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Quantitative assessment can stabilize indir-
ect reciprocity under imperfect information

Laura Schmid 1 , Farbod Ekbatani2, Christian Hilbe 3 &
Krishnendu Chatterjee4

The field of indirect reciprocity investigates how social norms can foster
cooperation when individuals continuously monitor and assess each other’s
social interactions. By adhering to certain social norms, cooperating indivi-
duals can improve their reputation and, in turn, receive benefits from others.
Eight social norms, known as the “leading eight," have been shown to effec-
tively promote the evolution of cooperation as long as information is public
and reliable. These norms categorize groupmembers as either ’good’ or ’bad’.
In this study, we examine a scenario where individuals instead assign nuanced
reputation scores to each other, and only cooperate with those whose repu-
tation exceeds a certain threshold. We find both analytically and through
simulations that such quantitative assessments are error-correcting, thus
facilitating cooperation in situations where information is private and unreli-
able. Moreover, our results identify four specific norms that are robust to such
conditions, and may be relevant for helping to sustain cooperation in natural
populations.

Reputation-based social dynamics are a fundamental feature of the
human experience1–5. When social interactions are observed and
judged by other community members, individuals start to treat their
reputation as a valuable commodity6,7. They are more inclined to help
others because this increases their chance to receive such help
themselves8–10. In evolutionary game theory, this mechanism for
cooperation is referred to as “indirect reciprocity”.11–15. In contrast to
direct reciprocity16, this mechanism does not require repeated inter-
actions between the same two individuals. Instead, people learn to
cooperate to increase their public standing, which can be valuable in
future interactions with third parties. Indirect reciprocity and its
impact onhumanbehavior hence tie into awide range offields, such as
social psychology17–19, moral philosophy1,20, or online reputation sys-
tems, marketing, and public relations21–23.

Tomodel the effect of indirect reciprocity, researchers consider a
particularly simple social interaction, the donation game13–15. In this
game, a donor chooses whether or not to pay a small cost to confer a
benefit to someone else, i.e., whether to cooperate or to defect. Other

population members observe the donor’s action and they update the
donor’s reputation accordingly. How this updating occurs depends on
a community’s social norm. Norms consist of two components, an
assessment rule and an action rule24. Assessment rules prescribe how
to update reputations based on observations. They specify which
behaviors should improve a donor’s reputation, and which behaviors
should be condemned. Action rules tell the donor whether or not to
cooperate with a given recipient.

The literature on indirect reciprocity explores which social norms
can sustain cooperation, and how complex such norms need to be25–30.
Early work stresses the effectiveness of simple norms, such as ‘Image
Scoring’25,26. When communities use this norm, any cooperative action
leads to an increased reputation, whereas any defection reduces the
donor’s score. According to the respective action rule, donors should
only cooperate with those recipients whose score is above a certain
threshold. Image scoring is an instance of a so-called “first-order
norm”. Here, assessments only depend on the donor’s action. Such
first-order norms, however, have been suggested to be unstable29–32.
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After all, individuals have no incentive to withhold help from a reci-
pient with a low score, since doing so would harm their own reputa-
tion. As a way to resolve this weakness, the literature argues that social
norms should differentiate between justified and unjustified defec-
tions. To do so, the respective assessment rules need to take into
account the reputationof the recipient (“second-order norms”)6,30,31, or
even the previous reputation of the donor (“third-order norms”)27,33.
Such norms might suggest that although defecting against a well-
reputedplayer is bad, the samebehavior against an ill-reputedplayer is
acceptable.

In order to systematically compare the performance of different
norms,Ohtsuki and Iwasa implemented anexhaustive search amongall
binary social norms, such that individuals are either “good“ or “bad”. In
their landmark papers28,33, they describe all social norms up to the
third-order that can stabilize cooperation. To this end, they consider
reputations to be public and synchronized. This assumption implies
that all members of the population update a donor’s assessment in the
same way; two different players never disagree on the assessment of a
third party’s reputation. Such synchronized reputations naturally arise
when all assessments are made by a central authority34. Using this
setup, Ohtsuki and Iwasa identify eight particularly successful social
norms, termed the “leading eight”. If employed by the entire popula-
tion, each of these eight norms canmaintain full cooperation and resist
the invasion of free riders. The assessment and action rules of these
eight norms exhibit several interesting patterns (Fig. 1a). For example, a
good donor who cooperates with a good recipient should always
obtain a good reputation. Moreover, any donor who defects against a
good recipient should end up with a bad reputation. The different
leading eight norms disagree, however, on how to assess actions
towards bad recipients. For example, while some norms suggest that
any form of cooperation should yield a good reputation, others like
“Stern Judging”disincentivize cooperatingwith an ill-reputed recipient.

The premise of public and synchronized information facilitates a
rigorous analysis of social norms35–40. At the same time, however, the
premise appears to be a strong idealization: individuals do not always
agree on others’ reputations, nor do they usually have access to the
same information. Previous work has shown that once players make
their own private judgments, the leading eight may no longer sustain
cooperation41–43. In that case, disagreements can arise because some
individuals may not observe certain interactions, or they may mis-
interpret an interaction’s outcome44. Such disagreements can pro-
liferate, leading to separate sub-communities who consider each other
as bad, even though everyone employs the same social norm45. To
resolve this sensitivity of the leading eight with respect to private and
noisy information, previous approaches have ranged from finding new
and potentially simpler strategies of indirect reciprocity46–50, to adding
elements of empathy or “pleasing” behaviors to higher-order
norms51,52.

In contrast, here we show that the leading eight norms naturally
becomemore robust as a consequence of modeling reputations to be
more fine-grained. By introducing quantitative assessment into higher-
order strategies, we incorporate an important ingredient of many
natural reputation systems, namely that reputations come in different
degrees of goodness. That is, individuals’ opinions about each other
can take values beyond “good” or “bad”. This modeling choice is not
only a useful premise in many real-life applications. Previous theore-
tical research has suggested that more refined reputation scores can
act as a buffer for errors by increasing a social norm’s tolerance with
respect to a small number of bad actions48,49. Furthermore, replacing
binary reputations with continuous variables has been shown to
facilitate cooperation when also the player’s feasible actions are
continuous53.

In ourmodel, individuals keep track of each others’ reputations in
the form of integer scores, taking values from a fixed range. For an
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Fig. 1 | The leading eight normswith quantitative assessment. aWeconsider the
leading eight norms28,33. Each norm consists of an assessment rule that determines
how an observer updates a donor’s reputation, and an action rule that governs
players’ behavior when they are chosen to be the donor. The assessment rule takes
the context of an observed action into account: how an observer judges a donor
depends on the donors’ and recipient’s reputation. Similarly, the action rule uses
the current donor’s and recipient’s reputation to decide whether the donor should
cooperate with the recipient. In contrast to the original baseline model, we now
interpret a positive assessment of an action as an increment of +1 to the donor’s

reputation score, and a negative assessment as a decrement of -1. b The observing
Player Z assesses Player X’s actionof cooperatingwith a badplayer asbad, such that
he decrements X’s previous score by one. c, When it is Player Z’s turn to be the
donor, he translates his and Player X’s reputation score into a binary label of “good”
or “bad’’. Since both his and Player X’s score are above the threshold S, he judges
both himself and Player X as good, and cooperates.d, e In the baselinemodel using
binary assessment, the same starting scenario ends differently: Player Z changes his
view of Player X from good to bad after Player X cooperates with Player Y, and
therefore defects against Player X.
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observer, positively assessing a donor’s action then means to incre-
ment the donor’s score, while a negative assessment translates into
decrementing the score (Fig. 1b).Whendecidingwhether to cooperate
with a given co-player, individuals translate these integer scores into
the binary variables of “good” and “bad” (Fig. 1c). Individuals with a
score above a pre-determined threshold are considered as good,
whereas all others are considered bad.

Our agent-based simulations show that quantitative assessments
effectively reduce the number of disagreements between population
members. Consequently, individuals are better able to single out
defectors whilemaintaining a good self-image. In fact, we observe that
by shifting frombinary thinking tomore nuanced reputations amongst
players, four of the leading eight norms become particularly robust: In
contrast to the traditional settingwith binary assessments,wefind that
each of these four rules now achieves high cooperation rates well
above 75% even at significant noise levels of 10%. Our additional
mathematical analysis further substantiates these simulation results.
We show that homogeneous populations of leading eight players with
quantitative assessment can efficiently recover fromdisagreements. In
this way, we further highlight the strong error-correcting properties of
more nuanced reputations. Finally, we formally characterize necessary
properties for the evolutionary success of a social norm under
imperfect information. This characterization leads us to identify the
four norms previously found to be successful in our evolutionary
simulations.

Overall, our results demonstrate the importance of nuanced
assessments when interacting in communities with complex social
norms. In a noisy environment with scarce information, binary judg-
ments can irrevocably harm cooperation. Instead, reputation systems
work best when reputations are sufficiently fine-grained.

Results
Game dynamics. Similar to previous work, we consider a well-mixed
population of fixed-size N. The members of this population, who we
refer to as players, are continuously engaged in pairwise interactions.
In every round of this series, two players, a donor and a recipient, are
drawn at random from this population for an interaction. The donor
chooseswhether or not to confer a benefit b to the recipient at his own
cost c < b, i.e., chooses between cooperation and defection. The
donor’s choice is independently observed by other members of the
populationwith probability q. They use these observations to privately
update their opinion of the donor, without publicly sharing their
judgment. Every player individually tracks the reputations of all other
members of the population. We furthermore assume that players’
observations are subject to noise: with probability ε, an observer
mistakes a defection for cooperation, or a cooperative action for a
defection. Given that information is thus assumed to be private and
noisy, it is important to note that when two observers differ in their
initial assessment of a given donor, they may also disagree on the
donor’s updated reputation, even if bothobserve the same interaction.

Every player is equipped with a social norm (corresponding to
their “strategy”). Social norms govern the players’ behaviors, both in
terms how they act against one another as well as how they judge each
other’s actions. To fulfill this function, social norms consist of two
components, an assessment and an action rule15. The assessment rule
prescribes how to update a donor’s reputation after observing their
action and taking this action’s context into account. The action rule
prescribes whether to cooperate or defect in a given situation.

In line with Ohtsuki and Iwasa’s original work28,33, we consider
normsof atmost third-order. Thismeans that assessments can depend
on the donor’s decision whether to cooperate, and both the donor’s
and the recipient’s previous reputation. For deciding whether to
cooperate, the donor’s own reputation and the recipient’s reputation
are the determining factors. In our framework, reputations are not
binary; instead players assign integer reputation scores r to each other

that can take a wider range of values on a scale from a lower limit V to
an upper limit A. That is, we equip higher-order norms with quantita-
tive assessment (Fig. 1a).While this leaves the considered leading eight
norms L1 − L8 formally unchanged, the interpretation of the rules
making up the norm and therefore the resulting reputation dynamics
differ from the baseline model44.

We note that there are two components to our model of quanti-
tative assessment. For one, the integer reputation scores are used by
the players to track changes in opinion about others in a fine-grained
manner. We assume that if an action is judged as good based on an
observer’s assessment rule, the donor’s score in the eyes of that
observer is increased by one, whereas if the action is judged as bad, the
donor’s score is decreased by one (Fig. 1b). On the other hand, players
need to be able to translate these nuanced scores into an overall
judgment of a player in order to use the leading eight norms as defined
in previous work. This overall judgmentmust result in a binary label to
become the input bits for players’ assessment and in particular action
rules (Fig. 1c). To make the transformation unambiguous, we assume
that players compare the reputation score of a given player with a
threshold S that separates scores into good and bad, similar to pre-
vious work on non-binary Image Scoring norms. An individual with a
score equal to or above the threshold is judged as “good” overall,
whereas a score below the threshold leads to an individual being
judged as overall “bad”. This means that the more refined the reputa-
tion scores, the less sensitive the overall label to single events, since
this implies more shades of “good” and “bad”. It is these overall
reputation labels that are then used by players in order to correctly
assess an observed action and to decide whether to cooperate with a
specific recipient. We note that when we set the minimum score to
V = 0, the maximum score to A = 1, and the cooperation threshold to
S = 1, we recover the original baseline model of the leading eight with
binary assessment (Fig. 1d, e).

In the following, we assume that all players use the same frame of
reference for their assessment, such that everyone agrees on the
assessment scale, i.e., the range of reputation scores. Each individual
then uses the same fixed values for V, A, and S throughout. No player
has a more nuanced view of their environment than another, and no
player judges others’ scores with a different measure than another.
Furthermore,weassume that the possible range of reputation scores is
symmetric, with A =R, V = −R, and a threshold of S =0. We denote a
particular setting of players’ frame of reference by R.

Analyzing reputation dynamics. We start testing our framework by
first considering players’ norms as fixed, if possibly different. Indivi-
duals play the donation game over many rounds and update others’
reputation scores after every interaction. We can describe this change
in players’ reputation scores with time-dependent image
matrices41M(t) = rij(t), with r∈ [−R, R], representing the collection of
players’ reputation score repositories. These matrices thus record at
any point in timewhich scores players assign to eachother (Fig. 2a, left
side). In every round of the game, M(t) is updated according to the
assessments of those players that have observed the donor’s action,
with their observation subject to noise ε. Noise in the environment
implies that every observer has an independent probability ε to mis-
perceive the donor’s action. If player i assesses his observation of
player j’s action as good, rij(t + 1) = rij(t) + 1, otherwise, rij(t + 1) = rij(t) − 1.
In case the reputation score is already at the maximum R (mini-
mum − R), it simply keeps its value when the action is assessed as good
(bad). To make the overall judgment of player j’s and k’s reputation, i
compares their reputation scoreswith the threshold S, and labels them
“good” when rij ≥ S and “bad” when rij < S. This acts like a second, less
refined layer of the reputation dynamics (Fig. 2a, right side). For
example, if player i judges donor j to be good and recipient k to be
good, they will assess a defection of j against k as bad and decrease j’s
score by one.
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We illustrate this concept with an example. We consider a
population consisting in equal proportions of players using one of
three social norms, a leading eight norm Li, ALLD and ALLC (Fig. 2b).
ALLD is the norm that prescribes to assign a bad reputation to
everyone else and unconditionally defect, whereas ALLC prescribes
to assign a good reputation to everyone else and unconditionally
cooperate. For this population, we explore the reputation dynamics
when information is noisy and scarce. In Fig. 2c–j, we present two
snapshots of image matrices at the same timestep for each of the
norms L1 − L8, where players use an assessment scale from −5 to 5.
The first snapshot visualizes the integer reputation scores that
players assign to each other at this particular time. The other snap-
shot represents the overall judgment that emerges when players
compare others’ scores with the given threshold (S = 0). The resulting
binary label is then an indicator of how more refined assessment can
help protect reputations from the negative effects of disagreements.
We visualize the difference between the impact of the baseline binary
assessment and quantitative assessment on reputation dynamics in
Fig. 3. In this figure, we present the average images the three norms
Li, ALLC, and ALLD have of each other, for each of the Li. We find that,
compared to the baseline model, quantitative assessment helps all
leading eight norms assign more accurate reputations to population
members. It clearly improves not only the self-image of each leading
eight norm, but also enhances their ability to distinguish between the
two other strategies they compete with. In particular, singling out
defectors becomes much easier to do. We find that L1 (Fig. 3a) and L7
(Fig. 3g) excel most at assigning appropriate reputations to their co-
players despite the presence of noise. They aremost likely to assign a
good reputation to other players of their own kind and to ALLC, and

to assign a bad reputation to ALLD. The norm L2 (Fig. 3b) also does
very well, even if it sometimes judges an ALLC player as bad (which
however also happens without noise). Even L3 − L6 (Fig. 3c–f), which
have particular trouble to accurately label defectors as bad in the
baseline model, now do much better in singling out ALLD players in
comparison to the binary assessment model. Finally, L8 (Fig. 3h),
which eventually judges everyone as bad under binary assessment,
can judge its own kind as good much more easily when players use
quantitative assessment, and accurately singles out defectors.
Unconditional cooperators however are often assigned a bad repu-
tation, due to L8 judging both good and bad players as bad when
they cooperate with another bad individual. We note here that the
reputation dynamics between L8, ALLD and ALLC have two very
stable configurations: one where the norm judges itself and ALLC as
predominantly good, and onewhere it judges itself as predominantly
good and ALLC as bad. We have visualized the latter outcome in
Figs. 2a and 3h, given that it is the slightly more frequent one. This
issue does however not affect the subsequent results presented in
this paper.

From this, we can see that, compared with the binary assessment
common in the literature, our results so far suggest that quantitative
assessment indeed can stabilize reputations in a population with fixed
composition. In fact, it can correct disagreements introduced by noise,
such that populations quickly recover from erroneous reputation
assignments and misjudgments. We analyze this recovery in the SI,
Section 1. There, we explore the effects of a single initial disagreement
in a homogeneous population of leading eight players using quanti-
tative assessment with R = 3. Assuming that there are no further errors
or noise, we study how likely each of the eight social norms recovers,
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Fig. 2 | Quantitative assessment and reputation dynamics. a Image matrices
represent how players assess each other at any given time. We assume that every
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the interval [− 5, + 5]. To depict these image matrices graphically, we use colored
dots, with the intensity of the color corresponding to the score: for example, a
white dotmeans that the corresponding rowplayer attributes a score of r =0 to the
corresponding column player (left side). On the other hand, players also make an
overall judgment of others, in order to be able to use their assessment and action
rules. To do so, they compare the scores to a threshold S =0, resulting in a binary
labeling of “good” and “bad”. To visualize this second, less refined layer of the
reputation dynamics, we use a matrix with colored and gray dots (right side). bWe
show image matrices when players either use a leading eight social norm Li, ALLC,

or ALLD (in equal proportions). c–jWe show the snapshots at T = 2 × 106 of players’
reputation scores and binary labels they translate into for all leading eight norms.
We see that for L1 (c) and L7 (i), the reputation assignments of different Li players
are perfectly correlated.They assignonly good reputations to eachother andALLC,
while theyonly assign bad reputations toALLD. The picture is very similar for L2 (d).
For all other norms, there are disagreements among the Li players, where they can
also perceive ALLD players favorably. We note that L8 does not perceive any ALLC
player as good, which is one of two very stable states in the reputation dynamics.
Parameters: Population size N = 90, error rate ε =0.05, observation probability
q =0.9, frame of reference R = 5 (i.e., interval for reputation scores r∈ [− 5, 5]).
Threshold S =0. Simulations are run for 2 × 106 iterations, and the initial image
matrix assumes a good reputation for all players.
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and how long this recovery takes. By modeling the reputation
dynamics as a Markov chain, we analytically show that recovery
probabilities and expected recovery times for all eight social norms
withquantitative assessment are upper boundedby the corresponding
quantities in the binary case. Hence, recovery in the quantitative set-
ting occurs with higher probability and in fewer steps compared to the
setting where reputations are binary. In fact, when we simulate the
recovery process, we find that the outcomes now come close to a
setting with perfect information (Fig. 4). The recovery times for all
leading eight norms with quantitative assessment are linear in popu-
lation size N. This is a stark contrast to the results for binary reputa-
tions, where recovery time can be of order N logN44.

In a next step, we now investigate how well the leading eight fare
in evolution where population composition can change over time, in
order to understand whether cooperation effectively emerges when
players use quantitative assessment.

Evolutionary dynamics. We now aim to understand the effect of
quantitative assessment when players’ norms are not fixed, such that
their abundance can change over time. We explore how likely it is for a
leading eight strategy to evolve, and what cooperation rates are
achieved in the population. Similar to our previous setup and to what is
common in the literature on indirect reciprocity, we again consider a
minimalistic scenario where players can choose from only three norms:

a leading eight norm Li, ALLD and ALLC. We assume that the evolution
of social norms happens on a longer timescale that is separate from
the reputation dynamics. This implies that the reputation dynamics
have reached stationarity by the time that social norms change.
Iterating the elementary process of reputation updating, we can not
only calculate how often on average player i considers player j to be
good, but also how often on average they cooperate with j. With the
estimated pairwise cooperation rate x̂ij , with which player i helps
player j, we can define the payoff of player i using a fixed strategy as
πi =

1
N� 1

P
j≠ibx̂ji � cx̂ij (see “Methods” for details). To model how

players adopt new strategies, we then consider simple imitation
dynamics54–56. In every timestep of the evolutionary process, a player
i is picked uniformly at random to revise their norm.With probability
μ they pick a random new norm. With probability 1 − μ, they ran-
domly choose a role model j to imitate wth a probability P(πi, πj)
depending on the difference between the two players’ payoffs.
This probability takes the form of the Fermi function Pðπi,πjÞ =
ð1 + exp½�sðπj � πiÞ�Þ�1. The parameter s≥0 describes the strength of
selection, which measures how relevant payoffs are for updating
strategies. For s = 0, updating happens at random, and as the para-
meter increases, norms with higher payoffs are more likely to be
imitated. We note that for imitation processes to be a reasonable
model of strategies spreading, we implicitly assume that people
discuss their worldviews and moral guidelines with others.
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Fig. 3 | Quantitative assessment improves the accuracy of reputation assign-
ments by leading eight players.We show the average overall judgments that
players with the frame of reference Rmake of each other when comparing others’
reputation scores with the threshold (a–h). As the basis for comparison to the
baseline model, we use the average images that players have of each other when
they use the standard binary assessment (i–p). We observe that quantitative
assessment and more nuanced reputations lead to a clear improvement of the

accuracy with which players assign each other images. All leading eight norms
achieve a perfectly correlated good self-image, as opposed to the baseline model,
where only L1 (i) and L7 (o) achieve a self-image of more than 80% good. Players
using quantitative assessment also domuchbetter in judgingALLD as bad, andwith
the exception of the (less stable) L8 (h, p), also manage to assess ALLC as close to
100% good. This hints at the power of a more refined reputation dynamics. The
parameters are the same as in Fig. 2.
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The resulting process is ergodic, due to the possibility of random
mutations in every timestep. Thus, it gives rise to a unique stationary
distribution, called selection–mutation equilibrium. This distribution
represents the abundance of each strategy in the long run. To calculate
the average cooperation rate in the population, the payoffs of the
individual strategies are then weighted with this equilibrium abun-
dance. In the following, we will assume that mutations are rare57,58,
which implies that populations are homogeneous most of the time: a
new mutant only arises when the previous mutant has either gone
extinct or has fixed in the population. We can calculate the fixation

probability of a mutant into a resident population with social norm R
explicitly59.

Figure 5 visualizes the evolutionary dynamics between each
leading eight strategy, ALLC and ALLD. We find that in four cases, for
L3 − L6 (Fig. 5c–f), the leading eight norm does not evolve. Once
players have learned to use ALLD, there is very little chance of rees-
tablishing cooperation. On the other hand, three of the leading eight,
L1, L2, L7 (Fig. 5a, b, g) are more than 80% abundant in equilibrium,
which means that their evolution is strongly favored. L8 is also played
almost 70% over the course of evolution. This stands in stark contrast
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Fig. 5 | Evolution of the leading eight with quantitative assessment. We show
the results of simulating evolutionary dynamics when players can choose among
three different norms: a leading eight norm, ALLC, and ALLD. We assume that the
spread of social norms is described by a pairwise comparison process54, such that
normsofplayerswith highpayoffs aremore likely to be successful.Here,weuse the
limit of rare mutations, such that populations are homogeneous most of the
time57,58,85. Numbers in circles show how often each social norm is adopted on
average. Arrows indicate fixation probabilities, i.e., how likely it is for other social

norms to invade a given resident population. Solid arrows indicate that the
respective transition is more likely to occur than expected under neutrality,
whereas dotted arrows indicate that the respective transition is comparably unli-
kely.We see that four of the eight considered norms, L1 (a), L2 (b), L7 (g), and L8 (h)
achieve high abundance in equilibrium, with L1, L2, and L7 played over 80% of the
time. The remaining four norms, L3 (c), L4 (d), L5 (e), L6 (f) do not evolve in large
proportions, and the respective dynamics strongly favor ALLD. Parameters: R = 5,
S =0, N = 50, ε =0.05, b = 5, c = 1, q =0.9, using a strength of selection of s = 1.
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remaining four of the leadingeight norms.bWhenwe consider the averagenumber
of defections that occur before recovery, we see that this number decreases as the
population size grows large. For sufficiently large populations, no defection occurs
before recovery. Simulations are averaged over 10,000 rounds.
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to the baseline model, where only L2 achieves an equilibrium abun-
dance of that magnitude (Fig. 6b), and where most leading eight
strategies do not evolve in meaningful proportions. We can see that
this difference is mainly due to sufficient probability of L1, L2, L7, and
L8 invading ALLD (Fig. 5a–c, g). ALLC and each leading eight norm are
approximately neutral with respect to each other (their fixation
probability into one another is ≈ 1/N each), and ALLC is invaded by
ALLD. Thus, the fixation probability of the leading eight norm into
ALLDbecomes thedeciding factor. This also suggests that thepowerof
quantitative assessment liesmainly in its ability to correct errors in the
norm’s self-image by effectively reducing noise in the population,
hence enabling amore accurate judgment of defectors.We can see this
in the behavior of L8 (Fig. 6h), which is less abundant compared to e.g.,
L7 due to the fact that it does not always judge itself as good in the
presence of ALLD. Meanwhile, L3, L4, L5, L6 are unsuccessful in evo-
lution, as they have difficulties labeling defectors as bad already in a
non-noisy environment, and therefore do not profit as much from the
error-correctingquality of quantitative assessment. This shows that for
a higher-order norm to be stable under noisy and private information,
itmust at least negatively assess a bad player defecting against another
bad player. In the SI Section 2, we detail this point in an explicit char-
acterization of the properties that are necessary for a norm to be
successful.

Figure 7 then visualizes how the eight norms’ abundance in
equilibrium translates into cooperation rates. We see that compared
to the baseline model (Fig. 7d–f), seven of eight norms lead to
increased cooperation, with only L6 completely failing to evolve
cooperative behavior. L1, L2, L7 give rates of almost 90%, whereas L8,
which leads to no cooperation at all in the baseline model, also is
boosted. These findings are highly robust when we vary parameters
(Fig. 7a–c), most remarkably even when we vary the error rate
(Fig. 7a). Even at a noise level of ε = 0.1, cooperation evolves and is
maintained at over 80% for L1, L2, L7, while it also does not fall below
60% for L8. This is due to both the high abundance of these four
leading eight norms when players use quantitative assessment, and
to an increased self-cooperation rate in homogeneous populations
even when errors are more frequent. Quantitative assessment
thus changes the behavior of the leading eight norms’ cooperation
rates significantly.

Finally, we explore the effect of the size of the assessment scale,
i.e., the range of the reputation scores (Fig. 8). The case of two possible
ranks (reputation values) corresponds to binary assessment. Notably,
we find that for L1, L2, L7, L8, cooperation rates change non-
monotonically in the number of possible reputation scores (Fig. 8a).
In fact, choosing an assessment scale smaller than taking R = 5, as
previously used, leads to even more cooperation, especially for the
more unstable L8 with its strict assessment rule. Figure 8b suggests
that an intermediate number of levels gives the four successful social
norms a higher abundance, due to a higher probability of invading
ALLD. The norm L2 is also a special case: here, going from binary
assessment to quantitative assessment with R = 1 harms the coopera-
tion rate, as abundance drops down to only 46% from 89%. These
observations suggest that there is a tradeoff between the size of the
assessment scale and the increased self-cooperation rate going
towards 100% that comes with more fine-grained reputation scores
(Fig. 8c). Intuitively, an increased range of reputation scores can act as
a buffer that not only protects good reputations from misjudgments,
but canalsomake it harder to quickly correctmistakes. In turn, this can
lead to sunk costs when players cooperate too often with defectors.
This becomes a particular issue for L2, as it is the only norm to actually
evolve in a large proportion in the baseline model, but also is sensitive
due to its negative assessment of good players’ cooperation with bad
players. Therefore, the net effect is negative when going from binary
assessment to quantitative assessment with R = 1. The other norms do
not exhibit this drop in cooperation rates when moving to R = 1. They
profit far more from the increased error correction, such that the
negative effect of larger reputation intervals only becomes apparent
later on.

This shows that changing some of the inner workings of the
reputation updating has a clearly pronounced effect on the overall
dynamics by effectively minimizing the effect of noise. In contrast,
however, we find that merely changing the threshold S for a player to
be overall judged as “good”, while keeping the frame of reference
constant, does not have the same impact (Fig. 9).

Discussion
Indirect reciprocity explores how people form good reputations, and
how social norms evolve2–4. It approaches fundamental moral
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Fig. 6 | Four of the leading eight evolve in high proportions for quantitative
assessment.We compare the abundance of the leading eight strategies in
selection–mutation equilibrium between the case of quantitative assessment and
the baselinemodel.Weuse the same evolutionaryprocess and setup as in Fig. 5 and
present the changes in how often each norm is played on average. Colored bars
represent the abundance in equilibrium under quantitative assessment, while the

light gray bars in the background of each panel represent the results in the baseline
model. We find that four of the eight strategies now evolve much more readily
(a,b,g,h) than in thebaselinemodel, and areplayed in largeproportions. The three
remaining strategies (c,d, e, f),whichdonotevolve at all in thebaselinemodel, only
do slightly better due to still being outcompeted by ALLD. The parameters are the
same as in Fig. 5.
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Fig. 8 | Varying the frame of reference for quantitative assessment. For this
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reputation ranks on cooperation, including the case of binary assessment with
two reputation ranks. a We show the cooperation rate in equilibrium for the
leading eight norms as the number of reputation ranks increases. We note that
for the four successful norms L1, L2, L7, L8, the largest frame of reference does
not correspond to the highest cooperation rate. An intermediate number of

ranks is the most beneficial. L2 also exhibits a drop in cooperation rate from
binary assessment to R = 1 (i.e., 3 reputation ranks). The behavior of the
cooperation rates is mainly determined by the behavior of the equilibrium
abundance of the eight norms as the frame of reference varies (b). Meanwhile,
self-cooperation rates quickly increase to 1 as the frame of reference increases
(c), which implies that the leading eight players have a perfectly correlated
image of each other once assessment is more nuanced. The parameters are the
same as in Fig. 5.
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selection–mutation equilibrium of the evolutionary process. We can compare the
results when players use refined assessment with R = 5 (a–c) with the outcome of
the binary assessment in the baseline model44 (d–f). a Under quantitative

assessment, cooperation rates of L1, L2, and L7 remain at around85%evenwhen the
error rate ε increases to 0.1. The generallymore unstable L8 ismore affected by the
increased noise, but still remains above 50% even at ε =0.1. b Increasing the benefit
of cooperation b leads to an increase in cooperation rate for all eight considered
norms in contrast to thebaseline. cWhenwe increase theobservationprobabilityq,
the behavior of the leading eight norms’ cooperation rates is also markedly dif-
ferent from the baseline. L1, L7 are barely affected while L2 and L8 exhibit non-
linearity for intermediate values of q.
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questions, for example, how a good person should act and how
goodness should be defined in the first place, from the viewpoint of
evolutionary biology1. A crucial question in indirect reciprocity is how
social norms can sustain cooperation when individuals judge each
other according to their own moral standards and idea of
goodness13,14,33. Previous work suggests that social norms can only
reliablymaintain cooperative behavior if they are sufficiently complex.
Simple rules like Image Scoring, which tie the idea of “good” and “bad”
individualsmerely to those individuals’ actions, have been shown to be
unstable29–31. Instead, Ohtsuki and Iwasa proposed the so-called
“leading eight” social norms28,33. These norms contextualize actions
by taking into account the reputations of the respective interaction
partners. In this way, they are able to differentiate between justified
and unjustified defections. Yet these leading eight norms are suscep-
tible to the effects of private and noisy information44.When individuals
make assessments based on their own private observations, popula-
tions may get fragmented into several subgroups with no or little
cooperation between them45.

Here, we show that incorporating more nuanced opinions, which
are a natural feature of real-life reputation systems, in a model of
indirect reciprocity results in amore positive outcome. To this end, we
consider the leading eight with a more refined assessment system.
Individuals privately keep track of others’ reputation in the form of
integer scores. Positive interactions translate into a score increment,
whereas negative interactions reduce the respective individual’s score.
This implies that “goodness” is reinterpreted in a broader way. Under
binary assessment, there is only one “good” and one “bad” label.
Instead, in our model, a person’s goodness comes in several shades.
Similar ideas have also been proposed to make ‘Image Scoring’ less
vulnerable to errors26,48,49. Our simulations and analytical results show
that this error-correcting capability clearly works in favor of the lead-
ing eight strategies. Since quantitative assessments can act as a buffer
for misjudgments due to noise and lapses in observations, minor dis-
agreements between individuals are no longer the same threat to
cooperation. At the same time, consistent defectors have their repu-
tation score further decreased (as much as the range of reputation
scores allows), which further strengthens the stability of
cooperative norms.

Ohtsuki and Iwasa’s landmark papers identified certain properties
of a higher-order norm that need to be fulfilled for a norm to be suc-
cessful. For example, to maintain cooperation, a good player who

cooperates with another good player ought to keep its good reputa-
tion. Furthermore, defectors must be recognized, meaning that
defection against a good player must be assessed as bad. In addition,
there need to be ways to punish defectors. In particular, good indivi-
duals who defect against bad population members should maintain
their good reputation. Finally, forgiveness must be possible: the
cooperation of a bad player with a good player should restore their
reputation. All other bits of the norms are left flexible, resulting in the
leading eight norms. We meanwhile show that in the presence of pri-
vate and noisy information, onemore criterion should be added to this
characterization: normsmust not be ‘gullible’: they shouldnever assess
a bad player defecting against another bad player as good (making
them easily deceived by false shows of solidarity). This requirement
determines another bit of the assessment rule (see SI, Section 2), fur-
ther reducing the number of successful social norms from eight
to four.

From a psychology perspective, it might come as little surprise
that nuanced reputations and tolerance for a few negative experiences
with others help to resolve disagreements. So-called dichotomous
thinking60— thinking in simple terms of binary opposition instead of
seeing shades of gray—is assumed to be beneficial for quick decision-
making and taking control of situations, but at the same time has been
found to be a cognitive distortion correlated with personality
disorders61–64. This bias is particularly prevalent in Cluster B and C
disorders such as borderline personality disorder and narcissistic
personality disorder, which are known for destructive tendencies in
interpersonal relationships and/or difficulties maintaining bonds with
others65–67. Dichotomous thinking also has been studied as a hallmark
bias of traits of antisocial behavior68. Particularly simplistic worldviews
with no tolerance for singlemissteps (“You are eitherwith us or against
us”) can be harmful on a larger scale, which can be seen in extreme
political partisanship69 and the legislatory deadlocks and social frac-
tures it can evoke.

Another significant feature of our results is that an intermediate
value of reputation ranges is optimal for the evolution of cooperation.
Reputations should not be measured too coarsely, nor should they be
too fine-grained. This observation may be related to previous argu-
ments suggesting that limits on human information processing cap-
ability make it difficult for an observer to use too many categories
when making judgments70. In fact, various empirical investigations of
optimal rating scales in marketing research and beyond have found
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Fig. 9 | Varying the threshold for an overall good reputation of players. For this
figure, we repeat the evolutionary simulations shown in Fig. 5, and vary the threshold
S for an overall good judgment of a player. a, b We find that cooperation rates and
equilibrium abundance of the leading eight norms are not significantly different for
threshold values between S= −2 and S= 4. Additionally, we observe that values of S

closer to the value−R (here, R= 5) are more detrimental than those closer to +R;
having a very large buffer for negative reputations thus seems to be less of an issue
than having a very large buffer for positive reputations. c Self-cooperation rates are
not affected by a change in threshold and stay at a value of 1, except for the value
S=R, where self-cooperation drops. The parameters are the same as in Fig. 5.
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that increasing the number of response categories beyond a value over
10 at most holds little benefit71–73. Other work has described a tradeoff
between a too-coarse and too fine-grained rating scale74, mirroring our
results.

Furthermore, we can weigh our results against empirical studies
on indirect reciprocity and general “social status” that gives informa-
tion over more than the last round of interactions75–78. These studies
support the conclusion that when players know enough about their
partners’ previous decisions, they are likely to engage in indirect
reciprocity. Players’ likelihood of cooperation then depends on their
partner’s cumulative status. How exactly this status is translated into
behavior is encoded in an individual’s specific norm. With our study,
we go one step further in describing a social status that is formed by
players’ own observations and potentially more complex assessments
in each round, i.e., a status that is not simply given as a piece of
information to take into account. We show that when community
members privately keep track of others’ reputation scores by accu-
mulating observations and assessments of others’ actions according to
higher-order norms, indirect reciprocity can in fact stabilize coopera-
tion even when information is noisy. Further experimental studies can
provide anunderpinning forour results bydemonstrating that second-
order information can enhance indirect reciprocity even when coop-
eration is costly and therefore hard to maintain4. Players in fact seek
out higher-order information, even when they can already see their
interaction partners’ recent decisions over multiple rounds79.

Here, we have studied the reputation dynamics in well-mixed
populations in which a resident social norm is regularly challenged by
alternative social norms. Interesting additional effects may occur, for
example, when several social norms compete simultaneously, or when
we take into account population structure. One can assume that the
topology or group structure underlying a population80–83 can play a
significant role in the question of howwell quantitative assessment can
diminish the effect of errors. For sparse topologies, it is not trivial to
answer this question, as too much buffer for negative experiences can
become a hindrance when a player cannot observe certain actions at
all. These limitations notwithstanding, our present findings demon-
strate how modeling a reputation system to be more nuanced gives
rise to a clear increase in cooperation rates when individuals’ behavior
is governed by the leading eight social norms. We in fact show that
(some of) these norms then continue to maintain cooperation, even
when information is private, noisy, and imperfect, if only reputations
are sufficiently fine-grained. Overall, our study thus highlights how
broader definitions of goodness can benefit a community by helping
them to maintain positive social relations.

Methods
Reputation dynamics
As a first step, we consider how the reputations of players change over
time. For this analysis, we assume that social norms are fixed for each
player. We use the image matrix M(t) to record the reputation scores
that players assign to one another. This matrix is time-dependent and
is updated in every step of the dynamics. An entry rij, r∈ [− R, R] means
that player j has score rij in the eyes of player i. These scores translate
into overall judgments that individuals make of their co-players: to
label (i.e., judge) a co-player j as good or bad, an individual i compares
the respective score rijwith a threshold S. If rij < S, player i labels player j
as “bad”. If rij≥ S, player i judges player j as “good”. In the following, we
will denote the overall judgment of a player based on the score rij as
J(rij) = Jij, with Jij∈ [G,B]. Before the first round, we assume that all
entries are rij =0, i.e., that all players have a good label of each other
regardless of their social norm, but assign the lowest possible “good”
reputation score. Thereafter, in every round, two players are chosen at
random to act as donors and recipients. The donor can confer a benefit
b to the recipient at own cost c. This action depends on the donor’s
norm, and additionally on the label they assign to themselves and the

recipient, i.e., the judgment based on the corresponding reputation
scores. Every other co-player can observe the actionwith probability q,
and these observations are individually subject to misperception,
which happens with probability ε. Observers as well as the donor and
recipient then update the donor’s reputation score. This happens
according to their assessment rule and the labels they currently assign
to the interaction partners, based on each partner’s score. If player i
assesses player j’s action to be good, the reputation score rij(t) will
increase to rij(t + 1) = rij(t) + 1. If they assess player j’s action to be bad,
the reputation score will decrease to rij(t + 1) = rij(t) − 1. These score
updates are recorded in the image matrix M(t + 1).

We can iterate this process over many rounds and calculate the
average reputation scores, and more importantly, binary labels that
players assign to each other. Specifically, if players have interacted for
T rounds in total, the average label that player i’s assigns to player j is
defined as 1

T

PT
t = 1 JijðtÞ. Additionally, our simulations let us estimate the

pairwise cooperation rate of i against j, i.e., how often player i coop-
erates with j on average. Denoting this cooperation rate by x̂ij , we can
then calculate player i’s payoff for a fixed social norm as

πi =
1

N � 1

X
j≠i

bx̂ji � cx̂ij : ð1Þ

That is, the average payoff is the result of the benefits gained by i
through j cooperating (bx̂ji), reduced by the costs of i’s own coop-
eration with j (cx̂ij), averaged over all of i’s N − 1 co-players.

We illustrate our approach in Figs. 2 and 3, where we consider a
population consisting of equal parts ALLD, ALLC, and a leading eight
norm. In Fig. 2, we present snapshots of the image matrix at time
T = 2 × 106. For each of the leading eight strategies, we show both a
visualization of the reputation scores as well as a visualization of the
overall judgments Jij, i.e., the labels players assign to each other based
on the reputation scores. In Fig. 3, we show the respective average
overall judgments for both the quantitative assessment model with
frame of reference R = 5 and the baseline model wth binary
assessment.

We note that in the case of L8, there are two relatively stable
configurations when we consider reputation dynamics in a population
that also includes ALLD and ALLC players. Since L8 judges players who
cooperate with bad co-players as bad themselves, they often tend to
judge unconditional cooperators as badonce theymeet unconditional
defectors. Therefore, the two stable configurations are one where L8
judges itself andALLC as predominantly good, and onewhere it judges
itself as predominantly good, butALLC as predominantly bad. In Figs. 2
and 3, we show the second scenario, since it appears slightly more
frequently in our simulations. However, this issue does not affect our
other results, since in this work we do not consider the coexistence of
more than two strategies in the population for our subsequent
analysis.

To explore the robustness of our results, we have additionally run
simulations where players start with a negative reputation score, i.e., a
bad label. We obtain the same result as in Fig. 2, except for L7 and L8: If
there are no players with a good label to beginwith, it is impossible for
donors to gain in reputation. Hence, all L7 and L8 players keep
assigning negative scores to all co-players under such an initial
condition.

The assumption of a symmetric interval of possible scores, [− R, R]
with the threshold at S =0naturally implies that there are slightlymore
possible ranks for a “good” player than a “bad” one. A player with r = S
will be judged as “good”. To test this bias, we have also run simulations
where a player with r = S will be judged as “bad”, and have found no
significant qualitative difference in results as long as players start with
a good reputation.

We can naturally extend our analysis technique beyond the
restricted setupwhereonly three social norms compete. Our approach
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can be expanded by allowing population members to choose among
additional norms. However, computational complexity increases
rapidly in the number of considered social norms. Additionally, our
presented results are easy to compare to previous work using very
similar setups. They capture the crucial feature that disagreements
between players using a leading eight norm are drastically reduced
with quantitative assessment.

Evolutionary dynamics
In thenext step,we explore a settingwhere individuals’ social norms are
no longer fixed. We analyze which norms players themselves choose to
adopt over time, following the methods in previous work44,56. For this
analysis, we assume that players change their norms over a timescale
that is longer and separate from the timescale of the reputation
dynamics with fixed norms. To formally describe the process on this
longer time scale, we assume that individuals adopt new social norms
based on pairwise comparison54. In every evolutionary timestep, one
player is randomly chosen from the population.With probability μ, with
μ themutation rate, this player picks a new social norm at random from
the respective set of available norms. Meanwhile, with 1− μ, the focal
player randomly chooses a role model from the population. If the focal
player’s payoff according to Eq. (1) is given by πi and the role model’s
payoff is πj, then the focal player adopts the role model’s norm with
probability Pðπi,πjÞ = ð1 + exp½�sðπj � πiÞ�Þ�1. The parameter s is called
the strength of selection. When s is small, imitation occurs largely at
random. For larger s, however, players are most likely to imitate those
role models with a higher payoff.

In this work, players can choose from three social norms, a given
leading eight norm, ALLC, and ALLD. We use this setup to keep the
system as simple as possible, while also following the lead of much of
the previous work in the field25,30,31,36,49,51,84.

In evolutionary game theory, imitation processes are often used
as a standard model to describe the spread of strategies in a popula-
tion. For this model to be reasonable, it is necessary to assume that
players are able to infer their co-players’ strategies from their observed
behaviors, which can be difficult in indirect reciprocity. We therefore
implicitly assume in this work that people discuss theirworldviews and
moral guidelines with others. Instead of imitation, one could in con-
trast also consider an alternativemodel by assuming that social norms
spread through a birth-death process, i.e., that parents pass on their
own social norms to their children. However, for the functionweuse to
model imitation, the imitation process is equivalent to a birth-death
process with exponential fitness mapping55. Thus, our results would
not change.

This evolutionary process based on mutations and imitation is
ergodic on the space of all possible population compositions.Hence, it
gives rise to a unique stationary distribution, which we refer to as the
selection–mutation equilibrium. This equilibrium reflects how often
each of the available social norms is adopted over time. To be able to
efficiently calculate exact strategy abundances in this work, we use the
limit of rare mutations, which assumes that populations are homo-
geneousmost of the time. When amutation arises, it either fixes in the
population or goes extinct before the next mutant appears. We can
calculate this fixation probability of amutant with social normM into a
resident population with social norm R explicitly as59

ρMR =
1

1 +
Pn�1

i= 1

Qi
k = 1 e�βðπM ðkÞ�πRðkÞÞ

: ð2Þ

Here, πM(k) and πR(k) are the respective payoffs of mutants (M)
and residents (R) when k individuals in the population employ the
mutant norm. This means that we can describe the evolution of the
social norms between three available norms in the rare mutation limit
as a Markov chain with three states. These three states correspond to
the respective homogeneous populations, i.e., all players using ALLC,

all using ALLD or all players using a leading eight norm. We note that
this feature of the rare mutation limit is the reason why our evolu-
tionary results are not affected by the stability issues encountered in
the reputation dynamics between L8, ALLC and ALLD. Given the pair-
wise fixation probabilities according to Eq. (2), the respective transi-
tion matrix of this evolutionary Markov chain is given by

W =

1� 1
2 ðρLC +ρLDÞ 1

2ρLC
1
2ρLD

1
2ρCL 1� 1

2 ðρCL +ρCDÞ 1
2ρCD

1
2ρDL

1
2ρDC 1� 1

2 ðρDL +ρDCÞ

0
B@

1
CA: ð3Þ

The stationary distribution of this transition matrix is the selec-
tion-–equilibrium of the process for rare mutations57. Given this equi-
librium, we can compute how often players cooperate on average by
taking the average cooperation rate of each homogeneous population,
and multiplying it by how often we are to observe the respective
homogeneous population in equilibrium.

We use this approach in Figs. 7, 8, and 6, where we first simulated
the reputation dynamics for all possible population compositions,
(nL, nC, nD), with N = nL + nC + nD = 50 and 5 × 106 steps each. Here, nL
stands for the number of players using a leading eight norm, nC for the
number of players using ALLC, and nD for the number of ALLD players.
Payoffs are computed with Eq. (1), as explained in the subsection on
the reputation dynamics.

Specific methods employed for the figures. Figure 2 shows the
results of reputation dynamics in a population of N = 90 players. The
population composition is as follows: 1/3 uses ALLD, 1/3 uses ALLC, and
1/3 uses a leading eight norm. We consider the leading eight norms
with quantitative assessment of reference frame R = 5, i.e., reputation
scores in the interval [− 5, 5] (Fig. 2c–j). The threshold used for com-
puting the overall judgment is S = 0. We assume that information is
noisy (ε =0.05 and q = 0.9). Snapshots are taken at T = 2 × 106.

Figure 3 shows the average overall judgments in a population of
the same composition as in Fig. 2a–h. In Fig. 3i–p, we run the same
simulation for a population whose leading eight players use binary
assessment instead. All parameters are the same as in Fig. 2.

For Fig. 4, we simulate reputation dynamics in a homogeneous
population of leading eight players using quantitative assessment
(R = 3, S = 0) when information is perfect ε =0, q = 1. With this, we
simulate the recovery time froma single disagreement (a, aswell as the
average number of defections until recovery (b), while varying popu-
lation size N.

In Fig. 5, we show the abundance of ALLC, ALLD and each leading
eight norm with quantitative assessment in the selection–mutation
equilibrium. Assessment parameters S and R remain as in Fig. 2. Other
parameters are b = 5, c = 1, ε = 0.05, q = 0.9 and selection strength s = 1.

Figure 6 compares the equilibrium results of the evolutionary
simulations in Fig. 5 with the corresponding results in the baseline
model of binary assessment with S = 1 and possible reputation scores
[0, 1]. All parameters as in Fig. 5.

In Fig. 7, we explore the effect of quantitative assessment with
R = 5, S =0 on cooperation in the selection–mutation equilibrium for
all leading eight normswhenwe vary benefit b, noise ε and observation
probability q. We can then compare the baseline model (Fig. 7d–f)
using binary assessment (S = 1, with possible reputation scores [0, 1])
with our quantitative assessment model (Fig. 7a–c). The other para-
meters remain as in Fig. 5.

For Fig. 8, we have repeated the evolutionary simulations to
explore the effect of varying the frame of reference. We consider
cooperation rate in the selection–mutation equilibrium (a), abundance
in equilibrium (Fig. 8b), and the self-cooperation rate in a homo-
geneous population of leading eight players (Fig. 8c). Other para-
meters are the same as in Fig. 5.
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For Fig. 9, we proceed as in Fig. 8, but change the threshold S for a
“good” overall reputation, while keeping the number of reputation
levels constant (R = 5). In each simulation, players start with a reputa-
tion score equal to the threshold value S. All other parameters are the
same as in Fig. 5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
There arenoempirical data associatedwith this study. Data for themain
text was generated with Python 2.7 and visualized with Mathematica 11.
The scripts used to generate all data are available online at https://osf.
io/n35ah/?view_only=35b55d71e6ab46219fc40b2a32639152.

Code availability
All simulations and numerical calculations have been performed with
Python 2.7, and the generateddatawas visualizedwithMathematica 11.
The Python script used to simulate the reputation dynamics and cal-
culate the selection–mutation equilibrium and average cooperation
rates, aswell as the script simulating the recovery process froma single
disagreement, are available online at https://osf.io/n35ah/?view_only=
35b55d71e6ab46219fc40b2a32639152.
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