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ABSTRACT
The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity
rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive
theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and
show that our ansatz yields a persistent decrease in the impurity’s rotational constant due to many-body dressing, which is consistent with
experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-
consistently generated by the molecule’s rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating
molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been
neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-
excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings
remain highly suppressed due to initial-state interactions.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0135893

I. INTRODUCTION
The angulon is a polaron-like quasiparticle that is formed by

a rotating quantum impurity dressed by many-body excitations.1
Generally, polaron models provide efficient descriptions of com-
plex quantum many-body systems, historically starting with the
description of how electrons move through a solid-state lattice
and become dressed by lattice distortions, thereby forming polaron
quasiparticles.2–5 Likewise, the angulon model considers a rotating
impurity—a quantum rotor—dressed by phonon (or other kinds of)
excitations carrying angular momentum.6,7

One application of angulon theory is molecules embedded in
superfluid helium nanodroplets. This system has attracted great

interest in molecular physics and chemistry in recent decades.8–10

Here, the nanodroplets act as a stable and efficient refrigerator,
cooling molecules to a temperature of ∼0.38 K. Acting as an iso-
lating matrix, these droplets also provide a clean environment
to study molecules using spectroscopy or observe their chemical
reactivity.11–15 While helium’s superfluidity prevents collisional and
Doppler broadening of molecular spectral lines, the interaction
between the molecule and helium causes a shift and a sometimes
anomalous broadening of spectral lines in rotational spectroscopy.16

This molecule-superfluid system can be theoretically understood
as an impurity with rotational degrees of freedom embedded in a
many-body bath and be studied by first principle calculations, such
as quantum Monte Carlo.17–19 The angulon picture offers a relatively
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simple approximate description of this complex molecular problem
and is, to a large extent, consistent with experimental results.1,20–24

Apart from molecules in superfluids, angulon theory has
been applied to study the rotation of organic cations in hybrid
metal halide perovskites,25 molecules immersed in a Bose–Einstein-
condensate,26,27 and the transfer of angular momentum between
electrons and crystal lattice in solids.28

Despite its relative simplicity, the angulon model is still chal-
lenging to solve due to the infinite dimension of the Hilbert space of
phonons and the non-Abelian nature of the SO(3) rotation group of
the rotor.29–31 This renders prior variational theories incomplete.6,7

On the one hand, they are unable to describe the renormalization
of rotational constants in a fully general way. In particular, pre-
vious variational theories consistently predict a surprising result
of an increase in rotational constants in the low-to-intermediate
density regime. On the other hand, angulon theory predicts sig-
nificant phonon wings, which dominate the spectrum in instability
regimes. However, such pronounced phonon wings are hardly seen
in experiments.

The goal of this paper is to resolve the two issues mentioned
above. Concerning the first challenge, we propose a coherent state
ansatz in the co-rotating frame and conduct a variational study
of angulons. We find that the ground state can be described by a
macroscopic wavefunction that is a product state of a bosonic and
anomalous spin coherent state. From this ansatz, a simple picture of
angulons arises, which can be used to access both static and dynamic
properties. Here, angulons present effective spin degrees of freedom
interacting with a self-generated magnetic field. The resulting renor-
malized rotational constant is always decreased in agreement with
physical intuition.

Concerning the second challenge, the phonon wings, we study
the rotational spectroscopy of the L = 0→ 1 transition within the
linear response theory using a single-excitation ansatz. Impor-
tantly, in contrast to previous studies,6 we take fully into account
the interactions in the initial state of the problem. We show that
while an instability regime in the spectrum persists, phonon wings
become highly suppressed, which is consistent with experiments.
This emphasizes the significant role of the molecule-bath initial-state
interaction.

The article is structured as follows: In Sec. II A, the angulon
model is revisited, and the single-excitation ansatz is briefly intro-
duced. In Sec. II B, we present the coherent state ansatz in the
rotor’s co-rotating frame and examine static properties, such as the
renormalization of the rotational constant (Sec. II C). In addition,
real-time evolution is employed to study the quasiparticle spectrum
(Sec. II D). Section III is concerned with a detailed study of the
rotational spectra. We find that numerical predictions based on the
single-excitation ansatz are compatible with experiments, exhibiting
an instability regime but no phonon wings if one considers an equi-
librium initial-state within the linear response theory. In Sec IV, we
summarize this work and discuss potential generalizations.

II. COHERENT-STATE ANGULON
A. Angulon model

We consider a linear molecule immersed in a weakly inter-
acting superfluid environment at zero temperature. The system
can be described by a quantum rotor dressed by the Bogoliubov

phonons excited from a weakly interacting bosonic bath.32–34 The
Hamiltonian is given by6

Ĥ = BĴ 2 +∑
kλμ
ωkb̂†

kλμb̂kλμ

+∑
kλμ

Uλ(k)[Y∗λμ(θ̂, ϕ̂)b̂†
kλμ + Yλμ(θ̂, ϕ̂)b̂kλμ], (1)

where h ≡ 1 and ∑k ≡ ∫dk. The bosonic operator satisfies the
commutation relation, [b̂kλμ, b̂†

k′λ′μ′] = δ(k − k′)δλλ′δμμ′ .
We note that the model is not expected to accurately describe

molecules in strongly interacting superfluids, such as 4He, starting
from first principles. Superfluid helium is a dense, strongly interact-
ing fluid, whose dispersion relation first exhibits a phonon regime at
low momenta and then crosses over into a roton regime. Here, we
take a simplified model of 4He where we choose a scattering length
abb to reproduce the low-energy phonon branch of 4He. As such, the
general physics will be described correctly by the angulon Hamilto-
nian as long as only excitations are involved in dressing the rotor,
which, in 4He, would probe the linear dispersion relation. How-
ever, much qualitative insights on molecular rotations in various
environments can be gathered by treating the model Hamiltonian
phenomenologically.21

The Hamiltonian consists of three terms. The first term repre-
sents the rotational kinetic energy of a rotor where B is the rotational
constant and Ĵ is the angular momentum operator in the labora-
tory frame. The second term represents the kinetic energy of the
phonons. The bosonic operators, b̂(†)kλμ , are given in the angular
momentum representation, where k = ∣k∣ indicates the momentum
magnitude; λ and μ label the angular momentum quantum num-
ber and its projection onto the z axis in the lab frame, respectively.
Here, we approximate the superfluid bath with phonons with dis-
persion relation ωk =

√
ϵk(ϵk + 2gbbn), where gbb = 4πabb/m. We

set the boson–boson scattering length to abb = 3.3(mB)−1/2 and the
rotational constant to B = 2π × 1 GHz to reproduce the speed of
sound of 4He. Note that the model only describes the physics of 4He
when the density of 4He is chosen. Moreover, in a density regime
where the inter-particle distance is of the order of bath–rotor inter-
action range, terms that are non-linear in the phonon operators can
become important.35

The last term of Eq. (1) represents the interaction between
the rotor and the phonon bath, which couples the angles of
the rotor, θ̂ and ϕ̂, with the phonon fluctuations; jλ(kr) are the
spherical Bessel functions of the first kind and Yλμ(θ̂, ϕ̂) are the
spherical harmonics. The interaction strength is given by Uλ(k)
= uλ[ 8nk2ϵk

ωk(2λ+1) ]
1/2 ∫ drr2 f λ(r)jλ(kr), where we consider Gaussian

form factors, f λ(r) = (2π)−3/2e−r2/(2r2
λ). The interaction amplitudes

and ranges are chosen as in previous studies6 to allow for direct
comparison: u0 = 1.75u1 = 218B and r0 = r1 = 1.5(mB)−1/2, respec-
tively. Apart from the rotor, we introduce the angular momentum
operators of the phonon bath Λ̂α = ∑kλμν b̂†

kλμσ
λ,α
μν b̂kλν and fur-

ther introduce the total angular momentum L̂ = Ĵ + Λ̂. Here, σ
is the matrix representation of the angular momentum operator,
defined as

σλ,±
μν = ⟨λμ∣σ̂ λ,±∣λν⟩ =

√
(λ ∓ ν)(λ ± ν + 1)δμ,ν±1, (2)
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and

σλ,x
μν =

1
2
(σλ,−

μν + σλ,+
μν ),

σλ,y
μν =

i
2
(σλ,−

μν − σλ,+
μν ).

(3)

It is easy to check that the angulon Hamiltonian commutes with L̂ 2

and L̂z , which shows that the eigenstates can be labeled by the two
quantum numbers L and M.

Several studies of the angulon problems have been based on a
single-excitation ansatz,6,20–22,27 which is given by

∣ψLM⟩ = Z1/2∣0⟩∣LM⟩ +∑
kλμ
∑

jn
βkλj CLM

jn,λμb̂†
kλμ∣0⟩∣ jn⟩. (4)

The first term indicates the non-interacting vacuum state. Here,
∣0⟩ labels the bosonic vacuum, ∣LM⟩ labels the rotor state, and Z
is the quasiparticle renormalization factor satisfying the normal-
ization condition, ∣Z∣ +∑kλj ∣βkλj∣

2 = 1. The second term in Eq. (4)
indicates the single-excitation state in which the Clebsch–Gordan
coefficients CLM

jn,λμ incorporate the total angular momentum conser-
vation of the rotor and excited phonons. The wavefunction is labeled
by two quantum numbers, the total angular momentum quantum
number L, and its projection onto the z axis M.

This ansatz, coinciding with a generalized second-order pertur-
bation theory,1 successfully explains the anomalous broadening of
spectral lines in spectroscopy experiments20 and the renormalization
of rotational constants at weak coupling, e.g., small u0/B.21 However,
it fails to describe the renormalization of the rotational constants in
the intermediate-density regime, which exhibits quasiparticle insta-
bility. In the following, we will propose a coherent state ansatz in
the co-rotating frame that resolves this issue and compare it with the
single-excitation ansatz.

B. Variational ansatz
In the Fröhlich polaron,4 the Lee–Low–Pines (LLP) transfor-

mation can be used to decouple the impurity’s degree of freedom
from the many-body bath.36 Then, the remaining bosonic model can
be approximately solved with a coherent state35 or Gaussian state
ansatz.37 The overall variational wavefunction can be represented as
a product state ansatz between the impurity and the bath coupled
by the canonical transformation. In other words, the transformation
entangles the two parts. This method thereby goes beyond the mean-
field framework, representing a generalized mean-field theory that is
a first step toward recently developed non-Gaussian state methods.38

The LLP transformation is a translational transformation to the
co-moving frame of the impurity that results from the total momen-
tum conservation of the whole system. In the angulon system,
similarly, the total angular momentum square L̂ 2 and projection L̂z
are conserved. Analogous to the LLP transformation, the problem
can be simplified by a rotational transformation to the co-rotating
frame, as shown in Ref. 7,

Ŝ = e−iϕ̂⊗Λ̂ z

e−iθ̂⊗Λ̂ y

e−iγ̂⊗Λ̂ z

. (5)

The Hamiltonian in the rotating frame reads

Ĥ = Ŝ−1ĤŜ = B(Ĵ′ − Λ̂)2 +∑
kλμ
ωk b̂†

kλμb̂kλμ +∑
kλ

Vλ(k)[b̂†
kλ0 + b̂kλ0],

(6)

where Vλ(k) =
√
(2λ + 1)/4πUλ(k). Here, Ĵ′ denotes the anoma-

lous angular momentum operator, which represents the total
angular momentum of the system and satisfies the anomalous
commutation relations,

[Ĵ′α, Ĵ′β] = −iϵαβγ Ĵ
′γ. (7)

Here, the indices refer to x, y, and z (coordinates in the rotating
frame of the molecule), and ϵαβγ is the Levi-Cività symbol.

The angular state is characterized by three quantum numbers,
L, M, and n, corresponding to the eigenvalues of the operators, Ĵ 2,
Ĵ z , and Ĵ′z , where Ĵ′2 = Ĵ 2. Note that the system conserves the square
of angular momentum and the angular momentum projection onto
the lab frame but not onto the rotating frame.

In the slowly rotating limit, B→ 0, the Hamiltonian reduces
to a purely bosonic one and can be diagonalized exactly by a dis-
placement operator, Û = exp[−∑kλμ

Vλ(k)
ωk
(b̂†

kλ0 − b̂kλ0)]. The ground
state is thus a coherent state, which contains an infinite number
of phonon excitations, and the ground-state energy simply reads
E0 = −∑kλ V2

λ(k)/ωk.
Based on the above discussion, we propose the following

variational ansatz in the co-rotating frame:

∣ψ⟩ =∑
n

gn∣LMn⟩⊗ ∣C⟩, (8)

which is a product state between the angular state describing the
total angular momentum, and the bosonic coherent state describing
the superfluid bath,

∣C⟩ = exp
⎛
⎝∑kλμ

b̂†
kλμβkλμ − b̂kλμ β

∗
kλμ
⎞
⎠
∣0⟩. (9)

Within a given L sector, one can substitute the operator Ĵ′2 with its
eigenvalue L(L + 1). Due to the non-commutative structure of Ĵ′α,
we consider a superposition in the n channel represented by the vari-
ational parameters gn. For the coherent bath, the βkλμ are variational
parameters that are optimized by minimizing the variational energy.
In dynamical problems, they are promoted to time-dependent vari-
ables. We would like to emphasize that although the ansatz appears
like a mean-field theory in the transformed frame, the overall ansatz
in the lab frame, Ŝ∣ψ⟩, includes entanglement between the rotor
and the bath through the canonical transformation Ŝ and thus goes
beyond the mean-field framework.

Although a coherent state ansatz has been discussed in Refs. 7
and 21, it has not been yet considered as a variational state. In Ref. 21,
it was shown to yield a phenomenological prediction of the renor-
malization of the rotational constants in the strong-coupling regime.
In contrast, Ref. 7 considered a single-excitation ansatz on top of
a coherent bath, which reveals a critical density beyond which the
impurity acquires one quantum of angular momentum from the
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many-particle bath. In these two studies, the displacement vector β
is set as fixed by the solution for the L = 0 sector, where the rotor
and the phonon cloud do not rotate. In this work, the displacement
operator is generalized to include variational parameters. As a result,
we can fully take into account the phonon cloud deformation caused
by the rotor’s rotation. Moreover, it is straightforward to extend the
study to real-time evolution and dynamical problems.

Using Eq. (8), the variational energy reads

E = ⟨ψ∣Ĥ∣ψ⟩ = BL(L + 1) − 2BJ′ ⋅Λ + BΛ ⋅Λ
+∑

kλμ
Wkλ β

∗
kλμβkλμ +∑

kλ
Vλ(k)(β∗kλ0 + βkλ0), (10)

where

Wkλ ≡ ωk + Bλ(λ + 1), (11)

and the average quantities of angular momentum, Λ ≡ ⟨ψ∣Λ̂∣ψ⟩ and
J′ ≡ ⟨ψ∣Ĵ′∣ψ⟩, are given by

Λα =∑
kλμν

β∗kλμσ
λ,α
μν βkλν,

J′α =∑
nn′

g∗n gn′⟨LMn∣Ĵ′α∣LMn′⟩.
(12)

C. Ground-state properties
As a result of the product-state structure in Eq. (8), the angular

and coherent states’ variational parameters can be optimized sep-
arately in an iterative way where the respective other part is kept
fixed.39 In what follows: we illustrate the optimization scheme in
detail.

Angular state. For the angular state, the effective Hamiltonian
is obtained by tracing out the bosonic bath,

Ĥrot ≡ ⟨C∣Ĥ∣C⟩ = −2BΛ ⋅ Ĵ′ + f (β,β∗), (13)

with

f (β,β∗) = BL(L + 1) + BΛ ⋅Λ
+∑

kλμ
Wkλ β

∗
kλμβkλμ +∑

kλ
Vλ(k)(β∗kλ0 + βkλ0). (14)

Remarkably, Eq. (13) implies that the effective model reduces
to a single “anomalous” (in the sense of commutation relations)
high-dimensional spin in an effective external field, Beff = 2BΛ,
that emerges from the collective rotation of the phonon bath.
Here, the anomalous spin satisfies the anomalous commutation
relations. The effective field, which is real, can be parameterized
by its amplitude and two polar angles, Beff = 2B(Λx,Λy,Λz)
= ∣Beff∣(sin θ cosϕ, sin θ sinϕ, cos θ). We note that the form of the
effective magnetic field is reminiscent of a magnetic monopole, as it
is solely along the radial direction. As a matter of fact, it has been
previously demonstrated that the angulon can be seen as a point
charge on a two-sphere interacting with a magnetic monopole.40

The Hamiltonian equation (13) can be represented in a matrix
form and solved numerically. One finds that the energy is minimized
when the anomalous spin aligns with the effective field, similar to
the conventional single spin in a real magnetic field. One can thus
employ a rotational transformation generated by the anomalous
angular momentum Ĵ′ to diagonalize the Hamiltonian, where the
transformation is given by

D̂′(α,β, γ) = e−iαĴ′z e−iβĴ′y e−iγĴ′z , (15)

which corresponds to a left-handed rotational transfor-
mation. The Hamiltonian after transformation is given by
D̂′†(−ϕ,−θ, 0)ĤrotD̂′†(−ϕ,−θ, 0) = −Ĵ′z and the corresponding
ground state is given by

D̂′(−ϕ,−θ, 0)∣LML⟩ =∑
n

gn∣LMn⟩, (16)

where D′nm is the Wigner D-matrix. To avoid confusion with the nor-
mal spin coherent state, we call this state the anomalous spin coherent
state.

Following Schwinger’s oscillator method,41,42 we derive an ana-
lytical expression for the anomalous spin coherent state, whose
superposition coefficients are given by

gn =
⎛
⎜
⎝

2L

L + n

⎞
⎟
⎠

1/2

(cos
θ
2
)

L+n
(sin

θ
2
)

L−n
e−iϕ(L−n), (17)

which is similar to the normal spin coherent state up to a phase.

FIG. 1. (a) Variational energy Ẽ = E/B on the surface of the effective spin Bloch sphere for L = 1. The Bloch sphere is constructed by the vector J′ parameterized by the
polar angles (θ,ϕ). (b) Projection of the variational energy into the J′x − J′y plane. The energy is independent of ϕ and rotationally invariant about the J′z axis. (c) Variational
energy as a function of θ, which is minimized at the θ = π/2.
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The anomalous spin coherent states can be characterized
by the expectation values of the angular momentum, J′(θ,ϕ)
= L(sin θ cosϕ, sin θ sinϕ, cos θ), pointing at the surface of the
Bloch sphere as shown in Fig. 1(a). These states are macro-
scopic quantum states, which minimize the variance of the angular
momentum. Remarkably, it thus turns out that the angulon ground
state is described by a product state of the bosonic coherent states
and the anomalous spin coherent states.

Bosonic state. For the coherent bath, one can optimize the
variational parameters by imaginary-time evolution,

∂τ ∣C⟩ = −(Ĥb − E)∣C⟩, (18)

where Ĥb = ∑nn′g
∗
n gn′⟨LMn∣Ĥ∣LMn′⟩ is the effective Hamiltonian

for bosons derived by tracing out the angular states. Correspond-
ingly, one can derive the equation of motion for the variational
parameters,

∂τβkλμ = −ηkλμ, (19)

with an effective mean-field Hamiltonian,

ηkλμ =Wkλβkλμ + δμ0Vλ(k) + 2B(Λ − J′) ⋅∑
ν
σλμνβkλν. (20)

For sufficiently long (imaginary) evolution time, the variational
energy converges to a local minimum where ηkλμ

!= 0.
Above, we described a method to approach the local energy

minimum for both the angular and bosonic states by iteratively fix-
ing the other. In this scheme, the angular momentum of bosons, Λ,
will evolve continuously in the imaginary-time evolution, while the
exact diagonalization of angular states can induce J′ to have a sud-
den jump on the Bloch sphere. Finally, a global minimum will be
reached when both processes are performed iteratively.

An alternative approach, leading eventually to the same results,
is to find the local minimum in a self-consistent way. In Fig. 1, we
scan the energies obtained by fixing the angular momentum J′ as
given by the polar angles (θ,ϕ) and performing imaginary-time evo-
lution for the bosonic states. The energies are always minimized
when J′z = 0, correspondingly θ = π/2, due to the rotational sym-
metry along the z′ axis. Moreover, by symmetry, ϕ is an irrelevant
parameter for the static problem. Hence, without loss of general-
ity, we may set θ = π/2 and ϕ = 0 in the following ground-state
calculation.

We next consider the bosonic states in this alternative
approach. In addition to solving the ordinary differential equations
for imaginary-time evolution, the energy minimum can be found in
a self-consistent manner. As discussed above, for the ground state of
the L = 0 sector, the total angular momentum vanishes, J′ = 0. Then,
a saddle point solution of the bosonic states follows:

β(0)kλμ = −δμ0
Vλ(k)
Wkλ

, (21)

with the corresponding ground-state energy,

E0 = −∑
kλ

V2
λ(k)

Wkλ
, (22)

which has been referred to as deformation energy.7

Also for general L sectors, the λ = 0 channel has a simple
solution,

βk00 = −
V0(k)
ωk

. (23)

For the λ = 1 channel, the variational parameters βkλμ are subject to
an effective Hamiltonian, given by

⎛
⎜⎜⎜⎜
⎝

Wk1
√

2B(Λx − J′x) 0
√

2B(Λx − J′x) Wk1
√

2B(Λx − J′x)
0

√
2B(Λx − J′x) Wk1

⎞
⎟⎟⎟⎟
⎠

×
⎛
⎜⎜⎜⎜
⎝

βk11

βk10

βk1−1

⎞
⎟⎟⎟⎟
⎠
= −
⎛
⎜⎜⎜⎜
⎝

0

V1(k)
0

⎞
⎟⎟⎟⎟
⎠

. (24)

Here, we have taken Λy = Λz = 0 since θ = π/2 and ϕ = 0. From this,
one can derive the self-consistent equation,

Λx =∑
k

4BV2
1(k)Wk1(J′x −Λx)

(W2
k1 − 4B2(J′x −Λx)2)2 . (25)

This equation can be solved numerically and one can then obtain
the variational parameters βk1μ by inserting Λx back into Eq. (24).
The resulting energies are identical to the iterative procedure in
imaginary-time evolution.

Renormalized rotational constant. The renormalization of the
rotational constant is one of the key phenomena described by the
angulon theory. In analogy, it is similar to how a phonon cloud leads
to the renormalization of the electron’s mass in the Fröhlich model
that describes the modified translational motion of a particle in a
bosonic medium. In the angulon problem, the rotor excites a rotat-
ing phonon cloud and forms a quasiparticle. This deformation leads
to a decreased effective rotational constant defined by

B∗L =
EL − E0

L(L + 1) . (26)

As a benchmark for our variational solution, we show the
energy of the angulon for the L = 0, 1 sectors in Fig. 2(a) and com-
pare the effective rotational constants obtained by the coherent state
ansatz and the single-excitation ansatz in Fig. 2(b). At large densi-
ties, the results from the two approaches are consistent. However,
in the low-density regime, the single-excitation ansatz predicts an
increasing effective rotational constant. This would indicate the sur-
prising result of a “speeding up” of the rotor, which is inconsistent
with the physics of translational impurities as well as experimen-
tal observations of molecules in superfluid helium nanodroplets. In
contrast, the coherent state ansatz always predicts a decreasing rota-
tional constant, agreeing with the intuition that consistent dressing
of a polaron cloud should hinder the rotation of the composite state
of the rotor and its local environment.
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FIG. 2. (a) Angulon energies Ẽ for L = 0, 1 obtained by the coherent state ansatz.
(b) Effective rotational constants B∗ obtained by the coherent state ansatz and
single-excitation ansatz as a function of the dimensionless superfluid density
ñ = n(mB)−3/2. The results from the two Ansätze are consistent in the large-
density regime, but the single-excitation ansatz predicts an increasing effective
rotational constant in the low-to-intermediate density regime. In contrast, the
coherent state ansatz consistently predicts a decreasing rotational constant.

The quasiparticle weight Z is an important quasiparticle
property, characterizing how well-defined the quasiparticle is. It is
defined as the absolute square of the overlap between the vacuum
state and the ground state,

Z = ∣⟨0∣C⟩∣2 = e−Nph , (27)

where Nph = ∑kλμ ∣βkλμ∣
2 is the particle number of phonons. When Z

is finite, the quasiparticle is well-defined, whereas Z = 0 indicates the
breakdown of the quasiparticle pictures akin to the “orthogonality
catastrophe” described in fermionic systems.43 In Fig. 3, we show the
quasiparticle weight and effective rotational constants as a function
of the rotor–boson interaction amplitude and superfluid density. We
find that compared to the single-excitation ansatz, the quasiparti-
cle weight is more suppressed by interactions in the coherent state
ansatz due to its ability to describe the dressing of the rotor by a
macroscopic number of phonons.

FIG. 3. (a) and (b) Effective rotational constants, and (c) and (d) quasiparticle
weights Z, obtained by the coherent state ansatz (top) and single-excitation ansatz
(bottom) as a function of the superfluid density and the dimensionless rotor–boson
interaction amplitude ũ0 = u0/B (keeping the ratio u0/u1 = 1.75 fixed).

D. Spectral function
We next consider the angulon spectral function obtained

within the coherent state framework. The angulon Green’s func-
tion is defined as G(t) = ⟨ψ(0)∣ψ(t)⟩, where ∣ψ(0)⟩ ≡ ∣LM0⟩⊗ ∣0⟩
represents the unperturbed vacuum state, and ∣ψ(t)⟩ = e−iĤ t ∣ψ(0)⟩
indicates its time-evolution. The analytical structure of its Fourier
transformation G(ω) in the complex frequency plane gives direct
access to the angulon energy, lifetime, and quasi-particle weight. The
quasiparticle spectral function is given by44,45

A(ω) = 2 Re∫
∞

0
dteiωt⟨ψ(0)∣ψ(t)⟩. (28)

Using the coherent state ansatz equation (8), the spectral function is
then given by

A(ω) = 2 Re∫
∞

0
dteiωtg0(t)e−

1
2∑kλμ ∣βkλμ(t)∣2 , (29)

where the variational parameters are treated as time-dependent. The
real-time evolution of ∣ψ(t)⟩ is governed by the Schrödinger equa-
tion, i∂t ∣ψ⟩ = Ĥ∣ψ⟩, from which one can derive the equations of
motion for the variational parameters,

i∂tβkλμ = δμ0Vλ(k) +Wkλβkλμ + 2B(Λ − J′) ⋅∑
ν
σλμνβkλν, (30)

and

i∂tgn = gn[BL(L + 1) + 2BJ′ ⋅Λ − BΛ ⋅Λ

+∑
kλ

Vλ(k)Reβkλ0] − 2B∑
n′

gn′ J
′
nn′ ⋅Λ, (31)

where J′nn′ ≡ ⟨LMn∣Ĵ′∣LMn′⟩.
Importantly, as the initial state ∣ψ(0)⟩ is a zero-angular

momentum state of the bosons, in the coherent state evolution,
the boson angular momentum Λ as well as J′ remain zero (unlike
for the ground state that acquires finite expectation values of these
quantities). As a result, the equation of motion reduce to

i∂tβkλμ = δμ0Vλ(k) +Wkλβkλμ,

i∂tgn = gn[BL(L + 1) +∑
kλ

Vλ(k)Reβkλ0].
(32)

Due to the simplicity of these equations, the time evolution can be
solved analytically, and one obtains the analytical expressions for the
variational parameters,

βkλμ(t) = −
δ0μVλ(k)

Wkλ
(1 − e−iWkλt), (33)

and

gn(t) = δ0,n exp(−iBL(L + 1)t + i∑
kλ

V2
λ(k)

Wkλ
[1 − sinc(Wkλt)]t).

(34)

Figure 4(a) shows the spectral function in dependence on the
superfluid density. The spectral function is drastically broadened in
the intermediate density regime even for the L = 0 sector, which is
consistent with the calculation of quasiparticle weights in Fig. 3(b).

J. Chem. Phys. 158, 134301 (2023); doi: 10.1063/5.0135893 158, 134301-6

© Author(s) 2023

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. (a) Angulon spectral function for L = 0 and 1 as a function of the dimensionless superfluid density within the coherent state ansatz. The lines represent the angulon
energies Ẽ obtained by a saddle point analysis of the coherent state ansatz. Here, we introduce the dimensionless frequency ω̃ = ω/B. (b) and (c) Cuts of the spectral
function at a fixed density for L = 0 in the low- and intermediate-density regime. (d) and (e) Average number of phonon excitations in real-time evolution. The coherent state
result (solid) is compared to a single-excitation ansatz (dashed). The long-time oscillation originates from the discretization of radial momentum k.

In Figs. 4(b) and 4(c), we show cuts of the spectral function in
the low- and intermediate-density regimes, respectively. The angu-
lon spectral line is sharp in the former case and is red-shifted and
broadened for intermediate densities. Intriguingly, such a drastic
broadening has also been found for translational Bose polarons
in the intermediate interaction regime35 which is consistent with
experimental observations.46,47

In Figs. 4(d) and 4(e), we compare the time-dependent aver-
age number of phonon excitations obtained by the single-excitation
and coherent state ansatz for two density regimes. In the single-
excitation ansatz, the excitation number is limited to one by con-
struction, whereas the coherent state does not impose such a limit
and it indeed shows a growth of the phonon number to values
significantly above unity.

We show the spectral function in dependence on the
rotor–boson interaction amplitude ũ0 in three density regimes in
Fig. 5. In all the cases, the spectral peaks are sharp at weak interac-
tions and become unstable when we increase the interaction mag-
nitude. Particularly, in the strong-interaction regime, the spectral
lines are significantly broadened due to a large number of phonon
excitations in the angulon dressing cloud.

III. ROTATIONAL SPECTROSCOPY
The transition energy between molecular rotational states

is experimentally studied using rotational spectroscopy, which
involves applying a microwave or a laser field to a molecule trapped,
e.g., in a superfluid nanodroplet. The response can be directly related
to the angulon spectral function, Eq. (28), which can be re-expressed
in terms of a basis of many-body eigenstates, ∣ f ⟩, of Ĥ as

A(ω) = 2π∑
f
∣⟨ f ∣0⟩∣2δ(ω − E f )

= ∫
∞

−∞
dt⟨0∣e−iĤ t ∣0⟩eiωt , (35)

where ∣0⟩ represents the non-interacting state of the combined
rotor–bath system. As evident from this expression, the spectral
function thus encodes the response of the bath to a sudden switch-
ing of the impurity–bath interaction. Since the spectral function

FIG. 5. Angulon spectral function in dependence of the rotor–boson interaction
magnitude, ũ0 and ũ1 = ũ0/1.75, in (a) small-, (b) intermediate-, and (c) large-
density regimes.

provides a direct measure of how well-defined the quasiparticle is,
thereby we will refer to it as the quasiparticle spectrum to avoid
misunderstanding.

Prior work6 based on the single-excitation ansatz predicts a
regime of angulon instability in the spectrum, where the quasiparti-
cle is unstable and the quasiparticle weight Z is greatly suppressed. It
explains the anomalous broadening of spectral lines as can be seen in
Fig. 6 and observed in experiments.16 However, significant phonon
wings, which are predicted to occur at the unperturbed rotational
transition frequencies and particularly dominate in the instability
regime, have not been observed in experimental rotational spec-
troscopy. This raises a question about the robustness of the model
and the origin of the predicted phonon wings.
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FIG. 6. (a) Spectral function for L = 1 obtained using the single-excitation ansatz.
(b) and (c) Cuts of the spectral lines at fixed densities.

To answer this question, it is essential to realize that in
chemistry experiments instead of a rapid injection (or rapidly
switching on the interactions, as performed in ultracold polaron
experiments45), the molecule is prepared in equilibrium with the
nanodroplet. Only then the molecule is excited to higher angular
momentum states by a laser pulse. Hence, the initial state of the sys-
tem within Fermi’s golden rule description [such as Eq. (35)] has to
be chosen with care. Accounting for the initial state preparation, the
expansion for the transition rate is given by

R(ω) = 2π∑
f
∣⟨ f ∣V̂ ∣i⟩∣2δ(ω − E f + Ei)

= ∫
∞

−∞
dt⟨i∣V̂e−iĤ tV̂ ∣i⟩ei(ω+Ei)t. (36)

Here, the initial state, ∣i⟩ with energy Ei, represents the ground state
of the angulon (i.e., a state of total angular momentum L = 0) instead
of the vacuum state in the quasiparticle spectrum in Eq. (28). The
action of the laser is represented by the operator V̂ , which is the
amplitude of a harmonic perturbation V̂(t) = V̂(eiωt + e−iωt). We
assume a dipole–field interaction between the molecule and the elec-
tric field. Since the first-order effects dominate for dipolar molecules,
the interaction is given by −d̂ ⋅ E(t) ≈ −μ0E0 cos ωt cos θ̂. Here, μ0
is the dipole moment of the molecule and E0 is the amplitude of
the electric field. Then, the laser perturbation reads V̂ = −μ0E0 cos θ̂,
which results in a transition changing rotor angular momentum by
one.

The perturbation V̂ only acts on the rotor state. As a result,
it does not modify the variational manifold for both the single-
excitation and coherent state ansatz, which will be illustrated in
detail in the following two subsections. In brief, we label the ground
state in the L = 0 channel as ∣ψ00⟩, where the second index indicates
M for the single-excitation ansatz and n for the coherent state ansatz.

The perturbation can be written as

V̂ ∼ cos θ̂ =
√

4π
3

Y10(θ̂), (37)

which can be expanded on an angular momentum basis. It excites
the ground state to the L = 1 sector, such that cos θ̂∣ψ00⟩ ≡

√
1
3 ∣ψ
′
10⟩,

where ∣ψ′10⟩ labels an unnormalized state for both the single-
excitation ansatz and coherent state ansatz with the quantum
number L = 1. For convenience, we introduce

R̃(ω) ≡ 3
(μ0E0)2 R(ω)

= ∫
∞

−∞
dt⟨ψ′10(0)∣ψ′10(t)⟩ei(ω+E0)t , (38)

where E0 indicates the ground state energy. Here, the time-evolution
is still governed by the same equations of motion, and one can
numerically calculate the absorption spectrum using real-time evo-
lution. We will next illustrate the calculation for both the coherent
state and single-excitation ansatz.

A. Coherent state ansatz
We first consider the coherent states ansatz. The ground-state

in the laboratory frame is given by Ŝ(∣000⟩⊗ ∣C0⟩). It is worth men-
tioning that the cos θ̂ perturbation is invariant under the rotational
transformation acting on bosons, [Ŝ, V̂] = 0. Then, the spectrum can
be written as

R(ω) = ∫
∞

−∞
dt⟨ψ00∣V̂e−iĤ tV̂ ∣ψ00⟩ei(ω+E0)t. (39)

The ground-state wavefunction and energy have been found in
Eqs. (21) and (22). Next, one can apply the perturbation to the
ground state,

V̂ ∣ψ00⟩ ∼ ∣ψ′10(t = 0)⟩ = ∣100⟩∣C0⟩. (40)

Surprisingly, even though the coherent state predicts a rich
spectral function in the intermediate-density regime as shown in
Fig. 4, the corresponding rotational transition spectrum R(ω) is
always sharp and trivial. Formally, this is caused by the fact that
the mean values of the angular momentum operators Λ̂ and Ĵ′ for
the initial state ∣100⟩∣C0⟩ vanish during the whole time evolution.
According to Eqs. (30) and (31), this renders the time evolution triv-
ial, and the coherent state part does not evolve at all. As for the
angular state, with the constraint of Λ = 0, the equation of motion
reduces to an ordinary linear differential equation,

i∂tgn = gn[BL(L + 1) +∑
kλ

Vλ(k)Reβkλ0]. (41)

Given the initial condition, only the n = 0 channel evolves up to a
phase. As a result, Eq. (41) is trivially solved and we find

R̃(ω) = 2πδ(ω − BL(L + 1)). (42)

This demonstrates that despite its power in describing the renormal-
ization of rotational constants, the coherent state approach yields
only a trivial rotational spectrum and is thus clearly insufficient to
capture the physics of rotational spectroscopy experiments.

The success of coherent states in describing rotational constants
lies in the fact that we consider the ground states for given fixed
total angular momenta L of the combined rotor–bath system; L is
conserved and thus a good quantum number. The reason why the
coherent state ansatz fails in the prediction of the spectrum lies in
the truncation of Hilbert space imposed by the variational ansatz.
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In the calculation of the rotational spectrum (within linear response
theory), one starts from specific initial states and asks about which
final states are accessible by applying a perturbation to the system.
In our calculation, the final states are given by the coherent state
ansatz. This ansatz turns out to be rather restricted in its “flexibility.”
Namely, while a large set of final states is in principle available
within this ansatz, many of these (in particular those that give the
correct prediction of rotational constant renormalization) cannot
be reached due to vanishing overlaps in the time evolution that
describes the linear response of the system (as can be seen directly by
inspection of the time-dependent equation of motions). This situa-
tion would be changed by extending our theory to variational states
that include single-particle excitations on top of a coherent state
ansatz; an interesting direction to explore that is beyond the scope
of this work.

To remedy this shortcoming, it would at least have to be com-
bined with single-particle excitations, allowing the state to evolve
among the variational tangent space.38

B. Single-excitation ansatz
Next, we examine the single-excitation ansatz of Eq. (4).

The self-consistent calculation in Ref. 6 yields the ground-state
variational parameters,

Z1/2
(0) = [1 +∑

kλ

V2
λ(k)

(Wkλ − E0)2 ]
−1

,

β(0)kλμ = (−1)λ+1δλ,μ
Vλ(k)

Wkλ − E0
Z1/2
(0),

(43)

which can be obtained by inserting the ground state energy E0.
Next, one can evaluate the laser perturbation acting on this state,
V̂ ∣ψ00⟩ ∼ ∣ψ′10⟩, with

∣ψ′10⟩ ≡ Z1/2
(0)∣0⟩∣10⟩ +∑

kλμ
∑
jm
β′kλjC

10
jm,λμ∣kλμ⟩∣ jm⟩, (44)

and

β′kλj = (−1)λ
√

2j + 1
3

β(0)kλλC10
j0,λ0. (45)

As evident from Eq. (44), the wavefunction ∣ψ′10⟩ respects the form of
the single-excitation ansatz. Hence, the equations of motion remain
intact,

i∂tZ1/2 = BL(L + 1)Z1/2 +∑
kλj
(−1)λVλ(k)Cj0

L0,λ0βkλj,

i∂tβkλj =Wkjβkλj + (−1)λVλ(k)Cj0
L0,λ0Z1/2,

(46)

with initial conditions given by

Z1/2(0) = Z1/2
(0); βkλj(0) = β′kλj. (47)

Figure 7(a) shows that the rotational transition spectrum R(ω)
still prominently features the instability regime. Figure 7(b) shows a
corresponding cut in the intermediate-density regime. In the insta-
bility regime, the quasiparticle is unstable and the spectral lines are

FIG. 7. (a) Rotational transition spectrum predicted by the single-excitation
ansatz. Here, we introduce the dimensionless rotational spectroscopy,
R̃(ω) ≡ R(ω)/3(μ0E )2. The dashed line represents the effective rotational
constants B∗/B obtained by the single-excitation ansatz as in Fig. 2(b). (b) and
(c) Cuts of spectral lines obtained by the single-excitation ansatz in the low- and
large-density regimes.

significantly broadened, as observed in experiments.16,20 Remark-
ably, phonon wings are completely suppressed. Specifically, in con-
trast, the spectral line away from the instability regime is sharp as
shown in Fig. 7(c). This is in contrast to the quasiparticle spec-
tral function shown in Fig. 6, where pronounced phonon wings are
visible and the spectral line even splits into two.

The phonon wing can be understood as arising from excited
states of the many-body system that features “unbound” phonons
excited by the molecule’s rotation. In rotational spectroscopy, a laser,
which only interacts with the rotor, excites the ground state effi-
ciently only to the lower branch of the L = 1 sector. Since already
the initial state is dressed by phonon excitations, it appears that the
overlap to such excited states is highly suppressed. This is in contrast
to the spectral function where the overlap between the interacting
state and a state without dressing by phonon excitation is relevant. In
other words, the wavefunction for the upper branch has no overlap
with the state ∣ψ′10⟩.

Thus, we make finding that if the laser perturbation and the
equilibrium initial state are correctly taken into account, the spec-
troscopic response function R(ω) exhibits an instability regime but
no phonon wings, which is consistent with rotational spectroscopy
experiments. The importance of the perturbation is obvious since
different types of perturbations correspond to different experi-
mental setups. For example, in electronic excitation spectra, the
helium degrees of freedom are also excited and phonon wings are
observed.8,11,48

As we have seen, the equilibrium initial state plays a key role
in suppressing the phonon wings. This can be demonstrated by
performing the calculation for a vacuum initial state,

V̂ ∣0⟩∣00⟩ ∼ ∣0⟩∣10⟩. (48)

Here, ∣ψ(0)10 ⟩ = ∣0⟩∣10⟩ is the vacuum state at L = 1. In this case, the
absorption spectrum is given by

R̃(ω) = ∫
∞

−∞
dt⟨ψ(0)10 ∣e

−iĤ t ∣ψ(0)10 ⟩e
i(ω+E0)t , (49)

which coincides with the angulon spectral function for L = 1 sector
up to a constant energy offset. Hence, the phonon wings will still
appear.

Our finding highlights the importance of the equilibrium ini-
tial state. It, however, also suggests a way to observe a phonon wing
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in rotational spectroscopy. While the type of perturbation for rota-
tional spectroscopy is fixed, e.g., Eq. (37), one could consider, for
instance, using aligned molecules as an initial state49 or preparing
a non-equilibrium initial state, for example, turning on the laser
pulse before the molecule reaches equilibrium with the bath and by
performing time resolved pump–probe experiments.50,51

IV. CONCLUSION AND DISCUSSION
In this article, we variationally studied the angulon model

which is an effective description for a rotating molecule immersed
in a bosonic bath. We intended to resolve two key issues raised in
the previous research:

(1) the prediction of an apparently non-physical increase of the
effective rotational constants in the intermediate coupling
regime, and

(2) finding an explanation for the unobservable phonon wings in
rotational spectroscopy experiments.

To address the first point, we proposed a coherent state ansatz
in the co-rotating frame that goes beyond previous approaches by
taking into account a macroscopic angulon dressing cloud that is
self-consistently determined. In this approach, first, a rotational
transformation to the molecular frame is performed, partially decou-
pling the impurity and the bath in the rotated Hamiltonian. Vice
versa, the transformation can also be interpreted as acting on the
state where it leads to the entanglement of the impurity and bath.
Next, we considered a product state ansatz of the angular and a
bosonic coherent state, which are treated fully variationally. By
tracing out the angular or bosonic state for such a product state
structure, an efficient model can be obtained, enabling effective
numerics. Specifically, we optimized the variational parameters in
an iterative way. Using this technique, we discovered that the ground
state can be described by a product state between an anomalous spin
coherent state and a bosonic coherent state. Importantly, this ansatz
always predicts a decreased effective rotational constant, which is
consistent with experimental findings. Using the real-time evolu-
tion of the coherent state ansatz, we then predicted the angulon
spectral function. It showed that the number of phonon excitations
grows to a large value in the intermediate-density regime while being
accompanied by a significant broadening of spectral lines.

In order to address the second challenge, we used Fermi’s
golden rule to examine the rotational spectroscopy for L = 0→ 1
transitions. We took into account the laser perturbation and the
effect of the formation of the interacting equilibrium initial state,
which were neglected in previous studies. As a result, we found
that the instability regime predicted by the single-excitation ansatz,
where spectral lines are broadened, is robust. The phonon wings,
which are found in the spectral function, cannot be observed using
conventional rotational spectroscopy because the equilibrium initial
state has no overlap with the excited states. This resolves the con-
flict between theory and experiment of observing no phonon wings
despite their presence in simple angulon theory.

In this work, we employed both the single-excitation and the
coherent state ansatz. However, they both can only explain different
parts of the experimental results. While the coherent state, which is
the exact solution in the slowly rotating limit, works well in describ-
ing the ground-state properties, such as the effective rotational

constants, it is insufficient in describing excited-state properties,
such as those important for fully frequency-resolved rotational spec-
troscopy. On the contrary, the single-excitation ansatz works well for
describing excited-state properties but performs badly in describing
the ground state. Hence, it is evident that further work in generaliz-
ing the ansatz is required. One promising direction is to consider a
single excitation acting on top of a variational coherent state, going
beyond Ref. 7, in which the coherent state variational parameters are
fixed.

Moreover, we note that the coherent state approach is challeng-
ing in the low-density regime when considering the L ≥ 2 sector.
Practically, this originates from the denominator of Eq. (25), which
can reach a singular point, implying that the self-consistent equa-
tions do not guarantee a solution. Specifically, this can be seen from
the expression,

W2
k1 − 4B2(L −Λx)2 = (ω2

k + 2Bωk) − 4B2[(L −Λx)2 − 1]. (50)

When (ω2
k + 2Bωk) ≥ 0 and [(L −Λx)2 − 1] > 0, Eq. (50) can vanish

as a function of k. Since Λx ≤ L, it is always negative for L = 0, 1. For
L ≥ 2, however, it is only negative whenΛx is sufficiently large, which
necessitates strong interactions or large density. A similar situation
occurs when numerically performing the imaginary-time evolution
given by Eq. (19), in which the static variational parameter β turns
out to be unphysical in the low-density regime for the L ≥ 2. It will
be interesting to further explore this regime, which may be related
to dynamic instability in the system.

Finally, it is important to realize that the Bogoliubov approxi-
mation is employed to derive the angulon model.1 This restricts us to
treat the boson–boson interaction within a mean-field framework,
and this approximation is strictly only valid when the interactions
are weak and the Bogoliubov phonons are stable. With the coherent
state approach, it is, however, also in principle possible to directly
deal with the first-principle model, i.e., a quantum rotor immersed in
the interacting Bose gas. Further exploration in this direction holds
promise to reveal deeper insight into the quasiparticle instability
regime as well as into higher angular momentum sectors.
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APPENDIX A: ANOMALOUS SPIN COHERENT STATE

Here, we provide a derivation of the ground state of the effec-
tive single anomalous spin model, cf. Eq. (13), in terms of the
angular momentum basis ∣LMn⟩. The spin-dependent part of the
Hamiltonian is given by

Ĥ = −n ⋅ Ĵ′, (A1)

where n = (sin θ cosϕ, sin θ sinϕ, cos θ). The anomalous angular
momentum operators satisfy the algebra,

Ĵ′2∣LMn⟩ = L(L + 1)∣LMn⟩, (A2)

Ĵ′z ∣LMn⟩ = n∣LMn⟩, (A3)

Ĵ′±∣LMn⟩ = C±Ln∣LM(n ∓ 1)⟩, (A4)

where C±Ln = ∓ 1√
2

√
(L ± n)(L ∓ n + 1).

Next, we introduce the anomalous rotation operators,

D̂′(α,β, γ) = e−iαĴ′z e−iβĴ′y e−iγĴ′z , (A5)

which, unlike the normal rotation operators, indicate left-handed
rotation.52,53 The Hamiltonian can be diagonalized by the transfor-
mation,

Ĥ = −D̂′(−ϕ,−θ, 0)Ĵ′zD̂′†(−ϕ,−θ, 0). (A6)

This makes evident that the ground state can be expressed as

∣ψ0⟩ = D̂′(−ϕ,−θ, 0)∣LML⟩ =∑
n

gn∣LMn⟩, (A7)

where the superposition coefficients are given by
gn = D′LnL(−ϕ,−θ, 0). Here, D′Lnm are the matrix elements of the
anomalous Wigner D-matrix, defined as

D′Lnm(α,β, γ) ≡ ⟨LMn∣e−iαĴ′z e−iβĴ′y e−iγĴ′z ∣LMm⟩,
= e−iαn−iγmd′Lnm. (A8)

The small Wigner d-operator and matrix elements are defined as
d̂′(β) ≡ e−iβĴ′y and d′Lnm = ⟨LMn∣e−iβĴ′y ∣LMm⟩, respectively.

Following Schwinger’s oscillator method,41,42 we derive an
analytical expression for the anomalous d-matrix, which is given by

d′(L)m′m(β) =∑
k
(−1)k+m+m′

×
√
( j −m)!( j +m)!( j +m′)!( j −m′)!

( j −m − k)!k!( j −m′ − k)!(k +m +m′)!

× (cos
β
2
)

2j−2k−m−m′

(sin
β
2
)

2k+m+m′

. (A9)

In deriving the anomalous spin coherent state, we consider the
special case of the Wigner d-matrix, m = L. Then, one can directly
act with rotation operator on the state, i.e., D̂′(−ϕ,−θ, 0)∣LML⟩, to
obtain the superposition coefficients equation (17).

APPENDIX B: EQUATIONS OF MOTION
FOR THE SINGLE-EXCITATION ANSATZ

The single-excitation ansatz has been introduced in Eq. (4).
Its variational energy can be obtained by solving the self-consistent
equation,6

E = BL(L + 1) − ΣL(E), (B1)

where the self-energy is given by

ΣL(E) =∑
kλj

V2
λ(k)(C

j0
L0,λ0)

2

Wkj − E
. (B2)

The variational parameters are given by

∣Z(0)∣ = [1 +∑
kλ

V2
λ(k)

(Wkλ − E0)2 ]
−1

, (B3)

and

β(0)kλj = δλ, j
(−1)λ+1Vλ(k)
(Wkj − E0)2 ∣Z

(0)∣1/2. (B4)

The equations of motion of the variational parameters are
derived, in turn, based on the time-dependent variational principle,

L = ⟨ψ∣i∂t − Ĥ∣ψ⟩,
d
dt

∂L
∂ ḟ
− ∂L

∂ f
= 0,

(B5)

where f denotes the time-dependent variational parameters Z1/2(t)
and βkλj(t).
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