriented Riemannian surface
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is conformally equivalent to one with constant Gaussian curvature. The purpose of
this article is to translate the Yamabe problem for two-dimensional manifolds into
the setting of polyhedral surfaces. The essential ingredient of the translation is the
introduction of a new discretization of Gaussian curvature.

Defining the discrete Gaussian curvature requires some preparation. We charac-
terize a polyhedral or a piecewise flat surface by a triple (S, V , d), where S is the
underlying topological surface, d denotes the PL-metric (PL stands for piecewise lin-
ear), and V ⊆ S is a finite set containing the conical singularities of d. Let αi denote
the cone angle at a point i ∈ V . The angle defect,

W : V → R, Wi := 2π − αi ,

evaluates for each i ∈ V how far the piecewise flat surface is from being flat at a
neighborhood of i . This notion, introduced by Regge [10], is best understood as the
discretization of the Gaussian curvature two-form. The Voronoi cell of a point i ∈ V
consists of all points on the piecewise flat surface (S, V , d) that are as close or closer
to i than to any other point in V . It arises as a natural neighborhood of the point i .

Definition 1.1 The discrete Gaussian curvature at a point i ∈ V is the quotient of the
angle defect Wi and the area Ai of the Voronoi cell of i :

K : V → R, i �→ Ki := Wi

Ai
.

The discrete Gaussian curvature shares the following characteristic properties with the
smooth Gaussian curvature: it is defined intrinsically, it satisfies the Gauss–Bonnet
formula, and it scales by a factor of 1/r2 upon a global rescaling of the metric by
factor r . The latter characteristic is perhaps of the biggest contribution, since the
formula most commonly used for discrete Gaussian curvature—the angle defect—is
scaling invariant. Discrete Yamabe problem asks if for every PL-metric there exists a
discrete conformally equivalent one with constant discrete Gaussian curvature. It can
be answered affirmatively by the following theorem.

Theorem 1.2 (discrete uniformization theorem) For every PL-metric d on a marked
surface (S, V ), there exists a discrete conformally equivalent PL-metric d̃ such that
the piecewise flat surface (S, V , d̃) has constant discrete Gaussian curvature.

The proof of Theorem 1.2 presented here is variational in nature. We translate the
problem into a non-convex optimization problemwith inequality constraints,whichwe
solve using a classical theorem from calculus. The PL-metric d̃ of constant curvature
from Theorem 1.2 is, in general, not unique.

Discrete conformal equivalence for piecewise flat surfaces with a fixed triangula-
tion was introduced by Roček andWilliams [11], and Luo [7], and is a straightforward
discretization of the conformal equivalence on smooth surfaces. Recall that two Rie-
mannian metrics g and g̃ on a surface S are conformally equivalent if there exists a
smooth function u on S such that

g̃ = e2u g.
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To discretize conformal equivalence, triangulate the piecewise flat surface (S, V , d)

such that V is the set of vertices and every edge e ∈ E is a geodesic. The metric d is
then uniquely determined by the edge lengths

� : E → R>0, �i j = d(i, j).

Two PL-metrics on a surface with a fixed triangulation are discrete conformally equiv-
alent if their edge lengths �, �̃ : E → R>0 are related by a factor u : V → R:

�̃i j = �i j exp
ui + u j

2
.

We work with a generalization of discrete conformal equivalence to piecewise flat
surfaces (Definition 2.11) introduced by Bobenko et al. [2, Definition 5.1.4]. This gen-
eralization reveals that hyperbolic geometry is the right setting for problems involving
discrete conformal equivalence. The essential relation between piecewise flat surfaces
and its hyperbolic equivalent—decorated hyperbolic surfaces with cusps—has been
explored and described in detail by Springborn [12].

Another formulation of the discrete Yamabe problem for polyhedral surfaces due
to Luo [7] asks for the existence of PL-metrics with a constant angle defect within
a discrete conformal class. It was solved affirmatively by Gu et al. [5], as well as by
Springborn [12]. For surfaces of genus one, Luo’s and our formulation of the discrete
Yamabe problem are indeed equivalent. However, we believe that Luo’s formulation is
not a suitable discretization of the smooth Yamabe problem in general, since the angle
defect is not a proper discretization of the smooth Gaussian curvature. This claim is
supported by the discussions by Bobenko et al. [2, Appendix B] and by Ge and Xu
[4, Sect. 1.2].

This article is organized as follows. In Sect. 2 we revise the basic concepts and
provide a dictionary between piecewise flat surfaces and decorated hyperbolic surfaces
with cusps. Section 3 is devoted to the discussion of (non)-uniqueness of PL-metrics
with constant discrete Gaussian curvature. In Sect. 4 we translate the statement of
Theorem 1.2 into a non-convex optimization problem with inequality constraints. In
Sect. 5 we prove Theorem 1.2.

2 Fundamental Definitions and Results

In this section we explain the correspondence between piecewise flat surfaces and
decorated hyperbolic surfaces with cusps. Since the results in this section are well
known, we only refer to the proofs.

Throughout the article we work with a closed oriented topological surface S and a
non-empty finite set V ⊆ S of marked points. A triangulation of the marked surface
(S, V ) is a triangulation of S with the vertex set equal to V . We denote a triangulation
by Δ and the set of edges and faces of Δ by EΔ and FΔ, respectively.

A metric d on (S, V ) is called piecewise linear or a PL-metric if is flat everywhere
but on a finite set of points contained in V , where it develops conical singularities.
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A geodesic triangulation of the piecewise flat surface (S, V , d) is any triangulation
of (S, V ) where the edges are geodesics with respect to the metric d.

2.1 Tessellations of Piecewise Flat Surfaces, Discrete Metric

Voronoi tessellation. Every piecewise flat surface (S, V , d) possesses a unique
Voronoi tessellation. For p ∈ S let d(p, V ) denote the distance of p to the set V ,
and let ΓV (p) be the set of all geodesics realizing this distance. The open 2-, 1-, and
0-cells of the Voronoi tessellation of (S, V , d) are the connected components of

{p ∈ S | |ΓV (p)| = 1}, {p ∈ S | |ΓV (p)| = 2}, and {p ∈ S | |ΓV (p)| ≥ 3},

respectively. We denote the closure of the open Voronoi 2-cell containing i ∈ V by Vi .

Delaunay tessellation and triangulation. Delaunay tessellation of a piecewise flat
surface is the dual of the Voronoi tessellation. A Delaunay triangulation arises from
the Delaunay tessellation by adding edges to triangulate the non-triangular faces. Let
Δ be a geodesic triangulation of a piecewise flat surface (S, V , d). The edge i j ∈ EΔ

is called a Delaunay edge if the vertex l of the adjacent triangle i jl ∈ FΔ is not
contained in the interior of the circumcircle of the other adjacent triangle i jk ∈ FΔ.

Proposition 2.1 A geodesic triangulation of a piecewise flat surface is Delaunay if
and only if each of its edges is Delaunay.

For proof see for example [3, Proposition 10].

Discrete metric. Let Δ be a triangulation of the marked surface (S, V ).

Definition 2.2 A discrete metric on (S, V ,Δ) is a function

� : EΔ → R>0, �(i j) = �i j ,

such that for every triangle i jk ∈ FΔ, the (sharp) triangle inequalities are satisfied.
That is,

�i j + � jk > �ki , � jk + �ki > �i j , �ki + �i j > � jk .

The logarithm of the discrete metric �,

λi j = 2 log �i j , (1)

is called the logarithmic lengths.

Fact 2.3 Let Δ be a geodesic triangulation of the piecewise flat surface (S, V , d).
Then the PL-metric d induces a discrete metric on (S, V ,Δ) by measuring the lengths
of the edges in EΔ. Vice versa, each discrete metric � on a marked triangulated surface
(S, V ,Δ) induces a PL-metric on (S, V ).
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i

k j

l

(a) The orange circle and the horocycle at l
are disjoint, the edge i j is Delaunay.

i

k j

l

(b) The orange circle and the horocycle at l
intersect, the edge i j is not Delaunay.

Fig. 1 A Delaunay and a non-Delaunay edge

Indeed, � imposes a Euclidean metric on each triangle i jk ∈ FΔ by transforming it
into a Euclidean triangle with edge lengths �i j , � jk, �ki . The metrics on two neigh-
boring triangles fit isometrically along the common edge. Thus, by gluing each pair
of neighboring triangles in Δ along their common edge we equip the marked surface
with a PL-metric.

2.2 Hyperbolic Metrics, Ideal Tessellations, and Penner Coordinates

Consider a marked surface (S, V ) equipped with a complete finite area hyperbolic
metric dhyp with cusps at the marked points. We decorate the surface (S, V , dhyp)
with a horocycle Hi at each cusp i ∈ V . Each horocycle is small enough such that,
altogether, the horocycles bound disjoint cusp neighborhoods. The set of all horocycles
decorating (S, V , dhyp) is denoted byH .

Ideal Delaunay tessellations and triangulations.

Definition 2.4 An ideal Delaunay tessellation of a decorated hyperbolic surface
(S, V , dhyp,H ) is an ideal geodesic cell decomposition of (S, V , dhyp), such that
for each face f of the lift of (S, V , dhyp) to the hyperbolic plane H2 via an isometry
of the universal cover, the following condition is satisfied. There exists a circle that
touches all lifted horocycles anchored at the vertices of f externally and does not
meet any other lifted horocycles. An ideal Delaunay triangulation is any refinement
of an ideal Delaunay tessellation by decomposing the non-triangular faces into ideal
triangles by adding geodesic edges.

Theorem 2.5 [12, Thm. 4.3] For each decorated hyperbolic surface with at least one
cusp, there exists a unique ideal Delaunay tessellation.

Let Δ be a geodesic triangulation of a decorated hyperbolic surface (S, V , dhyp,H ).
An edge i j ∈ EΔ is called Delaunay if the circle touching the horocycles at ver-
tices i, j, k of one adjacent triangle i jk ∈ FΔ and the horocycle at vertex l of the other
adjacent triangle i jl ∈ FΔ are externally disjoint or externally tangent. We illustrate
the difference between a Delaunay and a non-Delaunay edge in Fig. 1.

123



128 Discrete & Computational Geometry (2023) 70:123–153

i

j

k

ki

jk

i j

λ

λ

λ

Fig. 2 Penner coordinates of a decorated ideal hyperbolic triangle i jk, in the Poincaré disc model

Proposition 2.6 [12, Thm. 4.7] An ideal geodesic triangulation of a decorated hyper-
bolic surface is Delaunay if and only if each of its edges is Delaunay.

Penner coordinates. Penner coordinates, introduced by Penner [9], are the analogue
of the discrete metric (see Definition 2.2) for decorated hyperbolic surfaces.

Definition 2.7 Let i and j be two ideal points of the hyperbolic plane. LetHi andH j

be two horocycles, anchored at ideal points i and j , respectively. The signed horo-
cycle distance between Hi and H j is the length of the segment of the geodesic line
connecting the cusps i and j , truncated by the horocycles. The length is taken negative
ifHi and H j intersect.

The signed distances between horocycles of a decorated ideal hyperbolic triangle are
illustrated in Fig. 2. The distance λi j is negative, whereas the distances λ jk and λki

are positive.

Definition 2.8 Penner coordinates is a pair consisting of a triangulation Δ of (S, V )

and a map

λ : EΔ → R, i j �→ λi j .

Fact 2.9 Penner coordinates (Δ, λ) on a marked surface (S, V ) define a decorated
hyperbolic surface (S, V , dhyp,H ), such that the signed distance between the horocy-
clesHi andH j , with i j ∈ EΔ, is λi j . Vice versa, let Δ be a geodesic triangulation of a
decorated hyperbolic surface (S, V , dhyp,H ). Then (S, V , dhyp,H ) induces Penner
coordinates (Δ, λ) by measuring the signed horocycle distance between horocycles
Hi and H j for each i j ∈ EΔ.

2.3 From Piecewise Flat Surfaces to Decorated Hyperbolic Surfaces and Back
Again

Piecewise flat surfaces and decorated hyperbolic surfaces are, in fact, equivalent struc-
tures.
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i

ui
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Fig. 3 The signed distance from the horocycleHi to the horocycle H̃i

Theorem 2.10 [12, Thm. 4.12] Let (S, V ) be a marked surface with a triangulation Δ.
Let � : EΔ → R>0 be a discrete metric on (S, V ,Δ) such that Δ is a Delaunay tri-
angulation of the piecewise flat surface (S, V , d�). Let λ be the logarithmic lengths
of � defined by (1). Then Δ is an ideal Delaunay triangulation of the decorated hyper-
bolic surface defined on the marked surface (S, V ) by Penner coordinates (Δ, λ). Vice
versa, let (Δ, λ) be Penner coordinates on (S, V ) such that Δ is an ideal Delaunay
triangulation of the decorated hyperbolic surface defined on (S, V ) by (Δ, λ). Then
the map � : EΔ → R≥0, defined by (1), is a discrete metric on (S, V ,Δ), and Δ is a
Delaunay triangulation of the polyhedral surface (S, V , d�).

2.4 Discrete Conformal Classes

Theorem 2.10 tells us that each piecewise flat surface induces a decorated hyperbolic
surface, and vice versa.

Definition 2.11 Two PL-metrics on a marked surface (S, V ) are discrete conformally
equivalent if the two induced decorated hyperbolic surfaces are isometric, through a
map ϕ, where ϕ is homotopic to the identity in S − V relative to V .

Discrete conformal equivalence is an equivalence relation on the space of PL-metrics
of a marked surface (S, V ). The corresponding equivalence classes are called confor-
mal classes. In particular, discrete conformally equivalent PL-metrics induce different
decorations on the—up to isometry—same hyperbolic surface.

Let d and d̃ be two discrete conformally equivalent PL-metrics on (S, V ), and let
H and H̃ denote the two decorations induced on the hyperbolic surface (S, V , dhyp)
by d and d̃ , respectively. Let ui denote the signed distance from the horocycle Hi

to the horocycle H̃i . The distance is taken positive if H̃i is closer to the cusp at i
thanHi—as illustrated in Fig. 3 in the halfplane model—and negative otherwise. The
map

u : V → R, i �→ ui ,

is called a conformal factor, or a conformal change from d to d̃ .
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The position of each horocycle in H̃ is completely determined by the decorated
hyperbolic surface (S, V , dhyp,H ) and the conformal factor u. Thus, for a fixed
marked surface (S, V ), each PL-metric d̃ in the conformal class of the PL-metric d is
uniquely defined by d and the conformal factor u. To express this relation, we denote
PL-metric d̃ and the decoration H̃ by d(u) and H (u), respectively. Further, if Δ̃ is
a Delaunay triangulation of (S, V , d̃), the Penner coordinates (Δ̃, λ̃) are denoted by
(Δ(u), λ(u)). Vice versa, each conformal factor defines a PL-metric in the conformal
class of d. In other words:

Proposition 2.12 The conformal class of the piecewise flat surface (S, V , d) is
parametrized by the vector space

R
V = {u : V → R}.

As shown by Penner [9], the vector spaceRV admits a cell decomposition into Penner
cells.

Definition 2.13 Let (S, V , d) be a piecewise flat surface, and let Δ be a triangulation
of the marked surface (S, V ). The Penner cell ofΔ in the conformal class of (S, V , d)

is the set

AΔ = {u ∈ R
V | Δ is a Delaunay triangulation of (S, V , d(u))}.

The set of all triangulations with non-empty Penner cells in the conformal class
of (S, V , d) is denoted by D(S, V , d). Discrete conformal equivalence also induces
a relation on discrete metrics.

Proposition 2.14 Let d and d̃ be two conformally equivalent PL-metrics on a marked
surface (S, V ), related by the conformal factor u : V → R, and let Δ be a geodesic
triangulation of the surface (S, V , d), as well as the surface (S, V , d̃). Then the
discrete metrics � and �̃, induced by d and d̃, respectively, satisfy

�̃i j = �i j exp
ui + u j

2

for every edge i j ∈ EΔ.

For proof see [2, Thm. 5.1.2].

Remark 2.15 Proposition 2.14 is the definition of discrete conformal equivalence for
piecewise flat surfaces with fixed triangulation, introduced by Luo [7].

3 Counterexamples to Uniqueness of Metrics with Constant
Curvature

Uniqueness of PL-metrics with constant discrete Gaussian curvature up to global
scaling in discrete conformal classes holds in three special cases:
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Fig. 4 A tetrahedron (left) and a division of areas in the two triangles (right)

– S is of genus zero and |V | = 3.
This follows from the positive semi-definiteness of the second derivative of the
function F, defined in Fact 4.12.

– S is of genus one.
In this case the Yamabe problem is equivalent to the discrete uniformization prob-
lem. The uniqueness follows from the positive semi-definiteness of the second
derivative of function E (Definition 4.3) and was proved by Gu et al. [5].

– S is of genus larger than one and |V | = 1.
This case is trivial, since every discrete conformal class consists of one PL-metric
up to a global scaling.

In order to show that uniqueness does not hold in general, we construct several exam-
ples of pairs of discrete conformally equivalent PL-metrics with constant discrete
Gaussian curvature on the sphere with four marked points—that is, a tetrahedron—
and the surface of genus two with two marked points.

Tetrahedra with constant curvature. We start with a combinatorial tetrahedron,
denoting the vertices and edges as in Fig. 4 (left). On this tetrahedron we define the
PL-metric d0 by prescribing the following lengths to the edges:

a = a = 1, b = b = b0, c = c = c0.

Fact 3.1 Let Δ be a geodesic triangulation of a piecewise flat surface (S, V , d) and
let i jk and i jl be two neighboring triangles in FΔ. Let αk, αl be the angles opposite
of the edge i j in the triangles i jk and i jl, respectively. The edge i j is Delaunay if one
of the following equivalent Delaunay conditions holds:

(a) cot αk + cot αl ≥ 0,
(b) αk + αl ≤ π,

(c) cosαk + cosαl ≥ 0.

The values of b0 and c0 need to be greater than 1 and chosen so that the edges of the
tetrahedron are Delaunay. This is the case if and only if the triangle with edge lengths
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1, b0, c0 is acute. Due to condition (c) in Fact 3.1, this is further equivalent to the
following inequality:

c20 ≤ a2
0 + b20 = 1 + b20. (2)

Denoting the area of the triangle with edge lengths 1, b0, c0 by A, one sees that the
PL-metric d0 has constant discrete Gaussian curvature,

Ki = π

A
for i ∈ {1, . . . , 4}.

We now apply the following family of discrete conformal changes to d0:

u ◦ v : R → R
4, u(v) = (u1, u2, u3, u4)(v) := (0, 0, v, v).

Lemma 3.2 Let

S(b0,c0) :=
[
− log

(
b20 + c20

)
, log

(
b20 + c20

)]
.

The PL-metric d(v), defined by applying the discrete conformal change u(v) to the
metric d0, has Delaunay edges if v ∈ S(b0,c0). Its discrete Gaussian curvature at two
pairs of vertices is equal,

K1 = K2 and K3 = K4.

Proof For each v ∈ R the tetrahedron with metric d(v) has edge lengths

a = 1, b = b = b0ev/2, c = c = c0ev/2, ā = ev.

The tetrahedron thus consists of two triangles with edge lengths a, b, c and two tri-
angles with edge lengths ā, b, c. The equality of the curvatures follows immediately
from the fact that W1 = W2, W3 = W4, A1 = A2, and A3 = A4. The minimal
and maximal value of the parameter v follow from the properties of Delaunay edges
(Fact 3.1) and (2). 	

Lemma 3.2 implies that the PL-metric d(v) has constant discrete Gaussian curvature
if K1 = K3. In order to test if, for a fixed value of b0 and c0, this equality holds, we
transform it into an expression more favorable for calculations.

Let A and Ā denote the area of the triangles with side lengths a, b, c and ā, b, c,
respectively, and let Fa, . . . , Fc̄ denote the areas as in Fig. 4 (right).

Lemma 3.3 The PL-metric d(v) has constant discrete Gaussian curvature if and only
if v is a zero of the map

g(b0,c0) : S(b0,c0) → R, v �→ 2π(Fā − Fa) + (α − ᾱ)(A + Ā).
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Fig. 5 Triangulation of a surface of genus two with two marked points

Proof Follows by a straightforward calculation:

K1 = K3 ⇐⇒ W1A3 = W3A1 ⇐⇒ 2π(Fā − Fa) = (ᾱ − α)(A + Ā).

	

We plotted the graphs of the function g(b0,c0) for various values of b0 and c0 in Fig. 6.

Surfaces of genus two with two marked points and constant curvature. The initial
metric d0 is defined on a triangulation with combinatorics as in Fig. 5, with edge
lengths prescribed as follows:

a1 = . . . = a4 = 1, b1 = . . . = b4 = b0, c1 = . . . = c4 = c0,

for two values b0, c0 ≥ 1 satisfying condition (2). As in the previous paragraph, one
can easily check that d0 has constant discrete Gaussian curvature

Ki = − π

2A
,

where A is the area of the triangle with edge lengths 1, b0, c0. We now apply the
following family of discrete conformal changes to d0:

u ◦ v : R → R
2, u(v) = (u1, u2)(v) := (0, v).

The following lemma is the analog on of Lemmata 3.2 and 3.3.

Lemma 3.4 The PL-metric d(v),given by applying the discrete conformal change u(v)

to the metric d0, has Delaunay edges if v ∈ S(b0,c0). It has constant discrete Gaussian
curvature if and only if v is a zero of the map

h(b0,c0) : S(b0,c0) → R, v �→ π(Fā − Fa) + (ᾱ − α)(A + Ā).

Proof Analogous to the proofs of Lemmata 3.2 and 3.3. 	
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Fig. 6 Graphs of the functions g (left) and h (right) for various values of b0 and c0

The number of critical points of the maps g(b0,c0) and h(b0,c0) varies depending
on the choice of (b0, c0). Figure 6 illustrates the graphs of g(b0,c0) and h(b0,c0) for
various values of (b0, c0). In each graph the red and green curves correspond to dis-
crete conformal classes with more than one metric with constant discrete Gaussian
curvature.

4 Variational Principles

The goal of this article is to prove the existence of piecewise flat surfaces with constant
Gaussian curvature, where the discrete Gaussian curvature is the quotient of the angle
defect and the area of the corresponding Voronoi cell. In this section we translate this
setting into an optimization problemwhichwe describe by three variational principles.
To this end, we define two functions—E and Atot—whose partial derivatives corre-
spond to the angle defect and the area of the Voronoi cell, respectively. The functions
E and Atot form the two essential building blocks of the variational principles.

4.1 Two Essential Building Blocks

The function E. The function E, which we will introduce shortly, was defined by
Alexander Bobenko et al. [2]. As we will see, it is locally convex and its partial
derivatives correspond to the angle defects at the vertices. Its building block is a
peculiar function f .

Definition 4.1 Consider a Euclidean triangle with edge lengths a, b, c and angles
α, β, γ , opposite to edges a, b, c, respectively. Let

x = log a, y = log b, z = log c,

as illustrated in Fig. 7(a). LetA be the set of all triples (x, y, z) ∈ R
3, such that (a, b, c)

satisfy the triangle inequalities:

A = {(x, y, z) ∈ R
3 | a + b − c > 0, a − b + c > 0, −a + b + c > 0}.
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Fig. 7 (a) Logarithmic edge lengths of a triangle. (b) Graph of Milnor’s Lobachevsky function, y = L(x)

The function f is defined as follows:

f : A → R, f (x, y, z) = αx + β y + γ z + L(α) + L(β) + L(γ ),

where

L(α) = −
∫ α

0
log |2 sin t | dt

is Milnor’s Lobachevsky function, introduced by Milnor [8].

Fact 4.2 Milnor’s Lobachevsky function L(x) is odd, π -periodic, and smooth except
at x ∈ πZ.

Recall that the discrete conformal class of a piecewise flat surface (S, V , d) is param-
eterized by the vector space R

V (see Proposition 2.12), which can be decomposed
into Penner cells (see Definition 2.13). We first define the function EΔ on each Penner
cell AΔ and then extend its domain to obtain the function E on R

V .

Definition 4.3 Let (S, V , d) be a piecewise flat surface, and let Δ ∈ D(S, V , d). On
the Penner cell AΔ, the function EΔ is defined as follows:

EΔ : AΔ → R,

EΔ(u) =
∑

i jk∈FΔ

(
2 f

(
λ̃i j

2
,
λ̃ jk

2
,
λ̃ki

2

)
− π

2
(λ̃i j + λ̃ jk + λ̃ki )

)
+ 2π

∑
i∈V

ui ,

where λ̃i j are the logarithmic lengths of the discrete metric induced by the PL-metric
d(u) on Δ.

Lemma 4.4 The partial derivatives of the function EΔ satisfy the equation

∂EΔ

∂ui
= Wi , (3)

where Wi is the angle defect at vertex i of the piecewise flat surface (S, V , d(u)).
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Proof Follows from [2, Proposition 4.1.2]. 	


The functions f and EΔ have the following properties:

Proposition 4.5 The functions f andEΔ are analytic and locally convex onA andAΔ,

respectively. Their second derivatives are positive semidefinite quadratic forms with
one-dimensional kernels, spanned by (1, 1, 1) ∈ R

3, (1, . . . , 1) ∈ R
V , respectively.

Further,

f (x + t, y + t, z + t) = f (x, y, z) + π t for all (x, y, z) ∈ A,

EΔ(u + c(1, . . . , 1)) = EΔ(u) + 2πχ(S)c for all u ∈ AΔ,

where χ(S) denotes the Euler characteristic of the surface S.

Proof See [2, (4–5)] or [12, Propositions 7.2 and 7.7]. 	


Theorem 4.6 (extension) For a conformal factor u ∈ R
V , let Δ(u) be a Delaunay

triangulation of the surface (S, V , d(u)). The map

E : RV → R, u �→ EΔ(u)(u),

is well defined and twice continuously differentiable. Its second derivative is a positive
semidefinite quadratic form with one-dimensional kernel, spanned by (1, . . . , 1) ∈
R

V . Explicitly,

d2E = 1

4

∑
i j∈E

(
cot αi j

k + cot αi j
l

)
(dui − du j )

2.

Proof Follows from [2, Proposition 4.1.6] and [12, Sects. 7 and 8]. 	


The function Atot. The function Atot, whose first partial derivatives correspond to
the area of the Voronoi cells, denotes the total area of the surface. We first define
the function AΔ

tot on each Penner cell AΔ and then extend its domain to obtain the
function Atot on R

V .

Definition 4.7 Let (S, V , d) be a piecewise flat surface and let Δ ∈ D(S, V , d). On
the Penner cell AΔ, the function AΔ

tot is defined as follows:

AΔ
tot : AΔ → R, AΔ

tot(u) =
∑

i jk∈FΔ

Ai jk(u),

where Ai jk(u) is the area of the triangle with vertices i, j, k ∈ V on the piecewise flat
surface (S, V , d(u)).

Let us denote the area of the Voronoi cell of a marked point i ∈ V by Ai .
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k
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i j

ki

Ri jk

Fig. 8 Notation of notions in the triangle i jk

Lemma 4.8 The function AΔ
tot is analytic. Its partial derivatives satisfy the equation

∂ AΔ
tot

∂ui
= 2Ai . (4)

Its second derivative is

d2AΔ
tot =

∑
i j∈EΔ

2Ai j (dui + du j )
2 − 1

2

∑
i j∈EΔ

(
R2

i jk cot α
i j
k + R2

i jl cot α
i j
l

)
(dui − du j )

2,

where the vertices k, l ∈ V are the opposite vertices in the neighboring triangles
i jk, i jl ∈ FΔ(u), Ai j = �2i j (cot α

i j
k + cot αi j

l )/8, and Ri jk denotes the radius of the
circumcircle of the triangle i jk.

Proof The function AΔ
tot is analytic since the area Ai jk(u) of each triangle i jk ∈ FΔ

is an analytic function with respect to the vector of conformal factors u.1

Consider a triangle with vertices i , j , and k, and let Ai
jk denote the signed area

of the triangle with vertices k, the circumcentre of the triangle i jk, and the midpoint
of the edge jk, as depicted in Fig. 8. The sign of Ai

jk is positive if the circumcentre
of i jk lies inside the triangle, and negative otherwise. Then

Ai
jk = �2jk

8
cot α jk

i ,

and the area of the Voronoi cell Vi of a piecewise flat surface (S, V , d) satisfies the
equation

Ai =
∑

jk|i jk∈FΔ

(
A j

ki + Ak
i j

)
.

Thus,

∂ Ai jk

∂ui
= 2A j

ki + 2Ak
i j − R2

i jk
∂

∂ui

(
α

jk
i + αki

j + α
i j
k︸ ︷︷ ︸

=π

)
= 2A j

ki + 2Ak
i j .

1 This follows for example from Heron’s formula, and the fact that for all triangles in FΔ, Ai jk (u) > 0.
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Due to the linearity of the area function,

∂ AΔ
tot

∂ui
=

∑
jk|i jk∈FΔ

2A j
ki + 2Ak

i j = 2Ai .

In the upcoming calculations we use the following formula from [2, (4–8)].

Lemma Let a, b, c be edge lengths of a triangle, α, β, γ angles opposite of a, b, c,
respectively, and let λa, λb, λc be the logarithmic lengths. Then

2 dα = (cot β + cot γ ) dλa − cot γ dλb − cot β dλc.

Since

∂ A j
ki

∂ui
= A j

ki − R2
i jk

2
· ∂αki

j

∂ui
= A j

ki − R2
i jk cot α

i j
k

4
,

we obtain the equation

∂2AΔ
tot

∂u2
i

= 2Ai − 1

2

∑
jk|i jk∈FΔ

R2
i jk

(
cot αi j

k + cot αki
j

)
.

Let i, j ∈ V be two vertices. If j is not adjacent to i ,

∂2AΔ
tot

∂ui ∂u j
= 0.

If j is adjacent to i , let k, l ∈ V be the two opposite vertices in the neighboring
triangles i jk, i jl ∈ FΔ. Since

∂ Ai
jk

∂ui
= − R2

i jk

2
· ∂α

jk
i

∂ui
= R2

i jk(cot α
ki
j + cot αi j

k )

4
,

the mixed partial derivative equals

∂2AΔ
tot

∂ui ∂u j
= 2Ak

i j + 2Al
i j︸ ︷︷ ︸

=2Ai j

+ R2
i jk cot α

i j
k + R2

i jl cot α
i j
l

2
.

Thus,

d2AΔ
tot =

∑
i j∈EΔ

2Ai j (dui + du j )
2 − 1

2

∑
i j∈EΔ

(
R2

i jk cot α
i j
k + R2

i jl cot α
i j
l

)
(dui − du j )

2.
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Theorem 4.9 (extension) For a conformal factor u ∈ R
V , let Δ(u) be a Delaunay

triangulation of the surface (S, V , d(u)). The map

Atot : RV → R, u �→ AΔ(u)
tot (u),

is well defined and once continuously differentiable.

Proof Due to Lemma 4.8 the function Atot is once continuously differentiable in the
interior of every Penner cell. At the boundary between two (or more) Penner cells
the triangulations induce the same Delaunay tessellation and thus the same Voronoi
tessellation. The areas of the Voronoi cells induced by either of the triangulations are
therefore equal. 	


Remark 4.10 The function Atot is, in fact, twice continuously differentiable. This can
be proved by a long and unilluminating calculation [6, Chap. 8].

4.2 TheVariational Principles

Theorem 4.11 (variational principle with equality constraints) Let (S, V , d) be a
piecewise flat surface. Up to global rescaling, the PL-metrics with constant discrete
Gaussian curvature in the conformal class of the metric d are in one-to-one corre-
spondence with the critical points of the function

E : RV → R, u �→ E(u),

under the constraint Atot(u) = 1.

Proof We use the method of Lagrange multipliers. A conformal factor u ∈ R
V is a

critical point of the function E under the constraint Atot = 1 if and only if there exists
a Lagrange multiplier λ ∈ R, such that

0 = ∂(E − λAtot)

∂ui

(3),(4)= Wi − 2λAi .

This holds if and only if

Wi

Ai
= 2λ = const. 	


The Lagrange multiplier λ satisfies

λ = πχ(S)

by the discrete Gauss–Bonnet theorem.
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Theorem (discrete Gauss–Bonnet theorem) Let (S, V , d) be a piecewise flat surface
with constant discrete Gaussian curvature Kav at every vertex. Denote the total area
of the surface by Atot. Then,

Kav = 2πχ(S)

Atot
.

Fact 4.12 (alternative variational principle to Theorem 4.11) Up to global rescaling,
the PL-metrics with constant discrete Gaussian curvature in the conformal class of
the metric d are in one-to-one correspondence with the critical points of the function

F : RV → R, u �→ F(u) = E(u) − πχ(S) log(Atot(u)).

Indeed,

0 = ∂F

∂ui

(3),(4)= Wi − 2πχ(S)

Atot
Ai .

This holds if and only if

Wi

Ai
= 2πχ(S)

Atot
.

Theorem 4.13 (variational principle with inequality constraints) Let (S, V , d) be a
piecewise flat surface with χ(S) 
= 0. The existence of PL-metrics with constant
discrete Gaussian curvature in the conformal class of the metric d follows from the
existence of minima of the function E under the following inequality constraints:

– if the Euler characteristic of S satisfies χ(S) = 2, the inequality constraint is
Atot ≥ 1,

– if the Euler characteristic of S satisfies χ(S) < 0, the inequality constraint is
Atot ≤ 1.

Proof Proposition 4.15 shows that if u ∈ R
V is a minimum of the function E under

one of these constraints, then Atot(u) = 1. Since a minimum is a critical point, the
claim follows from Theorem 4.11. 	

Proposition 4.14 The sets

A+ = {u ∈ R
V | Atot(u) ≥ 1}, A− = {u ∈ R

V | Atot(u) ≤ 1}

have the following properties:

(a) A+ and A− are closed subsets of RV .
(b) Let I = (1, . . . , 1) ∈ R

V , and let u ∈ R
V be a conformal factor. Then the rays

R+
u =

{
u + cI

∣∣∣ c ≥ − log Atot(u)

2

}
, R−

u =
{

u + cI
∣∣∣ c ≤ − log Atot(u)

2

}
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are completely contained in the setsA+ andA−, respectively. The setsA+ andA−
are thus unbounded.

Proof (a) The proof follows from the fact that the sets A+ and A− satisfy

A+ = A−1
tot ([1,∞)), A− = A−1

tot ([0, 1]).

(b) The statement follows from the fact that Atot(u + cI) = Atot(u) exp(2c). 	

Proposition 4.15 Let (S, V , d) be a piecewise flat surface. If

– the Euler characteristic of S satisfies χ(S) = 2 and the function E attains a
minimum in the set A+, or

– the Euler characteristic of S satisfies χ(S) < 0 and the function E attains a
minimum in the set A−,

the minimum lies on the boundary of the sets,

∂A+ = ∂A− = {u ∈ R
V | Atot(u) = 1}.

Proof Let χ(S) = 2 and let u ∈ A+ be a minimum of the function E inA+. We show
that Atot(u) = 1. Let

c = − log Atot(u)

2
.

Since Atot(u) ≥ 1, we know that c ≤ 0. Further, u +cI ∈ A+ due to Proposition 4.14.
Due to the additive property of the function E (Proposition 4.5),

E(u) ≤ E(u + cI) = E(u) + 2χ(S)πc �⇒ c ≥ 0.

This implies that c = 0, and thus Atot(u) = 1. For surfaces with χ(S) < 0 the proof
is analogous. 	


5 Existence of Metrics with Constant Gaussian Curvature

In this section we prove Theorem 1.2. We build the proof on several key observations
of the behaviour of a sequence (un)n∈N of conformal factors inRV . These observations
are central for the application of Theorem 5.1, from which the proof of Theorem 1.2
follows almost immediately. In Sect. 5.1 we reduce the proof of Theorem 1.2 to the
proofs of Theorems 5.2 and 5.3. In Sect. 5.2 we study the behaviour of sequences of
conformal factors. Finally, in Sect. 5.3 we prove Theorems 5.2 and 5.3.

5.1 Reduction to Theorems 5.2 and 5.3

To prove Theorem 1.2 we distinguish three cases, corresponding to the three geome-
tries: the spherical case [genus 0, χ(S) = 2], the Euclidean case [genus 1, χ(S) = 0],
and the hyperbolic case [genus ≥ 2, χ(S) < 0].
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In the Euclidean case (χ(S) = 0) the Yamabe problem is equivalent to the discrete
uniformization problem. Theorem 1.2 thus follows directly from [5, Thm. 1.2] and
[12, Thm. 11.1].

In the other two cases (χ(S) < 0 and χ(S) = 2) finding metrics with constant
Gaussian curvature is equivalent to finding the minima of the function E in the setA−
if χ(S) < 0, and in the set A+ if χ(S) = 2. This is due to Theorem 4.13. To prove
the existence of these minima we apply Theorem 5.1—a traditional theorem from
calculus.

Theorem 5.1 Let A ⊆ R
m be a closed set and let f : A → R be a continuous function.

If every unbounded sequence (xn)n∈N in A has a subsequence (xnk )k∈N such that

lim
k→∞ f

(
xnk

) = +∞,

then f attains a minimum in A.

We already verified that the majority of the conditions of Theorem 5.1 is satisfied.
Proposition 4.14 ensures that the setsA+ andA− are closed. Theorem 4.6 tells us that
the function E is continuous. To obtain the minima of E in the sets A+ and A−, the
following two theorems are left to prove.

Theorem 5.2 Let χ(S) < 0 and let (un)n∈N be an unbounded sequence in A−. Then
there exists a subsequence (unk )k∈N of (un)n∈N, such that

lim
k→∞E(unk ) = +∞.

Theorem 5.3 Let χ(S) = 2 and let (un)n∈N be an unbounded sequence in A+. Then
there exists a subsequence (unk )k∈N of (un)n∈N, such that

lim
k→∞E(unk ) = +∞.

5.2 Behaviour of Sequences of Conformal Factors

Fix a piecewise flat surface (S, V , d) and let (un)n∈N be an unbounded sequence in
its discrete conformal class RV . We denote its coordinate sequence at vertex j ∈ V
by (u j,n)n∈N.

Convention 5.4 Throughout this section we assume that the sequence (un)n∈N
possesses the following properties:

– It lies in one Penner cell AΔ of RV .
– There is a vertex i∗ ∈ V such that for all j ∈ V and n ∈ N, ui∗,n ≤ u j,n.
– Each coordinate sequence (u j,n)n∈N either converges, diverges properly

to +∞, or diverges properly to −∞.
– For all j ∈ V the sequences (u j,n − ui∗,n)n∈N either converge or diverge

properly to +∞.
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31 n
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Fig. 9 Sequences of edge lengths on triangle 123

We may adopt Convention 5.4 without loss of generality because every sequence
inRV possesses a subsequence that satisfies these properties. The first property follows
from a theorem by Hirotaka Akiyoshi.

Theorem (Akiyoshi [1]) The set D(S, V , d) of non-empty Penner cells is finite.

In addition, we use the following notation:

�n
i j := �i j exp

ui,n + u j,n

2
, (5)

where � is the discrete metric induced by the PL-metric d on (S, V ,Δ) (see Fact 2.3).
Since the sequence (un)n∈N lies inside the Penner cell AΔ, Δ is a Delaunay triangu-
lation of (S, V , d(un)) for all n ∈ N (see Definition 2.13). Furthermore, the map �n

defined by (5) is the discrete metric induced on (S, V ,Δ) by the PL-metric d(un) (see
Proposition 2.14).

Behaviour of (un)n∈N in one triangle. Consider a triangle in FΔ with vertices labeled
by 1, 2, 3 ∈ V and initial edge lengths �12, �23, �31, uniquely determined by d. Define

A123 := {(u1, u2, u3) | u ∈ AΔ}. (6)

Let (u1,n, u2,n, u3,n)n∈N be a sequence in A123. Then the edge lengths �n
12, �

n
23, �

n
31

satisfy the triangle inequalities for all n ∈ N.

Lemma 5.5 If u1,n
n→∞−−−→ ∞, u2,n

n→∞−−−→ ∞, and the sequence (u3,n)n∈N is bounded
from above, there exists an n ∈ N such that

�n
12 > �n

23 + �n
31.

In other words, there exists no sequence inA123 where two of the coordinate sequences
would diverge properly to +∞ and the third one would be bounded from above.

123



144 Discrete & Computational Geometry (2023) 70:123–153

Proof Without loss of generality we may assume that u1,n ≤ u2,n for all n ∈ N. Then

0 < �12 = �n
12 exp

−u1,n − u2,n

2

Δ-ineq.≤ (
�n
23 + �n

31

)
exp

−u1,n − u2,n

2

=
(
�23 + �31 exp

u1,n − u2,n

2︸ ︷︷ ︸
≤1

)
exp

u3,n − u1,n

2

≤ (�23 + �31) exp
u3,n − u1,n

2
n→∞−−−→ 0.

This contradicts the triangle inequality �n
12 ≤ �n

23 + �n
31. 	


We now make a subtle shift of perspective—instead of studying the development of
triangles under sequences of conformal factors (ui,n)n∈N, we consider their develop-
ment under the sequences (ui,n − ui∗,n)n∈N. Geometrically, this corresponds to the
rescaling of the whole triangulation by a factor exp (−ui∗,n) at each step n. Since we
are primarily interested in the conditions under which the triangle inequalities break
(such as those in Lemma 5.5), this shift is an elegant way to reduce the number of
cases. Indeed, a triangle with conformal factors (2n, 2n, n)n∈N will degenerate just as
the triangle with conformal factors (n, n, 0)n∈N will, since the triangles are similar.
Lemma 5.5 yields the following key observation:

Corollary 5.6 At every triangle i jk ∈ FΔ, at least two of the three sequences (ui,n −
ui∗,n)n∈N, (u j,n − ui∗,n)n∈N, (uk,n − ui∗,n)n∈N converge.

Proof The claim holds for any triangle with vertex i∗ due to Lemma 5.5. It holds for
all remaining triangles in FΔ due to the connectivity of the triangulation. 	

Lemma 5.7 Assume that the sequence (u1,n)n∈N diverges properly to +∞ and the
sequences (u2,n)n∈N and (u3,n)n∈N converge. Then

�n
12

�n
31

n→∞−−−→ 1,

and the sequence of angles αn, opposite to the edge 23 in the triangle with edge
lengths �n

12, �
n
23, �

n
31, satisfies

αn
n→∞−−−→ 0.

Proof Dividing both sides of the triangle inequality �n
31 ≤ �n

23 + �n
12 by �n

31 yields the
inequality

1 ≤ �n
23

�n
31

+ �n
12

�n
31

= �23

�31
exp

u2,n − u1,n

2
+ �n

12

�n
31

.

Dividing both sides of the triangle inequality �n
12 ≤ �n

23 + �n
31 by �n

12 yields

1 ≤ �23

�12
exp

u3,n − u1,n

2
+ �n

31

�n
12

.
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Fig. 10 Labeling in a vertex star

Since, for i = 2, 3,

exp
ui,n − u1,n

2
n→∞−−−→ 0,

we obtain

�n
23

�n
31

n→∞−−−→ 0,
�n
23

�n
12

n→∞−−−→ 0.

The convergence of the fraction �n
12/�

n
31 follows from the inequalities

1 ≤ lim
n→∞

�n
12

�n
31

≤ 1.

From the cosine rule we obtain the convergence

2 cosαn = �n
12

�n
31

+ �n
31

�n
12

− (�n
23)

2

�n
31�

n
12

n→∞−−−→ 2,

and thus αn
n→∞−−−→ 0. 	


Behaviour of (un)n∈N around a vertex star. Let i ∈ V be a vertex such that the
sequence (ui,n)n∈N diverges properly to +∞ and the sequences (u j,n)n∈N at any
neighbour j ∈ V converge. We investigate the behaviour of angles in triangles with
vertex i .

A vertex star around vertex i is the subset Fi
Δ ⊆ FΔ of triangles in FΔ that contain

the vertex i . We denote the degree of the vertex i by s and label the vertices as in
Fig. 10. We drop the index n that denotes the elements in the sequence when we
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label angles. Whenever the labeling requires it we use the conventions 1− 1 = s and
s + 1 = 1.

Proposition 5.8 The sequences of angles in the triangles of Fi
Δ satisfy

lim
n→∞ α

j, j+1
0 = 0, lim

n→∞ α
0, j
j+1 = lim

n→∞ α
0, j+1
j = π

2
, j ∈ {1, . . . , s}.

Proof Denote the limit of a sequence of angles α
i, j
k along (un)n∈N by ᾱ

i, j
k . Due to

Lemma 5.7,

ᾱ
j, j+1
0 = 0,

and thus, for all j = 1, . . . , s,

ᾱ
0, j+1
j + ᾱ

0, j
j+1 = π. (7)

Since the edges 0 j are Delaunay, the Delaunay inequality

ᾱ
0, j
j−1 + ᾱ

0, j
j+1 ≤ π (8)

is satisfied for each j ∈ {1, . . . , s}. Summing up the Delaunay inequalities we obtain

πs
(8)≥

s∑
j=1

(
ᾱ
0, j
j−1 + ᾱ

0, j
j+1

) =
s∑

j=1

(
ᾱ
0, j+1
j + ᾱ

0, j
j+1

) (7)= πs.

In other words, each Delaunay inequality (8) becomes an equality in the limit. Due
to (7),

ᾱ
0, j
j−1 = ᾱ

0,2
1 , ᾱ

0, j−1
j = π − ᾱ

0,2
1 ,

for all j ∈ {1, . . . , s}. To show that ᾱ0,2
1 = π/2, we apply the following equation: In

a triangle with sides a, b, c, and opposite angles α, β, γ ,

b − a = c
sin((α − β)/2)

cos(γ /2)
. (9)

Denote the limit of the lengths of edges �n
j, j+1 by limn→∞ �n

j, j+1 = �̄ j, j+1. Since,
for all n ∈ N, holds

s∑
j=1

(
�n
0, j+1 − �n

0, j

) = 0,
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in the limit

0 = lim
n→∞

s∑
j=1

(
�n
0, j+1 − �n

0, j

) (9)= sin
π − 2ᾱ0,2

1

2

s∑
j=1

�̄ j, j+1.

Since, for all j = 1, . . . , s, the sequences of conformal factors (u j,n)n∈N converge,

s∑
j=1

�̄ j, j+1 > 0.

We deduce that

sin
π − 2ᾱ0,2

1

2
= 0,

and thus ᾱ
0,2
1 = π/2. 	


Behaviour of the function E along (un)n∈N. Recall the definitions of the function f
(Definition 4.1) and the set A123 (6). Let

h : A123 → R, h(u1, u2, u3) := 2 f

(
λ̃12

2
,
λ̃23

2
,
λ̃31

2

)
− π

2
(λ̃12 + λ̃23 + λ̃31).

Lemma 5.9 For any real number v ∈ R, the function h satisfies the equation

h((u1, u2, u3) + v(1, 1, 1)) = h(u1, u2, u3) − πv.

Proof Follows from the property of the function f from Proposition 4.5. 	

Proposition 5.10 Let (u1,n, u2,n, u3,n)n∈N be a sequence in A123. Suppose that

u1,n
n→∞−−−→ +∞, u2,n

n→∞−−−→ u2, u3,n
n→∞−−−→ u3.

Then the sequence (h(u1,n, u2,n, u3,n))n∈N converges, and in particular

lim
n→∞ h(u1,n, u2,n, u3,n) = −π

(
log �23 + u2 + u3

2

)
.

Proof Consider the notation as in Fig. 11. Then,

h(u1,n, u2,n, u3,n)

2
= αn xn +βn yn +γnzn +L(αn)+L(βn)+L(γn)− π

2
(xn + yn +zn).
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1

2

3

αn

βn

γn

n
12 = exp zn

n
31
=
ex
p
y n n23 =

exp
x
n

Fig. 11 Notation of sequences of edge lengths and angles in the triangle 123

In the limit, the sequences (xn)n∈N, (yn)n∈N, and (zn)n∈N of edge lengths satisfy

lim
n→∞ xn = log �23 + u2 + u3

2
=: x, lim

n→∞ yn = +∞, lim
n→∞ zn = +∞,

and, due to Proposition 5.8,

lim
n→∞(αn, βn, γn) =

(
0,

π

2
,
π

2

)
.

Thus,

lim
n→∞ αn xn = 0,

and, since the Lobachevsky function is continuous and satisfies the equality L(0) =
L(π/2) = 0 (see Fact 4.2), in the limit we obtain

lim
n→∞(L(αn) + L(βn) + L(γn)) = 0.

In summary,

lim
n→∞ h(u1,n, u2,n, u3,n) = 2 lim

n→∞

[(
βn − π

2

)
yn +

(
γn − π

2

)
zn

]
− πx .

We rearrange the expression (βn − π/2)yn + (γn − π/2)zn to obtain

(
βn − π

2

)
yn +

(
γn − π

2

)
zn = −αn(yn + zn)

2
+ (βn − γn)(yn − zn)

2
.

In the limit, limn→∞(βn − γn) = 0 due to Proposition 5.8, and

lim
n→∞(yn − zn) = log �31 − log �12 + u3 − u2

2
.

123



Discrete & Computational Geometry (2023) 70:123–153 149

Thus,

lim
n→∞

(βn − γn)(yn − zn)

2
= 0.

It is left to determine the limit

lim
n→∞ αn(yn + zn) = lim

n→∞ αn log �n
31 + lim

n→∞ αn log �n
12.

We recall that due to Proposition 5.8, limn→∞ αn = 0, and that

lim
n→∞ log �n

31 = lim
n→∞ log �n

12 = +∞.

We apply the sine rule and the l’Hospital’s rule to obtain the expression

lim
n→∞ αn log �n

31 = lim
n→∞

(
αn log �n

23 + αn log sin βn − αn log sin αn
)

= − lim
n→∞ αn log sin αn = 0.

Similarly, limn→∞ αn log �n
12 = 0. Altogether, we see that

lim
n→∞ h(u1,n, u2,n, u3,n) = −πx . 	


Lemma 5.11 There exists a convergent sequence (Dn)n∈N of real numbers such that
the function E satisfies

E(un) = Dn + 2π

⎛
⎝ui∗,nχ(S) +

∑
j∈V

(u j,n − ui∗,n)

⎞
⎠ .

Proof Due to the Euler formula, 2|V | − |FΔ| = 2χ(S). Applying Lemma 5.9 we
obtain

E(un) =
∑

i jl∈FΔ

h(ui,n, u j,n, ul,n) + 2π
∑
j∈V

u j,n

=
∑

i jl∈FΔ

h((ui,n, u j,n, ul,n) − ui∗,n(1, 1, 1))

︸ ︷︷ ︸
=:Dn

−π |FΔ|ui∗,n + 2π
∑
j∈V

u j,n

= Dn + 2π

⎛
⎝ui∗,nχ(S) +

∑
j∈V

(u j,n − ui∗,n)

⎞
⎠ .

The sequence (Dn)n∈N converges due to Corollary 5.6 and Proposition 5.10. 	
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i
j

l

α n
l

n
i j

n
il n

jl

Fig. 12 Notation of sequences of edge lengths and an angle in the triangle i jk

Influence of (un)n∈N on the area of a triangle.

Lemma 5.12 Let i jk ∈ FΔ be such that the sequences (u j,n − ui∗,n)n∈N and (uk,n −
ui∗,n)n∈N converge. Denote by An

i jk the area of the triangle with edge lengths
�n

i j , �
n
jk, �

n
ki .

(a) If the sequence (ui,n − ui∗,n)n∈N converges, there exists a convergent sequence of
real numbers (Cn)n∈N, such that the area of the triangle with edge lengths �n

i j , �
n
jk, �

n
ki

satisfies

log An
i jk = Cn + 2ui∗,n .

(b) If the sequence (ui,n − ui∗,n)n∈N diverges to +∞, there exists a convergent
sequence of real numbers (Cn)n∈N, such that the area of the triangle with edge
lengths �n

i j , �
n
jk, �

n
ki satisfies

log An
i jk = Cn + ui,n + 3ui∗,n

2
.

Proof The proof follows from the continuity of the area function, fromConvention 5.4,
and from Corollary 5.6. Indeed, let αn

l be the angle at vertex l, as in Fig. 12. Then

log An
i jl = log

�il� jl sin αn
l

2
+ ul,n − ui∗,n + u j,n − ui∗,n

2︸ ︷︷ ︸
(∗)

+ui,n − ui∗,n
2

+ 2ui∗,n,

where (∗) converges due to the assumption and due to Proposition 5.8. If the sequence
(ui,n − ui∗,n)n∈N converges, define Cn = (∗) + (ui,n − ui∗,n)/2. If the sequence
(ui,n − ui∗,n)n∈N diverges to +∞, define Cn = (∗). In both cases the sequence
(Cn)n∈N converges, and the result follows. 	


5.3 Proofs of Theorems 5.2 and 5.3

Theorem 5.2 Let χ(S) < 0 and let (un)n∈N be an unbounded sequence in A−. Then
there exists a subsequence (unk )k∈N of (un)n∈N, such that

lim
k→∞E

(
unk

) = +∞.
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Proof We assume that the sequence (un)n∈N satisfies Convention 5.4. Due to
Lemma 5.11 there exists a convergent sequence (Cn)n∈N such that

E(un) = Cn + 2π

⎛
⎝ui∗,nχ(S) +

∑
j∈V

(u j,n − ui∗,n)

⎞
⎠ .

The sequence

⎛
⎝∑

j∈V

(u j,n − ui∗,n)

⎞
⎠

n∈N

is bounded from below by zero due to Convention 5.4.

Since the sequence (un)n∈N lies in A−, the area of each triangle is bounded from
above. At the same time (un)n∈N is unbounded.We apply Lemma 5.12 to conclude that
the sequence (ui∗,n)n∈N diverges properly to−∞. Indeed, if (ui∗,n)n∈N would diverge
properly to +∞, any of the two cases of Lemma 5.12 would yield a contradiction
to the bound on the area of any triangle. Assume that (ui∗,n)n∈N converges. If all
triangles satisfy the condition of case (a) of Lemma 5.12 then all sequences (ui,n)n∈N
converge—a contradiction to the fact that (un)n∈N is unbounded. Thus there must
be one sequence (ui,n)n∈N such that (ui,n − ui∗,n)n∈N diverges to +∞. This in turn
implies that (ui,n)n∈N itself diverges to +∞. Applying case (b) of Lemma 5.12 yields
the contradiction to the upper bound on the area of any triangle with vertex i . Thus,
the sequence (ui∗,n)n∈N must diverge properly to −∞, and

lim
n→∞E(un) = +∞. 	


Theorem 5.3 Let χ(S) = 2 and let (un)n∈N be an unbounded sequence in A+. Then
there exists a subsequence (unk )k∈N of (un)n∈N, such that

lim
k→∞E(unk ) = +∞.

Proof We assume that the sequence (un)n∈N satisfies Convention 5.4. Due to
Lemma 5.11 there exists a convergent sequence (Cn)n∈N such that

E(un) = Cn + 2π

⎛
⎝2ui∗,n +

∑
j∈V

(u j,n − ui∗,n)

⎞
⎠ .

The sequence

⎛
⎝∑

j∈V

(u j,n − ui∗,n)

⎞
⎠

n∈N
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is bounded from below by zero due to Convention 5.4. We distinguish three cases.

Case 1: The sequence (ui∗,n)n∈N diverges properly to +∞. It follows immediately
that

lim
n→∞E(un) = +∞.

Case 2: The sequence (ui∗,n)n∈N converges. Since the sequence (un)n∈N is
unbounded, there exists a vertex j ∈ V with limn→∞(u j,n − ui∗,n) = +∞. Thus,

lim
n→∞E(un) = +∞.

Case 3: The sequence (ui∗,n)n∈N diverges properly to −∞. There exists a vertex
i ∈ V , such that the sequence (ui,n + 3ui∗,n)n∈N is bounded from below. This is due
to the fact that the sequence (un)n∈N lies inA+, and thus there exists a triangle whose
area is non-zero in the limit. The lower bound then follows from Lemma 5.12 (b). We
obtain

2ui∗,n +
∑
j∈V

(u j,n − ui∗,n) = −2ui∗,n + (ui,n + 3ui∗,n) +
∑

j∈V , j 
=i

(u j,n − ui∗,n).

Since both sequences

⎛
⎝ ∑

j∈V , j 
=i

(u j,n − ui∗,n)

⎞
⎠

n∈N
and (ui,n + 3ui∗,n)n∈N

are bounded from below, and the sequence (−2ui∗,n)n∈N diverges properly to +∞,

lim
n→∞E(un) = +∞. 	
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