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Abstract: We consider Ising models in two and three dimensions, with short range
ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We
let J be the ratio between the strength of the ferromagnetic to antiferromagnetic inter-
actions. The competition between these two kinds of interactions induces the system to
form domains of minus spins in a background of plus spins, or vice versa. If the decay
exponent p of the long range interaction is larger than d +1, with d the space dimension,
this happens for all values of J smaller than a critical value Jc(p), beyond which the
ground state is homogeneous. In this paper, we give a characterization of the infinite
volume ground states of the system, for p > 2d and J in a left neighborhood of Jc(p).
In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes
(d = 2) or slabs (d = 3), all of the same optimal width and orientation, and alternat-
ing magnetization, are infinite volume ground states. Our proof is based on localization
bounds combined with reflection positivity.

1. Introduction and Main Results

The problem of proving the emergence of periodic patterns in systems with competing
interactions is ubiquitous in several areas of physics, biology and material science [2],
ranging from superconductor physics [12], micromagnetism [10], polymer suspensions
[24], martensitic phase transitions [27], quantum Hall systems [14], to metal-oxide-
semiconductor field-effect transistors [38], nuclear matter [32], and many others [5,6].
In all these systems, experiments or simulations show evidence for the formation of
remarkable patterns in suitable regions of the phase diagram. Examples are stripes,
bubbles, zig-zag patterns, and columnar phases. The fundamental understanding of these
phenomena is still in a primitive stage, mostly based on variational computations and
special assumptions on the structure of the low-energy states. There are just a few
special cases where the periodicity of the ground state can be proved from first principles
[13,25,26,40,41].
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A particularly interesting and poorly understood phenomenon is that of periodic stripe
formation [29,30,37,39]. In a series of papers, this phenomenon was studied in Ising
and related models with short range attractive and long range repulsive interactions. The
method of block reflection positivity led to rigorous proof of the existence of periodic
striped states both in one dimension [15,17,18] and in certain two-dimensional models,
including a toy model for martensitic phase transitions [22] and a model of in-plane
spins with discrete orientations and dipolar interactions [16]. However, the physically
interesting case of out-of-plane spins with dipolar, or dipolar-like, interactions, which is
of great importance for the physics of thin magnetic films, eluded any rigorous treatment
so far.

In a recent work [20,21], we succeeded in computing the specific ground state energy
of such a system, with power-law decaying repulsive interactions and decay exponent
p > 2d in d = 2, 3 space dimensions, asymptotically as the ferromagnetic transition line
is approached. Our estimates allowed us to prove emergence of periodic stripe order in
a suitable asymptotic sense, but they were not strong enough to fully control the ground
state structure, or to prove breaking of rotational symmetry in the ground state. In this
paper we extended the ideas of [19–21] and prove that periodic striped states of optimal
width are exact infinite volume ground states. Moreover, we give a characterization of
infinite volume ground states that are invariant under translations by one (for d = 2) or
two (for d = 3) independent fixed lattice vectors.

The setting is the following: consider Isingmodels defined by the formal Hamiltonian

H(σ ) = −J
∑

〈x,y〉
(σxσy − 1) +

∑

{x,y}

(σxσy − 1)

|x − y|p , (1.1)

where σ ∈ {±1}Zd
, d ≥ 2. The first sum in (1.1) ranges over nearest neighbor pairs

in Z
d , while the second ranges over pairs of distinct sites in Z

d . For different values
of the exponent p, this model is used to describe the effects of frustration induced in
magnetic films by the presence of dipolar interactions (p = 3) or in charged systems
by the presence of an unscreened Coulomb interaction (p = 1), as well as many other
frustrated systems [1,3–9,11,23,28,29,31,33–36,39,42].

In this paper, we choose the exponent p to satisfy the constraint p > 2d. As discussed
in a previous work [20,21], if J > Jc, with

Jc :=
∑

y1>0, y⊥∈Zd−1

y1
(y21 + |y⊥|2)p/2 , (1.2)

then there are exactly two ground states, σx ≡ +1 ∀x ∈ Z
d , and σx ≡ −1 ∀x ∈ Z

d . For
J < Jc, the ground state is not uniform, and for J close to Jc it was conjectured to be
a periodic striped configuration, i.e., a quasi-one-dimensional periodic configuration of
the form (σ (h))x = sign(sin(π(x1 + 1/2)/h)), or translations or rotations thereof, for
a suitable stripe width h ∈ N. In this paper, we prove this conjecture, and characterize
the set of infinite volume ground states invariant under translations generated by d − 1
lattice vectors.

For simplicity, we restrict the discussion to d = 2 and p > 4 from now on. Similar
considerations are valid in d = 3 and p > 6 (or, in fact, for any d ≥ 2 with p > 2d). In
Appendix A we explain how to adapt the proof to dimension three and higher. Let es(h)

be the energy per site of σ (h) computed via (1.1). We let h∗ = argminh∈Nes(h), which



Periodic Striped Ground States in Ising Models With Competing Interactions 985

is uniquely defined for almost all1 choices of J . We denote by σ ∗ = σ (h∗) ∈ {±1}Z2
,

and we call it an optimal periodic striped configuration. Other 4h∗ − 1 optimal periodic
striped configurations are obtained from σ ∗ via translations and rotations.

In order to state our main result, we also need to introduce the following notions: the
configuration s ∈ {±1}Z2

is called an infinite volume ground state if it is energetically
stable against compactly supported perturbations, that is, for any finite X ⊂ Z

2,

HX (σ X |s) − HX (sX |s) ≥ 0, ∀σ X ∈ {±1}X (1.3)

where sX is the restriction of s to X , and

HX (σ X |s) = −J
∑

〈x,y〉:
x,y∈X

(σxσy − 1) +
∑

{x,y}:
x,y∈X

(σxσy − 1)

|x − y|p

−J
∑

x∈X, y∈Xc :
|x−y|=1

(σxsy − 1) +
∑

x∈X, y∈Xc

(σxsy − 1)

|x − y|p . (1.4)

We shall say that two infinite volume ground states are equivalent, if they only differ
on a finite set. The equivalence class of a given infinite volume ground state is called a
sector. A sector is trivial, if it contains only one element. In terms of these notions, our
main result can be summarized as follows.

Theorem 1. There exists ε > 0 such that, if Jc − ε < J < Jc, then the optimal periodic
striped configurations are infinite volume ground states, and their sectors are trivial.

This result is a corollary of a quantitative lower bound on the energy of spin con-
figurations, which will be formulated in Theorem 3 below, after having introduced a
few more definitions. Our quantitative bounds also allow us to characterize the infinite
volume ground states that are invariant under translation by a vector n ∈ Z

2.

Theorem 2. Under the same conditions as Theorem 1, any infinite volume ground state s
that is invariant under translation by a vector n = (n1, n2) ∈ Z

2 is characterized by the
following property: there exists an “interface” of finite width, of the form Ik1,k2(n) =
{x ∈ Z

2: x · n⊥ ∈ [k1, k2]}, where n⊥ = (−n2, n1) and k1 < k2 are two integers,
such that s coincides with two of the optimal striped configurations on the two infinite
components of

(Ik1,k2(n)
)c
.

Let us now introduce a few more definitions, which are required for the formulation of
our quantitative lower bound on the energy of a generic spin configuration.

1.1. On Good and Bad.

1.1.1. Contours and Corners. Given σ ∈ {±1}Z2
, we let � = {x ∈ Z

2: (σ )x = −1},
and �(�) be its boundary, i.e., the union of bonds of the dual lattice (Z2)∗ separating a
point x ∈ � from a point y ∈ �c. At every vertex of �(�) ∩ (Z2)∗, there can be either
two or four sides meeting. In the case of four sides, we deform the polygon slightly by
“chopping off” the edge from the squares containing a − spin; see Fig. 1.

1 There are exceptional values of J for which es(h) has two minimizers, h∗ and h∗ + 1. For more detailed
comments about the nature of ground states at the exceptional values of J, see the end of Sect. 1.
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Fig. 1. In the case that four sides of the closed polygon �(�) meet at a vertex v, we slightly deform �(�) so
that the two squares containing a − spin become disconnected from the vertex itself. a The situation where
the minus spins are located at NE and SW of v, before and after the “chopping”. b The situation where the
minus spins are located at NW and SE of v, before and after the “chopping”

After the chopping, �(�) splits into disconnected polygons �1, �2, . . . , which are
called contours. The points where two orthogonal portions of a contour meet are called
corners. The sites of the dual lattice where a non-trivial chopping operation took place
correspond to two corners. We denote by Nc(�i ) the number of corners of �i , and
Nc(�) = ∑

i Nc(�i ). Note that, if σ is a compactly supported perturbation of σ ∗, that
is, if the set {x ∈ Z

2: (σ )x �= (σ ∗)x} is finite, then Nc(�) < +∞.

1.1.2. Tiles. Given an integer �, we pave Z2 with tiles of side � and, given a tile T , we
denote by �T (�) the union of the bonds in �(�) that separate a point in � ∩ T from
a point in �c. Note that this convention assigns uniquely every bond in �(�) to one
of the tiles. The connected components of �T (�) are contained in the contours �1, . . .,
and are denoted by �T,i , i = 1, . . . , rT . Given a maximal straight portion of �T,i , we
assign to each of its two endpoints a “number of corners”, which can be either 1/2 or
0, depending on whether or not the given endpoint coincides with one of the corners in
∪ j≥1� j . This assignment induces a notion of “number of corners in the tile T ”, to be
denoted by nc(T ), which is the sum of the number of corners of all the endpoints of the
straight portions of �T,i , with i = 1, . . . , rT . Note that nc(T ) can be either integer or
half-integer, and

∑
T nc(T ) = Nc(�).

1.1.3. Bad Tiles and Good Regions. We now identify the tiles Ti such that either
nc(Ti ) > 0, or they contain a square of side �/5 completely contained in � or in
�c, to be called hole. We call these tiles bad 2, and we letNB be their number. For later
convenience, we also let N hole

B be the number of bad tiles containing a hole. The con-

nected components of the complement of ∪NB
i=1Ti , are denoted by Gi , i = 1, . . . ,NG ,

and are called the good regions. By construction, any of these connected components
contains portions of contours in �(�) that are all straight with the same orientation,
and have no corners. We denote by �Gi the union of contours in �(�) contained in
Gi . If the elements of �Gi are all vertical, we will say that Gi is vertically striped,
and horizontally striped otherwise. Consider a good region Gi that is vertically (resp.
horizontally) striped. We say that R is a “rectangular portion of stripe” in Gi , if R is
a rectangle completely contained in � or in �c, with its two vertical (resp. horizontal)
boundaries both belonging to �Gi . We also define the distance between its two vertical
(resp. horizontal) boundaries to be the width of R. Finally, we let Ah(Gi ) denote the
area of the union of all the rectangular portions of stripes of width h in Gi . Note that, if
σ is a compactly supported perturbation of σ ∗, then

∑NG
i=1 Ah(Gi ) is finite, ∀h �= h∗.

We are now in the position of stating our quantitative lower bound on the energy
HX (sX |σ ∗) of a spin configuration s with σ ∗ boundary conditions.

2 We shall choose � large compared to the optimal stripe width h∗, which explains why we expect a hole
to be energetically unfavorable, hence bad.
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Theorem 3. There exist positive constants C0, C1, ε such that, if Jc − ε < J < Jc and
C0h∗ ≤ � ≤ (C0(Jc − J ))−1, then for every s ∈ {±1}Z2

and every finite set X ⊂ Z
2,

HX (sX |σ ∗) ≥ HX (σ ∗
X |σ ∗) + C1

(
Nc + (Jc − J )

p−2
p−3 �2N hole

B

)

+
1

2

∑

h �=h∗

NG∑

i=1

(
es(h) − es(h

∗)
)
Ah(Gi ), (1.5)

where Nc,N hole
B , and Gi are, respectively, the number of corners, the number of bad tiles

containing a hole, and the good regions, associated with the infinite spin configuration
σ = (sX , σ ∗

Xc ) coinciding with sX on X and with σ ∗ on Xc, defined via tiling with
squares of side length � as described above.

Remark. Since h∗ ∼ (Jc − J )−1/(p−3) � (Jc − J )−1 for small Jc − J (compare with
Eq. (2.30) below), the condition on � can be fulfilled for J close to Jc. Note also that
es(h∗) ∼ (Jc − J )(p−2)/(p−3) for small Jc − J , which agrees with the factor multiplying
N hole

B in the second term on the right side of (1.5).

Remark. The prefactor 1/2 in the second line of (1.5) can be replaced by any number
less than 1, at the expense of modifying the constants C0 and ε.

Theorem 3 implies, in particular, that σ ∗ is an infinite volume ground state, and that
every state σ that is a compactly supported perturbation of it, is not a ground state,
simply because any such state necessarily has corners and, therefore, by (1.5), it has
strictly larger energy than σ ∗. This immediately implies Theorem 1.

In order to see that also Theorem 2 is a consequence of Theorem 3, consider an
infinite volume ground state s that is invariant under translations by an integer vector n.
Let � ⊂ Z

2 be a square box of side L , and note that the energy price for changing the
boundary conditions from s to σ ∗ scales like the boundary, that is

∣∣∣∣H�

(
σ�|s) − H�

(
σ�|σ ∗)

∣∣∣∣ ≤ 2
(
J + Jc

)∣∣∂�
∣∣ (1.6)

for any σ�. Using this inequality and the very definition of infinite volume ground state,
we have

H�

(
σ ∗

�|σ ∗) + 2
(
J + Jc

)∣∣∂�
∣∣

≥ H�

(
σ ∗

�|s) ≥ H�

(
s�|s)

≥ H�

(
s�|σ ∗) − 2

(
J + Jc

)∣∣∂�
∣∣. (1.7)

Now we apply Theorem 3, thus obtaining

C1

(
Nc +

(
Jc − J

) p−2
p−3 �2N hole

B

)
+
1

2

∑

h �=h∗

NG∑

i=1

(
es(h) − es(h

∗)
)
Ah(Gi )

≤ 4
(
J + Jc

)∣∣∂�
∣∣, (1.8)

where Nc,N hole
B andGi refer to the configuration (s�, σ ∗

�c). In particular, Nc is bounded
by (const.)L . Since every corner not at the boundary of � is repeated with period n,
there can be at most a finite number of them (modulo translations by n) independently
of L . This means that these corners are all contained in a finite strip Ik1,k2(n), as claimed
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in Theorem 2, with k1, k2 independent of L . Similarly, we can argue that the holes and
the stripes of width different from h∗ are all contained in a finite strip Ik1,k2(n). This
concludes the proof of Theorem 2, in the case that h∗ is unique. As observed above, there
are exceptional values of J for which es(h) has two minimizers, h∗ and h∗ + 1. In these
cases, the discussion above leaves open the possibility that on one of the connected
components of

(Ik1,k2(n)
)c the stripes are not all of the same width. However, this

cannot be the case: by proceeding as in [15, Section III.D], one can prove that each
pair of neighboring stripes of widths h∗, h∗ + 1 gives an extra positive contribution to
the energy per unit stripe length. Therefore, pairs of stripes of different widths are all
contained in a finite strip Ik1,k2(n), and Theorem 2 follows.

The rest of the paper is devoted to the proof of Theorem 3.

2. Proof of Theorem 3

The proof of Theorem 3 is divided into several steps, and uses many notations and ideas
introduced in [20,21], which will be recalled here. In reading the proof, it may be useful
to keep in mind that the goal is to derive lower bounds for the energy of the “Peierls
contours”, i.e., of the connected components of the union of the bad tiles, and to show
that we gain in energy by erasing the contours, as in the standard Peierls argument. The
difficulty lies in the fact that the energy of these contours, as well as the one of the good
regions, is non-local, due to the power-law nature of the repulsive interaction, and a priori
it depends on the geometric shape of the surrounding good and bad regions. In order to
get a useful, local, bound on the contour energies, it is convenient to devise a localization
procedure, which allows us to replace the original non-local Hamiltonian by a sum of
local energies, supported on the bad and good regions, respectively. The localization
procedure must be performed carefully in order to minimize the resulting boundary
error (which is proportional to the boundary between the good and bad regions). For this
purpose, we also need to get refined bounds on the localized energies of the bad and good
regions, and to show that the excess energy associated with the Peierls contours is large
enough to compensate the aforementioned boundary error. Compared to our previous
paper [20,21], a key technical novelty is our improved lower bound on the energy of
the good regions, which may have complicated geometrical shapes. The crucial estimate
is summarized in Lemma 1 below. A similar estimate already appeared in [20,21], but
only for rectangular good regions, which was a severe restriction.

In more detail, the proof is organized as follows:

• In Sect. 2.1we reduce to plus boundary conditions, which allows us to use the droplet
formulation for the energy as in [20,21], see (2.3) below. Rewriting the energy
in terms of droplet self-energies and droplet-droplet interactions is advantageous,
in that it provides us with a good localization procedure, with boundary errors
that are much smaller than those obtained by localizing directly the original spin
Hamiltonian.

• In Sect. 2.2 we describe the localization procedure and, for the purpose of a lower
bound, we replace the original Hamiltonian by a sum of local energies, each sup-
ported on the bad tiles or on the good regions, respectively.

• In Sect. 2.3 we state our main bounds on the localized energies, and show that they
easily imply Theorem 3.

• In Sect. 2.4 (resp. 2.5) we give the proof of the lower bound on the local energy of
the good regions (resp. bad tiles).
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Before entering the proof, we recall some notation and relevant scales: we let τ =
2(J − Jc), which is assumed to be negative and small, in absolute value. The energy per
site es(h) of a periodic striped configuration of stripewidth h is equal to τh−1+Aph−p+2,
for a suitable constant Ap > 0, up to a negligible errors for large h (see (2.30) below
for the exact formula). This readily implies that the optimal energy, i.e., the minimum
of es(h), is negative and of the order |τ |(p−2)/(p−3), and the optimal stripe width h∗ =
argmin es(h) is of the order |τ |−1/(p−3). In the following, we will take the tile side length
� entering the definition of bad and good regions to be much larger than h∗, in order
to guarantee that good regions contain many stripes (which is required for making the
boundary errors introduced in the localization procedure negligible compared to the bulk
energy), and smaller than order |τ |−1, in order to guarantee that the excess energy of the
bad tiles is proportional to the number of corners (cf. Eqs. (2.38)–(2.41) below).

2.1. Reduction to Plus Boundary Conditions. The σ ∗ boundary conditions, while nat-
ural in the perspective of proving uniqueness of the ground state, are not particularly
convenient for using the droplet representation of [20,21]. However, a few simple alge-
braic manipulations allow us to reduce to the same boundary conditions of [20,21] (that
is, plus boundary conditions) in a suitable enlarged box. To see this, rewrite HX (σ X |σ ∗)
as

HX (σ X |σ ∗) = HX (σ ∗
X |σ ∗) + lim

�↗Z2

[
Hper

� (σ X , σ ∗
�\X ) − Hper

� (σ ∗
�)

]
(2.1)

where � is a square box of side L , which we choose to be divisible by 2h∗, (σ X , σ ∗
�\X )

is the configuration on � whose restriction to X ⊂ � (resp. �\X ) coincides with σ X
(resp. σ ∗

�\X ), and Hper
� (σ�) is the Hamiltonian with periodic, rather than σ ∗, boundary

conditions.
Now, Hper

� (σ ∗
�) = es(h∗)|�| and Hper

� (σ X , σ ∗
�\X ) can be further rewritten in terms

of a Hamiltonian with plus boundary conditions:

Hper
� (σ X , σ ∗

�\X ) = lim
M→∞

1

M2 H
+
�M

(
(σ X , σ ∗

�\X )M
2)

(2.2)

where �M is a square box of side LM , to be thought of as the union of M2 copies of �,
and (σ X , σ ∗

�\X )M
2
is a symbol for the configuration on�M obtained by juxtaposing M2

copies of (σ X , σ ∗
�\X ), one in each of the copies of�. Moreover, H+

X (σ X ) = HX (σ X |σ +)

indicates the Hamiltonian with plus boundary conditions (here σ + is the uniform infinite
spin configuration consisting of plus spins everywhere). Finally, for later reference, we
introduce the shorthand u�M

for the spin configuration (σ X , σ ∗
�\X )M

2
on �M , and u for

the infinite one coinciding with u�M
on�M and with σ + on the complement. From now

on we shall consider u�M
and u fixed once and for all.

2.2. Localization. Wenow re-express H+
�M

(u�M
) in terms of the droplets representation

introduced in [20,21]. Using the notation introduced in Sect. 1.1.1, we let� be the region
of minus spins associated with u, �(�) its boundary, and �1, . . . , �r the corresponding
contours. We also denote by G(�) the collection of contours, G(�) = {�1, . . . , �r }.
Note that �, �(�), G(�) and r are finite, because of the plus boundary conditions. As
in [20,21], we denote by δi the maximal connected components of �, and by D(�)
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β7

β2

β4

β3

β8

β6

β5

β1

Fig. 2. Left a square regionQ (in light grey,withdottedboundary) and thedroplets havingnon-zero intersection
with it. Right the corresponding bubble configuration BQ after localization in Q. Note that a single droplet
can give rise after localization to more than one bubble: e.g., β2 and β7 originate from the same droplet, and
similarly for β3 and β4. Note also that the contour of a bubble does not necessarily coincide with the boundary
of its droplet: in general, it is contained in it, and may even be disconnected (as in the case of β5, whose
contour consists of two disconnected portions)

their collection. Given δ ∈ D(�), we also let �(δ) be the boundary of δ, and Nc(δ) its
number of corners. In terms of these notations, we can re-express the energy of u�M

as

H+
�M

(
u�M

) = 2J
∑

�∈G(�)

|�| +
∑

δ∈D(�)

U (δ) +
1

2

∑

δ,δ′∈D(�)
δ �=δ′

W
(
δ, δ′), (2.3)

where

U (δ) := −2
∑

x∈δ

∑

y∈Z2\δ

1

|x − y|p , W
(
δ, δ′) := 4

∑

x∈δ

∑

y∈δ′

1

|x − y|p . (2.4)

Let us consider the partition P of �M defined by the bad tiles and good regions of �M ,
in the sense of Sect. 1.1.3: P = {Ti }NB

i=1 ∪ {Gi }NG
i=1. We now localize the energy in the

elements ofP , by proceeding as in [20,21, Section 3]. More precisely, we derive a lower
bound on the energy H+

�M
(u�M

) in the form of a sum of local energies EQ(BQ), each
depending only on the “bubble configuration” BQ within the region Q ∈ P . The notion
of bubble configuration was introduced in [20,21, Section 3] and is recalled here: given
Q ∈ P and δ ∈ D, we denote by �Q(δ) the portion of �(δ) belonging to Q. Moreover,

if δQ = δ ∩ Q, we define δ̄
(1)
Q , . . . , δ̄

(mQ(δ))

Q to be the maximal connected components

of δQ , and �̄
(1)
Q , . . . , �̄

(mQ(δ))

Q to be the portions of �Q(δ) belonging to the boundary of

δ̄
(1)
Q , . . . , δ̄

(mQ(δ))

Q , respectively. We shall refer to the pair (δ̄
(i)
Q , �̄

(i)
Q ) as to a bubble in Q

originating from δ. We shall indicate by BQ(δ) the set of bubbles in Q originating from
δ, and by BQ = ∪δ∈DBQ(δ) the total set of bubbles in Q (see Fig. 2).
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Given a bubble β = (δβ, �β) ∈ BQ , we also define its localized self-energy as

uQ(β) = −
∑

b∈�β

∑

n �=0

min
{
|n1|, dQ

b (δβ)
}

|n|p , (2.5)

where dQ
b (δβ) is the distance between b and the bond b′ ∈ �β facing it3 in β, if there is

such a bond, and is infinite, if b faces the boundary of Q. In terms of these notions, our
localization bound takes the following form:

H+
�M

(
u�M

) ≥
NB∑

i=1

ETi

(BTi

)
+

NG∑

i=1

EGi

(BGi

)
, (2.6)

where

ETi

(BTi

) =
∑

β∈BTi

[
2J |�β | + uTi (β)

]
+
1

2

∑

β,β ′∈BTi ,

β �=β ′

W (δβ, δβ ′) + 21−p/2nc(Ti ), (2.7)

EGi

(BGi

) =
∑

β∈BGi

[
2J |�β | + uGi (β)

]
+
1

2

∗∑

β,β ′∈BGi ,

β �=β ′

W
(
δβ, δβ ′

)
, (2.8)

and the ∗ on the last sum indicates the following constraint: if the bubbles in Gi are all
vertical (resp. horizontal) we only sum over pairs of bubbles that do not overlap after
arbitrary translations in the vertical (resp. horizontal) direction.

Remark. The right side of (2.6) should be thought of as a first step towards the derivation
of a Peierls-like bound on the “contours”, consisting of the connected components of
the union of the bad tiles. Compared with the original Hamiltonian, the right side of
(2.6) has the advantage of being a sum of independent contributions, localized in the bad
and good regions, respectively, without long-range interactions between the regions. The
local energy functionals have a structure very similar to the original droplet Hamiltonian,
with an explicit excitation energy associated to the corners (in the case of ETi (BTi )).
The bound is sharp, in the sense that equality holds in (2.6) if NB = 0. The energy of
the good regions will be bounded from below by es(h∗) times the total area of the good
regions, up to a boundary error scaling like |τ |∑NG

i=1 |∂Gi |, while every bad tile will be
shown to have an excess energy (compared to the reference energy es(h∗)�2) larger than
max{1, �2|τ |(p−2)/(p−3)}, which is enough to compensate the boundary error. The total
excess energy of every contour plays the role of its Peierls energy.

Proof of (2.6).We start from (2.3). The goal is to bound it from below by a sum of terms,
each of which is localized in an element Q of P . The first term on the right side of (2.3)

3 The notion of “bond facing b in β” is defined as follows. Let us suppose for definiteness that b ∈ �β is
vertical and that it separates a point xb ∈ δβ on its immediate right from a point yb = xb − (1, 0) �∈ δβ on
its immediate left. We say that b faces b′ ∈ �β , and vice versa, if: (i) b′ is vertical; (ii) b′ separates a point
xb′ ∈ δβ on its immediate left from a point yb′ = xb′ + (1, 0) �∈ δβ on its immediate right; (iii) the points xb
and xb′ are at the same height, i.e., [xb]2 = [xb′ ]2, and all the points on the same row between them belong
to δβ : in other words, xb + ( j, 0) ∈ δβ , for all j = 0, . . . , [xb′ ]1 − [xb]1. An analogous definition is valid for
horizontal bonds. If b does not face any b′ ∈ �β , we say that b faces the boundary of Q.
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is already local, i.e., it can be rewritten exactly as 2J
∑

Q∈P
∑

β∈BQ
|�β |, which leads

to the corresponding terms in (2.7) and (2.8). The interaction W (δ, δ′) on the right side
of (2.3) can be rewritten as

W (δ, δ′) =
∑

Q,Q′∈P

∑

β∈BQ(δ)

β ′∈BQ′ (δ′)

W
(
δβ, δβ ′

)
,

which is bounded from below by dropping the terms with Q �= Q′ (recall that the
interaction is positive), so that

1

2

∑

δ,δ′∈D(�)
δ �=δ′

W
(
δ, δ′) ≥ 1

2

∑

Q∈P

∗∗∑

β,β ′∈BQ
β �=β ′

W
(
δβ, δβ ′

)
, (2.9)

and the ∗∗ on the sum indicates the constraint that the two droplets δ, δ′ inD(�), which
δβ, δβ ′ belong to, are different from each other, δ �= δ′.

Regarding the second term on the right side of (2.3), we bound it from below by
using [20,21, Eq. (2.9)], that is

U (δ) ≥ −
∑

b∈�(δ)

∑

n �=0

min
{|n1|, db(δ)

}

|n|p + 21−
p
2 Nc(δ) + 4

∑

{x,y}∈P(δ)

1

|x − y|p , (2.10)

where db(δ) is the distance between b and the bond b′ facing it in δ, and P(δ) is the set
of unordered pairs of distinct sites in δ such that both Chv

x→y and Cvh
x→y cross at least two

bonds of �(δ). Here Chv
x→y is the path on the lattice that goes from x to y consisting of

two segments, the first horizontal and the second vertical. Similarly, Cvh
x→y is the path

on the lattice that goes from x to y consisting of two segments, the first vertical and the
second horizontal (note that the two paths can coincide, in the case that xi = yi for some
i ∈ {1, 2}).

The first term on the right side of (2.10) can be bounded from below as

−
∑

b∈�(δ)

∑

n �=0

min
{|n1|, db(δ)

}

|n|p ≥
∑

Q∈P

∑

β∈BQ(δ)

uQ(β), (2.11)

which, after summation over δ, leads to the terms
∑

β∈BQ
uQ(β) in (2.7) and (2.8).

The second term on the right side of (2.10) is local and, after summation over δ, can
be rewritten as 21−

p
2

∑NB
i=1 nc(Ti ) (recall that the good regions have no corners), which

leads to the last term on the right side of (2.7). Moreover, the sum over δ of the last term
on the right side of (2.10) can be bounded from below by an expression similar to the
right side of (2.9), namely

∑

δ∈D
(
�)

4
∑

{x,y}∈P(δ)

1

|x − y|p ≥ 1

2

∑

Q∈P

†∑

β,β ′∈BQ
β �=β ′

W
(
δβ, δβ ′

)
, (2.12)



Periodic Striped Ground States in Ising Models With Competing Interactions 993

where the † on the sum indicates the constraint that δβ, δβ ′ belong to the same droplet
δ ∈ D(�), and all the pairs of points (x, y) in δβ × δβ ′ are such that {x, y} ∈ P(δ).
Combining the right sides of (2.9) and (2.12) we obtain

1

2

∑

Q∈P

††∑

β,β ′∈BQ
β �=β ′

W
(
δβ, δβ ′

)
,

where the †† on the sum indicates the constraint that: either δβ, δβ ′ belong to different
droplets in D(�), or, if they belong to the same droplet in δ, they are such that all pairs
of points (x, y) in δβ × δβ ′ are in P(δ). Finally, note that: if Q is a bad tile (which is a
convex region), then the constraint †† is automatically realized (i.e., it can be dropped),
which leads to the second term on the right side of (2.7); if Q is a good region, then
the constraint †† is easily seen to be weaker than the one indicated by ∗ in (2.8), which
leads to the last term on the right side of (2.8). ��

2.3. Lower Bounds on the Localized Energies. In this subsection we state the key lower
bounds on the localized energies in the bad and good regions, and prove that they imply
Theorem 3. Recall the definitions ofNB ,N hole

B and Ah(Gi ) given in Sect. 1.1.3. Recall
also that � is the side length of the tiles, which enters the definition of the partition P .

Lemma 1. There exist positive constants c0, c1 and ε such that, if −ε < τ < 0 and
� ≥ c0h∗, then the energy EG of any good region G ∈ P satisfies

EG
(BG

) ≥ es(h
∗)|G| − c1|τ | |∂G| + 1

2

∑

h �=h∗

(
es(h) − es(h

∗)
)
Ah(G). (2.13)

Lemma 2. There exist positive constants c0, c2 and ε such that, if −ε < τ < 0 and
c0h∗ ≤ � ≤ (c0|τ |)−1, then the energy ET of any bad tile T ∈ P satisfies

ET (BT ) ≥ �2es(h
∗) + c2

[
nc(T ) +

∣∣τ
∣∣(p−2)/(p−3)

�2χhole(T )

]
, (2.14)

where χhole(T ) is equal to 1 if T contains a hole, and 0 otherwise.

Lemma 1 is one of themain technical novelties of this paper, and its proof is described
in detail in the Sect. 2.4. The boundary error on the right side of (2.13), proportional to
τ |∂Gi |, is “optimal”, in the sense that its value is of the same order as the one obtained
by comparing the energy of an optimal striped configuration in a rectangular region
with open boundary conditions with that in the same region with periodic boundary
conditions. The proof of Lemma 2 is simpler than the one of Lemma 1, it is an extension
of the bounds worked out in [20,21], and its proof is postponed to Sect. 2.5.

Combining the two lemmas, we can easily derive Theorem 3. The key observation is
that every portion of the boundary ∂Gi of a good region Gi ∈ P is adjacent to a bad tile,
so that the boundary error−c1|τ |� associated with every “elementary portion” of ∂Gi is
compensated by the excess energy of the adjacent bad tile. More precisely, using the fact
that every portion of ∪i∂Gi is adjacent to a bad tile, we get that

∑NG
i=1 |∂Gi | ≤ 4�NB .
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Therefore, using also the fact that every bad tile either has a positive number of corners
(at least 1/2) or a hole, plugging (2.13) and (2.14) into (2.6), we obtain

H+
�M

(u�M
) ≥ es(h

∗)|�M | + c2
2

(
Nc(�) + |τ |(p−2)/(p−3)�2N hole

B

)

+
1

2

∑

h �=h∗

NG∑

i=1

(
es(h) − es(h

∗)
)
Ah(Gi )

+ NB

(
c2
2
min

{1
2
, |τ | p−2

p−3 �2
}

− 4c1|τ |�
)

. (2.15)

Now, if

8c1
c2

|τ |−1/(p−3) < � <
c2
16c1

|τ |−1,

then the expression in parentheses that multipliesNB is positive, and we can drop it for
the purpose of a lower bound. Via the use of (2.1) and (2.2), we thus arrive at (1.5).

2.4. Proof of Lemma 1.

2.4.1. Deforming the Good Regions. We now discuss the proof of Lemma 1. Let us
consider a good region G ∈ P , and let us assume without loss of generality that it
only contains vertical stripes. We first want to slightly deform the domain G and cor-
respondingly change the bubble configuration within, in order to make all the bubbles
rectangular: here we call “rectangular” a bubble β = (δβ, �β) such that δβ is a rectangle
and �β is the union of its two vertical sides. Note that, in general, not all the bubbles
in G are rectangular, due to boundary effects (in fact, the boundary can partially “cut”
a portion of the rectangle, without disconnecting it, see e.g. the droplets δ1 and δ2 in
Fig. 3).

In order to describe the deformation of G, think of the vertical boundary of G as
a union of segments Si of length �, induced by the tiling described in Sects. 1.1.2 and
1.1.3. By construction, every boundary segment Si faces a portion S̃i of length � of the
boundary of a rectangular bubble in BG that is closer than 2�/5 to Si itself. We now
deform the boundary ∂G continuously, by moving the segments Si towards the interior
of G, in such a way that they coincide with S̃i ; see Fig. 4.

In this way we increase the boundary of G by at most |∂G| itself, and we increase
the energy by at most |τ | · |∂G|, which is acceptable for our purposes. We shall denote
by G ′ the new region obtained from G by the deformations we just described, and the
new bubble configuration BG ′ . We have

EG
(BG

) ≥ EG ′
(BG ′

) − |τ | · |∂G| , (2.16)

as just argued.
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δ1

δ2

Fig. 3. A good region with its bubble configuration. The regions in dark grey are droplets, while those in light
grey are their complement. Note that not all of the droplets are rectangular, due to boundary effects. E.g.,
the droplets δ1 and δ2 are not rectangular. The arrows indicate the direction in which the vertical boundary
segments move under the deformation described in the text

Fig. 4. The deformed good region corresponding to the good region of Fig. 3, after the moves of the vertical
boundary segments indicated by the arrows. Note that after the deformation all the droplets are rectangular,
and all the connected components of the complement of the droplets (the connected light grey regions) are
rectangular as well



996 A. Giuliani, R. Seiringer

h1

w1

h2

w2

h3

w3

h4

w4

h5

w5

h6

Fig. 5. The six slices corresponding to the deformed good region of Fig. 4. For ease of visualization, the
slices are drawn slightly detached from each other. As an example, in the first slice we attached the labels hi
and wi indicating the widths of the stripes (dark grey regions) and of the rectangular regions separating two
subsequent stripes from each other (light grey regions)

2.4.2. Slicing and Bounding the Energy of the Good Region. The deformed region G ′
obtained in the previous step is a union of connected horizontal slices g j of height �, with
j = 1, . . . , Ng , as shown in Fig. 5. To each slice we associate a sequence of integers
(h1, w1, . . . , wn−1, hn), where n is the number of bubbles in BG ′ intersecting the slice,
h1, h2, ..., hn are their widths, ordered from left to right, and w1, w2, ... are the spacings
between the first and second bubbles, second and third, etc.

We also denote by si , with i = 1, . . . , Ns , the maximal connected segments in the
intersection between the horizontal boundary of G ′ and the boundaries of the droplets in
BG ′ (note that the boundary of a rectangular bubble does not coincide with its contour:
rather, it consists of four segments, two horizontal and two vertical). Note that segments
come in pairs: one can say that two segments form a pair if they belong to the boundary
of the same droplet. Moreover, to each segment s j we associate its length h(s j ) and
two spacings w1(s j ), w2(s j ), which are the horizontal distances from the next droplets
(“next” by following the boundary of G ′) to the left and to the right of s j . Note that if
s j touches a corner of ∂G ′, say on its right side, then there may not be any droplet to its
right: by following the boundary one may find that the next segment to the right could
actually have the same horizontal coordinates, in which case we will assign the value
+∞ to w2(s j ) (and similarly for w1(s j ) in the case of the next segment on the left); see
Fig. 6.

The key ingredient for the proof of Lemma 1 is the following.
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s17

s1

s16

s2

s15

s3

s14

s4

s13

s18

s12

s19

s11

s20

s10

s7

s9

s8

s22

s5

s21

s6

Fig. 6. The red segments s j (color online) for the bubble configuration of Fig. 4 in the deformed good
region G′. The segments can be naturally grouped in pairs: two segments form a pair if they belong to the
boundary of the same droplet. E.g., s1 and s17 are paired, s11 and s20 are paired, etc. Every segment s j
comes with its length h(s j ), and with two spacings, the left spacing w1(s j ) and the right spacing w2(s j ),
corresponding to the distances to the closest droplets to its left and to its right, by moving along the boundary.
If one of the endpoints of s j is a corner of the boundary of G′, then s j may not have any droplet to its
left or right, in which case we let the corresponding spacing to be infinite. In the example in the figure,
w1(s1) = w1(s17) = w2(s8) = w2(s9) = +∞, and all the other spacings are finite

Lemma 3. Given G ′ and BG ′ as above, we have:

EG ′(BG ′) ≥ �

Ng∑

j=1

e∞
(
h( j)
1 , w

( j)
1 , . . . , h( j)

n j

)
−

Ns∑

j=1

f
(
w1(s j ), h(s j ), w2(s j )

)
,

(2.17)

where h( j)
1 , w

( j)
1 , . . . , h( j)

n j is the sequence of widths and spacings associated to the
slice g j , and e∞(h1, w1, . . . , hn) is the energy per unit vertical length of an infinite
vertically striped configuration, with n stripes of widths h1, . . . , hn, separated among
each other by spacings w1, . . . , wn−1.4 Moreover, f (w1, h, w2) is half the interaction
energy between the droplets in Fig. 7.

4 More precisely, e∞(h1, w1, . . . , hn) is the energy per unit vertical length, measuredwith the Hamiltonian
(1.1), of the infinite spin configuration on Z2, equal to −1 on the strips {(x1, x2) ∈ Z

2: 0 < x1 − ∑i−1
k=1(hk +

wk ) ≤ hi }, and +1 otherwise.
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w1 w2

h

Fig. 7. A pictorial representation of the droplets involved in the definition of f (w1, h, w2), which represents
half the interaction energy of the infinite half strip of width h, with the two quarter spaces to its lower left and
lower right. The spacings w1 and w2 represent the horizontal distances between the infinite half strip and the
quarter space to its left and to its right, respectively

Remark. The second term on the right side of (2.17) represents the boundary error in the
computation of the energy of the good region. Note that it scales proportionally to the
boundary of G ′, rather than the total boundary of the slices g j .

For future reference, it is useful towrite in formulae the expressions of e∞(h1, w1, . . . ,

hn) and f (w1, h, w2). A straightforward computation shows that

e∞
(
h1, w1, . . . , hn

) = 4Jn − 2
n∑

i=1

∑

x∈Z2\{0}

min{|x1|, hi }
|x|p

+
1

2

∑

i, j=1,...,n
i �= j

W
(
li ,L(l j )

)
, (2.18)

where li = {(x, 0) ∈ Z
2: 0 < x−∑i−1

k=1(hk +wk) ≤ hi } andL(li ) is the smallest infinite
vertical strip containing li , that is L(li ) = {(x, y) ∈ Z

2: 0 < x − ∑i−1
k=1(hk + wk) ≤

hi , y ∈ Z}; moreover,

f
(
w1, h, w2

) = 1

2
W

(L+
h, Qw1,h,w2

)
(2.19)

where L+
h = {(x, y) ∈ Z

2: −h ≤ x < 0, y > 0} and Qw1,h,w2 = {(x, y) ∈ Z
2:

x < −w1 − h or x ≥ w2, y ≤ 0}.
Proof of Lemma 3. First of all, note that the contribution

∑

β∈BG′

[
2J |�β | + uG ′(β)

]

to the energy EG ′(BG ′) (see (2.8)) is identical to the corresponding contribution in

�
∑Ng

j=1 e∞(h( j)
1 , w

( j)
1 , . . . , h( j)

n j ), i.e., to the one arising from the first two terms on the
right side of (2.18). Therefore, all we have to prove is that the difference between the
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interaction terms in EG ′(BG ′) and in �
∑Ng

j=1 e∞(h( j)
1 , w

( j)
1 , . . . , h( j)

n j ) is bounded from
below by the last sum in (2.17).

Let us focus on a given slice g j and on the intersection of a given bubble β with this
slice. The interaction energy of this portion of bubble with all the other bubbles in G ′,
as it appears in EG ′(BG ′), is

1

2

∗∑

β ′∈BG′
W

(
δβ ∩ g j , δβ ′

)
, (2.20)

where we recall that the ∗ on the sum indicates the constraint that the bubbles β ′ inter-
secting β after vertical translations should not be included in the sum. Equation (2.20)
can be bounded from below by summing only over the bubbles β ′ having non zero
intersection with g j :

(2.20) ≥ 1

2

∑

β ′∈BG′
β ′∩g j �=∅, β ′ �=β

W
(
δβ ∩ g j , δβ ′

)
.

The term �
∑Ng

j=1 e∞(h( j)
1 , w

( j)
1 , . . . , h( j)

n j ) on the right side of (2.17) contains a term of
that form, with the difference that δβ ′ is replaced by the infinite vertical strip of the same
width containing it. In fact, the interaction term in (2.18) satisfies

�

Ng∑

j=1

∑

i,i ′=1,...,n j
i �=i ′

W
(
l( j)i ,L(

l( j)i ′
)) =

Ng∑

j=1

∑

β∈BG′

∑

β ′∈BG′
β ′∩g j �=∅, β ′ �=β

W
(
δβ ∩ g j ,L(δβ ′)

)
,

(2.21)

where l( j)i is the analogue of the set li defined after (2.18), corresponding to the widths

and spacings h( j)
1 , w

( j)
1 , . . . , h( j)

n j associated to the slice g j . Therefore, what remains to
be proved is that

Ng∑

j=1

∑

β∈BG′

∑

β ′∈BG′
β ′∩g j �=∅, β ′ �=β

W
(
δβ ∩ g j ,L(δβ ′)\δβ ′

) ≤
Ns∑

j=1

W
(
L+
h(s j ), Qw1(s j ),h(s j ),w2(s j )

)
.

(2.22)

Let us rewrite the left side of (2.22) as
∑

β ′∈BG′

∑

j=1,...,Ng
g j∩β ′ �=∅

∑

β∈BG′
β �=β ′

W
(L(δβ ′

)\δβ ′ , δβ ∩ g j ). (2.23)

Note that the horizontal boundary of L(δβ ′)\δβ ′ consists of two segments s j , sk with
h(s j ) = h(sk) and s j above sk (these are the pairs of segments mentioned in Sect. 2.4.2;
see Fig. 6), and there is a one-to-one correspondence between summing over β ′ and
summing over these pairs of segments s j , sk (which is of course the same as summing
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over all segments). Moreover, the set L(δβ ′)\δβ ′ is equal to the union of two sets, each
of which is a translation, and one also a reflection, of L+

h(s j )
, that is

L(δβ ′)\δβ ′ = τ 1β ′L+
h(s j ) ∪ τ 2β ′rL+

h(s j ) (2.24)

for translations τ 1
β ′ and τ 2

β ′ , and r denoting reflection about the x1-axis.
To conclude, it is enough to note that

⋃

i=1,...,Ng
gi∩β ′ �=∅

⋃

β∈BG′
δβ ∩ gi ⊆ τ 1β ′Qw1(s j ),h(s j ),w2(s j ) ∩ τ 2β ′r Qw1(sk ),h(sk ),w2(sk ), (2.25)

which implies the desired inequality (2.22), and thus completes the proof of Lemma 3.
��

2.4.3. Reflection Positivity. We now show how to bound from below the right side of
(2.17), and how to use the resulting estimate to conclude the proof of Lemma 1. The
key step is to use reflection positivity to obtain a lower bound on the e∞ term. This is an
application of the block reflection positivity for one-dimensional spin systems worked
out in [15]. The result is the following:

e∞(h1, w1, . . . , hn) ≥ τ +
n∑

i=1

hi es(hi ) +
n−1∑

i=1

wi es(wi ). (2.26)

To see this, recall that e∞(h1, w1, . . . , hn) is the energy per unit vertical length,measured
with the Hamiltonian (1.1), of the infinite spin configuration on Z

2, equal to −1 on the
strips {(x1, x2) ∈ Z

2: 0 < x1 − ∑i−1
k=1(hk + wk) ≤ hi }, and +1 otherwise. Since this

spin configuration is quasi-one-dimensional (i.e., it is translation invariant in one of the
two coordinate directions), its energy can be re-expressed in terms of a one-dimensional
Hamiltonian, i.e., e∞(h1, w1, . . . , hn) = limL→∞ Hper

�L
(σ h1,...,hn ), where:

1. Given a spin configuration σ�L
on �L = [1, L] ∩ Z,

Hper
�L

(σ�L
) = −J

L∑

i=1

(
σiσi+1 − 1

)
+

∑

1≤i< j≤L

(
σiσ j − 1

)
vL(i − j), (2.27)

with

vL(x) =
∑

n,y∈Z

(
(x + nL)2 + y2

)−p/2
, (2.28)

and σL+1 ≡ σ1;
2. The spins in the configuration σ h1,...,hn are equal to −1 on the intervals {x ∈ Z:

0 < x − ∑i−1
k=1(hk + wk) ≤ hi }, and +1 otherwise.

Now, Hper
�L

(σ h1,...,hn ) is a one-dimensional spin Hamiltonian with a reflection positive
long-range interaction and periodic boundary conditions, of the class considered in
[15,16]. Therefore, we can apply the chessboard estimate proved e.g. in the Appendix
of [16]. As a result, using [16, Eqs. (A4)–(A5)] and recalling the fact that the spin
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configuration σ h1,...,hn consists of blocks of alternating sign, of size h1, w1, . . . , hn, wn ,
with wn = wn(L) = L − (h1 + w1 + · · · + hn), we get

Hper
�L

(σ�L
) ≥

n∑

i=1

(
hi es(hi ) + wi es(wi )

)
, (2.29)

where es(h) is the energy per site (as computed from Hper
�L

, in the limit L → ∞) of the
infinite periodic configuration consisting of blocks all of the same size h, and of alternat-
ing sign. Note that es(h) is the same as the one defined in Sect. 1 for the two-dimensional
model. Finally, to go from (2.29) to (2.26), observe that limL→∞ wn(L)es(wn(L)) = τ .
This follows, e.g., from the explicit expression of es(h), derived in [20,21, Appendix
A]:

es(h) = τ

h
+
2

h

∞∫

0

dα μv(α)
e−α

(1 − e−α)2

(
1 − tanh

αh

2

)

= τ

h
+

Ap

h p−2 + O(h−p) (2.30)

for large h, whereμv(α) is the inverse Laplace transform of the function v∞(x) in (2.28),
i.e., the function such that v∞(x) = ∫ ∞

0 dα μv(α)e−αx , ∀x > 0, and Ap is a suitable
constant.

Remark. From (2.30) it follows straight away that the optimal stripe width is h∗ =
((p − 2)Ap|τ |−1)1/(p−3)(1 + o(1)) as τ → 0, and also that es(h∗) = p−3

p−2
τ
h∗ (1 + o(1)).

2.4.4. Putting Things Together. Plugging (2.26) into (2.17) gives

EG ′(BG ′) ≥ |G ′|es(h∗) + �τNg + �

Ng∑

j=1

[ n j∑

k=1

h( j)
k

(
es(h

( j)
k

) − es(h
∗))

+

n j−1∑

k=1

w
( j)
k

(
es(w

( j)
k ) − es(h

∗)
)] −

Ns∑

j=1

f
(
w1(s j ), h(s j ), w2(s j )

)
.

(2.31)

Now, �Ng ≤ 1
2 |∂G ′| and it remains to show that the sum of the last two lines can be

bounded from below by (const.)τ |∂G ′| + 1
2

∑
h �=h∗(es(h) − es(h∗))Ah(G). From the

definition of f (w1, h, w2) it easily follows that it can be bounded independently of h,
as

f (w1, h, w2) ≤
∑

i=1,2

C2

w
p−4
i

(2.32)

for a suitable constant C2. Moreover, from (2.30) it follows that

es(w) − es(h
∗) ≥ C3

w p−2 +
τ

w
(2.33)
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for all w ≥ 1 and a suitable C3 > 0. Note that the left side is non-negative, while the
right side may be negative. A simple consequence of (2.33) is that

C3

w p−4 ≤ |τ |w +
(
C3|τ |−1

) 1
p−3

w
(
es(w) − es(h

∗)
)
. (2.34)

In fact, if w ≤ (C3|τ |−1)
1

p−3 , then (2.33) implies (2.34) directly. If, on the contrary,

w > (C3|τ |−1)
1

p−3 , then C3
w p−4 ≤ |τ |w, which is stronger than (2.34).

Using this bound in (2.32) implies that the last line of (2.31) can be bounded as

Ns∑

j=1

f (w1(s j ), h(s j ), w2(s j )) (2.35)

≤ C2

C3

Ns∑

j=1

∑′

i=1,2

[
wi (s j )|τ | + (C3|τ |−1)

1
p−3 wi (s j )

(
es(wi (s j )) − es(h

∗)
)]

,

where the prime on the sum indicates the constraint that wi (s j ) < ∞. Now, every
spacing wi (s j ) appears twice in the sum above (because every spacing is to the left or

to the right of two different segments s j , s j ′), hence
∑Ns

j=1

∑′
i=1,2 wi (s j ) ≤ 2|∂G ′|.

Similarly,

Ns∑

j=1

∑′

i=1,2

wi (s j )
(
es(wi (s j )) − es(h

∗)
) ≤ 2

Ng∑

j=1

n j−1∑

k=1

w
( j)
k

(
es(w

( j)
k ) − es(h

∗)
)
.

(2.36)

Therefore, if � ≥ 4C2C
(4−p)/(p−3)
3 |τ |−1/(p−3),

EG ′(BG ′) ≥ |G ′|es(h∗) + τ |∂G ′|
(1
2
+ 2

C2

C3

)

+ �

Ng∑

j=1

[ n j∑

k=1

h( j)
k (es(h

( j)
k ) − es(h

∗)) + 1

2

n j−1∑

k=1

w
( j)
k (es(w

( j)
k ) − es(h

∗))
]
.

(2.37)

To complete the proof of Lemma 1, note that |G ′| ≤ |G|, and |∂G ′| ≤ 2|∂G|, as already
argued above. ��
Remark. The proof of (2.37) is valid for bubble configurations a bit more general than
those considered here: in fact, we never used the fact that BG ′ has no holes, in the sense
explained in Sect. 1.1.3. The only property we really used is that the bubbles in BG ′ are
all rectangular with the same orientation.

2.5. Proof of Lemma 2. We proceed similarly to [20,21, Section 3]. The first step is
to estimate the cost of erasing the bubbles with corners. Write nc(T ) = ∑

β∈BT
νc(β),

with νc(β) the number of corners associated with the bubble β, which may be an integer
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or a half-integer. Consider a bubble with νc(β) > 0. Dropping the positive interaction
of this bubble with the others, its contribution to the energy is bounded from below as

2J |�β | + uT
(
β
)
+ 21−p/2νc(β) ≥ τ

∣∣�β

∣∣ + 21−
p
2 νc

(
β
)
. (2.38)

Note that, in order for �β to be very long, the number of corners must be sufficiently
large: in formulae (see [20,21, Eq. (3.10)] and following lines),

∣∣�β

∣∣ ≤ 2� + 2�νc
(
β
)
. (2.39)

If, as we are assuming, νc(β) ≥ 1/2, then νc(β)+1 ≤ 3νc(β), so that νc(β) ≥ |�β |/(6�).
Inserting this back into (2.38) gives

2J |�β | + uT (β) + 21−p/2νc(β) ≥ 2−p/2 |�β |
6�

(
1 − 6 · 2p/2|τ |�

)

+ 2− p
2 νc(β). (2.40)

The first term on the right side is positive, and, therefore, can be dropped for a lower
bound, if � < (6 · 2p/2|τ |)−1. Therefore, denoting by ST the subset of BT consisting of
all the bubbles without corners,

ET (BT ) ≥ ET (ST ) + 2− p
2 nc(T ). (2.41)

In order to estimate the energy of the corner-less configurationST we proceed exactly
as in the proof Lemma 1. Assume that the contours in ST are vertical. We deform the
tile T by moving to the right the left vertical boundary of T , until it hits the left vertical
contour of a bubble, and vice versa for the right vertical boundary. We call T ′ and ST ′
the new region and configuration obtained after the deformation. In passing from T,ST
to T ′,ST ′ we increase the energy by at most 2|τ |�. Now we use the bound (2.37) which,
as remarked after (2.37), is valid for all configurations consisting only of rectangular
bubbles with the same orientation. The result is

ET ′(ST ′) ≥ es(h
∗)|T ′| + Cτ� + �

n∑

i=1

hi
(
es(hi ) − es(h

∗)
)

+
�

2

n−1∑

i=1

wi
(
es(wi ) − es(h

∗)
)
, (2.42)

where h1, . . . , hn are the widths of the bubbles in ST ′ , and w1, . . . , wn−1 their separa-
tions.

It T contains a hole, then either one of the hi ’s or wi ’s is larger than �/5, or, the
width of T ′ is smaller than 4�/5. In the first case, one of the terms �hi

(
es(hi ) − es(h∗)

)

or �wi
(
es(wi ) − es(h∗)

)
is larger than (�2/10)|es(h∗)|: to see this recall that � ≥ c0h∗,

for a large enough constant c0, and use (2.30), which implies that es(h)≥ es(h∗)/2 for
h ≥ �/5. In the second case, the difference between es(h∗)|T ′| and es(h∗)|T | is larger
than (�2/5)|es(h∗)|. In both cases, we get a gain of at least (�2/20)|es(h∗)|, which is
larger than (const.) �2|τ |(p−2)/(p−3). To conclude the proof, note that under the stated
assumptions on � (that is, c0h∗ ≤ � ≤ (c0|τ |)−1 for a suitable constant c0), the error
term (2 + C)|τ |� is smaller than c

[
nc(T ) + |τ |(p−2)/(p−3)�2χhole(T )

]
, where c can be

made as small as desired, by increasing c0 (recall also that by definition of bad tile, either
nc(T ) ≥ 1/2, or χhole(T ) = 1). This concludes the proof. ��
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A. The Higher-Dimensional Case

In this appendix we shall detail our main results in the case d ≥ 3, and explain the
main differences in their proof as compared to the two-dimensional case. The starting
point is a representation of the energy in terms of droplets as in (2.3), whose boundaries,
separating plus spins from minus spins, consist now of d − 1 dimensional plaquettes.
Tiles are now d-dimensional cubes of side length �, and are used to divide space into
good regions and bad cubes, with the good regions only containing “stripes” (i.e., quasi-
one-dimensional regions of uniform spins, delimited by two flat parallel interfaces; they
are slabs in d = 3), which can be oriented in d different directions.
Our first claim concerns the fact that the localization bound (2.6) still holds, with the
obvious notion of “corner”, namely d − 2 dimensional segments where two plaquettes
with different orientation meet. The proof of the analogue of (2.6) in higher dimensions
is essentially the same as in d = 2, and relies on the analogue of (2.10), whose proof is
in [20,21, App. D].
The key bound in Lemma 1 for the good regions holds verbatim also for general d ≥ 2.
After the modification from G to G ′, each stripe has a definite width h but will not be a
cuboid, in general; it is bounded by a union of d−1 dimensional cuboids sk with width h
and all other dimensions equal to �. As before, each sk comes with two numbers, w1(sk)
and w2(sk), measuring the distance to the next slice in the direction perpendicular to
the stripes. The analogues of the slices g j introduced in Sect. 2.4.2 are cylinders with
base area �d−1 and various heights, which are obtained by adding up the various stripe
widths hi and their separation wi ; they are oriented perpendicular to the stripes. With
these modified definitions, Eq. (2.17) still holds, with � replaced by �d−1 in front of the
first term on the right side, and f (w1, h, w2) now denoting the interaction energy as
depicted in Fig. 7, with the upper strip of width h extended by � in the remaining d − 2
dimensions, while the two lower ones are infinite in those directions. This function f
satisfies the bound

f (w1, h, w2) ≤ �d−2
∑

i=1,2

C2

w
p−d−2
i

. (A.1)

As already discussed in [20,21, App. A], the analogue of (2.30) for general d is

es(h) = τ

h
+

Ap,d

h p−d
+ O

(
hd−p−2

)
, (A.2)

http://creativecommons.org/licenses/by/4.0/
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from which it follows that es(h∗) ∼ |τ |(p−d)/(p−d−1) and h∗ ∼ |τ |−1/(p−d−1) for small
τ . Moreover, one easily deduces that (A.1) can be bounded by

C3

w p−d−2 ≤ |τ |w + (C3|τ |−1)
1

p−d−1 w
(
es(w) − es(h

∗)
)
, (A.3)

which is the analogue of Eq. (2.34). The rest of the proof of Eq. (2.13) for general d
remains unchanged.
The analogue of Lemma 2 for general d ≥ 2 takes the following form:

Lemma 2’ For given d ≥ 2, there exist positive constants c0, c2 and ε such that, if
−ε < τ < 0 and c0h∗ ≤ � ≤ (c0|τ |)−1/(d−1), then the energy ET of any bad tile T ∈ P
satisfies

ET (BT ) ≥ �des(h
∗) + c2

[
nc(T ) + |τ |(p−d)/(p−d−1)�dχhole(T )

]
, (A.4)

where χhole(T ) is equal to 1 if T contains a hole, and 0 otherwise.

Its proof is a rather straightforward adaptation of the one in d = 2, and we refer to
[20,21, App. D], where the necessary changes were described in the case d = 3.
Since every portion of the boundary of a good region Gi is adjacent to a bad tile, we
have the bound

∑NG
i=1 |∂Gi | ≤ 2d�d−1NB . In combination with the bounds above, this

leads to the following generalization of Theorem 3.

Theorem 3’ For given d ≥ 2, there exist positive constants C0, C1, ε such that, if
Jc − ε < J < Jc and C0h∗ ≤ � ≤ (C0(Jc − J ))−1/(d−1), then for every s ∈ {±1}Zd

and every finite set X ⊂ Z
d ,

HX (sX |σ ∗) ≥ HX (σ ∗
X |σ ∗) + C1

(
Nc + (Jc − J )

p−d
p−d−1 �dN hole

B

)

+
1

2

∑

h �=h∗

NG∑

i=1

(es(h) − es(h
∗))Ah(Gi ), (A.5)

where Nc,N hole
B , and Gi are, respectively, the number of corners, the number of bad tiles

containing a hole, and the good regions, associated with the infinite spin configuration
σ = (sX , σ ∗

Xc ) coinciding with sX on X and with σ ∗ on Xc, defined via tiling with
squares of side length � as described above.

Theorem 3’ implies the analogue of Theorem 1, i.e., the fact that striped configurations
with stripe width h∗ are infinite volume ground states with trivial sectors for J close to
Jc, and also the analogue of Theorem 2, stating that all infinite volume ground states
that are invariant under translations by d − 1 lattice vectors are characterized by the
existence of an interface separating the cubic lattice Zd into two components, on each
of which the configuration is perfectly striped.
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