
Vamos:
Middleware for Best-Effort Third-Party Monitoring

Marek Chalupa (�), Fabian Muehlboeck ,
Stefanie Muroya Lei , and Thomas A. Henzinger

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
marek.chalupa@ista.ac.at

Abstract. As the complexity and criticality of software increase every
year, so does the importance of run-time monitoring. Third-party moni-
toring, with limited knowledge of the monitored software, and best-effort
monitoring, which keeps pace with the monitored software, are especially
valuable, yet underexplored areas of run-time monitoring. Most existing
monitoring frameworks do not support their combination because they
either require access to the monitored code for instrumentation purposes
or the processing of all observed events, or both.
We present a middleware framework, Vamos, for the run-time monitor-
ing of software which is explicitly designed to support third-party and
best-effort scenarios. The design goals of Vamos are (i) efficiency (keep-
ing pace at low overhead), (ii) flexibility (the ability to monitor black-box
code through a variety of different event channels, and the connectability
to monitors written in different specification languages), and (iii) ease-
of-use. To achieve its goals, Vamos combines aspects of event broker and
event recognition systems with aspects of stream processing systems.
We implemented a prototype toolchain for Vamos and conducted exper-
iments including a case study of monitoring for data races. The results
indicate that Vamos enables writing useful yet efficient monitors, is com-
patible with a variety of event sources and monitor specifications, and
simplifies key aspects of setting up a monitoring system from scratch.

1 Introduction

Monitoring—the run-time checking of a formal specification—is a lightweight
verification technique for deployed software. Writing monitors is especially chal-
lenging if it is third-party and real-time. In third-party monitoring, the monitored
software and the monitoring software are written independently, in order to in-
crease trust in the monitor. In the extreme case, the monitor has very limited
knowledge of and access to the monitored software, as in black-box monitoring.
In real-time monitoring, the monitor must not slow down the monitored software
while also following its execution close in time. In the extreme case, the monitor
may not be able to process all observed events and can check the specification
only approximately, as in best-effort monitoring.

We present middleware—called Vamos (“Vigilant Algorithmic Monitoring
of Software”)—which facilitates the addition of best-effort third-party monitors
to deployed software. The primary goals of our middleware are (i) performance

© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 260–281, 2023.
https://doi.org/10.1007/978-3-031-30826-0_15

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0003-1548-0177
http://orcid.org/0000-0002-6559-7050
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-031-30826-0_15
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30826-0_15&domain=pdf


(keeping pace at low overhead), (ii) flexibility (compatibility with a wide range
of heterogeneous event sources that connect the monitor with the monitored
software, and with a wide range of formal specification languages that can be
compiled into Vamos), and (iii) ease-of-use (the middleware relieves the designer
of the monitor from system and code instrumentation concerns).

All of these goals are fairly standard, but Vamos’ particular design tradeoffs
center around making it as easy as possible to create a best-effort third-party
monitor of actual software without investing much time into low-level details of
instrumentation or load management. In practice, instrumentation—enriching
the monitored system with code that is gathering observations on whose basis
the monitor generates verdicts—is a key part of writing a monitoring system
and affects key performance characteristics of the monitoring setup [11]. These
considerations become even more important in third-party monitoring, where the
limited knowledge of and access to the monitored software may force the monitor
to spend more computational effort to re-derive information that it could not
observe, or combine it from smaller pieces obtained from more (and different)
sources. By contrast, current implementations of monitor specification languages
mostly offer either very targeted instrumentation support for particular systems
or some general-purpose API to receive events, or both, but little to organize
multiple heterogeneous event streams, or to help with the kinds of best-effort
performance considerations that we are concerned with. Thus, Vamos fills a gap
left open by existing tools.

Our vision for Vamos is that users writing a best-effort third-party monitor
start by selecting configurable instrumentation tools from a rich collection. This
collection includes tools that periodically query webservices, generate events for
relevant system calls, observe the interactions of web servers with clients, and
of course standard code instrumentation tools. The configuration effort for each
such event source largely consists of specifying patterns to look for and what
events to generate for them. Vamos then offers a simple specification language
for filtering and altering events coming from the event sources, and simple yet
expressive event recognition rules that produce a single, global event stream
by combining events from a (possibly dynamically changing) number of event
sources. Lastly, monitoring code as it is more generally understood—which could
be written directly or generated from existing tools for run-time verification like
LTL formulae [47], or stream verification specifications [8] such as TeSSLa [41]—
processes these events to generate verdicts about the monitored system.

Vamos thus represents middleware between event sources that emit events
and higher-level monitoring code, abstracting away many low-level details about
the interaction between the two. Users can employ both semi-synchronous and
completely asynchronous [11] interactions with any or all event sources. Between
these two extremes, to decouple the higher-level monitoring code’s performance
from the overhead incurred by the instrumentation, while putting a bound on
how far the monitoring code can lag behind the monitored system, we provide a
simple load-shedding mechanism that we call autodrop buffers, which are buffers
that drop events when the monitoring code cannot keep up with the rate of in-

Vamos : Middleware for Best-Effort Third-Party Monitoring 261



coming events, while maintaining summarization data about the dropped events.
This summarization data can later be used by our event recognition system when
it is notified that events were dropped; some standard monitoring specification
systems can handle such holes in their event streams automatically [32,42,54].
The rule-based event recognition system allows grouping and ordering buffers
dynamically to prioritize or rotate within variable sets of similar event sources,
and specifying patterns over multiple events and buffers, to extract and combine
the necessary information for a single global event stream.

Data from event sources is transferred to the monitor using efficient lock-free
buffers in shared memory inspired by Cache-Friendly Asymmetric Buffers [29].
These buffers can transfer over one million events per second per event source
on a standard desktop computer. Together with autodrop buffers, this satisfies
our performance goal while keeping the specification effort low. As such, Va-
mos resembles a single-consumer version of an event broker [18,58,48,55,26,1]
specialized to run-time monitoring.

The core features we built Vamos around are not novel on their own, but
to the best of our knowledge, their combination and application to simplify
best-effort third-party monitoring setups is. Thus, we make the following contri-
butions:

– We built middleware to connect higher-level monitors with event sources,
addressing particular challenges of best-effort third-party monitoring (Sec-
tion 2), using a mixture of efficient inter-process communication and easy-to-
use facilities for load management (Section 3) on one hand, and buffer groups
and other event recognition abstractions (Section 4) on the other hand.

– We implemented a compiler for Vamos specifications, a number of event
sources, and a connector to TeSSLa [41] monitors (Section 5).

– We conducted some stress-test experiments using our framework, as well as
a case study in which we implemented a monitor looking for data races,
providing evidence of the feasibility of low-overhead third-party monitoring
with simple specifications (Section 6).

2 Architectural Overview

Writing a run-time monitor can be a complex task, but many tools to express
logical reasoning over streams of run-time observations [19,34,16,49,24,27,41]
exist. However, trying to actually obtain a concrete stream of observations from
a real system introduces a very different set of concerns, which in turn have a
huge effect on the performance properties of run-time monitoring [11].

The goal of Vamos is to simplify this critical part of setting up a monitoring
system, using the model shown in Figure 1. On the left side, we assume an arbi-
trary number of distinct event sources directly connected to the monitor. This is
particularly important in third-party monitoring, as information may need to be
collected from multiple different sources instead of just a single program, but can
be also useful in other monitoring scenarios, e.g. for multithreaded programs.

M. Chalupa et al.262



...
Arbiter Buffer

Arbiter Buffer

...
Stream Processor

Stream Processor

...
Source Buffer

Source Buffer

Arbiter Monitor
Buffer Monitor

Event Source

...
Event Source

Performance Layer Correctness Layer

Monitoring SystemMonitored
System

Fig. 1. The components of a Vamos setup.

The right-most component is called the monitor, representing the part of the
monitoring system that is typically generated by a monitoring specification tool,
usually based on a single global event stream. As middleware, Vamos connects
the two, providing abstractions for common issues that monitor writers would
otherwise have to address with boilerplate, but still complicated code.

Given that there are multiple event sources providing their own event streams,
but only one global event stream consumed by the monitor, a key aspect is merg-
ing the incoming streams into one, which happens in the arbiter. Third-party
monitoring often cannot rely on the source-code-based instrumentation that is
otherwise common [21,4,14,16,25]; for example, TeSSLa1 [41] comes with a basic
way of instrumenting C programs by adding annotations into the specification
that identify events with function calls or their arguments. Instead, it has to rely
on things that can be reliably observed and whose meaning is clear, for example
system calls, calls to certain standard library functions, or any other information
one can gather from parts of the environment one controls, such as sensors or
file system. These do not necessarily correspond in a straightforward way to the
events one would like to feed into the higher-level monitor and thus need to be
combined or split up in various ways. For example, when a program writes a line
to the standard output, the data itself might be split into multiple system calls
or just be part of a bigger one that contains multiple lines, and there are also
multiple system calls that could be used. Therefore, the arbiter provides a way
to specify a rule-based event recognition system to generate higher-level events
from combinations of events on the different event sources.

Another common assumption in monitoring systems is some global notion
of time that can be used to order events. This is not necessarily true for multi-
ple, heterogeneous event sources, and even just observing the events of a multi-
threaded program can cause events to arrive in an order that does not represent
causality. Vamos arbiter specifications are flexible enough to support many user-
defined ways of expressing ways of merging events into a single global stream.

Doing this kind of sorting and merging and then potentially arbitrarily com-
plex other computations in both the arbiter and the monitor may take longer
than it takes the monitored system to generate events. Especially in third-party
monitoring, a monitor may have to reconstruct information that is technically

1 We keep referring to TeSSLa in the rest of the paper and also chose to use it in our
implementation because it is one of the most easily available existing tools we could
find. In general, the state of the field is that, while many papers describing similar
tools exist, few are actually available [48].

Vamos : Middleware for Best-Effort Third-Party Monitoring 263



1 stream type Observation { Op(arg : int, ret : int); }
2 event source Program : Observation to autodrop(16,4)
3 arbiter : Observation {
4 on Program: hole(n) | ;
5 on Program: Op(arg, ret) | yield;
6 }
7 monitor(2) { on Op(arg, reg) $$ CheckOp(arg, ret); $$ }

Listing 1.1. A basic asynchronous best-effort monitor.

present in the monitored system but cannot be observed, or, worse, the monitor
may have to consider multiple different possibilities if information cannot be reli-
ably recomputed. However, as part of our performance goal, we want the monitor
to not lag too far behind the monitored system. Therefore, our design splits the
monitoring system into the performance and correctness layers. In between the
two, events may be dropped as a simple load-shedding strategy.

The performance layer, on the other hand, sees all events and processes each
event stream in parallel. Stream processors enable filtering and altering the events
that come in, reducing pressure and computational load on the correctness layer.
This reflects that in third-party monitoring, observing coarse-grained event types
like system calls may yield many uninteresting events. For example, all calls to
read may be instrumented, but only certain arguments make them interesting.

A Simple Example Listing 1.1 shows a full Vamos specification (aside from
the definition of custom monitoring code in a C function called CheckOp). Stream
types describe the kinds of events and the memory layout of their data that can
appear in a particular buffer; in this example, streams of type Observation

contain only one possible event named Op with two fields of type int. For source
buffers—created using event source descriptions as in line 2—these need to be
based on the specification of the particular event source. Each event source is
associated with a stream processor; if none is given (as in this example), a default
one simply forwards all events to the corresponding arbiter buffer, here specified
as an autodrop buffer that can hold up to 16 events and when full keeps dropping
them until there is again space for at least four new events. Using an autodrop
buffer means that in addition to the events of the stream type, the arbiter may
see a special hole event notifying it that events were dropped. In this example,
the arbiter simply ignores those events and forwards all others to the monitor,
which runs in parallel to the arbiter with a blocking event queue of size two, and
whose behavior we implemented directly in C code between $$ escape characters.

3 Efficient Instrumentation

Our goals for the performance of the monitor are to not incur too much overhead
on the monitored system, and for the monitor to be reasonably up-to-date in
terms of the lag between when an event is generated and when it is processed. The

M. Chalupa et al.264



key features Vamos offers to ensure these properties while keeping specifications
simple are related to the performance layer, which we discuss here.

3.1 Source Buffers and Stream Processors

Even when instrumenting things like system calls, in order to extract informa-
tion from them in a consistent state, the monitored system will have to be briefly
interrupted while the instrumentation copies the relevant data. A common solu-
tion is to write this data to a log file that the monitor is incrementally processing.
This approach has several downsides. First, in the presence of multiple threads,
accesses to a single file require synchronization. Second, the common use of string
encodings requires extra serialization and parsing steps. Third, file-based buffers
are typically at least very large or unbounded in size, so slower monitors even-
tually exhaust system resources. Finally, writing to the log uses relatively costly
system calls. Instead, Vamos event sources transmit raw binary data via chan-
nels implemented as limited-size lock-free ring buffer in shared memory, limiting
instrumentation overhead and optimizing throughput [29]. To avoid expensive
synchronization of different threads in the instrumented program (or just to
logically separate events), Vamos also allows dynamically allocating new event
sources, such that each thread can write to its own buffer(s). The total number
of event sources may therefore vary across the run of the monitor.

For each event source, Vamos allocates a new thread in the performance
layer to process events from this source2. In this layer, event processors can
filter and alter events before they are forwarded to the correctness layer, all in
a highly parallel fashion. A default event processor simply forwards all events.
The computations done here should be done at the speed at which events are
generated on that particular source, otherwise the source buffer will fill up and
eventually force the instrumentation to wait for space in the buffer.

3.2 Autodrop Buffers

As we already stated, not all computations of a monitor may be able to keep
up with the monitored system. Our design separates these kinds of computa-
tions into the correctness layer, which is connected with the performance layer
via arbiter buffers. The separation is achieved by using autodrop buffers. These
buffers provide the most straightforward form of load management via load shed-
ding [59]: if there is not enough space in the buffer, it gathers summarization
information (like the count of events since the buffer became full) and other-
wise drops the events forwarded to it. Once free space becomes available in the
buffer, it automatically inserts a special hole event containing the summarization
information. The summarization ensures that not all information about dropped
2 When event sources can be dynamically added, the user may specify a limit to how
many of them can exist concurrently to avoid accumulating buffers the monitor
cannot process fast enough. When that limit is hit, new event sources are rejected
and the instrumentation drops events that would be forwarded to them.

Vamos : Middleware for Best-Effort Third-Party Monitoring 265



events is lost, which can help to reduce the impact of load shedding. At mini-
mum, the existence of the hole event alone makes a difference in monitorability
compared to not knowing whether any events have been lost [35], and is used as
such in some monitoring systems [32,42,54].

In addition to autodrop buffers, arbiter buffers can also be finite-size buffers
that block when space is not available, or ininite-size buffers. The former may
slow down the stream processor and ultimately the event source, while the latter
may accumulate data and exhaust available resources. For some event sources,
this may not be a big risk, and it eliminates the need to deal with hole events.

4 Event Recognition, Ordering, and Prioritization

Vamos’ arbiter specifications are a flexible, yet simple way to organize the infor-
mation gathered from a—potentially variable—number of heterogeneous event
sources. In this section, we discuss the key relevant parts of such specifications—a
more complete specification can be found in the Technical Report [13].

4.1 Arbiter Rules

We already saw simple arbiter rules in Listing 1.1, but arbiter rules can be
much more complex, specifying arbitrary sequences of events at the front of
arbitrarily many buffers, as well as buffer properties such as a minimum number
of available events and emptiness. Firing a rule can also be conditioned by an
arbitrary boolean expression. For example, one rule in the Bank example we use
in our evaluation in Section 6 looks as follows:

1 on Out : transfer(t2, src, tgt) transferSuccess(t4) |,
2 In : numIn(t0, act) numIn(t1, acc) numIn(t3, amnt) |
3 where $$ t2 == t0 + 4 $$
4 $$ $yield SawTransfer(src, tgt, amnt); ... $$

This rule matches multiple events on two different buffers (In and Out), describ-
ing a series of user input and program output events that together form a single
higher-level event SawTransfer, which is forwarded to the monitor component
of the correctness layer. Rules do not necessarily consume the events they have
looked at; some events may also just serve as a kind of lookahead. The “|” charac-
ter in the events sequence pattern separates the consumed events (left) from the
lookahead (right). Code between $$ symbols can be arbitrary C code with some
special constructs, such as the $yield statement (to forward events) above.

The rule above demonstrates the basic event-recognition capabilities of ar-
biters. By ordering the rules in a certain way, we can also prioritize processing
events from some buffers over others. Rules can also be grouped into rule sets
that a monitor can explicitly switch between in the style of an automaton.

M. Chalupa et al.266



4.2 Buffer Groups

The rules shown so far only refer to arbiter buffers associated with specific,
named event sources. As we mentioned before, Vamos also supports creating
event sources dynamically during the run of the monitoring system. To be able
to refer to these in arbiter rules, we use an abstraction we call buffer groups.

As the name suggests, buffer groups are collections of arbiter buffers whose
membership can change at run time. They are the only way in which the arbiter
can access dynamically created event sources, so to allow a user to distinguish
between them and manage associated data, we extend stream types with stream
fields that can be read and updated by arbiter code. Buffer groups are declared
for a specific stream type, and their members have to have that stream type3.
Therefore, each member offers the same stream fields, which we can use to com-
pare buffers and order them for the purposes of iterating through the buffer
group. Now the arbiter rules can also be choice blocks with more rules nested
within them, as follows (Both is a buffer group and pos is a stream field):

1 choose F,S from Both {
2 on F : Prime(n,p) | where $$ $F.pos < $S.pos $$
3 $$ ... $$
4 on F : hole(n) |
5 $$ $F.pos = $F.pos + n; $$
6 }

This rule is a slightly simplified version of one in the Primes example in Section 6.
This example does not use dynamically created buffers, but only has two event
sources, and uses the ordering capabilities of buffer groups to prioritize between
the buffers based on which one is currently “behind” (expressed in the stream
field pos, which the buffer group Both is ordered by). The choose rule tries to
instantiate its variables with distinct members from the buffer group, trying out
permutations in the lexicographic extension of the order specified for the buffer
group. If no nested rule matches for a particular instantiation, the next one in
order is tried, and the choose rule itself fails if no instantiation finds a match.

To handle dynamically created event sources, corresponding stream processor
rules specify a buffer group to which to add new event sources, upon which the
arbiter can access them through choose rules. In most cases, we expect that
choose blocks are used to instantiate a single buffer, in which case we only need
to scan the buffer group in its specified order. Here, a round-robin order allows
for fairness, while field-based orderings allow more detailed control over buffers
prioritization, as it may be useful to focus on a few buffers at the expense of
others, as in our above example.

Another potential option for ordering schemes for buffer groups could be
based on events waiting in them, or even the values of those events’ associated
data. Vamos currently does not support this because it makes sorting much more

3 Note that stream processors may change the stream type between the source buffer
and arbiter buffer, so event sources may use different types, but their arbiter buffers
may be grouped together if processed accordingly.

Vamos : Middleware for Best-Effort Third-Party Monitoring 267



expensive—essentially, all buffers may have to be checked in order to determine
the order in which to try matching them against further rules. Some of our
experiments could have made use of such a feature, but in different ways—future
work may add mechanisms that capture some of these ways.

5 Implementation

In this section, we briefly review the key components of our implementation.

5.1 Source Buffers and Event Sources

The source buffer library allows low-overhead interprocess communication be-
tween a monitored system and the monitor. It implements lock-free asynchronous
ring buffers in shared memory, inspired by Cache-Friendly Asymmetric Buffer-
ing [29], but extended to handle entries larger than 64 bits4. The library allows
setting up an arbitrary number of source buffers with a unique name, which a
monitor can connect to explicitly, and informing such connected monitors about
dynamically created buffers. A user can also provide stream type information so
connecting monitors can check for binary compatibility.

We have used the above library to implement an initial library of event
sources: one that is used for detecting data races, and several which use either
DynamoRIO [9] (a dynamic instrumentation framework) or the eBPF subsys-
tem of the Linux Kernel [10,28,50] to intercept the read and write (or any
other) system calls of an arbitrary program, or to read and parse data from file
descriptors. The read/write related tools allow specifying an arbitrary number
of regular expressions that are matched against the traced data, and associated
event constructors that refer to parts of the regular expressions from which to
extract the relevant data. Example uses of these tools are included in our arti-
fact [12].

5.2 The Vamos Compiler and the TeSSLa Connector

The compiler takes a Vamos specification described in the previous sections and
turns it into a C program. It does some minimal checking, for example whether
events used in parts of the program correspond to the expected stream types,
but otherwise defers type-checking to the C compiler. The generated program
expects a command-line argument for each specified event source, providing the
name of the source buffer created by whatever actual event source is used. Event
sources signal when they are finished, and the monitor stops once all event
sources are finished and all events have been processed.

The default way of using TeSSLa for online monitoring is to run an offline
monitor incrementally on a log file of serialized event data from a single global
4 Entries have the size of the largest event consisting of its fixed-size fields and iden-
tifiers for variable-sized data (strings) transported in separately managed memory.

M. Chalupa et al.268



event source. A recent version of TeSSLa [33] allows generating Rust code for
the stream processing system with an interface to provide events and drive the
stream processing directly. Our compiler can generate the necessary bridging
code and replace the monitor component in Vamos with a TeSSLa Rust moni-
tor. We used TeSSLa as a representative of higher-level monitoring specification
tools; in principle, one could similarly use other standard monitor specification
languages, thus making it easier to connect them to arbitrary event sources.

6 Evaluation

Our stated design goals for Vamos were (i) performance, (ii) flexibility, and
(iii) ease-of-use. Of these, only the first is truly quantitative, and the major-
ity of this section is devoted to various aspects of it. We present a number of
benchmark programs, each of which used Vamos to retrieve events from differ-
ent event sources and organize them for a higher-level monitor in a different way,
which provides some qualitative evidence for its flexibility. Finally, we present a
case study to build a best-effort data-race monitor (Section 6.4), whose relative
simplicity provides qualitative evidence for Vamos’ ease of use.

In evaluating performance, we focus on two critical metrics:

1. How much overhead does monitoring impose on the monitored system? We
measure this as the difference of wall-clock running times.

2. How well can a best-effort third-party monitor cover the behavior of the
monitored program? We measure this as the portion of errors a monitor can
(not) find.

Our core claim is that Vamos allows building useful best-effort third-party
monitors for programs that generate hundreds of thousands of events per second
without a significant slow down of the programs beyond the unavoidable cost of
generating events themselves. We provide evidence that corroborates this claim
based on three artificial benchmarks that vary various parameters and one case
study implementation of a data race monitor that we test on 391 benchmarks
taken from SV-COMP 2022 [7].

Experimental setup All experiments were run on a common personal com-
puter with 16GB of RAM and an Intel(R) Core(TM) i7-8700 CPU with 6
physical cores running on 3.20GHz frequency. Hyper-Threading was enabled and
dynamic frequency scaling disabled. The operating system was Ubuntu 20.04.
All provided numbers are based on at least 10 runs of the relevant experiments.

6.1 Scalability Tests

Our first experiment is meant to establish the basic capabilities of our arbiter
implementation. An event source sends 10 million events carrying a single 64-bit
number (plus 128 bits of metadata), waiting for some number of cycles between

Vamos : Middleware for Best-Effort Third-Party Monitoring 269



101 102 103

Arbiter buffer size

40

60

80

100
Pr

oc
es

se
d 

ev
en

ts
 (%

)

Waiting [cyc.]
0
10
20
30
40
50

60
70
80
90
100
200

Fig. 2. The percentage of events that reached the final stage of the monitor in a stress
test where the source sends events rapidly. Parameters are different arbiter buffer sizes
(x-axis) and the delay (Waiting) of how many empty cycles the source waits between
sending individual events. The shading around lines shows the 95% confidence interval
around the mean of the measured value. The source buffer was 8 pages large, which
corresponds to a bit over 1 300 events.

each event. The performance layer simply forwards the events to autodrop buffers
of a certain size, the arbiter retrieves the events, including holes, and forwards
them to the monitor, which keeps track of how many events it saw and how
many were dropped. We varied the number of cycles and the arbiter buffer sizes
to see how many events get dropped because the arbiter cannot process them
fast enough—the results can be seen in Figure 2.

At about 70 cycles of waiting time, almost all events could be processed
even with very small arbiter buffer sizes (4 and up). In our test environment,
this corresponds to a delay of roughly 700ns between events, which means that
Vamos is able to transmit approximately 1.4 million of events per second.

6.2 Primes

As a stress-test where the monitor actually has some work to do, this benchmark
compares two parallel runs of a program that generates streams of primes and
prints them to the standard output, simulating a form of differential monitor-
ing [45]. The task of the monitor is to compare their output and alert the user
whenever the two programs generate different data. Each output line is of the
form #n : p, indicating that p is the nth prime. This is easy to parse using reg-
ular expressions, and our DynamoRIO-based instrumentation tool simply yields
events with two 32-bit integer data fields (n and p).

While being started at roughly the same time, the programs as event sources
run independently of each other, and scheduling differences can cause them to
run out of sync quickly. To account for this, a Vamos specification needs to al-
locate large enough buffers to either keep enough events to make up for possible
scheduling differences, or at least enough events to make it likely that there is

M. Chalupa et al.270



10k 20k 30k 40k
Primes generated

0

2

4

6

8

10

12

Ov
er

he
ad

 [%
]

Native

10k 20k 30k 40k
Primes generated

Monitor
Arbiter buff. size

128
512
1024
2048

10k 20k 30k 40k
Primes generated

20

40

60

80

100

Fo
un

d 
er

ro
rs

 [%
]

Fig. 3. Overheads (left) and percentage of found errors (right) in the primes benchmark
for various numbers of primes and arbiter buffer sizes relative to DynamoRIO-optimized
but not instrumented runs. DynamoRIO was able to optimize the program so much
that the native binary runs slower than the instrumented one.

some overlap between the parts of the two event streams that are not automat-
ically dropped. The arbiter uses the event field for the index variable n to line
up events from both streams, exploiting the buffer group ordering functionality
described in Section 4.2 to preferentially look at the buffer that is “behind”, but
also allowing the faster buffer to cache a limited number of events while waiting
for events to show up on the other one. Once it has both results for the same
index, the arbiter forwards a single pair event to the monitor to compare them.

Figure 3 shows results of running this benchmark in 16 versions, generating
between 10 000 and 40 000 primes with arbiter buffer sizes ranging between 128
and 2024 events. The overheads of running the monitor are small, do not differ
between different arbiter buffer sizes, and longer runs amortize the initial cost
of dynamic instrumentation. We created a setting where one of the programs
generates a faulty prime about once every 10 events and measured how many
of these discrepancies the monitor can find (which depends on how many events
are dropped). Unsurprisingly, larger buffer sizes are better at balancing out the
scheduling differences that let the programs get out of sync. As long as the
programs run at the same speed, there should be a finite arbiter buffer size that
counters the desynchronization. In these experiments, this size is 512 elements.

Primes with TeSSLa We experimented with a variation of the benchmark
that uses a very simple TeSSLa [17,41] specification receiving two streams for
each prime generator (i.e., four streams in total): one stream of indexed primes
as in the original experiment, and the other with hole events. The specification
expects the streams to be perfectly lined up and checks that, whenever the last-
seen pairs on both streams have the same index, they also contain the same
prime (and ignores non-aligned pairs of primes). We wrote three variants of an
arbiter to go in front of that TeSSLa monitor:

Vamos : Middleware for Best-Effort Third-Party Monitoring 271



0 200 400 600 800 1000
Arbiter buffer size

0

25

50

75

100
Ch

ec
ke

d 
ev

en
ts

 (%
)

Arbiter type
align
alternate
forward

0 200 400 600 800 1000
Arbiter buffer size

0

25

50

75

100

Fo
un

d 
er

ro
rs

 (%
)

Arbiter type
align
alternate
forward

Fig. 4. Percentage of primes checked and errors found (of 40 000 events in total) by
the TeSSLa monitor for different arbiter specifications and arbiter buffer sizes.

1. the forward arbiter just forwards events as they come; it is equivalent to writ-
ing a script that parses output of generators and (atomically) feeds events
into a pipe from which TeSSLa reads events.

2. the alternate arbiter always forwards the event from the stream where we
have seen fewer events so far; if streams happen to be aligned (that is, contain
no or only equally-sized hole events), the events will perfectly alternate.

3. the align arbiter is the one we used in our original implementation to intel-
ligently align both streams

Figure 4 shows the impact of these different arbiter designs on how well the
monitor is able to do its task, and that indeed more active arbiters yield better
results—without them, the streams are perfectly aligned less than 1% of the time.
While one could write similar functionality to align different, unsynchronized
streams in TeSSLa directly, the language does not easily support this. As such,
a combination of TeSSLa and Vamos allows simpler specifications in a higher-
level monitoring language, dealing with the correct ordering and preprocessing
of events on the middleware level.

6.3 Bank

In this classic verification scenario, we wrote an interactive console application
simulating a banking interface. Users can check bank account balances, and de-
posit, withdraw, or transfer money to and from various accounts. The condition
we want to check is that no operations should be permitted that would allow an
account balance to end up below 0.

We use an event source that employs DynamoRIO [9] to dynamically instru-
ment the program to capture its inputs and outputs, which it parses to forward
the relevant information to the monitor. The monitor in turn starts out with no
knowledge about any of the account balances (and resets any gathered knowl-
edge when hole events indicate that some information was lost), but discovers
them through some of the observations it makes: the result of a check balance
operation gives precise knowledge about an account’s balance, while the success
or failure of the deposit/withdraw/transfer operations provides lower and upper
bounds on the potential balances. For example, if a withdrawal of some amount

M. Chalupa et al.272



4 16 32 64 128 256 512 1024 2048
Arbiter buffer size

100

50

0

50

 in
 d

et
ec

te
d 

er
ro

rs
 [%

]

4 16 32 64 128 256 512 1024 2048
Arbiter buffer size

Fig. 5. Results of monitoring a simple banking simulator with Vamos monitor (left)
and TeSSLa monitor (right). Boxplots show the difference in the number of reported
errors versus the number of errors the application made, in percent.

fails, this amount provides an upper bound on an account’s balance, and any
higher successive withdrawal attempt must surely fail too.

In the spirit of third-party monitoring, however, the stateful interface does
not necessarily make it easy to derive these higher level events. For example,
there is no individual confirmation that says that the withdrawal of some amount
from some account was successful or not. Instead, the user selects an account,
then the withdraw action, is then prompted which amount they would like to
withdraw from said account, and after entering said amount, the system only
displays a message that the withdrawal failed or was successful. The event source
parses each individual step and provides them on two separate streams, one for
the inputs and one for the outputs. This is where Vamos’ higher-level event
recognition capabilities (see also the example in Section 4.1) allow the arbiter
to recognize the higher-level events to forward to the monitor, which itself is
therefore again much easier to specify.

To conduct measurements, we randomly generated 10 000 (well-formed) in-
puts and fed them to the banking application as fast as possible. We also let
the application generate erroneous outputs (wrong balances, swapping success
and failure messages) at random and measured how many those our best-effort
third-party monitor was able to detect. The size of the source buffer was one
page (128 events) and we varied the size of arbiter buffers from 4 to 2048.

The heavyweight instrumentation we used in this scenario caused the bank-
ing application to run through its script about 40% slower than without instru-
mentation for all sizes of the arbiter buffer, which is more than in our other
benchmarks, but seems still plausible for interactive programs, and could be
much more optimized. Our second metric is how many errors the monitor actu-
ally detects. Figure 5 shows this for both the monitor we described above and
a TeSSLa variant that only considers exact knowledge about account balances
(no upper or lower bounds) and thus finds fewer errors, demonstrating both an
alternate monitor design and the use of our TeSSLa connector. The results vary
quite a bit with arbiter buffer sizes and between runs, and the monitor may re-
port more errors than were inserted into the run. This is because, first, especially

Vamos : Middleware for Best-Effort Third-Party Monitoring 273



with smaller buffer sizes, the autodrop buffers may drop a significant portion (up
to 60% at arbiter buffer size 4, 5% at size 256) of the events, but the moni-
tor needs to see a contiguous chunk of inputs and outputs to be able to gather
enough information to find inconsistencies. Second, some errors cause multiple
inconsistencies: when a transfer between accounts is misreported as successful
or failed when the opposite is true, the balances (or bounds) of two accounts
are wrong. Overall, both versions of the monitor were able to find errors with
even smaller sizes of arbiter buffers, and increasing numbers improved the results
steadly, matching the expected properties of a best-effort third-party monitor.

6.4 Case Study: Data Race Detection

While our other benchmarks were written artificially, we also used Vamos to de-
velop a best-effort data race monitor. Most tools for dynamic data race detection
use some variation of the Eraser algorithm [51]: obtain a single global sequence
of synchronization operations and memory accesses, and use the former to estab-
lish happens-before relationships whenever two threads access the same memory
location in a potentially conflicting way. This entails keeping track of the last ac-
cessing threads for each location, as well as of the ways in which any two threads
might have synchronized since those last accesses. Implemented naïvely, every
memory access causes the monitor to pause the thread and atomically update
the global synchronization state. Over a decade of engineering efforts directed
at tools like ThreadSanitizer [52] and Helgrind [57] have reduced the resulting
overhead, but it can still be substantial.

Vamos enabled us to develop a similar monitor at significantly reduced engi-
neering effort in a key area: efficiently communicating events to a monitor run-
ning in parallel in its own process, and building the global sequence of events.
To build our monitor, we used ThreadSanitizer’s source-code-based approach5
to instrument relevant code locations, and for each such location, we reduce
the need for global synchronization to fetching a timestamp from an atomi-
cally increased counter. Based on our facilities for dynamically creating event
sources, each thread forms its own event source to which it sends events. In the
correctness layer, the arbiter builds the single global stream of events used by
our implementation of a version of the Goldilocks [22] algorithm (a variant of
Eraser [51]), using the timestamps to make sure events are processed in the right
order. Autodrop buffers may drop some events to avoid overloading the moni-
tor; when this happens to a thread, we only report data races that the algorithm
finds if all involved events were generated after the last time that events were
dropped. This means that our tool may not find some races, often those that
can only be detected looking at longer traces. However, it still found many races
in our experiments, and other approaches to detecting data races in best-effort
ways have similar restrictions [56].

Our implementation (contained in our artifact [12]) consists of:

5 This decision was entirely to reduce our development effort; a dynamic instrumen-
tation source could be swapped in without other changes.

M. Chalupa et al.274



0 200 400
# of benchmarks

10 2

10 1

100

Ti
m

e 
[s

]

race
correct

race
wrong

no race
correct

no race
wrong

timeout
0

20

40

60

 38  36  34   5   5   5  67  67  66   8  10  10   0   0   3

VAMOS
TSan
Helgrind

Fig. 6. Comparing running times of the three tools on all 391 benchmarks (left) and the
correctness of their verdicts on the subset of 118 benchmarks for which it was possible
to determine the ground truth (right). Race vs. no race indicates whether the tool
found at least one data race, correct vs. wrong indicates whether that verdict matches
the ground truth. For benchmarks with unknown ground truth, the three tools agreed
on the existence of data races more than 99% of the time.

– a straightforward translation of the pseudocode in [22], using the C++ stan-
dard library set and map data structures, with extensions to handle holes;

– a small Vamos specification to retrieve events from the variable number of
event streams in order of their timestamps to forward to the monitor; the
biggest complication here is deciding when to abandon looking for the next
event in the sequence if it may have been dropped;

– an LLVM [40] instrumentation pass post-processing ThreadSanitizer’s in-
strumentation to produce an event source compatible with Vamos.

As such, we were able to use Vamos to build a reasonable best-effort data-
race monitor with relatively little effort, providing evidence that our ease-of-use
design goal was achieved. To evaluate its performance, we tested it on 391 SV-
COMP [7] concurrency test cases supported by our implementation, and com-
pared it to two state-of-the-art dynamic data race detection tools, ThreadSani-
tizer [52] and Helgrind [57]. Figure 6 shows that the resulting monitor in most
cases caused less overhead than both ThreadSanitizer and Helgrind in terms of
time while producing largely the same (correct) verdicts.

7 Related Work

As mentioned before, Vamos’ design features a combination of ideas from works
in run-time monitoring and related fields, which we review in this section.

Event Brokers/Event Recognition A large number of event broker systems
with facilities for event recognition [18,58,55,26,1] already exist. These typically
allow arbitrary event sources to connect and submit events, and arbitrarily many
observers to subscribe to various event feeds. Mansouri-Samani and Sloman [44]
outlined the features of such systems, including filtering and combining events,
merging multiple monitoring traces into a global one, and using a database to

Vamos : Middleware for Best-Effort Third-Party Monitoring 275



store (parts of) traces and additional information for the longer term. Mod-
ern industrial implementations of this concept, like Apache Flink [1], are built
for massively parallel stream processing in distributed systems, supporting arbi-
trary applications but providing no special abstractions for monitoring, in con-
trast to more run-time-monitoring-focused implementations like ReMinds [58].
Complex event recognition systems also sometimes provide capabilities for load-
shedding [59], of which autodrop buffers are the simplest version. Most event
recognition systems provide more features than Vamos, but are also harder to
set up for monitoring; in contrast, Vamos offers a simple specification language
that is efficient and still flexible enough for many monitoring scenarios.

Stream Run-Time Verification LoLa [19,24], TeSSLa [41], and Striver [27]
are stream run-time verification [8] systems that allow expressing a monitor as
a series of mutually recursive data streams that compute their current values
based on each other’s values. This requires some global notion of time, as the
streams are updated with new values at time ticks and refer to values in other
streams relative to the current tick, which is not necessarily available in a het-
erogeneous setting. Stream run-time verification systems also do not commonly
support handling variable numbers of event sources. Some systems allow for dy-
namically instantiating sub-monitors for parts of the event stream [3,6,49,24] in
a technique called parametric trace slicing [15]. This is used for logically split-
ting the events on a given stream into separate streams, making them easier
to reason about, and can sometimes be exploited for parallelizing the monitor’s
work. These additional streams are internal to the monitoring logic, in contrast,
Vamos’ ability to dynamically add new event sources affects the monitoring
system’s outside connections, while, internally, the arbiter still unifies the events
coming in on all such connections into one global stream.

Instrumentation The two key questions in instrumentation revolve around
the technical side of how a monitor accesses a monitored system as well as the
behavioral side of what effects these accesses can have. On the technical side,
static instrumentation can be either applied to source code [39,30,36,37,40,34] or
compiled binaries [23,20], while dynamic instrumentation, like DyanmoRIO, is
applied to running programs [43,46,9]. Alternatively, monitored systems or the
platforms they run on may have specific interfaces for monitors already, such as
PTrace and DTrace [10,28,50] in the Linux kernel. Any of these can be used to
create an instrumentation tool for Vamos.

On the behavioral side, Cassar et al. surveyed various forms of instrumen-
tation between completely synchronous and offline [11]. Many of the systems
surveyed [21,4,14,16] use a form of static instrumentation that can either do
the necessary monitoring work while interrupting the program’s current thread
whenever an event is generated, or offer the alternative of using the interruption
to export the necessary data to a log to be processed asynchronously or offline.
A mixed form called Asynchronous Monitoring with Checkpoints allows stopping
the monitored system at certain points to let the monitor catch up [25]. Our au-

M. Chalupa et al.276



todrop buffers instead trade precision for avoiding this kind of overhead. Aside
from the survey, some systems (like TeSSLa [41]) incrementalize their default of-
fline behavior to provide a monitor that may eventually significantly lag behind
the monitored system.

Executing monitoring code or even just writing event data to a file or sending
it over the network is costly in terms of overhead, even more so if multiple threads
need to synchronize on the relevant code. Ha et al. proposed Cache-Friendly
Asymmetric Buffering [29] to run low-overhead run-time analyses on multicore
platforms. They only transfer 64-bit values, which suffices for some analyses, but
not for general-purpose event data. Our adapted implementation thus has to do
some extra work, but shares the idea of using a lock-free single-producer-single-
consumer ring buffer for low overhead and high throughput.

While we try to minimize it, we accept some overhead for instrumentation
as given. Especially in real-time systems, some run-time monitoring solutions
adjust the activation status of parts of the instrumentation according to some
metrics of overhead, inserting hole events for phases when instrumentation is
deactivated [5,31,2]. In contrast, the focus of load-shedding through autodrop
buffers is on ensuring that the higher-level part of the monitor is working with
reasonably up-to-date events while not forcing the monitored system to wait.
For monitors that do not rely on extensive summarization of dropped events,
the two approaches could easily be combined.

Monitorability and Missing Events Monitorability [38,47] studies the abil-
ity of a runtime monitor to produce reliable verdicts about the monitored system.
The possiblity of missing arbitrary events on an event stream without knowing
about it significantly reduces the number of monitorable properties [35]. The au-
todrop buffers of Vamos instead insert hole information, which some LTL [32],
TeSSLa [42], and Mealy machine [54] specifications can be patched to handle
automatically. Run-time verification with state estimation [53] uses a Hidden
Markov Model to estimate the data lost in missing events.

8 Conclusion

We have presented Vamos, which we designed as middleware for best-effort
third-party run-time monitoring. Its goal is to significantly simplify the instru-
mentation part of monitoring, broadly construed as the gathering of high-level
observations that serve as the basis for traditional monitoring specifications, par-
ticularly for best-effort third-party run-time monitoring, which may often need
some significant preprocessing of the gathered information, potentially collected
from multiple heterogeneous sources. We have presented preliminary evidence
that the way we built Vamos can handle large numbers of events and lets us
specify a variety of monitors with relative ease. In future work, we plan to apply
Vamos’ to more diverse application scenarios, such as multithreaded webservers
processing many requests in parallel, or embedded software, and to integrate our
tools with other higher-level languages. If a system’s behavior conforms to the

Vamos : Middleware for Best-Effort Third-Party Monitoring 277



expectation of a third party, this is generally recognized as inspiring a higher
level of trust than if that monitor was written by the system’s developers. We
hope that our design can help making best-effort third-party run-time monitor-
ing more common.

Acknowledgements This work was supported in part by the ERC-2020-AdG
101020093. The authors would like to thank the anonymous FASE reviewers for
their valuable feedback and suggestions.

References

1. Apache Software Foundation: Apache Flink (2023), https://flink.apache.org/
2. Arafa, P., Kashif, H., Fischmeister, S.: Dime: Time-aware dynamic binary in-

strumentation using rate-based resource allocation. In: EMSOFT 2013. pp. 1–10
(2013). https://doi.org/10.1109/EMSOFT.2013.6658603

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: FM 2012.
pp. 68–84 (2012). https://doi.org/10.1007/978-3-642-32759-9_9

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime
verification. In: VMCAI 2004. pp. 44–57 (2004). https://doi.org/10.1007/
978-3-540-24622-0_5

5. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive runtime verification. In: RV 2012. pp. 168–182 (2012). https:
//doi.org/10.1007/978-3-642-35632-2_18

6. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. Journal of the ACM 62(2) (May 2015). https://doi.org/10.
1145/2699444

7. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS 2022.
pp. 375–402 (2022). https://doi.org/10.1007/978-3-030-99527-0_20

8. Bozzelli, L., Sánchez, C.: Foundations of boolean stream runtime verification. The-
oretial Computer Science 631, 118–138 (June 2016). https://doi.org/10.1016/j.tcs.
2016.04.019

9. Bruening, D., Zhao, Q., Amarasinghe, S.: Transparent dynamic instrumentation.
In: VEE 2012. p. 133–144 (2012). https://doi.org/10.1145/2151024.2151043

10. Cantrill, B., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of pro-
duction systems. In: USENIX 2004. pp. 15–28 (2004), http://www.usenix.org/
publications/library/proceedings/usenix04/tech/general/cantrill.html

11. Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: A survey of runtime mon-
itoring instrumentation techniques. In: PrePost@iFM 2017. EPTCS, vol. 254, pp.
15–28 (2017). https://doi.org/10.4204/EPTCS.254.2

12. Chalupa, M., Muehlboeck, F., Muroya Lei, S., Henzinger, T.A.: VAMOS: Mid-
dleware for best-effort third-party monitoring, artifact (2023). https://doi.org/10.
5281/zenodo.7574688

13. Chalupa, M., Muehlboeck, F., Muroya Lei, S., Henzinger, T.A.: VAMOS: Mid-
dleware for best-effort third-party monitoring, technical report. Tech. Rep. 12407,
Institute of Science and Technology Austria (2023), https://research-explorer.ista.
ac.at/record/12407

M. Chalupa et al.278

https://flink.apache.org/
https://doi.org/10.1109/EMSOFT.2013.6658603
https://doi.org/10.1109/EMSOFT.2013.6658603
https://doi.org/10.1007/978-3-642-32759-9\_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-540-24622-0\_5
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-540-24622-0\_5
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1007/978-3-642-35632-2_18
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1145/2151024.2151043
https://doi.org/10.1145/2151024.2151043
http://www.usenix.org/publications/library/proceedings/usenix04/tech/general/cantrill.html
http://www.usenix.org/publications/library/proceedings/usenix04/tech/general/cantrill.html
https://doi.org/10.4204/EPTCS.254.2
https://doi.org/10.4204/EPTCS.254.2
https://doi.org/10.5281/zenodo.7574688
https://doi.org/10.5281/zenodo.7574688
https://doi.org/10.5281/zenodo.7574688
https://doi.org/10.5281/zenodo.7574688
https://research-explorer.ista.ac.at/record/12407
https://research-explorer.ista.ac.at/record/12407


14. Chen, F., Roşu, G.: Java-MOP: A monitoring oriented programming environ-
ment for java. In: TACAS 2005. pp. 546–550 (2005). https://doi.org/10.1007/
978-3-540-31980-1_36

15. Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In: TACAS 2009. pp.
246–261 (2009). https://doi.org/10.1007/978-3-642-00768-2_23

16. Colombo, C., Pace, G.J., Schneider, G.: LARVA — safer monitoring of real-time
java programs (tool paper). In: SEFM 2009. pp. 33–37 (2009). https://doi.org/10.
1109/SEFM.2009.13

17. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: Temporal stream-based specification language. In: SBMF 2018. pp. 144–
162 (2018). https://doi.org/10.1007/978-3-030-03044-5_10

18. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys 44(3), 15:1–15:62 (2012).
https://doi.org/10.1145/2187671.2187677

19. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: TIME 2005. pp. 166–174 (2005). https://doi.org/10.1109/TIME.2005.
26

20. De Bus, B., Chanet, D., De Sutter, B., Van Put, L., De Bosschere, K.: The design
and implementation of FIT: A flexible instrumentation toolkit. In: PASTE 2004.
p. 29–34 (2004). https://doi.org/10.1145/996821.996833

21. Drusinsky, D.: Monitoring temporal rules combined with time series. In: CAV 2003.
pp. 114–117 (2003). https://doi.org/10.1007/978-3-540-45069-6_11

22. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: A race and transaction-aware
java runtime. In: PLDI 2007. p. 245–255 (2007). https://doi.org/10.1145/1250734.
1250762

23. Eustace, A., Srivastava, A.: ATOM: A flexible interface for building
high performance program analysis tools. In: USENIX 1995. pp. 303–314
(1995), https://www.usenix.org/conference/usenix-1995-technical-conference/
atom-flexible-interface-building-high-performance

24. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based spec-
ification language for network monitoring. In: RV 2016. pp. 152–168 (2016).
https://doi.org/10.1007/978-3-319-46982-9_10

25. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Formal Methods in System Design 46(3), 226–261 (2015). https://doi.org/10.1007/
s10703-014-0217-9

26. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis, M.: Com-
plex event recognition in the big data era: A survey. The VLDB Journal 29(1),
313–352 (July 2019). https://doi.org/10.1007/s00778-019-00557-w

27. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-
time event-streams. In: RV 2018. pp. 282–298 (2018). https://doi.org/10.1007/
978-3-030-03769-7_16

28. Gregg, B.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD.
Prentice Hall (2011)

29. Ha, J., Arnold, M., Blackburn, S.M., McKinley, K.S.: A concurrent dynamic anal-
ysis framework for multicore hardware. In: OOPSLA 2009. pp. 155–174 (2009).
https://doi.org/10.1145/1640089.1640101

30. Havelund, K., Rosu, G.: Monitoring Java programs with Java pathexplorer. In: RV
2001. pp. 200–217 (2001). https://doi.org/10.1016/S1571-0661(04)00253-1

Vamos : Middleware for Best-Effort Third-Party Monitoring 279

https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-642-00768-2\_23
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1007/978-3-030-03044-5\_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1145/996821.996833
https://doi.org/10.1145/996821.996833
https://doi.org/10.1007/978-3-540-45069-6_11
https://doi.org/10.1007/978-3-540-45069-6_11
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1145/1250734.1250762
https://www.usenix.org/conference/usenix-1995-technical-conference/atom-flexible-interface-building-high-performance
https://www.usenix.org/conference/usenix-1995-technical-conference/atom-flexible-interface-building-high-performance
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.1007/978-3-030-03769-7\_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7\_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1145/1640089.1640101
https://doi.org/10.1145/1640089.1640101
https://doi.org/10.1016/S1571-0661(04)00253-1
https://doi.org/10.1016/S1571-0661(04)00253-1


31. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller,
S.D., Zadok, E.: Software monitoring with controllable overhead. International
Journal on Software Tools for Technology Transfer 14(3), 327–347 (2012). https:
//doi.org/10.1007/s10009-010-0184-4

32. Joshi, Y., Tchamgoue, G.M., Fischmeister, S.: Runtime verification of LTL on
lossy traces. In: SAC 2017. p. 1379–1386 (2017). https://doi.org/10.1145/3019612.
3019827

33. Kallwies, H., Leucker, M., Schmitz, M., Schulz, A., Thoma, D., Weiss, A.: TeSSLa
- an ecosystem for runtime verification. In: RV 2022. pp. 314–324 (2022). https:
//doi.org/10.1007/978-3-031-17196-3_20

34. Karaorman, M., Freeman, J.: jMonitor: Java runtime event specification and mon-
itoring library. In: RV 2004. pp. 181–200 (2005). https://doi.org/10.1016/j.entcs.
2004.01.027

35. Kauffman, S., Havelund, K., Fischmeister, S.: What can we monitor over unreliable
channels? International Journal on Software Tools for Technology Transfer 23(4),
579–600 (2021). https://doi.org/10.1007/s10009-021-00625-z

36. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: ECOOP 2001. pp. 327–353 (2001). https://doi.org/10.
1007/3-540-45337-7_{1}{8}

37. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: A run-
time assurance tool for Java programs. In: RV 2001. pp. 218–235 (2001). https:
//doi.org/10.1016/s1571-0661(04)00254-3

38. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Computational anal-
ysis of run-time monitoring - fundamentals of java-mac. In: RV 2002. pp. 80–94
(2002). https://doi.org/10.1016/S1571-0661(04)80578-4

39. Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: ECRTS 1999. pp. 114–
122 (1999). https://doi.org/10.1109/EMRTS.1999.777457

40. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO 2004. pp. 75–88 (2004). https://doi.org/10.
1109/CGO.2004.1281665

41. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: SAC 2018. pp. 1925–1933
(2018). https://doi.org/10.1145/3167132.3167338

42. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifica-
tion for timed event streams with partial information. In: RV 2019. pp. 273–291
(2019). https://doi.org/10.1007/978-3-030-32079-9_16

43. Luk, C., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S.,
Reddi, V.J., Hazelwood, K.M.: Pin: building customized program analysis tools
with dynamic instrumentation. In: PLDI 2005. pp. 190–200 (2005). https://doi.
org/10.1145/1065010.1065034

44. Mansouri-Samani, M., Sloman, M.: Monitoring distributed systems. IEEE Network
7(6), 20–30 (1993). https://doi.org/10.1109/65.244791

45. Muehlboeck, F., Henzinger, T.A.: Differential monitoring. In: RV 2021. pp. 231–243
(2021). https://doi.org/10.1007/978-3-030-88494-9_12

46. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic bi-
nary instrumentation. In: PLDI 2007. pp. 89–100 (2007). https://doi.org/10.1145/
1250734.1250746

47. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
FM 2006. pp. 573–586 (2006). https://doi.org/10.1007/11813040_38

M. Chalupa et al.280

https://doi.org/10.1007/s10009-010-0184-4
https://doi.org/10.1007/s10009-010-0184-4
https://doi.org/10.1007/s10009-010-0184-4
https://doi.org/10.1007/s10009-010-0184-4
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1145/3019612.3019827
https://doi.org/10.1007/978-3-031-17196-3\_20
https://doi.org/10.1007/978-3-031-17196-3_20
https://doi.org/10.1007/978-3-031-17196-3\_20
https://doi.org/10.1007/978-3-031-17196-3_20
https://doi.org/10.1016/j.entcs.2004.01.027
https://doi.org/10.1016/j.entcs.2004.01.027
https://doi.org/10.1016/j.entcs.2004.01.027
https://doi.org/10.1016/j.entcs.2004.01.027
https://doi.org/10.1007/s10009-021-00625-z
https://doi.org/10.1007/s10009-021-00625-z
https://doi.org/10.1007/3-540-45337-7\_{1}{8}
https://doi.org/10.1007/3-540-45337-7_{1}{8}
https://doi.org/10.1007/3-540-45337-7\_{1}{8}
https://doi.org/10.1007/3-540-45337-7_{1}{8}
https://doi.org/10.1016/s1571-0661(04)00254-3
https://doi.org/10.1016/s1571-0661(04)00254-3
https://doi.org/10.1016/s1571-0661(04)00254-3
https://doi.org/10.1016/s1571-0661(04)00254-3
https://doi.org/10.1016/S1571-0661(04)80578-4
https://doi.org/10.1016/S1571-0661(04)80578-4
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1007/978-3-030-32079-9\_16
https://doi.org/10.1007/978-3-030-32079-9_16
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/65.244791
https://doi.org/10.1109/65.244791
https://doi.org/10.1007/978-3-030-88494-9\_12
https://doi.org/10.1007/978-3-030-88494-9_12
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/11813040\_38
https://doi.org/10.1007/11813040_38


48. Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P.: A comparison
framework for runtime monitoring approaches. Journal of Systems and Software
125, 309–321 (2017). https://doi.org/10.1016/j.jss.2016.12.034

49. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: Monitoring at runtime with QEA. In:
TACAS 2015. pp. 596–610 (2015). https://doi.org/10.1007/978-3-662-46681-0_55

50. Rosenberg, C.M., Steffen, M., Stolz, V.: Leveraging DTrace for runtime verification.
In: RV 2016. pp. 318–332 (2016). https://doi.org/10.1007/978-3-319-46982-9_20

51. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dy-
namic data race detector for multithreaded programs. ACM Transactions on Com-
puter Systems 15(4), 391–411 (November 1997). https://doi.org/10.1145/265924.
265927

52. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: Data race detection in practice.
In: WBIA 2009. p. 62–71 (2009). https://doi.org/10.1145/1791194.1791203

53. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: RV 2011. pp. 193–207
(2012). https://doi.org/10.1007/978-3-642-29860-8_15

54. Taleb, R., Khoury, R., Hallé, S.: Runtime verification under access restric-
tions. In: FormaliSE@ICSE 2021. pp. 31–41 (2021). https://doi.org/10.1109/
FormaliSE52586.2021.00010

55. Tawsif, K., Hossen, J., Raja, J.E., Jesmeen, M.Z.H., Arif, E.M.H.: A review on
complex event processing systems for big data. In: CAMP 2018. pp. 1–6 (2018).
https://doi.org/10.1109/INFRKM.2018.8464787

56. Thokair, M.A., Zhang, M., Mathur, U., Viswanathan, M.: Dynamic race detection
with O(1) samples. PACMPL 7(POPL) (January 2023). https://doi.org/10.1145/
3571238, https://doi.org/10.1145/3571238

57. Valgrind: Helgrind (2023), https://valgrind.org/docs/manual/hg-manual.html
58. Vierhauser, M., Rabiser, R., Grünbacher, P., Seyerlehner, K., Wallner, S., Zeisel,

H.: ReMinds: A flexible runtime monitoring framework for systems of systems.
Journal of Systems and Software 112, 123–136 (2016). https://doi.org/10.1016/j.
jss.2015.07.008

59. Zhao, B., Viet Hung, N.Q., Weidlich, M.: Load shedding for complex event pro-
cessing: Input-based and state-based techniques. In: ICDE 2020. pp. 1093–1104
(2020). https://doi.org/10.1109/ICDE48307.2020.00099

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Vamos : Middleware for Best-Effort Third-Party Monitoring 281

https://doi.org/10.1016/j.jss.2016.12.034
https://doi.org/10.1016/j.jss.2016.12.034
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-319-46982-9\_20
https://doi.org/10.1007/978-3-319-46982-9_20
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1109/INFRKM.2018.8464787
https://doi.org/10.1109/INFRKM.2018.8464787
https://doi.org/10.1145/3571238
https://doi.org/10.1145/3571238
https://doi.org/10.1145/3571238
https://doi.org/10.1145/3571238
https://doi.org/10.1145/3571238
https://valgrind.org/docs/manual/hg-manual.html
https://doi.org/10.1016/j.jss.2015.07.008
https://doi.org/10.1016/j.jss.2015.07.008
https://doi.org/10.1016/j.jss.2015.07.008
https://doi.org/10.1016/j.jss.2015.07.008
https://doi.org/10.1109/ICDE48307.2020.00099
https://doi.org/10.1109/ICDE48307.2020.00099
http://creativecommons.org/licenses/by/4.0/

	Vamos: Middleware for Best-Effort Third-Party Monitoring
	1 Introduction
	2 Architectural Overview
	3 Efficient Instrumentation
	3.1 Source Buffers and Stream Processors
	3.2 Autodrop Buffers

	4 Event Recognition, Ordering, and Prioritization
	4.1 Arbiter Rules
	4.2 Buffer Groups

	5 Implementation
	5.1 Source Buffers and Event Sources
	5.2 The Vamos Compiler and the TeSSLa Connector

	6 Evaluation
	6.1 Scalability Tests
	6.2 Primes
	6.3 Bank
	6.4 Case Study: Data Race Detection

	7 Related Work
	8 Conclusion
	References




