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Revisiting the Manin–Peyre conjecture for
the split del Pezzo surface of degree 5

Tim Browning

Abstract. An improved asymptotic formula is established for the number
of rational points of bounded height on the split smooth del Pezzo surface of
degree 5. The proof uses the �ve conic bundle structures on the surface.
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1. Introduction
This paper concerns the arithmetic of smooth del Pezzo surfacesX of degree

5 over ℚ. Such surfaces can be realised as the blow-up of ℙ2 along 4 points,
no 3 of which are collinear. We will focus here on the split del Pezzo surface
of degree 5, for which the 4 points in ℙ2 are all de�ned over ℚ. There are 10
lines contained in X and we let U ⊂ X be the Zariski open subset obtained by
deleting them. The Manin–Peyre conjecture makes a precise prediction for the
asymptotic behaviour of the counting function

NU,H(P) = #{x ∈ U(ℚ) ∶ H(x) ⩽ P},
as P → ∞, where H is the anticanonical height function. The conjecture �rst
appears in work of Franke, Manin and Tschinkel [7], and applies more broadly
to arbitrary smooth Fano varieties overℚ, with a prediction for the leading con-
stant worked out by Peyre [12].

The split del Pezzo surface has proved a popular testing ground for this con-
jecture, withManin and Tschinkel [10] establishing linear growth, proving that
NU,H(P) = O(P(logP)6). In a very in�uential 1993 lecture “Counting rational
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points on del Pezzo surfaces of degree 5” in Bern, Salberger demonstrated how a
passage to the universal torsor can lead to the expected upper boundNU,H(P) =
O(P(logP)4), which agrees with the Manin conjecture, since Pic(X) ≅ ℤ5. In
this setting, the universal torsor above X is an open subset of the Grassman-
nian G(1, 4) parametrising lines in ℙ4. This signalled the �rst use of universal
torsors to count rational points of bounded height, a point of view that has led
to industrial scale activity for singular del Pezzo surfaces, as summarised in [4],
for example.

For quintic del Pezzo surfaces, a breakthrough was achieved in the work of
de la Bretèche [1], who succeeded in establishing that

NU,H(P) = cUP(logP)4
(
1 + O

( 1
log logP

))
, (1.1)

where

cU = �2

72
∏

p

(
1 − 1

p

)5(
1 + 5

p + 1
p2

)
(1.2)

is the constant predicted by Peyre [12]. De la Bretèche makes essential use of
the universal torsor approach discovered by Salberger. The purpose of this pa-
per is to explore an alternative approach to the Manin conjecture for the split
del Pezzo surface of degree 5, which is based on �ve conic bundle structures
X → ℙ1 that can be associated to X. This mechanism lies at the heart of the
resolution of the Manin conjecture for a smooth del Pezzo surface of degree 4,
in work of Browning and de la Bretèche [3]. The situation is simpler here and
will yield the following sharpening of (1.1).

Theorem 1.1. We have

NU,H(P) = cUP(logP)4 + O
(
P(logP)3(log logP)3

)
,

where cU is the constant (1.2) predicted by Peyre.

It would be interesting to determine whether a conic bundle approach could
be used to handle some non-split del Pezzo surfaces of degree 5. The starting
point for the proof of Theorem 1.1 is a passage to the universal torsor, follow-
ing Salberger, followed by a translation of the problem from counting integral
points on the universal torsor to one that pro�ts from the conic bundle struc-

tures on X. This is achieved in §2. For positive integers A, B ⩽ P
2
5 , it leads to

counting rational points on the conics

CA,B ∶ AX2 + BY2 = (A + B)Z2,

subject to certain conditions. Observing that [1, 1,−1] ∈ CA,B(ℚ), for any
choice of A, B, we may carry out a uniform parametrisation of the conics. This
is the subject of §3. The outcome is a complicated lattice point counting prob-
lem, which needs to be accomplished with a su�cient degree of uniformity in
A and B. This is achieved in §4. Finally, in §5 the main term in our lattice point
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counting argument is evaluated asymptotically. In the present setting this es-
sentially boils down to a sum of the type

∑

(A,B)∈ℤ2∩R

�(AB(A + B)),

where �(n) is the divisor function and R ⊂ ℝ2 is a suitable expanding region.
Problems of this sort were �rst studied by Greaves [8] when AB(A + B) is re-
placed by an arbitrary irreducible binary cubic formF ∈ ℤ[A, B]. In §5we shall
argue di�erently, using an alternative geometry of numbers approach worked
out by Browning [5].

The approach in this paper covers the rational points of height B on the split

del Pezzo surface of degree 5 byO(P
4
5 ) conicsCA,B ⊂ ℙ2. Although it represents

a formidable technical challenge, it would be intriguing to determine whether
a version of Theorem 1.1 can be proved with a full power saving in the error
term.

Acknowledgements. This work was begun while the author was participat-
ing in the programme on “Diophantine equations” at the Hausdor� Research
Institute forMathematics in Bonn in 2009. The hospitality and �nancial support
of the institute is gratefully acknowledged. The idea of using conic bundles to
study the split del Pezzo surface of degree 5 was explained to the author by Pro-
fessor Salberger. The author is very grateful to him for his input into this project
and also to Shuntaro Yamagishi for many useful comments on an earlier ver-
sion of this manuscript. While working on this paper the author was supported
by FWF grant P 32428-N35.

2. The conic bundle structures
Let X be a split del Pezzo surface of degree 5. It follows from the work of

Mumford [11] that X = M 0,5 arises as the moduli space of stable sets of 5
ordered points [xi, yi] ∈ ℙ1, for 1 ⩽ i ⩽ 5. Here stability (and semistability)
means that no 3 of the points coincide. The 10 lines on X are given by

zi,j = xiyj − xjyi = 0, (1 ⩽ i < j ⩽ 5),

and we write U for the complement of the lines on X.
There is a torsor � ∶ T → X under the torus G5

m. It is given as a quasi-
projective variety T ⊂ ℙ9 with coordinates zi,j for 1 ⩽ i < j ⩽ 5 such that
there are no three indices i, j, k for which

zi,j = zi,k = 0, (2.1)
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and furthermore, the Grassmannian equations
z1,2z3,4 − z1,3z2,4 + z1,4z2,3 = 0,
z1,2z3,5 − z1,3z2,5 + z1,5z2,3 = 0,
z1,2z4,5 − z1,4z2,5 + z1,5z2,4 = 0,
z1,3z4,5 − z1,4z3,5 + z1,5z3,4 = 0,
z2,3z4,5 − z2,4z3,5 + z2,5z3,4 = 0,

(2.2)

are satis�ed. One �nds that �−1(U) is given by these equations and the con-
dition that zi,j ≠ 0 for 1 ⩽ i < j ⩽ 5. The torsor � ∶ T → X extends in an
obvious way to a torsor �̃ ∶ T̃ → X̃ over ℤ. By properness X(ℚ) = X̃(ℤ) and
Grothendieck’s version of Hilbert’s Theorem 90 ensures that the map T̃ (ℤ)→
X̃(ℤ) is onto. Thus, in order to count ℚ-rational points of bounded height on
U, it will be enough to countℤ-integral points on T̃ ⊂ ℙ9 with all zi,j ≠ 0. The
subset T̃ (ℤ) ⊂ ℙ9(ℤ) satis�es coprimality conditions

gcd(zi,j, zi,k) = 1, for distinct i, j, k ∈ {1, 2, 3, 4, 5}, (2.3)
which correspond to the conditions (2.1) after reduction modulo primes. The
most natural choice of anticanonical height on U(ℚ) is the one corresponding
to the function |z13z14z24z25z35| for the subset T̃ (ℤ) ⊂ ℙ9(ℤ). This univer-
sal torsor point of view underpins the approach taken by de la Bretèche and
ultimately leads to the result [1, Lemma 3], which we record here.

Lemma 2.1. We haveNU,H(P) = 12M(P), where

M(P) = #
{
z = (zi,j)1⩽i<j⩽5 ∈ ℕ10 ∶ (2.2), (2.3) hold

z13z14z24z25z35 ⩽ P
}
.

We are now placed to translate the counting problem into one that takes ad-
vantage of the conic bundle structure of our split del Pezzo surface X. In this
capacity it will be useful to record themap# ∶ T → T , acting component-wise
via

#(zi,j) = zi+1,j+1, (2.4)
for 1 ⩽ i < j ⩽ 5. (Here, as throughout this paper, we follow the convention
that zi,j = zj,i = zi+5,j = zi,j+5, for any indices i, j.) One checks that # leaves
the cardinality of S(P) invariant, whereM(P) = #S(P), say.

For any z ∈ S(P), we write
C1 = z1,3z2,4, C2 = z1,3z2,5, C3 = z1,4z2,5, C4 = z1,4z3,5, C5 = z2,4z3,5.

It is clear that
5∏

i=1
Ci = z21,3z

2
1,4z

2
2,4z

2
2,5z

2
3,5 ⩽ P2, (2.5)

and furthermore, #i(C1) = C6−i, for i (mod 5), where � is given by (2.4). Since
S(P) is left invariant under #, it follows that

5#
{
z ∈ S(P) ∶ C1 < min

i≠1
{Ci}

}
⩽ M(P) ⩽ 5#

{
z ∈ S(P) ∶ C1 ⩽ min

i≠1
{Ci}

}
.
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Once combined with (2.5), it follows that C1 < P
2
5 (resp. C1 ⩽ P

2
5 ) for z ∈ S(P)

belonging to the set on the left (resp. right). This therefore leads to the following
conclusion.

Lemma 2.2. We have 60M(P) ⩽ NU,H(P) ⩽ 60M(P), where

M(P) = #

⎧
⎪

⎨
⎪
⎩

z ∈ ℕ10 ∶

(2.2), (2.3) hold
z13z14z24z25z35 ⩽ P
z1,3z2,4 ⩽ min{z1,3z2,5, z1,4z2,5, z1,4z3,5, z2,4z3,5}

z1,3z2,4 ⩽ P
2
5

⎫
⎪

⎬
⎪
⎭

,

and M(P) is de�ned similarly, but with the symbol ⩽ replaced by < in the �nal
two lines.

This result is analogous to [1, Lemma 4] in the work by de la Bretèche. We
henceforth focus our attention on estimating M(P), it being understood that
the �nal estimate we obtain remains equally valid forM(P). Everything is now
in place to translate our counting problem to one involving the conic bundle
structures associated to X.

Let us write

L = {(X,Y, Z) ∈ ℚ3 ∶ X ± Y,X ± Z,Y ± Z ∈ ℤ}. (2.6)

This de�nes a lattice of rank 3 and it is easy to see that L = ℤ3 ∪ (ℤ + 1
2
)3. Let

Lprim denote the set of primitive vectors in L, where we say (X,Y, Z) ∈ ℤ3 is
primitive if and only if

min{vp(X), vp(Y), vp(Z)} = 0

for all primes p, and (X,Y, Z) ∈ (ℤ + 1
2
)3 is said to be primitive if and only if

min{vp(X), vp(Y), vp(Z)} = 0

for all primes p > 2. (Note that v2(X) = v2(Y) = v2(Z) = −1 if (X,Y, Z) ∈
(ℤ + 1

2
)3.) We let

L∗ = {(X,Y, Z) ∈ Lprim ∶ X,Y, Z positive and not all odd}.

Thus, any (X,Y, Z) ∈ L∗ either belongs to (ℤ + 1
2
)3 or it belongs to ℤ3 with

2 ∣ XYZ. Finally, we let ℕ3prim denote the set of primitive vectors in ℕ3.
De�ne the set

A = {(A, B, C) ∈ ℕ3prim ∶ C ⩽ P
2
5 and A + B = C}. (2.7)

Ourmain aim in this section is to achieve a bijection between the vectors counted
byM(P) and elements (A, B, C;X,Y, Z) ∈ A × L∗ such that

AX2 + BY2 − CZ2 = 0, (2.8)



1198 TIM BROWNING

subject to suitable height conditions, with

X − Z > 0 (2.9)

and
gcd(2�C,X ∓ Y) ⩽ gcd(X ± Y,X + Z),

22�C ⩽ gcd(2�B,X + Z) gcd(X ± Y,X + Z),
(2.10)

for � ∈ {0, 1}. We will henceforth refer to the latter set of relations as (2.10)� in
order to stress the dependence on �. Once achieved, this transition will lead us
to tackle a counting problem involving a family of conics. The passage to the
conic bundle structure is achieved in the following result.

Lemma 2.3. We haveM(P) = 2L(P), where

L(P) = # {(A, B, C;X,Y, Z) ∈ A × L∗ ∶
(2.8)–(2.10)0 hold
C(X + Z) ⩽ P } .

Proof. Let z be a vector counted byM(P). We proceed to construct a point that
will be counted by L(P). De�ne

A = z1,2z3,4, B = z1,4z2,3, C = z1,3z2,4. (2.11)

Then it easily follows that (A, B, C) ∈ A , in the notation of (2.7). One now
de�nes

X =
z1,3z2,5z4,5 + z2,4z1,5z3,5

2 =
z1,4z2,5z3,5 + z2,3z1,5z4,5

2 ,

Y =
z1,2z3,5z4,5 − z3,4z1,5z2,5

2 =
z1,3z2,5z4,5 − z2,4z1,5z3,5

2 ,

Z =
z1,2z3,5z4,5 + z3,4z1,5z2,5

2 =
z1,4z2,5z3,5 − z2,3z1,5z4,5

2 .

The equalities in these de�nitions follow from the Plücker relations in (2.2). It
is clear that (X,Y, Z) ∈ Lprim, where L is de�ned in (2.6). To see that 2 ∣ XYZ
when (X,Y, Z) ∈ ℤ3, we suppose that X, say, is odd. Then it follows that

z1,3z2,5z4,5 + z2,4z1,5z3,5 ≡ z1,4z2,5z3,5 + z2,3z1,5z4,5 ≡ 2 (mod 4).

The conditions (2.3) ensure that either all four monomials are odd, or the �rst
two monomials are even and the remaining two are odd, or the second two are
even and the �rst two are odd. If z1,3z2,5z4,5 and z2,4z1,5z3,5 are both odd, then
they are both congruent to 1 or −1 modulo 4, which implies that Y must be
even. Alternatively, if z1,3z2,5z4,5 and z2,4z1,5z3,5 are both even then z1,4z2,5z3,5
and z2,3z1,5z4,5 must be congruent to 1 or −1modulo 4 and one concludes that
Z is even. In this way one deduces that (X,Y, Z) ∈ Lprim, with 2 ∣ XYZ when
(X,Y, Z) ∈ ℤ3.

To deduce the equation (2.8), we note that

A(X2 − Z2) = z1,2z3,4 ⋅ z1,4z2,5z3,5 ⋅ z2,3z1,5z4,5
= z1,4z2,3 ⋅ z1,2z3,5z4,5 ⋅ z3,4z1,5z2,5 = B(Z2 − Y2),
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which once combined with the relation A + B = C gives (2.8). Moreover, the
height condition z13z14z24z25z35 ⩽ P transforms to C(X + Z) ⩽ P. Next, on
making repeated reference to the coprimality conditions (2.3), it is straightfor-
ward to check that the conditions in (2.10)0 are satis�ed, which according to
our convention means that (2.10) holds with � = 0.

Since zi,j > 0 for all 1 ⩽ i < j ⩽ 5, it follows that X, Z > 0 and X > Z, as
required for (2.9). We claim that there is no contribution arising from those z
counted byM(P) forwhichY = 0. Indeed, in viewof the coprimality conditions
(2.3), this can only happen when

z1,5 = z2,5 = z3,5 = z4,5 = 1, z1,2 = z3,4 = s, z1,3 = z2,4 = t,

say. Now the inequality z1,3z2,4 ⩽ z1,3z2,5 implies that t = 1. Thus, the �rst
equation in (2.2) yields s2 − 1 + z1,4z2,3 = 0, which clearly has no solutions
in positive integers. It follows that (X, |Y|, Z) ∈ L∗. We complete the proof of
the upper bound M(P) ⩽ 2L(P) by observing a symmetry between solutions
(A, B, C;X,Y, Z) for which Y < 0 and those for which Y > 0.

Turning to the lower bound M(P) ⩾ 2L(P), we let (A, B, C;X, |Y|, Z) be a
vector counted by L(P), for non-zero Y ∈ ℤ, and proceed to construct a point
z that is counted by M(P). This will be enough to complete the proof of the
lemma. We de�ne

z1,2 = gcd(A, Z + Y), z1,4 = gcd(B,X + Z), z1,3 = gcd(C,X + Y),

z3,4 =
A

gcd(A, Z + Y)
, z2,3 =

B
gcd(B,X + Z)

, z2,4 =
C

gcd(C,X + Y)
,

and

z1,5 = gcd(X − Y,X − Z), z2,5 = gcd(X + Y,X + Z),
z3,5 = gcd(X − Y,X + Z), z4,5 = gcd(X + Y,X − Z).

We note that z = (zi,j)1⩽i<j⩽5 de�nes a vector in ℕ10. We proceed by proving
that the components of z satisfy the coprimality conditions (2.3). Let us show,
for example, that gcd(z1,2, z1,iz2,j) = 1 for 3 ⩽ i, j ⩽ 5. The cases i, j ∈ {3, 4}
follow from the observation that gcd(A, B) = gcd(A,C) = gcd(B, C) = 1 in
(2.7). Suppose next that i = j = 5. If pk ∣ gcd(z1,2, z1,5) then pk divides A and
Z + Y,X − Y,X − Z. It therefore follows that pk divides gcd(A, 2X, 2Y, 2Z),
whence k = 1 and p = 2. But this is impossible since the de�nition of L∗
means that at least one of X + Y,X − Y or X + Z must be odd. Similarly,
gcd(z1,2, z2,5) = 1.

Now it follows immediately from the de�nitions that (2.11) holds. Moreover,

z2,4 =
gcd(C,X2 − Y2)
gcd(C,X + Y)

= gcd(C,X − Y),
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and so the �rst two lines in (2.10)0 translate into the inequalities involving
z1,3z2,4 in the de�nition ofM(P). Next we must check that

X + Y = z1,3z2,5z4,5, X + Z = z1,4z2,5z3,5, Z + Y = z1,2z3,5z4,5,
X − Y = z2,4z1,5z3,5, X − Z = z2,3z1,5z4,5, Z − Y = z3,4z1,5z2,5.

(2.12)

For this, it is useful to observe that X > |Y|, X > Z and Z > |Y|, as follows
from (2.8) and (2.9). We establish the �rst of these identities, the remaining
ones being dealt with similarly. It follows from the de�nitions above that

z1,3z2,5z4,5 = gcd(C,X + Y) gcd(X + Y,X + Z) gcd(X + Y,X − Z)

= gcd(C,X + Y) gcd(X + Y,X2 − Z2),

since we clearly have gcd(X + Y,X + Z,X − Z) = 1. To see that the latter
expression is equal to X + Y, it is enough to check equality at prime powers.
Let p�‖C, p�‖X2−Z2 and p‖X+Y for a prime p and integers �, �,  ⩾ 0. Our
task is to show that min{�, } + min{�, } = . If �� = 0 then this is clearly
trivial since  ⩽ � + �. Hence we may assume that �, �,  ⩾ 1. In particular
vp(B) = vp(Y−X) = 0 and we conclude that  = �+�, fromwhich the desired
equality �ows.

Armed with (2.11) and (2.12), it is now easy to see that z13z14z24z25z35 ⩽ P.
It remains to deduce the 5 equations in (2.2). The �rst follows from (2.11) and
the fact that A + B = C. We derive the remaining 4 using (2.12). For example,
the second equation in (2.2) arises via

z1,2z3,5 =
Y + Z
z4,5

= X + Y
z4,5

− X − Z
z4,5

= z1,3z2,5 − z1,5z2,3.

This completes the proof of the lemma. �

The set L∗∩(ℤ+
1
2
)3 is slightly awkward to work with, and it is more natural

to use the homogeneity of (2.8) to convert the problem to one involvingℕ3. This
is easily done, as the following result demonstrates.

Lemma 2.4. We have

L(P) =
∑

(A,B,C)∈A

∑

�∈{0,1}
#M�(P),

where

M�(P) =
{
(X,Y, Z) ∈ ℕ3prim ∶ (2.8)–(2.10)� hold, C(X + Z) ⩽ 2�P

gcd(XYZ, 2) = 21−�
}
.

Proof. Fix a choice of (A, B, C) ∈ A . Then the set of (X,Y, Z) ∈ L∗ ∩ ℤ3

considered in Lemma 2.3 is equal toM0(P). Thus, it remains to consider the set
of (X,Y, Z) ∈ L∗ ∩ (ℤ+

1
2
)3. For these, we simply make the change of variables

(X′, Y′, Z′) = 2(X,Y, Z).

This clearly produces a primitive vector inℕ3 with 2 ∤ X′Y′Z′. By homogeneity
it is clear that (2.8) and (2.9) are left invariant, whereas (2.10)0 is transformed
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into (2.10)1. Likewise, the height conditionC(X+Z) ⩽ P becomesC(X′+Z′) ⩽
2P, and it follows that the set under consideration coincides with M1(P). This
completes the proof of the lemma. �

At this stage, it is convenient to show that the summation over A, B, C in
Lemma 2.4 can be restricted to A, B, C for which min{A, B} is of comparable
size tomax{A, B}. This is achieved in the following result.

Lemma 2.5. For J ⩾ 2 de�ne

AJ = {(A, B, C) ∈ ℕ3prim ∶ A + B = C ⩽ P
2
5 andmin{A, B} ⩾ J−1C}.

Then for any " > 0 we have

L(P) =
∑

(A,B,C)∈AJ

∑

�∈{0,1}
#M�(P) + O"

(
P

4
5
+" +

P(logP)4

J
2
3

)
,

whereM�(P) is as in the statement of Lemma 2.4.

Proof. The main tool in our proof of this result is [6, Cor. 2], which provides
a uniform bound for the number of rational points of bounded height on non-
singular plane conics. For the conic de�ned in (2.8), the underlying quadratic
form has discriminant −ABC. Moreover, the greatest common divisor of the
2 × 2 minors of the associated matrix is 1, since gcd(A, B) = 1. Finally, we
note that any (X,Y, Z) ∈ M�(P) satis�es X, Z ⩽ 2PC−1 and Y < Z ⩽ 2PC−1.
The latter inequalities are a trivial consequence of (2.8) and (2.9). It therefore
follows from [6, Cor. 2] that

∑

�∈{0,1}
#M�(P)≪ �(ABC)

(
1 + P

(AB)
1
3C

4
3

)
.

Our task is now to sum this over all (A, B, C) ∈ A ⧵ AJ . Thus, we must

consider the contribution from (A, B, C) such that Jmin{A, B} ⩽ C ⩽ P
2
5 . This

gives

≪" P
4
5
+" + P

∑

A,B

�(AB(A + B))

min{A, B}
1
3 max{A, B}

5
3

,

on noting that (AB)
1
3C

4
3 ⩾ min{A, B}

1
3 max{A, B}

5
3 and using the trivial esti-

mate �(n) = O"(n") for the divisor function. The �rst term here is satisfactory
for the lemma. Since �(mn) ⩽ �(m)�(n), we see that the second term gives the
contribution

≪ P
∑

JA⩽B⩽P
2
5

�(AB(A + B))

A
1
3B

5
3

≪ P
∑

B⩽P
2
5

�(B)

B
5
3

∑

A⩽J−12B

�(A(A + B))

A
1
3

.

For any a ∈ ℕ and � ∈ [0, 1), we claim that
∑

n⩽x

�k(n(n + a))
n�

≪� '‡(a)x1−�(logx)2(k−1), (2.13)
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where �k(n) =
∑

d1⋯dk=n
1 is the generalised divisor function and we set

'‡(n) =
∏

p∣n

(
1 + c

p

)
,

for a suitable constant c > 0, which is allowed to depend on k. Applying this
with k = 2 and � = 1

3
, it therefore follows that the second term makes the

contribution

≪
P(logP)2

J
2
3

∑

B⩽P
2
5

'‡(B)�(B)
B ≪

P(logP)4

J
2
3

,

by a simple convolution argument.
It remains to establish the claimed inequality (2.13). Let S�(x) denote the

sum that is to be estimated. Now for any a ∈ ℕ it is clear that the polynomial
f(t) = t(t + a) has degree 2 and discriminant a2. Moreover, f(t) has no �xed
prime divisor if a is even. If a is odd then 2 is a �xed prime divisor of f, but we
may then break the sum into two sums according to whether n is even or odd
and make a corresponding change of variables, absorbing the additional factor
�k(2) into an implied constant. An application of [2, Thm. 2] now reveals that

S0(x)≪ x
∏

p⩽x

(
1 −

%f(p)
p

) ∑

m⩽x

�k(m)%f(m)
m ,

for x ≫ a", where %f(m) denotes the number of roots modulo m of the con-
gruence f(n) ≡ 0 (modm). Let p� be a prime power and suppose that p�‖a for
� ⩾ 0. When � = 1 we clearly have %f(p) ⩽ 2. For � ⩾ 2 we claim that

%f(p�) ⩽ 2p⌊min{�,�}
2

⌋. (2.14)

If � = 0 then this is a direct consequence of Hensel’s lemma. If � ⩾ � then
%f(p�) = p�−⌈ �

2
⌉ = p⌊ �

2
⌋. Suppose now that � > �. Then we are left with

counting the number of s (modp�−⌈ �
2
⌉) such that

s(p⌈ �
2
⌉s + p�−⌈ �

2
⌉a′) ≡ 0 (modp�−⌈ �

2
⌉),

where a′ = a∕p� ∈ ℤ is coprime to p. It easily follows from Hensel’s lemma
that there are at most 2 values of s modulo p�−�, from which the claim (2.14)
easily follows.

We may now deduce that
∑

m⩽x

�k(m)%f(m)
m ⩽

∏

p⩽x

(
1 +

�k(p)%f(p)
p +

∑

�⩾2

�k(p�)%f(p�)
p�

)

⩽ exp
( ∑

p⩽x

k%f(p)
p +

∑

p⩽x

∑

�⩾2

(�+k−1
�

)
%f(p�)

p�
)
.
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Now
∏

p⩽x

(
1 −

%f(p)
p

)
exp

( ∑

p⩽x

k%f(p)
p

)
⩽ exp

( ∑

p⩽x

(k − 1)%f(p)
p

)

⩽ exp
( ∑

p⩽x

2(k − 1)
p

)

≪ (logx)2(k−1),

by Mertens’ theorem. Using (2.14), the remaining contribution is seen to be

∑

p⩽x

∑

�⩾2

(�+k−1
�

)
%f(p�)

p�

⩽ O(1) +
∑

p�‖a

( ∑

2⩽�⩽�

2
(�+k−1

�

)

p⌈ �
2
⌉

+
∑

�>�

2
(�+k−1

�

)
p⌊ �

2
⌋

p�
)

≪ 1 +
∑

p∣a

1
p ,

since
(�+k−1

�

)
⩽ k�. We therefore obtain

∑

m⩽x

�k(m)%f(m)
m ≪ '‡(a) exp

( ∑

p⩽x

k%f(p)
p

)
,

whence

S0(x)≪ '‡(a)x exp
( ∑

p⩽x

(k − 1)%f(p)
p

)
≪ '‡(a)x(logx)2(k−1).

This is satisfactory for (2.13) when � = 0. When � > 0 the claimed bound
follows from partial summation. This therefore concludes the proof. �

Throughout the remainder of this paper, we will take

J = (logP)5.

In particular, it is clear that the error term in Lemma 2.5 is satisfactory from the
point of view of our theorem.

3. Parametrisation of conics
Fixing a choice of (A, B, C) ∈ AJ , our aim in this section is to carry out a

parametrisation of the conics appearing in (2.8). For given (A, B, C) ∈ AJ , it
will be convenient to denote by C ⊂ ℙ2 the conic in (2.8). The crux of our
treatment is the observation that the conic bundle morphism X → ℙ1 has a
section. Concretely this is given by any of the points [±1,±1,±1] ∈ C , which
we can use to parametrise the points on the conic. By considering the lines
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passing through � = [1, 1,−1] with multiplicity 1, one establishes a bijection
between such lines de�ned over ℚ and the rational points on C ⧵ {�}.

Let (A, B, C) ∈ AJ and de�ne the binary quadratic forms

Q1(s, t) = At2 − Bs2 + 2Bst,

Q2(s, t) = −At2 + Bs2 + 2Ast,

Q3(s, t) = At2 + Bs2.

For s, t ∈ ℤ, we let � = gcd(Q1(s, t), Q2(s, t), Q3(s, t)), A straightforward cal-
culation reveals that in terms of the set M0(P) ∪ M1(P), the bijection is given
by

(X,Y, Z) = (
Q1(s, t)
�

,
Q2(s, t)
�

,
Q3(s, t)
�

) ,

for coprime (s, t) ∈ ℤ2 such that t > 0. Moreover, we will have 2 ∣ �−1Qj(s, t)
for at least one index j ∈ {1, 2, 3} when (X,Y, Z) ∈ M0(P), and 2 ∤ �−1Qj(s, t)
for every j ∈ {1, 2, 3} when (X,Y, Z) ∈ M1(P). We will henceforth say that
a primitive integer vector (s, t) is “0-good” (resp. “1-good”) if it satis�es the
�rst (resp. second) of these conditions. Finally, we observe that st ≠ 0 in this
parametrisation since we are only interested in positive X,Y, Z.

We must now transform the counting functions #M�(P) in Lemma 2.5 into
ones that involve the parameters s, t. We will show that

#M�(P) = #K�(P) + O(1), (3.1)

for � ∈ {0, 1}, where K�(P) is basically the setM�(P)written in terms of s, t. The
error term O(1) arises from the (s, t) that correspond to the forbidden tangent
line in the bijection outlined above. We will defer writing down precise expres-
sions for K0(P) and K1(P) until after we have analysed the quantity � de�ned
above, in addition to the relations (2.10)�.

Lemma 3.1. Let (s, t) be �-good. Then we have � = 21−��1�2�3, where

�1 = gcd(s, A), �2 = gcd(t, B), �3 = gcd(s + t, A + B).

Proof. We begin with the observation that

� = gcd(Q1 + Q2, Q2 − Q3, Q3) = gcd(2(A + B)st, 2At(s + t), At2 + Bs2).

Let us write � = 2��♭ for � ⩾ 0 and �♭ ∈ ℕ odd. It will be convenient to write

(a, b)♭ = 2−v2(gcd(a,b)) gcd(a, b)

for the oddpart of the greatest commondivisor. Using the primitivity of (A, B, C)
and (s, t) it is now straightforward to deduce that �♭ = �♭1�

♭
2�

♭
3, where

�♭1 = (s, A)♭, �♭2 = (t, B)♭, �♭3 = (s + t, A + B)♭.

Thus, it remains to calculate �, for which purpose we set

� = v2(A), � = v2(B),  = v2(A + B) = v2(C),
� = v2(s), � = v2(t), � = v2(s + t).
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Our expression for � therefore leads to the conclusion that

� = min{1 + � +min{ + �, � + �}, v2(At2 + Bs2)}. (3.2)

There are three basic cases to consider depending on which of �, �,  is pos-
itive. We will deal here only with the case � ⩾ 1, the other cases being treated
similarly. In particular � =  = 0 and so �2 = �♭2, �3 = �♭3. It therefore remains
to show that

2��♭1 = 21−��1, (3.3)

if (s, t) is �-good. If� = 0 then (3.2) implies that � = 0, andmoreover, 2−�Qj(s, t)
is odd for 1 ⩽ j ⩽ 3. Hence, (s, t) is 1-good and clearly (3.3) holds in this case.
Suppose now that � ⩾ 1. Then a little thought reveals that

� = min{1 + �, �}

in (3.2). Wehave two cases to consider according towhether� < 1+� or� ⩾ 1+
�. A straightforward calculation reveals that for � ⩾ 1 the �rst inequality holds
if and only if (s, t) is 1-good and the second if and only if (s, t) is 0-good. When
(s, t) is 1-good, so that � < 1 + �, it immediately follows that � = �, whence
2��♭1 = 2��♭1 = �1. Alternatively, when (s, t) is 0-good, so that � ⩾ 1 + � ⩾ 2,
we conclude that 2��♭1 = 21+��♭1 = 2�1. The establishes (3.3) and so completes
the proof of the lemma. �

It is now time to investigate how the conditions in (2.10)� are incorporated
into the argument, for � ∈ {0, 1}. It will be convenient to �rst collect expressions
for the various terms X ±Y,X ±Z, Z ±Y. The bijection recorded at the start of
the section yields

X + Y = −2(A+B)st
�

, X − Y = 2(s+t)(At−Bs)
�

,

X + Z = 2t(At−Bs)
�

, X − Z = −2Bs(s+t)
�

,

Z + Y = −2s(At−Bs)
�

, Z − Y = 2At(s+t)
�

.

Wemay now establish the following result, in which we recall the notation for
�1, �2, �3 introduced in Lemma 3.1.

Lemma 3.2. For (X,Y, Z) ∈ M�(P), we have

gcd(2�B,X + Z) = 2��2,
gcd(2�C,X − Y) = 2��3,

gcd(2�C,X + Y) = 2�C
�3

,
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and
gcd(X + Y,X + Z) = gcd(Z − Y,X + Z) = 2�t

�2
,

gcd(X − Y,X − Z) = gcd(Z − Y,X − Z) = 2�(s+t)
�3

,

gcd(X − Y,X + Z) = gcd(Z + Y,X + Z) = 2�(At−Bs)
�1�2�3

,

gcd(X + Y,X − Z) = gcd(Z + Y,X − Z) = 2�s
�1
.

Proof. This all follows fromdirect calculation based onLemma3.1. In doing so
it is critical to observe that �1, �2, �3 are coprime to each other. Wewill illustrate
the sort of calculations involved by evaluating gcd(2�B,X + Z) and gcd(Z −
Y,X − Z).

Beginning with the former, we note that �1�2�3 ∣ At − Bs. But then

gcd(2�B,X + Z) = gcd
(
2�B,

2t(At − Bs)
21−��1�2�3

)

= 2��2 gcd
( B
�2
, t
�2
⋅ At − Bs
�1�2�3

)

= 2��2 gcd
( B
�2
, At − Bs
�1�2�3

)

= 2��2.

Next we observe that

gcd(Z − Y,X − Z) = gcd
(2�At(s + t)

�1�2�3
,
2�Bs(s + t)
�1�2�3

)

=
2�(s + t)

�3
gcd

(A
�1
⋅ t
�2
, B
�2
⋅ s
�1

)

=
2�(s + t)

�3
.

The remaining cases are dispatched in much the same spirit, which readily
leads us to the statement of the lemma. �

We are now ready to return to (3.1) and to consider the e�ect of our argu-
ments on the expressions for K0(P) and K1(P). This is the subject of the follow-
ing result.

Lemma 3.3. We have

∑

�∈{0,1}
#K�(P) = #

⎧
⎪

⎨
⎪
⎩

(u, v) ∈ ℕ2prim ∶

0 < Q1(u, v), Q2(u, v), v > u
v(Av + Bu) ⩽ �1�2�3P

C
,

max{C, �2�3} ⩽ v,
C�1max{�2, �3} ⩽ Av + Bu

⎫
⎪

⎬
⎪
⎭

+ O(1),
where

�1 = gcd(u,A), �2 = gcd(v, B), �3 = gcd(u − v, A + B).
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Proof. Drawing together Lemma 3.1 and Lemma 3.2, we see in (2.10)� that

gcd(2�C,X − Y) ⩽ gcd(X + Y,X + Z)

if and only if �2�3 ⩽ t. Similarly,

gcd(2�C,X + Y) ⩽ gcd(X − Y,X + Z)

if and only if �1�2 ⩽
At−Bs
C

. Next we note that the pair of inequalities

22�C ⩽ gcd(2�B,X + Z) gcd(X ± Y,X + Z)

are equivalent to C ⩽ t and �1�3 ⩽
At−Bs
C

. The remaining expressions in (2.10)�
give no new information. Invoking (2.9) we deduce that

K�(P) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

(s, t) ∈ ℤ2
prim ∶

(s, t) is �-good and |s|, t > 0,
0 < Q1(s, t), Q2(s, t), Q3(s, t),
Q1(s, t) > Q3(s, t),
Q1(s, t) + Q3(s, t) ⩽

2��P
C
,

max{C, �2�3} ⩽ t,
�1max{�2, �3} ⩽

At−Bs
C

⎫
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎭

.

for � ∈ {0, 1}. Furthermore, Lemma 3.1 implies that 2�� = 2�1�2�3 and we
observe that any (s, t) ∈ ℤ2 is either 0-good or 1-good. Thus, if we sum K�(P)
over � ∈ {0, 1} then the right hand side remains the same, but with 2�� replaced
by 2�1�2�3 and the �rst line replaced by the condition |s|, t > 0.

Now it is clear that Q3(s, t) is always positive. Furthermore, if Q1(s, t) and
Q2(s, t) are both positive then certainly Q1(s, t) + Q2(s, t) > 0, whence s > 0.
We write (s, t) = (u, v) and observe that Q1(s, t) > Q3(s, t) if and only if v > u,
and Q1(s, t) + Q3(s, t) = 2v(Av + Bu). This completes the proof. �

4. Counting lattice points
In this section, we transform our problem into a lattice point counting prob-

lem for �xed (A, B, C) ∈ AJ in the notation of Lemma 2.5. One sees that the
inequalities v > u and Q1(u, v), Q2(u, v) > 0 in Lemma 3.3 are equivalent to

u < v < u
(
1 +

√
1 + B

A

)
. (4.1)

We de�ne the region

R(A, B;�) = {(u, v) ∈ ℝ2
>0 ∶

(4.1) holds and v(Av + Bu) ⩽ X,
� ⩽ v and � ⩽ Av + Bu } , (4.2)

with

X =
�1�2�3P

C
, � = max{C, �2�3}, � = C�1max{�2, �3} (4.3)
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and C = A + B. The inequality v(Av + Bu) ⩽ X obviously implies Av2 < X
and Bu2 < X since v > u. We conclude that

R(A, B;�) ⊆
(
0,

√
X
B

)
×

(
0,

√
X
A

)
, (4.4)

with X as in (4.3).
For any l ∈ ℕ, k = (k1, k2, k3) ∈ ℕ3 and � = (�1, �2, �3) ∈ ℕ3, we will need

to work with the integer sublattice

(k,�,l) = {(u, v) ∈ ℤ2 ∶ [k1�1,l] ∣ u, [k2�2,l] ∣ v, k3�3 ∣ u − v}, (4.5)

where [a, b] denotes the least common multiple of a, b ∈ ℕ. In view of the
fact that each (A, B, C) ∈ AJ has pairwise coprime coordinates, it is clear that
for distinct choices of i, j ∈ {1, 2, 3}, we have gcd(ki�i, kj�j) = 1, whenever
k1�1 ∣ A, k2�2 ∣ B and k3�3 ∣ C. We will make frequent use of this observation
in the remainder of this paper. Note that (k,�,l) has rank 2 and determinant

det (k,�,l) =
k1k2k3�1�2�3l2

gcd(k1k2k3�1�2�3,l)
, (4.6)

a calculation that is implicit in the proof of Lemma 4.2 below.
Ultimately we will be led to estimate asymptotically the number of lattice

points that are constrained to lie in a suitable planar region. A useful compan-
ion in this endeavour will be the upper bound

#(ℤ2
prim ∩ ∩R) ⩽ 4

(measR
det

+ 1
)
, (4.7)

which is due to Heath-Brown [9, Lemma 2] and valid for any rank 2 lattice
⊆ ℤ2 and any ellipse R ⊂ ℝ2.

Bringing together Lemma 2.5, Lemma 3.3 and (3.1), we obtain

L(P) =
∑

(A,B,C)∈AJ

∑

�1∣A

∑

�2∣B

∑

�3∣C
L1(P) + O

(
P(logP)

3
2
)
,

where L1(P) denotes the number of (u, v) ∈ ℤ2
prim ∩R(A, B;�), in the notation

of (4.2) and (4.3), for which

⎧

⎨
⎩

�1 ∣ u, �2 ∣ v, �3 ∣ u − v,
gcd( u

�1
, A
�1
) = gcd( v

�2
, B
�2
) = gcd(u−v

�3
, A+B

�3
) = 1.

ApplyingMöbius inversion to remove the latter coprimality conditions, we eas-
ily arrive at the expression

L(P) =
∑

(A,B,C)∈AJ

∑

k1�1∣A

∑

k2�2∣B

∑

k3�3∣C
�(k)L2(P) + O

(
P(logP)

3
2
)
,

where �(k) = �(k1)�(k2)�(k3) and

L2(P) = #
(
ℤ2
prim ∩ (k,�, 1) ∩R(A, B;�)

)
. (4.8)



REVISITING THE SPLIT DEL PEZZO SURFACE OF DEGREE 5 1209

We now have three tasks remaining. Firstly, we must replace ℤ2
prim by ℤ2 in

L2(P). Secondly, we must reduce the range of summation for k. The �nal task
is more subtle and arises from the observation that the quantity to be estimated
is zero unless � is constrained to lie in a certain region. For any R > 0 and
(A, B, C) ∈ AJ , let

VC(R) = {t ∈ ℝ3
>0 ∶

C4 ⩽ t1t2t3R,
C2titj ⩽ tkR for {i, j, k} = {1, 2, 3} } . (4.9)

We have the following result.

Lemma 4.1. Let K, L ⩾ 2 and let " > 0. Then L(P) is equal to
∑

(A,B,C)∈AJ

∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

�(k)�(k1�1,k2�2,k3�3)
(P
L

) ∑

l⩽P
7
10

�(l)L3(P)

+ O"
(
P

4
5
+"L + P(logP)3(log JKL) +

P(logP)6

K

)
,

where �t(R) = �t(R;C) is the characteristic function of (4.9) and

L3(P) = #
(
(k,�,l) ∩R(A, B;�)

)
.

Proof. We begin by recording an upper bound for L2(P) in (4.8). Combining
(4.4) with (4.3), (4.6) and (4.7), it easily follows that

L2(P)≪ 1 + X
√
AB

⋅ 1
k1k2k3�1�2�3

= 1 + P
√
ABCk1k2k3

. (4.10)

Armed with this it is now straightforward to show that the range of summation
for k can be reduced to max ki ⩽ K with negligible error. Indeed, if we let
E(P) denote the overall contribution to the main term arising from k satisfying
max ki > K, we deduce that

E(P)≪
∑

(A,B,C)∈AJ

∑

k1�1∣A

∑

k2�2∣B

∑

k3�3∣C

(
1 + P

√
ABCK

)
.

The number of available ki, �i in the sum is clearly at most �3(AB(A + B)).
Applying (2.13) with k = 3 and � = 1

2
, together with the trivial estimate �3(n) =

O"(n"), we therefore obtain

E(P)≪" P
4
5
+" + P

K
∑

A,B⩽P
2
5

�3(AB(A + B))
√
AB(A + B)

≪" P
4
5
+" +

P(logP)4

K
∑

B⩽P
2
5

'‡(B)�3(B)

B
1
2

≪" P
4
5
+" +

P(logP)6

K ,

by a simple convolution argument.
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Next we deduce from (4.1) and (4.4) that any (u, v) under consideration in
L2(P) is contained in the region

1 ⩽ u ⩽
√

X
B , 1 ⩽ v ⩽

√
X
A
, v − u ⩽

√
CX
AB

, (4.11)

with X given in (4.3). In fact, we have a better lower bound for v available
through the fact that max{C, �2�3} ⩽ v in (4.2). This leads to the inequalities
AC3 ⩽ �1�2�3P and AC�2�3 ⩽ �1P. On recalling the de�nition of AJ from
Lemma 2.5, these imply that

C4 ⩽ �1�2�3PJ, C2�2�3 ⩽ �1PJ.

Next we deduce from the the inequalityC�1max{�2, �3} ⩽ Av+Bu in (4.2) that

max{C�1�2, C�1�3} ⩽
√
2
√
X(

√
A +

√
B)≪

√
�1�2�3P,

whence

C2�1�2 ⩽ �3PJ, C2�1�3 ⩽ �2PJ.

Using the fact that max ki ⩽ K, our argument so far shows that L(P) can be
approximated by

∑

(A,B,C)∈AJ

∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

�(k)�(k1�1,k2�2,k3�3)(PJK
2)L2(P),

with an error of O
(
P(logP)

3
2 + PK−1(logB)6

)
, where �t(R) is the characteristic

function of (4.9).
We would now like to show that this estimate is valid with PL−1 in place

of PJK2, with an acceptable error. To do so, it su�ces to estimate the overall
contribution to the main term from values of � for which

(k1�1, k2�2, k3�3) ∈ VC(PJK2) ⧵ VC(PL−1),

in the notation of (4.9). This forces � to satisfy one of four further inequali-
ties. Let us show how to handle the contribution E′(P), say, corresponding to �
satisfying

C4

k1k2k3PJK2 ⩽ �1�2�3 <
C4L

k1k2k3P
, (4.12)

the remaining cases being handled in an identical manner. Applying (4.10), we
see as before that

E′(P)≪" P
4
5
+" +

∑

(A,B,C)∈AJ

∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

(4.12) holds

P
√
ABCk1k2k3

.
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Suppose without loss of generality that B ⩾ A in the outer summation. Then
E′(P) is

≪" P
4
5
+" + P

∑

max ki⩽K

1
k1k2k3

∑

J−1B⩽A⩽B⩽P
2
5

gcd(A,B)=1

1

A
1
2B

3
2

∑

k1�1∣A

∑

k2�2∣B

∑

k3�3∣A+B
(4.12) holds

1.

We write E′k(P) for the inner summation over A, B and �.
To estimate E′k(P), we break the sum over A, B into dyadic intervals and in-

terchange the order of summation with �. This shows that E′k(P) is

⩽
∑

A0⩽B0⩽P
2
5

A0≫J−1B0

1

A
1
2
0B

3
2
0

∑

�
#
{
(A, B) ∈ ℤ2

prim ∩ (k,�, 1) ∶ A0 < A ⩽ 2A0
B0 < B ⩽ 2B0

}

in the notation of (4.5), where the sum over � ∈ ℕ3 is restricted by the inequal-
ities

�1 ⩽ 2A0, �2 ⩽ 2B0, �3 ⩽ 4B0,
B40

k1k2k3PJK2 ≪ �1�2�3 ≪
B40L

k1k2k3P
.

A repeat application of (4.6) and (4.7) now shows that E′k(P) is

≪
∑

A0⩽B0⩽P
2
5

A0≫J−1B0

1

A
1
2
0B

3
2
0

∑

�

( A0B0
k1k2k3�1�2�3

+ 1
)

≪
( log JKL
k1k2k3

∑

A0⩽B0⩽P
2
5

A
1
2
0

B
1
2
0

+ L
Pk1k2k3

∑

A0⩽B0⩽P
2
5

A0≫J−1B0

B
5
2
0

A
1
2
0

) ∑

�1,�2⩽P
2
5

1
�1�2

≪
(logP)3(log JKL)

k1k2k3
+
J
1
2L(logP)2

P
1
5k1k2k3

.

Inserting this into the above gives

E′(P)≪" P
4
5
+"L + P(logP)3(log JKL),

thereby concluding the proof that

L(P) =
∑

(A,B,C)∈AJ

∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

�(k)�(k1�1,k2�2,k3�3)
(P
L

)
L2(P)

+ O"
(
P

4
5
+"L + P(logP)3(log JKL) +

P(logP)6

K

)
.

In order to complete the proof of the lemma, it remains to replace ℤ2
prim by

ℤ2 in the de�nition (4.8) of L2(P). But this follows from a direct application
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of Möbius inversion and the deduction from (4.4) that L2(P) = 0 unless l ⩽√
X
A
⩽ P

7
10 for any l dividing (u, v) ∈ (k,�, 1) ∩R(A, B;�). �

In our work, we will take

J = K = (logP)5, L = (logP)100.

With this choice, the error term in Lemma 4.1 is satisfactory from the point
of view of our main theorem. Our task is now to estimate L3(P), which is the
object of the following result.

Lemma 4.2. We have

L3(P) =
meas(R(A, B;�))
det (k,�,l)

+ O (
gcd(l, �1�2�3)

√
�1�2�3PJ

lC
F) ,

where det (k,�,l) is given by (4.6) and

F =
max{�1, �2, �3}

�1�2�3
+ 1
max{�1, �2, �3}

.

Proof. Let = (k,�,l) ⊆ ℤ2 be the lattice de�ned in (4.5) and write R =
R(A, B;�) for the region (4.2). For any (u, v) ∈ , we have D1 ∣ u and D2 ∣ v and
D3 ∣ u − v, with

D = ([k1�1,l], [k2�2,l], [k3�3,l]).
The condition that (u, v) ∈ R implies that (4.11) holds withX as in (4.3). More-
over, it is easily seen that gcd(D1, D2, D3) = l.

We make the change of variables u = D1� and v = D2�. Then we are inter-
ested in counting the number of vectors (�, �) ∈ ℕ2 for which

D′
1� − D′

2� ≡ 0 (mod D′
3)

and (D1�, D2�) ∈ R, where D′
i = l−1Di. Note that gcd(D′

i , D
′
j) = 1 for i ≠ j.

We will estimate this quantity in two ways: �rst by �xing � and estimating the
number of available �, and then by arguing in the reverse direction.

Let us �x a choice of � and estimate the number N� of available �. It easily
follows that

N� =
V�
D′
3
+ O(1),

where V� = meas
{
� ∈ ℝ ∶ (D1�, D2�) ∈ R

}
.We now wish to sum this over

the relevant �, which by (4.11) gives

#( ∩R) =
∑

�
(
V�
D′
3
+ O(1)) =

1
D′
3

∑

�
V� + O (

√
X

D1
√
B
) .

Here the summation is over all � ∈ ℕ for which (D1�, D2�) ∈ R, for some

� ∈ ℝ. On noting that V� ⩽
√
X

D2
√
A
for any � ∈ ℝ, as follows from (4.4), we



REVISITING THE SPLIT DEL PEZZO SURFACE OF DEGREE 5 1213

deduce from an application of partial summation that the �-summation is

meas
{
(�, �) ∈ ℝ2 ∶ (D1�, D2�) ∈ R

}
+ O (

√
X

D2
√
A

) .

Putting everything together, we therefore conclude that

#( ∩R) =
meas(R)
D1D2D′

3
+ O

⎛
⎜
⎝

√
X

D2D′
3

√
A

⎞
⎟
⎠
+ O (

√
X

D1
√
B
) .

If we begin instead by �xing � and estimating the number of available �, we are
led to the alternative estimate

#( ∩R) =
meas(R)
D1D2D′

3
+ O

⎛
⎜
⎝

√
X

D1D′
3

√
B

⎞
⎟
⎠
+ O (

√
X

D2
√
A

) .

So far, we made the change of variables (u, v) = (D1�, D2�) and considered
the congruence D′

1� − D′
2� ≡ 0 (modD′

3). We are obviously free to make the
change of variables (u, u−v) = (D1�, D3�) instead and to consider the resulting

congruence D′
1� − D′

3� ≡ 0 (modD′
2), where now |D3�| ⩽

√
CX
AB

by (4.11).
One may now repeat the above argument more or less verbatim. Carrying this
out and combining the result with our previous estimates, we are led to the
expression

#( ∩R) =
meas(R)
D1D2D′

3
+ O(

√
XE),

where

E = max
{ 1

D2D′
3

√
A
, 1

D1D′
3

√
B
, 1

D1D′
2

√
B

}

+min
{ 1

D2
√
A
, 1

D1
√
B
,

√
C

D3
√
AB

}
.

It remains to insert the de�nitions of Di, D′
i that were recorded above. This

reveals that the main term is
meas(R)
D1D2D′

3
=

meas(R)l
[k1�1,l][k2�2,l][k3�3,l]

=
meas(R) gcd(l, k1k2k3�1�2�3)

k1k2k3�1�2�3l2

=
meas(R)
det

,

by (4.6), as claimed in the lemma. Moreover, the error term is O(
√
XE), with

E ⩽
gcd(l, �1�2�3)

l
√
AB

(

√
A

�1�3
+

√
B

�2�3
+

√
B

�1�2
+min {

√
A
�1

,

√
B
�2

,

√
C
�3

}) .

Here we have dropped the dependence on k1, k2, k3, it not being useful in the
�nal analysis to retain their in�uence on E. Finally, we take max{A, B} ⩽ C
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and min{A, B} ⩾ J−1C, as guaranteed by the de�nition of AJ . This therefore
concludes the proof of the lemma. �

The remainder of this section will be concerned with showing that once in-
serted into the main term in Lemma 4.1, the error term in Lemma 4.2 makes a
satisfactory overall contribution. Let us write E(P) for this contribution. Note
that

∑

l⩽x
|�(l)|

gcd(n,l)
l

≪ �(n) logx,

for any x ⩾ 2. Carrying out the summations over l and k we readily arrive at
the estimate

≪
√
PJK3 logP

∑

(A,B,C)∈AJ

∑

�1∣A

∑

�2∣B

∑

�3∣C
��

(PK3

L

)�(�1�2�3)
√
�1�2�3

C
F

for E(P), where �t(R) is the characteristic function of (4.9) and F is as in the

statement of Lemma 4.2. Note that
√
JK3 logP ⩽ K4 and PK3L−1 ⩽ PL−

2
3 . We

open up the divisibility conditions by writing

A = �1�1, B = �2�2, C = �3�3.

It follows that

E(P)≪
√
PK4

∑

(�,�)∈C

�(�1�2�3)
√
�1�2

√
�3�3

F,

where reference to (4.9) yields

C =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(�,�) ∈ ℕ3 ∶

gcd(�i�i, �j�j) = 1 for i ≠ j,
min{�1�1, �2�2} ⩾ J−1�3�3,

�1�1 + �2�2 = �3�3 ⩽ P
2
5 ,

�33�
4
3 ⩽ �1�2PL

− 2
3 , �1�2�3�23 ⩽ PL−

2
3 ,

�33�
2
3�1 ⩽ �2PL

− 2
3 , �33�

2
3�2 ⩽ �1PL

− 2
3

⎫
⎪
⎪

⎬
⎪
⎪
⎭

. (4.13)

Moreover, F is composed of two terms and can be written F = F1+F2, say. We
let Ei(P) denote the contribution to E(P) from Fi for i = 1, 2.

For given L = (L1, L2, L3),M = (M1,M2,M3) ∈ ℝ3
⩾2, we will need to under-

stand the behaviour of the sum

S(L,M) =
∑

�,�
�(�1�2�3),

where the sum is over all �,� ∈ ℕ3 such that �1�1 + �2�2 = �3�3 and

Li < �i ⩽ 2Li, Mi < �i ⩽ 2Mi, gcd(�i�i, �j�j) = 1, (4.14)

for 1 ⩽ i < j ⩽ 3.

Lemma 4.3. We have S(L,M)≪ (L1L2L3M1M2M3)
2
3 (logL1L2L3)3.
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Proof. Taking �(�1�2�3) ⩽ �(�1)�(�2)�(�3) and opening up the divisor func-
tion, it easy to see that

S(L,M)≪
∑

di⩽
√
2Li

∑

�′,�

1 =
∑

di⩽
√
2Li

Sd(L,M),

say, where Sd(L,M) is the number of �′,� ∈ ℕ3 such that
Li
di
< �′i ⩽

2Li
di
, Mi < �i ⩽ 2Mi, gcd(di�′i�i, dj�

′
j�j) = 1

and d1�′1�1 + d2�′2�2 = d3�′3�3.
Now for �xed d,�′, the latter equation forces � to lie on an integer sublattice

of rank 2. It follows from a result due to Heath-Brown [9, Lemma 3] that the
number of available � is

≪
M1M2M3

max di�′iMi
+ 1≪

(M1M2M3)
2
3

(L1L2L3)
1
3

+ 1,

on takingmax{a, b, c} ⩾ (abc)
1
3 in the denominator. Summing over the �′ gives

Sd(L,M)≪
(L1L2L3M1M2M3)

2
3

d1d2d3
+
L1L2L3
d1d2d3

.

Repeating the process, but reversing the order of summation of � and �′, one
obtains

Sd(L,M)≪
(L1L2L3M1M2M3)

2
3

d1d2d3
+M1M2M3,

as a companion estimate.
Combining our two estimates, we may now conclude that

S(L,M)≪ (L1L2L3M1M2M3)
2
3 (logL1L2L3)3

+
∑

di⩽
√
2Li

min
{L1L2L3
d1d2d3

,M1M2M3

}
.

Takingmin{a, b} ⩽ a
1
3b

2
3 in the second term, we thereby complete the proof of

Lemma 4.3. �

We are now ready to estimate Ei(P) for i = 1, 2. To do so, we will �x dyadic
intervals for the �,�, writing Ei(P;L,M) for the overall contribution to Ei(P)

for �,� such that (4.14) holds. Writing P0 = PL−
2
3 , it is clear from (4.13) that

Ei(P;L,M) = 0 unless

L33M
4
3 ≪ L1L2P0, L1L2L3M2

3 ≪ P0,
L33M

2
3L1 ≪ L2P0, L33M

2
3L2 ≪ L1P0,

max{L1M1, L2M2}≪ L3M3, Li,Mi ≫ 1.
(4.15)
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It will be convenient to write L̃ = L1L2L3 and M̃ = M1M2M3 in what follows.
Beginning with the contribution from F2, we deduce that

E2(P;L,M)≪
√
PK4

∑

�,�

�(�1�2�3)
√
L1L2

√
L3M3max{L1, L2, L3}

.

Now it follows from the �fth inequality in (4.15) that L3M3 ⩾ L̃
1
3 M̃

1
3 . Once

combined with the fact thatmax{L1, L2, L3} ⩾
√
L1L2, we obtain

√
L1L2

√
L3M3max{L1, L2, L3}

≪ 1
√
L3M3

√
M3

≪ 1

L̃
1
6 (M1M2)

1
6M

2
3
3

.

It now follows from Lemma 4.3 that

E2(P;L,M)≪

√
PK4(logP)3L̃

2
3 M̃

2
3

L̃
1
6 (M1M2)

1
6M

2
3
3

=

√
PK4(logP)3L̃

1
2 M̃

1
2

M
1
2
3

.

Themiddle pair of inequalities in (4.15) combine to give L̃M̃ ≪ L33M
3
3 ≪M3P0,

whence

E2(P;L,M)≪
√
PK4(logP)3P

1
2
0 = PK4(logP)3L−

1
3 .

On summing over theO((logP)6) possible dyadic intervals for�,�, we conclude

that E2(P)≪ PK6L−
1
3 ≪ P, which is satisfactory for Theorem 1.1

Turning to the estimation of E1(P), which constitutes the contribution from
F1, it will again be fruitful to analyse the contribution E1(P;L,M) from �,�
restricted by (4.14). Furthermore, we may continue to assume that L,M are
constrained by (4.15). Applying Lemma 4.3, we deduce that

E1(P;L,M)≪
√
PK4

∑

�,�

�(�1�2�3)max{L1, L2, L3}

L3M3L̃
1
2

≪
√
PK4(logP)3

L̃
1
6 M̃

2
3 max{L1, L2, L3}
L3M3

.

Now it follows from (4.15) that

L̃
1
6 M̃

2
3 max{L1, L2, L3}
L3M3

≪ L3M3max{L1, L2, L3}L̃
− 1
2 ≪

√
P0.

Summing over the O((logP)6) possible dyadic intervals for �,�, we therefore

conclude that E1(P) ≪ PK6L−
1
3 ≪ P. This completes our proof that the error

term in Lemma 4.2 makes the overall contribution E(P) = O(P) to the main
term in Lemma 4.1, which is satisfactory for Theorem 1.1.
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5. A divisor problem for binary cubic forms
In this section, we complete the proof of Theorem 1.1, by studying the con-

tribution from the main term in Lemma 4.2 in Lemma 4.1. Recalling the def-
inition (4.2) of the region R(A, B;�), with X, �, � given by (4.3), the following

result follows from making the change of variables u =
√

X
B
s and v =

√
X
A
t.

Lemma 5.1. We have

measR(A, B;�) =
�1�2�3P√
ABC

measS√
B
A

(�′, �′),

where

�′ = max
{ AC3

�1�2�3P
,
�2�3AC
�1P

} 1
2 , �′ = max

{C3�1�2
�3AP

,
C3�1�3
�2AP

} 1
2 ,

and for any � > 0 we set

S�(�′, �′) =
⎧

⎨
⎩

(s, t) ∈ (0, 1)2 ∶
s < �t < s(1 +

√
1 + �2),

t(t + �s) ⩽ 1,
�′ ⩽ t and �′ ⩽ t + �s

⎫

⎬
⎭

.

We now insert the main term described in Lemma 4.2 into Lemma 4.1. Let-
ting Σ1 denote this contribution, the remainder of this paper will be devoted to
proving that

Σ1 = c1P(logP)4 + O
(
P(logP)3(log logP)3

)
, (5.1)

where

c1 =
�2

8640
∏

p

(
1 − 1

p

)5(
1 + 5

p + 1
p2

)
.

Inserting this asymptotic formula for Σ1 into Lemmas 2.2 and 2.3, we obtain

NU,H(P) ⩽ cUP(logP)4 + O
(
P(logP)3(log logP)3

)
,

with cU = 60⋅2⋅c1, as in (1.2). As remarked after Lemma 2.2, the corresponding
lower bound is achieved with trivial changes to the argument, which thereby
concludes the proof of Theorem 1.1, subject to the veri�cation of (5.1).

To begin with, we carry out the summation over l in Lemma 4.1. For this,
we note that

∑

l⩽x
�(l)

gcd(n,l)
l2

= 1
�(2)'†(n)

+ O
(�(n)
x

)
, (5.2)
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for any n ∈ ℕ and x ⩾ 1, where '†(n) =
∏

p∣n(1 +
1
p
). Thus it follows from

(4.6) and Lemma 5.1 that for �xed A, B, C,k,� we have

∑

l⩽P
7
10

�(l)
meas(R(A, B;�))
det (k,�,l)

= P

�(2)
√
ABC

⋅
measS√

B
A

(�′, �′)

k1k2k3'†(k1k2k3�1�2�3)

+ O(1).

The overall contribution from the error term here makes the satisfactory con-

tribution O"(P
4
5
+") to (5.1), by the trivial estimate for the divisor function. It

follows that
Σ1 =

P
�(2)

∑

(A,B,C)∈AJ

1
√
ABC

Σ2 + O"(P
4
5
+"), (5.3)

where

Σ2 =
∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

�(k)�(k1�1,k2�2,k3�3)
(P
L

)
measS√

B
A

(�′, �′)

k1k2k3'†(k1k2k3�1�2�3)
.

We proceed by simplifying the dependence on S√
B
A

(�′, �′), as in the following

result.

Lemma 5.2. We have

Σ2 = f
(√B

A

) ∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

�(k)�(k1�1,k2�2,k3�3)
(P
L

)

k1k2k3'†(k1k2k3�1�2�3)

+ O (
�(A)�(B)�(C)(logK)3

logP
) ,

where, for any � > 0 we set

f(�) =
log(1 + �2)

4�
.

Proof. We seek to remove the conditions �′ ⩽ t and �′ ⩽ t +
√

B
A
s from

S√
B
A

(�′, �′). First, we show that the volume of this region can be taken over

(s, t) ∈ ( 1
logP

, 1)2 with an acceptable error. For this we note that the contribu-

tion to Σ2 from s ∈ (0, 1
logP

) is

≪ 1
logP

∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

1
k1k2k3

≪
�(A)�(B)�(C)(logK)3

logP
,
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But, we may now note that for (s, t) ∈ ( 1
logP

, 1)2 we automatically have �′ ⩽ t

and �′ ⩽ t+
√

B
A
s for any k,�, A, B, C featuring in Σ2, since they are subsumed

by (4.9). Indeed, we have

( AC3

�1�2�3P

) 1
2 ⩽ K

3
2

( C4

k1�1k2�2k3�3P

) 1
2 ⩽ K

3
2

L
1
2

⩽ t,

and the remaining inequalities are checked similarly.
Repeating our argument, we restore the range of integration to (s, t) ∈ (0, 1)2,

with an acceptable error. This leads to the statement of the lemma with

f(�) = meas{(s, t) ∈ (0, 1)2 ∶ s < �t < s(1 +
√
1 + �2), t(t + �s) ⩽ 1}.

It remains to prove that f(�) = log(1+�2)
4�

. To see this, we note that for �xed t,
the variable s is restricted to lie in an interval I, say, with

meas(I) = max
{
0,min

{1 − t2

�t
, �t

}
− �t

1 +
√
1 + �2

}

=

⎧
⎪

⎨
⎪
⎩

( �
√
1+�2

1+
√
1+�2

)t, if 0 < t < (1 + �2)−
1
2 ,

1
�t
− ( 1

�
+ �

1+
√
1+�2

)t, if (1 + �2)−
1
2 ⩽ t < (1 + �2)−

1
4 ,

0, otherwise.

A tedious but routine calculation now completes the proof. �

Returning to (5.3), it now follows from Lemma 5.2 that

Σ1 =
P
�(2)

∑

(A,B,C)∈AJ

f(
√

B
A
)

√
ABC

∑

k1�1∣A
k1⩽K

∑

k2�2∣B
k2⩽K

∑

k3�3∣C
k3⩽K

�(k)�(k1�1,k2�2,k3�3)
(P
L

)

k1k2k3'†(k1k2k3�1�2�3)

+ O
(
P(logP)3(log logP)3

)
,

since the error term makes the overall contribution

≪
P(logK)3

logP
∑

A,B⩽P
2
5

�(A)�(B)�(A + B)
√
AB(A + B)

≪ P(logP)3(log logP)3,

by an application of (2.13) with k = 2 and � = 1
2
. Next, we can extend the

summation over k to in�nity with error≪ K−1P(logP)6 ≪ P logP.
For any arithmetic function ℎ and any N ∈ ℕ, we have

∑

k�∣N

�(k)ℎ(k�)
k

=
∑

n∣N
ℎ(n)

∑

k∣n

�(k)
k

=
∑

n∣N
'∗(n)ℎ(n),
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where '∗(n) =
∏

p∣n(1 −
1
p
). It follows that we may write

Σ1 =
P
�(2)

∑

(A,B,C)∈AJ

f(
√

B
A
)

√
ABC

∑

n1∣A

∑

n2∣B

∑

n3∣C
�n

(P
L

) 3∏

i=1

'∗(ni)
'†(ni)

+ O
(
(logP)3(log logP)3

)
.

Now the only possible choice of (A, B, C) ∈ AJ withA = B is the vector (1, 1, 2).
This term contributesO(P) to Σ1. For the remaining contribution, we break the
summation over (A, B, C) ∈ AJ into those vectors for which B > A and those
for which B < A. This allows us to take

Σ1 =
P
�(2)

Σ3 + O
(
P(logP)3(log logP)3

)
,

with

Σ3 =
∑

(A,B,C)∈AJ
B>A

F( B
A
)

C2
∑

n∈ℕ3
n1∣A, n2∣B, n3∣C

�n
(P
L

) 3∏

i=1

'∗(ni)
'†(ni)

,

and where

F(u) =
(
f(

√
u) + f

( 1
√
u

))(√
u + 1

√
u

)

= u + 1
4u

(
log(u + 1) + u log(u−1 + 1)

)
,

(5.4)

for any u > 1. In particular it is clear that F(u)≪ logu.
In terms of Dirichlet convolution, we clearly have '∗(n)

'†(n)
= (1 ∗ ℎ)(n), with ℎ

given multiplicatively by

ℎ(pe) =

⎧
⎪

⎨
⎪
⎩

1, if e = 0,
−2
p+1

, if e = 1,

0, otherwise.

(5.5)

For any t ⩾ 1, let

Bt = {x ∈ ℝ2
>0 ∶ tx1 < x2 < x1 + x2 ⩽ 1, x1 ⩾ J−1(x1 + x2)}

and de�ne the linear forms

L1(x) = x1, L2(x) = x2, L3(x) = x1 + x2.

Adopting the notationXR = {Xx ∶ x ∈ R} for a regionR ⊂ ℝ2, and reserving
i for a generic index from the set {1, 2, 3}, we may now write

Σ1 =
P
�(2)

∑

l∈ℕ3
gcd(mi ,mj)=1

ℎ(m1)ℎ(m2)ℎ(m3)Σ3(l) + O
(
P(logP)3(log logP)3

)
, (5.6)
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where

Σ3(l) =
∑

x∈ℤ2∩P
2
5 B1

gcd(x1,x2)=1
mi ∣Li(x)

F(x2
x1
)

(x1 + x2)2
∑

d∈ℕ3
di ∣m−1

i Li(x)

�(d1m1,d2m2,d3m3)

(P
L

)
.

Before evaluating Σ3(l) asymptotically, it will be useful to have an upper
bound which is uniform in all of the relevant parameters. Recall the de�ni-
tion of '† from (5.2). The main result in [2] implies that for X ⩾ 2 there exists
an absolute constant c > 0 such that

∑

|x1|,|x2|⩽X
mi ∣Li(x)

�
(L1(x)
m1

)
�
(L2(x)
m2

)
�
(L3(x)
m3

)
≪" '†(Q)c

(X2(logX)3

Q
+ X1+"

)
, (5.7)

for any " > 0, where Q = m1m2m3. Here we have used the fact that the condi-
tions mi ∣ Li(x) de�ne a lattice = (1, l, 1), in the notation of (4.5), which (4.6)
con�rms has determinant Q. We now observe that

∑

maxmi>T

|ℎ(m1)ℎ(m2)ℎ(m3)|
(m1m2m3)�

≪" T−�+"

and

∑

maxmi⩽T
|ℎ(m1)ℎ(m2)ℎ(m3)| =

⎛
⎜
⎝

∑

maxm⩽T
|ℎ(m)|

⎞
⎟
⎠

3

≪ (logT)6,

for any �, T > 0. Furthermore, we have F(x2
x1
) ≪ log(x2

x1
) ≪ log logP in our

expression for Σ3(l). With these estimates to hand, we deduce from (5.7) that
the overall contribution to Σ1 frommaxmi > logP is

≪ P log logP
∑

logP<maxmi

|ℎ(m1)ℎ(m2)ℎ(m3)|

×
∑

|x1|,|x2|⩽P
2
5

mi ∣Li(x)

�(L1(x)
m1

)�(L2(x)
m2

)�(L3(x)
m3

)

(x1 + x2)2

≪ P(logP)3(log logP).

This therefore makes an acceptable contribution to the error in (5.6).
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Let P0 = PL−1, t ⩾ 1, X ⩾ 2 and let l ∈ ℕ3 such that gcd(mi, mj) = 1. Our
asymptotic formula for Σ3(l) hinges upon an investigation of the sums

St(X; l) =
∑

x∈ℤ2∩XBt
gcd(x1,x2)=1
mi ∣Li(x)

∑

d∈ℕ3
di ∣m−1

i Li(x)

�(d1m1,d2m2,d3m3)(P0)

=
∑

x∈(m)∩XBt
gcd(x1,x2)=1

#
⎧

⎨
⎩

d ∈ ℕ3 ∶
di ∣ m−1

i Li(x),
(� + �, � ) ∈ V,
gcd(dimi, djmj) = 1

⎫

⎬
⎭

,

where (m) = {x ∈ ℤ2 ∶ mi ∣ Li(x)} and

�i =
logdi
logP0

, �i =
logmi

logP0
, �i =

logLi(x)
logP0

,

and �nally,

V =
⎧

⎨
⎩

v ∈ [0, 1]6 ∶
4v4 ⩽ 1 + v1 + v2 + v3,
2v4 + vi + vj ⩽ 1 + vk for {i, j, k} = {1, 2, 3},
max{v1, v2, v3} ⩽ v4

⎫

⎬
⎭

.

Note that V = V∗ × [0, 1]2 for an appropriate subset V∗ ⊆ [0, 1]4. Estimating
this sum is the focus of the following result.

Lemma 5.3. We have

St(X; l) = g(m)(logP0)3 ∫
x∈XBt

∫
{�∈ℝ3∶(�,� )∈V}

d�dx + O"(Em(X, P)),

where Em(X, P) = (m1m2m3)−1X2(logP)2 + X
7
4
+" and

g(m) = 1
m1m2m3

∏

p∣m1m2m3

(
1 + 3

p − 1
p2

)−1∏

p

(
1 − 1

p

)3(
1 + 3

p − 1
p2

)
.

Proof. To estimate St(X; l) we appeal to work of Browning [5], which is con-
cerned with sums of the shape

∑
�(L1(x))�(L2(x))�(L3(x)),

for arbitrary non-proportional linear forms Li ∈ ℤ[x1, x2] and x = (x1, x2)
running over integers restricted to a suitable expanding region.

Let us write S(X) = St(X; l) for short. Removing the coprimality condition
on x using Möbius inversion, we obtain

S(X) =
∞∑

l=1
�(l)Sl(X),

where Sl(X) is de�ned as for S(X) but with gcd(x1, x2) = 1 replaced by l ∣ x.
We have Sl(X) ≪" l−2X2+" for any " > 0, using the trivial estimate for the
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divisor function. Hence, we can restrict to l ⩽ X
1
4 in the above sum with error

O"(X
7
4
+").

In our analysis of Sl(X) for �xed l we will need to arrange things so that
we are only considering small divisors in the summand. It is easy to see that
the overall contribution to the sum from d such that d2j = m−1

j Lj(x) for some
j ∈ {1, 2, 3} is

≪" X"
∑

dj⩽
√
X

#
{
x ∈ ℤ2 ∩ XBt ∶ l ∣ x, Lj(x) = mjd2j

}
≪" l−1X

3
2
+".

It follows that we may write

S(X) =
∑

l⩽X
1
4

∑

�∈{±1}3
S(�)l (X) + O"(X

7
4
+"), (5.8)

where S(�)l (X) is the contribution from �idi ⩽ �i
√
m−1
i Li(x).

We indicate how to estimate S(1,1,−1)l (X) = S+,+,−l (X), say, which is typical.

Puttingm−1
3 L3(x) = d3f3, we see that f3 ⩽

√
m−1
3 L3(x) and

�3 =
log(m−1

3 f−13 L3(x))
logP0

= �3 −
logf3
logP0

− �3.

On relabelling the variables, we may therefore write S+,+,−l (X) as a sum

∑

x∈(m)∩XBt
l∣x

#
⎧

⎨
⎩

d ∈ ℕ3 ∶
di ∣ m−1

i Li(x), di ⩽
√
m−1
i Li(x),

(� , � ) ∈ V+,+,−(m),
gcd(midi, mjdj) = 1

⎫

⎬
⎭

,

where

V+,+,−(m) = {(� , � ) ∈ ℝ6 ∶ (�1 + �1, �2 + �2, �3 − �3, � ) ∈ V}.

Let Di = [midi,l] and D′
i = l

−1Di. Since gcd(midi, mjdj) = 1 each pair D′
i , D

′
j

is coprime. Interchanging the order of summation, we obtain

S+,+,−l (X) =
∑

d∈ℕ3
gcd(midi ,mjdj)=1

#
{
x ∈ (D) ∩ XBt ∶ � ∈ V+,+,−(m;d)

}
,

where � ∈ V+,+,−(m;d) if and only if (� , � ) ∈ V+,+,−(m) and 2�i +�i ⩽ �i. The
underlying region that appears here is a compact subset ofℝ2 whose boundary
is a piecewise continuously di�erentiable closed curvewith absolutely bounded
length. Making the change of variables x = ly and applying [5, Lemma 1], we
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deduce that

S+,+,−l (X) =
∑

d∈ℕ3
gcd(midi ,mjdj)=1

meas{x ∈ XBt ∶ � ∈ V+,+,−(m;d)}%(D′)
(lD′

1D
′
2D

′
3)2

+ O"
(X

7
4
+"

l
+ X

3
2
+").

The error termmakes the overall contributionO"(X
7
4
+") once summed overl ⩽

X
1
4 . Moreover, it is easy to see that

%(D′)
(lD′

1D
′
2D

′
3)2

= 1
l2D′

1D
′
2D

′
3
=
gcd(l, m1m2m3d1d2d2)

l2
⋅ 1
m1m2m3d1d2d2

,

by [5, Lemma 3].
Bringing in the summation over l, we set

S+,+,−(X) =
∑

l⩽X
1
4

�(l)S+,+,−l (X).

Let

cm = 1
�(2)m1m2m3'†(m1m2m3)

,

in the notation of (5.2). It therefore follows from this that

S+,+,−(X) = cm
∑

d∈ℕ3

meas{x ∈ XBt ∶ � ∈ V+,+,−(m;d)}fm(d)
d1d2d3

+ O"(X
7
4
+")

= cm ∫
x∈XBt

∑

d∈ℕ3
2�i+�i⩽�i

�V(�1 + �1, �2 + �2, �3 − �3, � )fm(d)
d1d2d3

dx

+ O"(X
7
4
+"),

where �V is the characteristic function of the set V and

fm(d) =
⎧

⎨
⎩

∏3
i=1

'†(gcd(di ,mi))
'†(di)

, if gcd(midi, mjdj) = 1,

0, otherwise.

We now write fm = ℎm ∗ 1 as a convolution, for a multiplicative arithmetic
function ℎm. The condition gcd(mi, mj) = 1 is automatic. Let us calculate the
function fm at prime powers. Writing mi = p�i and di = pi , and assuming
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without loss of generality that �1 ⩾ 0 and �2 = �3 = 0, we see that

fp�1 ,p�2 ,p�3 (p1 , p2 , p3) =

⎧
⎪

⎨
⎪
⎩

1, if 1 = 2 = 3 = 0,
1, if �1, 1 ⩾ 1 and 2 = 3 = 0,
(1 + 1

p
)−1, if 1 ⩾ 1 and �1 = 2 = 3 = 0,

0, otherwise.

Let us write ℎ(p�1 , p�2 , p�3) = ℎp�1 ,p�2 ,p�3 (p�1 , p�2 , p�3) for short. Continuing
under the hypothesis that �1 ⩾ 0 and �2 = �3 = 0, we �nd that

ℎ(1, p, 1) = ℎ(1, 1, p) =
⎧

⎨
⎩

−1
p+1

, if �1 = 0,

−1, if �1 ⩾ 1,
ℎ(p, 1, 1) =

⎧

⎨
⎩

−1
p+1

, if �1 = 0,

0, if �1 ⩾ 1,

ℎ(p, p, 1) = ℎ(p, 1, p) =
⎧

⎨
⎩

1−p
p+1

, if �1 = 0,

0, if �1 ⩾ 1,
ℎ(1, p, p) =

⎧

⎨
⎩

1−p
p+1

, if �1 = 0,

1, if �1 ⩾ 1,

and

ℎ(1, 1, 1) = 1, ℎ(p, p, p) =
⎧

⎨
⎩

2p−1
p+1

, if �1 = 0,

0, if �1 ⩾ 1,

with ℎ(p�1 , p�2 , p�3) = 0 in all other cases.
Opening up the convolution, we obtain

S+,+,−(X) = cm
∑

k∈ℕ3

ℎm(k)
k1k2k3

∫
x∈XBt

M(X)dx + O"(X
7
4
+"),

where for �i =
log ki
logP0

we set

M(X) =
∑

d∈ℕ3
2�i+2�i+�i⩽�i

�V(�1 + �1 + �1, �2 + �2 + �2, �3 − �3 − �3, � )
d1d2d3

.

This sum depends on m,k, x in addition to X. It is now clear from repeated
applications of Euler–Maclaurin summation that M(X) can be approximated
by

∫
2 log ti
logP0

+2�i+�i⩽�i

�V(
log t1
logP0

+ �1 + �1,
log t2
logP0

+ �2 + �2, �3 −
log t3
logP0

− �3, � )

t1t2t3
dt

+ O((logP)2),

uniformly inm,k, x. Making the change of variables

�1 =
log t1
logP0

+ �1 + �1, �2 =
log t2
logP0

+ �2 + �2, �3 = �3 −
log t3
logP0

− �3,
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we obtain

M(X) = (logP0)3 ∫2�1⩽�1+�1
2�2⩽�2+�2
2�3>�3+�3

�V(�, � )d� + O((logP)2).

We now reintroduce the summation over k and the integration over x. This
gives the asymptotic formula

cm(logP0)3
∑

k∈ℕ3

ℎm(k)
k1k2k3

∫
x∈XBt

∫2�1⩽�1+�1
2�2⩽�2+�2
2�3>�3+�3

�V(�, � )d�dx + O(Em(X, P)),

for S+,+,−(X), where Em(X, P) is as in the statement of Lemma 5.3.
Our �nal task involves summing over the variousm in (5.8), assuming anal-

ogous formulae for all the sums S±,±,±(X). This shows that S(X) is

cm(logP0)3
∑

k∈ℕ3

ℎm(k)
k1k2k3

∫
x∈XBt

∫
�∈ℝ3

�V(�, � )d�dx + O(Em(X, P)).

We are now free to carry out the summation over k, �nding that
∑

k∈ℕ3

ℎm(k)
k1k2k3

=
∏

p∤m1m2m3

(
1 − 1

p

)2(
1 + 1

p

)−1(
1 + 3

p − 1
p2

)

×
∏

p∣m1m2m3

(
1 − 1

p

)2
.

Multiplying this by cm readily leads to the function g(m) de�ned in the state-
ment of the lemma. �

It is clear that x restricted to X
logP

Bt make an overall contribution

≪ (m1m2m3)−1X2 logP ≪ Em(X, P)

to the main term in Lemma 5.3’s estimate for St(X;m). Recall that V = V∗ ×
[0, 1]2 for an appropriate subset V∗ ⊆ [0, 1]4. Hence, we have that St(X;m) is

g(m)(logP0)3 ∫ x∈XBt

x1+x2>
X

logP

∫
{�∈ℝ3∶(�,�)∈V∗}

d�dx + O"(Em(X, P)),

where now � = logx1+x2
logP0

. But a simple change of variables shows that this is
equal to

g(m)X2(logP0)3meas(Bt,P) ∫
{�∈ℝ3∶(�, logX

logP0
)∈V∗}

d�

+ O(Em(X, P) log logP),



REVISITING THE SPLIT DEL PEZZO SURFACE OF DEGREE 5 1227

where Bt,P = {x ∈ Bt ∶ x1 + x2 >
1

logP
}. Now it is clear that

meas(Bt,P) = meas(Bt) + O
( 1
logP

)
= 1
2(t + 1)

+ O
( 1
logP

+ 1
J

)
.

We therefore conclude that

St(X; l) =
g(m)X2(logP0)3

2(t + 1)
∫
{�∈ℝ3∶(�, logX

logP0
)∈V∗}

d�

+ O(Em(X, P) log logP).

Note that F(u) = F(1) + ∫ u1 F
′(v)dv for any u > 1 in (5.4). Furthermore, we

may write (x1 + x2)−2 = P−
4
5 + 2 ∫ P

2
5

x1+x2
w−3dw. Hence, we deduce that

Σ3(l) = 2 ∫
P
2
5

1

(
F(1)S1(w;m) + ∫

J

1
F′(v)Sv(w;m)dv

)dw
w3 + O(E ),

where

E = P−
4
5

∑

x∈ℕ2

J−1x2<x1<x2⩽P
2
5

mi ∣Li(x)

�
(L1(x)
m1

)
�
(L2(x)
m2

)
�
(L3(x)
m3

)
F
(x2
x1

)
.

Wehave F(x2
x1
)≪ log x2

x1
≪ log logP here. Applying (5.7), we easily deduce that

E ≪"
(logP)3 log logP

m1m2m3
+ P−

2
5
+",

which makes a satisfactory overall contribution to Σ1 in (5.6).
Wenowcall uponourwork above to estimate the sumsS1(w;m) andSv(w;m)

in the integral. One �nds that F′(v) > 0 for each v > 1, whence

|F(1)| + ∫
J

1
|F′(v)|dv = F(J)≪ log logP.

The error term thus makes a satisfactory contribution to Σ1. Once substituted
into (5.6), we deduce that

Σ1 = !∞!localP(logP)3 ∫
P
2
5

1
∫
{�∈ℝ3∶(�, logw

logP0
)∈V∗}

d�dw
w

+ O
(
P(logP)3(log logP)3

)
,

on extending the summation overm to in�nity, where

!local =
1
�(2)

∑

l∈ℕ3
gcd(mi ,mj)=1

ℎ(m1)ℎ(m2)ℎ(m3)g(m)
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and !∞ = F(1)
2
+ ∫ J1

F′(v)
v+1

dv. Now it follows from (5.4) that

!∞ = ∫
∞

1

F(v)
(v + 1)2

dv + O
( log J

J

)
= �2

24 + O((logP)−5 log logP).

Moreover, on recalling the de�nition (5.5), an easy calculation reveals that

!local =
∏

p

(
1 − 1

p

)5(
1 + 5

p + 1
p2

)
.

Finally, we �nd that

∫
P
2
5

1
∫
{�∈ℝ3∶(�, logw

logP0
)∈V∗}

d�dw
w = meas

{
(�, u) ∈ V∗ ∶ u ⩽ 2

5

}
logP0

=
logP0
360 .

This completes the proof of (5.1), and so the proof of Theorem 1.1.

References
[1] de la Bretèche, Régis. Nombre de points de hauteur bornée sur les surfaces de del

Pezzo de degré 5. Duke Math. J. 113 (2002), no. 3, 421–464. MR1909606, Zbl 1054.14025,
doi: 10.1215/S0012-7094-02-11332-5. 1194, 1196, 1197

[2] de la Bretèche, Régis; Browning, Timothy D. Sums of arithmetic functions over val-
ues of binary forms. Acta Arith. 125 (2006), no. 3, 291–304. MR2276196, Zbl 1159.11035,
arXiv:math/0604119, doi: 10.4064/aa125-3-6. 1202, 1221

[3] de la Bretèche, Régis; Browning, Timothy D. Manin’s conjecture for quartic del
Pezzo surfaces with a conic �bration. Duke Math. J. 160 (2011), no. 1, 1–69. MR2838351,
Zbl 1193.14028, arXiv:0710.1560, doi: 10.5802/aif.2462. 1194

[4] Browning, Timothy D. Quantitative arithmetic of projective varieties. Progress in
Mathematics, 277. Birkhäuser Verlag, Basel, 2009. xiv+160 pp. ISBN: 978-3-0346-0128-3.
MR2559866, Zbl 1188.14001, doi: 10.1007/978-3-0346-0129-0. 1194

[5] Browning, Timothy D. The divisor problem for binary cubic forms J. Théorie Nom-
bres Bordeaux 23 (2011), no. 3, 579–602. MR2861076, Zbl 1271.11091, arXiv:1006.3476,
doi: 10.5802/jtnb.778. 1195, 1222, 1223, 1224

[6] Browning, Timothy D.; Heath–Brown, D. R. Counting rational points on hy-
persurfaces. J. Reine Angew. Math. 584 (2005), 83–115. MR2155086, Zbl 1079.11033,
arXiv:math/0404456, doi: 10.1515/crll.2005.2005.584.83. 1201

[7] Franke, Jens; Manin, Yuri; Tschinkel, Yuri. Rational points of bounded height
on Fano varieties. Invent. Math. 95 (1989), no. 2, 421–435. MR0974910, Zbl 0674.14012,
doi: doi.org/10.1007/BF01393904. 1193

[8] Greaves, George. On the divisor-sum problem for binary cubic forms. Acta Arith. 17
(1970), 1–28. MR0263761, Zbl 0198.37903, doi: 10.4064/aa-17-1-1-28. 1195

[9] Heath–Brown, D. R.Diophantine approximationwith square-free numbers.Math. Z. 187
(1984), no. 3, 335–344. MR0757475, Zbl 0539.10026, doi: 10.1007/BF01161951. 1208, 1215

[10] Manin, Yu. I.; Tschinkel, Yu. Points of bounded height on del Pezzo surfaces.Compositio
Math. 85 (1993), no. 3, 315–332. MR1214451, Zbl 0782.14033. 1193

[11] Mumford, David; Suominen, Kalevi. Introduction to the theory of moduli. Alge-
braic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math.), 171–222. Wolters–
Noordho�, Groningen, 1972. MR0437531, Zbl 0242.14004. 1195

http://www.ams.org/mathscinet-getitem?mr=1909606
http://www.emis.de/cgi-bin/MATH-item?1054.14025
http://dx.doi.org/10.1215/S0012-7094-02-11332-5
http://www.ams.org/mathscinet-getitem?mr=2276196
http://www.emis.de/cgi-bin/MATH-item?1159.11035
http://arXiv.org/abs/math/0604119
http://dx.doi.org/10.4064/aa125-3-6
http://www.ams.org/mathscinet-getitem?mr=2838351
http://www.emis.de/cgi-bin/MATH-item?1193.14028
http://arXiv.org/abs/0710.1560
http://dx.doi.org/10.5802/aif.2462
http://www.ams.org/mathscinet-getitem?mr=2559866
http://www.emis.de/cgi-bin/MATH-item?1188.14001
http://dx.doi.org/10.1007/978-3-0346-0129-0
http://www.ams.org/mathscinet-getitem?mr=2861076
http://www.emis.de/cgi-bin/MATH-item?1271.11091
http://arXiv.org/abs/1006.3476
http://dx.doi.org/10.5802/jtnb.778
http://www.ams.org/mathscinet-getitem?mr=2155086
http://www.emis.de/cgi-bin/MATH-item?1079.11033
http://arXiv.org/abs/math/0404456
http://dx.doi.org/10.1515/crll.2005.2005.584.83
http://www.ams.org/mathscinet-getitem?mr=0974910
http://www.emis.de/cgi-bin/MATH-item?0674.14012
http://dx.doi.org/doi.org/10.1007/BF01393904
http://www.ams.org/mathscinet-getitem?mr=0263761
http://www.emis.de/cgi-bin/MATH-item?0198.37903
http://dx.doi.org/10.4064/aa-17-1-1-28
http://www.ams.org/mathscinet-getitem?mr=0757475
http://www.emis.de/cgi-bin/MATH-item?0539.10026
http://dx.doi.org/10.1007/BF01161951
http://www.ams.org/mathscinet-getitem?mr=1214451
http://www.emis.de/cgi-bin/MATH-item?0782.14033
http://www.ams.org/mathscinet-getitem?mr=0437531
http://www.emis.de/cgi-bin/MATH-item?0242.14004


REVISITING THE SPLIT DEL PEZZO SURFACE OF DEGREE 5 1229

[12] Peyre Emmanuel. Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke
Math. J. 79 (1995), no. 1, 101–218. MR1340296, Zbl 0901.14025, doi: 10.1215/S0012-7094-
95-07904-6. 1193, 1194

(Tim Browning) IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
tdb@ist.ac.at

This paper is available via http://nyjm.albany.edu/j/2022/28-51.html.

http://www.ams.org/mathscinet-getitem?mr=1340296
http://www.emis.de/cgi-bin/MATH-item?0901.14025
http://dx.doi.org/10.1215/S0012-7094-95-07904-6
http://dx.doi.org/10.1215/S0012-7094-95-07904-6
mailto:tdb@ist.ac.at
http://nyjm.albany.edu/j/2022/28-51.html

	1. Introduction
	2. The conic bundle structures
	3. Parametrisation of conics
	4. Counting lattice points
	5. A divisor problem for binary cubic forms
	References

