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Populations evolve in spatially heterogeneous
environments. While a certain trait might bring a
fitness advantage in some patch of the environment,
a different trait might be advantageous in another
patch. Here, we study the Moran birth–death process
with two types of individuals in a population
stretched across two patches of size N, each patch
favouring one of the two types. We show that the
long-term fate of such populations crucially depends
on the migration rate μ between the patches. To
classify the possible fates, we use the distinction
between polynomial (short) and exponential (long)
timescales. We show that when μ is high then one of
the two types fixates on the whole population after
a number of steps that is only polynomial in N. By
contrast, when μ is low then each type holds majority
in the patch where it is favoured for a number of
steps that is at least exponential in N. Moreover, we
precisely identify the threshold migration rate μ�

that separates those two scenarios, thereby exactly
delineating the situations that support long-term
coexistence of the two types. We also discuss the case
of various cycle graphs and we present computer
simulations that perfectly match our analytical results.
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1. Introduction
Evolution is a stochastic process that acts on populations of reproducing individuals. Each
individual has a fitness that determines its reproductive rate. In the absence of mutation, one
individual eventually produces a lineage of offspring that takes over the whole population.
This event is called a fixation. The key quantities of the evolutionary evolutionary process are
the fixation probabilities of the respective individuals and the (expected) time until the fixation
happens [1–3].

Population structure is known to substantially affect those quantities, thereby altering the
typical fate of a population [4–8]. The effects of various population structures are conveniently
studied within the framework of evolutionary graph theory [9,10]. The spatial structure of
the population is described by a graph (network) whose nodes correspond to sites. Each site
is occupied by a single individual and the edges (possibly weighted) represent migration
rates between pairs of sites. The population of asexually reproducing individuals then evolves
according to a discrete-time stochastic process called the Moran birth–death process [11]. In each
step, first (birth) an individual is selected for reproduction with probability proportional to its
fitness, and then (death) the offspring migrates to a neighbouring site and replaces its initial
occupant. Thus the population size N remains constant. The case of a perfectly well-mixed
population consisting of N individuals is recovered by taking a complete graph KN with all edges
having unit weight.

Of special interest is the case of a single beneficial mutant with relative fitness advantage r > 1
invading a background population of N − 1 indistinguishable residents, each with a fitness 1.
For the well-mixed population, the fixation probability ρ(KN, r) of the mutant is equal [9] to (1 −
1/r)/(1 − 1/rN), which tends to 1 − 1/r as N → ∞ and, on average, the process terminates after
approximately (1 + 1/r) · N log N steps [12,13]. That is, for fixed r > 1, the fixation time FT(KN , r) is
proportional to N log N.

An important driving question in the field over the past decade has been the hunt for
population structures, so-called amplifiers of selection, that enhance the fixation probability of a
single beneficial mutant invading a background population of indistinguishable residents, as
compared to the well-mixed population [14–20]. A prime example of an amplifier is a Star
graph SN consisting of N − 1 leaf nodes, all of them connected to a single central node (but
not to each other). It is known that, in the limit N → ∞, we have [21–23] ρ(SN, r) → 1 − 1/r2.
When r = 1 + s for s small, this is roughly a twofold increase compared to the baseline given
by ρ(KN, r). Even more strongly, there exist structures (so-called superamplifiers) that guarantee
fixation of the mutant in the limit N → ∞, no matter how small its fitness advantage r > 1 is
[24–27].

Regarding the timescale of the process, formal results concerning the Moran birth–death
process on structured populations are comparably scarcer and those that exist focus on identifying
population structure with short evolutionary timescales. The reason is that such structures,
especially when they amplify, could potentially speed up the rate of evolution. For example, it
is known that for Star graphs, the process terminates after roughly N2 log N steps [28]. More
generally, when the underlying graph is undirected (that is, all edges are two-way) then the
process terminates after a number of steps that is polynomial in N [29,30]. The trade-off between
fixation probability and fixation time has also been studied [31,32]. In particular, it has been
established that there exist superamplifiers with short fixation time scales [33]. Moreover, the
fixation time has been studied in other models, such as the heterogeneous voter models [34].
However, an important limitation of fixation time as a quantity is that it relates only to the overall
duration of the process. In other words, it is oblivious to what is actually happening during the
process before one of the types fixates.

More recently, the framework of evolutionary graph theory has been enriched with
environmental heterogeneity [35,36]. This is conveniently done by partitioning the sites into
patches. The fitness of each individual is constant within each patch but it can vary across different
patches, see figure 1b. (We note that, alternatively, following the fundamental work of Sinai [37],
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Figure 1. Moranprocess on apopulation structure. (a) In the population structure, the 2N nodes (sites) are split into twopatches
of size N (boxes, circles), each patch giving a relative fitness advantage 1 + ε to one of two possible types of individuals (blue,
red, respectively). (b) In each step of the Moran process, first an individual is selected for reproduction proportionally to its
fitness, and then theoffspring replaces a randomneighbour. (c) In the two-island structure ISLN,ε(μ), eachpatch is awell-mixed
population (island) and the offspringmigrates to the other islandwith probabilityμ. (d)We also consider the one-dimensional
lattice, and two special decompositions of its nodes into patches: the nodes either alternate (Ralt

N,ε), or they form two large blocks

of N consecutive nodes (Rsplit
N,ε ).

there is a line of research studying the case when the environment itself is random [38,39].)
Concerning the fixation probability, analytical results are known for large well-mixed populations
with any number of patches [40], and for certain special families of regular graphs with two
patches [41]. Concerning the duration of the process, to our knowledge no analytical results
are known.

In this work, we study the timescale of the Moran birth–death process in populations
that are spatially structured and environmentally heterogeneous. This differs from the earlier
research focus in four regards. First, for populations that are environmentally heterogeneous,
to our knowledge no analytical results on evolutionary timescales are known (the previous
research focused on fixation probabilities of the respective types). Second, for homogeneous
populations, the past work related to the duration of the process has focused on identifying
population structures with short fixation times (and high fixation probability), since such
structures could potentially be used to speed up the evolutionary process. By contrast, our goal
here is to characterize structures that support long-term coexistence of the two competing types.
Such structures are important in population genetics where they correspond to multiple-niche
ecosystems with protected polymorphism [42,43]. As another application, consider single-species
biofilms: although very small in scale, biofilms typically consist of several microenvironments
and show substantial heterogeneity, both genetic and phenotypic, over considerable time scales
[44,45]. In those settings, quantifying the duration of coexistence is more relevant than quantifying
the fixation probabilities of the respective types. For example, coexistence and polymorphism
have been shown to be relevant in antibiotic drug resistance [46] and drug-gradient in vitro
models [47]. Third, while the past research used the notion of a fixation time, here we introduce
a refined notion of a coexistence time. Our results thus provide stronger guarantees about the
state of the population throughout the process. Fourth, we use a distinction between polynomial
(short) and exponential (long) timescales. As an illustration, consider a population of size N = 100,
a polynomial function N2 and an exponential function 2N . Then N2 = 104 steps correspond
to 100 generations, which is a moderate number. By contrast, 2N ≈ 1030 steps correspond to
1028 generations which is effectively infinite for all practical purposes. As a consequence,
when evolutionary timescales are exponential, quantities such as fixation probability are largely
irrelevant.
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In order to present our results, we define a certain natural two-patch population structure
ISLN,ε(μ) that corresponds to an island model [48,49] with two islands of equal size N
and a bi-directional migration rate μ. Formally, it is defined by three numbers N, ε, μ as
follows: two types of individuals are spread over two well-mixed patches of size N each,
thus the total population size is 2 · N. Each type of individual is favoured in one patch, by
having relative fitness advantage 1 + ε rather than 1, for some fixed ε > 0. Finally, whenever
an individual reproduces, its offspring migrates to the other patch with probability μ and
replaces a random individual there (otherwise it replaces a random individual within its patch).
Note that this is related to (but different from) the classical source-sink models in population
genetics [50].

Here, we present two results on coexistence times of environmentally heterogeneous
populations. First, we show that on well-mixed populations, the process terminates after a
number of steps that is of the order of at least N2 and at most N3. When compared to the N log N
steps on homogeneous well-mixed populations, the process is thus slowed down but the expected
number of steps is still only polynomial. Second, we show that the long-term evolution of a Moran
birth–death process on the two-island population structure ISLN,ε(μ) crucially depends on the
migration rate μ between the two patches. Specifically, we show that when μ ≥ 1/2, with high
probability, the stochastic process terminates after a number of steps that is only polynomial in
N, regardless of ε > 0. Thus, the fixation time is also only polynomial in N. In sharp contrast,
when μ < 1/2, with high probability, each type constitutes a majority in the patch where it is
favoured for a number of steps that is at least exponential in N. Thus, the fixation time is also
at least exponential in N. When combined, those two results present a strong dichotomy and
precisely delineate the scenarios that support long-term coexistence of the two types. Those
analytical results are particularly relevant in the biological settings mentioned above, where long-
term coexistence is important. We also discuss the case of cycle graphs and we present computer
simulations that perfectly match our analytical results.

2. Model
We consider the Moran birth–death process acting on structured populations consisting of two
types of individuals, T1 and T2. First, we recall the general framework of evolutionary graph
theory [9], including the environmental heterogeneity [35].

(a) Spatial structure
The spatial structure of a population is described by a connected graph (network) G = (V, E)
whose nodes u ∈ V correspond to sites. Each site is occupied by a single individual and the edges
(u, v) ∈ E (including self-loops) represent where an individual can place an offspring. Moreover,
each edge (u, v) ∈ E is assigned a weight wu,v ∈ (0, 1] that represents the strength of the connection.
The well-mixed population is represented by a complete graph KN where all edges and self-loops
have unit weight.

(b) Environmental heterogeneity
On top of that, each node u is assigned a signature sg(u) = (f (u)1, f (u)2), where f (u)i denotes the
fitness of a type Ti individual when it occupies the site u (for i ∈ {1, 2}). A set of nodes that all
have the same signature is called a patch. In this work, we consider populations formed by two
patches P1, P2, each patch favouring the corresponding type by the same margin ε. In other words,
for u ∈ P1, we have sg(u) = (1 + ε, 1), whereas for u ∈ P2 we have sg(u) = (1, 1 + ε), for some fixed
ε > 0. See figure 1a.
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(c) Moran process
The population evolves according to a Moran birth–death process adapted to a population
structure. We assume that initially each node in a patch Pi is occupied by an individual of type
Ti. The Moran birth–death process is a stochastic (random) process that proceeds in discrete
timesteps as follows:

(i) Birth: select an individual randomly, with probability proportional to its fitness. (That is,
denoting the total fitness of the population by F, an individual with fitness f is selected
with probability f/F.) That individual, say at node u, produces an offspring which is a
copy of itself.

(ii) death: select a node adjacent to u randomly, with probability proportional to the edge
weight wu,v . (i.e. a node u′ is selected with probability wu,u′/

∑
v∈V wu,v .) The offspring

then migrates to site u′ and replaces its original inhabitant.

Note that throughout the process, the population size and structure remain constant. See figure 1b.

(d) Fixation time and c-coexistence time
When the underlying graph G is connected, the Moran process eventually terminates with one
type having spread over all nodes. This event is called fixation. For i ∈ {1, 2}, we denote by ρi(G)
the fixation probability of type Ti and by FT(G) the fixation time, that is, the (expected) number of
steps until the process terminates.

Note that the fixation time ignores how the composition of the population fluctuates before
the process terminates. To capture those fluctuations, we define a quantity which we call the
coexistence time. Recall that initially each patch is occupied entirely by the individuals that are
favoured in that patch. Intuitively, the coexistence time counts the steps for which each type
maintains a majority in its patch. Formally, given a graph G the coexistence time, denoted CT(G),
is the expected number of steps until the first moment in time when one of the two types occupies
less than one-half of the nodes in its patch. By definition, a coexistence time can never be longer
than a fixation time, but it can be substantially shorter. When the coexistence time is long, it
means that for a long time each patch is occupied mostly by the individuals that are favoured
there. Somewhat more generally, given a constant c ∈ (0, 1), we define CTc(G) to be the expected
number of steps until the first moment in time when one of the two types occupies less than a
fraction of c of its patch. Then for any c ≤ 1/2, we have CTc(G) ≥ CT1/2(G) = CT(G).

(e) Population structures ISLN,ε(μ), Ralt
N,ε , R

split
N,ε

Our main results apply to certain two-patch population structures ISLN,ε(μ) characterized by
three parameters N, ε > 0, μ ∈ (0, 1) as follows: The population structure ISLN,ε(μ) is a complete
graph on 2N nodes split into two patches P1, P2 of size N each. The edges within each patch all
have unit weight, the edges connecting nodes in opposite patches all have weight w = μ/(1 − μ).
This choice of w guarantees that an offspring of a reproducing individual migrates to the opposite
patch with probability Nw/(Nw + N) = μ. Finally, each patch increases the fitness of one type
from 1 to 1 + ε. That is, for u ∈ P1 we have sg(u) = (1 + ε, 1), whereas for u ∈ P2 we have sg(u) =
(1, 1 + ε). Specifically, for migration rate μ = 1/2 we recover the case of a well-mixed population
KN,ε . See figure 1c.

Later, we also study one-dimensional lattices and we investigate how the coexistence time
depends on the relative layout of the two patches. The underlying graph is a cycle C2N where the
2N nodes are arranged circularly, and each node is connected to its two neighbours by an edge
with unit weight. We consider two ways to partition the nodes into patches P1, P2: in Ralt

N,ε , the

nodes alternately belong to P1 and P2. In Rsplit
N,ε , both P1 and P2 consist of a chunk of N consecutive

nodes. See figure 1d.
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(f) Asymptotic notation
In order to compare the relative growth rate of fixation and coexistence times in the limit
of large population size N → ∞, we briefly recall a standard mathematical notation Θ(·),
O(·) and Ω(·) for asymptotic tight bound, upper bound and lower bound, respectively. For
example, we write 1

2 N(N + 1) ∈ Θ(N2) and N2 ∈O(N3) and 2N ∈ Ω(N3) to denote that, up to
constant factors, for large N, we have 1

2 N(N + 1) ≈ N2 	 N3 	 2N . Moreover, we say that a
function f (N) is (at most) polynomial if f (N) ∈ NO(1) and it is (at least) exponential if f (N) ∈
2Ω(N). For detailed treatment, see [51, Section 1.3]. We note that the distinction between
polynomial and exponential growth rate is fundamental. For example, problems in computer
science whose solution can be found in polynomial time are considered tractable in practice,
whereas problems requiring exponential time are considered intractable. As mentioned before,
exponential timescales are effectively infinite. As an example, even for N = 100 the number
2N .= 1.3 × 1030 is much larger than the roughly 4 × 1020 milliseconds that passed since the
Big Bang.

3. Results
Here, we state our analytical results, give intuition about their proofs, and illustrate them with
numerical computations and computer simulations. The fully rigorous mathematical proofs are
deferred to electronic supplementary material.

Recall that in all instances, we consider populations of 2N individuals split into two patches
P1, P2 of size N each, each patch increasing the fitness of the respective type of individual from 1
to 1 + ε, for some fixed ε > 0.

Our contribution is twofold: first, we analyse the process on three different types of natural
population structures, namely the well-mixed populations, the two-island graphs, and different
one-dimensional lattices. Later, we prove a general upper bound on the timescale of coexistence.

(a) Complete graphs
First, we consider the case of a well-mixed population KN,ε spanning two different patches of size
N each. Formally, KN,ε is recovered from the two-island population structure ISLN,ε(μ) by setting
the migration rate equal to μ = 1/2.

Theorem 3.1 (Well-mixed populations). Fix ε > 0. Then

FT(KN,ε) ∈ Ω(N2) and FT(KN,ε) ∈O(N3).

It is known that in the environmentally homogeneous regime where one type has fitness
advantage 1 + ε at all nodes, the fixation time on a well-mixed population is of the order of
Θ(N log N) steps [12,13]. The asymptotic lower bound FT(KN,ε) ∈ Ω(N2) in theorem 3.1 thus
implies that with environmental heterogeneity, the fixation time is increased. However, the
asymptotic upper bound FT(KN,ε) ∈O(N3) implies that the process still terminates after a number
of steps that is only polynomial in the population size (namely at most cubic), and thus long-term
coexistence is not supported. Numerical computation suggests that for any ε > 0 the fixation time
in fact scales as Θ(N2), see figure 2a.

The idea behind the proof is as follows: we represent the stochastic process as a Markov
chain that has a state for every possible configuration of mutants and residents. We then define a
carefully chosen ‘potential function’ that assigns a real number to each possible configuration and
we prove that, in each step of the process, this potential function changes in a controlled way, in
expectation. Namely, we prove that it increases at most by δ1 and at least by δ2, where δ1 > δ2 > 0
are two real constants. Since we can also compute the initial and the final value of this potential
function, this allows us to bound the expected number of steps that happen until fixation occurs.
See electronic supplementary material for a full proof.
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Figure 2. Fixation time on a complete graph KN,ε . (a) Numerical computation shows that for a fixed ε > 0 the fixation
time FT(KN,ε) scales as cε · N2. Thus the lower bound FT(KN,ε) ∈ Ω (N2) from theorem 3.1 is tight. Specifically, we obtain
c10

.= 2.07, c0.1
.= 2.62 and c0.01

.= 2.76. (b) In the regime without environmental heterogeneity (that is, when the same type
is favoured in both patches), the fixation time is known to scale asΘ (N log N) when ε > 0 and asΘ (N2) when ε = 0. Here,
N = 10, 20, . . . , 100.

(b) Two-island graphs
Second, we show that for the two-island population structure ISLN,ε(μ), the migration rate μ� =
1/2 which corresponds to the well-mixed population is in fact a threshold value. Recall that for a
given population structure GN , the quantity CT(GN) is the (expected) number of steps until either
of the types ceases to hold a majority in the patch where it is favoured.

Theorem 3.2 (High migration rate). Fix ε > 0 and μ ≥ 1/2. Then FT(ISLN,ε(μ)) ∈O(N3).

Theorem 3.3 (Low migration rate). Fix ε > 0 and μ < 1/2. Then CT(ISLN,ε(μ)) ∈ 2Ω(N).

Theorem 3.2 states that when the migration rate exceeds the threshold value μ� = 1/2, or is
equal to it, then fixation time is still only polynomial in the population size, thus long-term
coexistence is not supported. By contrast, theorem 3.3 shows that for migration rates μ < μ�, each
type maintains a majority in the patch where it is favoured for a number of generations that is
exponential in the population size, see figure 3.

The proof of theorem 3.2 is an extension of the argument used to derive theorem 3.1. As for
the argument behind the proof of theorem 3.3, intuitively the idea is to show that in order for one
type to lose majority in the patch where it is favoured, the random evolutionary trajectory would
have to cross one of three ‘barriers’, each with a ‘thickness’ that is linear in N. Using standard
results on the absorption time of one-dimensional random walks with constant forward bias, this
allows us to conclude that for a number of steps that is exponential in N, with high probability
none of the three barriers will be crossed and thus coexistence will be maintained. See electronic
supplementary material for a full proof.

(c) One-dimensional lattices
Third, we show that even if we fix the underlying graph and the effects of the patches on the
fitness, the coexistence time critically depends on the relative layout of the two patches. To that
end, we consider large one-dimensional lattices Ralt(N, ε) and Rsplit(N, ε) (see figure 1d).

Theorem 3.4 (One-dimensional lattices). Fix ε > 0. Then

FT(Ralt(N, ε)) ∈O(N3) and CT(Rsplit(N, ε)) ∈ 2Ω(N).
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Figure 3. Fixation time on a two-island graph ISLN,ε(μ). (a) Numerical computation illustrates that when μ ≥ 1/2, the
fixation time FT(ISLN,ε(μ)) scales as N2 (when μ = 0.5 or μ = 1), or even slower than that (when 0.5< μ < 1). This
is in agreement with the upper bound FT(ISLN,ε(μ)) ∈O(N3) from theorem 3.2. (b) The coexistence time CT(ISLN,ε(μ)) is
substantially shorter, scaling roughly linearly with the population size N. (c) By contrast, whenμ < 1/2, the coexistence time
CT(ISLN,ε(μ)), and thus also the fixation time, is at least exponential in the population size N (here the y-axis is log-scale). This
is in agreement with theorem 3.3. In all panels, we consider ε = 1 and N = 10, 20, . . . , 200.
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Figure 4. Fixation time on one-dimensional lattices. (a) Computer simulations (104 repetitions) show that on the Alternating
cycleRalt(N, ε) thefixation timeFT(Ralt(N, ε)) scales asΘ (N3), for anyε > 0. This is in perfect agreementwith theupper bound
O(N3) from theorem 3.4. (b) The coexistence time CT(Ralt(N, ε)) is even shorter—it scales roughly asΘ (N) for any ε > 0,
and curiously it is shorter when ε is larger. (c) By contrast, on the Split cycle Rsplit(N, ε), the coexistence time CT(Rsplit(N, ε)) is
exponential in the population size N (note that the y-axis is log-scale). In all panels, we consider ε ∈ {10, 1, 0.1} and N up to
100.

In other words, when the nodes of a long one-dimensional lattice alternately belong to patches
P1 and P2 then the process terminates in polynomial time. By contrast, when each patch forms a
contiguous block of N nodes, each type holds a majority in its patch for a number of steps that is
exponential in N, see figure 4.

The argument behind the first claim makes use of the fact that the evolution on Ralt(N, ε) can
be efficiently mapped to an evolution on a well-mixed population [35,41]. The idea behind the
proof of the second claim is that each patch contains a ‘core’—a large set of nodes in its middle
which is well protected from the invasion by the other type, and which is maintained over an
exponential timescale. See electronic supplementary material for a full proof.

(d) General upper bound
Finally, we show that within a certain broad class of population structures, a coexistence on a
substantially longer than exponential timescale is impossible. Thus the exponential coexistence
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that occurs for two-island structures with low migration rates and for certain one-dimensional
lattices is close to optimal. Namely, given a real number wmin > 0 we denote by G(wmin) the class
of all connected graphs in which each edge, if it exists between two nodes, is assigned a weight at
least wmin.

Theorem 3.5 (General upper bound). Fix wmin > 0 and ε > 0. Then for any population structure
GN,ε ∈ G(wmin) on 2N nodes we have FT(GN,ε) ∈ 2O(N·log N).

Note that theorem 3.5 gives an upper bound on the fixation time, and thus also on the c-
coexistence time for any c > 0. The proof is based on a simple idea that if, from any configuration
of individuals, a fixation occurs with probability at least pfix within the next s steps, then the
fixation time is at most s/pfix. Moreover, the statement applies more generally to any number of
patches of arbitrary sizes and with arbitrary (but fixed) signatures. See electronic supplementary
material for a full proof.

4. Conclusion
In this work, we used the framework of evolutionary graph theory to study the evolutionary
timescales of populations that are both spatially structured and environmentally heterogeneous.
To our knowledge, the previous research in this setting focused either on computing the fixation
probabilities, or on identifying population structures with short evolutionary timescales. By
contrast, our main focus here was to characterize structures that support long-term coexistence of
two competing types.

To that end, we considered the Moran birth–death process acting on populations stretched
across two patches, where each of the two competing types has a fixed selective advantage in
one patch. To address the question of long-term coexistence of the two types, we refined the
classical notion of a fixation time and defined the coexistence time as the (expected) number of
steps during which each type constitutes a majority in the patch where it is favoured. For certain
natural two-island population structures characterized by a migration rate μ, we then showed
that the long-term behaviour of the system exhibits a threshold behaviour in parameter μ: when
the migration rate is high (μ ≥ 1/2), the process terminates with one type fixating on the whole
population after a number of steps that is only polynomial in the population size N. In sharp
contrast, when the migration rate is low (μ < 1/2), the two types coexist for a number of steps
that is (at least) exponential in N. We also showed that on a fixed population structure given by a
one-dimensional lattice, the coexistence time can be both polynomial and exponential, depending
on the relative layout of the two patches. We note that for random environments, the fundamental
result is due to Sinai [37].

Coexistence of multiple types of individuals in structured populations has been extensively
studied in various fields [52–55]. Below we list some results for related models, highlighting the
differences to our setup. In the terminology of population genetics, the analogue of our question is
whether polymorphism is protected in a one-locus, two-allele population inhabiting a two-niche
ecosystem. Following the seminal work of Levene [42], a now classic line of research identified
several necessary and sufficient conditions for the polymorphism to be maintained [56–62].
However, those results are derived for deterministic models under the assumption of infinite
population size, see also [63,64] for reviews. By contrast, our model accounts for stochasticity
inherent to the evolutionary process [65], it deals with populations of finite (and arbitrarily
large) size, and it classifies the fate of the population in terms of the polynomial-exponential
dichotomy. In statistical physics, similar models are studied under the name of interacting
particle systems [66]. Those models are stochastic and spatial but the spatial structure is
typically assumed to be an integer lattice. Again, conditions characterizing coexistence are known
[67,68].

The most closely related results to ours are those that study stochastic models on spatial
structures that correspond to island models of finite size. As with the simpler regime without
any environmental heterogeneity, fixation probability is a quantity that is relatively approachable
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[69–72]. Regarding fixation time, building on the work of Bulmer [73], Yeaman & Otto [74]
use computer simulations to observe that polymorphism is maintained when the migration
rate exceeds a certain critical threshold and they approximate the threshold by splicing the
predictions of the deterministic models with a diffusion approximation for finite populations.
While their results are qualitatively similar to ours, there are important differences. First, we
work with a purely stochastic model and we directly analyse the underlying Markov chain which
allows us to obtain exact rigorous mathematical results without resorting to heuristic arguments.
Second, we highlight the fundamental distinction between polynomial and exponential
timescales.

Within the field of evolutionary graph theory, the past research agenda related to the
evolutionary timescale focused mostly on understanding which population structures lead to
short timescales. Here, our objective is the exact opposite—we study population structures that
lead to long evolutionary timescales. Furthermore, using the refined notion of a coexistence time
(rather than simply a fixation time) we are able to guarantee that not only will the evolutionary
process run for exponentially many steps, but also that throughout that timeframe each type will
constitute a healthy portion of the population.

At first glance, our results indicate that population structures that are more conducive to
long-term coexistence are those in which there is a positive correlation between the environment
seen by a parent and its offspring. That is, based on our results it is natural to expect long-term
coexistence when the offspring is fairly likely to stay in the same patch as the parent, and to expect
only short-term coexistence when the offspring is likely to migrate to the other patch. While this
is perfectly true for the two-island population structure (the migration threshold being precisely
μ = 1/2), in the next two examples, we show that in general this is only a rule of thumb.

As the first example, consider a large cycle graph where the two patches form alternating
blocks of fixed length 4. The probability that an offspring stays in the same patch is then 3/4,
but computer simulations analogous to those in figure 4 show that the coexistence time scales
only polynomially. To understand this intuitively, suppose that each type of individual occupies
one long contiguous segment, and consider the boundary between them. If the boundary occurs
within a patch P1 then the type-1 individuals have a constant-factor advantage to push the
boundary by one position, and vice versa. Since the blocks have constant length and alternate
regularly, the evolutionary landscape is ‘flat’ and the coexistence time (as well as the fixation
time) are short, that is, polynomial.

By contrast, as another example consider a large one-dimensional lattice where each node
belongs to a patch selected uniformly at random, independently of other nodes. The probability
that an offspring stays in the same patch is then 1/2. However, most of those structures support
long-term coexistence. Indeed, as shown by Sinai [37], for most such structures a boundary
between long segments of type-1 and type-2 individuals moves by only roughly log2(n) positions
in any n steps of the process, thus the fixation time is exponential. In this sense, most one-
dimensional lattices behave more like the ‘split’ graph Rsplit(N, ε) rather than like the ‘alternating’
graph Ralt(N, ε).

In this work, we focus on the simple population structures, such as the well-mixed
populations, one-dimensional lattices, and two-island populations, in which the roles of the two
types are perfectly symmetric. This allows us to cleanly introduce the key notions and derive exact
analytical results. To conclude, we briefly discuss several possible extensions and generalizations.

First, throughout this work for simplicity, we focused on c-coexistence time with c = 1/2, that
is, we postulated that the two types coexist if each type maintains at least c · |Pi| individuals in its
patch Pi. We now make two remarks about the case c 
= 1/2 in the context of two-island graphs.
On one hand, theorem 3.2 shows that when μ ≥ 1/2 then the fixation time is polynomial, and so
there is no long-term coexistence for any c ∈ (0, 1). On the other hand, theorem 3.3 shows that if
μ < 1/2 then there is long-term coexistence with c = 1/2, and therefore obviously also long-term
coexistence with any c′ < 1/2. However, it is not clear whether there is also long-term coexistence
with some c′ > 1/2. Presumably, the highest value of c′ for which there is c′-coexistence depends
on the parameters μ and ε.
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Second, throughout this work, we derived results for two perfectly symmetric types of
individuals living on symmetric population structures. Do analogous results hold for asymmetric
population structures? Or for symmetric population structures with asymmetric patch patterns?
Or for symmetric patch patterns, where each type has a distinct fitness advantage εi in its patch?
Or for more than two types of individuals? Or for other update mechanisms, such as death–birth
updating? It is our hope that a subsequent work on more complex population structures, possibly
with multiple asymmetric patches and with multiple competing types, will lead towards a better
understanding of the role of diversity and its maintenance in populations at large.
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21. Broom M, Rychtář J. 2008 An analysis of the fixation probability of a mutant on special classes
of non-directed graphs. Proc. R. Soc. A 464, 2609–2627. (doi:10.1098/rspa.2008.0058)

22. Monk T, Green P, Paulin M. 2014 Martingales and fixation probabilities of evolutionary
graphs. Proc. R. Soc. A 470, 20130730. (doi:10.1098/rspa.2013.0730)

23. Chalub FACC. 2016 An asymptotic expression for the fixation probability of a mutant in star
graphs. J. Dyn. Games 3, 217–223. (doi:10.3934/jdg.2016011)

24. Giakkoupis G. 2016 Amplifiers and suppressors of selection for the Moran process on
undirected graphs. Preprint (https://arxiv.org/abs/1611.01585).

25. Galanis A, Göbel A, Goldberg LA, Lapinskas J, Richerby D. 2017 Amplifiers for the Moran
process. J. ACM 64, 5. (doi:10.1145/3019609)

26. Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. 2018 Construction of arbitrarily
strong amplifiers of natural selection using evolutionary graph theory. Commun. Biol. 1, 71.
(doi:10.1038/s42003-018-0078-7)

27. Goldberg LA, Lapinskas J, Lengler J, Meier F, Panagiotou K, Pfister P. 2019 Asymptotically
optimal amplifiers for the Moran process. Theor. Comput. Sci. 758, 73–93. (doi:10.1016/
j.tcs.2018.08.005)
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