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Abstract

Deep learning has become an integral part of a large number of important applications, and
many of the recent breakthroughs have been enabled by the ability to train very large models,
capable to capture complex patterns and relationships from the data. At the same time,
the massive sizes of modern deep learning models have made their deployment to smaller
devices more challenging; this is particularly important, as in many applications the users
rely on accurate deep learning predictions, but they only have access to devices with limited
memory and compute power. One solution to this problem is to prune neural networks, by
setting as many of their parameters as possible to zero, to obtain accurate sparse models with
lower memory footprint. Despite the great research progress in obtaining sparse models that
preserve accuracy, while satisfying memory and computational constraints, there are still many
challenges associated with efficiently training sparse models, as well as understanding their
generalization properties.
The focus of this thesis is to investigate how the training process of sparse models can be made
more efficient, and to understand the differences between sparse and dense models in terms of
how well they can generalize to changes in the data distribution. We first study a method
for co-training sparse and dense models, at a lower cost compared to regular training. With
our method we can obtain very accurate sparse networks, and dense models that can recover
the baseline accuracy. Furthermore, we are able to more easily analyze the differences, at
prediction level, between the sparse-dense model pairs. Next, we investigate the generalization
properties of sparse neural networks in more detail, by studying how well different sparse
models trained on a larger task can adapt to smaller, more specialized tasks, in a transfer
learning scenario. Our analysis across multiple pruning methods and sparsity levels reveals that
sparse models provide features that can transfer similarly to or better than the dense baseline.
However, the choice of the pruning method plays an important role, and can influence the
results when the features are fixed (linear finetuning), or when they are allowed to adapt to
the new task (full finetuning). Using sparse models with fixed masks for finetuning on new
tasks has an important practical advantage, as it enables training neural networks on smaller
devices. However, one drawback of current pruning methods is that the entire training cycle
has to be repeated to obtain the initial sparse model, for every sparsity target; in consequence,
the entire training process is costly and also multiple models need to be stored. In the last part
of the thesis we propose a method that can train accurate dense models that are compressible
in a single step, to multiple sparsity levels, without additional finetuning. Our method results
in sparse models that can be competitive with existing pruning methods, and which can also
successfully generalize to new tasks.
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CHAPTER 1
Introduction

In recent years, we have witnessed the tremendous progress made by deep neural networks in solv-
ing diverse tasks, spanning multiple fields, such as computer vision [HZRS16, DBK+21], natural
language processing [VSP+17, DCLT19], or reinforcement learning [MKS+15, SSS+17]. Neu-
ral networks are now capable of generating complex images from text descriptions [RDN+22],
entertaining realistic conversations with humans [Ope22], discovering new protein struc-
tures [TAW+21] and even outplaying world champions at complex games [SSS+17]. Along
with the increased research efforts, these incredible achievements have been enabled by the
availability of specialized hardware with improved memory and computational support.

While undeniably impressive, these highly performing neural networks have an important
drawback: they require massive memory and compute power for both training and infer-
ence, as they often have many millions or even billions of parameters. For example, the
GPT-3 model [BMR+20], which is a popular pre-trained generative model from the Trans-
former [VSP+17] family, used for natural language processing tasks, has 175 billion parameters
and requires more than 300GB of memory for storage, which exceeds the capacity of any
currently available graphics processing unit (GPU) [FAHA23]. The sheer size of these models,
and the resources they require pose important questions regarding both their environmental
and financial costs, and several researchers have raised these concerns [SGM20, BGMMS21].
Furthermore, this trend of designing highly performing deep learning architectures with massive
sizes is at odds with the efforts of making the benefits deep learning more accessible, particularly
on hardware with fewer computational resources. Ideally, neural networks should be deployable
on edge devices, such as mobile phones or personal laptops, to enable more users to benefit
from the advances in deep learning.

To address these challenges, a great amount of research interest has been dedicated in recent
years to neural network compression, and two popular approaches have been in the center of
these efforts: pruning and quantization. The quantization techniques [GKD+21] concentrate on
reducing the precision of the model, by restricting the set of possible values of the parameters.
On the other hand, pruning methods [HABN+21] focus on setting as many model parameters
as possible to zero, while still ensuring good accuracy; the resulting sparse models would in
turn have reduced memory requirements, as their parameters can be stored in sparse format.

While both approaches have been proven very successful at reducing the size of deep models, and
in fact they can be used complementarily, this thesis focuses on compression methods based on
pruning techniques. Our focus on model pruning is motivated by the great interest in this field,
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1. Introduction

which has witnessed the development of a myriad of techniques for obtaining sparse models,
many of them presented in the survey of [HABN+21]. Moreover, there is increasingly available
hardware support for sparse models [Dee21, Gra21], which makes them of great practical
interest. From a theoretical point of view, sparse models can reveal or help us understand
some interesting generalization properties of deep networks [AGNZ18, FC19, JCR+22]. Still,
there are many things to improve when it comes to reducing the training costs of sparse
models, together with narrowing the performance gap between sparse and dense models, and
understanding the differences between them. In particular, in this thesis we study ways of
reducing the computational costs associated with training sparse models, together with better
understanding their generalization properties, by comparing how well they can be used to adapt
to new data distributions or how much they differ from dense models, in terms of predictions.

One important challenge regarding pruning methods concerns the training costs for obtaining
accurate sparse models. Despite the fact that pruning methods can substantially reduce the
memory footprint of deep learning models, some of the most popular pruning methods [ZG17,
SA20, FKA21, KCN+22] still require important memory and computational resources for
training; for example, they often start from a pretrained dense model, and only gradually
increase the sparsity level, until a desired target level is reached. With these considerations in
mind, we study methods meant to tackle the challenge of reducing the training costs of sparse
models. Namely, we develop a method for training sparse models at a lower training cost
compared to that of a dense model. Our method has the additional advantage of allowing the
co-training of accurate sparse–dense model couples, with a single training cycle.

Another challenge in reducing the costs of obtaining accurate sparse models is that often
the training process has to be repeated for each sparsity target; this in turn can be quite
cumbersome, as multiple hyper-parameter search rounds might be needed; additionally, this
does not allow for enough flexibility, particularly in applications where users might want to
switch between multiple sparse models, depending on their computational needs. For this
reason, we also investigate in this thesis methods for training accurate dense models that are
prunable in a single step, to multiple target sparsity levels, without additional finetuning.

An equally important research problem for pruning methods concerns their generalization
abilities. While several works have discussed the potential of sparse models for generaliza-
tion [AGNZ18, JCR+22], there is still more to be understood regarding the ability of sparse
models to adapt to different data distributions, as well as the practical differences between
sparse and dense models. In this thesis, we approach these challenges by examining how well
existing pruning methods can be used for transfer learning, that is, to leverage information
learned on a larger, more general dataset, to smaller, more specialized tasks. Additionally,
we show that the methods we developed for training prunable models have the flexibility to
generalize to multiple tasks, when models are pruned to different sparsity levels.

Given the above mentioned challenges in the field of neural network pruning, we organize the
thesis as follows:

• In Chapter 2 we provide an overview of the most popular existing pruning methods, and
we also present the main architectures and datasets used for the methods proposed.

• In Chapter 3 we present a method for co-training accurate sparse and dense models,
which alternates dense training steps with optimization in the sparse support. Thus, we
are able to obtain sparse models at a lower computational cost compared to training
dense models. Additionally, we show theoretical guarantees for the convergence of our
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method and also analyze its generalization properties, by examining differences between
co-trained sparse and dense models, at sample prediction level. This chapter is based on
our published work [PIVA21].

• In Chapter 4 we investigate a practical use-case of sparse models; namely, how amenable
different pruning methods are to finetuning on smaller tasks. This chapter, based on the
published work [IPKA22], concerns both the computational and generalization aspects
of neural network pruning. On one hand, sparse models can be used for finetuning on
edge devices, due to their reduced memory and computation requirements, and on the
other hand, we investigate the generalization capabilities of sparse models to changes in
the data distribution.

• In Chapter 5, which is based on [PVK+23], we again tackle, from a different angle,
the computational and generalization aspects concerning sparse models. Namely, we
introduce a method for training dense models that can be easily pruned in a single step,
to different sparsity levels, without additional finetuning; this would in turn remove the
need for training a separate model from scratch for every desired sparsity level, and would
ultimately reduce the overall cost of training multiple sparse models. Additionally, our
approach is inspired by methods that enforce flatter loss surfaces [FKMN21], which are
believed to lead to better generalization, through flatter local minima [HS97a, KMN+17,
LXT+18].

• Lastly, in Chapter 6 we look back at our methods and results, and consider new research
directions to explore in the future.
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CHAPTER 2
Background

In this chapter we present basic concepts regarding training and pruning neural networks,
which will serve as background for the subsequent chapters. In the first part, we discuss the
most important concepts regarding training neural networks, including optimization, different
types of architectures, as well as common datasets used for benchmarking. We further discuss
additional topics of interest, such as transfer learning, and in particular linear and full finetuning.
The second part of the chapter is dedicated to neural network pruning, and will describe some
of the most widely used methods for obtaining sparse models, together with some of the
challenges associated with them.

2.1 Fundamentals of Neural Network Training
In this section we describe the fundamental concepts regarding machine learning, focused on
the training of neural networks.

2.1.1 Notations and Overview
We describe some basic concepts in machine learning, which also apply to deep learning. In a
nutshell, machine learning represents the collection of methods designed for finding patterns in
given finite data, through an automatic process, with the purpose of inferring predictions on
new, unseen data. A machine learning model can be described as a mapping which takes the
input data and returns the corresponding predictions. Neural networks, in particular, represent
a large class of machine learning models and the field concerned with the study of neural
networks is known as deep learning.

The process of optimizing the machine learning model on the given data–referred to as training
data– is suggestively called learning or training. The goal of the training process is to provide
meaningful predictions on new test data. There are different types of learning paradigms in
machine learning, and a common categorization takes into account the presence or absence of
labels for the training data. Since most of our methods and results are presented for supervised
problems for which the ground-truth labels are available, we describe the basic framework for
supervised learning.

Assume our data and labels reside in the sets X ⊆ Rd, and Y , respectively, on which we further
assume a probability distribution D ∈ P(X × Y). In the case of classification problems, Y is
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2. Background

discrete, e.g. for binary classification Y = {0, 1}. The training set D consists of i.i.d. pairs
{(x1, y1), . . . (xn, yn)} sampled from D. A hypothesis class H represents a set of functions,
or models, with parameters in Θ ⊆ RN , which map inputs from X to the predictions in Y.
Namely, H = {hθ : X −→ Y|θ ∈ Θ}. For example, for linear models and binary classification,
hθ(x) = 1[θTx ≥ 0]. The goal is to find the hypothesis h ∈ H which achieves the best
representation of the training data. In the case of supervised learning, we formalize this through
the empirical risk defined as LD(h) = 1

n

∑︁n
i=1 ℓ(h(xi), yi), where ℓ : Y × Y −→ [0,∞) is the

loss function measuring how close our model’s predictions are from the real labels, for example
the 0/1 loss ℓ(y′, y) = 1[y′ ̸= y]. We typically perform empirical risk minimization to find the
best hypothesis h∗ = arg minh∈H LD(h).
The goal is to obtain a model that generalizes well, i.e. gives good predictions on new data.
This can be expressed through the expected risk LD(θ) = Ex,y∼D[ℓ(hθ(x), y)]. However, in
practice we do not usually have access to the true data distribution, but instead have a test
set D′ = {(x′

i, y
′
i), . . . (x

′
m, y

′
m)} assumed to be drawn from the same underlying distribution

D, and we measure the quality of our empirical risk minimizer on D′ .
While in the field of learning theory [SSBD14], the empirical risk is typically defined for binary
classification problems, in which the loss function is the 0/1 loss, we expand this definition
to different types of problems, and also to allow differentiable loss functions. For example,
for multiclass classification problems, where Y = {1, 2, . . . K}, it is typical to have a one-hot
encoded representation of the targets into a vector in {0, 1}K where all components are
zero, except for the class being represented. Then, the model h outputs for each sample x a
prediction vector ỹ, which consists of the probabilities for each class. A very common loss
function is the cross-entropy ℓ : CK × CK −→ [0,∞), where CK ⊆ [0, 1]K is the probability
simplex, and ℓ(ỹ, y) = −∑︁K

k=1 y
(k) log ỹ(k). Since most often the models are parameterized

by some θ ∈ Θ, we use throughout the thesis fi(θ) or ℓi(θ) to refer to ℓ(hθ(xi), yi), where ℓ
is typically the cross-entropy function. Then, the training loss is defined as

LD(θ) = 1
n

n∑︂
i=1

ℓ(hθ(xi), yi) (*)

Equivalently, we will also use the notation f(θ) = 1
n

∑︁n
i=1 fi(θ) to refer to the training

loss function, particularly when we focus on optimization aspects. While our goal is to find
θ∗ = arg minθ∈Θ LD(θ), there are two possible phenomena that could occur: underfitting,
which is insufficient learning of the training set, or overfitting, when the model learns the
training set very well, but performs very badly on the test set. Underfitting can be mitigated
by increasing the complexity of the model, while to avoid overfitting it is common to add
different regularizations to the model, for example ℓ2 regularization of θ, also known as weight
decay in the case of neural networks, which can be expressed through the regularized loss
function LD,λ(θ) = LD(θ) + λ

2∥θ∥
2. Moreover, to avoid overfitting, a good practice is to use

a separate validation set (typically a random subset of the original training set) during model
selection, and to only use the test set for the final evaluation.
In the next section, we will explore different algorithms for finding θ∗ = arg minLD(θ), by
exploring different optimization algorithms for differentiable loss functions.

2.1.2 Optimization
In this section we describe some of the basic optimization algorithms that are used for training
machine learning models, and neural networks in particular. In what follows, for notation
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simplicity we denote the loss function f : RN −→ R, which is assumed to be differentiable.
We begin by introducing some commonly used definitions, which will also serve as simplifying
assumptions.

Definition 2.1.1. A differentiable function f : RN −→ R is defined as

• ℓ-strongly convex if for any x,y ∈ RN , f(x)− f(y) ≤ ∇f(x)T (x − y)− ℓ
2∥x − y∥2

• L-smooth if for any x,y ∈ RN , f(x)− f(y) ≤ ∇f(y)T (x − y) + L
2 ∥x − y∥2

It is well-known that L-smoothness is equivalent to having L-Lipschitz gradients, i.e. ∥∇f(x)−
∇f(y)∥ ≤ L∥x − y∥.

Gradient Descent

One of the most basic gradient-based optimization algorithms for minimizing function f is
gradient descent (GD), which finds a minimizer θT , by performing the iteration

θt+1 = θt − η∇f(θt),

for t = 0, 1, . . . T and initial point θ0.
It is well-known [Bub15] that for ℓ-strongly convex and L-smooth functions, GD converges to
a point θT close to the optimum θ∗, such that

∥θT − θ∗∥2 ≤ exp (−T
κ

)∥θ0 − θ∗∥2,

where η = 1
L

and κ = ℓ
L

. In other words, GD converges to a point that is ϵ-close to the
optimum in O(ln 1

ϵ
) iterations.

While GD has good convergence rates for strongly convex and smooth functions, this also
comes with quite a high computational cost. For example, as previously discussed, in machine
learning the loss function typically has the form f(θ) = 1

n

∑︁n
i=1 fi(θ); then, the cost of a GD

iteration is O(nG), where G is the cost of computing a gradient ∇fi(θ). In the case of neural
networks, both the size of the dataset and the size of the model are very large, which makes
the computation of the full gradient ∇f(θ) at each iteration extremely costly.

Stochastic Gradient Descent

One solution to mitigate the costs of a GD iteration is to use instead an unbiased estimator
of the gradient. This can be achieved in practice by sampling uniformly at random, at each
iteration, a component fi(θ) and using its gradient instead to update θ. Thus, we define the
stochastic gradient descent (SGD) at iteration t+ 1 as

θt+1 = θt − ηtg(θt), (SGD)

where g(θt) is an unbiased estimator of the full gradient ∇f(θ) (i.e. E[g(θt)] = ∇f(θt)).
It is common to assume that the stochastic gradient estimation has bounded variance, i.e.
there exists σ > 0 such that E[∥g(θ)−∇f(θ)∥2] ≤ σ2, for any θ ∈ RN . Then, under the
same assumptions as before (ℓ-strong convexity and L-smoothness), for ηt = 1

2L
, it can be

shown (as for example in [GLQ+19]) that SGD converges after O(ln ∥θ0−θ∗∥2

ϵ
) iterations to
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a point θT such that E[∥θT − θ∗∥2] ≤ ϵ + σ2

ℓL
. More generally, when f is only convex and

L-smooth, one can obtain a bound on the function evaluated at the average of the SGD
updates, as presented in Theorem 6.3 from [Bub15]. While the convergence of SGD is slower,
in terms of number of iterations, compared to GD, its cost per iteration makes it a good
choice for problems for which the dataset and the model are large.

In practice, one variant of SGD that is very widely used is mini-batch SGD. Instead of sampling
one component fi at each iteration, we sample a subset fi1(θ), . . . fiB

(θ) and use the average
gradient g(θ) = 1

B

∑︁B
j=1∇fij

(θ) to compute the next iteration. Then, the variance of the
stochastic gradient is bounded by σ2

B
, from which it follows that mini-batch SGD requires 1

B

times fewer iterations for convergence; this can be more easily seen by examining Theorem
6.3 from [Bub15]. The mini-batch SGD is the most popular algorithm for optimizing neural
networks, since it still has a low cost per iteration, as the computation of the gradients in the
mini-batch can be parallelized on GPUs.

Momentum. Additional modifications of gradient based GD or SGD algorithms have been
proposed to improve their convergence rates. One popular improvement is the use of momentum.
The main motivation is that SGD might converge very slowly or its iterations might oscillate a
lot, when the loss function is steeper along some directions, compared to others [Sut86]. For
this reason, it is common to use momentum [Pol64, RHW86a, Qia99, Rud16], for which an
iteration is defined as follows:

vt+1 = µvt − ηg(θt)
θt+1 = θt + vt+1, (SGD with momentum)

where g(θt) is an unbiased gradient estimator, µ is the momentum value, η is the learning
rate, vt is the momentum vector, with v0 = 0. Other types of momentum can be defined, such
as Nesterov momentum [Nes83, BBLP13, SMDH13], which also improve the convergence
rates of GD or SGD. In general, for the experiments in this thesis, we mostly used SGD with
momentum.

Additional algorithms. While SGD (with momentum) is one of the most popular algorithms
used for optimizing machine learning models, and neural networks in particular, multiple other
algorithms have been introduced, such as for example Adagrad [DHS11] or Adam [KB15],
which compute individual learning rates for each parameter in the model. We briefly describe
Adam, which we also used in some of our experiments on language models. Adam computes
individual learning rates for each parameter, by taking into account the first and second order
moments of the gradients. Namely, for hyperparameters β1 and β2, called exponential decay
rates, and for g(θt) unbiased gradient estimator, the Adam update is computed as follows
(where ⊙ is the Hadamard product performing element-wise multiplication):

mt+1 = β1 ·mt + (1− β1) · g(θt)
vt+1 = β2 · vt + (1− β2) · g(θt)⊙ g(θt)

m̂t+1 = mt+1

1− βt+1
1

v̂t+1 = vt+1

1− βt+1
2

θt+1 = θt − η ·
m̂t+1√
v̂t+1 + ϵ

(Adam update)
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2.1.3 Deep Learning Architectures
While artificial neural networks have been introduced a long time ago [MP43], they have
only become very popular in recent years [KSH17], through their remarkable ability to solve
diverse tasks, greatly surpassing previous models. Their popularity can also be observed
through the great research interest in the field, with many different new architectures proposed
regularly. One common characteristic of these models, however, is the presence of a typically
large parameter space, disposed in multiple layers, which ultimately creates a very complex
intractable model. We describe in this section some of the most popular types of deep learning
architectures.

Fully Connected Neural Networks

In general, a feed-forward neural network hθ : X ⊆ Rd −→ Y with parameters θ ∈ RN

comprises of a composition of multiple simpler functions h(ℓ)
θℓ : RNℓ−1 −→ RNℓ , with ℓ ∈

{1, . . . L}, each parameterized by θℓ, such that θ = (θ1, . . . ,θL). Each of the components
h(ℓ) constitutes a layer with parameters θℓ.
Thus, for any input x ∈ X ,

hθ(x) = h
(L)
θL (h(L−1)

θL−1 (. . . h(1)
θ1 (x)))

Typically, each h
(ℓ)
θℓ is itself comprised of a linear function and a non-linearity: h

(ℓ)
θℓ (z) =

σ(τθℓ(z)), where τθℓ : RNℓ−1 −→ RNℓ is a linear function: τθℓ(z) = wℓ · z + bℓ (with
θ = (w, b)) and σ : R −→ R is a non-linear function applied component-wise to each element
of τθℓ(z). For the particular case when each τθℓ is a linear function, this type of architecture
is called fully connected neural network (FCNN). We note that each individual component
(hθℓ)i in a layer is called a neuron, and is connected to all the neurons from the previous layer
h(ℓ−1) via θℓ, therefore the name fully connected. Another common name for fully connected
neural networks is multi layer perceptrons (MLPs).

Non-linearities. As previously mentioned, it is necessary to combine linear functions with
non-linearities in the definition of the neural network, to encourage more complexity in
the representation of the data, since otherwise the model would collapse into a linear one.
One of the most widely used non-linearities is the Rectified Linear Unit (ReLU) [JKRL09,
NH10], defined as σ(x) = max(0, x), which is present in many of the modern deep learning
architectures [HZRS15]. Other popular functions include the sigmoid or hyperbolic tangent.
The non-linear functions are commonly known as activation functions. In the case of multi-class
classification problems, it is common to use the softmax function σ(x) = ( exp xi∑︁

j
exp xj

)i as the
final non-linearity, to output a probability distribution over the possible classes, and to train
the model using the cross-entropy loss defined in the previous section.

Backpropagation. The most common way to train neural networks is to optimize their
parameters on the train data using a stochastic gradient-based algorithm (e.g. SGD with
momentum, or other algorithm described in the previous section). For this, we need to compute
the gradient (or an unbiased gradient estimator) of the training loss defined in (*). The
algorithm used for computing the gradients of a neural network is backpropagation [RHW86a];
it is based on the chain rule, and it sequentially computes the gradients of the loss with respect
to the parameters in each layer, starting from the final one, and passing the Jacobian with
respect to the input of each layer to its predecessor.
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Universal function approximators. Despite their apparent simplicity, fully connected neural
networks have been shown to be universal function approximations: in particular, it is well
known [Cyb89, HSW89, Fun89, Hor91] that neural networks with one hidden layer, arbitrary
width and suitable activation function can approximate any continuous function on a compact
domain; more recently, a similar result has been shown for fully connected neural networks
with bounded width [LPW+17].

Convolutional Neural Networks

While fully connected neural networks are universal function approximators, they have some
drawbacks: they are known to be difficult to train for more complex problems, particularly since
they can have a very large number of parameters. One example where fully connected neural
networks do not work well is for image classification. Images are two-dimensional objects,
and flattening them to a one-dimensional vector in order to apply a linear transformation
would break their structure, for example the similarity of neighboring pixels. For this reason,
convolutional neural networks (CNNs) have been introduced [FMI83, LDS90], which replace
the fully connected layers in a neural network with convolutional layers.
We define a two-dimensional convolution operation as follows. Assume a two-dimensional
input x ∈ Rw×h, parameters or kernel θRkw×kh and strides (sw, sh) ∈ {1, . . .m} × {1, . . . n}.
Then, the convolution τθ maps the input x ∈ Rw×h to an output x̃ ∈ R(⌊ w−kw

sw
⌋+1)×(⌊ h−kh

sH
⌋+1)

by the following rule, as used in neural networks:

τθ(x) =
(︃ kw∑︂

p=1

kh∑︂
q=1

θp,q · x(i−1)·sw+p,(j−1)·sh+q

)︃
i,j

Usually, the input to a convolution layer is three dimensional; thus, the convolution τθ typically
takes an input x ∈ RI×W ×H and outputs a tensor in RO×(⌊ w−kw

sw
⌋+1)×(⌊ h−kh

sh
⌋+1), where I and

O are the number of input and output channels, respectively. Then, the parameters are
θ ∈ RI×kW ×kH×O, and the kernels are three dimensional sub-tensors θ·,·,·,o. The operation is
very similar to the one described above, except that in this case the results of each individual
two-dimensional convolution are summed over the input channels, and stacked over the output
channels. It is easy to see that, compared to fully connected layers, the kernel of a convolutional
layer is shared across the features in a channel; this in turn greatly reduces the number of
parameters of a CNN, compared to FCNN on the same input data.

Pooling layers. In the architecture of a CNN it is common to find other types of layers, used
to aggregate the features present in a region, and to reduce the dimension of the feature maps,
i.e. of the width and height of the output x̃. These operations form pooling layers, which can
be defined very similarly to the convolutional one, except that instead of performing the dot
product with a kernel, we compute the average or maximum over a region. This results in two
very popular choices of the pooling layers, namely average and max pooling, respectively.

Residual connections. One common problem of CNNs in particular, but also of other types
of architectures, is that it is generally hard to train very deep models, i.e. with many layers.
Many of the challenges arise from the behaviour of the gradients, which can be very small
and lose information from earlier layers –vanishing gradients–, or they can become very large,
making the training process unstable –exploding gradients. One method that can greatly
help with these problems, by making the training process seemingly smoother, is the use of
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residual layers or skip connections [HZRS15, HZRS16]. In a nutshell, a residual connection
takes an input x to a subsequent layer F , and returns F (x) + x. It is common to connect
via skip connections layers that are further apart, or to use linear functions instead of the
identity map, to ensure the dimensions match. Basically, skip connections create direct paths
between later and earlier layers, which allow the gradients to flow easier. Residual connections
have revolutionized the training of CNNs, and Residual Networks (ResNets) [HZRS15] have
become very popular among practitioners. We also use them in many of the experiments
presented in this thesis, in Chapters 3, 4 and 5. Moreover, the benefits of residual connections
are also present in other architectures, for example Transformer models [VSP+17] used in
natural language processing.

Normalization layers. Another important component in the success recipe of training a
neural network consists of the use of normalization layers. One of the difficulties associated
with training neural networks is the fact that the input distribution to each layer changes as
parameters are optimized, fact known as internal covariate shift [IS15]. This phenomenon can
negatively impact the convergence of the model, as inputs to a layer can reside inside regions
where the activation function (e.g. sigmoid) saturates, which would lead to vanishing gradients.
Inspired by the well-known benefits of normalizing the input data to a model [LBOM12], one very
successful method proposed to help mitigate the above mentioned issues is Batch Normalization
(BatchNorm or BN) [IS15]. In a nutshell, BatchNorm works by simply normalizing the inputs
to a layer, followed by applying a linear transformation. Assume x(ℓ) is the input to a
layer ℓ, computed for a mini-batch B of data samples; the BatchNorm layer computes the
following transformation, before applying non-linearities and passing the result to the next layer:
x̂(ℓ) = λ(ℓ) · x(ℓ)−µB√

σ2
B+ϵ

+ β(ℓ), where µB = 1
B

∑︁B
i=1 x

(ℓ)
i and σB = 1

B

∑︁B
i=1(x

(ℓ)
i − µB)2 are the

mini-batch statistics. The per-layer scaling parameters λ(ℓ) and γ(ℓ) are optimized alongside
the weights of the model, and are used to allow more flexibility in the representation learned by
each layer. To estimate the statistics over the entire data distribution, it is standard to keep a
running mean over the means and standard deviations for each mini-batch observed during
training; then, at inference time, we normalize each layer using these statistics µ̂ and σ̂. It has
been initially shown in [IS15] that BatchNorm layers can substantially improve the training of
neural networks, both in terms of convergence time and final accuracy; since then, BatchNorm
layers have been widely adopted in most of the modern architectures, particularly those used
for computer vision applications. Furthermore, it is well-accepted [IS15] that the use of
BatchNorm decreases the need to use other regularization layers, such as Dropout [SHK+14].

Popular Computer Vision Datasets. We now describe some of the most popular datasets
used for benchmarking the performance of CNNs, which we also use for many of the experiments
presented in this thesis. One of the most common datasets is CIFAR-10 [KH+09], which
consists of 50,000 train samples and 10,000 test samples. It contains colored images of
32× 32 pixels, from 10 different classes representing various objects or animals, with equal
number of samples between classes. It is usually one of the easiest datasets used for testing
the performance of various algorithms on image classification problems, and it is typically
trained using a variant of the ResNet architecture [HZRS15]. A more complex dataset is
CIFAR-100 [KH+09], which has a similar format in terms of size, but contains instead images
from 100 classes. Likewise, it is trained using a ResNet or a WideResNet [ZK16] architecture.

One of the first large-scale computer vision datasets introduced was ImageNet [DDS+09], which
in its full version contains more than 14 million colored images from more than 20,000 classes.
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A smaller version of this dataset was released [RDS+15], alongside the public competition
ImageNet Large Scale Visual Recognition Challenge (ILSVRC); this trimmed-down version of
ImageNet consists of 1.28 million training images belonging to 1000 classes, together with
additional 50,000 validation samples, and 100,000 test samples that are used for the final
evaluation during the competition. The challenge gained a lot of popularity when it featured
the first CNN [KSH12, KSH17], later known as AlexNet, to surpass existing methods, as well
as human performance. Nowadays, ImageNet, in its ILSVRC variant, is still a challenging
dataset and is widely used for benchmarking the performance of neural network architectures or
training methods. In this thesis, we use this version of ImageNet to evaluate the performance
of our algorithms, and present the Top-1 accuracy on the 50,000 samples validation set, as is
the common practice in the field.

Transformer Models

Natural Language Processing (NLP) tasks have long been a challenge for deep learning models,
due to the inherent temporal dependencies present in the data. Some of the most successful
early attempts at language modelling have built the temporal dependencies inside the neural
network through recurrent layers, for which the hidden state of an input from a sequence
depends on the hidden states of all the previous elements from the sequence; these models
have been traditionally known as recurrent neural networks (RNNs) [RHW86b] and substantial
improvements have been subsequently introduced, for example through LSTMs [HS97b].
However, RNNs were still considered difficult to train, as they posed the risk of vanishing or
exploding gradients [PMB13], and their sequential nature made parallelization across training
samples difficult.

Original Transformer Model. One of the breakthroughs in deep learning for NLP came
along with the Transformer model [VSP+17], which proposed a different architecture, without
using recurrence, and instead relying on attention mechanisms to learn dependencies in the
input data. Loosely speaking, attention [BCB15], and in particular self-attention [VSP+17], is
used in deep learning to integrate the information from different parts of a sequence of inputs
to create a global representation of that sequence. An attention layer is defined in [VSP+17]
as a function that takes a triplet of vectors (Q, K, V) – queries, keys and values, and outputs
f(Q,K, V ) = σ(QKT

√
dk

)V , where dk is the dimension of Q and K, and σ is the softmax
function; more generally, [VSP+17] use a multi-head attention, which consists of multiple
stacked attention layers, that can run in parallel. The Transformer model consists of an
encoder and a decoder; the encoder takes the input sequence, and maps it to a function
containing multi-head attention, fully connected layers, and residual connections. The decoder
has a similar structured to the encoder, with an additional sub-layer that performs multi-head
attention with the output of the encoder; therefore, the inputs to the decoder are the output
at the previous position, along with the encoder of the input. The Transformer model has
been successfully used for language translation tasks, and for language modelling, to predict
the next word in a sentence.

Transformer Versions. However, one disadvantage of the original Transformers is their
fixed-length context, determined by the length of the input sequence, which allows for little
connectivity between separate parts of the input data. To solve this challenge, the Transformer-
XL [DYY+19] model was introduced, which does not have a sequence-length limit, and which
re-uses information from the previous hidden states, to enable learning a larger context. The
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experimental results in [DYY+19] show that the Transformer-XL has superior performance on
language modelling tasks, being able to generate longer sentences, compared to the original
model. Other versions of the original Transformer model have been introduced, such as the
BERT [DCLT19] model, which can learn bi-directional deep representations from unlabelled
text, in a self-supervised manner; pre-trained BERT models are thus used as popular feature
extractors, and their representations can be further finetuned on different tasks.

NLP Datasets. Transformer models can be trained to solve a wide range of NLP tasks,
such as machine translation, language modelling or question answering. We briefly describe
the datasets used for the NLP experiments presented in this thesis, which focus on language
modelling for text generation and question answering. For word-level language modelling,
we use in Chapter 3 the Wiki-Text-103 [MXBS16] dataset to train the Transformer-XL
model [DYY+19], for predicting the next word in a sentence; this dataset contains text from
28,000 articles, comprising in total of 103 million tokens, with an average of 3,600 tokens per
article, and is split into train, validation and test. For question answering tasks, we use in
Chapter 5 the SQuAD1.1 dataset [RZLL16], which contains 100,000 pairs of questions and
answers; when given a question and a passage from Wikipedia containing the answer, the task
is to predict the range where the answer is found within the excerpt.

2.1.4 Generalization in Deep Learning
As discussed in Section 2.1.1, one overarching goal of machine learning is to obtain a small
generalization error, defined as a small difference between the test and train error. Different
techniques from statistical learning theory [Vap99] have been developed to obtain bounds on
the generalization error, many of them based on some measure of complexity of the hypothesis
space, such as the Vapnik-Chervonenkis (VC) dimension, Rademacher complexity, or other
measures presented in detail in [SSBD14]. While these techniques can be very powerful for
simpler models, their usage is limited in the case of neural networks, which have a very complex
hypothesis space, capable of perfectly fitting the training set [ZBH+17]; therefore, most of the
generalization bounds developed for neural networks [BFT17] can only be used as guidelines to
better understand the factors driving their remarkable practical generalization abilities, while
non-vacuous generalization bounds have been developed for small models and datasets [DR17].

Insights into neural network generalization. There are several recent works that challenge
the traditional view of generalization, when in comes to neural networks. For example, the work
of Zhang et al. [ZBH+17] shows that neural networks have the remarkable ability of fitting any
input data, including random noise; this implies that the training error and model complexity
alone are not enough to infer generalization on unseen data. More recently, the fundamental
concept of bias-variance trade-off [HTFF09] from statistical machine learning has also been
challenged. The consensus used to be that models with high capacity have low bias and high
variance, and are therefore more likely to overfit. However, new work [BHMM19, NKB+21]
showed that if the model capacity exceeds an “interpolation threshold” [BHMM19], defined
as reaching almost 0 training error, the generalization error of the model decreases; thus,
instead of the traditional U-shaped curve for the test error, it is more likely to have a “double
descent” curve [BHMM19]. This has been further validated in practice in [NKB+21], where it
was shown that double descent does not only occur when increasing the model size, but also
when increasing the number of training steps.
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FULL
FINETUNING

LINEAR 
FINETUNING

Model trained on large dataset

DOWNSTREAM - Birds, Pets, CIFAR-10, ...

Transfer the information to smaller tasks

All the parameters are 
optimized on the new 
task

Only the final layer is 
optimized on the new 
task

Figure 2.1: Overview of the two most popular methods used for transferring information from
large pre-trained models: full and linear finetuning. Dashed lines show the gradient flow via
backpropagation.

Flat Minima. Another direction towards understanding generalization in deep learning
focuses on the geometry of the loss surface and, in particular, the training dynamics of SGD.
It has been hypothesized that “flat” minima have better generalization abilities [HS97a], while
the opposite “sharp” minima should be avoided. While the notion of flatness can have different
definitions [HS97a, KMN+17, DPBB17], the basic intuition for a one dimensional error curve
is that a local minima is flat if there is a wide region around it in which the loss changes very
little [DPBB17]. While the notion of flatness has gained a lot of popularity, its definition has
also been challenged [DPBB17].
Recent work [FKMN21] has proposed an optimization method aimed at finding solutions with
better generalization, by optimizing against the sharpness of the loss function. The method of
sharpness-aware minimization [FKMN21] (SAM) has been the inspiration for our proposed
method from Chapter 5. We provide a more detailed explanation for SAM in Section 5.2.

2.1.5 Transfer Learning
In a nutshell, transfer learning can be loosely defined by the methods used for leveraging
information from existing trained models, unto new, usually less complex, tasks. Thanks to
their ability to learn complex representations of the data, deep learning models have been
used in transfer learning as feature extractors, for a wide range of applications, from natural
language processing to computer vision. It is common to distinguish between two separate
setups: (1) linear finetuning, or using fixed features (i.e. the parameters in all previous layers
are fixed) to train linear models on new tasks; (2) full finetuning, or using the pre-trained
model as an initialization, to then further optimize its parameters on the downstream task. A
visualization of these two setups is presented in Figure 2.1.
For computer vision applications in particular, it was shown that the linear models trained on
fixed features extracted from CNNs pretrained on ImageNet could outperform those trained
on existing hand-engineered features [DJV+14, SRASC14]. Furthermore, it is well-established
that full finetuning generally leads to better results compared to linear finetuning, particularly
when the upstream and downstream tasks are very different [KSL19], and also that better
models on the upstream task lead to better generalization performance on the downstream
tasks.
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The concept of transfer learning is widely used also for NLP models and tasks. For example, it
has been shown that pre-trained BERT models [DCLT19] can be successfully finetuned on a wide
range of language understanding tasks [WSM+18], and also on question answering [RZLL16]
or sentence completion tasks [ZBSC18]. In all cases, the pre-trained model is used for full
finetuning on the downstream task, without any changes to the original architecture, apart
from the output layer. We also use BERT-finetuning on the SQuAD dataset in Chapter 5.

2.2 Fundamentals of Neural Network Pruning
In this section we move to an overview of existing pruning methods, categorizing them over
different criteria: the time when pruning is performed, pruning granularity, or the metric used
for pruning. A substantially more comprehensive overview of existing pruning methods can be
found in [HABN+21], from which we also draw inspiration. Furthermore, we discuss aspects
that relate pruning and generalization of neural networks.

2.2.1 Overview
The idea of pruning, i.e. setting to zero a subset of the weights in a neural network, has been
known for quite a long time. It was initially proposed as a regularization method [LDS90],
since it was believed that neural networks are prone to overfitting, due to their large number
of parameters. As we have also discussed in Section 2.1.4, today we know that while neural
networks have a massive parameter space, they are not as likely to overfit as previously believed.
However, there are still a lot of redundancies in the parameter space of a neural network, as
they are capable of perfectly fitting random data [ZBH+17], and it was shown that large,
randomly initialized neural networks can contain untrained subnetworks that perform as well
as similarly sized trained models [RWK+20]. Therefore, sparsifying neural networks, to take
advantage of existing redundancies, for improved efficiency and storage, is a relevant research
direction, which might also help uncover new properties of neural networks.

When pruning a neural network, we can set to zero its connections (weights), or entire neurons
or filters. The highest granularity is represented by pruning individual weights, known as
unstructured pruning. We will mostly focus on methods developed for this type of pruning,
since it has received the most attention in the sparsity literature. The case when neurons
or filters are pruned is known as structured pruning ; compared to the unstructured case,
with structured pruning we can obtain immediate speed-up, since the layers become smaller.
However, recent software developments [Dee21] have made it possible to obtain practical
speed-ups also for the unstructured case, and there is increased interest in hardware specialized
for sparsity [Gra21]. In our presentation, we will also include semi-structured pruning methods,
which already have hardware support for speed-up [MLP+21].

Some of the most widely-used, successful and, at the same time, simple pruning criteria are
those based on magnitude. Namely, in the case of unstructured pruning, we set to zero the
weights with an absolute value, i.e. magnitude, below a threshold and keep the remaining
weights unchanged; the threshold is determined such that a certain sparsity target is obtained.
It is common to consider different ways in which the pruned weights are distributed across the
network: global magnitude pruning computes the pruning threshold from the vector containing
the absolute value of the weights across all layers, while uniform magnitude pruning prunes
each layer individually, at the same sparsity target sparsity level. Other sparsity distributions
prune to a higher sparsity the layers with more parameters; for example, the Erdős-Rényi
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sparsity distribution [MMS+18] prunes a layer with nℓ−1 input neurons and nℓ output neurons
to a level proportional to nℓ−1+nℓ

nℓ−1·nℓ , while the Erdős-Rényi-Kernel (ERK) [EGM+20] prunes
convolutional layers with dimension nℓ−1 × nℓ × wℓ × hℓ to a sparsity level proportional to
nℓ−1+nℓ+wℓ+hℓ

nℓ−1·nℓ·wℓ·hℓ . For all pruning distributions, only the weights of the convolutional or fully
connected layers are considered for pruning, while biases and normalization parameters are
kept dense. In the case of uniform pruning, usually the first and last layers are not pruned,
since they can have a disproportionate effect on model performance, without contributing
significantly to the overall speed-up. Similarly, magnitude pruning can be defined for structured
pruning, where we can consider the ℓ1 norm of each component (e.g. neuron or filter) and
remove (set to zero) the smallest ones.

2.2.2 Unstructured Pruning Methods
In this section, we provide a taxonomy of methods for unstructured pruning, based on the time
during training when pruning is performed. We re-use this classification in Chapter 4, and
also partially in Chapters 3 and 5. A rough categorization considers the case when pruning
is performed after or during training. We also discuss hybrid methods that contain elements
from both categories. Lastly, we provide a discussion on obtaining practical speed-up from
unstructured sparsity.

Progressive Sparsification Methods

Some of the most popular and successful methods for pruning start from a fully trained dense
model, to which pruning is applied progressively, with a gradual increase in the sparsity level,
until a target sparsity level is reached [HPTD15, SA20, FKA21]. Between each two progressive
pruning steps, the remaining weights are finetuned for a small number of epochs. Furthermore,
at the end of the pruning schedule, it is common to finetune the resulting sparse model for an
extended number of epochs, which further boosts its prediction accuracy. We call methods
following this training and pruning pattern progressive sparsification methods. Typically, the
sparsity level is increased following a polynomial schedule, the most common choice being a
third degree polynomial [ZG17].

Gradual Magnitude Pruning. The most popular method in this category, which also
achieves close to state-of-the-art results on image classification [GEH19] or language modelling
tasks [KA22], prunes the weights based on their magnitude, and it is commonly known as
Gradual Magnitude Pruning (GMP), with different choices for the sparsity distribution (e.g.
uniform or global).

Hessian-Based Pruning. One natural question we could ask is whether there exist better
pruning criteria than using the magnitude of the weights. Early work [LDS90, HSW93] explored
the idea of removing the weights with the least impact on the loss function. We assume for
simplicity that we want to remove one weight at a time; namely, for model parameters θ ∈ RN

and loss function L(θ), we want to find the perturbation δ ∈ RN with θq + eT
q δ = 0 (where

eq is the standard basis vector with 1 on the q-th component), which minimizes:

min
1≤q≤N

min
δ∈RN

L(θ + δ)− L(θ), s.t θq + eT
q · δ = 0

For a fixed q, we can use a second-order Taylor approximation to obtain L(θ + δ) ≈
L(θ) +∇L(θ)T δ + 1

2δTHθδ, where Hθ is the Hessian of L computed for θ. Since the model
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θ is assumed to be trained until convergence, we have ∇L(θ) ≈ 0. Using Lagrange multipliers,
the initial optimization problem can be reduced to:

min
δ,λ

1
2δTHθδ + λ(θq + eT

q δ),

for which we obtain λ = θq

[H−1
θ

]qq
and δ = −θqH−1

θ
eq

[H−1
θ

]qq
. Moreover, the loss perturbation

L(θ + δ)− L(θ) can be approximated by δLq = θ2
q

2[H−1
θ

]qq
. Therefore, to find which weight

can be set to zero, and how to update the model to obtain the minimal loss perturbation,
we sort the values δLq, pick the component q corresponding to the smallest one, compute
δ and then update the weights by θ + δ. This technique is known as optimal brain surgeon
(OBS) [HSW93], while the case then the Hessian is assumed to be diagonal is known as
optimal brain damage (OBD) [LDS90].

One obvious problem with the above approach is the assumption that we have access to the
inverse of the Hessian matrix. In the case of neural networks with millions of parameters,
simply computing the Hessian matrix is a daunting task, let alone inverting it. One approach
towards solving this issue was initially proposed in [HSW93], by approximating the Hessian
with the empirical Fisher information matrix (FIM). The empirical FIM, defined as F̂ θ =
1
n

∑︁n
i=1[∇θℓ(hθ(xi), yi) · ∇θℓ(hθ(xi), yi)T ], where the average is taken over the training

set D = {(x1, y1), . . . (xn, yn)} is in fact an approximation of the true FIM, defined as
Fθ = Ex,y∼D[∇θℓ(hθ(x), y) · ∇θℓ(hθ(x), y)T ], where the expectation is taken over the input
distribution; the FIM is known to be equal to the average Hessian over the data distribution.
The authors of [SA20] take advantage of this approximation, together with the fact that the
empirical FIM is a sum of rank-one matrices for which inversion is facilitated by the Woodbury
or Sherman-Morrison lemmas, and compute the inverse of the empirical FIM. They further
assume a block-diagonal structure of the matrix, and use gradients computed over batches
of samples, for a faster approximation. To deal with multiple weights removal, they only
keep the weights with the largest statistics δLq, ignore any correlations by simply summing
the updates −θqH−1

θ
eq

[H−1
θ

]qq
, followed by applying the corresponding mask to ensure sparsity. The

pruning method introduced in [SA20] is called WoodFisher, and it can be plugged-in to the
progressive sparsification scheme, in place of the magnitude pruning criterion, to obtain better
performance than GMP, particularly at higher sparsity levels.

Improvements for this algorithm, in terms of implementation efficiency and memory costs,
have been proposed in the M-FAC method [FKA21]. In particular, the authors show that the
dot product between the inverse empirical FIM with any vector can be computed efficiently, by
un-rolling the recurrence resulted from the Sherman-Morrison lemma; this approach eliminates
the need to store the entire FIM inverse, and also does not make any additional assumptions
on the structure of the matrix (e.g. block-diagonality). Both M-FAC and WoodFisher provide
better results, in terms of pruning accuracy, compared to GMP, and we will use them as
baselines for our methods in the following chapters.

Regularization Methods

While progressive sparsification methods are very successful at obtaining sparse models with a
small accuracy drop compared to the baseline, they have important drawbacks: any speed-ups
obtained from pruning can only be observed at inference time, and they typically take a
longer time to train, since they assume training the dense model first. For this reason, a
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substantial amount of research interest has been devoted in recent years towards training
sparse models from scratch, by employing different sparsity-promoting mechanisms. While
the literature in this area is vast, we will only provide a brief overview which includes the
methods we use for comparison in later chapters. Furthermore, we will use the umbrella term
of regularization methods, despite the fact that many of these methods induce sparsity through
very different mechanisms, such as explicit regularization [LWK18, YWL20], reparameterization
of the weights [MAV17, KRS+20], gradient feedback [LSB+20] or by a continuous pruning
and regrowth of the weights [EGM+20].

Sparse Training. One interesting line of work is to obtain accurate sparse models, while
keeping a fixed sparsity during training, both during the forward and backward passes; this
is known as sparse training. One method achieving close to state-of-the-art results with this
approach is RigL (Rigging the Lottery) [EGM+20]. While training is always performed in the
sparse support, at a constant sparsity level, the masks are updated periodically, by removing
some of the existing connections, are replacing them with connections for which the gradients
have the highest magnitude; to achieve this, the full gradient is computed every few hundred
iterations. This simple prune-and-regrowth scheme has the potential for training time speed-up,
and it has shown promising results, particularly when training is performed for an extended
time; in this regime, 90% sparse RigL models can reach similar performance to the dense
baseline, when using a ERK sparsity distribution. However, when trained for the same number
of epochs as the standard baseline, the results obtained with RigL are still well below those
obtained with progressive sparsification methods. In Section 3.2 from Chapter 3 we provide
more details on earlier sparse training methods, as well as on other methods [JPR+20] that
perform similar or better than RigL.

Training Sparse Models from Scratch. We now discuss regularization methods that still
train sparse networks from scratch, although they do not maintain a constant high sparsity
level during both forward and backward passes, throughout training. Typically, with these
methods the sparsity is increased, until a desired target level is reached; notably, there exist
variants of GMP that do not start from a fully trained dense model, such as [GEH19], and
fit into the current category, but these typically suffer a loss in accuracy, compared to the
corresponding progressive sparsification methods. One example of a method for training sparse
models from scratch is Dynamic Model Pruning with Feedback (DPF) where the magnitude
pruning masks are updated via model feedback; namely, the model always has access to the
dense weights, which are optimized with SGD, using the full gradient computed on the masked
weights. The update can be written as θt+1 = θt − ηt · ∇L(θ̃t), where θ̃t are the masked
parameters.

Another sparse regularization method to show promising results proposed a sparse reparame-
terization of the weights [KRS+20], through the use of the soft thresholding operator, roughly
defined as θ̃ = sign(θ) · σ(|θ| − α), where σ is the ReLU function, and α is the threshold. In
addition to the weights, the proposed method STR [KRS+20] also learns individual thresholds
per layer, modelled though a sigmoid function. This is motivated by one the main goals of
the method, which was to learn an optimal sparsity distribution, in terms of both prediction
accuracy and floating point operations (FLOPs). The sparsity level in STR is gradually
increased, but the method starts from a randomly initialized model. While STR can achieve
good results, one of its main drawbacks is that it heavily relies on hyperparameter tuning, and
in particular the target sparsity level is greatly influenced by the weight decay parameter. We
use STR as a baseline in Chapters 3 and 5, and we also study its generalization properties in
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Chapter 4. More recently, another method proposing soft thresholding and a different sparsity
distribution per layer has been shown to achieve very good results on image classification
tasks [VDV23].

Explicit Regularization. We now briefly discuss a category of pruning methods that obtain
sparsity by integrating different types of explicit regularizers in the training objective. One
of the most well-known sparsity-inducing regularizers is the ℓ1 norm, or Lasso [Tib96], which
has also been used for pruning [LWF+15]; one of its disadvantages, however, is that it is
not scale invariant, which makes it difficult to use it for higher sparsity targets. Another
obvious choice for sparsity regularization is ℓ0, which explicitly restricts the number of non-zero
elements; one problem with ℓ0, however, is that it is non-differentiable, and cannot be used
to compute gradients. There have been pruning methods [LWK18] that provide a smooth
approximation of the ℓ0 objective, which allows optimization via SGD; we also use the ℓ0
method proposed in [LWK18] as a baseline when pruning language models in Chapter 5.
Furthermore, the ℓ0 objective can be implicitly integrated into the optimization objective via
iterative hard thresholding (IHT) methods [BD08], which we discuss in detail in Chapter 3.
Another sparsity-inducing regularizer that is differentiable almost everywhere is the Hoyer
regularizer [Hoy04], which was also recently used for pruning neural networks in [YWL20].

Variational Methods. A different approach to weight pruning considers a Bayesian treatment
of the training objective. This is based on the observation [KSW15] that training a model
using Gaussian dropout noise [SHK+14] is equivalent to optimizing a Gaussian variational
posterior of the parameters, assuming a log-uniform prior over the weights; this framework
is known as variational dropout. The authors of [MAV17] later proposed Sparse Variational
Dropout (SparseVD), and showed that under the setup of [KSW15] it is possible to train
individual dropout rates for each weight. Intuitively, weights with large dropout rates are not
important for the training objective, and thus can be safely removed after training. Indeed, the
authors of [MAV17] showed that models trained with SparseVD can be pruned in a single step,
by removing the weights with variance above a threshold, with no drop in accuracy. Moreover,
the framework can be extended to structured sparsity [NMAV17, LUW17]. Subsequently, the
authors of [GEH19] showed that SparseVD can be used also for large-scale models. One
drawback, however, is that training is slower because there are two times more parameters,
and also the model is very sensible to the choice of hyperparameters.

Lottery Ticket Hypothesis

We now discuss an orthogonal research direction in neural network pruning, namely the
lottery ticket hypothesis (LTH), which we will also revisit in Section 2.2.4, as it has potential
implications for better understanding the generalization properties of (sparse) neural networks.
The seminal work which introduced the LTH [FC19] argues against the previously accepted
belief that training sparse neural networks from scratch cannot outperform finetuning an already
pruned model. Namely, the authors of [FC19] formulate the LTH as follows: there exists a
subnetwork of a dense neural network, such that, when trained in isolation starting from a
specific initialization, the subnetwork can match the test accuracy of the original dense model;
furthermore, the subnetwork reaches this accuracy faster than the original model, in terms
of number of training iterations. This hypothesis would have both practical and theoretical
implications: on one hand it would motivate more research into finding good subnetworks at
initialization, for which training in isolation would substantially reduce computational costs;
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furthermore, it could lead to a better understanding of the theoretical study on optimization
and generalization of neural networks.
The authors propose a practical algorithm for finding such subnetworks, called winning tickets,
following a repeated training and pruning scheme called iterative magnitude pruning (IMP).
Namely, the IMP scheme consists of the following consecutive steps, reproduced from [FC19]:

1. start from a randomly initialized neural network h(θ0 ⊙m) (the mask m is initialized as
1

N for the first iteration)

2. train h for t iterations, obtaining parameters θt ⊙m

3. prune s% of the parameters θt ⊙m, and update the mask m

4. reset the remaining parameters in θt ⊙m to their initial values from θ0, to obtain the
winning ticket h(θ0 ⊙m)

5. if the sparsity target S is not reached, repeat from the first step

Moreover, the authors of [FC19] emphasize the importance of the initialization of the subnet-
works, which has to match the initialization of the dense model; otherwise, the subnetwork
underperforms the original baseline. In terms of results, the original paper shows that the LTH
holds for small fully connected and convolutional networks trained on MNIST [LBBH98] and
CIFAR-10 [KH+09] datasets. However, following works [GEH19, LSZ+19] were not able to
validate the hypothesis for large-scale models and datasets, e.g. on ImageNet. Subsequently,
it was shown that it is possible to obtain sparse models that match the original accuracy when
trained in isolation by weight rewinding [FDRC20]; namely, in the IMP algorithm, the surviving
weights after pruning should not be reverted to their initialization, but rather to the values at
an early epoch during dense training. While LTH remains an interesting direction that has
seen a lot of research interest since its definition, it is unclear whether it can be used as a
pruning method, since the IMP algorithm assumes training until convergence for each iteration,
which can be very costly for large models and datasets. We further note that extensions of
LTH have been studied for transfer learning [CFC+21], which we discuss in Chapter 4, and
also for language models [CFC+20].

Post-Training Pruning

We now explore a different direction in neural network pruning, which aims at sparsifying
trained dense models without any additional finetuning. This also implies that the training
data, except for a small subset used for calibration, is no longer needed for obtaining the sparse
model. Such methods can be categorized under the umbrella term post-training pruning, and
are of great practical importance, as they would facilitate the rapid deployment of sparse
models on to smaller devices; this is particularly useful in cases where the dense model is so
large (e.g. the GPT models [BMR+20]), that any amount of finetuning would be extremely
costly.
One of the early methods for post-training pruning was AdaPrune [HCI+21], which proposed
optimizing the pruned weights to minimize the distance in the layer output between the sparse
and dense model. Namely, for a layer ℓ, with weights θℓ and layer input xℓ, the proposed
objective is min

θ
′ ∥θℓxℓ − θ

′xℓ∥2, where θ
′ are the sparse weights for the respective layer.

Optimization is performed over a small calibration set consisting of randomly sampled training
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points. Following work [FA22b] proposed global AdaPrune, which optimizes the above objective
globally across all layers, to take into account the compounding errors which are ignored when
performing optimization independently across layers.

Using the distance between layer outputs as the loss function, the optimal brain compression
(OBC) [FA22a] finds the optimal weights to prune, by using an efficient implementation of the
optimal brain surgeon framework [HSW93]. The OBC method obtains state-of-the-art results
for post-training pruning on both computer vision and language models, and can further be
adapted to post-training quantization, also at very large scale [FAHA23]. Furthermore, the
framework introduced in [FA22a] can be further improved [FA23] in terms of efficiency to make
it suitable for post-training pruning of massive language models, such as GPT-3 [BMR+20],
for which the authors [FA23] showed that it is possible to prune 50-60% of the weights without
retraining, and with almost no impact on model quality.

Practical Speed-Up from Unstructured Sparsity

We now briefly discuss some applications where sparsity can be extremely useful. One of
them is to obtain faster inference for deep learning models. Recently, specialized software for
CPU-based inference has been proposed [KKG+20, Dee21], enabling substantial speed-up from
sparsity, including from unstructured sparsity patterns. Notably, inference forms an important
fraction of the total energy usage for deep learning models [PGH+22], and speed-ups on
CPUs are particularly important for edge devices, which often lack hardware accelerators. For
example, sparsity can enable on edge devices local predictions for deep learning models used
in certain applications (e.g. translation, object recognition); performing inference locally is
useful in situations where data cannot be sent to the cloud, due to, for example, poor internet
connection or privacy concerns. Additionally, sparse deep learning models can be finetuned to
smaller tasks, even on edge devices. We showcase an example in Chapter 4, where we fix the
sparse backbone of a pretrained model and adapt only the final classification layer to the new
tasks. With this procedure, we are able to obtain two to four times faster training on a CPU
similar to the requirements of a laptop; while the tasks we consider in Chapter 4 might not
correspond exactly to tasks used in real-life applications, they can still be representative, in
terms of size and complexity.

Another important application of sparsity would be to accelerate the training time of deep learn-
ing models. This would also mean adapting the backpropagation algorithm used for computing
the gradients of the parameters to handle sparsity. This has been done recently [NPI+23],
where the authors showed speed-up during backward passes on CPUs. However, to enable
the end-to-end faster training of a sparse model, such an implementation would need to be
efficiently adapted to hardware accelerators. Furthermore, this would potentially need to be
accompanied by specialized hardware for sparsity, for which there is an active interest [Gra21].
Until real time speed-up can be achieved from training sparse neural networks, it is very com-
mon in the pruning literature [EGM+20, JPR+20, SA20] to estimate the speed-up theoretically,
for example by measuring the number of floating point operations (FLOPs); we also adopt
this approach in Chapter 3.

2.2.3 Structured and Semi-Structured Pruning
We now provide a brief overview of structured and semi-structured pruning methods. As we have
seen in the previous section, unstructured pruning has received by far the most research interest,
with a large number of methods developed for different training scenarios. However, it is argued
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that unstructured pruning has limited practical advantages, as it is difficult to obtain acceleration
from unstructured sparse matrices generated by these methods [WWW+16, MLY+21], and
the expected speed-up is mostly theoretical. Therefore, a more principled approach to pruning
is often proposed, namely structured pruning, in which entire neurons or filters are sparse; this
would effectively reduce the size of the layers, from which one can obtain immediate practical
acceleration, due to the smaller size of the network.

Several methods have been developed for structured sparsity; for example, [WWW+16] propose
training models with a group Lasso penalty term, to enforce group sparsity, while [WGFZ19]
propose a new weight reparameterization, to which they apply Hessian-based structured
pruning, inspired by the OBD and OBS derivations [LDS90, HSW93]. Furthermore, [LAJ19]
define a budget-aware objective, and learn the parameters of dropout tensors applied to the
outputs of each layer, while also leveraging knowledge distillation [HVD15]. Along the lines of
parameterizing dropout, using a variational objective, several works inspired from [KSW15,
MAV17] have been developed for structured pruning, such as [NMAV17, LUW17]. A new
approach for structured pruning using an actor-critic algorithm from reinforcement learning, to
learn optimal pruning ratios per layer has been developed in [HLL+18]. Moreover, a different
line of work proposes methods to learn multiple networks, at different computational budgets,
at once, to allow for rapid deployment to edge devices [CGW+19, YJL+20, YYX+19], but we
discuss these methods in more detail in Section 5.2 from Chapter 5.

While it is true that structured pruning can leverage practical acceleration by effectively
reducing the size of the model, we note that it also allows for lower sparsity, compared to
unstructured pruning, and typically the performance in terms of accuracy can be substantially
affected. Moreover, because structured pruning alters the dimensions of the layers, this
can introduce many difficulties, for example with residual connections or when performing
pruning globally [TGL+22]. We also emphasize that practical speed-ups can be obtained with
unstructured pruning, thanks to specialized software [KKG+20, Dee21], and we show this in
Chapters 3 and 4.

Semi-Structured Sparsity. We now focus our attention on a new pruning pattern, which
is less fine-grained than unstructured pruning, but allows for more flexibility compared to
structured pruning. Namely, we discuss the N : M sparsity pattern [MLP+21, ZMZ+21],
where for each contiguous group of M weights, N have to be zero. The original 2 : 4
pattern was proposed by [MLP+21] and it has been shown to support inference acceleration on
NVIDIA Ampere GPUs [Nvi20]. The initial recipe for obtaining 2 : 4 sparse models proposed
in [MLP+21] was to train a dense model to convergence, prune one-shot to 2 : 4 sparsity using
magnitude pruning, and then do sparse finetuning to recover the accuracy of the pruned model.
While the results showed that with this training method one could obtain sparse models that
do not lose accuracy w.r.t. the dense baseline, it is still considered costly since it relies on a
fully trained dense model, similar to the methods we discussed for unstructured pruning using
progressive sparsification.

Following work [ZMZ+21] generalize the concept to N : M patterns, with 4 : 8 being the
next most popular, and proposed a method for training such models from scratch, without
a dense baseline. Namely, the authors proposed a new type of straight-through gradient
estimator [BLC13] which was less likely to introduce large errors in the gradient, and optimized
the parameters of the dense model, using the estimation of the gradient computed on the
sparse model. The N : M sparse models trained with this method maintained accuracy w.r.t.
the dense baseline, for both 2 : 4 and 4 : 8 patterns. Subsequently, [HCI+21] proposed a
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method for finding masks such that both the weight matrix and its transpose follows the
N : M pattern, such that they can be used for both forward and backward passes, to obtain
training time speed-up. Furthermore, [ZLL+22] proposed a novel method for finding the best
weights to prune to preserve the N : M pattern, while [PY21] proposed a method based on
channel permutations to improve the performance of N : M sparse models. Based on these
new results, we can therefore conclude that the area of semi-structured sparsity is an active
one, which provides exciting prospects for accurate sparse models with practical speed-ups.
We also show that the methods we propose can be extended to N : M pruning, particularly
2 : 4 and 4 : 8, in Chapters 3 and 5.

2.2.4 Generalization Properties of Sparse Models
The previous sections were meant to offer a glimpse into the vast number of methods developed
for pruning neural networks. Despite the great research interest in this field, most works focused
on proposing or improving methods for pruning, for better accuracy and speed-up, and there is
still not enough known about the effects of pruning on model generalization. The early work on
optimal brain surgeon (OBS) [HSW93] motivated the need for pruning to improve a model’s
generalization, since overparameterized networks were believed to be more prone to overfitting.
This intuition is rooted in the well-known bias-variance trade-off in statistical machine learning.
However, as we have previously discussed in Section 2.1.4, this traditional view on generalization
does not seem to hold for deep learning models, which, despite their massive capacity, are still
able to generalize very well. Nonetheless, moderately sparse models have been shown to improve
generalization w.r.t. to their dense counterparts [HPTD15, FC19, EGM+20, HABN+21], while
temporarily removing a small fraction of the weights can give a performance boost to the dense
models [HPN+17]. These observations motivate the need to understand how does pruning
influence generalization in deep learning?

Generalization Guarantees for Compressed Models. Going back to the earlier connection
between generalization and compression (and pruning, in particular), several works [AGNZ18,
ZVA+19] have focused on obtaining generalization bounds for compressed models. For
example, [ZVA+19] proves non-vacuous PAC-Bayes bounds [Cat07, McA03] for existing pruning
and quantization methods, at ImageNet scale. In [AGNZ18], the authors propose a compression
scheme based on random matrix projection, which controls the perturbations from the original
parameters; the compression algorithm is motivated by the empirical observation that noise
injected into the input to a layer rapidly dissipates as it reaches higher layers. Moreover,
the theoretical framework in [AGNZ18] is general enough to enable deriving generalization
guarantees for subsequent pruning methods [BLG+19]. Specifically, the authors of [BLG+19]
propose a pruning scheme that uses a subset of the data to estimate a measure of sensitivity
or importance for each weight, while at the same guaranteeing that the output of the resulting
sparse model is close to that of the original dense baseline. This framework is later extended
in [BLG+22], where the authors show that the pruning scheme achieves good results in
the iterative pruning and retraining setup [RFC20], or when pruning at initialization and
finetuning [LAT19]. Similar guarantees are also presented in [LBL+20], where the framework
in [BLG+19] is extended for filter pruning.

Exploring Redundancies in a Neural Network. While over-parameterization in a neural
networks seems to benefit generalization [BHMM19], several works have pointed out that
neural networks contain many redundancies in their parameters. For example, [DSD+13]
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showed that it is possible to predict the weight of a model only from a learned subset of
5% of the total parameters, while [RWK+20] showed that, surprisingly, a large network at
random initialization contains a subnetwork that matches the accuracy of a larger model
trained on ImageNet. These redundancies have also been explored by the Lottery Ticket
Hypothesis (LTH), which we described in detail in Section 2.2.1, and which showed that
sparse networks can be trained in isolation to match the accuracy of the dense baseline.
Following work [ZLLY19] confirmed that matching the initializations between the subnetwork
and the dense model is important to obtain winning tickets on smaller datasets and models,
but also showed that matching only the sign of the weights at initialization can lead to
winning tickets. Moreover, they showed the existence of “supermasks”, which applied to a
random initialized model resulted in substantially higher accuracy than for a random mask.
Despite these documented redundancies, it seems that they cannot be easily discarded; for
example, [EGM+20] showed that pruning a larger model gives better results compared to
training a small model from scratch, with the same number of parameters. Moreover, further
scaling the original model and pruning it to match the original number of parameters can give
a substantial boost in accuracy.

Pruning Factors Influencing Generalization. Several works have focused on analyzing in
detail how pruning can influence generalization, by studying its impact on individual training
samples [JCR+22] or by relating the pruning stability to flatness of the loss function [BMBE20].
Specifically, [JCR+22] use the definition for the influence of a data point on the training
process proposed in [PGD21], which measure the ℓ2 distance between the predicted probabilities
and one-hot output vector early during training. With this metric, [JCR+22] showed that,
compared to the dense baseline, pruning can improve learning of the more influential samples,
by decreasing their loss, which suggests that pruning can overall lead to better training of the
model. They additionally test the effects of random label noise in the data, and find that
samples with random labels are more difficult to learn, i.e. have higher loss, compared to those
with clean labels, which suggests that pruning has a regularizing effect on the model. Also,
sparse models tend to generalize better in the presence of noisy training data, compared to
the dense model. While interesting, we note that these conclusions are obtained from models
pruned using iterative magnitude pruning (IMP) with learning rate rewinding [RFC20], which
trains models at each intermediate sparsity level from scratch, for a much higher number
of total training epochs, compared to the baseline. The authors of [JCR+22] address this
by performing extended training on the dense model, using cyclical learning rate schedules.
However, it would be interesting to see how these findings generalize to other pruning methods,
for example sparse training. In Chapter 3 we also show the effects of pruning learning random
labels, by directly examining this behaviour on a method that co-trains sparse and dense
models.

A different work [BMBE20] argues that pruning stability is related to generalization. In
particular, the authors defined pruning instability as the drop in test accuracy before and after
a pruning step, and conclude that less pruning stability may in fact, surprisingly, lead to flatter
models. Similar to [JCR+22], the pruning methods studied in [BMBE20] sparsify gradually and
would therefore be interesting to see how these findings would generalize to other methods.
In Chapter 5 we also analyze a method for training prunable models that takes into account
pruning stability and is inspired from sharpness-aware minimization [FKMN21].

The Effects of Pruning beyond Accuracy. Another important aspect related to the
generalization abilities of sparse neural networks takes into account the performance of these
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models on metrics beyond test accuracy. The motivation for this study is given by the
fact that pruning methods are typically optimized for achieving similar or better predictive
performance compared to the dense baseline, as well as for speed-up. However, these
compressed models are meant to be deployed to edge devices, where they can encounter
different data distributions, and their behavior in this setting is not clear. Recent works [LBC+21,
HCC+19, HMC+20] have pointed out that while pruned models can be indistinguishable from
their dense counterparts in terms of accuracy, they can be very brittle when faced with out-of-
distribution data [LBC+21], and they can have a disproportionate effect on under-represented
subgroups of the data [HCC+19], while potentially exacerbating bias, and implicitly, being
less fair than the corresponding dense models [HMC+20]. While these works have analyzed
progressive sparsification strategies, [DBC+21] argues that, on the contrary, lottery tickets
can in fact have improved robustness, compared to the dense model, while maintaining test
accuracy. Tangential to this line of work, we also analyze the behavior of different pruning
methods when performing fine-tuning on different downstream tasks, in Chapter 4.
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CHAPTER 3
Co-Training Sparse and Dense Models

by Alternating Compressed and
Decompressed Phases

As previously discussed in Chapter 2, neural network pruning has become one of the most
popular approaches to compressing large models. While pruning methods can provide accurate
models with smaller memory footprint compared to their dense counterparts, there is still the
challenge of reducing the training costs associated with obtaining the sparse models. Moreover,
while sparse models can be very close, in terms of accuracy, to the dense ones, it is less
understood what are the differences, in terms of generalization and per-sample prediction,
between sparse and dense models.
In this chapter, we present a pruning method that attempts to approach these challenges.
Namely, we introduce a method that can co-train sparse and dense models, which we call
Alternating Compressed/DeCompressed Training (AC/DC). With AC/DC, we can train accurate
sparse models at a lower cost compared to the dense baseline, and we are also able to show
theoretical guarantees in terms of convergence of our method. Moreover, since AC/DC
co-trains sparse and dense models, we can analyze more easily the differences between them,
which in turn can facilitate better interpretability of sparse models.

3.1 Motivation and Outlook
Progressive sparsification methods, which were discussed in detail in Section 2.2.2 from
Chapter 2, can result in very accurate sparse models, but they require a fully-trained dense
variant of the model, from which weights are subsequently removed. A shortcoming of this
approach is the fact that the memory and computational savings from compression are only
available for inference, and not during training itself. This distinction becomes important
especially for large-scale models, which can have millions or even billions of parameters, and
for which fully-dense training can have high computational and even non-trivial environmental
costs [SGM20].
One approach to address this issue is sparse training, which essentially aims to remove
connections from the neural network as early as possible during training, while still matching,
or at least approximating, the accuracy of the fully-dense model. For example, the RigL
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technique [EGM+20] randomly removes a large fraction of connections early in training, and
then proceeds to optimize over the sparse support, providing savings due to sparse back-
propagation. Periodically, the method re-introduces some of the weights during the training
process, based on a combination of heuristics, which requires taking full gradients. This work, as
well as many recent sparse training approaches [BKML18, MMS+18, EGM+20, JPR+20], which
we cover in detail in the next section, have shown empirically that non-trivial computational
savings, usually measured in theoretical FLOPs, can be obtained using sparse training, and
that the optimization process can be fairly robust to sparsification of the support.
At the same time, this line of work still leaves intriguing open questions. The first is theoretical :
to our knowledge, none of the methods optimizing over sparse support, and hence providing
training speed-up, have been shown to have convergence guarantees. The second is practical,
and concerns a deeper understanding of the relationship between the densely-trained model,
and the sparsely-trained one. Specifically, (1) most existing sparse training methods still leave
a non-negligible accuracy gap, relative to dense training, or even post-training sparsification;
and (2) most existing work on sparsity requires substantial changes to the training flow, and
focuses on maximizing global accuracy metrics; thus, we lack understanding when it comes to
co-training sparse and dense models, as well as with respect to correlations between sparse
and dense models at the level of individual predictions.
In this chapter, we take a step towards addressing these questions. We investigate a general
hybrid approach for sparse training of neural networks, which we call Alternating Compressed
/ DeCompressed (AC/DC) training. AC/DC performs co-training of sparse and dense models,
and can return both an accurate sparse model, and a dense model, which can recover the dense
baseline accuracy via fine-tuning. We show that a variant of AC/DC ensures convergence for
general non-convex, but smooth objectives, under analytic assumptions. Extensive experimental
results show that it provides state-of-the-art accuracy compared to sparse training techniques at
comparable training budgets, and can even outperform post-training sparsification approaches
when applied at high sparsities.
AC/DC builds on the classic iterative hard thresholding (IHT) family of methods for sparse
recovery [BD08]. As the name suggests, AC/DC works by alternating the standard dense
training phases with sparse phases where optimization is performed exclusively over a fixed
sparse support, and a subset of the weights and their gradients are fixed at zero, leading
to computational savings. (This is in contrast to error feedback algorithms, e.g. [CHS+16,
LSB+20] which require computing fully-dense gradients, even though the weights themselves
may be sparse.) The process uses the same hyper-parameters, including the number of epochs,
as regular training, and the frequency and length of the phases can be safely set to standard
values, e.g. 5–10 epochs. We ensure that training ends on a sparse phase, and return the
resulting sparse model, as well as the last dense model obtained at the end of a dense phase.
This dense model may be additionally fine-tuned for a short period, leading to a more accurate
dense-finetuned model, which we usually find to match the accuracy of the dense baseline,
when moderate sparsity (up to 80-90%) is used in the AC/DC training flow.
We emphasize that algorithms alternating sparse and dense training phases for deep neural
networks have been previously investigated [JYFY16, HPN+17], but with the different goal of
using sparsity as a regularizer to obtain more accurate dense models. Relative to these works,
our goals are two-fold: we aim to produce highly-accurate, highly-sparse models, but also
to maximize the fraction of training time for which optimization is performed over a sparse
support, leading to computational savings. Further, we are the first to provide convergence
guarantees for variants of this approach.
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We perform an extensive empirical investigation, showing that AC/DC provides consis-
tently good results on a wide range of models and tasks (ResNet [HZRS16] and Mo-
bileNets [HZC+17] on the ImageNet [RDS+15] dataset, and Transformers [VSP+17, DYY+19]
on WikiText [MXBS16]), under standard values of the training hyper-parameters. Specifically,
when executed on the same number of training epochs, our method outperforms all previous
sparse training methods in terms of the accuracy of the resulting sparse model, often by
significant margins. This comes at the cost of slightly higher theoretical computational cost
relative to prior sparse training methods, although AC/DC usually reduces training FLOPs
to 45–65% of the dense baseline. AC/DC is also close to the accuracy of state-of-the-art
progressive sparsification methods [KRS+20, SA20] at medium sparsities (80% and 90%);
surprisingly, it outperforms them in terms of accuracy, at higher sparsities. In addition, AC/DC
is flexible with respect to the structure of the “sparse projection” applied at each compressed
step: we illustrate this by obtaining semi-structured pruned models using the 2:4 sparsity
pattern efficiently supported by new NVIDIA hardware [MLP+21]. Further, we show that the
resulting sparse models can provide substantial real-world speedups for deep neural networks
inference on CPUs [Dee21]. We additionally show that the accuracy of the sparse AC/DC
models improves with extended training; namely, we are able to obtain 80% and 90% sparse
models that outperform the performance of dense models.
An interesting feature of AC/DC is that it allows for accurate dense/sparse co-training of
models. Specifically, at medium sparsity levels (80% and 90%), the method allows the co-
trained dense model to recover the dense baseline accuracy via a short fine-tuning period.
In addition, dense/sparse co-training provides us with a lens into the training dynamics, in
particular relative to the sample-level accuracy of the two models, but also in terms of the
dynamics of the sparsity masks. Specifically, we observe that co-trained sparse/dense pairs have
higher sample-level agreement than sparse/dense pairs obtained via progressive sparsification
methods (e.g. GMP), and that weight masks still change later in training.
Additionally, we probe the accuracy differences between sparse and dense models, by examining
their “memorization” capacity [ZBH+17]. For this, we perform dense/sparse co-training in a
setting where a small number of training samples have corrupted labels, and examine how
these samples are classified during dense and sparse phases, respectively. We observe that the
sparse model is less able to “memorize” the corrupted labels, and instead often classifies the
corrupted samples to their true (correct) class. By contrast, during dense phases the model
can easily “memorize” the corrupted labels. We provide an illustration of this phenomenon in
Figure 3.4. This suggests that one reason for the higher accuracy of dense models is their
ability to “memorize” hard-to-classify samples.

3.2 Related Work
As we have already discussed in Section 2.2 from the previous chapter, there has recently been
tremendous research interest into pruning techniques for neural networks. We follow the same
categorization previously discussed in Chapter 2, where we consider progressive sparsification
methods, applied post-training, and sparse regularization methods, which perform weight
removal during the training process itself. We focus on sparse regularization methods, and in
particular sparse training, although we will also compare against state-of-the-art progressive
sparsification methods.
The general goal of sparse training methods is to perform both the forward (inference) pass
and the backpropagation pass over a sparse support, leading to computational gains during
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the training process. One of the first approaches to maintain sparsity throughout training is
Deep Rewiring [BKML18], where SGD steps applied to positive weights are augmented with
random walks in parameter space, followed by inactivating negative weights. To maintain
sparsity throughout training, randomly chosen inactive connections are re-introduced in the
“growth” phase. Sparse Evolutionary Training (SET) [MMS+18] introduces a non-uniform
sparsity distribution across layers, which scales with the number of input and output channels,
and trains sparse networks by pruning weights with smallest magnitude and re-introducing
some weights randomly. Another sparse training method discussed in Section 2.2.2 from
Chapter 2, is RigL [EGM+20], which can lead to state-of-the-art results, even compared to
progressive sparsification methods applied to fully trained models; however, RigL requires
periodically evaluating full gradients, and significant additional data passes (e.g. 5x) relative
to the dense baseline, to reach competitive results. Top-KAST [JPR+20] alleviated the
drawback of periodically having to evaluate dense gradients by updating the sparsity masks
using gradients of reduced sparsity relative to the weight sparsity. The latter two methods set
the state-of-the-art for sparse training: when executing for the same number of epochs as the
dense baseline, they provide computational reductions the order of 2x, while the accuracy of
the resulting sparse models is lower than that of leading post-training methods, executed at the
same sparsity levels. To our knowledge, none of these methods have convergence guarantees.
Another approach towards faster training is training sparse networks from scratch. The masks
are updated by continuously pruning and re-introducing weights. For example, [LSB+20]
uses magnitude pruning after applying SGD on the dense network, whereas [DZ19] updates
the masks by re-introducing weights with the highest gradient momentum. One of the top-
performing methods in this category is STR [KRS+20], which we described in Section 2.2.2
from Chapter 2. One drawback of STR, however, is that the desired sparsity can not be
explicitly imposed, and the network has low sparsity for a large portion of training. These
methods can lead to only limited computational gains, since they either require dense gradients,
or the sparsity level cannot be imposed. By comparison, our method provides models of similar
or better accuracy at the same sparsity, with computational reductions. We also obtain dense
models that match the baseline accuracy, with a fraction of the baseline FLOPs.
The idea of alternating sparse and dense training phases has been examined before in the
context of neural networks, but with the goal of using temporary sparsification as a regularizer.
Specifically, Dense-Sparse-Dense (DSD) [HPN+17] proposes to first train a dense model to
full accuracy ; this model is then sparsified via magnitude; next, optimization is performed over
the sparse support, followed by an additional optimization phase over the full dense support.
Thus, this process is used as a regularization mechanism for the dense model, which results in
relatively small, but consistent accuracy improvements relative to the original dense model. In
[JYFY16], the authors propose a similar approach to DSD, but alternate sparse phases during
the regular training process. The resulting process is similar to AC/DC, but, according to
their Algorithm 1, their procedure returns a dense model, which is later shown that it can
be more accurate than the baseline. For this, the authors use relatively low sparsity levels,
and gradually increase sparsity during optimization; they observe accuracy improvements, at
the cost of increasing the total number of epochs of training. By contrast, our focus is on
obtaining accurate sparse models, while reducing computational costs, and keeping the same
number of training iterations as the dense baseline. Compared to [HPN+17] and [JYFY16],
we also provide theoretical guarantees for the convergence of our method. Moreover, we show
that AC/DC achieves good accuracy for highly sparse models, and on large-scale datasets
and models. In addition, we provide results illustrating that our method generalizes to other
sparsity patterns, e.g. the 2:4 semi-structured pattern [MLP+21]. Lastly, we show that with
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Figure 3.1: The AC/DC training process. After a short warmup we alternatively prune to maximum
sparsity and restore the pruned weights. The plot shows the sparsity and validation accuracy
throughout the process for a sample run on ResNet50/ImageNet at 90% sparsity.

AC/DC we can obtain both highly accurate dense and sparse models from a single training
cycle, which enables us to analyze the differences at prediction level between these co-trained
models.

Finally, parallel work by [MJS22] investigates a related approach, but focusing on low-rank
decompositions for Transformer models. Both their analytical approach and their application
domain are different to the ones of the current work.

3.3 Alternating Compressed / DeCompressed (AC/DC)
Training

3.3.1 Background and Assumptions
Obtaining sparse solutions to optimization problems is an application of interest in several
areas [CT06, BD08, Fou11], where the goal is to minimize a function f : RN → R under
sparsity constraints:

min
θ∈RN

f(θ) s.t. ∥θ∥0 ≤ k . (3.1)

For the case of ℓ2 regression, f(θ) = ∥b−Aθ∥2
2, a solution has been provided by Blumensath

and Davies [BD08], known as the Iterative Hard Thresholding (IHT) algorithm. Subsequent
work [Fou11, Fou12, YLZ14] provided theoretical guarantees for the linear operators used in
compressed sensing. The idea of IHT consists of alternating gradient descent (GD) steps and
applications of a thresholding operator to ensure the ℓ0 constraint is satisfied. More precisely,
Tk is defined as the Top-K operator, which keeps the largest k entries of a vector θ in absolute
value, and replaces the rest with 0. The IHT update at step t+ 1 has the following form:

θt+1 = Tk(θt − η∇f(θt)). (3.2)

Notably, [YLZ14] propose introducing a “debiasing” phase after the Top-K operator is applied,
which consists of training in the sparse support until convergence. However, most convergence
results for IHT assume deterministic gradient descent steps. In the case of deep neural
networks, which is also our setup, stochastic optimization methods are preferred, since they
have been proven to lead to better solutions and are more practical for the large computational
requirements of deep learning models. Therefore, this motivates us to analyze a stochastic
version of IHT.
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Stochastic IHT

We consider functions f : RN → R for which we can compute stochastic gradients gθ; these
are unbiased estimators of the gradient ∇f(θ). The stochastic IHT update can be defined as:

θt+1 = Tk(θt − ηgθt). (3.3)

As previously mentioned, one popular use of stochastic gradients is in the optimization of
neural networks. In practice, the function f to be minimized is the average loss function over
all training samples S = {x1, . . . ,xm}, defined as f(θ) = 1

m

∑︁m
i=1 f(θ; xi). In this case, the

stochastic gradients gθ obtained via backpropagation take the form 1
|B|
∑︁

i∈B∇f(θ; xi), where
B ⊂ S is a sampled mini-batch. Our theoretical analysis covers this formulation, and we aim
to prove strong convergence bounds for stochastic IHT, under common assumptions that arise
in the context of training neural networks.

Analytical Assumptions for Stochastic IHT

In our analysis regarding the convergence of stochastic IHT, we use the following assumptions
on the loss function f :

1. Unbiased stochastic gradients with variance σ > 0:

E[gθ|θ] = ∇f(θ), and E[∥gθ −∇f(θ)∥2] ≤ σ2

2. Existence of a k∗-sparse minimizer θ∗:

∃θ∗ ∈ arg min
θ
f(θ), s.t. ∥θ∗∥0 ≤ k∗

3. (t, β)-smoothness:
For β > 0, the loss function f is β-smooth when restricted to t coordinates:

f(θ + δ) ≤ f(θ) +∇f(θ)⊤δ + β

2 ∥δ∥
2, for all θ, δ s.t. ∥δ∥0 ≤ t .

4. r-concentrated Polyak-Łojasiewicz ((r, α)-CPL) condition:
For α > 0 and number of indices r we assume the following holds:

∥Tr(∇f(θ))∥2 ≥ α

2 (f(θ)− f(θ∗)) , for all θ. (3.4)

The first assumption is standard in stochastic optimization, while the existence of sparse
minimizers is a known property in over-parametrized deep learning models, and is the very
premise of our study. In fact, many works in the area of sparse neural networks have shown that
this assumption holds in practice, for example the Lottery Ticket Hypothesis [FC19, FDRC19],
which we discussed in Section 2.2.2. Smoothness is also a standard assumption, which is used
for example in [LSB+20]—we only require it along sparse directions, which is a strictly weaker
assumption. The more interesting requirement for our convergence proof is the (r, α)-CPL
condition in Equation (3.4), which we now discuss in more detail.
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The standard Polyak-Łojasiewicz (PL) condition [KNS16] is common in non-convex op-
timization, and versions of it are essential in the analysis of deep neural networks train-
ing [LZB20, AZLS19]. Its standard form states that small gradient norm, i.e. approximate
stationarity, implies closeness to optimum in function value. We require a slightly stronger
version, in terms of the norm of the gradient contributed by its largest coordinates in ab-
solute value. This restriction appears necessary for the success of IHT methods, as the
sparsity enforced by the truncation step automatically reduces the progress ensured by a
gradient step to an amount proportional to the norm of the Top-K gradient entries. This
strengthening of the PL condition is supported both theoretically, by the mean-field view,
which argues that gradients are sub-Gaussian [SM20], and by empirical validations of this
behaviour [AHJ+18, SCCS19].

We now state our main analytical result regarding the convergence of stochastic IHT.

Theorem 3.3.1. Let f : RN → R be a function satisfying previous assumptions (1)-(4), with
a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters, let k = C · k∗ · (β/α)2 for some
appropriately chosen constant C, and suppose that f is (2k+3k∗, β)-smooth and (k∗, α)-CPL.

For initial parameters θ0 and precision ϵ > 0, given access to stochastic gradients with
variance σ, stochastic IHT (3.3) converges in O

(︂
β
α
· ln f(θ0)−f(θ∗)

ϵ

)︂
iterations to a point θ

with ∥θ∥0 ≤ k, such that

E [f (θ)− f (θ∗)] ≤ ϵ+ 16σ2

α
.

Assuming a fixed objective function f and tolerance ϵ, we can obtain lower loss and faster
running time by either increasing the support k demanded from our approximate minimizer
θ relative to the optimal k∗, or by reducing the gradient variance, for example by increasing
the batch size. We provide a complete proof of this result in Appendix A.1.2. We note that
the analysis approach also works in the absence of the CPL condition, in which case one can
prove a version of the algorithm can find sparse nearly-stationary points. As a bonus, the
existing analyses for IHT can be further simplified and adapted to the convex case. Both of
these results can be found explained in detail in the Appendix of [PIVA21].

We note that Theorem 3.3.1 assumes the existence of a sparse minimizer θ∗, which, although
supported empirically [FC19, FDRC19], could be a restrictive assumption. To address this, we
can instead assume that the sparse point θ∗ is δ-close in function value to a minimizer θ∗∗,
i.e. f(θ∗)− f(θ∗∗) ≤ δ, for some δ > 0. Then, it is possible to still show convergence to θ∗∗

under the same number of iterations, such that E[f(θ)− f(θ∗∗)] ≤ ϵ+O(σ2

α
) +O(δ).

Another interpretation of the result from Theorem 3.3.1 is in showing that, under our
assumptions, error feedback [LSB+20] is not necessary for recovering good sparse minimizers;
this has practical implications, as it allows us to perform fully-sparse back-propagation in
sparse optimization phases. Next, we discuss our practical implementation, and its connection
to these theoretical results.

3.3.2 AC/DC: Applying IHT to Deep Neural Networks
In this section we describe how the IHT algorithm can be adapted to training deep neural
networks.
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Algorithm 1 Alternating Compressed/Decompressed (AC/DC) Training
Require: Initial weights θ ∈ RN , data D, sparsity k, compression phases C, decompression

phases D
1: Train the weights θ for ∆w epochs ▷ Warm-up phase
2: while epoch ≤ max epochs do
3: if entered a compression phase then
4: θ ← Tk(θ, k) ▷ apply compression (Top-K) operator on weights
5: m← 1[θi ̸= 0] ▷ create masks
6: end if
7: if entered a decompression phase then
8: m← 1N ▷ reset all masks
9: end if

10: θ ← θ ⊙m ▷ apply the masks (ensure sparsity for compression phases)
11: θ̃ ← {θi|mi ̸= 0, 1 ≤ i ≤ N} ▷ get the support for the gradients
12: for x mini-batch in D do
13: θ ← θ − η∇θ̃f(θ;x) ▷ optimize the active weights
14: end for
15: epoch ← epoch +1
16: end while
17: return θ

Implementation Details for AC/DC

From a practical perspective, AC/DC uses the regular training flow of a neural network, and
common optimizers such as SGD with momentum [Qia99] or Adam [KB15], while preserving
the standard training hyper-parameters. The main difference compared to the baseline training
is that AC/DC will only periodically modify the support for optimization, depending on the
compressed or decompressed phases. We present the pseudocode for AC/DC in Algorithm 1.

As specified in the algorithm, we partition the set of training epochs into compressed epochs
C, and decompressed epochs D. We begin with a dense warm-up period of ∆w consecutive
epochs, during which regular dense (decompressed) training is performed. Subsequently, we
start alternating compressed optimization phases of length ∆c epochs each, with decompressed
(regular) optimization phases of length ∆d epochs each. The process completes on a compressed
fine-tuning phase, returning an accurate sparse model. Alternatively, if our goal is to return
a dense model matching the baseline accuracy, we take the last dense checkpoint obtained
during alternation, and fine-tune it over the entire support for the remaining number of epochs,
using the same training hyper-parameters used for the final compressed phase. In practice,
we noticed that in some cases having a longer final decompressed phase of length ∆D > ∆d

improves the performance of the dense model, by allowing it to better recover the baseline
accuracy after fine-tuning. A general illustration of the AC/DC training schedule can be seen
in Figure 3.1. Moreover, the specific schedule used for most of our ImageNet experiments
from Section 3.4, together with the evolution of the validation accuracy, can be visualized in
Figure 3.2a.

In our experiments, we focus on the case where the compression operation is unstructured
or semi-structured pruning. In this case, at the beginning of each sparse optimization (i.e.
compressed) phase, we apply the Top-K operator globally across all of the prunable network
weights to obtain a mask M over the weights θ. Following previous work [ZG17, GEH19,
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EGM+20, KRS+20, SA20], all the parameters of the model, except the biases and the
parameters of the normalization layers (e.g. Batch Normalization), are considered prunable.
The mask M resulted after applying the Top-K operator will represent the sparse support
over which optimization will be performed for the rest of the current sparse phase. At the
end of the sparse phase, the mask M is reset to all-1s, so that the subsequent dense phase
will optimize over the full dense support. Furthermore, once all weights are re-introduced, we
found that it is beneficial to reset to 0 the gradient momentum term of the optimizer; this is
particularly useful for the weights that were previously pruned, which would otherwise have
stale versions of gradients.

Theoretical Guarantees for AC/DC

Comparing the differences between the stochastic IHT algorithm presented in Section 3.3.1
and the practical implementation described earlier, we note that several adjustments were
needed to have a robust implementation of IHT for deep neural networks.

First, we note that each decompressed phase directly corresponds to a deterministic/stochastic
IHT step, where, instead of a single gradient step in between consecutive truncations of the
support, we perform several stochastic steps in the dense support. These additional steps
improve the accuracy of the method in practice, and we can bound their influence in theory
as well, although they do not necessarily provide better bounds. One explanation for the
improvements obtained from using multiple dense stochastic gradient descent steps would be
that these allow for the exploration of better masks.

This leaves open the interpretation of the compressed phases: for this, we note that the
proof for Theorem 3.3.1 relies in showing that a single IHT step substantially decreases the
expected value of the objective; using a similar argument, we can prove that more optimization
steps over the sparse support can only improve convergence. Additionally, we show that our
intuitions are also matched by theory. Namely, we present in Corollary 3.3.1 a convergence
result for a variant of IHT closely following the practical implementation of AC/DC.

Corollary 3.3.1 (Convergence of AC/DC). Let f : RN → R be a function that decomposes
as f(θ) = 1

m

∑︁m
i=1 fi(θ), and has a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters,

let k = C · k∗ · (β/α)2 for some appropriately chosen constant C, suppose that each fi is
(N, β)-smooth, and L-Lipschitz, and that f is (k∗, α)-CPL.

Let ∆c and B be integers, and let {D1, . . . , DB} be a partition of [m] into B subsets of
cardinality O(m/B) each. Given θ, let g(i)

θ = 1
|Di|

∑︁
j∈Di
∇fj(θ).

Suppose we replace the IHT iteration with a dense/sparse phase consisting of

1. ∆c dense phases during each of which we perform a full pass over the data and update
the parameters through the iteration θ′ = θ − ηg(i)

θ for all i ∈ [B], with an appropriate
step size η;

2. a pruning step which applies the Top-K operator Tk over the weights θ;

3. an optional sparse training phase which fully optimizes f over the sparse support given
by the Top-K operator
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For initial parameters θ0 and precision ϵ > 0, this algorithm converges in O
(︂

β
α
· ln f(θ0)−f(θ∗)

ϵ

)︂
dense/sparse phases to a point θ with ∥θ∥0 ≤ k, such that

f (θ)− f (θ∗) ≤ ϵ+O

(︄
L2

α

)︄
.

We note that the bounds presented in Corollary 3.3.1 are the same as for Theorem 3.3.1.
Moreover, we observed empirically that although dense phases are necessary, training in the
dense support for too long, before switching to the next compression phase, does not generally
benefit the sparse model. Intuitively, this could suggest that it might be difficult to improve
over the bounds from Corollary 3.3.1 and Theorem 3.3.1. However, the additional result
in Corollary 3.3.1 confirms that the good experimental results obtained with AC/DC are
theoretically motivated.

3.4 Experiments on Large-Scale Image Classification

3.4.1 General Setup
We performed experiments on the ImageNet dataset [RDS+15], where we trained ResNet50
[HZRS16] and MobileNetV1 [HZC+17] architectures using AC/DC; both these models are
popular choices for model pruning benchmarks. Moreover, these architectures are also practically
useful; for example, ResNet50 is often used for feature extraction in transfer learning [KSL19],
as we will also discuss in Chapter 4, while the compact size of MobileNetV1 makes it a good
architecture choice for testing the performance limits of pruning methods. Our goal is to
examine the validation accuracy of the resulting sparse and dense models, versus the induced
sparsity, as well as the number of FLOPs used for training and inference, relative to sparse
training methods [EGM+20, JPR+20]. Additionally, we compare to state-of-the-art progressive
pruning methods [SA20]. We also show that AC/DC enables training both accurate sparse
and dense models with a single training cycle, at the expense of a small additional finetuning
period, and we further examine prediction differences between the co-trained sparse–dense
model pairs.

Unless otherwise specified, in all reported results, the models were trained for a fixed number
of 100 epochs, using SGD with momentum. We use a cosine learning rate scheduler and
training hyper-parameters following [KRS+20], but without label smoothing. For most of
our experiments, we prune weights using global magnitude, in a single step; however, we
also experiment with different pruning patterns, such as uniform, or semi-structured (e.g.
2:4 sparsity [MLP+21]). Similar to previous work, we did not prune biases, nor the Batch
Normalization parameters. The sparsity level is computed with respect to all the parameters,
except the biases and Batch Normalization parameters and this is consistent with previous
work [EGM+20, SA20].

For all results, the AC/DC training schedule starts with a “warm-up” phase of dense training for
10 epochs, after which we alternate between compression and de-compression every 5 epochs,
until the last dense and sparse phase. It is beneficial to allow these last two “fine-tuning”
phases to run longer: the last decompression phase runs for 10 epochs, whereas the final 15
epochs are the compression fine-tuning phase. We reset SGD momentum at the beginning of
every decompression phase. In total, we have an equal number of epochs of dense and sparse
training, and we provide an illustration of the pruning schedule in Figure 3.2a. We use exactly
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the same setup for both ResNet50 and MobileNetV1 models, which resulted in high-quality
sparse models. To recover a dense model with baseline accuracy using AC/DC, we finetune
the best dense checkpoint obtained during training; practically, this replaces the last sparse
fine-tuning phase with a phase where the dense model is fine-tuned instead.

To reduce computation time, we train and evaluate most of the models using mixed precision
(FP16) [MNA+18]. As a caveat, we mention that based on how mixed precision is implemented,
a very small fraction of training steps (usually two or three per epoch) are skipped, due to
possible infinite gradients after mixed precision re-scaling. In practice, this would have a
negligible effect on our total training FLOPs calculation; however, we reproduced a subset of
the experiments using full precision, and noticed small differences in validation accuracy of up
to 0.2-0.3% between AC/DC trained with full or mixed precision.

3.4.2 Results on ResNet50
Comparing AC/DC with other pruning methods

We show that on the large scale ImageNet dataset, training the ResNet50 architecture with
AC/DC results in very accurate sparse models, at a fraction of the training FLOPs of the dense
baseline. Our results showing the Top-1 ImageNet validation accuracy, as well as inference and
training FLOPs, in comparison with state-of-the-art sparse training or progressive sparsification
methods are presented in Table 3.1 for medium sparsity (80% and 90%) and Table 3.2 for high
sparsity (95% and 98%). Overall, AC/DC achieves higher validation accuracy than any of the
state-of-the-art sparse training methods (RigL and Top-KAST), when using the same number
of epochs; notably, we will also consider later on the versions with extended training time
for RigL and Top-KAST (e.g. we refer to RigL 5x as the version with 5 times more training
iterations, compared to the baseline). At the same time, due to dense training phases, AC/DC
has higher FLOP requirements relative to RigL or Top-KAST at the same sparsity.

At medium sparsities (80% and 90%), AC/DC sparse models are slightly less accurate than
the state-of-the-art post-training methods (e.g. WoodFisher), by small margins. The situation
is reversed at higher sparsities, where AC/DC produces more accurate models: the gap to
the second-best methods (WoodFisher / Top-KAST) is of more than 1% at 95% and 98%
sparsity. We note that the AC/DC results we report in Tables 3.1 and 3.2 are obtained using
global magnitude pruning, while the other methods use different pruning distributions; for
example, RigL and Top-KAST use uniform magnitude pruning, while keeping the first or last
layers dense; we also compare against the version or RigL with the Erdős-Rényi-Kernel (ERK)
sparsity distribution. However, we will show in what follows that AC/DC achieves good results
also with other sparsity distributions, such as uniform or semi-structured.

Of the existing sparse training methods, Top-KAST is closest in terms of validation accuracy
to our sparse model, at 90% sparsity. Since Top-KAST uses uniform magnitude pruning and
keeps the first and last layers dense, we further compare with AC/DC using the same sparsity
pattern. For 90% uniform sparsity, we obtain 75.04% accuracy with AC/DC, which is still
slightly above Top-KAST (74.76% accuracy). Moreover, we obtain 73.28% accuracy for 95%
uniform sparsity, which is well above all the other pruning methods used for comparison (e.g.
Top-KAST achieves 71.96% accuracy). Overall, we observed that keeping the first and last
layers dense has an important positive impact on the model accuracy, at only a very small
additional computational cost (e.g. 3% of the total FLOPs). For example, when using global
magnitude pruning, with first and last layers dense, the 90% sparse AC/DC improved to
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75.64% accuracy, while for 95% and 98% target sparsities the accuracy improved to 74.16%
and 71.27%, respectively.
We further note that the results for both Top-KAST and RigL improve substantially with
extended training. For example, Top-KAST obtains better results at 98% sparsity (≈69%
accuracy) when increasing the number of training epochs two times, at considerably fewer
training FLOPs, compared to AC/DC (e.g. 15% of the dense FLOPs vs. 46% for AC/DC).
We show a more detailed comparison between AC/DC and Top-KAST with extended training
time in Appendix Table A.5. For fairness, we compared in this setting against all methods on
a fixed number of 100 training epochs. However, we show in Section 3.4.4 that extending the
training time in AC/DC substantially improves the results.

Method Sparsity
(%)

Top-1
Acc. (%)

GFLOPs
Inference

EFLOPs
Train

Dense 0 76.84 8.2 3.14
80% Target Sparsity

AC/DC 80 76.3 ± 0.1 0.29 × 0.65 ×
RigL 80 74.6 ± 0.06 0.23 × 0.23 ×

RigL ERK 80 75.1 ± 0.05 0.42 × 0.42 ×
Top-KAST 80 fwd, 50 bwd 75.03 0.23 × 0.32 ×

STR 79.55 76.19 0.19 × -
WoodFisher 80 76.76 0.25 × -

90% Target Sparsity
AC/DC 90 75.03 ± 0.1 0.18 × 0.58 ×

RigL 90 72.0 ± 0.05 0.13 × 0.13 ×
RigL ERK 90 73.0 ± 0.04 0.24 × 0.25 ×
Top-KAST 90 fwd, 80 bwd 74.76 0.13 × 0.16 ×

STR 90.23 74.31 0.08 × -
WoodFisher 90 75.21 0.15 × -

Table 3.1: (ResNet50/ImageNet) Results for
medium (80% and 90%) sparsity.

Method Sparsity
(%)

Top-1
Acc. (%)

GFLOPs
Inference

EFLOPs
Train

Dense 0 76.84 8.2 3.14
95% Target Sparsity

AC/DC 95 73.14 ± 0.2 0.11 × 0.53 ×
RigL 95 67.5 ± 0.1 0.08 × 0.08 ×

RigL ERK 95 69.7 ± 0.17 0.12 × 0.13 ×
Top-KAST 95 fwd, 50 bwd 71.96 0.08 × 0.22 ×

STR 94.8 70.97 0.04 × -
WoodFisher 95 72.12 0.09 × -

98% Target Sparsity
AC/DC 98 68.44 ± 0.09 0.06 × 0.46 ×

Top-KAST 98 fwd, 90 bwd 67.06 0.05 × 0.08 ×
STR 97.78 62.84 0.02 × -

WoodFisher 98 65.55 0.05 × -

Table 3.2: (ResNet50/ImageNet) Results for
high (95% and 98%) sparsity.

Training Dynamics and Evolution of Pruning Masks

We further analyze the evolution of both model accuracy and difference between consecutive
pruning masks, during training. We observe that when measuring both the train and validation
accuracy, after each pruning phase, the accuracy drops at the beginning of a decompression
phase, when all weights are reintroduced; however, this drop recovers quickly and, more
importantly, each decompressed training phase is beneficial for the next pruning stage. At 98%
sparsity in particular, it is easiest to see that dense phases enable the exploration of better
pruning masks, which ensure that the sparse model improves continuously during training.
Moreover, when training with high sparsity levels (e.g. ≥95%), we observe a large drop in
accuracy after pruning, which recovers quite quickly in the subsequent decompression phase.
We believe these particularities are due to the high learning rate, which is maintained for a large
period of the training cycle, and which in turn encourages more exploration and faster recovery
from sub-optimal regions of the loss landscape; the evolution of the validation accuracy is
presented in Figure 3.2a, and the train accuracy follows a similar pattern.
The mask dynamics, measured by the relative change between two consecutive compression
masks, have an important influence on the AC/DC training process. Namely, more changes
between consecutive compression masks typically imply more exploration of the weights’ space,
and faster recovery from sub-optimal pruning decisions, which in turn results in more accurate
sparse models. As can be seen in Figure 3.2b, the relative mask difference between consecutive
compression phases decreases during training, but it is important to be maintained at a
non-trivial level. Interestingly, as training progresses, we noticed that AC/DC also induces
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Figure 3.2: (ImageNet/ResNet50) Accuracy vs. sparsity during training (left) and the corresponding
difference between consecutive masks updates (right).

structured sparsity, as more neurons and convolutional filters get pruned. We describe this
phenomenon in more detail in Appendix A.2.1. Moreover, as we will see in Chapter 4, the
inherent structured sparsity present in AC/DC models can also influence their generalization
ability, for example when they are used for transfer learning on different data distributions.

Results on Semi-Structured Sparsity

In addition to unstructured sparsity obtained through global and uniform magnitude pruning,
we further show that AC/DC can achieve good results with semi-structured sparsity patterns.
Namely, we experiment with the 2:4 sparsity pattern [MLP+21], which we described in
Chapter 2, Section 2.2.3, and which can result in practical inference speedups on the NVIDIA
Ampere GPU architecture. We applied AC/DC to the 2:4 pattern, performing training from
scratch and obtained sparse models with 76.64%± 0.05 validation accuracy, i.e. slightly below
the baseline. Furthermore, the dense-finetuned model fully recovers the baseline performance
(76.85% accuracy). We additionally experimented with using AC/DC with global pruning at
50%; in this case we obtained sparse models that slightly improve the baseline accuracy to
77.05%. This confirms our intuition that AC/DC can act as a regularizer at lower sparsity
levels, which has been previously observed also in [HPN+17].

Practical Speedups

One remaining question concerns the potential of sparsity to provide real-world speedups.
While this is an active research area, e.g. [EDGS20], we partially address this concern in
Appendix Table A.3, by showing inference speedups for our models on a CPU inference
platform supporting unstructured sparsity [Dee21]: for example, our 90% sparse ResNet50
model provides 1.75x speedup for real-time inference (batch-size 1) on a resource-constrained
processor with 4 cores, and 2.75x speedup on 16 cores at batch size 64, versus the dense
model.

3.4.3 Results on MobileNet
In addition to the results on ResNet50, we further show that training with AC/DC can result in
accurate sparse models on other architectures. Namely, we prune the MobileNetV1 [HZC+17]
model with AC/DC, using the same training recipe and under the same hyperparameter setting
as for ResNet50. Therefore, the hyperparameter tuning also in this case was minimal, as we
used the same hyper-parameters as for training the dense baseline in [KRS+20], except for
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label smoothing, which we did not use. On a training budget of 100 epochs, our method finds
sparse models with higher Top-1 validation accuracy than existing sparse training methods, on
both 75% and 90% sparsity levels. We provide a comparison between AC/DC and existing
pruning methods in Table 3.3; our comparison also includes the RigL models trained for
extended number of epochs (e.g. 2x or 5x the number of passes through the training data).
Notably, the only sparse training method which obtains higher accuracy for the same sparsity
level is the version of RigL [EGM+20] which trains for five times more epochs than the dense
baseline. In this setup, however, RigL also uses more computation than the dense baseline
model. We limit ourselves to a fixed number of 100 epochs, the same used to train the dense
baseline, which would allow for savings in training time. Moreover, we note that RigL does
not prune the first layer and the depth-wise convolutions, whereas for the results reported we
do not impose any sparsity restrictions. Overall, we found that keeping these layers dense
improved our results on 90% sparsity by more than 0.5%. Our results are quite close to RigL
2x, with half the training epochs, and less training FLOPs. We note that RigL 5x obtains
higher validation accuracy, and for 75% sparsity it even matches the baseline; however, this
variant of RigL also uses 2.6× and 1.5× the dense baseline training FLOPs for 75% and 90%
sparsities, respectively.
Moreover, we note that AC/DC is surpassed by progressive sparsification methods, such
as M-FAC [FKA21] (discussed in Section 2.2.2), which achieves state-of-the-art results on
MobileNetV1 for both 75% and 90% sparsity, when training for 100 epochs. However, we
note that M-FAC requires access to a pretrained dense model and, despite its efficiency over
other second-order methods, it still has higher computational and memory requirements during
training. We further mention that M-FAC is pruned to 89% sparsity, compared to AC/DC or
RigL, which are pruned at 90%.

Method Top-1
Acc. (%)

GFLOPs
Inference

EFLOPs
Train

Dense 71.78 1.1 0.44

75% Sparsity
AC/DC 70.1 ± 0.14 0.34× 0.65×
AC/DC⋆ 70.52 0.36× 0.66×

RigL ERK 1x 68.39 0.52× 0.53×
RigL ERK 2x 70.49 0.52× 1.05×

RigL ERK 5x 71.9 0.52× 2.63×
M-FAC 70.9 N/A N/A

90% Sparsity
AC/DC 66.1 ± 0.18 0.18× 0.56×
AC/DC⋆ 66.84 0.21× 0.58×

RigL ERK 1x 63.58 0.27× 0.29×
RigL ERK 2x 65.92 0.27× 0.59×

RigL ERK 5x 68.1 0.27× 1.47×
M-FAC 67.2 N/A N/A

Table 3.3: (MobileNetV1/ImageNet) Vali-
dation accuracy for sparse models, together
with inference and train FLOPs, where pro-
vided. The (⋆) indicates that the first layer
and depth-wise convolutions were kept dense.

Method Sparsity (%) Perplexity
Sparse

Perplexity
Dense

Perplexity
Finetuned Dense

Dense 0 - 18.95 -
80% Sparsity

AC/DC 80 20.65 20.24 19.54
AC/DC 80, 50 embed. 20.83 20.25 19.68

Top-KAST 80, 0 bwd 19.8 - -
Top-KAST 80, 60 bwd 21.3 - -

90% Sparsity
AC/DC 90 22.32 21.0 20.28
AC/DC 90, 50 embed. 22.84 21.34 20.41

Top-KAST 90, 80 bwd 25.1 - -

Table 3.4: Transformer-XL/WikiText results for
AC/DC and Top-KAST pruned for 80% and 90%
sparsity targets. For AC/DC we additionally mea-
sure the quality of the resulting dense models before
and after finetuning.

3.4.4 Improvements from Extended Training Time
In this section we show that we can obtain better sparse models when extending the training
time with AC/DC. Substantial improvements from extended training have also been observed
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Figure 3.3: (ImageNet/ResNet50) Training FLOPs vs validation accuracy for AC/DC, RigL and
Top-KAST, with uniform sparsity, at 90% and 95% sparsity levels. Inference FLOPs are the same for
all methods.

with other pruning methods, such as RigL [EGM+20] or Top-KAST [JPR+20]. Our experiments
with extended training for AC/DC are performed on the ImageNet dataset [RDS+15], using
the ResNet50 architecture [HZRS16].

Results for Uniform Sparsity

First, we provide a direct comparison between AC/DC and Top-KAST and RigL, in terms of
the validation accuracy achieved on ImageNet vs. the number of training FLOPs. We report
results at uniform sparsity, since this ensures that the inference FLOPs will be the same for
all methods considered. For AC/DC and Top-KAST, the first and last layers are kept dense,
whereas for RigL, only the first layer is kept dense; however, this has a negligible impact on
the number of FLOPs. We extend the number of training iterations for AC/DC at 90% and
95% sparsity two times; this is done by extending both the learning rate scheduler and training
recipe, while preserving the duration of each compressed and decompressed phase, as well as
other training hyperparameters (e.g. momentum or weight decay).
The comparison between AC/DC, Top-KAST and RigL presented in Figure 3.3 shows that
AC/DC with the standard number of training epochs is similar to or surpasses Top-KAST 2x at
90% and 95% sparsity, as well as RigL 5x at 95% sparsity, both in terms of training FLOPs and
validation accuracy. Moreover, we highlight that extending the number of training iterations
two times results in AC/DC models with uniform sparsity that surpass all existing methods at
both 90% and 95% sparsity; namely, we obtain 76.1% and 74.3% validation accuracy with
90% and 95% uniform sparsity, respectively. The only exception is Top-KAST 5x, which can
achieve up to 74.3% accuracy for 95% sparsity.

Method Sparsity
80% 90% 95%

AC/DC 76.3 ± 0.1 75.0 ± 0.1 73.1 ± 0.2
AC/DC 3x 77.5 76.8 75.3
AC/DC 5x N/A 77.2 N/A

RigL ERK 1x 75.1 ± 0.05 73.0 ± 0.04 69.7 ± 0.17
RigL ERK 5x 77.1 ±0.06 76.4 ± 0.05 74.5 ± 0.09

Table 3.5: (ImageNet/ResNet50) Validation accuracy
(%) of sparse models trained for extended number of
iterations. AC/DC models were pruned using global
magnitude pruning.

Method Sparsity
90% 95%

AC/DC 74.7 72.8
AC/DC 2x 75.8 N/A

Table 3.6: (ImageNet/ResNet50) Vali-
dation accuracy (%) of AC/DC models
when reducing the dense phases to two
epochs each. Results are for uniform
sparsity.
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Results for Global Sparsity

Inspired by the encouraging results for AC/DC 2x, we examine whether extending the training
time even longer can further improve the resulting sparse models. Namely, we extend the
AC/DC training time three times, for 80%, 90% and 95% target sparsity levels; additionally,
we train AC/DC for five times more epochs, at 90% target sparsity. For this setup, we use
global magnitude pruning and compare against RigL [EGM+20] pruned using ERK sparsity
distribution, which results in higher accuracy for RigL models, compared to uniform pruning.

Our results presented in Table 3.5 show that AC/DC 3x models substantially surpass RigL
ERK 5x at all sparsity levels considered. Moreover, when training AC/DC 5x to match the
training iterations in RigL ERK 5x, the results at 90% sparsity still continue to improve, with
AC/DC 5x reaching 77.3% accuracy. Interestingly, training sparse models longer not only
improves their accuracy on the validation set, but also improves their generalization when they
are used for finetuning on different tasks from the ones used initially for training; we explore
these properties in more detail in Section 4.4.5 from Chapter 4.

3.5 Additional Experimental Validations

3.5.1 Reducing the Dense Phases in AC/DC
We note that compared to purely sparse training methods, such as Top-KAST or RigL, AC/DC
can have higher computational requirements, as it requires periods of dense training. However,
the length of the dense phases can be decreased, with a relatively small impact on the accuracy
of the sparse model. We show this on the ResNet50 architecture trained on ImageNet.

Specifically, we use dense phases of two instead of five epochs in length, and we no longer
extend the final decompressed phase prior to the finetuning phase. For 90% global sparsity,
this resulted in 74.6% validation accuracy for the sparse model, using 44% of the baseline
FLOPs. Similarly, for uniform sparsity, we obtain 74.7% accuracy on the 90% sparse model,
with 40% of the baseline FLOPs; this value can be further improved to 75.8% validation
accuracy when extending two times the number of training iterations. Furthermore, at 95%
uniform sparsity, we reach 72.8% accuracy with 35% of the baseline training FLOPs. We
present these results in Table 3.6.

When further reducing the length of a decompression phase to a single epoch, we observe a
more pronounced degradation of the sparse model; namely, at 90% target sparsity, we obtain
models with 74.2% ImageNet validation accuracy, which improves to 75.5% when extending
the training schedule two times; furthermore, when running AC/DC at 95% target sparsity
for 200 epochs, using dense phases of one epoch each (except the warm-up phase of 10
epochs), we obtain 73.5% validation accuracy for the sparse model. These results motivate
us to further investigate the limits of the dense training phases in AC/DC, and whether, for
example, increasing the number of total training iterations, while keeping the dense phases
very short, would enable us to still obtain improvements for the sparse models.

3.5.2 Language Modeling Results
In addition to image classification tasks, we show that AC/DC can also be used for language
modeling. Specifically, we use AC/DC to train sparse models on the Transformer-XL [DYY+19]
model on the WikiText-103 dataset [MXBS16]. More details on the Transformer-XL model

42



3.6. Generalization properties of AC/DC

and the WikiText-103 dataset are provided in Section 2.1.3 from Chapter 2. We integrated the
implementation provided by NVIDIA [NVI21], which follows closely the original implementation
in [DYY+19]. For training, we use the standard model configuration with 18 layers and 285M
parameters, trained using the Lamb optimizer [YLR+19] and standard hyper-parameters.

We choose the Transformer-XL model architecture trained on WikiText-103 as it was previously
used with Top-KAST [JPR+20], which allows a direct comparison between AC/DC and Top-
KAST, also on natural language processing tasks. Similar to Top-KAST, we did not prune
the embedding layers, as this greatly affects the quality, without reducing computational cost.
However, for completeness, we do provide results when embeddings are pruned to 50% sparsity.
Our sparse training configuration consists in starting with a dense warm-up phase of 5 epochs,
followed by alternating between compression and decompression phases every 3 epochs; we
follow with a longer decompression phase between epochs 33-39, and end with a compression
phase between epochs 40-48. Unlike the image classification setup, for these experiments we
did not reset the statistics involving exponential moving average of gradients before entering a
dense phase. Moreover, we show that we can improve the quality of the resulting dense model
with additional finetuning, which involves replacing replacing the last compression phase with
regular dense training.

The results for the comparison between AC/DC and Top-KAST at 80% and 90% target
sparsities, as well as for the AC/DC dense models, are shown in Table 3.4. Relative to
Top-KAST, our approach provides substantially improved test perplexity at 90% sparsity, as
well as better results at 80% sparsity, when sparse backpropagation is used for Top-KAST.
These results on language modeling tasks confirm that AC/DC is scalable and extensible;
furthermore, we note that our hyper-parameter tuning for this experiment was minimal.

3.6 Generalization properties of AC/DC
As presented in the previous sections, AC/DC trains accurate models at different sparsity
levels, on tasks ranging from image classification to language modeling. Additionally, we
show that the AC/DC training dynamics reveal some interesting properties related to the
generalization of sparse neural networks. For example, AC/DC enables co-training sparse-dense
model pairs which allow for a better study of the differences in predictions between sparse
and dense models; we explore this property in detail in Section 3.6.1. Additionally, it has
been hypothesized that sparse models are less prone to overfitting and can lead to better
generalization, compared to their dense counterparts. Taking advantage of the sparse-dense
co-training through AC/DC, we examine the differences in generalization between sparse and
dense models, through the lens of random labels memorization in Section 3.6.2 and find that,
indeed, sparse models are less likely to memorize random data.

3.6.1 Analyzing Differences Between Sparse and Dense AC/DC
Models

Results for the Dense Models

One advantage of AC/DC is that it provides both sparse and dense models at cost below
that of a single dense training run. For example, for medium sparsity, the accuracy of the
dense-finetuned model is very close to the dense baseline. To obtain highly accurate dense
models from an AC/DC training cycle, we fine-tune the resulting dense AC/DC model before
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the final pruning phase, for a small number of epochs. Namely, we start from the best dense
baseline, which is usually obtained after 85 training epochs, and replace the final compression
phase with 15 epochs of regular dense training; we use the same learning rate scheduler and
keep all other training hyper-parameters the same. Using this recipe on ResNet50 models
trained on ImageNet, we find that when training with 80% target sparsity we recover the
dense baseline accuracy, while for 90% target sparsity we are slightly below the baseline. We
note that for 90% sparsity, when the first and last layers are kept dense, our fine-tuned dense
model recovers the baseline accuracy fully. The results for the dense models, before and after
finetuning, together with the baseline accuracy, are presented in Table 3.7; here, (⋆) denotes
that the first and last layers of the network are kept dense, in the case of ResNet50, or the
first layer and depth-wise convolutions are dense, for MobileNetV1.

Target
Sparsity

Accuracy
Dense (%)

Accuracy
Finetuned (%)

0% 76.84 -
80% 73.82± 0.02 76.83± 0.07
90% 73.25± 0.16 76.56± 0.1
90%⋆ 73.66 76.85

Table 3.7: (ImageNet/ResNet50) Validation
accuracy of AC/DC dense models, before and
after the final dense finetuning phase.

Sparsity Accuracy
Dense (%)

Accuracy
Finetuned (%)

0% 71.78 -
75% 68.37± 0.18 71.41± 0.15
90% 67.34± 0.14 70.76± 0.19
90%⋆ 67.69 70.91

Table 3.8: (ImageNet/MobileNetV1) Valida-
tion accuracy of AC/DC dense models, before
and after the final dense finetuning phase.

Additionally, we observe that the resulting AC/DC dense models, before finetuning, have
a small percentage of zero-valued weights. We believe this is most likely caused by “dead”
neurons or convolutional filters resulted after each compression phase; the corresponding
weights do not get re-activated during the dense stages, as they can no longer receive gradients.
We provide more details on this phenomenon in Appendix Table A.1.

Similar to ResNet50, dense models obtained through AC/DC training on MobileNetV1 are
able to recover the baseline accuracy after additional finetuning. We performed finetuning
identically to the ResNet50 experiments and observe that the dense AC/DC models resulted
from training for 75% target sparsity almost recovered the baseline accuracy while for 90%
target sparsity, the gap between dense AC/DC models and the baseline is around 1%. The
results for the (fine-tuned) AC/DC dense models, together with the baseline, are presented in
Table 3.8; as previously mentioned, (⋆) indicates that the first layer and depth-wise convolutions
were never pruned.

Method Sparse Top-1
Accuracy (%)

Dense Top-1
Accuracy (%)

Sparse-Dense
Agreement (%)

Sparse-Dense
Cross-entropy

80% Sparsity
AC/DC 76.3± 0.1 76.8± 0.07 89.8± 0.3 0.85± 0.005

SparseVD 75.3 75.2 98.6 -
GMP 76.4 76.9 86.0 1.03

90% Sparsity
AC/DC 75.0± 0.1 76.6± 0.09 86.8± 1.5 1.02± 0.004

SparseVD 73.8 73.6 98.3 -
GMP 74.7 76.9 83.5 1.29

Table 3.9: (ImageNet/ResNet50) Sample agree-
ment between ResNet50 sparse and dense models
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Figure 3.4: (ResNet20/CIFAR-10) Percent-
age of samples with corrupted training labels
classified to their true class.
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Sparse-Dense Output Comparison

The accurate sparse-dense model pairs obtained from a single AC/DC training cycle offer a
good opportunity to study the differences in the predictions between these two models.
For this purpose, we employ two different metrics; first, we examine sample-level agreement,
which simply measures on how many of the validation samples the predictions between the
sparse and dense AC/DC models agree. Next, we also measure the differences in the per-sample
probability distributions, by computing the cross-entropy between the softmax probability
distributions of sparse and dense AC/DC models. To understand the relative sizes of these
differences, we compare against two baselines. First, we compared the similarity of a fully
trained dense model with the sparse models obtained from gradual magnitude pruning (GMP)
trained over 100 epochs; in this case, the dense model was used as initialization for the GMP
training cycle. Second, we compare with the sparse-dense model couples obtained by Sparse
Variational Dropout (SparseVD) [MAV17]; in SparseVD, the dense model is trained to optimize
a variational lower bound, and at the end of training, a large proportion of the weights can be
pruned in a single step, without affecting the accuracy of the dense model. However, SparseVD
incurs a computational overhead during training, as it uses two times more parameters.
The results in Table 3.9 show the ImageNet validation accuracies for the corresponding sparse
and dense model pairs for AC/DC, SparseVD and GMP, as well as the sample agreement and
prediction cross-entropy; in the case of AC/DC, we use the finetuned dense models. We note
that AC/DC and GMP show comparable accuracy for both their sparse and dense models,
while the resulting SparseVD models have lower accuracy, at both 80% and 90% sparsity.
Moreover, the sparse and dense SparseVD models agree in over 98% of their predictions as
measured on the ImageNet validation set, and the dense model has the same quality as the
sparse model. In comparison, AC/DC with finetuning produces dense models of validation
accuracy that is comparable to that of a dense model trained without any compression,
and that therefore do differ from their sparse co-trained counterparts. When examining the
sample-agreement, AC/DC co-trained model pairs consistently agree on more samples relative
to GMP: for example, on the 80%-pruned ResNet50 model, the AC/DC model pair agrees
on the Top-1 classification of 90% of validation samples, whereas the GMP models agree
on 86% of the samples. The differences are better seen in terms of validation error (10%
versus 14%), which indicate that the dense baseline and GMP model disagree on 40% more
samples compared to the AC/DC models. A similar trend holds for the cross-entropy between
model outputs, which is about 20% lower for AC/DC models, compared to GMP. This is a
potentially useful side-effect of the method; for example, in constrained environments where
sparse models are needed, it is important to estimate their similarity to the dense ones.

3.6.2 Memorization Experiments
Lastly, we analyze the differences between sparse and dense AC/DC models based on their
ability to memorize samples with random labels. As discussed in Section 2.1.4 and Section 2.2.4,
neural networks have the capacity to memorize the training data [ZBH+17], including random
labels, which seems to be at odds with their good generalization abilities. Moreover, several
works have hypothesized that sparse models might have improved generalization abilities
over the dense ones [JCR+22, AGNZ18, HPN+17]. We take advantage of the existence of
sparse-dense model pairs in AC/DC, to directly study the evolution of generalization for both
of these models, during the training cycle.
For this purpose, we apply AC/DC to ResNet20 trained on a variant of CIFAR-10 where
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a subset of 1000 samples have randomly corrupted class labels, and examine the accuracy
on these samples during training. We consider 90% and 95% sparsity AC/DC runs. For
this experiment, all models were trained without using data augmentation. We present our
findings in Figure 3.4, where we measure the accuracy on the perturbed subset of the training
set, with respect to the true, un-corrupted label. During early training and during sparse
phases, the network tends to classify corrupted samples to their true class, “ignoring” label
corruption. However, during dense phases, as training progresses and learning rate decreases,
dense networks tend to “memorize” these samples, assigning them to their corrupted class.
This phenomenon is even more prevalent at 95% sparsity, where the sparse network is less
capable of memorization. In Appendix A.2.2 we discuss these findings in more detail, and we
additionally show a similar analysis when data augmentation is used during training.

3.7 Conclusion, Limitations, and Future Work
We introduced AC/DC—a method for co-training sparse and dense models, with theoretical
guarantees. Experimental results show that AC/DC improves upon the accuracy of previous
sparse training methods, and obtains state-of-the-art results at high sparsities. Importantly,
we recover near-baseline performance for dense models and do not require extensive hyper-
parameter tuning. We also show that AC/DC has potential for real-world speed-ups in
inference and training, with the appropriate software and hardware support. When training
with moderate sparsity, the method has the advantage of returning both an accurate dense
model, and a sparse one. Our model output analysis confirms the intuition that sparse training
phases act as a regularizer, preventing the (dense) model from memorizing corrupted samples.
At the same time, they prevent the memorization of hard samples, which can affect accuracy.
The main limitations of AC/DC are its reliance on dense training phases, which restricts the
achievable training speedup, and the need for tuning the length and frequency of sparse/dense
phases. We believe the latter issue can be addressed with more experimentation (we show
some preliminary results in Section 3.5.1); however, both the theoretical results and the output
analysis suggest that dense phases may be necessary for good accuracy. We plan to further
investigate this in future work, together with applying AC/DC to other compression methods,
such as quantization, as well as leveraging sparse training on hardware that could efficiently
support it, such as Graphcore IPUs [Gra21].
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CHAPTER 4
Study on the Transferability of Sparse

Convolutional Neural Networks

As previously discussed in Chapter 2, model pruning has received a good amount of academic
and industrial interest in recent years. Moreover, as we have also shown in Chapter 3, it is
possible to train accurate sparse neural networks at a lower cost compared to dense models.

The efforts of obtaining smaller-footprint models and reducing the training costs associated
with them are focused on solving an important challenge in deep learning, which is enabling
the deployment of large models on edge devices, such as, for example, mobile phones or
laptops. As these devices may naturally encounter different data distributions, it is tempting
to ask how sparse models would perform when they are used for transfer learning, broadly
defined as leveraging information from some baseline “upstream” (“pretrained”) task in order
to perform better on a “downstream” (“finetuning”) task. In this chapter, we want to provide
a justified answer to this question, by mainly focusing on a prototypical transfer learning
setup, used in many previous works, such as [KSL19, SIE+20]. Namely, starting from models
trained and pruned on the ImageNet dataset [RDS+15] with 1000 classes, we finetune them
on several different target tasks. We believe such a study focusing on sparse models is of
great practical interest, as there are many powerful baselines developed for sparse models, as
well as increasingly available hardware support to leverage speed-up from sparsity.

4.1 Motivation and Outline
The motivation for our study on the transferability of sparse models is both practical—sparse
transfer can provide speedups for both inference and training on the downstream model—and
analytical, as we aim to shed light on the impact of sparsity on the resulting features and in
general, how well can sparse models adapt to new data distributions.

Our study will consider the two common transfer learning variants we described in Chapter 2,
Section 2.1.5, namely full finetuning, where all unpruned weights can be optimized during
transfer, and linear finetuning, where only the final linear layer of the model is finetuned
downstream. While both are popular, we will see that they can lead to different results. We
additionally explore inference-time speedups using a sparsity-aware inference engine [Dee21,
KKG+20], and for the first time examine training-time speed-up achievable for linear finetuning
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Transfer learning task

   Hardware or training   
    time constraints

   No hardware or training
          time constraints

  Specialized task
  (fine-grained)

Sparse 
regularization 

AC/DC, STR, RigL

Progressive 
sparsification

GMP, WoodFisher

Linear finetuning Full finetuning

General task
     (coarse-grained)

Any pruning 
strategy

Figure 4.1: Overview of a suggested decision process when selecting the finetuning and pruning
methods to maximize performance and accuracy when doing transfer learning on pruned models.

via sparse models. Furthermore, we analyze the impact of different pruning methods and task
characteristics on transfer performance.

We consider the top-performing unstructured pruning methods in terms of ImageNet accuracy,
roughly split into three categories, which we also discussed in more detail in Chapter 2,
Section 2.2.2. Namely, the first category is given by progressive sparsification methods, which
start from an accurate dense baseline and proceed to gradually remove weights, followed
by finetuning; for the second category we consider sparse regularized training methods,
which perform network compression, and possibly network re-growth, during the training
process itself, and, finally, for the third category, we consider Lottery Ticket Hypothesis
(LTH)-style methods [FC19, FDRC19, CFC+20, CFC+21], which emphasize the discovery of
sparse sub-networks, to obtain good accuracy when re-trained from scratch. We emphasize
that this categorization is approximate, as, for example, LTH methods could be viewed as
a special case of progressive sparsification, where a specific finetuning approach is applied.
Moreover, it is not uncommon to combine approaches, such as regularization and progressive
sparsification [HABN+21]. We provide a comparison of the efficacy of these different approaches
in the context of transfer learning, by considering multiple methods from each category. To
our knowledge, this is the first such detailed study.

Our main target application is given by twelve classic transfer datasets, described in Table 4.2,
ranging from general datasets, to more specialized ones. We mainly focus on the classic
ResNet50 [HZRS16] model, but we extend our analysis to ResNet18, ResNet34 and MobileNet-
V1 [HZC+17], and we also examine transfer performance for object detection tasks.

Contribution. Our main finding is that sparse models can consistently match the accuracy
of the corresponding dense models on transfer tasks. However, this behaviour is impacted by
the following factors: pruning method (e.g. regularization vs. progressive pruning), transfer
approach (full vs. linear), model sparsity (e.g. moderate 80% vs. high 98% sparsity), and
task type (e.g. degree of specialization).
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Dataset Linear Finetuning Full Finetuning
Dense 80% Sparse 90% Sparse Dense 80% Sparse 90% Sparse

Aircraft 49.2 ± 0.1 55.2± 0.2 56.6 ± 0.1 83.6 ± 0.4 84.8 ± 0.2 84.9 ± 0.3
Birds 57.7 ± 0.1 58.4 ± 0. 58.7 ± 0. 72.4 ± 0.3 73.4 ± 0.1 72.9 ± 0.2

Caltech-101 91.9 ± 0.1 92.4 ± 0.2 92.5 ± 0.1 93.5 ± 0.1 93.7 ± 0.1 93.9 ± 0.3
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 84.5 ± 0.1 86.1 ± 0.1 85.4 ± 0.2 84.8 ± 0.1

Cars 53.4 ± 0.1 58.6 ± 0.1 60.5 ± 0.1 90.3 ± 0.2 90.5 ± 0.2 90.0 ± 0.2
CIFAR-10 91.2 ± 0. 91.4 ± 0. 91.0 ± 0. 97.4 ± 0. 97.2 ± 0.1 97.1 ± 0.
CIFAR-100 74.6 ± 0.1 74.7 ± 0.1 74.3 ± 0. 85.6 ± 0.2 85.1 ± 0.1 84.4 ± 0.2

DTD 73.5 ± 0.2 74.4 ± 0.1 73.8 ± 0.1 76.2 ± 0.3 75.7 ± 0.5 75.5 ± 0.4
Flowers 91.6 ± 0.1 93.0 ± 0. 93.0 ± 0.1 95.0 ± 0.1 96.1 ± 0.1 96.1 ± 0.1

Food-101 73.2 ± 0. 73.9 ± 0. 73.8 ± 0. 87.3 ± 0.1 87.4 ± 0.1 87.3 ± 0.2
Pets 92.6 ± 0.1 92.5 ± 0.1 92.0 ± 0.1 93.4 ± 0.1 93.4 ± 0.1 92.7 ± 0.3

SUN397 60.1 ± 0. 60.4 ± 0. 59.8 ± 0.1 64.8 ± 0. 64.0 ± 0. 63.0 ± 0.

Table 4.1: Best transfer accuracies at 80% and 90% sparsity for linear and full finetuning, relative
to dense transfer. For each downstream task, we present the maximum test accuracy across all
sparse methods, highlighting the top accuracy. (We highlight multiple methods when confidence
intervals overlap. Results are averaged across five and three trials for linear and full finetuning,
respectively.) Note that in all but three cases (all full finetuning), there is at least one sparse model
that is competitive with or better than the dense baseline.

We briefly outline our main conclusions, which are also summarized in Figure 4.1 and Table 4.1:

• For linear finetuning, sparse models usually match and can slightly outperform dense
models, with regularization-based methods performing particularly well, even at high
sparsities (e.g. 95%).

• For full finetuning, which generally provides higher accuracies [KSL19], sparse models
are also competitive with dense ones, but transfer accuracy is more tightly correlated
with accuracy on the ImageNet pre-training task: consequently, less sparse models (e.g.
80%-90% sparsity) tend to be more accurate than sparser ones. Moreover, in this setting
we find that progressive sparsification methods consistently produce models with higher
transfer accuracy, relative to regularization methods. We provide a first analysis of this
effect, linking it to structural properties of the pruned models. In addition, we observe
the markedly lower accuracy of lottery-ticket approaches, especially at the higher levels
of sparsity, e.g. ≥ 90%, required for computational speedups.

• Given the difference in behaviour between linear and full finetuning, we find that there is
currently no single “best” pruning method for transfer. However, using existing methods,
one can consistently achieve order-of-magnitude (∼ 90%) compression without loss
of accuracy. In turn, these compression levels can lead to speedups of more than 3×
on sparsity-enabled runtimes. This suggests that sparse transfer may have significant
practical potential.

4.2 Background and Related Work
Since we have already described in Chapter 2, Section 2.2.2 the details of each pruning category
we consider (progressive sparsification, regularization methods, LTH methods), together with
concrete examples, we will now focus on more related work on transfer learning, in general,
and sparse transfer learning, in particular.
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4.2.1 Transfer Learning and Sparsity
Dense Transfer Learning. A large body of literature has established that, in general, deep
learning architectures transfer well to smaller “downstream” tasks, and that full finetuning
typically achieves higher accuracy than linear finetuning [KSL19, SIE+20]. However, a recent
study [KRJ+22] suggests that this may be inverted on out-of-distribution tasks. These findings
extend to related tasks, such as object detection and segmentation [MUK+22]. Kolesnikov
et al. [KBZ+20] have focused on factors determining the success of transfer learning, and
on developing reliable fine-tuning recipes. This has been further extended by Djolonga et
al. [DYT+21], who concluded that increasing the scale of the original model and dataset
significantly improves out-of-distribution and transfer performance, despite having marginal
impact on the original accuracy. Salman et al. [SIE+20] considered whether adversarially
robust ImageNet classifiers can outperform standard ones for transfer learning, and find that
this can indeed be the case. We complement these studies by examining sparse models and
pruning methods.

Sparse Transfer Learning. One of the earliest works to consider transfer performance for
pruned models was [MTK+17], with the goal of designing algorithms which allow the pruning
of a (dense) convolutional model when transferring on a target task. A similar study was
also performed by [SWR20] for language models. By contrast, we focus on the different
setting where models have already been sparsified on the upstream dataset, and observe higher
sparsities than the early study of [MTK+17].

Recent work on sparse transfer learning has focused specifically on models obtained via the
“Lottery Ticket Hypothesis” (LTH) approach [FC19], which roughly states that there exist
sparsity masks and initializations which allow accurate sparse networks to be trained from
scratch. There are several works investigating the “transferrability” of models obtained via
this procedure for different tasks: for instance, [Meh19] shows that lottery tickets obtained on
the CIFAR dataset can transfer well on smaller downstream tasks, while [CFC+20, GMG+21]
investigate the applicability of lottery tickets for pre-trained language models (BERT), and
object recognition tasks, respectively. Mallya et al. [MDL18] considered the related but
different problem of adapting a fixed network to multiple downstream tasks, by learning
task-specific masks.

The recent work of [CFC+21] considers the transfer performance of LTH for transfer, proposing
a method which we call LTH-T, and finding that this method ensures good downstream accuracy
at moderate sparsities (e.g., up to 80%). We consider a similar setting, but investigate a wider
array of pruning methods (including LTH-T) and additional transfer datasets. Specifically,
we are the first to compare LTH-T to competitive upstream pruning methods. We observe
that, on full finetuning, most pruning methods consistently outperform LTH-T in terms of
downstream accuracy across sparsity levels, by large margins at high sparsities.

4.3 Methodology

4.3.1 Transfer Learning Setup
Transfer Learning Variants. We consider both full finetuning, where the entire set of
features is optimized over the downstream dataset, and linear finetuning, where only the last
layer classifier is finetuned, over sparse models. In the former case, with the exception of
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Dataset Number of Classes Train/Test Examples Accuracy Metric
SUN397[XHE+10] 397 19 850 / 19 850 Top-1

FGVC Aircraft[MRK+13] 100 6 667 / 3 333 Mean Per-Class
Birdsnap[BLL+14] 500 32 677 / 8 171 Top-1

Caltech-101[LFP04] 101 3 030 / 5 647 Mean Per-Class
Caltech-256[GHP06] 257 15 420 / 15 187 Mean Per-Class

Stanford Cars[KSDFF13] 196 8 144 / 8 041 Top-1
CIFAR-10[KH+09] 10 50 000 / 10 000 Top-1
CIFAR-100[KH+09] 100 50 000 / 10 000 Top-1

Describable Textures (DTD)[CMK+14] 47 3 760 / 1 880 Top-1
Oxford 102 Flowers[NZ06] 102 2 040 / 6 149 Mean Per-Class

Food-101[BGVG14] 101 75 750 / 25 250 Top-1
Oxford-IIIT Pets[PVZJ12] 37 3 680 / 3 669 Mean Per-Class

Table 4.2: Datasets used as downstream tasks for transfer learning.

the final classification layer and the Batch Normalization (BN) parameters, only the nonzero
weights of the original model are optimized, and the mask is kept fixed.

We do not consider from-scratch training and pruning on the downstream task, for two reasons.
First, from-scratch training is often less accurate than (dense) transfer learning in the same
setting [KSL19, MUK+22]. As our experiments will show, transfer from sparse models can
often match or even slightly outperform transfer from dense models. Second, since training
from scratch is typically less accurate than transfer [KSL19], it is unlikely that training and
pruning from scratch can outperform sparse transfer from pretrained ImageNet models. To
support this claim, we consider image classification on the CIFAR-100 [KH+09] dataset using
a WideResNet [ZK16] architecture. Following [PIVA21], the 90% sparse models trained from
scratch reach below 80% Top-1 test accuracy. In contrast, finetuning from a ResNet50
backbone pruned on ImageNet using AC/DC and GMP at 90% sparsity reaches a test accuracy
of 83.9% and 84.4%, respectively (please see Appendix Table B.3 for the complete results).
This example serves to illustrate the significant accuracy gains from using transfer learning with
sparse models, as opposed to training sparse models from scratch. Moreover, one practical
advantage of transfer learning from sparse models is that it eliminates the need for individual
hyper-parameter tuning with respect to compression on the downstream dataset, which can
be a costly process.

Downstream tasks and training. We follow [SIE+20] in using the twelve standard transfer
benchmark datasets described in Table 4.2; these tasks are a good choice for studying the
transfer properties of different models, since they span several domains and sizes. We transfer
all parameters of the upstream model except for the last (fully connected) layer, which is
adjusted to the number of classes in the downstream task, using Kaiming uniform initialization
[HZRS15], and kept dense. It is worth noting that this may slightly change the sparsity of
the model, as in some cases the final layer was sparse. As a convention, when discussing
sparsity levels, we refer to the upstream checkpoint sparsity. For reproducibility, we provide
full training hyperparameters in Appendix B.1.

4.3.2 Choice of Sparse Models
Network Architectures. Our study is based on an in-depth analysis of sparse transfer using
the ResNet50 architecture [HZRS16]. This architecture has widespread practical adoption, and
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has been extensively studied in the context of transfer learning [KSL19, SIE+20]. Importantly,
its compressibility has also emerged as a consistent benchmark for methods developed for
pruning convolutional neural networks [HABN+21]. We further validate some of our findings
on ResNet18, ResNet34 and MobileNet [HZC+17] architectures. In addition, we investigate
transfer between two classical object detection tasks, MS COCO [LMB+14] and Pascal
VOC [EVGW+10], using variants of the YOLOv3 architecture [RF18].

Sparsification Methods. Following the classification of sparse models proposed earlier into
progressive sparsification, regularization and lottery-ticket-hypothesis-based methods, we chose
for our study the pruning methods from each category, which provided top ImageNet validation
accuracy. Namely, for progressive sparsification methods, we use the leading WoodFisher [SA20]
and Gradual Magnitude Pruning (GMP) [Hag94, HPTD15, ZG17, GEH19] methods. For
regularization methods, we consider the leading Soft Threshold Weight Reparametrization
(STR) [KRS+20], and Alternating Compression/Decompression (AC/DC) [PIVA21] (pre-
sented in Chapter 3) methods. Additionally, we include the “The Rigged Lottery” (RigL)
method [EGM+20] with Erdős-Rényi-Kernel (ERK) sparsity distribution. Compared to STR
and AC/DC, RigL extends the training schedules on ImageNet by up to 5x, and does sparse
training for most of the optimization steps. As in Chapter 3, we consider both the standard
version or RigL (RigL ERK 1x), and the variant with 5x training iterations (RigL ERK 5x).
We will show later in Section 4.4.5 that extending the upstream training time of regularization
methods has an important positive impact on transfer. Finally, for LTH Methods, we consider
the LTH-for-Transfer (which we call LTH-T) method of [CFC+21]; this method precisely
matches our setting. In this version, the authors apply the masks obtained through progressive
sparsification methods (iterative magnitude pruning [FC19]) directly to the original trained
ImageNet dense model (e.g. the standard model provided in the Torchvision library [PGM+19]),
and evaluate the transfer accuracy of this masked model through full finetuning on different
downstream tasks.

In terms of implementation, when available, we use original sparse PyTorch [PGM+19]
checkpoints, and the exact architectures used by the upstream models, as provided by the
authors of the methods we consider. However, since the STR and RigL models were trained
using label smoothing, which has been shown in [KSL19] to decrease transfer accuracy, we
used retrained versions of these models on ImageNet, without label smoothing. The results we
discuss in the following sections are for these versions, which indeed perform better, particularly
on linear finetuning; we provide an exact comparison regarding the impact of label smoothing
in Appendix B.7.1. We manually ported RigL checkpoints from TensorFlow to PyTorch and
we were able to obtain close accuracy with the original checkpoints, as it can be seen in Table
4.3 for all ImageNet results.

Lastly, as discussed in Section 2.2.3, we emphasize that there are additional types of pruning
methods developed in the literature, for example structured or semi-structured. Our study
focuses however on unstructured pruning, as these methods are the most studied in the pruning
literature, have well established benchmarks, and achieve the best trade-off between accuracy
and compression. For completeness, we further include results for full finetuning from models
with structured sparsity in Appendix B.5, showing that, given a fixed accuracy level upstream,
structured-sparse models tend to underperform unstructured-sparse models for transfer.
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4.3.3 Evaluation Metrics
The main quantity of interest is the top-1 validation accuracy on each transfer task, measured
for all the pruned models, as well as for the dense baselines. In some cases, we use the mean
per-class validation accuracy following the convention for each particular dataset, and we
provide these details in Table 4.2. To determine the overall “transfer potential” for each
pruning method, we further present the results aggregated over the downstream tasks. Since
the datasets we use for transfer learning have varying levels of difficulty, as reflected by the
wide range of transfer accuracies, we compute for each downstream task and model the relative
increase in error over the dense baseline. Specifically, if B is the baseline dense model, then
for every downstream task D and sparse model S we define the relative increase in error as
αD,S = errD,S−errD,B

errD,B
, where errD,S is the error corresponding to the top validation accuracy

for model S trained on dataset D. For each pruning method and sparsity level, we report the
mean and standard error of αD,S, computed over all downstream tasks.
We also examine the computational speedup potential of each method, along with its accuracy.
For inference-time speedups, our findings are in line with previous work, e.g. [EDGS20, SA20,
PIVA21]. We will therefore focus on the training-time speedup potential in the case of linear
finetuning, which are usually close to inference-time speedups, as the only difference is the
training time of the classifier layer.
We note that Top-1 test accuracy is the standard metric for comparing pruning methods.
We also adopt this metric for examining accuracy in the context of transfer, as there is no
previous work providing a systematic study on this topic, across multiple pruning methods and
sparsity levels. However, we wish to highlight previous work [HCC+19, HMC+20, LBC+21]
which examines the impact of pruning on metrics beyond accuracy, such as robustness of
pruned models to input perturbations, as well as the impact of pruning on accuracy of specific
segments of the data.

4.4 Sparse Transfer on ImageNet
In this section, we describe our main results studying the effects of the choice of the pruning
method, together with the target sparsity, on the transferability on different downstream tasks.
First, we analyze the impact that the pruning methods considered, at different sparsities, have
on the upstream accuracy, on different version of the ImageNet validation set. Then, we study
the impact of pruning on both linear and full finetuning. We further investigate potential
factors leading to the gap in transfer performance between different pruning methods. Lastly,
we show that extending the training time of upstream sparse models can have a substantial
positive impact on transfer accuracy.

4.4.1 Validation Accuracy on ImageNet Variants
Setup. We first evaluate the impact of different pruning methods on the ImageNet validation
accuracy; this serves as a baseline, and when we further discuss the differences in transfer
performance, we will compare them against the accuracy results on the upstream task.
Additionally, we examine the accuracy of each pruning method on different versions of the
original ImageNet validation set. Namely, we use the ImageNet “reassessed labels” [BHK+20],
where the original ImageNet validation images are re-assessed by human annotators, to better
capture the diversity of the samples. We also use three different ImageNetV2 validation sets
[RRSS19], which contain new images with a similar data distribution, gathered based on the
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Sparsity Method Original
Validation

Reassessed
Labels

ImageNetV2
(Average)

0% Dense 76.8% 83.1% 72%
80% AC/DC 76.2% 82.9% 71.8%

STR 75.5% 81.9% 70.3%
WoodFisher 76.7% 83.2% 72.3%

GMP 76.4% 82.9% 71.6%
RigL ERK 1x 74.8% 81.3% 70.2%
RigL ERK 5x 75.8% 81.6% 70.6%

90% AC/DC 75.2% 82.2% 70.6%
STR 74.0% 80.9% 69.1%

WoodFisher 75.1% 82.4% 71.1%
GMP 74.7% 81.6% 70.1%

RigL ERK 1x 73.2% 80.0% 67.9%
RigL ERK 5x 75.7% 81.9% 70.6%

95% AC/DC 73.1% 80.4% 68.6%
STR 70.4% 77.9% 66.0%

WoodFisher 72.0% 79.8% 67.6%
RigL ERK 1x 70.1% 77.5% 65.5%
RigL ERK 5x 74.0% 80.8% 69.0%

Table 4.3: Accuracy of the pruning methods we use, at different sparsity levels, evaluated on
different ImageNet validation sets.

frequency by which an image was selected by its annotators; in our results, we report the
average accuracy across these three variants.

Discussion. Through our results presented in Table 4.3 we observe that RigL ERK 5x
outperforms all methods on the original validation set at 90% and 95% sparsity, followed by
AC/DC, GMP and WoodFisher. At 80% sparsity, WoodFisher has the best original validation
accuracy, followed closely by GMP and AC/DC. However, despite the gap in original validation
accuracy between RigL ERK 5x and other methods, the results on new variants of the validation
set still reveal some interesting patterns. For example, WoodFisher outperforms all methods
at 80% and 90% sparsity on the reassessed labels, followed closely by AC/DC. This is true
also for ImageNetV2, where WoodFisher outperforms all methods at 80% and 90% sparsity.
At 95% sparsity, however, RigL ERK 5x outperforms all methods considered, including on
the reassessed labels and ImageNetV2, and is followed by AC/DC. Generally, the accuracies
on the reassessed labels and ImageNetV2 correlate well with those on the original images,
which suggests that top performing methods can “extrapolate” well. However, we note that
the ImageNet accuracies for some of the pruning methods (AC/DC, WoodFisher or GMP)
are fairly close at 80% and 90% sparsities; this further motivates our study regarding the
differences between pruning methods beyond model accuracy on the upstream task.

4.4.2 Linear Finetuning
Setup. In this section we study the transfer performance of different types of pruning methods
in the scenario where only the linear classifier “on top” of a fixed representation is trained on the
downstream task. Specifically, we study the simple setup where the features prior to the final
classification layer of the pre-trained model are extracted for all samples in the transfer dataset
and stored into memory for use when training the downstream linear classifier. Although
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Figure 4.2: (top row) Accuracy for selected pruning strategies at 80% sparsity. (bottom row)
Average increase in test error relative to the dense baseline; lower values are better. Best viewed in
color.

this approach typically results in lower accuracy relative to full finetuning [KSL19, SIE+20],
it has significant practical advantages. Specifically, the features can be precomputed, which
eliminates the forward passes through the pretrained network. In this setup, we do not apply
any data augmentation on the transfer samples and we use the Batch Normalization statistics
of the pretrained network on ImageNet.
We optimize the linear classifier using SGD with momentum, weight decay and learning rate
annealing, following [SIE+20]. (The results are typically well-correlated with those obtained
when using data augmentation during training, or using different optimizers [KSL19]). In
Section 4.5, we show that training speed-ups can also be obtained in an online learning setup,
where new samples are executed through the backbone network, by taking advantage of the
backbone sparsity.

Results. The results for linear finetuning are shown in Figure 4.2, and Appendix Table B.2.
We exclude the LTH-T method from this analysis, as it is designed for full finetuning, and its
transfer accuracy in the linear scenario is indeed very low (see Appendix Table B.2). We believe
one reason for this could be the fact that the sparse masks are directly applied to the pretrained
ImageNet model; this would result in a discrepancy in the distributions for the activations
between the dense and sparse model, for example in case of Batch Normalization layers,
which are not subsequently calibrated; this discrepancy would affect the feature representation
used in linear finetuning, since in our experiments we use the Batch Normalization statistics
pre-computed on ImageNet.
Overall, the results clearly show that the choice of pruning strategy on the upstream task
can result in significant differences in performance on downstream tasks. These differences
are more apparent for specialized downstream tasks, with fine-grained classes. For example,
consider Aircraft, where for 80% sparse models we see a 15% gap in top-1 test accuracy
between the best-performing sparse models (AC/DC and RigL, 55%) and the worst-performing
one (WoodFisher, 40%).
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Impact of Task Difficulty. Following the previous observation, we study the correlation
between the downstream task difficulty and relative increase in error for different pruning
strategies. For this purpose, we use the difference in Top-1 validation accuracy between full
and linear finetuning on the dense backbone as a proxy for the difficulty of a downstream
task. Intuitively, a small gap between full and linear finetuning would suggest that the
upstream features are directly transferable, and thus the downstream task can be considered
“easy”. Conversely, a large gap would indicate that the pre-trained features are not enough to
capture the internal representation of the data, making the downstream task more “difficult”.
Additionally, we categorize the downstream tasks into general (Caltech-101/256, CIFAR-
10/100, DTD, SUN397) vs. specialized (Aircraft, Birds, Cars, Flowers, Food-101, Pets); this
is similar to previous work [KSL19]. Figure 4.3 suggests that specialized datasets tend to have
higher difficulty scores.

Following this definition and categorization, we measure, for each pruning strategy, the relative
error increase over the dense model against the task difficulty. Figure 4.3 shows the behavior
for all pruning methods considered at 80% and 90% sparsity. Interestingly, we observe a
trend for regularization methods (AC/DC, STR, RigL) to improve over the dense baseline
with increased task difficulty, which is more apparent at higher sparsity (90%). In contrast,
progressive sparsification methods (GMP, WoodFisher) do not show a similar behavior. This
suggests that regularization pruning methods are a better choice for linear transfer (sometimes
even surpassing the dense performance) when the downstream task is more specialized or
more difficult.

Another particularity of linear finetuning from sparse models is that the sparsity level is not
highly correlated with the performance on the downstream tasks. This is apparent, for example,
for AC/DC and RigL, where, despite the 1-2% gap in ImageNet accuracy between the 80%
and 90% sparse models, the relative error with respect to the dense baseline stays quite flat.
A similar trend can be observed for other pruning methods as well. However, extremely sparse
models (98%) tend to perform worse, probably due to feature removal and degradation.
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Figure 4.4: (ResNet50 Linear Finetuning) Average relative increase in error across tasks when
performing linear finetuning using the L-BFGS optimizer.

Finetuning with a Different Optimizer. To further validate our findings, we test the
impact that the choice of the optimizer has on the linear finetuning results. Similar to [KSL19],
we perform linear finetuning using the L-BFGS optimizer [LN89], with L2 regularization.
The value of the L2 hyperparameter is tuned individually on each downstream task, using
a validation set. Overall, we observed a slight improvement in the final test accuracies
across tasks, compared to SGD-finetuning, as can be seen in the complete results presented
in Appendix Table B.1. When examining also the relative increase in error, presented in
Figure 4.4, we observe that the similar trend holds: sparse regularization methods outperform
progressive sparsification methods. However, while AC/DC performs slightly better compared
to the dense baseline at 80% and 90% sparsity, it is outperformed by RigL 5x at 90% and
95% sparsity. Moreover, we observe a slight improvement in the results for RigL 5x at 90%
sparsity, compared to 80%, which is consistent with the results obtained when using SGD.

Conclusion. In summary, we observe that 1) some sparsification methods can consistently
match or even sometimes outperform dense models; 2) there is a correlation between transfer
performance for regularization-based methods and downstream task difficulty; and 3) higher
sparsity is not necessarily a disadvantage for transfer performance.

4.4.3 Full Finetuning
Setup. We now consider the full finetuning scenario. Here, we re-initialize the final classi-
fication layer and keep it dense, then finetune the unpruned weights so that the network is
sparse throughout training, with a fixed sparse topology.

Results. We summarize the results in Figure 4.2, and provide the detailed numbers in
Appendix Table B.3. Similar to linear finetuning, we see substantial performance variations
among pruning strategies when transferred to the downstream tasks. Typically, progressive
sparsification methods (WoodFisher, GMP) tend to transfer better than regularization and
lottery ticket methods. The differences in test accuracy, measured at the same sparsity level,
are typically small, on the order of 1–3%; the exception is LTH-T, which is competitive at low
sparsity (80%), but incurs severe accuracy drops at sparsities ≥ 90%.
In contrast to linear finetuning, we see a consistent trend of decreasing quality with increased
sparsity. This is not surprising, since full finetuning can take advantage of the additional
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parameters available in denser models to better fit the downstream data. Nevertheless,
progressive sparsification methods (GMP and WoodFisher) result in downstream performance
nearly on par with dense models at 80% and 90% sparsity. These methods show better
performance than regularization-based methods (AC/DC, STR, and RigL), a direct reversal of
the results of linear finetuning.

For specific downstream tasks, however, there is considerable variability—while WoodFisher
and GMP are consistently the top or near-top performing models across all tasks, other
methods show considerable task dependence. For instance, while AC/DC is the top performing
method across different sparsities for three of the twelve tasks (SUN397, Caltech-256, and
DTD), it shows a considerable gap compared to the best-performing methods on Aircraft,
Cars, and CIFAR-10. Generally, STR performs worse on full finetuning, compared to other
regularization methods. Furthermore, RigL ERK 1x performs roughly on par with AC/DC,
despite having a lower validation accuracy on ImageNet; however, the extended training of
RigL ERK 5x gives the tansfer accuracies a considerable boost, putting RigL ERK 5x almost on
par with WoodFisher, especially at higher sparsities. Finally, LTH-T shows fairly competitive
performance at 80% sparsity, but its transfer accuracy declines dramatically on six of the
twelve datasets (SUN397, Caltech-101, Caltech-256, DTD, Flowers, and Pets) as sparsity
increases. Since the LTH-T model relies mainly on transferring the sparsity mask across
tasks, this suggests that the additional information present in the weights, leveraged by other
methods, may be beneficial.

Conclusion. In sum, if the goal is to perform full finetuning on downstream tasks, then
progressive sparsification methods are a good choice. They consistently outperform regulariza-
tion methods across a wide range of tasks, and offer comparable performance to the dense
backbone at 80% and 90% sparsity.

4.4.4 Expressivity of Different Sparse Models

Pruned
Filters (%) AC/DC WoodFisher GMP STR RigL ERK

1x
RigL ERK

5x
80% 2.9% 0.9% 1.6% 0.5% 0.2% 0.6%
90% 8.5% 2.0% 2.8% 2.0% 1.2% 2.7%
95% 18% 3.0% - 6.0% 4.3% 9.1%

Table 4.4: Percentage of convolutional filters that are completely masked out, for different pruning
methods on ResNet50, at different sparsity levels. AC/DC has significantly more pruned filters.

The results of the last two sections show an intriguing performance gap between pruning
methods, depending on the transfer approach. We would like to determine possible factors
responsible for these differences. Therefore, to investigate further, we examine the sparse
structure of the resulting pruned models, by measuring the percentage of convolutional filters
that are completely pruned away during the training phase of the sparse ResNet50 backbones
on the original ImageNet dataset. The results in Table 4.4 show the differences in the number
of zeroed-out channels among pruning methods. We observe that AC/DC has a large number
of channels that are fully removed during ImageNet training and pruning, on average 2-4 more
at 80% and 90% sparsity, compared to other models; this results in fewer features that can
be trained during full finetuning. By contrast, the sparsity in GMP and WoodFisher is less
structured and thus can express additional features, which can be leveraged during finetuning.
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To further test this hypothesis, we perform full finetuning from a ResNet50 model pruned
with structured sparsity, using the ℓ1 norm of the convolutional filters as a pruning criterion.
Thus, by definition, models with structured sparsity have a considerable number of filters
removed, compared to the baseline. The model we consider achieves around 2x inference
speed-up compared to the dense baseline, which is a similar speed-up to a model pruned to
90% global sparsity, and has 75.7% ImageNet validation accuracy. Interestingly, the accuracy
for full finetuning when using this model tends to be lower than that of the best performing
90% sparse model (e.g. WoodFisher). We fully illustrate this effect in Appendix B.5, where
we present the result on each downstream task.

In the case of linear finetuning, we hypothesize that the accuracy reversal in favor of AC/DC
can be attributed to a regularizing effect, which produces more “robust” features. The same
effect appears to be present in RigL ERK 5x at 95% sparsity, which also has significantly many
fully-pruned filters.

4.4.5 The Effect of Extended Training on Sparse Transfer
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Figure 4.5: (ResNet50) Overall performance for extended-time runs of AC/DC and RigL. The
AC/DC 5x was only done for 90% sparsity; its performance is almost the same as AC/DC 3x for
linear finetuning and as dense for full finetuning.

In this section we examine the effects of extended training time on the transfer accuracy, for
both the dense baseline and for sparse regularization methods.

Setup. As noted in the previous sections discussing linear and full finetuning results, RigL
models trained for extended number of epochs (5x the standard value) show substantial
improvements in the full finetuning performance, bridging the gap towards the dense transfer
accuracy. One obvious explanation would be the improved accuracy on the upstream task,
which has been shown to generally correlate well with the full transfer accuracy, as mentioned
in Section 4.4.3. These observations, however, motivate us to further investigate whether
the phenomenon of improved transfer accuracy with extended upstream training time is more
universal across pruning methods. For this, we use the AC/DC checkpoints discussed in
Chapter 3, which were also trained for extended number of epochs. Namely, we consider
AC/DC trained for 300 of epochs on ImageNet/ResNet50 (AC/DC 3x) at 80%, 90% and 95%
sparsity, and AC/DC trained for 500 epochs (AC/DC 5x) at 90% sparsity. Please see the
Section 3.4.4 from Chapter 3 for more details regarding the performance of these models on
ImageNet. For completeness, we also train the dense baseline model for 200 epochs, which
is twice more than the standard value. If in the case of sparse training with AC/DC or RigL
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4. Study on the Transferability of Sparse Convolutional Neural Networks

the improvements from prolonged training were substantial, for the dense baseline we only
observed a minor improvement of 0.3% on the ImageNet validation accuracy, from 76.8%
to 77.1%. This is not a surprising behavior related to training dense models, and has been
documented in other works as well, for example [FKMN21].

Results. Interestingly, the improvements in upstream accuracy from extending the training
time of sparse regularization methods also translate on improved transfer accuracy, for both
linear and full finetuning. We present the results showing the average relative increase in error
across sparsities for extended training in Figure 4.5, as well as the accuracies of the considered
methods on each task in Appendix Tables B.4 and B.5.

In the case of linear finetuning, we observe that extending the training time for the dense model
resulted in a surprising decrease in transfer performance. However, the reversal is true for
sparse regularization methods. Notably, AC/DC 3x at all sparsities considered (80%, 90% and
95%), as well as AC/DC 5x at 90% sparsity outperform the dense model, and, interestingly,
the transfer performance slightly improves at 95% sparsity.

We observe substantial improvements also for full finetuning. In contrast to the linear finetuning
case, here the dense 2x model slightly outperforms the baseline. Furthermore the transfer
performance of AC/DC 3x at 80% sparsity is on-par with dense, and is close to the overall
transfer performance of WoodFisher, which was previously the best performing pruning method
on the full finetuning task. Notably, the 90% sparse AC/DC 5x model performs on-par with
the dense baseline, which makes it the best performing sparse model for full finetuning.

Conclusion. Our results show that extending the training time on the upstream task can
lead to substantial improvements in transfer performance for sparse regularization methods,
in both the linear and full transfer scenarios. While this phenomenon was initially observed
for RigL models, it is further confirmed for AC/DC. Notably, with extended training time we
obtain 90% sparse models (AC/DC 5x) with the same full transfer performance as the dense
baseline, and we surpass the dense model at all sparsity levels for linear finetuning.

4.5 Practical Implications of Sparse Transfer
One of the main benefits of sparse models is that they can provide inference speed-ups when
executed on sparsity-aware runtimes [EDGS20, SA20, PIVA21, KKG+20]. For linear finetuning,
this can also imply training time speed-ups, since the sparse backbone is fixed, and only used
for inference. We illustrate this in an “online learning” setting, where training samples arrive
dynamically at the device. We first compute the corresponding features using the sparse
backbone. Then, we use these features to train the linear classifier, which implies that the
forward pass can benefit from speed-ups due to sparsity.

To demonstrate that we can obtain practical training-time speed-ups, and to measure the
quality of the resulting finetuned models , we integrated the freely-available sparsity-aware
DeepSparse CPU inference engine [KKG+20, Dee21] into our PyTorch pipeline. Specifically,
we use sparse inference for online feature extraction. In this case, the model is completely fixed,
including the Batch Normalization statistics, which are used in evaluation mode, but we allow
random augmentations on the input samples. We report overall training speedup, in terms of
average training time per epoch on the downstream task, as a fraction of the average training
time using the dense baseline. Apart from the use of data augmentation, hyperparameters are
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identical to the linear finetuning experiment in Section 4.4.2. For reproducibility, we execute on
an Intel E5-1650 CPU with 12 cores, which would be similar in performance to a recent laptop
CPU. The speed-ups we report are proportional to the inference speed-ups of the respective
sparse backbone models. The only difference is the cost of optimizing the last layer, which
varies in size with the number of classes.

Figure 4.6 shows results on four downstream tasks, Pets, Flowers, DTD and Caltech-101,
where the backbone ResNet50 models have 90% sparsity. We report the training speed-up
vs. the difference in test accuracy, compared to the dense baseline. We note that there are
differences between the results in Figure 4.6 and those discussed in Section 4.4.2, which arise
from the use of data augmentation in the current setup.

Furthermore, we show speed-up numbers for additional sparsity levels (80% and 95%), in
Table 4.5; these numbers representing the average training time per epoch are computed on
the Caltech-101 dataset, but the speed-up factor should be similar for other datasets as well,
since the training time per batch is almost proportional to the inference through the backbone
network. These results show that using sparse backbones can reduce training time by 2-4x
for linear transfer, without negative impact on validation accuracy, which is encouraging for
transfer applications on low-energy devices.
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Figure 4.6: Average epoch time vs. gap in test ac-
curacy, compared to the dense baseline. Results are
shown for four different downstream tasks, using linear
finetuning from ResNet50 90% sparse models. Lower is
better; best viewed in color.

Sparsity STR GMP WoodFisher AC/DC RigL 5x
80% 0.44× 0.50× 0.53× 0.60× 0.71×
90% 0.28× 0.36× 0.37× 0.43× 0.50×
95% 0.22× N /A 0.28× 0.32× 0.36×

Table 4.5: Average training time per
epoch for linear finetuning using sparse
models, as a fraction of the time per
epoch required for the dense backbone.
The numbers shown are computed on
the Caltech-101 dataset.

4.6 Extensions to Different Models and Tasks
In addition to our in-depth study of sparse transfer on ResNet50 models pretrained on ImageNet,
we also extend our findings to other architectures (ResNet18/34 and MobileNet) or other
tasks, such as object detection using YOLO models, or knowledge distillation [HVD15].

ResNet18/34 and MobileNet Experiments. We extended a subset of the sparse transfer
experiments on ResNet18, ResNet34 and MobileNetV1 [HZC+17] models trained on ImageNet.
Namely, on ResNet18 and ResNet34 we compare the linear transfer performance between
the dense baseline, regularization and progressive pruning methods. For regularization-based
methods, we use AC/DC, while for progressive sparsification we use GMP models; for each we
consider 80% and 90% sparsity levels. The results on ResNet18 and ResNet34 largely confirm
our conclusions from ResNet50; namely, regularization based methods match or outperform the
dense baseline, on linear finetuning tasks. These results are presented in detail in Appendix B.3.
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Furthermore, we also extend our study on the MobileNetV1 architecture and use publicly
available checkpoints, such as AC/DC, M-FAC [FKA21] or STR. In this case, we observe that
sparse models can match the dense baseline transfer performance only at lower sparsities (up
to 75%), for both linear and full finetuning; we believe that this is due to the lower parameter
count, which makes MobileNet harder to prune. Interestingly, we also observe a reverse effect
between regularization and progressive sparsification methods; namely, AC/DC models tend to
perform slightly better than M-FAC on full finetuning, and slightly worse on linear finetuning.
We present our results in detail in Appendix B.4.

Sparse Transfer using YOLO. We also examined transfer performance between YOLO
V3 [RF18] and YOLO “V5” [Ult21] models for object detection, trained and pruned on the
COCO dataset [LMB+14], which are then transferred to the VOC dataset [EVGW+10] using
full finetuning. Table 4.6 presents results in terms of mean Average Precision (mAP@0.5).
Results show a strong correlation between accuracy on the original COCO dataset and that
on VOC, confirming our claims. We observed similar trends in a segmentation setup, which
we cover in Appendix B.6.

Architecture YOLOv3 YOLOv5S YOLOv5L
Pruning 90% Sparsity 75% Sparsity 85% Sparsity

COCO Dense 64.2 55.6 65.4
COCO Pruned 62.4 53.4 64.3

VOC Dense Transfer 86.0 83.73 90.0
VOC Pruned Transfer 84.0 81.72 89.35

Table 4.6: Accuracies for Sparse Transfer from COCO to VOC.

Distillation from Sparse Teachers We further investigate a different aspect of transfer
learning, namely knowledge distillation, which was introduced in [HVD15] as a method for
enhancing the performance of smaller models, called students, by incorporating during training
the information learned by a larger, more specialized model, called teacher. The intuition for
using sparse models as teachers is based on the assumption [HCC+19] that they usually are less
confident than their dense counterparts, and as such could offer additional information regarding
the other classes. Moreover, we are also motivated by our linear finetuning experiments, which
suggest that sparse models may provide superior representations relative to dense ones.

Baseline Dense KD AC/DC
80%

WoodFisher
80%

AC/DC
90%

WoodFisher
90%

73.83% 74.42% 74.64% 74.63% 74.19% 74.44%

Table 4.7: Top-1 validation accuracy on ResNet34 trained on ImageNet, when distilling from dense
or sparse teachers.

We experimented with distilling a ResNet34 model trained on ImageNet, from a ResNet50
teacher. For the teacher, we use the WoodFisher and AC/DC models, at 80% and 90%
sparsity. Our results presented in Table 4.7, show that indeed sparse teachers can have similar
performance to the dense teacher, suggesting that differences in accuracy between the sparse
and dense teachers do not affect distillation. Nonetheless, these results are encouraging,
since using sparse teachers could also reduce distillation overhead due to faster inference, for
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example by using the DeepSparse library [KKG+20]. This is particularly important, as previous
studies, such as [BZR+22], have shown that distillation benefits when the teacher sees the
exact same samples as the student, up to data augmentation fluctuations.

4.7 Conclusions and Future Work
In this work, we performed an in-depth study of the transfer performance of sparse convolu-
tional neural networks, and showed that pruning methods with similar accuracy on ImageNet
can have surprisingly disparate Top-1 accuracy when used for transfer learning. In particular,
regularization-based methods perform best for linear finetuning; conversely, progressive spar-
sification methods such as GMP and WoodFisher tend to work best when full finetuning is
used.
Our empirical study also aims to potentially reveal some analytical insights based on the
practical results obtained: we hypothesize that the differences in transfer performance between
progressive sparsification and regularization methods could be related to the structure of the
sparsity distributions learned through each method; for example, regularization methods seem
to induce more structured sparsity, which might restrict the expressivity of the model in case
of full finetuning, but might have a regularizing effect in the linear finetuning setup. An
interesting direction for future work would be to analyze the sparse features representations in
terms of their generalization properties.
Additionally, we would like to point out some limitations of our study. The first one would
be that it only investigates accuracy as a measure of performance for transfer learning tasks.
We note that additional research is needed towards designing pruning strategies with good
performance across both linear and full finetuning, and towards considering metrics past
Top-1 accuracy, such as bias and robustness. Another limitation is that we considered a
(standard) fixed set of transfer datasets; our study should be extended to other, more complex
transfer learning scenarios, such as distributional shift [KSM+21]. Further investigation could
also systematically examine other types of compression, such as quantization and structured
pruning, potentially in conjunction with unstructured pruning, which was the focus of our
current study. Other interesting areas for future work would be understanding the performance
gap between full finetuning and linear finetuning, and realizing training speedups for sparse
full finetuning, by taking advantage of the fixed sparsity in the trained model.
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CHAPTER 5
Training Prunable Models Through

Compression-Aware Minimization

We have already seen in Chapter 3 that sparse models can have a very good performance in
terms of accuracy, while providing computational saving during both training and inference.
Moreover, through our study presented in Chapter 4, we concluded that sparse models enjoy
additional interesting generalization properties, such as good transferability to tasks different
from the original ones used during their training.
However, we note that well-performing sparse models still usually require re-training or
finetuning for each sparsity target individually. Since this process can be quite costly, ideally we
would like a method that can train an accurate model that can be later on pruned to multiple
sparsity levels, without any additional finetuning. In this chapter, we present a method that
can achieve this goal.

5.1 Motivation and Outline
We propose Compression-Aware Minimization (CrAM), a method for training neural networks,
which results in models that are easily compressible one-shot, while still being highly-accurate.
Specifically, CrAM enables training a single (dense) model, which can later be compressed to
different target levels, with minimal or no recalibration. Such flexibility is desirable, as models
can be trained once, and then deployed on multiple devices, with different specifications.
Having a single model that can be easily configured to meet the computational requirements
of a specific device can both reduce the overall computational cost, and also allow easier
customization to individual devices.
CrAM is loosely-inspired by the recently-introduced sharpness-aware minimizer (SAM) [FKMN21],
which trains models that potentially converge to flatter minima, leading to better generalization
compared to SGD-type baselines, by biasing the process towards minima of uniformly low loss.
Multiple subsequent works have investigated and improved upon the original SAM algorithm,
by either obtaining better generalization [KKPC21], or by reducing the computational costs
of SAM training [LZB20, DYF+22]. We are the first to carry over this idea to the task of
obtaining compressible models. Roughly speaking, CrAM works by optimizing not against
the original “dense” model, but over a compression projection applied to the intermediate
model iterate, at every optimization step. Thus, the CrAM update aims to bias optimization
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towards iterates that have both low loss and are robust under one-shot compression. Similarly
to SAM, CrAM is simple to implement as part of a regular training loop and has a single
scaling hyper-parameter, for which we provide a well-performing default value. We detail the
CrAM algorithm and provide a theoretical motivation leveraging fundamental results in robust
optimization [Dan12] in Section 5.3.

To complement our algorithmic contribution, we perform an extensive experimental analysis
of CrAM. We mainly focus on compression via weight pruning, but we also show that CrAM
is compatible with weight quantization. Generally, CrAM models trained on large-scale image
classification or language modelling tasks can improve over the dense baseline performance,
while being very robust to one-shot pruning, at different sparsity levels. For image classifi-
cation, CrAM can train a highly-accurate dense ResNet50 model on ImageNet, that can be
pruned in one-shot to 80% and 90% sparsity, and is competitive in terms of accuracy relative
to state-of-the-art gradual pruning methods, following an inexpensive Batch Normalization
re-tuning step on a small calibration set.

Moreover, we show that full CrAM training is not necessary for good performance: specifically,
a short CrAM finetuning period is sufficient to substantially improve one-shot pruning accuracy.
For instance, we used CrAM to transfer the standard BERT-base model [DCLT19] on the
SQuADv1.1 question-answering task [RZLL16], and obtained models that are both more
accurate and more compressible than those obtained with standard optimizers, such as
Adam [KB15] or SAM [FKMN21]. In addition, we noticed that a short (≤ 2 epochs) finetuning
of the sparse model can provide substantial additional improvements: on the above task,
the 80%-sparse CrAM finetuned model reaches higher accuracy than the highly-competitive
gradual pruning methods PLATON [ZZL+22] and Movement Pruning [SWR20], at a fraction
of the training budget.

Further, CrAM lends itself to several extensions: it can be used with different layer-wise
sparsity distributions, semi-structured N:M sparsity patterns, and one-shot pruning techniques.
Sparse CrAM models can be successfully used for sparse transfer learning, where they can
perform better on a wide range of “downstream” target tasks, even when compared to pruning
methods which adapt to the downstream task [CFC+21]. Lastly, we also provide evidence that
the CrAM update can produce models that are robust to quantization.

Similar to SAM [FKMN21], one limitation of our method is the added computational cost, as
it requires an additional backwards pass for the model perturbation. This can be addressed by
only performing limited finetuning via CrAM instead of full retraining, or by only performing
a regular optimization step for a fraction of the time, both of which we show to have a
limited impact on accuracy. Moreover, our approach is also compatible with efficient SAM-type
updates [LZB20, DYF+22]. We also provide a well-performing variant of CrAM that uses sparse
gradients, which could be leveraged by frameworks with support for sparse back-propagation.

5.2 Related Work
We describe in this section some of the recent research directions that have inspired the
development of our method, together with existing literature focused on solving similar
problems.

Sharpness-Aware Minimization (SAM). The recently introduced SAM optimizer [FKMN21]
aims to improve the generalization of deep neural networks, by encouraging the minimization
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of loss sharpness; this in turn should lead to flatter local minima, with better generalization
properties. Similar to [KMN+17], sharpness is defined as the maximum difference in loss
achieved around a bounded-norm perturbation of the parameters; the SAM method proposed
in [FKMN21] optimizes the following loss function: LSAM(θ) = max∥δ∥≤ρ L(θ + δ). The
perturbation δ can be approximated as ρ · ∇L(θ)/∥∇L(θ)∥, and the gradient of LSAM(θ) is
approximated using a straight through estimator as ∇θL(θ)|θ+δ. Subsequently, this gradient
is used to optimize the parameters θ of the model, through SGD. The authors of [FKMN21]
show that SAM-trained models have higher validation accuracy compared to vanilla SGD-type
baselines, and their performance continues to improve with prolonged training; this suggests
that SAM models are less prone to overfitting. Moreover, the authors show that SAM models
can also be successfully used for transfer learning. One important drawback of SAM is its
computational overhead, as it requires twice as many forward-backward passes through the
network. Subsequent work has focused on reducing computational cost by, for example,
reducing the frequency of the extra gradient steps [LMC+22], computing the perturbations on
a subset of the parameters [DYF+22], or by proposing a new trajectory loss to replace the
sharpness definition [DZF+22]. We draw inspiration from properties of the initial SAM method
proposed by [FKMN21]. Instead of attempting to minimize the maximum local increase loss
(sharpness), our goal is to minimize the maximum local increase in loss due to compression.

Training prunable networks. The increasing scale of deep neural networks have made their
deployment to edge devices dependent on compression techniques, such as quantization and/or
pruning. While post-training quantization can be an efficient and successful technique for
quantizing models without any retraining [FA22a], in the case of pruning the gold standard is
still training a separate model for every target sparsity level [ZG17, SA20, EGM+20, PIVA21];
the latter can be an expensive procedure, which would still rely on powerful computational
resources to obtain the sparse models in the first place. A potential solution would be training
a single dense model, which either contains multiple smaller ones that can be easily deployed,
or which is itself prunable at multiple sparsity levels, without additional retraining. For example,
the “once-for-all” (OFA) framework [CGW+19] can train a large network that contains multiple
specialized sub-nets, adapted to different resource constraint devices. However, obtaining the
large OFA network is extremely expensive, and requires intensive finetuning to ensure a good
performance for the sub-nets. A similar idea that also requires extensive finetuning has been
explored for automatic speech recognition [WZL+21].
An orthogonal direction is to obtain “slimmable neural networks” [YYX+19, YH19b, YH19a],
by training a single model that can be executed at different widths; this is usually achieved by
performing multiple backpropagations using all the predefined widths, at each optimization step,
and by carefully considering the Batch Normalization layers. Related to one-shot pruning, Only
Train Once (OTO) [CJD+21] has been proposed as a framework for structured pruning, to train
a large model that is easily slimmable one-shot. While we obtain better results than OTO for the
same sparsity level, the two methods are not directly comparable, since we focus on unstructured
sparsity. Morover, CrAM modifies the optimization step such that the resulting dense model
is both highly accurate, and robust to post-training one-shot pruning, without retraining.
Our work is more closely related to [MLC+22, ZSP22], which propose leveraging Stochastic
Frank-Wolfe (SFW) [RSPS16] to encourage the weights to lie in a convex hull spanned by
sparse vectors; this would make the model prunable one-shot, without any finetuning. The
methods proposed in [MLC+22, ZSP22] result in highly-prunable models on relatively-small
tasks; specifically, their experimental analysis is limited to image classification on small datasets
and architectures with many redundancies (e.g. VGG-16 [SZ14] on CIFAR-10). CrAM is able
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to match or outperform these methods in the same setting: for instance, CrAM can prune
VGG-16 trained on CIFAR-10 in one-shot to 95% sparsity without accuracy loss, outperforming
SFW by more than 2% Top-1 acuracy. More importantly, we show that CrAM produces
models compressible in one-shot at both ImageNet scale and BERT language modeling scale.
Remarkably, with one-shot pruning CrAM can offer competitive performance to gradual
pruning methods, whether they are designed for CNNs [KRS+20, LSB+20] or for language
modelling [SWR20, ZZL+22].

5.3 The Compression-Aware Minimizer (CrAM)
5.3.1 Method Description
We now give an overview of our method, together with the corresponding algorithm and
generalizations. One of the main goals of CrAM is to train models that are “compressible”
in one-shot, following training, via sparsity or quantization. In what follows, we denote C
a compression operator, for example Top-K, where only the highest K absolute values of a
tensor are kept, while the rest are set to 0. We say that a model is easily compressible if small
perturbations do not affect its performance after compression. To enforce this during training,
we optimize against the perturbation of the dense model which has the most impact on the
compressed model. We want to minimize the “compression-aware” (CrAM) loss, defined as:

LCrAM(θ) = max
∥δ∥≤ρ

L(C(θ + δ)), (5.1)

where θ is the vector of model parameters, L is the regular cross-entropy loss of the model,
computed over the training set, and δ is a norm-bounded perturbation. Unless otherwise
stated, we employ the ℓ2-norm throughout the rest of the chapter.
We approximate maxδ L(C(θ + δ)) by taking a gradient ascent step in the direction of the
current update, followed by a projection using the compression operator. This is inspired by
the iterative hard thresholding (IHT) algorithm used for optimizing functions under sparse
constraints [BD08, Fou11, Fou12]. To obtain the gradient with respect to the parameters, we
employ a straight-through estimator, by using instead the gradient under the perturbation.
This gives us the following update for minimizing the CrAM loss:

˜︁θt = C(θt + ρ · ∇L(θt)) θt+1 = θt − η∇L( ˜︁θt) . (5.2)

In the update above we did not enforce the bound on the norm of the perturbation, as this
has been shown to not be important for the original SAM algorithm [AF22], and in practice
we also did not observe substantial differences compared to bounding the perturbation.
We note that solely optimizing the CrAM loss cannot offer guarantees for the performance
of the dense model. Alongside improving robustness to compression, maintaining the quality
of the dense model is one of the prerequisites of our method; therefore, we propose to also
explicitly optimize for the performance of the dense model. Specifically, we optimize instead
the following composite CrAM+ loss function:

LCrAM+(θ) = L(θ) + LCrAM(θ) . (5.3)

This can be achieved with a simple modification to the CrAM update, at no extra cost, by
simply adding the gradient ∇L(θt), before the next update of the parameters θt+1. For
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Algorithm 2 Compression-Aware Minimization (CrAM)
Require: Compression methods C = {C1, C2, . . . , CM}, training data S, training iterations T ,

learning rate η, perturbation step size ρ
1: Initialize the weights θ0
2: while t ≤ T do
3: Sample batch x ∈ S
4: Compute mini-batch loss L(θt; x) and gradient gt = ∇L(θt; x)
5: Uniformly choose a compression method C ∈ C
6: Get perturbed weights ˜︁θt = C(θt + ρgt)
7: if C = Top-K then
8: Let Mt be the linear projection operator onto the support of the largest K coordinates of
|θt + ρgt|, such that ˜︁θt = Mt(θt + ρgt)

9: ˜︁gt = Mt∇L(˜︁θt; x)
10: else
11: ˜︁gt = ∇L(˜︁θt; x)
12: end if
13: if use CrAM+ then
14: ˜︁gt ← ˜︁gt + gt

15: end if
16: Update the weights using a gradient descent step: θt+1 = θt − η · ˜︁gt

17: end while
18: return θT

˜︁θt = C(θt + ρ∇L(θt)), the CrAM+ update is the following:

θt+1 = θt − η · (∇L( ˜︁θt) +∇L(θt)) . (5.4)

We note that we can add different regularization terms to the objective in Equation 5.3;
for example, in our experiments we use weight decay, as it is standard for training image
classification models.
Overall, we observed in our experiments that using CrAM+ resulted in an important improve-
ment in dense model accuracy, relative to CrAM, without negatively impacting the accuracy
of the resulting sparse models after one-shot pruning. Therefore, we propose using CrAM+ as
the main method in our experiments.

5.3.2 Theoretical Justification of the CrAM Update
To derive the CrAM update, and justify the choices made in designing our training method, we
start from the optimization objective defined in Equation 5.1. As our goal is to minimize the
CrAM loss LCrAM, we use gradient descent. Using this loss complicates our objective, as it now
includes an inner maximization problem, together with a potentially problematic compression
operator. However, under mild assumptions we can efficiently estimate an approximate gradient
which gives a descent direction.
To do so we rely on a well-known theorem from robust optimization [Dan12], which allows
one to obtain descent directions for min-max objectives under a broad range of assumptions.
Using Danskin’s theorem (Theorem C.1.1 from Appendix C.1.1) we obtain that by computing
the maximizer of the inner problem

δ∗ = arg max
∥δ∥≤ρ

L(C(θ + δ)) , (5.5)
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and letting ϕ = θ + δ∗, which is compressed to the extrapolated iterate ˜︁θ = C(ϕ), we obtain
a descent direction −∇L(C(ϕ)). Implementing this approach faces two difficulties – first, to
compute the gradient we must back-propagate through the composition of functions L(C(·)),
which may cause trouble since C is not necessarily differentiable; second, and more importantly,
it is unclear how to solve the inner maximization problem.

To address the first issue, we may choose to use a straight-through gradient estimator [BLC13],
which permits us to only backpropagate through L, and use ∇L( ˜︁θ) instead of the true gradient.
To increase precision, in the case where compression is performed via Top-K we interpret C
as a “mask” operator M which zeroes out a subset of coordinates dependent on ϕ. Since
except for articulation points, Mt is constant and does not change as the argument varies, we
approximate ∇L(C(ϕ)) ≈M∇L(Mϕ) = M∇L( ˜︁θ).

To address the second issue, rather than exactly maximizing the inner problem, we instead seek
a good enough maximizer using a standard iterative method. For this, we choose projected
gradient ascent, which provides theoretical guarantees, even when the projection is performed
onto non-convex domains [PIVA21]. For instance, if the compression operator is magnitude
pruning, this becomes the iterative hard thresholding (IHT) method, frequently employed
in the sparse recovery literature [BD08]. Thus, to reach a good iterate within this specific
domain, in practice we perform a single step of (projected) gradient ascent, which matches
the IHT iteration: ˜︁θt = C (θt + ρ · ∇L(θt)) . (5.6)

We note that while the discussion above focused on theoretically justifying the CrAM update,
it can easily be extended to CrAM+ as well. First, we remind that the CrAM+ loss is simply
the sum between the loss of the dense model and the CrAM loss. Therefore, since the gradient
naturally gives a descent direction for standard loss function, together with our previous result
on the CrAM loss, we obtain a descent direction for the CrAM+ loss.

In Appendix C.1.1, we provide a full re-derivation of the CrAM update in Equation 5.2 under
fairly reasonable assumptions on the objective function, along with a detailed discussion on
the necessity of these assumptions. As a side result, we also obtain a simple re-derivation of
the SAM update.

5.3.3 Implementation Details and Extensions
Multiple compression types. CrAM can be used to train models that are robust to
multiple types of compression operators. This can be enforced by choosing between multiple
compression projections at each CrAM optimization step. Examples include pruning using
different sparsity levels or quantizing at different precisions. We illustrate the general CrAM
algorithm which handles multiple compression operators, and includes the explicit optimization
of the dense model, in Algorithm 2. In our experiments, we found that applying the CrAM+

update with a different randomly chosen compression at each optimization step typically
achieves a good trade-off between a high dense model accuracy and robustness to multiple
one-shot compression schemes post-training. When optimizing for robustness against sparse
perturbations, we use the Top-K operator at each step, and choose the sparsity level uniformly
at random among a set of predefined values.
Addressing the computational overhead of CrAM. Similar to the original SAM update,
CrAM requires twice as many forward-backward passes, compared to a regular training cycle.
In the case of TopK-CrAM, we can reduce this overhead, by making use of the sparsity in
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the intermediate updates. Furthermore, we found that using only the gradients from the
support of ˜︁θt in ∇L( ˜︁θt) improves both the resulting dense model obtained with TopK-CrAM,
as well as its robustness to one-shot pruning. This observation is motivated by the fact
that the straight-through [BLC13] gradient estimator using the identity function is often
times suboptimal [YLZ+19], and better straight-through estimators can be defined using
different functions. As seen in Section 5.3.2, we can assume, via Danskin’s theorem [Dan12],
that we can obtain descent directions for LCrAM(θt) by evaluating ∇L(C(ϕt)), where ϕt

is the extrapolated point ϕt = θt + ρ∇L(θt). To evaluate the gradient, we may use a
straight-through estimator. For Top-K, C is as an operator Mt which zeroes out a subset
of coordinates dependent on ϕt. Provided that Mt is constant and does not change as the
argument varies, we can approximate ∇L(C(ϕt)) ∼ Mt · ∇L(Mtϕt). As both the iterate
and gradient estimator are sparse, this implies a theoretical speed-up. Furthermore, we note
that at each CrAM update, we recompute the masks associated with the Top-K operator
applied to the model’s parameters. We show in Section 5.4.1 that it is possible to still obtain
competitive results with CrAM when the masks are kept fixed for most of the updates, and
only updated periodically; having less frequent masks updates reduces the time required for a
CrAM update, since the Top-K operator is skipped for most of the steps, and also is aligned
with our intuition that there are only small differences between consecutive masks.

Alternative Updates. We note that alternative compression-aware updates can be derived.
For example, by following similar derivations to those developed for SAM [FKMN21], we get˜︁θt = C

(︂
θt + ρ ∇L(C(θt))

∥∇L(C(θt))∥

)︂
. We call this update Compressed-SAM (C-SAM). We observed

that training with C-SAM can also result in models that are robust to one-shot pruning, but
typically the accuracy of the resulting dense models is lower, compared to training with CrAM.
Moreover, training with C-SAM cannot offer guarantees for the performance of the dense
model. While with CrAM we can optimize the dense model loss for free (i.e. using CrAM+),
with C-SAM optimizing for the dense model explicitly would require a third forward-backward
pass at each training step. Additionally, we examine the importance of the extra gradient step
in CrAM, by comparing against simply applying the Top-K operator to the parameters. We
provide an ablation study in Section 5.6.2.

Statistics Correction. It is well-known [HCI+21, FA22a] that pruning weights in a single
step at high sparsity levels can have a large negative effect on normalization layers, due to a
mismatch between layer statistics, e.g. the running mean and variance of BatchNorm layers,
computed during training, and those of the pruned model. To correct for this, following prior
work, we keep a subset of randomly chosen 1000 training samples (e.g. for ImageNet one
sample per class), to which we apply standard training augmentations, and which are used
post-pruning for resetting the Batch Norm statistics of the sparse model. We note that this
procedure, which we refer to as BatchNorm Tuning (BNT) is very inexpensive, and does not
finetune any other parameters of the model. Furthermore, during CrAM training on image
classification models we only track the BatchNorm statistics on the dense model, before
applying the compression perturbation. In the case of BERT models, we do not apply any
statistics corrections.

5.4 Image Classification Experiments
Our experimental validation mainly focuses on sparsity, obtained by applying the Top-K
operator, in the context of CrAM (i.e. TopK-CrAM). We denote the CrAM runs by the sparsity
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level used during training. For example, “CrAM-k50” indicates that the Top-K operator with
k=50% was used at each step, while “CrAM-Multi” indicates that the sparsity level is chosen
uniformly at random, at each step, from a set of given values (e.g. CrAM-k{50, 70, 90}). For
image classification experiments, all one-shot pruning results are presented after Batch Norm
tuning (BNT) on a subset of 1000 training samples, i.e. 100 inference steps on batches of
size 128, using standard random augmentations.

5.4.1 ImageNet Experiments
General Setup. We use a standard setup for training our ImageNet/ResNet50 models,
similar to [FKMN21]. Namely, we use standard data augmentation, and we train the models
using SGD for 100 epochs, with batch size 512, momentum 0.9, and weight decay 0.0001.
The learning rate is linearly increased for the first 5 epochs until it reaches a maximum value
of 0.2, after which it is decreased at each epoch, using a cosine scheduler. To determine the
value of the hyperparameter ρ, we search over a small grid, by training 90% of ImageNet
using CrAM-k50, and using the remaining 10% of the dataset for validation. We have found
ρ = 0.05 to give good results for CrAM-k50, in terms of validation accuracy of the dense
model, and we have kept this value for all our other CrAM experiments. For SAM, we also
use ρ = 0.05, which is the standard value recommended by [FKMN21]. To match the number
of backpropagation steps of CrAM, we additionally train the dense baseline for twice as many
epochs. With these training hyperparameters, the standard dense baseline reaches 76.9%
validation accuracy, which improves to 77.2% with extended training, while the SAM model
reaches 77.4% accuracy. As stated, after one-shot pruning, we perform BNT on a subset
of 1000 training samples (e.g. one per class), with standard augmentations. We show in
Appendix C.2.1 that the accuracy after BNT is extremely stable, with respect to the choice of
calibration set.
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Figure 5.1: One shot pruning results, after BNT. Results are
averaged across 10 independent BNT trials using randomly
chosen calibration sets of 1000 samples.

Model Sparsity
80% 90%

CrAM+-Multi 75.8 74.7
WoodFisher 76.7 75.3

AC/DC 76.2 75.2
STR 76.1 74.3
DPF 75.1 74.6

Table 5.1: One shot pruned
(+BNT) CrAM+-Multi models vs.
existing pruning methods.

Results for one-shot pruning. We validate the robustness to post-training compression of
models trained through different versions of CrAM, by testing their accuracy after one-shot
pruning, at different sparsity levels. We train models using CrAM-k50, CrAM+-k70 and
CrAM+-Multi, where for the latter we choose uniformly at random, at each step, among 50%,
70% or 90% global sparsity levels. Using CrAM+ is crucial for preserving the dense model
accuracy, when using higher sparsities during training (≥ 70%); however, when training with
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low sparsities (e.g. CrAM-k50), the resulting dense model is slightly better than the baseline,
with a 77.5% validation accuracy. For both CrAM+-k70 and CrAM+-Multi we use sparse
gradients for the Top-K model perturbation, as described in Section 5.3.2. This improved
substantially the accuracy after one-shot pruning, as well as the resulting dense model. Namely,
the CrAM+-Multi dense model had 77.3% validation accuracy, while the CrAM+-k70 dense
model had 77.2% accuracy. An additional benefit of using sparse gradients is the potential
for training-time speed-up compared to, for example, using dense gradients or training with
SAM, with the right framework support. We include an ablation study on the effects of sparse
gradients in Section 5.6.1.
The results from Figure 5.1 show that CrAM models are substantially more robust to one-shot
pruning, compared to standard SGD or SAM training. CrAM models do not lose accuracy
at lower sparsity (e.g. at 50% for all or 70% for CrAM+-k70 and CrAM+-Multi). Moreover,
as shown in Table 5.1, the results at higher sparsity (80% and 90%) levels are competitive
with those obtained by gradual pruning, such as WoodFisher [SA20] or methods that prune
during training– STR [KRS+20], DPF [LSB+20], or AC/DC [PIVA21]. We emphasize that
CrAM requires a single round of training (albeit with twice as many forward-backward passes,
compared to regular SGD), while standard pruning methods require training separately for
each target sparsity, sometimes from a pretrained model (e.g. WoodFisher).
In addition to global magnitude, we show that CrAM models can be trained to be robust
to different sparsity distributions, such as uniform. We train CrAM+-Multi models for
ImageNet/ResNet50 under the same setup as for global magnitude, but applying instead the
Top-K operator at uniform sparsity across all prunable parameters (i.e. excluding BatchNorm
and biases); additionally, we keep the first and last layers dense, as these have been shown
to have an important impact on accuracy, without any effect on inference speed-up. The
resulting dense model achieves 77.1% accuracy, while one-shot uniform pruning at 80% and
90% sparsities gives, after BNT, 75.6% and 75.1% accuracy, respectively. Moreover, this
model is also robust to one-shot pruning using global magnitude (e.g. 75.5% accuracy at
80% sparsity). Conversely, CrAM+-Multi trained with global magnitude is robust to one-shot
pruning using uniform magnitude (e.g. 77.0% and 75.9% accuracy at 70% and 80% sparsity,
respectively). This suggests that CrAM-trained models can be robust to one-shot pruning
using sparsity distributions different from the ones used during training.

Results for N:M sparsity patterns. Additionally, we show that CrAM can be successfully
used with semi-structured N:M sparsity patterns, where out of each block of M weights, N are
sparse, as discussed in Section 2.2.3 from Chapter 2. We train CrAM+ models with the N:M
pattern, by randomly choosing at each optimization step between the 2:4 or 4:8 projections;
this model will be referred to as “CrAM+-N:M”. Similar to the previous experiments, we
also use sparse gradients for the pruned model perturbation and have found this to have a
positive impact on the one-shot pruned models. We provide more details on the effect of
sparse intermediate gradients in Section 5.6.1. In Table 5.2 we show the one-shot pruning
results (after BNT with 1000 samples). For completeness, we also include the accuracies
when pruning the dense, SAM and CrAM-k50 models, using the N:M patterns. Note that
CrAM+-N:M models do not lose accuracy when they are pruned one-shot using the 2:4 and 4:8
patterns, which is competitve with state-of-the-art methods for training N:M sparse models,
such as SR-STE [ZMZ+21]. However, we point out that SR-STE requires retraining a separate
model from scratch, for each sparsity profile. Additionally, we observe that the CrAM+-N:M
model is robust to one-shot pruning using also unstructured patterns, at moderate sparsity
levels; for example, for global and uniform pruning, models trained with CrAM+-N:M do not
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lose any accuracy when pruned one-shot to 50% sparsity (77.3% accuracy), and have only a
minor accuracy loss, compared to the dense baseline, when pruned to 70% sparsity (76.5%
accuracy).

Model Dense Sparsity Pattern
2:4 4:8

Dense 77.2 66.5 69.6
SAM 77.4 69.6 72.0

CrAM-k50 77.5 72.2 73.4
CrAM+-N:M 77.3 77.0 77.2

SR-STE - 77.0 77.4

Table 5.2: (ImageNet/ResNet50) Validation
accuracy (%) after one-shot pruning (+BNT)
using semi-structured 2:4 and 4:8 patterns.

Model ResNet18 ResNet50
Dense 4 Bits Dense 4 Bits

Baseline 69.8 66.2 76.1 74.1
SAM 70.5 67.1 76.9 74.8

CrAM+-4Bits 70.1 69.3 76.7 75.8

Table 5.3: (ImageNet) Validation accuracy (%)
for the dense models, and after symmetric per-
channel 4 bits quantization. All quantization
results are after BNT.

Finetuning with CrAM. To reduce the computational overhead of CrAM-training, we
investigate whether a dense model’s robustness to pruning can be improved with only a short
finetuning using CrAM. This approach is inspired by [AF22], which shows encouraging evidence
that similar benefits to fully training with SAM can be obtained when the latter is instead used
only in the final training phase. We finetune pretrained ImageNet ResNet18 and ResNet50
models, from the Torchvision library, using CrAM+-k70 and CrAM+-Multi, both with sparse
gradients for the pruned perturbation. We perform finetuning for 10 epochs, starting from a
learning rate of 0.005, which is decayed using a cosine learning rate scheduler, at each epoch.
For CrAM+-Multi we randomly select at each step a sparsity level in the range 50%-90%. For
comparison, we also finetuned using SGD with momentum or using SAM, under the same
hyperparameters. We report in Tables 5.4 and 5.5 the validation accuracy for the dense models,
and after one-shot pruning at 50%-80% sparsity levels. Finetuning with CrAM+ preserves or
outperforms the baseline accuracy, and results in good sparse models after one-shot pruning,
at moderate sparsity levels (up to 70%). Results improve with longer finetuning: after 20
epochs, the CrAM+-Multi model can be pruned one-shot to 70% sparsity, with ≤ 1% drop in
accuracy, compared to the baseline.

Model Dense Sparsity
50% 60% 70% 80%

Baseline 69.8 68.4 66.6 62.4 50.4
Dense 70.4 68.9 67.0 62.3 50.1
SAM 70.5 69.2 67.4 63.4 52.2

CrAM+-k70 70.3 69.5 68.8 69.0 65.0
CrAM+-Multi 70.4 69.7 69.2 68.3 66.7

CrAM+-Multi-20 70.6 69.9 69.6 69.0 67.6

Table 5.4: (ImageNet/ResNet18) Accuracy af-
ter finetuning for dense models, and after one
shot pruning

Model Dense Sparsity
50% 60% 70% 80%

Baseline 76.1 75.1 73.4 69.5 54.3
Dense 76.8 75.4 73.6 69.0 53.1
SAM 76.9 75.8 74.3 70.5 57.8

CrAM+-k70 76.8 75.9 75.5 75.4 72.0
CrAM+-Multi 76.7 75.9 75.6 75.0 73.5

CrAM+-Multi-20 76.8 76.1 75.7 75.5 74.4

Table 5.5: (ImageNet/ResNet50) Accuracy after
finetuning for the dense models, and after one shot
pruning

CrAM with Infrequent Masks Updates. As previously mentioned, when training image
models with CrAM+, using sparse gradients of the intermediate model perturbation substantially
improved both the accuracy of the dense final model, as well as after one-shot pruning. One
hypothesis that would enable this approximation of the gradient would be that the masks of
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the compression perturbation change very little during training. We test the validity of this
hypothesis by training a version of CrAM+ that only does infrequent mask updates. Namely,
the masks obtained from the Top-K compression operator are kept fixed for a number of
consecutive τ training iterations. In the case of CrAM-Multi, the masks for each sparsity
level are changed each after τ iterations with the corresponding sparsity target. We note that
infrequent mask updates improve the practical training time of CrAM, as the Top-K operator
can be skipped for most iterations. This brings the cost of an average CrAM+ iteration to the
same level as a SAM iteration, though we note that in theory, with specialized hardware, the
computational cost of CrAM can be further decreased due to the presence of sparse operators.
We experiment using the same setup for training ImageNet on ResNet50 with CrAM+-Multi,
with global magnitude pruning at sparsity k ∈ {50%, 70%, 90%}, and perform two separate
runs, by varying the mask update frequency τ ∈ {20, 100} iterations. As before, we also use
BNT after pruning, on a subset of 1000 training sample, consisting of one example per class.
The results presented in Table 5.6 show that using infrequent mask updates only has a small
impact on the initial results; namely, we observe that the results after one-shot pruning are
slightly worse compared to the default ones, particularly at higher sparsity. In particular, the
results for 80% sparsity have decreased the most, a level which was not explicitly used during
training. We also repeated the same experiment in the CrAM-finetuning setup for ResNet50,
with τ = 100 iterations, and observed that results after one-shot pruning in fact improved
slightly. This is particularly encouraging, as using CrAM only for finetuning is a more attractive
use-case, due to the reduced computational costs.

Frequency Sparsity (%)
τ 0 50 70 80 90
1 77.3 77.2 77.0 75.8 74.7
20 77.4 77.4 77.2 75.5 74.8
100 77.3 77.3 76.9 75.3 74.5

Table 5.6: (ImageNet/ResNet50) Validation accuracy (%) for the dense and sparse CrAM+-Multi
models trained with sparse perturbed gradients, using infrequent mask updates of the global Top-K
operator.

Quantization. While the previous experiments showed that CrAM can be successfully used
to train models robust to one-shot pruning through the Top-K operator, we demonstrate
that CrAM can also be used with other types of compression. Namely, we show encouraging
evidence that CrAM can be adapted to quantization. Specifically, we use CrAM+ where the
compression operator C is the symmetric per-channel weight quantization to 4 bits (round
to nearest integer), and finetune pretrained Torchvision ResNet18 and ResNet50 ImageNet
models, for 10 epochs, using the same hyperparameters as in the previous experiments for
sparsity. The results in Table 5.3 show that CrAM-finetuned models are more robust to
symmetric per-channel 4 bits quantization, compared to models finetuned with SAM or with
the dense baseline.

5.4.2 Using CrAM Models for Sparse Transfer
As previously stated, one of the main goals we want to achieve through CrAM is to train
dense models that are easily compressible. One natural and practical use case for this property
would be sparse transfer. Namely, an user would like to deploy a pre-trained model and adapt
it to a specialized task, through finetuning. As described in Chapter 4, the devices used for
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finetuning a model on specialized tasks often times pose computational constraints, and so
the user might consider using a sparse version of the model; this would allow them to benefit
from potential memory and computational savings arising from the sparsity of the network. In
many cases, the sparse models are not readily available, and obtaining them would require
large computational resources, in addition to access to the full upstream dataset used for
training them. Therefore, it would be very useful if the large model could be pruned one-shot,
without any retraining, nor access to the upstream dataset, in such a way that performing
sparse transfer would still be competitive with the dense transfer, or with sparse transfer from
a model pruned using traditional methods (e.g. GMP).

With this motivation in mind, we present an application which shows that sparse CrAM
models can be successfully used for sparse transfer learning. For this purpose, we showcase
the CrAM+-Multi model from the previous section, trained on ImageNet and the 80% and
90% sparse models derived after one-shot pruning. To set a baseline for our comparison, we
additionally consider the sparse models, without any retraining, obtained from pruning one-shot
to 80% and 90% sparsity the dense ImageNet baselines (trained for 100 or 200 epochs), as
well as the SAM model and the dense CrAM-k50 model trained on ImageNet. We further note
that for the CrAM models, as well as the baselines, we consider the one-shot pruned models
before BNT, since Batch Norm statistics are anyway corrected during finetuning, to reflect
the change in data distribution.

We are interested in being competitive, in terms of sparse transfer performance, with sparse
models that were a-priori trained on ImageNet, using existing pruning methods from the
literature. For this purpose, we employ the setup from Chapter 4, and we choose for comparison
sparse regularization methods (AC/DC [PIVA21] and STR [KRS+20]), progressive sparsification
methods (WoodFisher [SA20]) and lottery-tickets-based methods (LTH-T [CFC+21]), each
trained for 80% and 90% sparsity levels. In terms of transfer tasks and training hyper-
parameters, we use the same setup for full transfer from Chapter 4. We also use the same
average relative increase in error metric, which aggregates the results for each method, at
each sparsity level, across all twelve tasks. Compared to the previous chapter and [IPKA22],
however, we replaced the dense baseline with the one trained under the same hyperparameters
as CrAM; subsequently, the aggregated metrics for the pruning methods from Chapter 4 have
been updated to be compatible with the current dense baseline.

The results in Figure 5.2 show that one-shot pruned CrAM models transfer well. In fact, both
CrAM-k50 and CrAM+-Multi models transfer better than LTH-T at 80% sparsity, although
pruning is performed in one-shot. Also, CrAM+-Multi at 90% sparsity has a similar transfer
performance to AC/DC models, and gives better results compared to the other pruning methods
used for comparison (LTH-T or STR), with the exception of the second-order WoodFisher
method, which is the best performing method across both 80% and 90% sparsity, as also
previously discussed in Chapter 4. Compared to the standard pruning methods used for
comparison, CrAM has the added advantage that it produces an accurate dense model, and
both 80% and 90% sparse models from a single ImageNet run. Therefore, these results show
that CrAM models, and in particular CrAM+-Multi, show a level of flexibility which allows
a user to easily choose between multiple sparsity levels, depending on the computational
resources available, at no extra cost. Moreover, the dense CrAM+-Multi model has a very
similar transfer performance to the baseline, with a less than 1% average relative increase in
error, while dense CrAM-k50 or SAM, as well as the baseline trained for twice more iterations
result in a minor improvement in transfer accuracy of around 2%, compared to the baseline.
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Figure 5.2: Average relative increase in error, relative to dense, on 12 tasks, between models pruned
one-shot, or obtained from pruning methods, at different sparsities. Lower is better. All models were
pretrained on ImageNet/ResNet50. For better visibility, error bars indicate 70% confidence intervals.

5.4.3 Detailed Comparisons with Other Methods
We now perform a detailed comparison between CrAM and gradual pruning methods, or
similar methods that train a prunable dense model. We choose to focus on the CIFAR-10
dataset [KH+09] for the purpose of this comparison, since most of the other methods present
experiments and are tuned on this particular dataset. Specifically, we compare CrAM with
existing state-of-the-art gradual pruning methods [LSB+20] on ResNet20 [HZRS16], or with
similar methods for training prunable networks [MLC+22, ZSP22] on VGG-16 [SZ14] and
ResNet18.

Hyperparameters and general setup. For this set of experiments, we train ResNet20
models for 200 epochs, using SGD with momentum and weight decay, and a cosine learning
rate scheduler, with a learning rate linear warm-up of 5 epochs. Additionally, we train the
baseline model for twice as many epochs, to match the number of backpropagation steps
of SAM and CrAM. To determine the value of the hyperparameter ρ, we performed a grid
search over values in the range 0.01− 0.2, using a 90%− 10% train-validation split and found
0.1 and 0.15 to be the best values for SAM and CrAM+-Multi, respectively (i.e. achieving
highest validation accuracy). After finding the best value of ρ for each model configuration,
we retrained using the entire training set, and starting from 3 different random seeds, and
report the final accuracy after 200 epochs of training. We follow a very similar training recipe
and hyperparameter search for ResNet18 and VGG experiments, but train instead for 180
epochs, similarly to [MLC+22].

Comparison with Gradual Methods. In addition to the ImageNet results, we further
demonstrate on CIFAR-10 the ability of CrAM to produce sparse models that are competitive
with state-of-the-art gradual pruning methods. Namely, we showcase CrAM+-Multi, trained
on ResNet20 using sparse intermediate gradients, where at each optimization step we select
the sparsity level uniformly at random among values in the set {50%, 70%, 80%, 90%, 95%}.
The results in Table 5.7 show that the dense model obtained by training with CrAM+-Multi is
highly accurate, achieving an accuracy close to the regular SGD baseline (93%), but below the
model trained with SAM (93.5% accuracy). Moreover, CrAM+-Multi is very robust to one-shot
pruning, even at high sparsities (e.g. 90% or 95%). We note that our results for one-shot
pruning (+BNT) are usually competitive with those obtained by methods that train sparse
models separately from scratch, for each sparsity target. For example, in Table 5.7 we compare
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one-shot pruned models obtained from CrAM+-Multi at various sparsity levels, with those
obtained by training separately sparse models through the state-of-the-art dynamic model
pruning with feedback (DPF) method [LSB+20]. Remarkably, we obtain better accuracy after
one-shot pruning than DPF models at all sparsity levels considered, even at 95% sparsity, where
CrAM+-Multi substantially outperforms DPF, which trains a separate model for each sparsity
level. Additionally, we show a similar comparison on the larger VGG-16 architecture [SZ14].
Here, we train CrAM+ with 95% sparsity at each step, using intermediate sparse gradients.
As it can be observed from Table 5.7, CrAM+-k95 produces models that do not lose accuracy
(after BNT) up to 95% sparsity. In comparison, training a dense model using SGD under the
same hyperparameter setup produces a model with 93.9% test accuracy. Moreover, when
pruning CrAM+-k95 at 95% sparsity we obtain a similar test accuracy to the one reported by
DPF [LSB+20], which explicitly trains a 95% sparse model.

Architecture Model Dense Sparsity
50% 70% 80% 90% 95%

ResNet20 CrAM+-Multi 92.9 ± 0. 92.8 ± 0.1 92.7 ± 0.2 92.6 ± 0.2 91.2 ± 0.1 89.2 ± 0.1
DPF N/A N/A 92.4± 0.1 92.2± 0.2 90.9 ± 0.1 88.0 ± 0.3

VGG-16
CrAM+-k95 94.2 ± 0.1 94.2 ± 0.1 94.2 ± 0.1 94.1 ± 0.1 94.0 ± 0.1 94.1 ± 0.1

SFW N/A 93.1 93.1 93.1 93.1 92.0
DPF N/A N/A N/A N/A N/A 93.9 ± 0.2

Table 5.7: (CIFAR-10) Test accuracy (%) for CrAM after one shot pruning (+BNT). CrAM+-Multi
is competitive with or outperforms state-of-the-art pruning method DPF, up to 95% sparsity on
ResNet20 and VGG-16. DPF requires retraining for each target sparsity. CrAM+ outperforms similar
method SFW [MLC+22]

Comparison with One-shot Pruning Methods. In addition to being competitive with
gradual pruning methods, we show that CrAM produces better sparse models than similar
methods for training prunable models. Namely, we compare against the recent works [MLC+22,
ZSP22], which propose methods based on Stochastic Frank-Wolfe (SFW) [RSPS16]; SFW is
a “gradient-free” optimization algorithm, which encourages the parameters to lie in the convex
hull spanned by sparse vectors, with directions given by the gradients. We compare CrAM
against SFW on CIFAR-10, using ResNet18 [HZRS16] and VGG-16 models, which is the same
experimental setup employed in [MLC+22] or [ZSP22]. Note that [MLC+22, ZSP22] use the
“ImageNet” variant of the ResNet18 model, which is substantially larger than the ResNet20
used for our previous experiments (11M vs. 0.3M parameters). As previously described, we
train CrAM+-k95 with sparse intermediate gradients, under the same hyperparameter setup
on both ResNet18 and VGG-16, except for the ρ value determined separately by grid search,
and we use BNT after pruning at each desired sparsity level.

On both ResNet18 and VGG-16, we obtain dense models that do not lose accuracy compared
to the baseline: 94.2% (CrAM+-k95) vs. 93.9% (dense) on VGG-16 and 95.7% (CrAM+-
k95) vs. 95.4% (dense) on ResNet18. Furthermore, on ResNet18 we maintain the model
accuracy after pruning one-shot at 96% sparsity (95.4%, after BNT) and have a 1.3% drop
at 98% sparsity (94.4% Top-1). These accuracies are higher than those from [MLC+22] and
[ZSP22], who obtain ≤ 93% accuracy at 95% sparsity. We show a numerical comparison for
VGG-16 in Table 5.7: CrAM+-k95 preserves model accuracy even at 95% sparsity, while SFW
produces models that have lower accuracy even at higher density. We note that CrAM has
higher training costs than SFW, but requires less hyper-parameter tuning, and leads to higher
accuracies for the dense and sparse models. Moreover, similar to [ZSP22], our method uses
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BNT, while [MLC+22] do not suggest that they are using it. However, the cost of BNT is
minimal; even without BNT, our method preserves accuracy at up to 80% sparsity (please see
Appendix C.2.2), leading to better results than [MLC+22, ZSP22].

5.5 Experiments on Language Modeling
In addition to the image classification results presented in Section 5.4, we show that CrAM
can be successfully used with different applications, such as language models. We demonstrate
that CrAM produces models that are more compressible and accurate than the ones obtained
with standard optimizers such as Adam [KB15] and SAM [FKMN21]. Furthermore, sparse
CrAM models are even competitive with gradual pruning methods; the latter usually require a
higher computational budget, as they separately train models for each sparsity target.

General setup. For our experiments, we focus on a standard benchmark also used by other
compression methods, namely the BERT-base [DCLT19] model finetuned on the span-based
question-answering task SQuADv1.1 [RZLL16]. BERT-base [DCLT19] is a commonly used
language model, which consists of 12 identical transformer layers [WDS+20], consisting of
110M parameters. Following the community standards (e.g. [SWR20, KCN+22]) we sparsify
all weights of the encoder part, which consists of 85M parameters, and report sparsities relative
to this number. For pruning, we make use of the Top-K operator at each step to impose
uniform sparsity distribution over all layers. Our experiments are performed using open-source
libraries, such as Transformers [WDS+20] and SparseML [KKG+20] and open source datasets
obtained via [LVdMJ+21].

5.5.1 Robustness to one-shot pruning
We consider the setup in which the pretrained BERT-base model is finetuned for a small
number of epochs on a downstream task. After finetuning the models using Adam, SAM, and
several variants of CrAM, we finally test their robustness to one-shot magnitude pruning using
uniform sparsity.
To identify the optimal set of hyper-parameters we run a grid search for each optimizer
independently and pick the configuration with the best one-shot performance at 50% sparsity
target. For a fair comparison, we further allow Adam to fine-tune for twice as many epochs as
SAM and CrAM. The complete set of hyperparameters used for grid search, as well as the
final configurations for each model, are provided in Appendix C.3.
We train different version of CrAM+ models, each using the Top-K operator at each step with
uniform sparsity. Unlike the image classification experiments, we use dense gradients in the
parameter update; in our experience, using sparse gradients with language models resulted in
a decreased performance at lower sparsity levels, with a slight increase at higher sparsities. In
the case of CrAM+-Multi, we select uniformly at random, at each optimization step, sparsity
levels in the set {50%, 60%, 70%, 80%}.
The results presented in Table 5.8 suggest that CrAM models are more robust to one-shot
pruning while still being able to match or even outperform the dense F1 scores obtained with
other optimizers. Furthermore, we explore whether it is possible to reduce the computation
complexity of CrAM, without sacrificing performance. For this purpose, we finetune models
which use the CrAM updates only on a fraction of the total training updates; specifically, at
each optimization step we choose with a certain probability between the CrAM or a standard
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Adam update. In Table 5.9 we provide results for this experiment, in which at every separate
run we use Adam with a certain probability, e.g. if p(Adam) = 0.8 CrAM is used only on 20%
of the optimization steps. The results show that even in this restricted setup, models become
substantially more robust to pruning, compared to, for example, only using Adam at each step.

Model Dense Sparsity
50% 60% 70% 80%

Adam 88.7 80.0 32.5 9.6 8.1
SAM 88.5 81.0 33.4 10.1 7.3

CrAM+-k50 88.9 88.3 84.6 25.3 8.3
CrAM+-k60 88.7 88.1 87.8 75.7 10.2
CrAM+-k70 88.8 87.8 87.0 86.9 33.9
CrAM+-k80 88.4 86.9 85.5 84.9 84.7

CrAM+-Multi 88.7 88.3 88.1 86.8 82.5

Table 5.8: (SQuADv1.1/BERT-base) Vali-
dation F1 score of models after fine-tuning
with the corresponding optimizer and apply-
ing one-shot magnitude pruning.

Model Dense Sparsity
50% 60% 70% 80%

CrAM 88.7 88.3 88.1 86.8 82.5
p(Adam) = 0.1 87.6 87.4 87.4 86.5 84.0
p(Adam) = 0.3 87.5 87.5 87.2 86.5 83.6
p(Adam) = 0.5 87.8 87.7 87.2 86.4 83.0
p(Adam) = 0.8 87.0 87.1 86.8 85.2 79.1

Table 5.9: (SQuADv1.1/BERT-base) Val-
idation F1 score of models optimized with
CrAM+-Multi where at each step with prob-
ability p(Adam) the standard Adam step is
applied instead of the CrAM+-Multi step.

Comparison with gradual pruning methods. We further investigate whether one-shot
pruned CrAM models are competitive with models produced by gradual pruning methods,
which progressively prune smaller fractions of weights and fine-tune the model for many epochs.
We use the CrAM+-Multi model from Table 5.8 and prune it in one-shot with the standard
uniform magnitude pruner, but also using oBERT [KCN+22], which is a state-of-the-art
pruning method for BERT models. The oBERT method takes into account the second order
information to decide which weights to prune, similar to other pruning methods developed
for this purpose [SA20, FKA21]. In Table 5.10, we compare sparse CrAM models with
different gradual pruning methods, such as: ℓ0 regularization [LWK18], Magnitude [ZG17],
Movement [SWR20], Soft-Movement [SWR20] and PLATON [ZZL+22]. The results show
that one-shot pruned CrAM+-Multi models surpass state-of-the-art gradual pruning methods,
such as PLATON [ZZL+22] at low to moderate sparsity levels (≤ 70%).

Model Pruning Sparsity
50% 60% 70% 80%

ℓ0 regularization gradual 84.6 83.9 82.8 81.9
Magnitude gradual 87.0 86.7 86.5 84.8
Movement gradual 83.0 82.8 81.9 82.0

Soft-Movement gradual 85.8 N.A. 84.6 N.A.
PLATON gradual 87.2 86.9 86.7 86.1

CrAM+-Multi
one-shot magnitude 88.3 88.1 86.8 82.5

one-shot oBERT 88.7 88.1 87.5 84.9
one-shot oBERT + fine-tune 88.7 88.4 88.1 87.4

Table 5.10: (SQuADv1.1/BERT-base) Validation F1 score of the CrAM+-Multi model after one-shot
pruning with magnitude and oBERT pruners. We additionally fine-tune the one-shot oBERT-pruned
model and compare it with gradual pruning methods.

However, one-shot pruning to high sparsity targets can severely impact the model’s performance,
as it can be observed for CrAM+-Multi at 80% sparsity. Therefore, we also investigate whether
a short fine-tuning period (for at most 2 epochs) using the sparse CrAM models, with fixed
masks, can bridge the gap towards full accuracy recovery. Table 5.10 further contains these
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additional results, which show that finetuned CrAM models substantially outperform gradual
pruning methods at all sparsities considered (≤ 80%). It is worth emphasizing that the
competitive results obtained with two different one-shot pruners, magnitude and oBERT,
suggest that CrAM models are indeed robust and compatible with pruning techniques different
from the ones they have been trained with. Furthermore, we provide in Table 5.11 inference
speed-up numbers for the sparse BERT models, showing that , showing that we obtain more
than 2x speed-up, compared to the dense model, for CrAM models at 80% sparsity. We provide
complete details regarding hyper-parameters used for oBERT pruning and sparse finetuning in
Appendix C.3.

Sparsity 4-cores/batch-size=1 16-cores/batch-size=128
Throughput
(items/sec) Speed-up Throughput

(items/sec) Speed-up

Dense 4.0 1.0x 14.2 1.0x
50% 4.5 1.1x 18.0 1.3x
60% 5.2 1.3x 21.8 1.5x
70% 6.3 1.6x 26.0 1.8x
80% 8.0 2.0x 31.9 2.3x

Table 5.11: (SQuADv1.1/BERT-base) Speed-ups of pruned BERT-base models relative to the dense
model, benchmarked with the sparsity-aware inference engine DeepSparse (version 1.0.2) [KKG+20,
Dee21] in two different scenarios on AMD EPYC 7702 64-Core Processor.

5.6 Ablation Studies for the CrAM update
In this section we investigate the impact that different modifications to CrAM can have on
both the final dense model accuracy, as well as on the resulting one-shot pruned models.
Furthermore, we study alternative updates to CrAM, for training prunable models, and we
show that CrAM achieves the best trade-off between computational complexity and quality of
both dense and sparse models.

5.6.1 Importance of Sparse Gradients

Model Dense Sparsity
50% 70% 80% 90%

CrAM-k70 75.7 76.3 76.3 73.4 53.2
CrAM+-k70 77.3 77.3 76.8 73.9 51.9

CrAM+-k70 (SG) 77.3 77.2 77.2 76.3 62.1
CrAM-Multi 75.2 75.2 75.2 74.5 73.3

CrAM+-Multi 76.4 76.4 76.1 74.9 73.1
CrAM+-Multi-SG 77.3 77.2 77.0 75.8 74.8

Table 5.12: (ImageNet/ResNet50) Dense and
one-shot pruning (+BNT) results. CrAM+-SG
improves the accuracy of the dense model, and
its robustness to one-shot pruning.

Model Dense Sparsity Pattern
2:4 4:8

CrAM-N:M 75.2 76.0 76.2
CrAM+-N:M 77.1 76.1 76.6

CrAM+-N:M-SG 77.3 77.0 77.2

Table 5.13: (ImageNet/ResNet50) Dense and
semi-structured one-shot pruning (+BNT) re-
sults. CrAM+-N:M-SG improves the robustness
to N:M pruning, compared to CrAM+.

As previously discussed in Sections 5.4.1 and 5.4.3, we observed for image classification
experiments an improvement in the robustness to post-training one-shot pruning, when using
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sparse intermediate gradients. This modification corresponds to using a different straight-
through estimator for the gradient ∇θL( ˜︁θ) = ∇θL(C(θ + ρ∇L(θ))), which instead of
by-passing the Top-K operator in the gradient, and estimating ∇θL( ˜︁θ) ≈ ∇θL(θ)|

θ=˜︁θ,
assumes that the masks M of ˜︁θ are almost constant during training. This would allow the use
of the approximation ∇θL( ˜︁θ) ≈M ⊙∇θL(θ)|

θ=˜︁θ. We refer to this approximation of CrAM
using sparse intermediate gradients as CrAM-SG. More explanations, as well as theoretical
support for this approach, are provided in Section 5.3.2 and Appendix C.1. We observed
that training ImageNet/ResNet50 models using CrAM+-SG led to an improvement in the
robustness to one-shot pruning, particularly at higher sparsity levels and a similar trend was
also observed for CIFAR-10/ResNet20 models.

Furthermore, we can experimentally confirm our intuition that the masks are fairly constant
during training. For example, on CIFAR-10/ResNet20, trained with CrAM+-k70, the difference
between consecutive ˜︁θt masks was lower than 0.6%. Interestingly, using sparse gradient
under the same training setup, encouraged more diversity in the masks; namely, the difference
between consecutive masks at later training stages increased to around 2%. We speculate this
could be a potential reason for the improved robustness to pruning. Another aspect observed
on CIFAR-10 experiments was that using sparse gradients tends to decrease the dense model
accuracy, when CrAM is trained with lower sparsity levels; for example, the dense model for
CrAM-k50 reached 93.4% accuracy, which decreased to 92.8% when using sparse gradients.
For this reason, on ImageNet we only experimented with the dense version of CrAM-k50.
Nonetheless, using sparse gradients improved the robustness to pruning in all cases. The effects
of using sparse intermediate gradients are illustrated in Table 5.12, where we provide the results
obtained from training CrAM+ and CrAM+-SG on ImageNet, for one-shot unstructured global
magnitude pruning. For completeness, we also include the results for CrAM models, which
show the improvement to the dense model resulted from using CrAM+. We provide the same
comparison for CrAM models trained with semi-structured N:M sparsity patterns, in Table 5.13.

We further note, however, that in the case of language models, using sparse intermediate
gradients did not have a similar positive effect. From our experiments, both CrAM-SG and
CrAM+-SG decreased the accuracy at lower sparsity levels, but slightly improved the results
at high sparsity. For these reasons, we only used intermediate sparse gradients for our image
classification experiments.

5.6.2 Comparison Between CrAM and Alternative Updates

We further investigate the importance of individual components from CrAM, by comparing
against other similar updates. For the purpose of this comparison, we focus on the CIFAR-10
dataset, using a ResNet20 model. For all methods considered, we use the same training
hyperparameters or grid search procedure for finding ρ as the one described in Section 5.4.3;
for the “multi” versions of the algorithms we consider sparsity values sampled uniformly at
random in the range 30%− 90%. We study two different types of updates related to CrAM:
one is derived from the SAM [FKMN21] update, where we compose the standard cross-entropy
loss function with the compression operator; the second update is derived by simply eliminating
the extra-gradient step in the the original CrAM update. These modifications would inform
us about the effects of using the gradient of the dense model for perturbing the parameters
before applying the compression operator, and also would help us understand the importance
of the extra gradient step for obtaining prunable models with CrAM.

82



5.6. Ablation Studies for the CrAM update

Alternative Updates Derived from SAM. One alternative update to CrAM can be
obtained by following closely the derivations for SAM [FKMN21]. For this, we assume ∥δ∥ ≤ ρ,
define h(x) := L(C(x)) (with C the Top-K operator), and the loss max∥δ∥≤ρ h(θ + δ). We
assume that for a small enough ρ, h is differentiable around θ, and we use a first-order Taylor
approximation of h(θ + δ) around θ, together with the quadratic constraint for δ to define our
maximization problem. We obtain after differentiation and applying the inequality constraints,
that δ = ρ · ∇L(C(θ))

∥∇L(C(θ))∥ . This enables us to define the compressed-SAM (C-SAM) update as:

C-SAM: θt+1 = θt − η · ∇L
(︄
C

(︄
θt + ρ · ∇L(C(θt))

∥∇L(C(θt))∥

)︄)︄
. (5.7)

To derive the Taylor approximation of h(θ + δ) around θ, we need to use a straight-through
estimator for the gradient ∇θL(C(θ)), due to the non-differentiability of C. Similar to
our previous discussion about CrAM, we observed that C-SAM training benefits from using
sparsified gradients; here, we use sparse gradients for both the model perturbation in the
intermediate interpolation step, as well as in the final weight update. Namely, we always use
the approximation: ∇L(C(ϕ)) ≈Mϕ · ∇L(Mϕ · ϕ) for parameter ϕ, where Mϕ is the Top-K
mask of ϕ. We determine the value of the interpolation step ρ in C-SAM through grid search,
using the same procedure as for CrAM, and we run each experiment for 3 different seeds. For
fairness, we compare C-SAM with CrAM, and not CrAM+, and for both we use sparsified
gradients.

The results in Table 5.14 show that C-SAM can be more robust at higher sparsity levels,
but with the cost of an accuracy drop for the dense models; for example, for C-SAM-k70,
the test accuracy of the dense model, as well as at lower sparsity levels (≤ 70%) is 1%
below that obtained with CrAM-k70. One important aspect is that the dense model can be
improved using CrAM+ with no additional cost, whereas for C-SAM such a modification would
incur a computational overhead, as each optimization step would require three instead of two
forward-backward passes through the model.

Method Dense Sparsity
50% 60% 70% 80% 90%

CrAM-k50 92.8 ± 0.1 92.8 ± 0.1 92.7 ± 0.0 92.0 ± 0.1 89.7 ± 0.2 73.5 ± 2.4
C-SAM-k50 92.6 ± 0.3 92.6 ± 0.3 92.5 ± 0.3 92.0 ± 0.2 90.6 ± 0.2 81.0± 1.0
CrAM-k70 92.4 ± 0.2 92.4 ± 0.2 92.4 ± 0.2 92.3 ± 0.2 91.6 ± 0.1 81.1 ± 1.3
C-SAM-k70 91.4 ± 0.0 91.4 ± 0.0 91.4 ± 0.0 91.3 ± 0.1 91.0 ± 0.1 85.3 ± 0.5
CrAM-Multi 92.6 ± 0.2 92.5 ± 0.2 92.4 ± 0.4 92.3 ± 0.2 91.9 ± 0.2 90.5 ± 0.2
C-SAM-Multi 92.5 ± 0.2 92.5 ± 0.1 92.6 ± 0.2 92.5 ± 0.2 92.1 ± 0.2 91.0 ± 0.2

Table 5.14: (CIFAR-10/ResNet20) Comparison between CrAM and C-SAM, showing the test
accuracy for the dense models and sparse models after one-shot pruning. We report the best value
between the accuracy before and after BNT with 1000 training samples.

Importance of extra-gradient step. Furthermore, we explore the importance of the
extra-gradient step in the CrAM update. Notably, we investigate whether not using the
extra-gradient achieves a similar effect to CrAM training. The removal of the extra gradient
step would correspond to the following equation:

Top-K: θt+1 = θt − η∇L(C(θt)) . (5.8)
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Since the compression we use in our experiments is the Top-K sparsification, we refer to this
update as “Top-K”. This has been previously studied in [LSB+20], where the dense gradients,
computed with respect to the sparse parameters, are used in the model updated. Generally,
we have experienced training instability using this version of the update, particularly at high
sparsity. However, we are able to substantially improve both the training stability and overall
quality of the resulting models, by also incorporating the optimization of the dense model
(similar to CrAM+), and by using sparsified gradients for the sparsified parameters. These
changes resulted in an update close to CrAM+ and of the same computational complexity.
This new update, which will be referred to as Top-K+ is the following:

Top-K+ : θt+1 = θt − η(∇L(θt) +M˜︁θt
· ∇L( ˜︁θt)), (5.9)

where ˜︁θt = C(θt) and M˜︁θt
is its mask after applying Top-K.

The comparison between CrAM+ and Top-K+ is illustrated in Table 5.15. The results show
that dense CrAM+ models tend to have higher accuracy, and in general CrAM+ is more robust
to one-shot pruning at high sparsity. For example, CrAM+ models trained with 50% or 70%
sparsity and pruned one-shot to 80% and 90% sparsity achieve higher accuracy after BNT,
compared to the corresponding sparse Top-K+ models.

Method Dense Sparsity
50% 60% 70% 80% 90%

CrAM+-k50 93.1 ± 0.1 93.1 ± 0.1 93.0 ± 0.1 92.3 ± 0.2 89.2 ± 0.2 71.1 ± 1.5
Top-K+-k50 92.7 ± 0.1 92.6 ± 0.0 92.6 ± 0.1 91.6 ± 0.1 86.5 ± 0.3 56.7 ± 1.0
CrAM+-k70 92.8 ± 0.3 92.7 ± 0.2 92.7 ± 0.1 92.7 ± 0.0 91.9 ± 0. 80.8 ± 1.4
Top-K+-k70 92.7 ± 0.1 92.4 ± 0.2 92.3 ± 0.2 92.4 ± 0.1 91.0 ± 0.3 72.6 ± 2.8

CrAM+-Multi 93.2 ± 0.1 93.2 ± 0.1 93.0 ± 0.1 92.8 ± 0.2 92.4 ± 0.1 90.1 ± 0.2
Top-K+-Multi 92.5 ± 0.1 92.4 ± 0.1 92.3 ± 0.1 92.2 ± 0.2 91.7 ± 0.2 90.0 ± 0.2

Table 5.15: (CIFAR-10/ResNet20) Comparison between CrAM+ and Top-K+. Test accuracy for
the dense models and sparse models after one-shot pruning. For all sparse results we report the best
value between the accuracy before and after BNT with 1000 training samples.

Conclusion. The comparison between CrAM and alternative updates, such as C-SAM or
Top-K, shows that all methods can achieve good results with one-shot pruning. In particular,
one-shot pruned C-SAM models tend to have a higher accuracy, compared to the corresponding
CrAM models, in particular at high sparsity. However, the CrAM update allows for more
flexibility, for example by incorporating for free the explicit optimization of the dense model.
Overall, we conclude that CrAM-trained models achieve the best trade-off between preserving
(or improving) the dense model accuracy, while having good performance after one-shot
pruning, at different sparsity levels.

5.7 Conclusions and Future Work
In this chapter, we proposed a new method for training neural networks, CrAM, which results
in models that are both highly accurate, and easily-compressible. Our extensive experimental
analysis on large scale image classification (ImageNet/ResNets) and language modelling
(SQuADv1.1/BERT-base) focuses on compression methods based on pruning, and shows that
CrAM models can be pruned one-shot at a wide range of sparsity levels, while resulting in
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sparse models that are competitive with existing gradual pruning methods. Furthermore, we
show that one-shot pruned CrAM models can transfer better to downstream tasks, compared
to some of the existing pruning methods. While we focus on pruning as the main compression
operator, we also give encouraging evidence that the CrAM update can be successfully adapted
to other compression projections, such as quantization, and we plan to investigate this more
closely in future work. Furthermore, we would like to explore whether prolonged CrAM-training
would further enhance both the performance of the resulting dense model, as well as its
robustness to one-shot compression. We also note that CrAM could potentially be used in
conjunction with other pruning methods, such as AC/DC described in Chapter 3, to boost the
predictive performance of the resulting sparse models. Finally, we are interested in leveraging
in the CrAM update different methods developed for reducing the computational complexity
of SAM, in order to improve the efficiency of our method.
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CHAPTER 6
Discussion and Future Work

In this thesis we studied pruning methods for deep learning models, with a focus on obtaining
sparse models that preserve accuracy, compared to the dense baseline, while also exploring
aspects related to their generalization properties and efficiency.

Thesis Summary

In Chapter 3 we proposed a method for co-training sparse and dense models, that can result in
both highly-accurate sparse models, and dense models that do not lose accuracy with respect
to the baseline, all at a lower theoretical computational cost compared to regular dense training.
The particular way our models were trained allowed us to more easily explore the differences
between sparse and dense models, at prediction level, and also to better understand how prone
they each are to memorization. Thus, we showed that our sparse-dense model pairs agreed on
more samples, including incorrect predictions, compared to gradual magnitude pruning and its
corresponding parent dense model. Moreover, our analysis suggests that sparse models are less
prone to memorizing randomly labelled data. Additionally, we provided theoretical guarantees
in terms of convergence to a sparse local minimum, for the algorithm we used in practice.
While sparse and dense models can have very similar performance in terms of test accuracy,
and they can also agree on their predictions on a large fraction of the samples, it is not
clear how well they each generalize to changes in the data distribution. We attempted to
answer this question in Chapter 4, where we investigated the behaviour of sparse models
obtained from different pruning methods, in a transfer learning scenario, compared to the
dense baseline. Our findings suggest that sparse models, in particular those obtained from
sparse regularization methods, produce features that can generalize better than the dense ones,
in a linear finetuning setup. In comparison, when performing full finetuning on downstream
tasks, the transfer performance tends to correlate with the accuracy on the original task, and
progressive sparsification methods that prune from pre-trained models tend to generalize better
than regularization-based pruning methods. We also investigated potential factors that could
lead to the different behavior of sparse models in regards to their performance on transfer.
Our study offers practical guidelines on which sparse models are more appropriate to be used
for finetuning on a downstream task, depending on the type of transfer, as well as on the
difficulty of the task.
Inspired by the observations regarding the transferability of sparse neural networks to different
data distributions, we further investigated how to better facilitate the deployment of sparse
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models to smaller devices. With this motivation in mind, we proposed in Chapter 5 a
method, which we call CrAM, for training accurate dense neural networks that are prunable
in one step, after training, to different sparsity levels. On one hand, this would reduce the
computational challenge of repeating the training cycle for each individual target sparsity,
which is the current standard [FC19, RFC20, EGM+20, KRS+20, PIVA21], and would enable
more flexibility when using sparse models on edge devices, as it would only require storing a
single model. The method we proposed is inspired by others [FKMN21] designed to reduce
the overall loss “sharpness” and improve generalization. Indeed, our method can result in a
small generalization advantage compared to regular training. Moreover, the sparse models we
obtain one-shot can be competitive with those obtained from current state-of-the-art pruning
methods [LSB+20, KRS+20], and can also transfer well to different downstream tasks, in a
full finetuning scenario.

Thesis Contributions

Therefore, this thesis focused on two important themes: more efficient ways of obtaining sparse
neural networks, without sacrificing predictive performance, and studying the generalization
properties of sparse models, in particular with respect to changes in the data distribution. We
believe that the contributions presented in this thesis have helped improve the state of the art
regarding training sparse models, and have also enabled a better understanding regarding the
differences between pruning methods, beyond model accuracy.
Specifically, the AC/DC method presented in Chapter 3 achieves state-of-the-art results for
models at different sparsity levels on ImageNet/ResNet50, when performing extended training.
This has important practical implications, as the highly accurate sparse models obtained with
AC/DC could be successfully used for sparse transfer on edge devices. Furthermore, to the
best of our knowledge, we were the first to show that models can be successfully trained to
be compressible, while also preserving or improving their accuracy with respect to the dense
baseline. Namely, the CrAM method we proposed in Chapter 5 achieves state-of-the-art results
for one-shot pruning post-training, without additional finetuning. Lastly, we provided the
first in-depth study regarding the differences between pruning methods in a transfer learning
scenario, and we showed that despite the similarities in upstream model accuracy, the choice
of the pruning method can incur different effects in terms of transfer performance.

Future Directions

While we have proposed and analyzed pruning methods with the efficiency and generalization
goals in mind, we acknowledge that there are other areas along these two directions that we
have mentioned, but not explicitly explored in this thesis. In what follows, we discuss in more
detail potential directions for future work.

Leveraging Sparsity for Accelerated Training. In Chapter 3 we presented a method
that can train sparse models at a fraction of the cost for the dense baseline. Moreover,
other works [EGM+20, JPR+20] have proposed methods that can perform training only in the
sparse support, and therefore should lead to computational savings. Also, we discussed in
Chapter 4 the benefits of performing sparse finetuning, from a computational point of view.
However, the acceleration in total training time from sparsity is thus far only theoretical, and
researchers rely on approximate metrics, such as FLOPs, to estimate the total compute time.
We therefore believe it is important to concentrate more effort in the direction of developing
pruning methods that can achieve practical speed-up during training. Possible solutions would
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be a version of the backpropagation algorithm that can be more easily adapted to sparse
matrices multiplication [NPI+23] or developing methods for structured sparsity that can achieve
a better trade-off between accuracy and speed-up. Structured sparsity, in particular, has a
good potential for speed-up, since it effectively decreases the size of the network. However, as
we have already discussed in Section 2.2.3, current methods for structured sparsity do not yet
achieve a good trade-off between accuracy and speed-up, and there are many difficulties that
arise due to, for example, solving the correlations between residuals, as well as consecutive
layers, when entire channels are removed. Therefore, we believe structured sparsity is a
direction with good practical potential, and plenty of room for improvements.

Designing Pruning Methods Amenable to Distribution Shifts. In Chapter 4 we showed
that sparse models obtained from current state-of-the-art pruning methods can achieve good
accuracy when performing sparse finetuning on downstream tasks. Despite these encouraging
findings, however, we note that there is a substantial performance gap with respect to the
dense baseline at higher sparsity levels (e.g. > 90%). One potential solution to narrowing
this gap would be to adapt the pruning mask to the downstream task; however, this would
come with additional costs, as it would imply more hyperparameter tuning, tailored for each
individual task. A different, more streamlined approach would be to design pruning methods
that can be guaranteed to generalize well across changes in the input data distribution. One
source of inspiration for achieving such a goal would be the meta-learning approach [FAL17],
where models are trained on many different small tasks, with the purpose of learning to quickly
generalizing to new tasks; a particular case where meta-learning methods were proven successful
is few-shot classification, where the model is expected to generalize to new classes after having
seen only a small number of reference samples. More recently, the Meta-Dataset [TZD+20]
was proposed, consisting of multiple heterogeneous datasets, with realistic class imbalances;
such a dataset, together with meta-learning methods developed for few-shot learning could
represent a starting point for our goal.

Data-free Pruning. In addition to these directions, we believe that there are other orthogonal
ones of particular interest. For example, data-free pruning, or post-training pruning, which
essentially refers to methods for obtaining sparse models without access to the training set, is
of great practical importance, particularly in situations where the models are extremely large,
or they were trained on proprietary data. Several works have shown that quantization can
be very successful in this regime [FA22a, FAHA23], and there have already been attempts
for pruning [HCI+21, FA22a, FA23]. Moreover, the CrAM method we proposed in Chapter 5
can be viewed as related to these methods, as it gives a model that can be pruned without
additional finetuning. Despite these advancements, however, there is still a considerable gap
compared to traditional data-aware pruning strategies, in particular for high sparsity levels.

The Effects of Pruning Beyond Accuracy. Another interesting direction relates to
understanding the effects of pruning beyond test accuracy. Several works have studied how
pruning affects under-represented groups in the training set [LBC+21, HCC+19, HMC+20],
but they have thus far focused on progressive sparsification methods, and a more thorough
exploration is required to understand how these effects hold for other types of pruning methods.
Subsequently, this understanding could be used towards designing novel pruning methods with
fairness objectives in mind. In addition to bias and fairness, we believe it is important to
study the role pruning has in better understanding the generalization of neural networks, and
how it relates to newly observed phenomena, such as the double-descent curve [BHMM19].
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While recent work has hinted that a similar double descent curve could occur for pruned
models [CLOT21], the analysis is performed on random feature regression tasks, and it is not
clear how it would generalize in a more practical setup.
In conclusion, in this thesis we have investigated important aspects related to efficiency
and generalization of sparse neural networks, and have proposed new methods for obtaining
accurate sparse models. We hope that the results presented, together with the methods
developed, will have a positive practical impact towards the deployment of sparse models to
edge devices, and are complementary to other works investigating generalization properties of
sparse neural networks.
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APPENDIX A
Appendix for Chapter 3

A.1 Convergence Proofs
In this section we provide the convergence analysis for our algorithms. We prove the convergence
of stochastic IHT, as stated in Theorem 3.3.1, and show as a corollary that under reasonable
assumptions our implementation of AC/DC converges to a sparse minimizer.

A.1.1 Notations and Overview
Notations

We use the assumptions defined in Section 3.3.1. Since our analysis is based on bounding the
progress made in a single iteration, to simplify notation we will generally use θ to denote the
current iterate, and θ′ to denote the iterate obtained after the IHT update:

θ′ = Tk(θ − ηgθ),

where gθ is an unbiased stochastic estimator of the function f : RN −→ R we want to
minimize, i.e. E[gθ|θ] = ∇f(θ). Moreover, as previously mentioned in Section 3.3.1, g has
finite variance σ > 0: E[∥gθ −∇f(θ)∥2] ≤ σ2.
Additionally, we let S, S ′ to denote the support of θ and θ′, respectively, and we use θ∗

to denote the assumed k∗-sparse minimizer. For an arbitrary vector x, we use supp(x) to
denote its support, i.e. the set of coordinates where x is nonzero. Moreover, for any set
I ⊂ [N ] of coordinates, we use the notation xI to denote that for the vector x, we use the
corresponding I coordinates, and assume the others are zero. Furthermore, we may also refer
to the minimizing value of f as f ∗ = f(θ∗).

Overview

Our goal is to prove Theorem 3.3.1, which is our main theoretical result. We provide a proof
in Section A.1.2, preceded by a set of auxiliary results, for which we also provide proofs. The
main idea behind the algorithm is based on the standard IHT algorithm [BD08], which consists
of alternating full gradient steps with pruning/truncation steps. Pruning to the largest k
coordinates in absolute value, corresponds to a non-convex projection onto the set of k-sparse
vectors. To ensure that the sparse projection does not have a major impact on the progress

109



made by the gradient descent steps, we assume a lower target sparsity, compared to the
corresponding value of the sparse optimum. This corresponds to increasing the size of the
support k to order Ω(k∗ · (β/α)2), where β/α > 1 represents the “restricted condition number”
of f .

Furthermore, we provide a corollary that offers guarantees for our practical AC/DC algorithm.
This theoretical result takes into account the differences between AC/DC and the stochastic
IHT algorithm presented in Section 3.3.1, namely the fact that AC/DC performs a sequence
of several dense SGD steps before applying a single pruning step. We show that even with
this change we can provide theoretical convergence bounds, although these bounds can be
weaker than the baseline IHT method under our assumptions. The proof of this result is given
in Section A.1.3.

In addition to the guarantees for stochastic IHT for functions with concentrated PL condition,
we show that our results can be extended to functions without the CPL condition; in this case,
we can prove convergence to a sparse nearly-stationary point. Furthermore, as a bonus, we
can also derive convergence guarantees for stochastic IHT for strongly-convex functions. Both
of these results can be found explained in detail in [PIVA21].

A.1.2 Stochastic IHT for Non-Convex Functions with Concentrated
PL Condition

In this section we prove our main result presented in Theorem 3.3.1. We analyze stochastic
IHT for a class of functions that satisfy a special version of the Polyak-Łojasiewicz (PL)
condition [KNS16] which is standard in non-convex optimization; moreover, certain versions
of PL were essential in several works analyzing the convergence of training methods for deep
neural networks [LZB20, AZLS19]. Usually this condition says that small gradient norm implies
closeness to optimum in function value. Here we use the stronger (r, α)-CPL condition, defined
through Equation 3.4 from Section 3.3.1, which considers the norm of the gradient contributed
by its largest coordinates in absolute value.

We prove strong convergence bounds for functions that satisfy the CPL condition. Compared
to the classical Polyak-Łojasiewicz condition, this adds the additional assumption that most of
the mass of the gradient is concentrated on a small subset of coordinates. This phenomenon
has been witnessed in several instances, and is implicitly used in [LSB+20].

Before proceeding with the main proof we provide a few useful lemmas.

Auxiliary Results

The first lemma we provide tells us that the distance from the current point after applying the
Top-K operator, to the optimal sparse solution can be controlled, as long as we are in a point
with lower sparsity compared to the sparse optimum. This lemma, which has been previously
stated in [JTK14], is particularly important for our analysis and will be used in most of our
proofs. We provide a slightly more general statement below.

Lemma A.1.1. Let θ∗ ∈ RN be a k∗-sparse vector, and let θ ∈ RN a k-sparse vector, with
k ≥ k∗. Then for any n > k the following inequality holds:

∥Tk (θ)− θ∥2

n− k
≤ ∥θ

∗ − θ∥2

n− k∗
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Proof. It is easy to observe that the function h(θ) = ∥Tk(θ)−θ∥2

n−k
is non-increasing. Indeed, a

larger k in the Top-K operator can only decrease the ratio. Thus,

∥Tk(θ)− θ∥2

n− k
≤ ∥Tk∗(θ)− θ∥2

n− k∗

Furthermore, since the Top-K operator gives the closest sparse vector to θ, we also have that

∥Tk∗(θ)− θ∥2

n− k∗ ≤ ∥θ
∗ − θ∥2

n− k∗

Combining these two inequalities completes the proof.

Next, we provide a result showing a simplified version of the (t, β)-smoothness property.

Lemma A.1.2. If f : RN → R is a (t, β)-smooth function, then for any t-sparse vector δ,
the following holds:

f (θ + δ) ≤ f (θ) + β

2

⃦⃦⃦⃦
⃦⃦
(︄

1
β
∇f (θ) + δ

)︄
supp(δ)

⃦⃦⃦⃦
⃦⃦

2

− 1
2β

⃦⃦⃦
∇f (θ)supp(δ)

⃦⃦⃦2
.

Proof. Using the (t, β)-smoothness we bound:

f (θ + δ) ≤ f (θ) + ⟨∇f (θ) , δ⟩+ β

2 ∥δ∥
2

The RHS can be further rewritten as :

f (θ) + 1
2β ∥∇f (θ)∥2 + ⟨∇f (θ) , δ⟩+ β

2 ∥δ∥
2 − 1

2β ∥∇f (θ)∥2

= f (θ) + 1
2

⃦⃦⃦⃦
⃦ 1√

β
∇f (θ) +

√︂
βδ

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)∥2

= f (θ) + β

2

⃦⃦⃦⃦
⃦ 1
β
∇f (θ) + δ

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)∥2 .

Since δ is t-sparse, we notice that the contributions of the two terms β
2

⃦⃦⃦
1
β
∇f (θ) + δ

⃦⃦⃦2
and

1
2β
∥∇f (θ)∥2 match on the coordinates where δ is zero. Hence, we can reduce the result

from the final two terms to the support of δ, which yields the desired conclusion.

We require another lemma which will be very useful in the analysis.

Lemma A.1.3. Let θ, δ ∈ RN such that supp (θ) = S, and let S ′, S∗ be some arbitrary
subsets, with |S ′| = |S| > |S∗|. Furthermore, we assume that

Tk (θ + δ) = (θ + δ)S′ .

Then we have that⃦⃦⃦
(θ + δ)S\S′

⃦⃦⃦2
− ∥δS∪S′∥2 ≤

⃦⃦⃦
(θ + δ)Z\S′

⃦⃦⃦2
− ∥δS∗∥2 ,

where Z is a set such that |Z \ S ′| ≤ 2 |S∗|.
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Proof. For the proof, we first remind that θ is zero everywhere except S. Therefore, we can
rewrite the LHS of the inequality we want to prove as follows:⃦⃦⃦

(θ + δ)S\S′

⃦⃦⃦2
− ∥δS∪S′∥2 =

⃦⃦⃦
(θ + δ)(S∗∪S)\S′

⃦⃦⃦2
−
⃦⃦⃦
(θ + δ)S∗\(S∪S′)

⃦⃦⃦2
− ∥δS∪S′∥2

=
⃦⃦⃦
(θ + δ)(S∗∪S)\S′

⃦⃦⃦2
−
⃦⃦⃦
δS∗\(S∪S′)

⃦⃦⃦2
− ∥δS∪S′∥2

=
⃦⃦⃦
(θ + δ)(S∗∪S)\S′

⃦⃦⃦2
− ∥δS∗∪S∪S′∥2

=
⃦⃦⃦
(θ + δ)(S∗∪S)\S′

⃦⃦⃦2
−
⃦⃦⃦
δS′\(S∗∪S)

⃦⃦⃦2
− ∥δS∗∪S∥2 .

Since θ is zero outside S, we have that
⃦⃦⃦
δS′\(S∗∪S)

⃦⃦⃦2
=
⃦⃦⃦
(θ + δ)S′\(S∗∪S)

⃦⃦⃦2

Moreover, because S ′ is the support of the Top-K operator applied to θ+δ, we know that θ+δ
achieves the highest norm on the support S ′ , compared to other subsets with the same number
of elements. In particular, there exists a set R ⊆ (S∗ ∪ S) \ S ′ with |R| =

⃓⃓⃓
S

′ \ (S∗ ∪ S)
⃓⃓⃓

such that ⃦⃦⃦
(θ + δ)S′\(S∗∪S)

⃦⃦⃦2
≥ ∥(θ + δ)R∥

2

The existence of set R is guaranteed by the fact that

|(S∗ ∪ S) \ S ′| ≥ |S \ S ′| = |S ′ \ S| ≥ |S ′ \ (S∗ ∪ S)| = |R|

where for the equality in the middle we used that |S| =
⃓⃓⃓
S

′
⃓⃓⃓
.

Hence we obtain that⃦⃦⃦
(θ + δ)S\S′

⃦⃦⃦2
− ∥δS∪S′∥2 ≤

⃦⃦⃦
(θ + δ)(S∗∪S)\S′

⃦⃦⃦2
− ∥(θ + δ)R∥

2 − ∥δS∗∪S∥2

≤
⃦⃦⃦
(θ + δ)((S∗∪S)\S′)\R

⃦⃦⃦2
− ∥δS∗∪S∥2

We further note that
(︂
(S∗ ∪ S) \ S ′

)︂
\R = ((S∗ ∪ S) \R) \ S ′ and since R ⊆ (S∗ ∪ S) \ S ′,

we have

|((S∗ ∪ S) \ S ′) \R| = |(S∗ ∪ S) \ S ′| − |R| = |(S∗ ∪ S) \ S ′| − |S ′ \ (S∗ ∪ S)|
≤ (|S∗|+ |S \ S ′|)− (|S ′ \ S| − |S∗|)
= 2 |S∗| .

Therefore, the conclusion holds for Z = (S∗ ∪ S) \R.

Based on the previous lemma we can derive the following useful corollary.

Corollary A.1.1. Let θ,θ⋆, δ ∈ RN such that supp (θ) = S, and let S ′, S∗ be arbitrary
subsets, with |S ′| = |S| > |S∗|. Furthermore suppose that

Tk (θ + δ) = (θ + δ)S′ .

Then the following holds:
⃦⃦⃦
(θ + δ)S\S′

⃦⃦⃦2
− ∥δS∪S′∥2 ≤ 2 |S∗|+ |supp (θ∗)|

|S ′| − |S∗|
· ∥(θ + δ)T − θ∗∥2 − ∥δS∗∥2 ,

where T satisfies |T | ≤ 2 |S∗|+ |supp (θ∗)|+ |S ′| and supp (θ∗) ⊆ T .
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Proof. Using Lemma A.1.3 we can write⃦⃦⃦
(θ + δ)S\S′

⃦⃦⃦2
− ∥δS∪S′∥2 ≤

⃦⃦⃦
(θ + δ)Z\S′

⃦⃦⃦2
− ∥δS∗∥2 ≤

⃦⃦⃦
(θ + δ)(Z∪supp(θ∗))\S′

⃦⃦⃦2
− ∥δS∗∥2

=
⃦⃦⃦
(θ + δ)Z∪supp(θ∗)∪S′ − (θ + δ)S′

⃦⃦⃦2
− ∥δS∗∥2 .

Based on the previous lemma, Z satisfies |Z \ S| ≤ 2 |S∗|. Thus, |Z ∪ supp (θ∗) ∪ S ′| ≤
2 |S∗|+ |supp (θ∗)|+ |S ′|. Applying Lemma A.1.1 to the first term of the RHS, we obtain that⃦⃦⃦
(θ + δ)Z∪supp(θ∗)∪S′ − (θ + δ)S′

⃦⃦⃦2
≤ |Z ∪ supp (θ∗) ∪ S ′| − |S ′|
|Z ∪ supp (θ∗) ∪ S ′| − |supp (θ∗)| ·

⃦⃦⃦
(θ + δ)Z∪supp(θ∗)∪S′ − θ∗

⃦⃦⃦2

≤ 2 |S∗|+ |supp (θ∗)|
|S ′| − |supp (θ∗)| ·

⃦⃦⃦
(θ + δ)Z∪supp(θ∗)∪S′ − θ∗

⃦⃦⃦2
.

Therefore, the result holds for T = Z ∪ supp (θ∗) ∪ S ′.

A crucial step in the proof of Theorem 3.3.1 requires upper bounding the ℓ2 distance to
the closest global optimizer by the difference in function value. In general, it is known that
this is implied by the Polyak-Łojasiewicz condition, and so it automatically holds for the
stronger concentrated Polyak-Łojasiewicz condition. The following lemma, which also appears
in [KNS16], gives us this upper bound. We partially reproduce the proof from [KNS16] for
completeness.

Lemma A.1.4. (From Polyak-Łojasiewicz to quadratic growth) Let α > 0 and f : RN → R
be a function satisfying the Polyak-Łojasiewicz inequality

∥∇f (θ)∥2 ≥ α

2 (f (θ)− f ∗)

where f ∗ is the optimal value of f . Then there exists a global minimizer θ∗ of f such that for
any θ the following holds:

f (θ)− f ∗ ≥ α

8 ∥θ − θ∗∥2 .

Proof. We define the function h (θ) =
√︂
f (θ)− f ∗, which has the following gradient

∇h (θ) = 1
2
√︂
f (θ)− f ∗

∇f (θ) .

Using the PL condition we have

∥∇h (θ)∥2 = 1
4 (f (θ)− f ∗) · ∥∇f (θ)∥2 ≥ 1

4 (f (θ)− f ∗) ·
α

2 · (f (θ)− f ∗) = α

8 .

For an initial point θ0, we consider the differential equation θ̇ = −∇h (θ). We see that this
always decreases function value until it reaches some θT for which ∇h (θT ) = 0. Using the
PL inequality, θT is a minimizer for f , i.e. f (θT ) = f ∗. Now we can write

h (θT ) = h (θ0) +
∫︂ T

0

⟨︂
∇h (θt) ,θt

̇
⟩︂
dt = h (θ0) +

∫︂ T

0
⟨∇h (θt) ,−∇h (θt)⟩ dt

= h (θ0)−
∫︂ T

0
∥∇h (θt)∥2 dt .
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Therefore,

h (θ0)− h (θT ) =
∫︂ T

0
∥∇h (θt)∥2 dt ≥

√︃
α

8 ·
∫︂ T

0
∥∇h (θt)∥ dt =

√︃
α

8 ·
∫︂ T

0

⃦⃦⃦
θt
̇
⃦⃦⃦
dt ,

where for the inequality we used our lower bound on the norm of ∇h (θ). Finally, we use the
fact that the last integral is larger than the total movement of θ as it moves from θ0 to θT .
Thus, ∫︂ T

0

⃦⃦⃦
θt
̇
⃦⃦⃦
dt ≥ ∥θ0 − θT∥ ,

Therefore, we obtain that h (θ0) − h (θT ) ≥
√︂

α
8 ∥θ0 − θT∥. Since θT is a minimizer with

f(θT ) = f ∗, h(θ0)− h(θT ) =
√︂
f(θ)− f ∗, which enables us to conclude that

f (θ0)− f ∗ ≥ α

8 ∥θ0 − θT∥2 .

Finally, we provide one more auxiliary lemma.

Lemma A.1.5. Let σ > 0 and a function f : RN −→ R for which we have unbiased stochastic
gradients gθ with bounded variance. Namely:

E[gθ|θ] = ∇f(θ),

and
E[∥gθ −∇f(θ)∥2] ≤ σ2 .

Then for any γ ∈ R∗, any vector a ∈ RN and any subset S ⊆ [N ] of coordinates, the following
inequalities hold:

∥(γ∇f (θ) + a)S∥
2 ≤ E

[︄
∥(γgθ + a)S∥

2
⃓⃓⃓⃓
⃓θ
]︄
≤ ∥(γ∇f (θ) + a)S∥

2 + σ2γ2 .

Proof. First, we expand the norm of (gθ + a)S under the expectation with respect to θ:

E
[︄
∥(γgθ + a)S∥

2
⃓⃓⃓⃓
⃓θ
]︄

= E
[︄
∥(γ∇f (θ) + a)S + (γgθ − γ∇f (θ))S∥

2
⃓⃓⃓⃓
⃓θ
]︄

= ∥(γ∇f (θ) + a)S∥
2 + E

[︄
∥(γgθ − γ∇f (θ))S∥

2
⃓⃓⃓⃓
⃓θ
]︄

+ E
[︄
2 (γ∇f (θ) + a)T

S (γgθ − γ∇f (θ))S

⃓⃓⃓⃓
⃓θ
]︄

= ∥(γ∇f (θ) + a)S∥
2 + E

[︄
∥(γgθ − γ∇f (θ))S∥

2
⃓⃓⃓⃓
⃓θ
]︄

≤ ∥(γ∇f (θ) + a)S∥
2 + σ2γ2 .

Based on the final equality, we immediately get that E
[︄
∥(γgθ + a)S∥

2
⃓⃓⃓⃓
⃓θ
]︄
≥ ∥(γ∇f (θ) + a)S∥

2,
which completes the proof.

After these preparations, we can now proceed with the main proof.
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Proof of Theorem 3.3.1

In what follows, we remind that we use S, S ′ to denote the support of the current iterate
θ and the next θ′, respectively. Furthermore, we denote k = |S| and k∗ = |supp(θ∗)|, with
k > k∗. Since we apply the Top-K operator with the same sparsity k, we note that |S| = |S ′|.
Before proceeding with the proof, we re-state the theorem.

Theorem 3.3.1. Let f : RN → R be a function satisfying previous assumptions (1)-(4), with
a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters, let k = C · k∗ · (β/α)2 for some
appropriately chosen constant C, and suppose that f is (2k+3k∗, β)-smooth and (k∗, α)-CPL.
For initial parameters θ0 and precision ϵ > 0, given access to stochastic gradients with
variance σ, stochastic IHT (3.3) converges in O

(︂
β
α
· ln f(θ0)−f(θ∗)

ϵ

)︂
iterations to a point θ

with ∥θ∥0 ≤ k, such that
E [f (θ)− f (θ∗)] ≤ ϵ+ 16σ2

α
.

Proof. First, we use the smoothness assumption of f and we apply Lemma A.1.2 for the
perturbation δ = Tk (θ − ηgθ)− θ, and use the fact that supp (δ) ⊆ S ∪ S ′. This gives us:

f (θ′) ≤ f (θ) + β

2

⃦⃦⃦⃦
⃦
(︄

1
β
∇f (θ) + (Tk (θ − ηgθ)− θ)

)︄
S∪S′

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)S∪S′∥2

= f (θ) + β

2

⃦⃦⃦⃦
⃦
(︄
Tk (θ − ηgθ)−

(︄
θ − 1

β
∇f (θ)

)︄)︄
S∪S′

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)S∪S′∥2

≤ f (θ) + β

⎛⎝∥(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′∥2 +
⃦⃦⃦⃦
⃦
(︄
ηgθ −

1
β
∇f (θ)

)︄
S∪S′

⃦⃦⃦⃦
⃦

2
⎞⎠− 1

2β ∥∇f (θ)S∪S′∥2

= f (θ) + β
⃦⃦⃦
(θ − ηgθ)S\S′

⃦⃦⃦2
+ β

⃦⃦⃦⃦
⃦
(︄
ηgθ −

1
β
∇f (θ)

)︄
S∪S′

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)S∪S′∥2 .

For the inequality we used that ∥a + b∥2 ≤ 2(∥a∥2 + ∥b∥2), while for the final equality we
used that the support of θ′ is S ′, which is obtained after applying the Top-K operator to
θ − ηgθ.
Next, we apply Corollary A.1.1 to θ, −ηgθ and θ∗, and where we define S∗ = Tk∗(∇f(θ)),
i.e. |S∗| = |supp(θ∗)| = k∗. The corollary tells us that there exists a subset of indices T with
|T | ≤ 3k∗ + k, such that the following holds:
⃦⃦⃦
(θ − ηgθ)S\S′

⃦⃦⃦2
≤ 2 |S∗|+ |supp (θ∗)|
|S ′| − |supp (θ∗)| · ∥(θ − ηgθ)T − θ∗∥2 − ∥η (gθ)S∗∥2 + ∥η (gθ)S∪S′∥2

= 3k∗

k − k∗ · ∥(θ − ηgθ)T − θ∗∥2 − ∥η (gθ)S∗∥2 + ∥η (gθ)S∪S′∥2 ,

Therefore, using the previous inequalities, we have:

f (θ′) ≤ f (θ) + β

(︄
3k∗

k − k∗ · ∥(θ − ηgθ)T − θ∗∥2 − ∥η (gθ)S∗∥2 + ∥η (gθ)S∪S′∥2
)︄

+ β

⃦⃦⃦⃦
⃦
(︄
ηgθ −

1
β
∇f (θ)

)︄
S∪S′

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)S∪S′∥2 .
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We have the following:

∥(θ − ηgθ)T − θ∗∥2 ≤ 2 ∥(θ − η∇f(θ))T − θ∗∥2 + 2 ∥(η∇f(θ)− ηgθ)T∥2

≤ 2 ∥(θ − η∇f(θ))T − θ∗∥2 + 2η2 ∥∇f(θ)− gθ∥2

Taking expectations conditioned on θ, we obtain that

E
[︂
∥(θ − ηgθ)T − θ∗∥2 |θ

]︂
≤ 2E

[︂
∥(θ − η∇f(θ))T − θ∗∥2

]︂
+ 2η2σ2

Furthermore,

β ∥η(gθ)S∪S′∥2 + β

⃦⃦⃦⃦
⃦
(︄
ηgθ −

1
β
∇f (θ)

)︄
S∪S′

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f (θ)S∪S′∥2 =

= 2βη2 ∥(gθ)S∪S′∥2 + 1
2β ∥∇f(θ)S∪S′∥2 − 2η(gθ)T

S∪S′ · ∇f(θ)S∪S′

= 2β
⃦⃦⃦⃦
⃦
(︄
ηgθ −

1
2β∇f(θ)

)︄
S∪S′

⃦⃦⃦⃦
⃦

2

≤ 2β
⃦⃦⃦⃦
⃦ηgθ −

1
2β∇f(θ)

⃦⃦⃦⃦
⃦

2

Taking expectations conditioned on θ and using Lemma A.1.5, we have

2βE
⎡⎣⃦⃦⃦⃦⃦ηgθ −

1
2β∇f(θ)

⃦⃦⃦⃦
⃦

2 ⃓⃓⃓⃓
θ

⎤⎦ ≤ 2β
⃦⃦⃦⃦
⃦η∇f(θ)− 1

2β∇f(θ)
⃦⃦⃦⃦
⃦

2

+ 2βη2σ2

Setting η = 1
2β

, we further obtain 2βE
[︃⃦⃦⃦
ηgθ − 1

2β
∇f(θ)

⃦⃦⃦2
⃓⃓⃓⃓
θ
]︃
≤ 2βη2σ2

Putting everything together, we obtain that:

E[f(θ′)− f(θ∗)|θ] ≤ f(θ)− f(θ∗) + 6βk∗

k − k∗E
[︂
∥(θ − η∇f(θ))T − θ∗∥2

]︂
+

+ 6βk∗

k − k∗η
2σ2 − βη2 ∥∇f(θ)S∗∥2 + 2βη2σ2

From Corollary A.1.1 we know that supp(θ∗) ⊆ T . Therefore, we can obtain an upper-bound
by increasing the support of θ − η∇f (θ).

∥(θ − η∇f (θ))T − θ∗∥2 ≤ ∥(θ − η∇f (θ))T ∪S − θ∗∥2

Since, f is (k∗, α)-CPL, it is also automatically PL. Then, we can apply Lemma A.1.4 to
obtain the upper bound

∥(θ − η∇f (θ))T ∪S − θ∗∥2 ≤ 8
α

(f ((θ − η∇f (θ))T ∪S)− f (θ∗))

Next, we know from the assumptions that f is (3k∗ + 2k)-smooth. Since |T | ≤ 3|S∗|+ |S ′|
(from Corollary A.1.1), we have that |T ∪ S| ≤ 3k∗ + 2k. Therefore, we can directly apply
the smoothness assumption, which, together with the fact that η = 1

2β
, gives us that:

f (θ − η∇f (θ)T ∪S)− f (θ∗) ≤ f (θ)− f (θ∗) (*)

Moreover, we can directly apply the (k∗, α)-CPL condition to bound ∥∇f(θ)S∗∥2 ≥ α
2 (f(θ)− f(θ∗)).
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Putting together the arguments above, we further obtain:

E [f(θ′)− f ∗|θ] ≤ (f(θ)− f ∗)(1 + 48k∗

k − k∗ ·
β

α
− βη2α

2 ) + 2βη2σ2k + 2k∗

k − k∗

Setting k = k∗ ·
(︃

768
(︂

β
α

)︂2
+ 1

)︃
we have 48k∗

k−k∗ · β
α
≤ 48 · 1

768·(β/α)2 · β
α

= 1
16 ·

α
β
. Moreover, we

have 3k∗

k−k∗ = 3
768 · (

α
β
)2 < 1

200 , and so we can bound 2βη2σ2 2k∗+k
k−k∗ ≤ 401σ2

800β
< σ2

β
. Therefore,

E [f (θ′)− f ∗|θ] ≤ (f (θ)− f ∗)
(︄

1− α

16β

)︄
+ σ2

β
.

Taking expectation over the entire history, this shows that after T steps, we have:

E[f(θT )− f ∗] ≤ (f(θ0)− f ∗)
(︄

1− α

16β

)︄T

+ σ2

β
·

1− (1− α
16β

)T

1− (1− α
16β

)

≤ (f(θ0)− f ∗)
(︄

1− α

16β

)︄T

+ 16σ2

α

Setting a desired error ϵ > 0, such that ϵ = (f(θ0) − f ∗)
(︂
1− α

16β

)︂T
, we obtain that

T = O
(︂(︂

β
α

)︂
ln f(θ0)−f∗

ϵ

)︂
. Here, we have used the approximation ln(1− x) ≈ −x, for small x.

Therefore, under the assumptions of the theorem, when performing stochastic IHT for T =
O
(︂(︂

β
α

)︂
ln f(θ0)−f∗

ϵ

)︂
iterations, we obtain an iterate θT such that

E [f (θT )− f ∗] ≤ ϵ+ 16σ2

α
,

which concludes the proof.

A.1.3 Theoretical Guarantees for AC/DC
In this section we provide the proof for Corollary 3.3.1, which gives us theoretical guarantees for
the practical AC/DC algorithm. The proof is based on a similar analysis used for Theorem 3.3.1.
First, we restate the Corollary, for completeness.

Corollary 3.3.1 (Convergence of AC/DC). Let f : RN → R be a function that decomposes
as f(θ) = 1

m

∑︁m
i=1 fi(θ), and has a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters,

let k = C · k∗ · (β/α)2 for some appropriately chosen constant C, suppose that each fi is
(N, β)-smooth, and L-Lipschitz, and that f is (k∗, α)-CPL.
Let ∆c and B be integers, and let {D1, . . . , DB} be a partition of [m] into B subsets of
cardinality O(m/B) each. Given θ, let g(i)

θ = 1
|Di|

∑︁
j∈Di
∇fj(θ).

Suppose we replace the IHT iteration with a dense/sparse phase consisting of

1. ∆c dense phases during each of which we perform a full pass over the data and update
the parameters through the iteration θ′ = θ − ηg(i)

θ for all i ∈ [B], with an appropriate
step size η;
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2. a pruning step which applies the Top-K operator Tk over the weights θ;

3. an optional sparse training phase which fully optimizes f over the sparse support given
by the Top-K operator

For initial parameters θ0 and precision ϵ > 0, this algorithm converges in O
(︂

β
α
· ln f(θ0)−f(θ∗)

ϵ

)︂
dense/sparse phases to a point θ with ∥θ∥0 ≤ k, such that

f (θ)− f (θ∗) ≤ ϵ+O

(︄
L2

α

)︄
.

Proof of Corollary 3.3.1. We will show that the proof mainly follows from that of Theo-
rem 3.3.1. The main challenge is handling the error introduced by performing ∆c stochastic
gradient passes through the data, instead of a single stochastic gradient step. We first
introduce a few notations. First, let M = ∆c · B and assume that compared to a single
stochastic gradient step for which we used a learning rate η, here we use a dampened learning
rate η′ = η

M
. Let θ be the current iterate with support S, and we define the following sequence

of stochastic gradient steps, before applying the Top-K operator:

xt+1 = xt − η′ · gxt ,

where 0 ≤ t ≤M−1, x0 = θ, and each gxt is a stochastic gradient computed on a mini-batch
of samples of size m

B
, such that for each consecutive B steps, the corresponding gradients

cover the entire training set.
It is easy to see that after M steps, we have xM = θ − η′ ·∑︁M−1

t=0 gxt . We denote the sum
of stochastic gradients starting at θ as Gθ := ∑︁M−1

t=0 gxt . Then, our gradient update prior to
applying the Top-K operator is ˜︁θ = θ − η′ ·Gθ.
Since each fi is β-smooth and L-Lipschitz, the same holds also for f , and for any mini-batch

1
|D|
∑︁D

i=1 fi. In particular, for each stochastic gradient gxt , we have ∥gxt∥ ≤ L. Therefore,

⃦⃦⃦ ˜︁θ − θ
⃦⃦⃦

= η′ ·
⃦⃦⃦⃦
⃦

M−1∑︂
t=0

gxt

⃦⃦⃦⃦
⃦ ≤ η′ ·

M−1∑︂
t=0
∥gxt∥ ≤ η′ML = ηL

Based on this, we can also bound the distance to θ from any intermediate update xt

as ∥xt − θ∥ ≤ ηL. Moreover, since each fi is smooth, we have that for any vectors x,y,
∥∇fi(x) − ∇fi(y)∥ ≤ β∥x − y∥; thus, for intermediate updates xt, we have ∥∇fi(xt) −
∇fi(θ)∥ ≤ βηL.
Therefore, putting everything together, we can bound:

∥η′Gθ − η∇f(θ)∥ = η

⃦⃦⃦⃦
⃦ 1
M

M−1∑︂
t=0

gxt −∇f(θ)
⃦⃦⃦⃦
⃦ ≤ η2βL (**)

For the last inequality, we used the fact that every B consecutive intermediate steps cover the
entire training set, which means we can directly map the fi components of each sub-sequence
of gxt gradients (with Bu + 1 ≤ t ≤ B(u + 1), for 1 ≤ u ≤ ∆c) to the corresponding
components from ∇f(θ).
Given this last inequality, we can now show how the result follows. We first denote our stochastic
IHT update θ′ = Tk(θ − η′Gθ). Note that since f is (N, β)-smoooth, it is also automatically
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smooth along sparse vectors. Thus, we use Lemma A.1.2 for δ = Tk(θ− η′Gθ)− θ, restricted
to the support S ∪ S ′:

f(θ′) ≤ f(θ) + β

2

⃦⃦⃦⃦
⃦
(︄

1
β
∇f(θ) + Tk(θ − η′Gθ)− θ

)︄
S∪S′

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f(θ)S∪S′∥2

≤ f(θ) + β ∥(Tk(θ − η′Gθ)− (θ − η′Gθ))S∪S′∥2 + β

⃦⃦⃦⃦
⃦η′Gθ −

1
β
∇f(θ)

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f(θ)S∪S′∥2

= f(θ) + β
⃦⃦⃦
(θ − η′Gθ)S\S′

⃦⃦⃦2
+ β

⃦⃦⃦⃦
⃦η′Gθ −

1
β
∇f(θ)

⃦⃦⃦⃦
⃦

2

− 1
2β ∥∇f(θ)S∪S′∥2

Now we set η = 1
2β

and have the following bound on
⃦⃦⃦
(θ − η′Gθ)S\S′

⃦⃦⃦2
:

β
⃦⃦⃦
(θ − η′Gθ)S\S′

⃦⃦⃦2
≤ 2β

⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
+ 2β

⃦⃦⃦
(η′Gθ − η∇f(θ))S\S′

⃦⃦⃦2

≤ 1
η

⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
+ L2

8β ,

where for the last inequality we used (**) and the fact that η = 1
2β

.
Then,

f(θ′) ≤ f(θ) + 1
η

(︃⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
− ∥η∇f(θ)S∪S′∥2

)︃
+ β

⃦⃦⃦⃦
⃦η′Gθ −

1
β
∇f(θ)

⃦⃦⃦⃦
⃦

2

+ L2

8β

We can further bound the term

β

⃦⃦⃦⃦
⃦η′Gθ −

1
β
∇f(θ)

⃦⃦⃦⃦
⃦

2

≤ 2β ∥η′Gθ − η∇f(θ)∥2 + 2β ∥η∇f(θ)∥2 ≤ L2

8β + L2

2β ,

where we used again (**) and the L-Lipschitz property of f .
Therefore,

f(θ′) ≤ f(θ) + 1
η

(︃⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
− ∥η∇f(θ)S∪S′∥2

)︃
+ 3L2

4β

Now, similar to the proof from Theorem 3.3.1, we can apply Corollary A.1.1 to upper-bound⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
− ∥η∇f(θ)S∪S′∥2, after defining S∗ = supp(Tk∗(∇f(θ))):

⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
−∥η∇f(θ)S∪S′∥2 ≤ 3k∗

k − k∗ ∥(θ − η∇f(θ))T − θ∗∥2−∥η∇f(θ)S∗∥2 ,

where |T | ≤ 3k∗ + k and supp(θ∗) ⊆ T . Then, we apply the same argument as for
Theorem 3.3.1, using the CPL property and inequality (*) to further bound:

⃦⃦⃦
(θ − η∇f(θ))S\S′

⃦⃦⃦2
− ∥η∇f(θ)S∪S′∥2 ≤ (f(θ)− f(θ∗))( 3k∗

k − k∗ ·
8
α
− η2α

2 )

Finally, putting everything together, we obtain:

f(θ′) ≤ f(θ) + (f(θ)− f(θ∗))( 48k∗

k − k∗ ·
β

α
− α

4β ) + 3L2

4β .
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Setting k = k∗(8 · 48 · β2

α2 + 1), we obtain:

f(θ′)− f(θ∗) ≤ (f(θ)− f(θ∗))(1− α

8β ) + 3L2

4β

Taking expectation over the entire history, if θ0 is the initial point, we obtain after T iterations:

E[f(θT )− f(θ∗)] ≤ (f(θ0)− f(θ∗))(1− α

8β )T +O(L
2

α
).

We further note that the steps performed during the sparse training phases do not affect
convergence as they can only improve error in function value, which is the main quantity that
our analysis tracks.
Therefore, for error ϵ > 0, the algorithm after T = O

(︂
β
α

ln f(θ0)−f(θ∗)
ϵ

)︂
iterations reaches a

point θT such that
E[f(θT )− f(θ∗)] ≤ ϵ+O(L

2

α
),

which concludes the proof.

A.2 Additional Experiments
In this section we provide additional experimental details and comparisons between AC/DC
and other pruning methods. We discuss additional properties of AC/DC on ImageNet models,
a comparison with sparse training method Top-KAST [JPR+20], together with real-time
inference speed-ups for sparse AC/DC models in Section A.2.1. Finally, we give additional
details on the memorization experiments for AC/DC on CIFAR-10 in Section A.2.2

A.2.1 Additional Experiments on ImageNet
Additional Properties and Hyperparameter Details

Training Hyper-parameters for ImageNet. We used the same hyper-parameters for
all our ImageNet experiments, on both ResNet50 and MobileNetV1. Namely, we trained
using SGD with momentum and batch size 256. We used a cosine learning rate scheduler,
after an initial warm-up phase of 5 epochs, when the learning rate was linearly increased to
0.256. The momentum value was 0.875 and weight decay was approximately 0.00003. These
hyper-parameters have the standard values used in the implementation of STR [KRS+20].

Dynamics of FLOPs during training. Despite the dynamics of the compression masks
presented in Figure 3.2b, we noticed that the sparsity distribution does not change substantially.
This can be observed when looking at the number of inference FLOPs per sample, at the end
of each compression phase, in Figure A.1a. Interestingly, as training progresses, AC/DC also
induces structured sparsity, as more neurons and convolutional filters get pruned. This can be
deduced from the decreasing inference FLOPs at the end of each dense phase, as shown in
Figure A.1b. Interestingly, as previously described in Section 3.4.2, the resulting AC/DC dense
models have a small percentage of zero-valued weights, most likely due to neurons or filters
that are completely pruned away during the compression phase. We show the percentages of
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(a) Test FLOPs after each sparse phase (b) Test FLOPs after each dense phase

Figure A.1: Dynamics of sparse and dense inference FLOPs for ImageNet on ResNet50, as a
percentage of the dense baseline FLOPs

zero weights in AC/DC dense models in Table A.1, where especially at high sparsity (≥ 95%),
a non-trivial percentage of the weights remain inactive; this in turn decreases the total FLOPs
for the dense models.

AC/DC with uniform pruning. As discussed, for example, in [SA20], gradual magnitude
pruning (GMP) with a global sparsity distribution tends to outperform its uniform counterpart.
Interestingly, with global magnitude pruning later layers (which also tend to be the largest)
are pruned the most. Moreover, we did not encounter convergence issues caused by entire
layers being pruned, as hypothesized in some previous work [EGM+20, JPR+20]. However,
one concern related to global magnitude pruning is a potential FLOP inefficiency of the
resulting models; in theory, this would be a consequence of the earlier layers being pruned the
least. For this reason, we performed additional experiments with AC/DC at uniform sparsity,
with the first and last layers dense (as commonly used in the literature [EGM+20, JPR+20]).
Our results show that there are no substantial differences compared to AC/DC with global
magnitude pruning. However, keeping the first and last layers dense substantially improves
the results with global magnitude pruning. These observations emphasize that AC/DC is an
easy-to-use method which works reliably well with different pruning criteria. For complete
results, please see Table A.2.

Target
Sparsity

Top-1
Accuracy (%)

Inference
FLOPs

Inactive
Weights (%)

80 73.8 0.98× 3.2
90 73.1 0.93× 10.5
95 72.9 0.85× 22.0
98 70.8 0.67× 49.8

Table A.1: (ImageNet/ResNet50) Accuracy,
sparsity, inference FLOPs and percentage of in-
active weights for the resulting AC/DC dense
models (before fine-tuning, one seed).

Sparsity
Distribution

Target
Sparsity(%)

Global
Sparsity(%)

Top-1
Accuracy (%)

FLOPs
Inference

global 90 89.8 75.14 0.18×
global⋆ 90 82.6 75.64 0.21×

uniform⋆ 90 82.6 75.04 0.13×
global 95 94.8 73.15 0.11×
global⋆ 95 87.2 74.16 0.13×

uniform⋆ 95 87.2 73.28 0.08×

Table A.2: (ImageNet/ResNet) AC/DC with
uniform vs global magnitude pruning on
ResNet50 (one seed), where (⋆) denotes that
the first and last layers are dense.

Length of compression/decompression phases. It is important to note that the length of
the dense and sparse phases used in AC/DC, together with the warm-up and fine-tuning phases,
could have a significant impact on the quality of the resulting models. Before settling on the
sparsity pattern we used for all our ImageNet experiments (see Figure 3.2a, we experimented
with different lengths for the sparse/dense phases, but found that ultimately the pattern used
in the paper had the best trade-off between training FLOPs and validation accuracy. Due
to computational limitations, and to ensure a fair comparison with the dense baseline and
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Model/Setup Real-Time Inference, 4 cores Batch 64 Inference, 16 cores
ResNet50 ONNXRT v1.6 14.773 329.734

ResNet50 Dense 15.081 285.958
ResNet50 90% Pruned 9.46 124.193

ResNet50 90% Unif. Pruned 8.495 116.897
MobileNetV1 ONNXRT v1.6 2.552 80.748

MobileNetV1 Dense 2.513 55.845
MobileNetV1 Pruned 75% 1.96 40.976
MobileNetV1 Pruned 90% 1.468 34.909

Table A.3: Practical inference speed-up achieved with AC/DC models. The table shows the time
per batch (milliseconds) using a sparse inference engine [Dee21].

other pruning methods, we decided on using a fixed number of 100 training epochs (the same
used for the dense baseline). In this setup, we experimented mainly with the lengths for the
compression/decompression phases used in Figure 3.2a, but noticed that having a longer final
decompression phase had a positive impact on the fine-tuned dense model. For instance, when
following a sparsity schedule as in Figure 3.1 (i.e. a shorter final decompression phase of 5
epochs and last 10 epochs of sparse finetuning), the sparse model at 90% sparsity had a similar
performance to the reported results (75.18% accuracy, from one seed), while the fine-tuned
dense model was substantially below the dense baseline (76.05% validation accuracy). We
believe having a short warm-up period and a longer fine-tuning phase are both beneficial for
the sparse model; in our experiments, we only used warm-up phases of 10 epochs, but believe
that shorter phases are worth exploring as well. Furthermore, the mask difference between
consecutive compression phases is an important guide for choosing the sparsity schedule: as it
was previously discussed, having a non-trivial difference between the masks typically results in
better sparse models.

Inference Speedups

We examine the potential for real-world speedup of models produced through our framework.
For this, we use the CPU-based inference framework of [Dee21], which supports efficient
inference over unstructured sparse models, and is free to use for non-commercial purposes.
Specifically, we export our PyTorch-trained models to the ONNX intermediate format, pre-
serving weight sparsity, and then execute inference on a subset of samples, at various batch
sizes, measuring time per batch. We perform our tests on an Intel i9-7980XE CPU with 16
cores and 2.60GHz core frequency and simulate two scenarios: the first is real-time inference,
i.e. samples are processed one at a time, in a resource-constrained environment, using only 4
cores. The second is batch inference, for which we pick batch size 64, in a cloud environment,
for which we use all 16 cores. We measure average time per batch for the sparse models
against dense baselines, for which we use both the Deepsparse engine, and the ONNX runtime
(ONNXRT). We present the average over 10 runs. The variance is extremely low, so we omit
it for readability.

We now briefly discuss the results. First, notice that the dense baselines offer similar performance
for real-time inference, but that the Deepsparse engine has a slight edge at batch 64. We will
therefore compare against its timings below. The results show a speedup of 1.6x for the 90%
global-pruned ResNet50 model, and 1.8x for the uniformly pruned one: the uniformly-pruned
model is slightly faster, which correlates with its lower FLOP count. This pattern is preserved
in MobileNetV1 experiments, although the speedups are relatively lower, since the architecture
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Method 80% Sparsity 90% Sparsity
Backward (%) Accuracy (%) Backward (%) Accuracy (%)

AC/DC 80 / 0 76.3± 0.1 90 / 0 75.03± 0.1
Top-KAST 0 75.64 0 74.42
Top-KAST 50 74.78 50 74.09
Top-KAST 80 72.19 80 73.07

Table A.4: (ImageNet/ResNet50) Comparison with Top-KAST, with different sparsity values used
in the backward pass, when pruning all layers.

is more compact. We note that the speedups are more substantial when performing inference
over a batch, where the engine has more potential for parallelization, and our setup uses more
cores.

Comparison Between AC/DC and Sparse Training Methods

As previously highlighted, Top-KAST is the closest to us, in terms of validation accuracy, out
of existing sparse training methods. However, for the results reported, the authors kept the
first convolutional and final fully-connected layers dense. To obtain a fair comparison, we
used AC/DC on the same sparse distribution, and for 90% sparsity over the pruned layers
(82.57% overall network sparsity), our results improved substantially. Namely, the best sparse
model reached 75.64% validation accuracy (0.6% increase from the results in Table A.2),
while the accuracy of the best dense model was 76.85% after fine-tuning. For completeness,
we also provide in Table A.4 the results for Top-KAST when all layers are pruned, as they
were provided to us by the authors. Notice that AC/DC surpasses even Top-KAST with dense
back-propagation.

It is important to note, however, that because of its flexibility in choosing the gradients density,
Top-KAST can theoretically obtain substantially better training speed-ups than AC/DC, the
latter being constrained by its dense training phases. This allows Top-KAST to improve
the accuracy of the models by increasing the number of training epochs, while still enabling
(theoretical) training speed-up. We present in Table A.5 another comparison between AC/DC
and Top-KAST, when the training time for the latter is increased 2 or 5 times. For all results
(which were provided to us by the authors), the first and last layers for Top-KAST are dense.
When comparing with AC/DC with all layers pruned, Top-KAST obtains better results at 98%
and 95% sparsity, with increased training epochs. However, when the first and last layers are
kept dense, the results for AC/DC at 95% and 98% sparsity are better than for Top-KAST
with increased training steps. For all the results reported on AC/DC the number of training
steps was fixed at 100 epochs.

We note that the results obtained with AC/DC can be improved as well with increased number
of training epochs. As an example, when using the same sparsity schedule extended over
150 epochs, the best sparse model obtained with AC/DC on 90% sparsity reached ≈ 76%
accuracy, using fewer training FLOPs compared to the original dense baseline trained on 100
epochs (namely 87%). Furthermore, when we fine-tune the dense model by replacing the
final 15 epochs compression phase with dense training, we obtain a dense model with 76.95%
accuracy, slightly higher than the original dense baseline.
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Method Sparsity
(%)

Backward
Sparsity (%)

Sparse Top-1
Accuracy (%)

Train
FLOPs (%)

Inference
FLOPs (%)

AC/DC 80 80 / 0 76.3± 0.1 0.65× 0.29×
Top-KAST 80 0 75.59 0.48× 0.23×
Top-KAST 80 60 74.59 0.29× 0.23×

Top-KAST 2x 80 0 76.11 0.97× 0.23×
Top-KAST 2x 80 60 75.29 0.58× 0.23×

AC/DC 90 90 / 0 75.03± 0.1 0.58× 0.18×
AC/DC⋆ 90 90 / 0 75.64 0.6× 0.21×

AC/DC⋆ (unif.) 90 90/0 75.04 0.55× 0.13×
Top-KAST 90 0 74.65 0.42× 0.13×
Top-KAST 90 80 73.03 0.16× 0.13×

Top-KAST 2x 90 0 75.35 0.84× 0.13×
Top-KAST 2x 90 80 74.16 0.32× 0.13×

AC/DC 95 95 / 0 73.14± 0.2 0.53× 0.11×
AC/DC⋆ 95 95 / 0 74.16 0.54× 0.13×

AC/DC⋆ (unif) 95 95 / 0 73.28 0.5× 0.08×
Top-KAST 95 0 71.83 0.39× 0.08×
Top-KAST 95 90 70.42 0.1× 0.08×

Top-KAST 2x 95 0 73.29 0.77× 0.08×
Top-KAST 2x 95 90 72.42 0.19× 0.08×

Top-KAST 5x 95 0 74.27 1.94× 0.08×
Top-KAST 5x 95 90 73.17 0.48× 0.08×

AC/DC 98 98 / 0 68.44± 0.09 0.46× 0.06×
AC/DC⋆ 98 98 / 0 71.27 0.47× 0.08×

Top-KAST 98 90 67.06 0.08× 0.05×
Top-KAST 98 95 66.46 0.06× 0.05×

Top-KAST 2x 98 90 68.99 0.15× 0.05×
Top-KAST 2x 98 85 68.87 0.12× 0.05×

Table A.5: Comparison with Top-KAST with increased training steps (ResNet50). (⋆) indicates
that the first and last layers are dense for AC/DC, while this is the case for all Top-KAST results.

A.2.2 Memorization Experiments on CIFAR-10
In what follows, we study the similarities between the sparse and dense models learned with
AC/DC, on the particular setup of memorizing random labels. Specifically, we select 1000
i.i.d. training samples from the CIFAR-10 dataset [KH+09] and randomly change their labels.
We train a ResNet20 [HZRS16] model using AC/DC, at various target sparsity levels, ranging
from 50% to 95%. We use SGD with momentum, weight decay, and initial learning rate 0.1
which is decayed by a factor of 10 every 60 epochs, starting with epoch 65.

Using data augmentation dramatically affects the memorization of randomly-labelled training
samples, and thus we differentiate between the two possible cases. Namely, the regular baseline
can easily memorize (in the sense of reaching perfect accuracy) the randomly-labelled samples,
when no data augmentation is used; in comparison, with data augmentation memorization
is more difficult, and the accuracy on randomly-labelled samples for the baseline is just
above 60%. In addition to the accuracy on the perturbed samples with respect to their new
random labels, we also track the accuracy with respect to the “true” or correct labels. This
differentiation offers a better understanding regarding where memorization fails and a glimpse
into the robustness properties of neural networks in general, and of AC/DC, in particular.

No data augmentation. As previously mentioned, in this case the baseline model can
perfectly memorize the perturbed data, with respect to their random labels. Interestingly, prior

124



10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

100
Ac

c.
(%

)- 
ra

nd
om

 la
be

ls
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Accuracy on the mis-labelled data

10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

Ac
c.

(%
)- 

tru
e 

la
be

ls

90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(b) Accuracy on the mis-labelled data (w.r.t. the true
labels)

Figure A.2: Accuracy during training with AC/DC at 90% and 95% target sparsity, for 1000
randomly labelled CIFAR-10 images. No data augmentation was applied to the training samples.
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Figure A.3: Accuracy during training with AC/DC at 50%, 75%, 90% and 95% target sparsity, for
1000 randomly labelled CIFAR-10 images. Here, all samples were trained using data augmentation.

to the initial learning rate decay, most (≥ 70%) perturbed samples are still correctly classified
with respect to their “true” labels, and memorization happens very quickly after the learning
rate is decreased. In the case of AC/DC with low target sparsity (50% and 75%), memorization
has a very similar behavior to the dense baseline. However, for higher sparsity levels (90% and
95%) we can see a clear difference between the sparse and dense models. Namely, during each
compression phase most perturbed samples are correctly classified with respect to their true
labels, whereas in decompression phases their random labels are memorized. This phenomenon
is illustrated in Figure A.2.

Data augmentation. In this case, memorization of the perturbed samples is more difficult,
and it happens later on during training, usually after the second learning rate decrease for
the baseline model. Interestingly, in the case of AC/DC we can see (Figure A.3) a clear
inverse relationship between the amount of memorization and the target sparsity. Although
low sparsity enables more memorization, most perturbed samples are still correctly classified
with respect to their true labels. For higher sparsity levels (90% and 95%), most perturbed
samples are correctly classified with respect to their true labels (almost 90%) and very few are
memorized. Furthermore, the dense model resulted from AC/DC training is more robust than
the original baseline, as it still learns the correct labels of the perturbed samples, despite being
presented with random ones.
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A.2.3 Computational Details
Hardware Details

Experiments were run on NVIDIA RTX 2080 GPUs for image classification tasks, and NVIDIA
RTX 3090 GPUs for language modelling. Each ImageNet run took approximately 2 days for
ResNet50 and one day for MobileNet, while each Transformer-XL experiment took approxi-
mately 2 days.

FLOPs Computation

When computing FLOPs, we take into account the number of zero-valued weights for linear
and convolutional layers. To compute the FLOPs required for a backward pass over a sample,
we use the same convention as RigL [EGM+20]; namely, if F denotes the inference FLOPs per
sample, the number of backward FLOPs is estimated as B = 2 · F , as we need F FLOPs to
backpropagate the error, and additional F to compute the gradients w.r.t. the weights. For
ImageNet experiments, we ignore the FLOPs required for Batch Normalization, pooling, ReLU
or Cross Entropy, similarly to other methods [EGM+20, SA20, KRS+20]; however, these layers
have a negligible impact on the total FLOPs number (at most 0.01× the dense number).
For compression and decompression phases C and D, we consider FC and FD the compression
and decompression inference FLOPs per sample, respectively. We use F to denote the inference
FLOPs per sample for the baseline network. During each compression phase, the training
FLOPs per sample can be estimated as 3 · FC . For decompression phases, we noticed that a
small fraction of weights remain zero, and therefore FD < F . When doing a backward pass
we have additional FD from back-propagating the error, and F extra FLOPs for the gradients
with respect to all parameters. Therefore, we estimate the training FLOPs per sample during
a decompression phase as 2 · FD + F . We measure the number of FLOPs on a random input
sample, at the end of each training epoch and use this value to estimate the total training
FLOPs for that particular epoch. To obtain the final number of FLOPs, we compute the
inference FLOPs on a random input sample, estimate the backward FLOPs, compute the
estimated training FLOPs over all training epochs as described above, and scale by the number
of training samples.
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APPENDIX B
Appendix for Chapter 4

B.1 Hyperparameters and Training Setup
Here we discuss the general hyperparameters and experimental setup used for the full and
linear finetuning experiments. Regarding data loading image augmentation settings, we are
careful to match them to the ones used in the original upstream training protocol. Specifically,
this affects the choice of whether to use Bicubic or Bilinear image interpolation for image
resizing; for example, RigL models were trained using Bicubic interpolation, whereas the other
pruning methods considered used the Biliniar interpolation. All ResNet and MobileNet models
considered were trained using standard ImageNet-specific values for the normalization mean
and standard deviation. In the case of full finetuning, we used dataset-specific normalization
values for the downstream tasks; these were obtained by loading the dataset once with standard
data augmentations and computing the means and variances of the resulting data. For linear
finetuning, we use center cropping of the images, followed by normalization using standard
ImageNet values. For both full and linear finetuning, we use the same training hyperparameters
as [SIE+20]; specifically, we train for 150 epochs, decreasing the initial learning rate by a
factor of 10 every 50 epochs. We use 0.01 as the initial learning rate for all linear finetuning
experiments; for full finetuning, we empirically found 0.001 to be the initial learning rate which
gives comparable results for most datasets except Aircraft and Cars, for which we use 0.01.
Our experiments were conducted using PyTorch 1.8.1 and NVIDIA GPUs. All full finetuning
experiments on the ResNet50 backbone were repeated three times and all linear finetuning
experiments five times.

B.2 Linear and Full Finetuning Results on ResNet50
In this section, we provide additional details, together with the complete results for our
experiments for linear and full finetuning from ResNet50, presented in Sections 4.4.2 and
4.4.3. For each pruning method, we used a range of sparsity levels, and trained linear and full
finetuning for each model and sparsity level, on all 12 downstream tasks; each experiment was
repeated 5 times for linear and 3 times for full finetuning. Note that checkpoints for some
pruning methods were not available for some of the higher sparsities.
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Figure B.1: (ResNet50/Linear Finetuning) Per-dataset downstream validation accuracy.

B.2.1 Linear Finetuning Results

We provide the complete results for our linear finetuning experiments on each downstream task,
for all pruning methods and sparsity levels considered. The results for the transfer accuracies
for each pruning strategy, sparsity level, and downstream task are presented in Figure B.1
and Table B.2. We discussed in Section 4.4.2 that regularization methods match and even
sometimes outperform the dense baseline transfer performance. Note that this fact is valid
not only in aggregate, but also at the level of each individual dataset.

In Table B.2, we also include the linear transfer results for LTH-T. We note that the generally
poor performance of the method, especially for more specialized tasks and higher sparsity
levels, should not be taken as a criticism of the method itself: this use case is clearly contrary
to the method’s design, and the spirit of the original Lottery Ticket Hypothesis (which aims
to discover masks with the intent to retrain, rather than final weights). Rather, we include
these results to provide quantitative justification for the omission of LTH-T from any further
analyses, and supporting the original authors’ point that additional finetuning is necessary in
order to obtain a competitive lottery ticket for transfer learning.

Results With Different Optimizers. Additionally, we validate our linear finetuning results
by training with a different optimizer than SGD with momentum; namely, we use L-BFGS
[LN89] and L2 regularization. To select the L2 regularization hyperparameter, we use 20% of
the training samples in each downstream task for validation, and perform linear finetuning on
each task using multiple values of the L2 regularization. After selecting the best value for L2
on the validation set, we retrain on the entire training set, and report the final accuracy on
the test set. Our hyperparameter selection strategy is consistent with the one used in [KSL19]
We present the full results of linear finetuning using L-BFGS on the 12 downstream tasks in
Table B.1. Generally, we observe that the test accuracies for linear finetuning with L-BFGS
are similar or slightly better compared to the results obtained when using SGD. This could
be a consequence of a better hyperparameter search, also tuned individually for each task; in
contrast, for the SGD results, we used the same setup for all downstream tasks, based on the
same hyperparameters used in [SIE+20]. Overall, these results confirm our initial findings that
sparse regularization methods perform better on linear finetuning, compared to progressive
sparsification methods.

128



Method Dense AC/DC GMP RigL ERK
1x

RigL ERK
5x STR WoodFisher

80% Sparsity
Aircraft 50.3 56.5 46.7 54.8 55.7 54.7 43.3
Birds 56.7 58.2 55.8 55.2 56.4 55.6 52.0

CIFAR-10 91.0 90.6 89.7 90.1 90.7 91.2 89.1
CIFAR-100 74.4 74.6 71.1 73.3 74.4 74.5 70.4
Caltech-101 91.6 92.0 90.5 90.1 91.0 90.6 91.1
Caltech-256 84.4 84.2 83.9 83.2 84.4 83.4 83.6

Cars 56.2 59.7 49.6 58.6 60.2 59.9 46.4
DTD 73.2 74.5 70.9 73.8 73.5 73.7 70.9

Flowers 93.0 93.5 92.0 93.1 93.4 93.7 88.4
Food-101 73.2 73.8 70.6 73.5 74.0 73.2 68.9

Pets 92.2 91.7 92.1 91.1 92.2 91.6 92.2
SUN397 60.2 60.4 59.4 60.1 60.8 60.6 58.8

90% Sparsity
Aircraft 50.3 56.1 49.1 55.4 57.5 54.7 44.9
Birds 56.7 58.3 55.2 53.0 57.3 54.7 52.7

CIFAR-10 91.0 90.9 89.5 90.3 90.7 90.2 88.8
CIFAR-100 74.4 74.2 71.3 72.9 74.4 73.5 69.6
Caltech-101 91.6 91.9 91.4 90.3 91.8 90.0 91.1
Caltech-256 84.4 84.1 82.6 81.9 84.6 82.2 82.9

Cars 56.2 57.9 52.4 57.1 61.9 57.6 48.2
DTD 73.2 72.0 70.9 72.9 72.1 72.2 70.8

Flowers 93.0 93.4 92.6 92.6 93.4 93.9 90.3
Food-101 73.2 73.6 71.3 72.2 74.1 72.4 69.4

Pets 92.2 91.1 91.8 91.2 91.7 90.7 91.5
SUN397 60.2 59.6 59.4 58.6 60.7 58.1 57.9

95% Sparsity
Aircraft 50.3 57.4 N/A 54.3 57.0 51.5 45.8
Birds 56.7 57.0 N/A 51.8 56.1 51.8 51.0

CIFAR-10 91.0 90.4 N/A 89.8 90.5 89.0 88.5
CIFAR-100 74.4 73.0 N/A 71.4 73.2 71.5 69.3
Caltech-101 91.6 90.6 N/A 89.2 91.7 89.8 90.2
Caltech-256 84.4 82.5 N/A 80.0 83.4 80.2 81.4

Cars 56.2 58.6 N/A 55.2 58.9 52.9 46.6
DTD 73.2 71.9 N/A 72.6 73.5 71.1 70.1

Flowers 93.0 94.2 N/A 92.2 93.4 92.8 90.5
Food-101 73.2 73.0 N/A 70.7 73.4 70.4 68.7

Pets 92.2 90.9 N/A 90.2 91.1 88.5 91.2
SUN397 60.2 58.1 N/A 56.7 59.2 56.7 56.5

Table B.1: (ResNet50/Linear Finetuning) Test accuracy when performing linear finetuning with the
L-BFGS optimizer.
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Figure B.2: (ResNet50/Full Finetuning) Per-dataset downstream validation accuracy.

B.2.2 Full Finetuning Results
Similarly to linear finetuning, we further provide complete results for full finetuning from
sparse models. We present individual results per downstream task and pruning method, at
different sparsity levels, in Figure B.2 and Table B.3; we report for each the average and
standard deviation across 3 different trials. The results further support our conclusions from
Section 4.4.3; namely, downstream task accuracy is correlated with the backbone sparsity,
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and progressive sparsification methods (GMP, WoodFisher) generally perform better than
regularization methods.

Model Dense AC/DC GMP LTH-T RigL ERK
1x

RigL ERK
5x STR WoodFisher

80% Sparsity
Aircraft 49.2 ± 0.1 55.1 ± 0.1 45.8 ± 0.1 36.9 ± 0.1 54.6 ± 0.1 55.2 ± 0.2 53.7 ± 0.0 40.0 ± 0.2
Birds 57.7 ± 0.1 58.4 ± 0.0 56.2 ± 0.0 29.6 ± 0.1 55.2 ± 0.0 56.7 ± 0.1 56.2 ± 0.1 51.9 ± 0.1

CIFAR-10 91.2 ± 0.0 90.9 ± 0.0 89.7 ± 0.0 83.4 ± 0.1 89.7 ± 0.1 90.0 ± 0.1 91.4 ± 0.0 89.6 ± 0.0
CIFAR-100 74.6 ± 0.1 74.7 ± 0.1 72.0 ± 0.1 62.0 ± 0.1 73.1 ± 0.1 73.7 ± 0.0 74.7 ± 0.0 71.3 ± 0.0
Caltech-101 91.9 ± 0.1 92.4 ± 0.2 91.5 ± 0.2 75.4 ± 0.1 91.1 ± 0.1 90.8 ± 0.3 91.2 ± 0.1 91.2 ± 0.1
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 83.9 ± 0.1 66.1 ± 0.1 83.3 ± 0.1 84.6 ± 0.1 83.6 ± 0.0 83.7 ± 0.1

Cars 53.4 ± 0.1 56.6 ± 0.0 49.1 ± 0.1 32.7 ± 0.1 57.4 ± 0.1 58.6 ± 0.1 57.0 ± 0.1 44.9 ± 0.1
DTD 73.5 ± 0.2 74.4 ± 0.1 71.2 ± 0.1 64.9 ± 0.2 73.5 ± 0.2 72.9 ± 0.3 74.3 ± 0.2 70.8 ± 0.2

Flowers 91.6 ± 0.1 92.7 ± 0.1 90.9 ± 0.1 85.6 ± 0.1 92.2 ± 0.1 92.3 ± 0.1 93.0 ± 0.0 87.6 ± 0.1
Food-101 73.2 ± 0.0 73.8 ± 0.0 70.5 ± 0.0 61.9 ± 0.0 73.3 ± 0.0 72.5 ± 0.1 73.9 ± 0.0 68.5 ± 0.0

Pets 92.6 ± 0.1 92.3 ± 0.1 92.5 ± 0.1 79.4 ± 0.1 91.9 ± 0.1 92.5 ± 0.2 91.7 ± 0.0 92.2 ± 0.1
SUN397 60.1 ± 0.0 60.4 ± 0.0 58.1 ± 0.0 47.4 ± 0.0 59.1 ± 0.1 59.9 ± 0.0 60.3 ± 0.0 57.8 ± 0.1

90% Sparsity
Aircraft 49.2 ± 0.1 55.5 ± 0.1 48.7 ± 0.1 16.5 ± 0.2 54.1 ± 0.1 56.6 ± 0.1 52.9 ± 0.1 44.0 ± 0.2
Birds 57.7 ± 0.1 58.7 ± 0.0 55.4 ± 0.1 11.4 ± 0.1 53.3 ± 0.0 57.2 ± 0.1 55.2 ± 0.1 52.7 ± 0.1

CIFAR-10 91.2 ± 0.0 91.0 ± 0.0 89.4 ± 0.0 67.0 ± 0.1 90.0 ± 0.1 90.2 ± 0.1 90.6 ± 0.0 88.9 ± 0.0
CIFAR-100 74.6 ± 0.1 74.3 ± 0.0 71.5 ± 0.0 42.2 ± 0.1 72.8 ± 0.1 73.4 ± 0.1 73.7 ± 0.1 70.5 ± 0.0
Caltech-101 91.9 ± 0.1 92.5 ± 0.1 91.6 ± 0.1 49.0 ± 0.6 90.6 ± 0.3 91.4 ± 0.4 90.9 ± 0.1 91.3 ± 0.1
Caltech-256 84.8 ± 0.1 84.5 ± 0.0 82.9 ± 0.0 42.0 ± 0.1 81.9 ± 0.0 84.5 ± 0.1 82.6 ± 0.0 83.0 ± 0.1

Cars 53.4 ± 0.1 56.0 ± 0.1 50.2 ± 0.0 15.4 ± 0.1 55.5 ± 0.1 60.5 ± 0.1 54.8 ± 0.1 46.7 ± 0.0
DTD 73.5 ± 0.2 73.7 ± 0.2 72.4 ± 0.2 54.7 ± 0.1 72.6 ± 0.3 72.7 ± 0.2 73.8 ± 0.1 71.0 ± 0.2

Flowers 91.6 ± 0.1 92.4 ± 0.0 91.4 ± 0.1 67.7 ± 0.1 91.6 ± 0.1 92.4 ± 0.1 93.0 ± 0.1 89.0 ± 0.1
Food-101 73.2 ± 0.0 73.8 ± 0.0 71.1 ± 0.0 46.9 ± 0.0 71.7 ± 0.0 72.6 ± 0.0 72.6 ± 0.0 69.2 ± 0.0

Pets 92.6 ± 0.1 91.9 ± 0.1 92.0 ± 0.1 43.8 ± 0.2 91.1 ± 0.1 91.9 ± 0.2 91.1 ± 0.1 92.0 ± 0.1
SUN397 60.1 ± 0.0 59.8 ± 0.1 58.1 ± 0.0 31.7 ± 0.1 57.7 ± 0.0 59.8 ± 0.1 58.2 ± 0.0 56.8 ± 0.0

95% Sparsity
Aircraft 49.2 ± 0.1 56.6 ± 0.1 N /A 4.5 ± 0.3 53.5 ± 0.1 56.9 ± 0.1 50.3 ± 0.1 45.6 ± 0.3
Birds 57.7 ± 0.1 57.7 ± 0.0 N /A 2.3 ± 0.1 51.9 ± 0.1 55.9 ± 0.0 52.1 ± 0.1 51.8 ± 0.1

CIFAR-10 91.2 ± 0.0 90.5 ± 0.0 N /A 39.9 ± 0.2 89.4 ± 0.0 89.8 ± 0.1 89.1 ± 0.0 88.6 ± 0.0
CIFAR-100 74.6 ± 0.1 73.4 ± 0.0 N /A 13.5 ± 0.2 71.5 ± 0.1 72.4 ± 0.1 71.7 ± 0.0 69.7 ± 0.0
Caltech-101 91.9 ± 0.1 91.6 ± 0.1 N /A 20.1 ± 0.5 89.0 ± 0.1 91.4 ± 0.1 90.0 ± 0.2 91.0 ± 0.2
Caltech-256 84.8 ± 0.1 82.8 ± 0.1 N /A 12.4 ± 0.3 80.1 ± 0.1 83.5 ± 0.1 80.2 ± 0.1 81.2 ± 0.1

Cars 53.4 ± 0.1 56.9 ± 0.1 N /A 3.9 ± 0.1 52.9 ± 0.0 57.0 ± 0.1 50.5 ± 0.1 45.5 ± 0.0
DTD 73.5 ± 0.2 72.7 ± 0.1 N /A 27.4 ± 0.2 71.9 ± 0.1 72.9 ± 0.2 72.1 ± 0.2 70.4 ± 0.1

Flowers 91.6 ± 0.1 93.0 ± 0.1 N /A 27.8 ± 0.6 91.0 ± 0.1 92.4 ± 0.1 91.9 ± 0.1 89.6 ± 0.0
Food-101 73.2 ± 0.0 73.2 ± 0.0 N /A 15.0 ± 0.1 70.6 ± 0.1 71.9 ± 0.0 70.7 ± 0.0 68.2 ± 0.0

Pets 92.6 ± 0.1 91.0 ± 0.2 N /A 15.9 ± 0.2 90.1 ± 0.1 91.1 ± 0.1 89.8 ± 0.1 91.4 ± 0.0
SUN397 60.1 ± 0.0 58.2 ± 0.0 N /A 8.4 ± 0.2 55.9 ± 0.1 58.3 ± 0.1 56.3 ± 0.0 55.1 ± 0.1

98% Sparsity
Aircraft 49.2 ± 0.1 54.8 ± 0.1 N /A N /A N /A N /A 48.0 ± 0.1 45.0 ± 0.1
Birds 57.7 ± 0.1 54.5 ± 0.0 N /A N /A N /A N /A 43.7 ± 0.0 48.1 ± 0.1

CIFAR-10 91.2 ± 0.0 89.2 ± 0.0 N /A N /A N /A N /A 86.5 ± 0.0 86.6 ± 0.0
CIFAR-100 74.6 ± 0.1 71.6 ± 0.0 N /A N /A N /A N /A 67.4 ± 0.0 67.8 ± 0.0
Caltech-101 91.9 ± 0.1 89.0 ± 0.1 N /A N /A N /A N /A 86.3 ± 0.1 88.5 ± 0.1
Caltech-256 84.8 ± 0.1 79.8 ± 0.0 N /A N /A N /A N /A 73.4 ± 0.1 77.1 ± 0.0

Cars 53.4 ± 0.1 52.1 ± 0.0 N /A N /A N /A N /A 44.4 ± 0.1 42.2 ± 0.0
DTD 73.5 ± 0.2 71.6 ± 0.1 N /A N /A N /A N /A 68.4 ± 0.2 68.3 ± 0.1

Flowers 91.6 ± 0.1 92.3 ± 0.1 N /A N /A N /A N /A 90.8 ± 0.1 89.5 ± 0.1
Food-101 73.2 ± 0.0 70.8 ± 0.0 N /A N /A N /A N /A 65.3 ± 0.0 66.5 ± 0.0

Pets 92.6 ± 0.1 89.2 ± 0.1 N /A N /A N /A N /A 85.5 ± 0.1 88.7 ± 0.1
SUN397 60.1 ± 0.0 55.1 ± 0.0 N /A N /A N /A N /A 50.9 ± 0.0 52.4 ± 0.0

Table B.2: (ResNet50) Full results showing transfer accuracy for sparse ResNet50 models with
linear finetuning.
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Model Dense AC/DC GMP LTH-T RigL ERK
1x

RigL ERK
5x STR WoodFisher

80% Sparsity
Aircraft 83.6 ± 0.4 83.3 ± 0.1 84.4 ± 0.2 84.7 ± 0.5 82.6 ± 0.3 82.4 ± 0.2 79.8 ± 0.3 84.8 ± 0.2
Birds 72.4 ± 0.3 69.9 ± 0.2 72.5 ± 0.2 71.4 ± 0.1 72.3 ± 0.3 73.4 ± 0.1 68.1 ± 0.1 72.4 ± 0.4

CIFAR-10 97.4 ± 0.0 96.9 ± 0.1 97.2 ± 0.0 97.0 ± 0.0 96.9 ± 0.0 97.1 ± 0.0 96.5 ± 0.1 97.2 ± 0.1
CIFAR-100 85.6 ± 0.2 84.9 ± 0.2 85.1 ± 0.0 84.4 ± 0.2 83.6 ± 0.2 84.1 ± 0.4 83.6 ± 0.2 85.1 ± 0.1
Caltech-101 93.5 ± 0.1 92.5 ± 0.2 93.7 ± 0.5 92.1 ± 0.5 92.5 ± 0.1 92.0 ± 0.3 90.7 ± 0.6 93.7 ± 0.1
Caltech-256 86.1 ± 0.1 85.4 ± 0.2 85.1 ± 0.2 83.1 ± 0.1 83.8 ± 0.1 84.2 ± 0.2 84.0 ± 0.1 85.1 ± 0.1

Cars 90.3 ± 0.2 89.2 ± 0.1 90.3 ± 0.1 89.9 ± 0.0 89.4 ± 0.1 89.6 ± 0.1 87.8 ± 0.1 90.5 ± 0.2
DTD 76.2 ± 0.3 75.7 ± 0.5 75.4 ± 0.1 75.2 ± 0.4 74.5 ± 0.2 74.2 ± 0.2 73.7 ± 0.6 75.4 ± 0.3

Flowers 95.0 ± 0.1 94.7 ± 0.2 95.9 ± 0.2 93.9 ± 0.2 95.7 ± 0.2 96.1 ± 0.1 93.7 ± 0.2 95.5 ± 0.2
Food-101 87.3 ± 0.1 86.9 ± 0.1 87.4 ± 0.1 86.9 ± 0.1 86.9 ± 0.1 87.2 ± 0.1 85.9 ± 0.1 87.4 ± 0.1

Pets 93.4 ± 0.1 92.5 ± 0.0 93.4 ± 0.1 92.9 ± 0.1 92.2 ± 0.1 92.4 ± 0.1 92.1 ± 0.1 93.3 ± 0.3
SUN397 64.8 ± 0.0 64.0 ± 0.0 63.1 ± 0.1 61.7 ± 0.2 62.2 ± 0.2 62.0 ± 0.3 62.6 ± 0.1 62.8 ± 0.1

90% Sparsity
Aircraft 83.6 ± 0.4 82.8 ± 1.0 83.9 ± 0.7 84.9 ± 0.3 81.6 ± 0.5 83.0 ± 0.4 78.7 ± 0.4 84.5 ± 0.4
Birds 72.4 ± 0.3 68.5 ± 0.1 70.5 ± 0.1 67.8 ± 0.2 70.3 ± 0.0 72.9 ± 0.2 66.0 ± 0.2 71.6 ± 0.2

CIFAR-10 97.4 ± 0.0 96.6 ± 0.1 97.1 ± 0.0 96.6 ± 0.2 96.4 ± 0.1 97.0 ± 0.1 96.1 ± 0.1 97.0 ± 0.1
CIFAR-100 85.6 ± 0.2 83.9 ± 0.1 84.4 ± 0.0 83.0 ± 0.1 83.0 ± 0.2 83.7 ± 0.3 82.9 ± 0.2 84.4 ± 0.2
Caltech-101 93.5 ± 0.1 92.6 ± 0.2 92.9 ± 0.2 84.5 ± 0.3 91.7 ± 0.3 92.3 ± 0.4 90.9 ± 0.3 93.9 ± 0.3
Caltech-256 86.1 ± 0.1 84.8 ± 0.1 83.7 ± 0.3 78.6 ± 0.1 82.7 ± 0.2 84.0 ± 0.1 83.1 ± 0.2 84.0 ± 0.1

Cars 90.3 ± 0.2 88.5 ± 0.2 89.5 ± 0.0 89.5 ± 0.1 88.4 ± 0.1 89.2 ± 0.1 86.7 ± 0.2 90.0 ± 0.2
DTD 76.2 ± 0.3 75.2 ± 0.1 74.2 ± 0.1 71.9 ± 0.1 73.4 ± 0.4 75.2 ± 0.8 73.2 ± 0.4 75.5 ± 0.4

Flowers 95.0 ± 0.1 94.6 ± 0.1 95.3 ± 0.1 89.8 ± 0.2 95.5 ± 0.1 96.1 ± 0.1 93.4 ± 0.4 95.5 ± 0.3
Food-101 87.3 ± 0.1 86.6 ± 0.1 86.8 ± 0.1 86.4 ± 0.1 85.9 ± 0.1 87.3 ± 0.2 84.8 ± 0.0 87.0 ± 0.1

Pets 93.4 ± 0.1 92.1 ± 0.1 92.2 ± 0.1 91.1 ± 0.2 91.4 ± 0.2 92.3 ± 0.1 91.7 ± 0.2 92.7 ± 0.3
SUN397 64.8 ± 0.0 63.0 ± 0.0 62.5 ± 0.2 58.3 ± 0.2 61.3 ± 0.1 62.0 ± 0.2 61.2 ± 0.0 62.3 ± 0.1

95% Sparsity
Aircraft 83.6 ± 0.4 81.2 ± 0.4 N /A 82.6 ± 0.8 80.7 ± 0.1 82.5 ± 0.4 76.7 ± 0.8 83.6 ± 0.6
Birds 72.4 ± 0.3 66.9 ± 0.1 N /A 62.2 ± 0.1 68.3 ± 0.2 71.6 ± 0.1 62.3 ± 0.1 69.9 ± 0.1

CIFAR-10 97.4 ± 0.0 96.2 ± 0.1 N /A 95.5 ± 0.1 96.0 ± 0.1 96.6 ± 0.1 95.4 ± 0.1 96.7 ± 0.1
CIFAR-100 85.6 ± 0.2 82.9 ± 0.1 N /A 80.0 ± 0.1 82.0 ± 0.2 82.8 ± 0.0 80.9 ± 0.3 83.1 ± 0.1
Caltech-101 93.5 ± 0.1 91.9 ± 0.2 N /A 65.3 ± 0.8 90.7 ± 0.4 92.2 ± 0.3 89.8 ± 0.1 92.0 ± 0.3
Caltech-256 86.1 ± 0.1 83.1 ± 0.0 N /A 71.8 ± 0.3 81.1 ± 0.2 83.1 ± 0.2 80.3 ± 0.0 82.4 ± 0.1

Cars 90.3 ± 0.2 87.6 ± 0.1 N /A 87.5 ± 0.4 87.9 ± 0.3 88.9 ± 0.2 84.9 ± 0.2 88.9 ± 0.2
DTD 76.2 ± 0.3 74.1 ± 0.4 N /A 67.1 ± 0.8 73.3 ± 0.2 73.5 ± 0.2 72.6 ± 0.4 73.7 ± 0.3

Flowers 95.0 ± 0.1 94.1 ± 0.3 N /A 76.0 ± 1.3 94.9 ± 0.3 96.0 ± 0.0 93.0 ± 0.3 95.0 ± 0.3
Food-101 87.3 ± 0.1 85.5 ± 0.0 N /A 85.4 ± 0.1 85.1 ± 0.2 86.6 ± 0.0 83.0 ± 0.1 86.3 ± 0.1

Pets 93.4 ± 0.1 91.0 ± 0.1 N /A 84.5 ± 0.5 90.1 ± 0.2 91.6 ± 0.3 89.9 ± 0.3 92.3 ± 0.3
SUN397 64.8 ± 0.0 61.4 ± 0.2 N /A 51.4 ± 0.3 60.0 ± 0.3 61.1 ± 0.2 59.0 ± 0.1 60.9 ± 0.1

98% Sparsity
Aircraft 83.6 ± 0.4 79.1 ± 0.2 N /A N /A N /A N /A 72.0 ± 0.2 81.4 ± 0.3
Birds 72.4 ± 0.3 63.4 ± 0.1 N /A N /A N /A N /A 54.1 ± 0.1 65.4 ± 0.3

CIFAR-10 97.4 ± 0.0 95.0 ± 0.1 N /A N /A N /A N /A 93.8 ± 0.1 96.0 ± 0.0
CIFAR-100 85.6 ± 0.2 79.8 ± 0.1 N /A N /A N /A N /A 75.9 ± 0.2 80.7 ± 0.2
Caltech-101 93.5 ± 0.1 88.9 ± 0.1 N /A N /A N /A N /A 85.2 ± 0.6 89.8 ± 0.3
Caltech-256 86.1 ± 0.1 80.3 ± 0.1 N /A N /A N /A N /A 74.2 ± 0.0 78.9 ± 0.1

Cars 90.3 ± 0.2 85.5 ± 0.2 N /A N /A N /A N /A 79.9 ± 0.5 86.8 ± 0.1
DTD 76.2 ± 0.3 72.6 ± 0.1 N /A N /A N /A N /A 69.4 ± 0.3 71.8 ± 0.1

Flowers 95.0 ± 0.1 92.9 ± 0.1 N /A N /A N /A N /A 91.8 ± 0.3 94.0 ± 0.2
Food-101 87.3 ± 0.1 83.2 ± 0.0 N /A N /A N /A N /A 77.9 ± 0.1 84.2 ± 0.1

Pets 93.4 ± 0.1 88.8 ± 0.2 N /A N /A N /A N /A 85.5 ± 0.1 89.8 ± 0.1
SUN397 64.8 ± 0.0 58.4 ± 0.1 N /A N /A N /A N /A 53.8 ± 0.2 58.5 ± 0.1

Table B.3: (ResNet50) Full results showing transfer accuracy for sparse ResNet50 models with full
finetuning.
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B.2.3 Results for Extended Training Schedule

In this section we provide the full results for our experiments with extended training time
for regularization methods (RigL and AC/DC), as described in Section 4.4.5. The transfer
accuracies for linear finetuning are presented in Table B.4, while the same results for full
finetuning are shown in Table B.5. Our experiments suggest that for regularization-based
methods, the extra investment in upstream training can result in upstream models that transfer
very well under both full and linear finetuning.

Dense AC/DC RigL ERK
1x 2x 1x 3x 5x 1x 5x

80% Sparsity
Aircraft 49.2 ± 0.1 50.0 ± 0.1 55.1 ± 0.1 52.5 ± 0.2 N /A 54.6 ± 0.1 55.2 ± 0.2
Birds 57.7 ± 0.1 57.1 ± 0.0 58.4 ± 0.0 59.2 ± 0.0 N /A 55.2 ± 0.0 56.7 ± 0.1

CIFAR-10 91.2 ± 0.0 90.2 ± 0.0 90.9 ± 0.0 91.4 ± 0.0 N /A 89.7 ± 0.1 90.0 ± 0.1
CIFAR-100 74.6 ± 0.1 73.7 ± 0.0 74.7 ± 0.1 75.3 ± 0.0 N /A 73.1 ± 0.1 73.7 ± 0.0
Caltech-101 91.9 ± 0.1 92.1 ± 0.2 92.4 ± 0.2 92.3 ± 0.2 N /A 91.1 ± 0.1 90.8 ± 0.3
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 84.6 ± 0.1 85.4 ± 0.1 N /A 83.3 ± 0.1 84.6 ± 0.1

Cars 53.4 ± 0.1 51.4 ± 0.1 56.6 ± 0.0 56.2 ± 0.1 N /A 57.4 ± 0.1 58.6 ± 0.1
DTD 73.5 ± 0.2 73.1 ± 0.2 74.4 ± 0.1 74.1 ± 0.2 N /A 73.5 ± 0.2 72.9 ± 0.3

Flowers 91.6 ± 0.1 91.1 ± 0.1 92.7 ± 0.1 92.6 ± 0.1 N /A 92.2 ± 0.1 92.3 ± 0.1
Food-101 73.2 ± 0.0 72.2 ± 0.0 73.8 ± 0.0 74.8 ± 0.0 N /A 73.3 ± 0.0 72.5 ± 0.1

Pets 92.6 ± 0.1 91.9 ± 0.1 92.3 ± 0.1 92.8 ± 0.1 N /A 91.9 ± 0.1 92.5 ± 0.2
SUN397 60.1 ± 0.0 59.9 ± 0.0 60.4 ± 0.0 60.5 ± 0.0 N /A 59.1 ± 0.1 59.9 ± 0.0

90% Sparsity
Aircraft 49.2 ± 0.1 50.0 ± 0.1 55.5 ± 0.1 54.6 ± 0.1 55.5 ± 0.0 54.1 ± 0.1 56.6 ± 0.1
Birds 57.7 ± 0.1 57.1 ± 0.0 58.7 ± 0.0 59.7 ± 0.1 60.4 ± 0.1 53.3 ± 0.0 57.2 ± 0.1

CIFAR-10 91.2 ± 0.0 90.2 ± 0.0 91.0 ± 0.0 90.9 ± 0.0 90.3 ± 0.0 90.0 ± 0.1 90.2 ± 0.1
CIFAR-100 74.6 ± 0.1 73.7 ± 0.0 74.3 ± 0.0 74.7 ± 0.0 74.2 ± 0.0 72.8 ± 0.1 73.4 ± 0.1
Caltech-101 91.9 ± 0.1 92.1 ± 0.2 92.5 ± 0.1 92.9 ± 0.2 92.8 ± 0.2 90.6 ± 0.3 91.4 ± 0.4
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 84.5 ± 0.0 85.3 ± 0.1 85.3 ± 0.1 81.9 ± 0.0 84.5 ± 0.1

Cars 53.4 ± 0.1 51.4 ± 0.1 56.0 ± 0.1 58.7 ± 0.1 58.4 ± 0.1 55.5 ± 0.1 60.5 ± 0.1
DTD 73.5 ± 0.2 73.1 ± 0.2 73.7 ± 0.2 74.2 ± 0.3 73.9 ± 0.2 72.6 ± 0.3 72.7 ± 0.2

Flowers 91.6 ± 0.1 91.1 ± 0.1 92.4 ± 0.0 92.6 ± 0.0 92.8 ± 0.0 91.6 ± 0.1 92.4 ± 0.1
Food-101 73.2 ± 0.0 72.2 ± 0.0 73.8 ± 0.0 75.1 ± 0.0 75.2 ± 0.0 71.7 ± 0.0 72.6 ± 0.0

Pets 92.6 ± 0.1 91.9 ± 0.1 91.9 ± 0.1 92.5 ± 0.1 92.6 ± 0.2 91.1 ± 0.1 91.9 ± 0.2
SUN397 60.1 ± 0.0 59.9 ± 0.0 59.8 ± 0.1 60.3 ± 0.0 61.2 ± 0.0 57.7 ± 0.0 59.8 ± 0.1

95% Sparsity
Aircraft 49.2 ± 0.1 50.0 ± 0.1 56.6 ± 0.1 55.6 ± 0.0 N /A 53.5 ± 0.1 56.9 ± 0.1
Birds 57.7 ± 0.1 57.1 ± 0.0 57.7 ± 0.0 59.2 ± 0.1 N /A 51.9 ± 0.1 55.9 ± 0.0

CIFAR-10 91.2 ± 0.0 90.2 ± 0.0 90.5 ± 0.0 90.2 ± 0.0 N /A 89.4 ± 0.0 89.8 ± 0.1
CIFAR-100 74.6 ± 0.1 73.7 ± 0.0 73.4 ± 0.0 74.3 ± 0.1 N /A 71.5 ± 0.1 72.4 ± 0.1
Caltech-101 91.9 ± 0.1 92.1 ± 0.2 91.6 ± 0.1 92.3 ± 0.3 N /A 89.0 ± 0.1 91.4 ± 0.1
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 82.8 ± 0.1 84.0 ± 0.1 N /A 80.1 ± 0.1 83.5 ± 0.1

Cars 53.4 ± 0.1 51.4 ± 0.1 56.9 ± 0.1 57.4 ± 0.0 N /A 52.9 ± 0.0 57.0 ± 0.1
DTD 73.5 ± 0.2 73.1 ± 0.2 72.7 ± 0.1 74.7 ± 0.2 N /A 71.9 ± 0.1 72.9 ± 0.2

Flowers 91.6 ± 0.1 91.1 ± 0.1 93.0 ± 0.1 92.5 ± 0.1 N /A 91.0 ± 0.1 92.4 ± 0.1
Food-101 73.2 ± 0.0 72.2 ± 0.0 73.2 ± 0.0 74.7 ± 0.0 N /A 70.6 ± 0.1 71.9 ± 0.0

Pets 92.6 ± 0.1 91.9 ± 0.1 91.0 ± 0.2 91.5 ± 0.1 N /A 90.1 ± 0.1 91.1 ± 0.1
SUN397 60.1 ± 0.0 59.9 ± 0.0 58.2 ± 0.0 59.7 ± 0.0 N /A 55.9 ± 0.1 58.3 ± 0.1

Table B.4: (ResNet50) Transfer accuracy for extended training time for ResNet50 with linear
finetuning.
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Dense AC/DC RigL ERK
1x 2x 1x 3x 5x 1x 5x

80% Sparsity
Aircraft 83.6 ± 0.4 84.3 ± 0.2 83.3 ± 0.1 83.2 ± 0.3 N /A 82.6 ± 0.3 82.4 ± 0.2
Birds 72.4 ± 0.3 73.5 ± 0.1 69.9 ± 0.2 72.5 ± 0.2 N /A 72.3 ± 0.3 73.4 ± 0.1

CIFAR-10 97.4 ± 0.0 97.4 ± 0.0 96.9 ± 0.1 97.5 ± 0.1 N /A 96.9 ± 0.0 97.1 ± 0.0
CIFAR-100 85.6 ± 0.2 85.8 ± 0.2 84.9 ± 0.2 85.3 ± 0.1 N /A 83.6 ± 0.2 84.1 ± 0.4
Caltech-101 93.5 ± 0.1 93.9 ± 0.1 92.5 ± 0.2 93.4 ± 0.2 N /A 92.5 ± 0.1 92.0 ± 0.3
Caltech-256 86.1 ± 0.1 86.5 ± 0.2 85.4 ± 0.2 86.7 ± 0.1 N /A 83.8 ± 0.1 84.2 ± 0.2

Cars 90.3 ± 0.2 90.5 ± 0.2 89.2 ± 0.1 89.8 ± 0.3 N /A 89.4 ± 0.1 89.6 ± 0.1
DTD 76.2 ± 0.3 76.9 ± 0.3 75.7 ± 0.5 76.6 ± 0.0 N /A 74.5 ± 0.2 74.2 ± 0.2

Flowers 95.0 ± 0.1 95.5 ± 0.2 94.7 ± 0.2 95.1 ± 0.2 N /A 95.7 ± 0.2 96.1 ± 0.1
Food-101 87.3 ± 0.1 87.5 ± 0.1 86.9 ± 0.1 87.7 ± 0.1 N /A 86.9 ± 0.1 87.2 ± 0.1

Pets 93.4 ± 0.1 93.4 ± 0.2 92.5 ± 0.0 93.4 ± 0.2 N /A 92.2 ± 0.1 92.4 ± 0.1
SUN397 64.8 ± 0.0 65.1 ± 0.0 64.0 ± 0.0 64.8 ± 0.1 N /A 62.2 ± 0.2 62.0 ± 0.3

90% Sparsity
Aircraft 83.6 ± 0.4 84.3 ± 0.2 82.8 ± 1.0 82.6 ± 0.2 83.5 ± 0.4 81.6 ± 0.5 83.0 ± 0.4
Birds 72.4 ± 0.3 73.5 ± 0.1 68.5 ± 0.1 71.6 ± 0.2 72.8 ± 0.2 70.3 ± 0.0 72.9 ± 0.2

CIFAR-10 97.4 ± 0.0 97.4 ± 0.0 96.6 ± 0.1 97.0 ± 0.1 97.1 ± 0.1 96.4 ± 0.1 97.0 ± 0.1
CIFAR-100 85.6 ± 0.2 85.8 ± 0.2 83.9 ± 0.1 84.7 ± 0.1 85.3 ± 0.1 83.0 ± 0.2 83.7 ± 0.3
Caltech-101 93.5 ± 0.1 93.9 ± 0.1 92.6 ± 0.2 93.0 ± 0.0 93.2 ± 0.1 91.7 ± 0.3 92.3 ± 0.4
Caltech-256 86.1 ± 0.1 86.5 ± 0.2 84.8 ± 0.1 86.1 ± 0.1 86.5 ± 0.1 82.7 ± 0.2 84.0 ± 0.1

Cars 90.3 ± 0.2 90.5 ± 0.2 88.5 ± 0.2 89.3 ± 0.1 89.8 ± 0.1 88.4 ± 0.1 89.2 ± 0.1
DTD 76.2 ± 0.3 76.9 ± 0.3 75.2 ± 0.1 75.3 ± 0.2 76.4 ± 0.2 73.4 ± 0.4 75.2 ± 0.8

Flowers 95.0 ± 0.1 95.5 ± 0.2 94.6 ± 0.1 95.4 ± 0.1 95.9 ± 0.1 95.5 ± 0.1 96.1 ± 0.1
Food-101 87.3 ± 0.1 87.5 ± 0.1 86.6 ± 0.1 87.4 ± 0.1 87.7 ± 0.1 85.9 ± 0.1 87.3 ± 0.2

Pets 93.4 ± 0.1 93.4 ± 0.2 92.1 ± 0.1 92.6 ± 0.1 93.0 ± 0.1 91.4 ± 0.2 92.3 ± 0.1
SUN397 64.8 ± 0.0 65.1 ± 0.0 63.0 ± 0.0 64.3 ± 0.0 64.8 ± 0.1 61.3 ± 0.1 62.0 ± 0.2

95% Sparsity
Aircraft 83.6 ± 0.4 84.3 ± 0.2 81.2 ± 0.4 82.2 ± 0.3 N /A 80.7 ± 0.1 82.5 ± 0.4
Birds 72.4 ± 0.3 73.5 ± 0.1 66.9 ± 0.1 70.1 ± 0.1 N /A 68.3 ± 0.2 71.6 ± 0.1

CIFAR-10 97.4 ± 0.0 97.4 ± 0.0 96.2 ± 0.1 96.6 ± 0.1 N /A 96.0 ± 0.1 96.6 ± 0.1
CIFAR-100 85.6 ± 0.2 85.8 ± 0.2 82.9 ± 0.1 84.0 ± 0.1 N /A 82.0 ± 0.2 82.8 ± 0.0
Caltech-101 93.5 ± 0.1 93.9 ± 0.1 91.9 ± 0.2 92.9 ± 0.1 N /A 90.7 ± 0.4 92.2 ± 0.3
Caltech-256 86.1 ± 0.1 86.5 ± 0.2 83.1 ± 0.0 85.3 ± 0.0 N /A 81.1 ± 0.2 83.1 ± 0.2

Cars 90.3 ± 0.2 90.5 ± 0.2 87.6 ± 0.1 89.0 ± 0.1 N /A 87.9 ± 0.3 88.9 ± 0.2
DTD 76.2 ± 0.3 76.9 ± 0.3 74.1 ± 0.4 75.0 ± 0.4 N /A 73.3 ± 0.2 73.5 ± 0.2

Flowers 95.0 ± 0.1 95.5 ± 0.2 94.1 ± 0.3 95.0 ± 0.2 N /A 94.9 ± 0.3 96.0 ± 0.0
Food-101 87.3 ± 0.1 87.5 ± 0.1 85.5 ± 0.0 86.7 ± 0.1 N /A 85.1 ± 0.2 86.6 ± 0.0

Pets 93.4 ± 0.1 93.4 ± 0.2 91.0 ± 0.1 91.6 ± 0.1 N /A 90.1 ± 0.2 91.6 ± 0.3
SUN397 64.8 ± 0.0 65.1 ± 0.0 61.4 ± 0.2 63.0 ± 0.0 N /A 60.0 ± 0.3 61.1 ± 0.2

Table B.5: (ResNet50) Transfer accuracy for extended training time for ResNet50 with full finetuning.

B.3 Finetuning Experiments on ResNet18 and ResNet34
In this section, we further validate our findings for linear finetuning from ResNet50 on two
additional smaller architectures, namely ResNet18 and ResNet34. Specifically, we test whether
regularization pruning methods generally have better transfer potential than progressive
sparsification methods, and whether regularization pruning methods improve over dense
models for fine-grained classification tasks. For this purpose, we trained AC/DC and GMP
on ImageNet using ResNet18 and ResNet34 models, for 80% and 90% sparsity, using the
same hyperparameters as for ResNet50. For both ResNet18 and ResNet34, there was a fairly
large gap in ImageNet validation accuracy between GMP and AC/DC for both 80% and 90%
sparsity, in favor of GMP, which almost recovered the baseline accuracy at 80% sparsity.
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We show the results for linear finetuning using AC/DC and GMP for ResNet18 and ResNet34
in Table B.6. Interestingly, despite the larger gap in ImageNet validation accuracy between
GMP and AC/DC (with GMP being closer to the dense baseline), AC/DC tends to outperform
GMP in terms of transfer performance, on most of the downstream tasks. Furthermore, we
observe that AC/DC tends to transfer better than the dense baseline, especially for specialized
or fine-grained downstream tasks. These observations confirm our findings for linear finetuning
on ResNet50.

Pruning Strategy Dense GMP 80% GMP 90% AC/DC 80% AC/DC 90%
Task

ResNet18
Aircraft 47.7 ± 0.1 45.5 ± 0.1 45.6 ± 0.1 48.0 ± 0.1 48.1 ± 0.1
Birds 49.4 ± 0.1 49.3 ± 0.1 48.1 ± 0.0 50.2 ± 0.0 48.7 ± 0.1

CIFAR-10 87.2 ± 0.0 87.4 ± 0.0 87.2 ± 0.0 87.4 ± 0.0 87.2 ± 0.1
CIFAR-100 68.9 ± 0.0 68.1 ± 0.0 69.1 ± 0.0 69.6 ± 0.1 68.9 ± 0.0
Caltech-101 89.4 ± 0.3 89.8 ± 0.3 88.6 ± 0.2 89.0 ± 0.2 88.2 ± 0.4
Caltech-256 79.4 ± 0.1 78.3 ± 0.1 77.3 ± 0.1 78.8 ± 0.1 77.3 ± 0.1

Cars 45.6 ± 0.1 45.0 ± 0.1 44.4 ± 0.1 46.2 ± 0.1 46.7 ± 0.1
DTD 68.1 ± 0.1 68.2 ± 0.3 66.9 ± 0.2 68.6 ± 0.2 68.4 ± 0.2

Flowers 89.0 ± 0.1 89.3 ± 0.1 89.3 ± 0.1 89.9 ± 0.1 90.2 ± 0.1
Food-101 64.9 ± 0.0 65.0 ± 0.0 64.6 ± 0.0 65.6 ± 0.0 65.3 ± 0.0

Pets 90.1 ± 0.1 89.8 ± 0.1 89.4 ± 0.2 89.7 ± 0.1 89.4 ± 0.1
SUN397 54.8 ± 0.1 53.8 ± 0.1 52.9 ± 0.1 54.8 ± 0.1 53.5 ± 0.1
ResNet34
Aircraft 45.8 ± 0.2 43.5 ± 0.2 44.9 ± 0.1 48.7 ± 0.1 50.7 ± 0.2
Birds 52.9 ± 0.0 53.0 ± 0.1 53.0 ± 0.1 54.5 ± 0.1 54.2 ± 0.1

CIFAR-10 89.5 ± 0.0 89.1 ± 0.0 88.5 ± 0.0 89.6 ± 0.0 89.0 ± 0.0
CIFAR-100 71.0 ± 0.0 70.4 ± 0.1 70.2 ± 0.1 72.0 ± 0.0 72.0 ± 0.0
Caltech-101 92.5 ± 0.2 91.8 ± 0.3 90.9 ± 0.2 92.0 ± 0.3 91.8 ± 0.4
Caltech-256 82.2 ± 0.1 81.8 ± 0.0 81.4 ± 0.1 82.3 ± 0.1 81.2 ± 0.1

Cars 47.3 ± 0.1 46.0 ± 0.1 45.6 ± 0.1 48.5 ± 0.1 49.0 ± 0.1
DTD 69.5 ± 0.1 68.6 ± 0.5 68.6 ± 0.2 70.4 ± 0.3 69.6 ± 0.2

Flowers 88.1 ± 0.1 88.5 ± 0.1 89.0 ± 0.1 90.0 ± 0.1 91.1 ± 0.1
Food-101 66.8 ± 0.0 66.7 ± 0.0 67.4 ± 0.0 68.2 ± 0.0 68.8 ± 0.0

Pets 92.0 ± 0.1 92.5 ± 0.1 91.4 ± 0.1 91.7 ± 0.1 91.1 ± 0.2
SUN397 55.9 ± 0.1 55.4 ± 0.1 55.0 ± 0.1 56.8 ± 0.1 55.6 ± 0.1

Table B.6: (ResNet18/ResNet34) Transfer accuracy for sparse models with linear finetuning.

B.4 Finetuning Experiments on MobileNetV1
The MobileNet [HZC+17] architecture is a natural choice for devices with limited computational
resources. We measure the results of sparse transfer with full and linear finetuning on the same
downstream tasks starting from dense ImageNet models pruned using regularization-based
and progressive sparsification methods. Specifically, we use AC/DC, STR for regularization
methods and M-FAC [FKA21] for the progressive sparsification category.
M-FAC is a framework for efficiently computing high-dimensional inverse-Hessian vector
products, which can be applied to different scenarios that use second-order information. In
particular, one such instance is pruning, where M-FAC aims to solve the same optimization
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Figure B.3: (MobileNetV1) Per-dataset downstream validation accuracy for transfer learining with
linear finetuning.

problem as WoodFisher, and thus from this point of view these methods are very similar. In
particular, it has been shown [FKA21] that M-FAC outperforms WoodFisher on ImageNet
models, in terms of accuracy at a given sparsity level. Specifically, for MobileNet, M-FAC
surpasses all existing methods at 90% sparsity, reaching 67.2% validation accuracy. For this
reason, we included M-FAC, in favor of WoodFisher, to our list of progressive sparsification
methods for MobileNetV1.

Due to the smaller size of the MobileNetV1 architecture, we additionally test the effect that
lower sparsity levels have on the transfer performance, by training on ImageNet AC/DC models
at 30%, 40% and 50% sparsity; these models fully recover the dense baseline accuracy on
ImageNet.

B.4.1 Linear Finetuning

Model Dense AC/DC
30%

AC/DC
40%

AC/DC
50%

AC/DC
75%

AC/DC
90%

M-FAC
75%

M-FAC
89%

STR
75%

STR
90%

Task
Aircraft 54.1 ± 0.2 53.5 ± 0.1 54.2 ± 0.1 54.1 ± 0.1 53.5 ± 0.2 52.6 ± 0.3 53.4 ± 0.1 53.7 ± 0.1 49.7 ± 0.1 47.2 ± 0.2
Birds 52.7 ± 0.1 53.0 ± 0.1 53.6 ± 0.1 52.8 ± 0.0 52.6 ± 0.1 50.3 ± 0.1 52.1 ± 0.1 49.2 ± 0.1 49.0 ± 0.0 44.2 ± 0.0

CIFAR-10 88.3 ± 0.1 88.4 ± 0.0 88.1 ± 0.0 87.8 ± 0.0 88.5 ± 0.0 87.4 ± 0.1 87.5 ± 0.0 87.0 ± 0.0 86.9 ± 0.1 85.4 ± 0.0
CIFAR-100 71.9 ± 0.0 70.9 ± 0.1 71.1 ± 0.0 70.2 ± 0.0 70.8 ± 0.0 68.0 ± 0.0 69.3 ± 0.0 68.6 ± 0.0 69.3 ± 0.0 66.3 ± 0.0
Caltech-101 90.3 ± 0.1 89.7 ± 0.1 89.8 ± 0.2 89.7 ± 0.2 89.5 ± 0.1 88.4 ± 0.3 89.2 ± 0.1 87.2 ± 0.1 88.0 ± 0.2 85.2 ± 0.2
Caltech-256 80.2 ± 0.1 80.4 ± 0.0 80.2 ± 0.1 80.5 ± 0.0 79.2 ± 0.0 77.3 ± 0.1 79.0 ± 0.0 76.9 ± 0.0 77.8 ± 0.1 73.8 ± 0.1

Cars 55.5 ± 0.0 55.9 ± 0.1 55.1 ± 0.1 54.9 ± 0.1 54.5 ± 0.1 52.9 ± 0.0 55.9 ± 0.1 54.5 ± 0.1 49.9 ± 0.2 47.1 ± 0.1
DTD 70.8 ± 0.2 70.4 ± 0.2 70.3 ± 0.0 71.4 ± 0.4 70.9 ± 0.2 68.8 ± 0.1 70.7 ± 0.2 69.6 ± 0.2 70.6 ± 0.2 67.2 ± 0.1

Flowers 92.8 ± 0.1 92.6 ± 0.1 92.2 ± 0.1 92.6 ± 0.1 92.6 ± 0.1 91.9 ± 0.1 92.6 ± 0.1 92.0 ± 0.1 91.4 ± 0.1 90.8 ± 0.1
Food-101 70.6 ± 0.0 70.7 ± 0.0 70.6 ± 0.0 70.3 ± 0.0 70.2 ± 0.0 68.6 ± 0.0 69.8 ± 0.0 69.1 ± 0.0 67.7 ± 0.0 65.3 ± 0.0

Pets 90.7 ± 0.1 90.6 ± 0.1 90.5 ± 0.1 90.4 ± 0.1 90.1 ± 0.1 89.0 ± 0.1 89.9 ± 0.1 88.5 ± 0.1 89.3 ± 0.1 86.9 ± 0.2
SUN397 57.1 ± 0.0 57.2 ± 0.1 57.2 ± 0.0 56.8 ± 0.0 56.0 ± 0.0 53.8 ± 0.0 56.3 ± 0.1 54.6 ± 0.0 55.1 ± 0.0 52.5 ± 0.0

Table B.7: (MobileNet) Transfer accuracy for linear finetuning using sparse MobileNet models

Our results for linear finetuning are presented in Figure B.3 and Table B.7; we note that
each experiment was run from five different random seeds, and we report the mean and
standard deviation. We observe that AC/DC and M-FAC outperform STR at both 75%
and 90% sparsity. Furthermore, we do not observe the same trend where regularization
methods outperformed progressive sparsification. For example, AC/DC tends to be close to or
outperform M-FAC at 75% sparsity, while at 90% sparsity M-FAC performs better on almost
half of the tasks. Differently from ResNet50, for MobileNet neither regularization based nor
progressive sparsification models outperform the dense baseline, at higher sparsity (75% and
90%). We observe at lower sparsity (30% and 50%) a few instances where sparse models
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Figure B.4: (MobileNetV1) Per-dataset downstream validation accuracy for transfer learning with
full finetuning.

slightly outperform the dense baseline (Birds, Cars, DTD), but generally the differences are
not significant.

B.4.2 Full Finetuning
The results for full finetuning using MobileNet models are presented in Figure B.4 and Table B.8;
we note that in this case each experiment was run once. We observe that the performance of
sparse models decays more quickly than for ResNet50, and even at lower sparsity (30-50%)
there is a gap in transfer performance compared to the dense baseline. Furthermore, AC/DC
outperforms STR and M-FAC at both 75% and 90% sparsity on all downstream tasks. Overall,
the results for MobileNet indicate that the transfer performance is significantly affected by the
sparsity of the backbone model, for both linear and full finetuning. Moreover, the experiments
on MobileNet seem to suggest that although some of the conclusions derived from the
ResNet experiments are confirmed (e.g. sparse models usually have similar or slightly better
performance to the dense baseline for linear finetuning), the guidelines for the preferred sparsity
method in a given scenario might be specific to the choice of the backbone architecture.
In conclusion, for both linear and full finetuning, we observe that generally the performance
decays faster with increased sparsity, compared to ResNet50; this is expected, given the lower
parameter count for MobileNet and the larger gap in ImageNet validation accuracy between
dense and sparse models.

Pruning Strategy Dense AC/DC
30%

AC/DC
40%

AC/DC
50%

AC/DC
75%

AC/DC
90%

M-FAC
75%

M-FAC
89%

STR
75%

STR
90%

Aircraft 80.9 79.7 80.1 79.9 79.0 76.9 76.6 74.5 74.4 73.0
Birds 66.6 66.3 66.5 65.5 63.4 59.5 62.9 58.5 56.1 53.1

CIFAR-10 95.7 95.6 95.5 95.4 95.0 94.2 94.5 93.4 93.8 93.3
CIFAR-100 81.6 81.0 81.3 81.0 80.0 77.7 78.8 76.1 77.2 75.1
Caltech-101 91.0 89.6 89.5 90.0 88.0 87.9 86.8 84.6 85.1 83.4
Caltech-256 80.9 81.2 80.9 81.1 80.0 78.0 79.4 77.2 76.7 73.2

Cars 87.5 87.6 87.6 87.3 86.5 84.0 84.9 82.4 84.1 81.5
DTD 73.6 71.4 72.3 72.3 71.8 71.1 71.2 69.1 70.4 69.6

Flowers 93.9 94.1 94.0 93.9 93.4 92.6 91.9 90.9 89.8 90.6
Food-101 85.2 85.0 85.1 84.7 83.6 81.8 83.4 80.8 81.2 79.7

Pets 91.3 90.8 90.7 90.2 89.9 88.2 88.9 86.7 86.9 85.3
SUN397 60.7 60.7 60.3 60.2 59.2 57.1 58.2 55.9 55.1 53.8

Table B.8: (MobileNet) Transfer accuracy for full finetuning using sparse MobileNet models

136



B.4.3 Accuracy Trade-Off MobileNet / Sparse ResNet50
Finally, we consider the accuracy trade-off of using a smaller network such as MobileNet (4.2M
trainable weights) versus a larger model, ResNet50 (25.5M trainable weights), but pruned
to 80% or 90% sparsity. We present linear and full finetuning accuracy results for these two
scenarios for an easier comparison in Tables B.9 and B.10. We use the overall best pruning
strategy for each type of transfer on ResNet50: AC/DC for linear finetuning and WoodFisher
for full finetuning. Note that these same results are also presented in Tables B.3, B.2 for
ResNet50 and Tables B.8, B.7 for MobileNet.

We observe that generally, pruning ResNet50 to 80% or even 90% sparsity results in higher
accuracy than MobileNet, for both linear and full finetuning. However, in almost all cases, the
gap is below 5%. This finding confirms conventional wisdom that training and pruning large
networks generally results in higher accuracy than training dense small networks from scratch.

Model MobileNet ResNet50–AC/DC
Dense 80% 90%

Aircraft 54.1 ± 0.2 55.1 ± 0.1 55.5 ± 0.1
Birds 52.7 ± 0.1 58.4 ± 0.0 58.7 ± 0.0

CIFAR-10 88.3 ± 0.1 90.9 ± 0.0 91.0 ± 0.0
CIFAR-100 71.9 ± 0.0 74.7 ± 0.1 74.3 ± 0.0
Caltech-101 90.3 ± 0.1 92.4 ± 0.2 92.5 ± 0.1
Caltech-256 80.2 ± 0.1 84.6 ± 0.1 84.5 ± 0.0

Cars 55.5 ± 0.0 56.6 ± 0.0 56.0 ± 0.1
DTD 70.8 ± 0.2 74.4 ± 0.1 73.7± 0.2

Flowers 92.8 ± 0.1 92.7 ± 0.1 92.4 ± 0.0
Food-101 70.6 ± 0.0 73.8 ± 0.0 73.8 ± 0.0

Pets 90.7 ± 0.1 92.3 ± 0.1 91.9 ± 0.1
SUN397 57.1 ± 0.0 60.4 ± 0.0 59.8 ± 0.1

Table B.9: Comparison of MobileNet dense vs.
ResNet50 sparse models when transferring with
linear finetuning

Model MobileNet ResNet50–WoodFisher
Dense 80% 90%

Aircraft 80.9 84.8 ± 0.2 84.5 ± 0.4
Birds 66.6 72.4 ± 0.4 71.6 ± 0.2

CIFAR-10 95.7 97.2 ± 0.1 97.0 ± 0.1
CIFAR-100 81.6 85.1 ± 0.1 84.4 ± 0.2
Caltech-101 91.0 93.7 ± 0.1 93.9 ± 0.3
Caltech-256 80.9 85.1 ± 0.1 84.0± 0.1

Cars 87.5 90.5 ± 0.2 90.0 ± 0.2
DTD 73.6 75.4 ± 0.3 75.5 ± 0.4

Flowers 93.9 95.5 ± 0.2 95.5 ± 0.3
Food-101 85.2 87.4 ± 0.1 87.0 ± 0.1

Pets 91.3 93.3 ± 0.3 92.7 ± 0.3
SUN397 60.7 62.8 ± 0.1 62.3 ± 0.1

Table B.10: Comparison of MobileNet dense
vs. ResNet50 sparse models when transferring
with full finetuning

B.5 Finetuning Experiments Using Structured Sparsity
In this section, we examine the transfer properties of models that were sparsified using
structured pruning methods, which remove entire convolutional filters. Specifically, we use
both ResNet50 and MobileNetV1 models trained on ImageNet and we do full finetuning on all
twelve downstream tasks.

B.5.1 ResNet50 with Structured Sparsity
We consider a ResNet50 model that was pruned with progressive sparsification, using the
L1 magnitude of the convolutional filters as a pruning criterion. The resulting model has an
ImageNet validation accuracy of 75.7% and results in 2.2x inference speed-up compared to the
dense baseline, when evaluated on a single sample; this makes it comparable to unstructured
90% sparse models that achieve a similar inference speed-up (please see Table 4.5). The
results for full finetuning with the structured sparse model, together with the best results
for dense and unstructured 80% and 90% models are presented in Table B.11. We observe
that models with structured sparsity transfer similarly to or worse than unstructured 90%
sparse models. Note that the unstructured ResNet50 model has higher ImageNet accuracy
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compared to 90% sparse models, at a similar inference speed-up. These results align with the
observations made in Section 4.4.4, that having fewer filters in the structured sparse models
limits their capability of expressing features.

Dataset Dense Structured Unstructured
80% 90%

Aircraft 83.6± 0.4 81.8± 0.5 84.8± 0.2 84.9 ± 0.3
Birds 72.4 ± 0.3 70.7± 0.1 73.4± 0.1 72.9± 0.2

Caltech101 93.5± 0.1 92.8± 0.1 93.7± 0.1 93.9 ± 0.3
Caltech256 86.1 ± 0.1 84.6± 0.1 85.4± 0.2 84.8± 0.1

Cars 90.3± 0.2 89.4± 0.0 90.5 ± 0.2 90.0± 0.2
CIFAR-10 97.4 ± 0. 97.1± 0.1 97.2± 0.1 97.1± 0.
CIFAR-100 85.6 ± 0.2 84.7± 0.2 85.1± 0.1 84.4± 0.2

DTD 76.2 ± 0.3 75.2± 0.2 75.7 ± 0.5 75.5 ± 0.4
Flowers 95.0± 0.1 95.2± 0.0 96.1 ± 0.1 96.1 ± 0.1

Food-101 87.3 ± 0.1 86.3± 0.1 87.4 ± 0.1 87.3 ± 0.2
Pets 93.4 ± 0.1 92.5± 0.1 93.4 ± 0.2 92.7± 0.3

SUN397 64.8 ± 0. 63.4± 0.1 64.0± 0. 63.0± 0.

Table B.11: (ResNet50) Comparison on full finetun-
ing between dense baseline, models with structured
sparsity, and best results for unstructured 80% and
90% sparsity.

Dataset Dense 50% Time 50% FLOPs
Aircraft 80.9 82.9 83.0
Birds 66.6 66.1 66.1

Caltech101 91.0 88.6 88.9
Caltech256 80.9 78.6 78.4

Cars 87.5 88.4 88.3
CIFAR-10 95.7 95.2 95.3
CIFAR-100 81.6 79.9 80.2

DTD 73.6 71.1 72.2
Flowers 93.9 94.1 94.1

Food-101 85.2 84.6 84.5
Pets 91.3 91.0 91.0

SUN397 60.7 59.4 59.1

Table B.12: (MobileNet) Full finetuning val-
idation accuracy for MobileNet models with
structured sparsity, at 50% inference time or
50% inference FLOPs.

B.5.2 MobileNet with Structured Sparsity
We additionally perform full finetuning using MobileNet models pruned for structured sparsity.
For these experiments, we use the upstream models provided in [HLL+18]; specifically, we
use the MobileNet models that achieve 50% of the inference time or have 50% of the dense
FLOPs. These models achieve 70.2% and 70.5% ImageNet validation accuracy, respectively.
The results presented in Table B.12 show that in general models with structured sparsity
perform similar to or worse than their dense counterparts, with the exception of Aircraft and
Cars where these models significantly outperform the dense baseline.

B.6 Sparse Transfer Learning for Segmentation
To complement the experiments for object detection, we executed transfer learning for a
YOLACT model [BZXL19] using a ResNet-101 backbone, that has been trained and sparsified
on the segmentation version of the COCO dataset. The average sparsity of the model is
∼ 87%, obtained via gradual magnitude pruning (GMP). The model has mAP@0.5 values
49.36 (bounding box), and 46.37 (mask), versus 50.16 (bounding box), 46.57 (mask) for the
dense model on COCO. We transfer the pruned trained weights onto the Pascal dataset. The
prediction heads get initialized as dense, and kept dense for transfer. The results are presented
in Tables B.13 and B.14, and show that indeed sparse transfer is competitive against the dense
variant in this case as well.

B.7 Additional Factors Influencing Sparse Transfer
In this section, we further provide ablation studies meant to investigate the impact of different
model or training hyperparameter choices on transfer performance. First, we investigate
whether the use of label smoothing when training the upstream model can negatively impact
the sparse transfer accuracy with linear finetuning; this phenomenon has been previously
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Type all 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
box 32.62 54.05 51.96 48.72 44.81 40.84 34.72 26.89 17.33 6.33 0.55

mask 30.74 50.28 47.66 44.57 41.02 36.39 31.47 25.53 18.55 10.03 1.91

Table B.13: Mean average precision for dense transfer on Pascal, at various thresholds.

Type all 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
box 33.55 54.15 51.79 49.2 45.57 41.51 35.95 29.2 19.66 7.78 0.74

mask 31.5 50.66 47.89 45.04 41.67 37.32 32.39 26.35 19.98 11.22 2.5

Table B.14: Mean average precision for sparse transfer on Pascal, at various thresholds. Notice the
similar or slightly improved accuracy.

documented for dense models in [KSL19]. Second, we investigate the impact of using bias in
the fully connected layer when doing full finetuning; this is motivated by the fact that some
ResNet50 versions we considered (e.g. the one used in STR [KRS+20]) does not originally use
bias.

B.7.1 Impact of label smoothing on transfer accuracy
We take advantage of the fact that we have STR checkpoints trained with and without label
smoothing (LS) to investigate the effect of LS on dense and sparse transfer accuracy in the
context of linear transfer. As Table B.15 shows, label smoothing tends to have a negative effect
on transfer accuracy (confirming the results in [KSL19]). However, our experiments suggest
that this effect is more pronounced on the Aircraft and Cars datasets in the case of sparse
STR models, and generally for most specialized datasets for the dense models. Furthermore,
we observe that the performance gap tends to narrow with increased sparsity. We also note
that even with label smoothing, at 80% sparsity STR matches or outperforms GMP on all
datasets, although the effect largely reverses at 90% sparsity.

Overall, these data can be taken as a preliminary confirmation of the importance of controlling
for variation in hyperparameters when comparing the transfer performance of various training
and pruning methods.

Dense Dense LS STR
80%

STR LS
80%

STR
90%

STR LS
90%

STR
95%

STR LS
95%

STR
98%

STR LS
98%

Dataset
Aircraft 49.2 ± 0.1 38.2 ± 0.1 53.7 ± 0.0 47.0 ± 0.0 52.9 ± 0.1 46.4 ± 0.1 50.3 ± 0.1 46.6 ± 0.1 48.0 ± 0.1 45.2 ± 0.1
Birds 57.7 ± 0.1 52.4 ± 0.0 56.2 ± 0.1 56.4 ± 0.0 55.2 ± 0.1 56.0 ± 0.0 52.1 ± 0.1 51.7 ± 0.1 43.7 ± 0.0 45.6 ± 0.0

CIFAR-10 91.2 ± 0.0 89.6 ± 0.0 91.4 ± 0.0 90.1 ± 0.0 90.6 ± 0.0 89.4 ± 0.0 89.1 ± 0.0 88.6 ± 0.0 86.5 ± 0.0 86.0 ± 0.0
CIFAR-100 74.6 ± 0.1 71.6 ± 0.0 74.7 ± 0.0 73.3 ± 0.0 73.7 ± 0.1 72.2 ± 0.1 71.7 ± 0.0 70.1 ± 0.0 67.4 ± 0.0 66.3 ± 0.0
Caltech-101 91.9 ± 0.1 91.6 ± 0.1 91.2 ± 0.1 92.6 ± 0.1 90.9 ± 0.1 91.1 ± 0.2 90.0 ± 0.2 89.8 ± 0.1 86.3 ± 0.1 85.4 ± 0.1
Caltech-256 84.8 ± 0.1 84.6 ± 0.1 83.6 ± 0.0 84.3 ± 0.0 82.6 ± 0.0 82.6 ± 0.1 80.2 ± 0.1 79.7 ± 0.0 73.4 ± 0.1 73.8 ± 0.0

Cars 53.4 ± 0.1 44.9 ± 0.1 57.0 ± 0.1 50.9 ± 0.0 54.8 ± 0.1 49.8 ± 0.1 50.5 ± 0.1 46.9 ± 0.1 44.4 ± 0.1 42.5 ± 0.1
DTD 73.5 ± 0.2 72.3 ± 0.1 74.3 ± 0.2 73.9 ± 0.3 73.8 ± 0.1 73.7 ± 0.2 72.1 ± 0.2 71.9 ± 0.1 68.4 ± 0.2 68.3 ± 0.1

Flowers 91.6 ± 0.1 86.7 ± 0.1 93.0 ± 0.0 91.2 ± 0.0 93.0 ± 0.1 92.1 ± 0.1 91.9 ± 0.1 91.0 ± 0.1 90.8 ± 0.1 90.4 ± 0.1
Food-101 73.2 ± 0.0 69.5 ± 0.0 73.9 ± 0.0 72.2 ± 0.0 72.6 ± 0.0 71.1 ± 0.0 70.7 ± 0.0 68.8 ± 0.0 65.3 ± 0.0 64.3 ± 0.0

Pets 92.6 ± 0.1 92.9 ± 0.1 91.7 ± 0.0 92.4 ± 0.1 91.1 ± 0.1 91.7 ± 0.1 89.8 ± 0.1 90.1 ± 0.1 85.5 ± 0.1 86.6 ± 0.1
SUN397 60.1 ± 0.0 59.3 ± 0.1 60.3 ± 0.0 60.0 ± 0.1 58.2 ± 0.0 58.5 ± 0.1 56.3 ± 0.0 55.8 ± 0.0 50.9 ± 0.0 51.0 ± 0.0

Table B.15: (ResNet50) Linear Finetuning Validation Accuracy of STR-pruned and dense models
with and without label smoothing.
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B.7.2 Impact of fully connected layer bias on full finetuning transfer
accuracy

Dataset With FC Bias Without FC Bias
Aircraft 79.8 ± 0.6 79.8 ± 0.3
Birds 67.9 ± 0.2 68.1 ± 0.1

CIFAR-10 96.5 ± 0 96.5 ± 0.1
CIFAR-100 83.7 ± 0.2 83.6 ± 0.2
Caltech-101 91.2 ± 0.2 90.7 ± 0.6
Caltech-256 84.4 ± 0.1 84.0 ± 0.1

Cars 87.7 ± 0.1 87.8 ± 0.1
DTD 74.4 ± 0.2 73.7 ± 0.6

Flowers 94 ± 0.1 93.7 ± 0.2
Food-101 86 ± 0.1 85.9 ± 0.1

Pets 92.1 ± 0.1 92.1 ± 0.1
SUN397 63.2 ± 0.1 62.6 ± 0.1

Table B.16: (ResNet50) Top-1 validation trans-
fer accuracy for STR, with using bias in the FC
layer vs. without. The original model architec-
ture does not use bias in the FC layer.

Dataset With FC Bias Without FC Bias
Aircraft 74.2 74.4
Birds 56.4 56.1

CIFAR-10 93.9 93.8
CIFAR-100 77.5 77.2
Caltech-101 86.3 85.1
Caltech-256 76.9 76.7

Cars 83.8 84.1
DTD 71.8 70.4

Flowers 90.4 89.8
Food-101 80.9 81.2

Pets 87.9 86.9
SUN397 56.1 55.1

Table B.17: (MobileNetV1) Top-1 validation
transfer accuracy for STR, with using bias in
the FC layer vs. without. The original model
architecture does not use bias in the FC layer.

In our experiments, we used the original architectures used to train the upstream ImageNet
models when performing transfer with full-finetuning, only resizing the final layer to match
the number of output classes in the downstream task. This choice was necessitated partially
by ensuring that the weights were applied correctly. For example, the RigL models were
trained using TensorFlow, which uses slightly different Convolution and MaxPooling padding
conventions than PyTorch. Likewise, STR models were trained using a slightly nonstandard
PyTorch implementation of ResNet50, which did not use a bias term in the final Fully-Connected
(FC) layer. We investigate the possibility that the latter difference could have an effect on
downstream transfer accuracy. To do so, we transferred a set of 80% sparse ResNet50 STR
models to all downstream tasks, using a bias term in the FC layer. The results are shown in
Table B.16. Additionally, we perform a similar comparison on MobileNetV1, for STR models at
75% sparsity. As in the case of ResNet50, the version of MobileNet used by the STR models
does not use bias in the final classification layer. The results illustrating the bias effect on full
finetuning for MobileNet are presented in Table B.17. We observe that the presence of a bias
term in the final layer can, in some cases, have a small positive effect on the resulting model,
and so we caution that these effects be considered when choosing a transfer architecture.
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APPENDIX C
Appendix for Chapter 5

C.1 Theoretical Support for the CrAM Update
In this section, we attempt to formally derive a generic training method whose purpose is to
provide compressible models, which perform well even after being compressed. To understand
why we can hope to achieve such guarantees, we first take a brief detour to the area of robust
optimization.

C.1.1 Robust Optimization
Generally, practical training methods are based on versions of stochastic gradient descent
attempting to minimize a loss function L(θ). However, θ might turn out to be a bad solution
as the landscape of L in its neighborhood could contain large changes in value. To address
this issue, one may attempt to flatten L such that it is less sensitive to sharp drops in value
localized around a very small region. To this extent, a standard robustification can be defined
by ˜︁L(θ) = max

∥δ∥≤ρ
L(θ + δ) , (C.1)

which makes the value of ˜︁L(θ) take that of the largest value of L given by perturbation of
θ within a ball of radius ρ. While this robustified function may seem well suited to generic
training tasks, it is a priori unclear that it is amenable to optimization.

However, under certain conditions, we can efficiently optimize ˜︁L by using a classical theorem
in robust optimization due to Danskin [Dan12].

Theorem C.1.1. (Danskin) Let C ⊆ Rm be a compact set, let a function ϕ : Rn×C → R such
that ϕ(·,y) is continuously differentiable for every fixed y ∈ C and ∇xϕ(x,y) is continuous
on Rn × C, and let ψ : Rn → R be defined as

ψ (x) = max
y∈C

ϕ (x,y) .

Then ψ is locally Lipschitz continuous, directionally differentiable, and its directional derivatives
satisfy

dψ (x; d) = max
y∈C∗

d⊤∇xϕ (x,y) .

141



where C∗ (x) is the set of maximizers

C∗(x) =
{︃

y∗ : ϕ (x,y∗) = max
y∈C

ϕ (x,y)
}︃
.

In particular, if for some x ∈ Rn the set C∗(x) = {y∗
x} is a singleton, then ψ is differentiable

at x and
∇ψ(x) = ∇xϕ(x,y∗

x) .

This shows that, under certain assumptions, we can obtain directional derivatives for ˜︁L (θ) by
simply maximizing L(θ + δ) over δ ∈ B2(ρ).

Corollary C.1.1. Let ˜︁L be defined as in Equation (C.1), and define

C∗(θ) =
{︄

δ : ∥δ∥ ≤ ρ, L(θ + δ) = max
∥δ∗∥≤ρ

L(θ + δ∗)
}︄
,

and let δ ∈ C∗(θ). Provided that L(θ) is continuously differentiable, and θ is not an
articulation point for ˜︁L, −∇L(θ + δ) is a descent direction for ˜︁L(θ) as long as it is nonzero.

Proof. Let h = ∇L(θ + δ). We apply Danskin’s theorem for ϕ(θ, δ) = L(θ + δ) and
C = B2(ρ). This shows that

d˜︁L(θ; h) = sup
δ∈C∗(θ)

h⊤∇L(θ + δ) ≥ h⊤∇L(θ + δ) = h⊤h ≥ 0 .

Provided that θ is not an articulation point for ˜︁L, we also have that d˜︁L(θ;−h) = −d˜︁L(θ; h) ≤
0, which concludes the proof.

From Robust Optimization to SAM

Per Corollary C.1.1, to obtain a descent direction it suffices to maximize L(θ + δ) over the
set of perturbations satifying ∥δ∥ ≤ ρ. In general, even when the underlying function L is
convex, this may be a difficult problem. Instead, one may simply attempt to obtain a good
local maximizer of L in a bounded region around θ. The simplest possible way to do so is by
performing a step of gradient ascent, which can be regarded as a proxy for the maximization
subproblem. Using this step, we immediately obtain the iteration:

˜︁θt = θt + ρ

∥∇L(θt)∥
∇L(θt) , θt+1 = θt − η∇L( ˜︁θt) , (C.2)

which recovers the extrapolated SAM gradient step from [FKMN21].
There is exhaustive research that has previously been done on robust optimization methods.
For a comprehensive reference, we point the reader to Teo’s PhD thesis [Teo07].

C.1.2 Robust Optimization for Compressible Models
With the robust optimization framework in mind, we are ready to attempt implementing a
similar scheme which exhibits robustness to compression.
To motivate the method, let us consider the post-training compression. After training the
model to weights to θT we apply a one-shot compression method C over some perturbation
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θT + δ of the weights. This captures several iterative methods for compression, such as
iterative pruning, where changes in weights are alternated with one-shot pruning methods.

If our goal is to make the loss after compression robust within a small neighborhood of
perturbations δ, we can establish as a formal objective to minimize the robustified loss

LCrAM (θ) := max
δ:∥δ∥≤ρ

L (C (θ + δ)) , (C.3)

for some magnitude ρ of allowed perturbations. In our case we will focus on the case where
these are bounded in ℓ2 norm, but this can be easily extended to other choices of the domain.
Just as before, we can now attempt to minimize LCrAM, or find a near-stationary point, by
gradient descent. Using the robust optimization framework we may attempt to optimize it
using Corollary C.1.1 after replacing L(·) with L(C(·)).

Naturally, this poses some obstacles in our case. The main one is the fact that it is not true
that L(C(θ)) will generally be continuously differentiable, so the conditions required to obtain
descent directions via an inner maximization loop are not satisfied. However, we can show that
under certain conditions, continuous differentiability fails only at a set of points of measure 0.

Definition C.1.1. Let S be a countable set, let {Pi}i∈S be a covering of Rn with convex
sets, and let S(x) denote the family of indices from S for which x ∈ Pi. Let a family of
projection operators {Πi}i∈S, such that for any x the projections {Πi(x)}i∈S(x) all map to
the same point. We call a projective compression operator with respect to {Πi}i∈S a mapping
C : Rn → Rn such that

C(x) = Πi(x) , for any i ∈ S(x) .

For example, in the case of the Top-K compression operator, we can define a covering of Rn

with sets P such that all elements x ∈ P share the indices A ⊆ [n], |A| = k for the Top-K
elements in absolute value (with ties broken lexicographically), and furthermore, all elements
from P preserve the signs across A. It is clear that any x ∈ Rn belongs in some such set P ,
and since there are a finite number of subsets of size k and of possible signs for the components
in [n], we have a finite covering. Assume, without loss of generality, that a set P from the
covering consists of elements for which the first k components are the highest in absolute value,
and the signs across these components are shared across all x ∈ P . Then, for any x,y ∈ P ,
λ ∈ (0, 1) and i ≤ k, we have that |λxi + (1− λ)yi| = λ|xi|+ (1− λ)|yi| (since xi and yi

share the same sign). Using that λ|xi|+ (1−λ)|yi| ≥ λ|xj|+ (1−λ)|yj|, for any k < j < n,
together with the triangle inequality, we obtain that |λxi + (1− λ)yi| ≥ |λxj + (1− λ)yj|,
for any i ≤ k and j > k. Therefore, any P satisfying the conditions described above is a
convex set. We can further define a projection for each subset A of coordinates of cardinality
k. Then, it is clear that for any given vector x, the set A ∈ S(x) iff the largest k coordinates
of x in absolute value (with ties broken lexicographically) are supported in A. Therefore, we
can conclude that Top-K is a projective compression operator.

Lemma C.1.1 (Continuously differentiable functions induce few singularities after compression).
Let L : Rn → R be a continuously differentiable function, and let C be a projective
compression operator. Then the function g(x) := L(C(x)) is continuously differentiable
everywhere except at a set of points of measure 0. Furthermore, so is the robustified function
LCrAM(x) := max∥δ∥≤ρ L(C(x + δ)).
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Proof. First we note that the boundary of any convex set has measure zero by standard
arguments in convex analysis [Lan86]. Since a countable union of sets of measure zero has
measure zero, it follows that the union of the boundaries of Pi’s has measure zero. Now
since L is continuously differentiable, within any set Pi, we have that g(x) = L(Πi(x)), and
hence it remains continuously differentiable. Therefore the only region for which we can not
argue about continuous differentiability is the complement of the union of interiors of Pi’s,
(∪iintPi)c ⊆ ∪i∂Pi which is a set of measure zero. Since g is well-behaved almost everywhere,
all that remains to argue is that this is the same case with LCrAM.
For any fixed direction ∆θ, we define the mapping

M(θ) = ∆θ⊤∇g(θ) ,

and its robustification

˜︂M(θ) = max
∥δ∥≤ρ

M(θ + δ) = max
∥δ∥≤ρ

∆θ⊤∇g(θ + δ) .

Hence the directional derivative w.r.t. ∆θ of LCrAM(θ) is discontinuous only when ˜︂M(θ) is
discontinuous. Finally, we note that this almost never happens, as M is continuous almost
everywhere, and thus so must be ˜︂M . Thus, all directional derivatives are continuous except at
a set of measure 0, which concludes the proof.

Finally, just like in the previous case, maximizing L(C(θ + δ)) over small perturbations is
generally intractable. So we instead consider obtaining a good enough maximizer via a standard
iterative method which has shown good performance in practice. More precisely we consider
the projected gradient ascent method, which provides strong theoretical guarantees, even
when the projection is performed onto non-convex domains [PIVA21]. In the case where the
compression operator represents magnitude pruning, this corresponds to the iterative hard
thresholding (IHT) method, frequently employed in the sparse recovery literature.
To reach a good iterate within this specific domain we instead perform a single step of
(projected) gradient ascent, which matches the IHT iteration:

˜︁θt = C (θt + ρ · ∇L(θt)) . (C.4)

We have therefore obtained a re-derivation of the CrAM update in Equation 5.2.
Furthermore, we note that the analysis above holds also for the CrAM+. Namely, we can rewrite
the CrAM+ loss as LCrAM+ = max∥δ∥≤ρ(L(C(θ + δ)) + L(θ)), and apply Lemma C.1.1 to
obtain that LCrAM+ is continuously differentiable almost everywhere, and so are its directional
derivatives.

C.2 Additional Image Classification Experiments
C.2.1 Variability of Batch Norm Tuning Results
We emphasize that CrAM relies on a small calibration set of training samples to correct the
Batch Norm statistics, namely running mean and variance, after pruning, particularly at high
sparsity. We call this procedure Batch Norm Tuning (BNT). To ensure that the accuracies
we report for sparse models are stable under the choice of the calibration set, we perform

144



10 independent trials of BNT, on 10 randomly chosen subsets of 1000 training samples, for
each model and for different sparsity levels. The results of this experiment are presented in
Table C.1, which also contains the “raw” numbers used in Figure 5.1. Notice that the accuracy
after one-shot pruning and BNT is very stable, with respect to the choice of the calibration
set. In particular, for the CrAM+ model, the standard deviation is ≤ 0.1% across all sparsity
levels considered. We also report the “raw” one-shot pruning accuracy (i.e. before BNT) for
CrAM models in Table C.2.

Model Dense Sparsity
50% 60% 70% 80% 90%

Baseline 77.22 75.87 ± 0.09 73.82 ± 0.07 68.86 ± 0.08 51.96 ± 0.27 8.57 ± 0.11
SAM 77.35 76.47 ± 0.04 75.11 ± 0.1 71.87 ± 0.07 60.20 ± 0.13 18.25 ± 0.18

CrAM-k50 77.48 77.3 ± 0.07 76.61 ± 0.05 74.77 ± 0.08 68.23 ± 0.11 33.04 ± 0.16
CrAM+-k70 77.32 77.22 ± 0.05 77.1 ± 0.05 77.15 ± 0.05 76.3 ± 0.08 61.92 ± 0.11

CrAM+-Multi 77.28 77.24 ± 0.06 77.05 ± 0.05 77.0 ± 0.04 75.8 ± 0.07 74.74 ± 0.04

Table C.1: (ImageNet/ResNet50) Validation accuracy for the dense models, and after one-shot
pruning using global magnitude pruning, followed by BNT on 1000 samples. The results for one-shot
pruning are the mean accuracies, and their standard deviations, when BNT is performed on 10
different random calibration sets, of 1000 training samples each.

Model Dense Sparsity
50% 60% 70% 80% 90%

Baseline 77.22 74.35 68.9 46.36 2.0 0.1
SAM 77.35 75.02 70.4 52.8 3.66 0.11

CrAM-k50 77.48 75.91 73.54 63.05 13.59 0.16
CrAM+-k70 77.32 77.03 76.6 76.3 72.6 3.6

CrAM+-Multi 77.28 76.23 74.87 75.69 72.32 52.25

Table C.2: (ImageNet/ResNet50) Validation accuracy for the dense models, and after one-shot
pruning using global magnitude, before BNT.

C.2.2 Comparison With Other Methods on CIFAR-10
In this section we provide additional results accompanying those presented in Section 5.4.3.
Namely, we provide comparison between one-shot pruning CrAM+-Multi vs. standard dense
baselines (SGD, SAM), and we provide numbers before and after BNT for sparse models on
VGG-16 and ResNet18.

Model Dense Sparsity
50% 60% 70% 80% 90%

Baseline 93.0 ± 0.1 92.2 ± 0.0 91.0 ± 0.3 88.0 ± 0.2 78.0 ± 1.1 45.8 ± 3.0
SAM 93.5 ± 0.1 92.8 ± 0.2 92.4 ± 0.0 90.7 ± 0.3 85.2 ± 0.4 54.6 ± 1.7

CrAM+-Multi 93.2 ± 0.1 93.2 ± 0.1 93.1 ± 0.1 92.9 ± 0.1 92.4 ± 0.1 90.3 ± 0.1

Table C.3: (CIFAR-10/ResNet20) Test acc. (%) for the dense models, and after one-shot pruning
(+BNT). The baseline is the model after SGD training. For all models we apply one-shot pruning at
different sparsity (+BNT), but no additional retraining. Results are averaged across 3 runs from
different seeds.
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In Table C.3 we show the accuracy of the dense baseline, SAM and CrAM+-Multi on ResNet20,
before and after one-shot pruning at different sparsities; for CrAM+-Multi we consider the
version from Section 5.6.2, namely the sparsity values are samples uniformly at each step
in the range 30− 90%. The results after one-shot pruning are presented after BNT over a
random subset of 1000 train samples, over 100 batches. We note there are small variations in
the results after BNT, due to the choice of the random calibration set. These variations are
small (±0.1/0.2%) for CrAM+-Multi models, across all sparsity levels considered, but they are
larger for the one-shot pruned dense baselines at high sparsity (e.g. 80% and 90%). Moreover,
the accuracy before BNT is still high for CrAM at lower sparsity levels (e.g. 91.9% at 70%
sparsity), but it degrades at high sparsity (e.g. 50.5% at 90% sparsity). We believe that this is
only due to the BatchNorm statistics, which are adapted to the dense model during training,
but they no longer reflect the distribution shift after weight pruning. This is confirmed by the
fact that 90% sparse models improve to over 90% test accuracy after only a few iterations of
BNT, and are very robust to the choice of the calibration set.

Architecture BNT Sparsity
50% 80% 90% 93% 95% 97% 98%

ResNet18 No 95.7±0.1 95.3±0.2 93.6±0.7 92.0±1.4 89.8±2.2 81.4±6.3 48.7±5.8
Yes 95.6±0.0 95.7±0.0 95.5±0.1 95.5±0.1 95.5±0.1 95.2±0.0 94.5±0.3

VGG-16 No 94.2±0.1 93.9±0.2 86.7±1.6 48.5±1.7 19.8±15.4 16.0±10.2 12.4±4.1
Yes 94.2±0.1 94.2±0.1 94.0±0.1 94.0±0.2 94.1± 0.1 93.8±0.2 93.0±0.2

Table C.4: (CIFAR-10) Test accuracy (%) for the sparse models obtained with one-shot-pruning
from CrAM+-k95, before and after BNT. Results are averaged across 3 runs from different seeds.

Moreover, we show the extended results of CrAM+-k95 discussed in Section 5.4.3, before and
after BNT, on ResNet18 and VGG-16. From Table C.4 we can see that one-shot pruning
CrAM+-k95 without BNT preserves accuracy up to 80% sparsity, after which BNT is required
to correct the BatchNorm statistics. Remarkably, the VGG-16 models at 97% and 98% sparsity
have very low accuracy, which is improved greatly by BNT. Furthermore, also in this highly
sparse regimes the accuracy is very robust with respect to the choice of the calibration set for
BNT.

C.3 Language Models - reproducibility and
hyperparameters

Adam, SAM and CrAM optimization. We use the finetuning recipe for SQuADv1.1 with
the established hyperparameters provided in [DCLT19, WDS+20]; namely, we start from the pre-
trained 1bert-base-uncased, and use batch-size=16, max-sequence-length=384,
doc-stride=128. For other hyper-parameters we conduct a grid search for each optimizer.
The set of hyperparameters used for grid search are the following:

• learning-rate ∈ {3e−5, 5e−5, 8e−5}

• num-train-epochs ∈ {2, 3} for SAM and CrAM, and num-train-epochs
∈ {2, 3, 4, 6} for Adam

1Available for download at https://huggingface.co/bert-base-uncased)
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• label-smoothing-factor ∈ {0.0, 0.1, 0.2}

• for CrAM/SAM: ρ in the range 1e−4 to 1e−1.

Following this search, we pick the set of hyperparameters that produces the best results after
one-shot magnitude pruning to 50% sparsity. The best hyperparameters are as follows:

• Adam: num-train-epochs=2, learning-rate=8e−5,
label-smoothing-ratio=0.1

• SAM: num-train-epochs=2, learning-rate=8e−5,
label-smoothing-ratio=0.0, ρ=0.01

• CrAM (all CrAM runs use the same set of hyperparameters): num-train-epochs=3,
learning-rate=8e−5, label-smoothing-ratio=0.2, ρ=0.005

One-shot pruning. We apply one-shot pruning with two different pruners: magnitude and
oBERT. For one-shot magnitude pruning we impose uniform sparsity distribution over all layers.
For one-shot oBERT pruning we adopt the suggested set of hyper-parameters by authors,
which we briefly describe here for completeness: 1024 gradients, dampening 1e−7, block-size
50, 4 recomputations, global sparsity distribution over all layers. For more details please refer
to the oBERT paper [KCN+22].

Sparse fine-tuning of one-shot pruned models. We fine-tune one-shot oBERT-pruned
models with the fixed sparsity mask and Adam optimizer. To identify the best set of
hyperparameters for fine-tuning of the sparse model, we conduct a grid search over the following
parameters: learning-rate ∈ {3e−5, 5e−5, 8e−5, 1e−4}, num-train-epochs ∈
{1, 2}, label-smoothing-ratio ∈ {0.0, 0.2}, warmup-ratio ∈ {0.0, 0.1}. We
freeze the embedding layer and employ early-stopping technique to prevent overfitting.

Speed-ups of pruned BERT-base models. In Table 5.11 we present speed-ups of our
pruned models in the sparsity-aware CPU inference engine DeepSparse [KKG+20, Dee21]
(version 1.0.2). We consider two different scenarios and report speed-ups relative to the dense
model benchmarked in the same environment.
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