Engineering of Thermoelectric Composites Based on Silver Selenide in Aqueous Solution and Ambient Temperature

[Bingfei](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bingfei+Nan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Nan, [Mengyao](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mengyao+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Li, Yu [Zhang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yu+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-5-0) Ke [Xiao,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ke+Xiao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Khak](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Khak+Ho+Lim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Ho Lim, Cheng [Chang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cheng+Chang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Xu [Han,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xu+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Yong](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yong+Zuo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Zuo, [Junshan](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Junshan+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Li, Jordi [Arbiol,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jordi+Arbiol"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Jordi [Llorca,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jordi+Llorca"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Maria](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+Iba%CC%81n%CC%83ez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Ibáñez, and [Andreu](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andreu+Cabot"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Cabot[*](#page-5-0)

electricity using thermoelectric devices finds numerous especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag_2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag₂Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (*zT*) of up to 0.76 at 380 K. To improve these values, bismuth sulfide $(Bi₂S₃)$ particles also prepared

in an aqueous solution are incorporated into the Ag₂Se matrix. In this way, a series of Ag₂Se/Bi₂S₃ composites with Bi₂S₃ wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of $Bi₂S₃$ significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % $Bi₂S₃$ at 370 K. Furthermore, a high average *zT* value (*zT*ave) of 0.93 in the 300−390 K range is demonstrated.

KEYWORDS: *thermoelectricity, silver selenide, aqueous synthesis, bismuth sulfide, composite*

■ **INTRODUCTION**

Thermoelectric (TE) devices allow for direct, solid state, and reversible conversion between heat and electricity.^{1−[4](#page-6-0)} TE devices can harvest heat from the ambient environment, potentially increasing the efficiency of a plethora of processes. They also allow precise control of the temperature and effective cooling of hot spots. However, their real-world applications are limited to several niche markets due to their relatively low cost-effectiveness. The high cost of TE devices is related to the use of scarce elements such as Te, the need for high-temperature or vacuum-based processes for the synthesis of TE materials, and the quasimanual manufacturing of TE modules. Alternative printing technologies are being developed worldwide, but the use of organic solvents for the synthesis of the materials and/or the ink formulation is still a major drawback to the environmentally friendly and low-cost processing of TE devices. On top of the high cost, the energy conversion efficiency of TE devices is relatively low. The energy conversion efficiency of a TE material is determined by a dimensionless figure of merit

$$
zT = S^2 \sigma T / k \tag{1}
$$

where *S*, σ , κ , and T are the Seebeck coefficient $(\mu V K^{-1})$, electrical conductivity (S m^{-1}) , thermal conductivity (W m^{-1}) K[−]¹), and absolute temperature (K), respectively. *κ* includes the electronic thermal conductivity (κ_e) and lattice thermal conductivity (κ_L) :

$$
\kappa = \kappa_{\rm e} + \kappa_{\rm L} \tag{2}
$$

Besides, $S^2\sigma$ is defined as the power factor (PF). A good TE material is thus characterized by high S and *σ*, and low *κ* values.

Silver selenide (Ag_2Se) is one of the very few TE materials suitable for use at ambient temperature, where it is characterized by relatively low thermal conductivity and high electrical conductivity. 5 5 5 Ag₂Se is an n-type semiconductor with a narrow band gap ($E_{\rm g}$ = 0.07 eV at 0 K). It exists in two stable phases, the low-temperature orthorhombic *β*-phase and the high-temperature cubic *α*-phase, with a transition temperature of around 407 K. $6-8$ $6-8$ $6-8$ Numerous approaches exist for the synthesis of Ag2Se. Among them, the commonly reported solid-state preparation strategy is based on reacting the two elements, Ag and Se, at high temperatures^{[6,9](#page-6-0)–[15](#page-6-0)} or using high-energy ball milling.^{[8](#page-6-0),[16](#page-6-0)} As an example, Chen et al. developed a porous Ag2Se with hierarchical structures via a wet mechanical alloying process. Using this approach, a low lattice thermal conductivity of ~0.35 W m⁻¹ K⁻¹ and a zT of ~0.7 were obtained at 300 K.^{[8](#page-6-0)} Besides, Ag₂Se is also produced by

Special Issue: Advanced [Thermoelectric](https://pubs.acs.org/toc/aaembp/6/5?ref=pdf) Materials and [Devices](https://pubs.acs.org/toc/aaembp/6/5?ref=pdf)

Received: January 13, 2023 Accepted: April 24, 2023 Published: May 5, 2023

Figure 1. (a) Schematic illustration of the synthesis of binary metal chalcogenides (MX; M = Ag, Cu, Pb, Bi; X = S, Se). (b−d) SEM images of Ag₂Se produced from AgNO₃:Se molar ratios of (b) 2:1, (c) 1.9:1, and (d) 1.8:1. (e) XRD patterns of Ag₂Se.

vacuum-based technologies such as magnetron sputtering.¹⁷ Various chemical synthetic methods have also been reported for the production of silver chalcogenides and particularly Ag₂Se particles, including colloidal,^{[18](#page-6-0)-[21](#page-6-0)} hydrothermal,^{[22,23](#page-7-0)} and microwave-assisted 24 methods. In some cases, aqueous solutions have been used.^{[5](#page-6-0),[25](#page-7-0),[26](#page-7-0)} As an example, Xiao et al. synthesized Ag2Se nanocrystals via a colloidal method, reaching a maximum *zT* value of 0.23 at the phase transition temperature of around 408 K.^{[19](#page-6-0)} Wang et al. reported a general aqueous synthesis of nano/microscale binary silver chalcogenides (Ag₂X, X = S, Se, Te) based on the reaction of Na₂S/ $NaHSe/NaHTe$ and $AgNO₃$ aqueous solution at the water boiling temperature. The molar ratios of $\text{Ag}^{+}/\text{X}^{2-}$ were adjusted from 2:1 to 2:1.1 and the maximum *zT* value of the resulting Ag₂Se pellet was 0.84 at 380 K.^{[25](#page-7-0)}

The TE properties of pristine Ag₂Se can be improved through extrinsic and intrinsic doping. Li et al. reported a hydrothermal solution route using ethylene glycol and glycerol as solvents to prepare Ag₂Se at 180 $^{\circ}$ C, reaching a maximum zT of 0.7 at 317 K for Ag₂Se, and up to 0.9 at 300 K when adding 0.1 wt % Sn doping at Ag sites.^{[27](#page-7-0)} Variations in the stoichiometric ratio of silver to selenium were also investigated to control the concentration of free carriers, showing an obvious effect on the TE performance.^{[11](#page-6-0),[16,17](#page-6-0)} In this direction, Jood et al. introduced an anion excess (≤1% of Se or S) into Ag₂Se obtaining a notable improvement in carrier mobility and zT values up to ∼1.0 in the temperature range of 300−375 $K^{13,14}$ $K^{13,14}$ $K^{13,14}$ $K^{13,14}$ $K^{13,14}$ Another important approach to improving Ag₂Se performance is to combine it with small amounts of other materials into nanocomposites.^{[28](#page-7-0)−[31](#page-7-0)} As an example, Ballikaya et al. added $Cu₂Se$ nanoinclusions in Ag₂Se to improve the TE performance and thermal stability.^{[32](#page-7-0)} Lim et al. obtained a high zT of 0.89 at 343 K through the simple blending of Ag₂Se with Te nanorods.¹⁸ Besides, carbon nanotubes were also used as an effective nanofiller for enhancing the TE performance of $Ag_2Se.^{5,23}$ $Ag_2Se.^{5,23}$ $Ag_2Se.^{5,23}$ $Ag_2Se.^{5,23}$

Bismuth sulfide (Bi_2S_3) is an n-type semiconductor composed of relatively abundant, nontoxic, and low-cost elements.³³ Bi₂S₃ has poor zT values at ambient temperature, because of moderate electrical conductivity. However, it is characterized by high Seebeck coefficients (ca. −400 *μ*V/K) and low thermal conductivities. Bi_2S_3 has been used as a doping phase to promote the TE properties of some TE materials, including $Cu_{1.8}S^{34}$ $Cu_{1.8}S^{34}$ $Cu_{1.8}S^{34}$ and $Bi_2Te_{2.7}Se_{0.3}^{35}$ $Bi_2Te_{2.7}Se_{0.3}^{35}$ $Bi_2Te_{2.7}Se_{0.3}^{35}$

Herein, we detail a facile, rapid, room temperature, and aqueous-based general approach to producing highly crystalline Ag₂Se. Besides, a series of Ag₂Se-x wt % $Bi₂S₃$ (x = 0, 0.5,

1.0 and 1.5) nanocomposites is produced by solution-blending and hot pressing. Interestingly, the incorporation of Bi_2S_3 results in a significant increase in the Seebeck coefficient. Furthermore, the optimized composition shows low thermal conductivity and a record-high *zT* of 0.96 at 370 K.

■ **EXPERIMENTAL SECTION**

Materials. Silver(I) nitrate $(AgNO₃, 99.9+%)$, copper(II) nitrate trihydrate $(Cu(NO₃)₂·3H₂O, 99%)$, lead(II) nitrate $(Pb(NO₃)₂, 99+$ %), and hydrazine hydrate $(N_2H_4·H_2O, 64%)$ were supplied by Fisher Scientific. Selenium powder (Se, 200 mesh, \geq 99.5% trace metals basis), bismuth nitrate pentahydrate $(Bi(NO₃)₃·5H₂O, \ge 99.99%),$ thioacetamide (TAA, \geq 99.0%), and nitric acid (HNO₃, 68%) were purchased from Sigma-Aldrich. All chemicals were used without further purification using standard solution synthesis procedures. $36,37$

Synthesis of Silver Selenide. In a typical synthetic method, 0.8494 g of AgNO₃ was dissolved into 10 mL of deionized water (DIW). In parallel, a Se precursor solution was prepared by adding 0.2078 g of Se powder to 5 mL of $N_2H_4 \cdot H_2O$. The AgNO₃ aqueous solution was then injected at ambient temperature into the Se solution, where a black precipitate was immediately formed. The product was collected by centrifugation and washed using DIW and ethanol three times. The final product was dried and stored in an Arfilled glovebox.

Synthesis of Metal Chalcogenide (MX). For the production of other binary metal chalcogenides (MX, $M = Cu$, Pb, Bi; $X = S$, Se) a similar synthesis strategy was adopted. The detailed parameters are shown in [Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S1. It is worth mentioning that SnS and SnSe can also be prepared by the same approach in an alkaline water environment (e.g., sodium hydroxide aqueous solution), but they require a longer reaction time (ca. 1 h) at ambient temperature.

Synthesis of Bismuth Sulfide. Bi₂S₃ was synthesized in an aqueous solution following an alternative procedure inspired by previous publications.^{[38](#page-7-0),[39](#page-7-0)} Briefly, TAA (0.510 g) was dissolved in 160 mL of DIW with rapid stirring. At the same time, $Bi(NO₃)₃·5H₂O$ (1.584 g) was added to 20 mL of 0.4 M HNO₃ aqueous solution, and then it was added drop by drop to the TAA solution. The mixture was reacted for 15 h at room temperature with continuous strong stirring. The coarse product solution was washed with DIW and ethanol five times. Finally, it was dried and stored in an Ar-filled glovebox.

Nanopowder Blend and Consolidation. Ag₂Se/Bi₂S₃ composite powders were produced by blending the proper ratio of particles of the two materials in solution under ultrasonication for 1 h. Next, the dried blended powders were placed in a furnace and annealed at 250 °C for 1 h in an Ar/H₂ flow. The annealed powders were loaded into a graphite die (\varnothing 10 mm \times 10 mm cylinders) and hot-pressed for 5 min at 50 MPa and 250 °C inside an argon-filled glovebox. The hotpressed pellets were then polished and used for TE characterization.

Figure 2. Structural and Chemical Characterization of Ag₂Se and Bi₂S₃. (a) TEM micrograph of Ag₂Se. (b) HRTEM micrograph of Ag₂Se, detail of the orange squared region, and its corresponding power spectrum. (c) EELS chemical composition maps from the red square area of the STEM micrograph of Ag2Se. Individual Ag M4,5-edges at 367 eV (red), Se M1-edges at 232 eV (green), and composites of Ag−Se. (d) SEM image of $B₁S₃$, (e) TEM and (f) HRTEM micrograph of $B₁S₃$, detail of the orange square region, and its corresponding power spectrum. From the crystalline domain, the Bi₂S₃ lattice fringe distances were measured to be 0.351 0.354, and 0.193 nm, at 66.70° and 96.72°, which could be interpreted as the orthorhombic Bi_2S_3 phase visualized along its [213] zone axis. (g) EELS chemical composition maps from the red square area of the STEM micrograph of Bi2S3. Individual Bi N4,5-edges at 440 eV (red), S L2,3-edges at 165 eV (green), and composites of Bi−S. (h) XRD pattern of $Bi₂S₃$.

■ **RESULTS AND DISCUSSION**

[Figure](#page-1-0) 1a shows a schematic illustration of the aqueous and ambient temperature synthesis process used to produce binary metal chalcogenides (MX; $M = Ag$, Cu, Pb, Bi; $X = S$, Se). The MX chalcogenide is produced by the reaction of the zerovalent chalcogen (X^0) powder with $N_2H_4 \cdot H_2O$ to form X^{2-} and the immediate reaction of such anions with the metal cations in the metal salt solution. In this way, Ag₂S, Ag₂Se, CuS, Cu₂S, Cu₂Se, Bi₂S₃, Bi₂Se₃, PbS, and PbSe particles, which through proper processing can be used in a plethora of different applications,[40](#page-7-0)−[48](#page-7-0) were easily and rapidly obtained. [Figure](#page-1-0) 1b− d displays scanning electron microscopy (SEM) images of Ag₂Se produced from different AgNO₃:Se molar ratios; 2:1, 1.9:1, and 1.8:1. $Ag₂Se$ particles are characterized by elongated shapes, an average size of a few hundred nanometers, and high crystallinity, as observed by X-ray diffraction (XRD, [Figure](#page-1-0) 1e). XRD patterns show the obtained Ag_2Se to have an orthorhombic crystallographic phase (PDF 00−024−1041) with lattice parameters *a* = 4.333 Å, *b* = 7.062 Å, and *c* = 7.764 Å. At an AgNO₃:Se molar ratio of 2:1, a few impurity peaks at 38.2° and 44.3° can be indexed with the cubic Ag phase (PDF 00−004−0783). At a AgNO₃/Se molar ratio of 1.8:1, a new peak at 29.6° is ascribed to the hexagonal Se phase (PDF 01− 086−2246), indicating that the excess Se was not fully incorporated into the Ag₂Se lattice. At a AgNO₃:Se molar ratio of 1.9:1, XRD patterns show pure-phase Ag_2Se , with no crystalline impurities. Thus, we chose this precursor molar ratio to prepare the material to be further characterized and used to produce Ag_2Se/Bi_2S_3 composites. At this $AgNO_3:Se$

molar ratio of 1.9:1, energy-dispersive X-ray spectroscopy (EDX) analysis shows the Ag:Se atomic ratio in the final Ag₂Se particles to be 2.2 ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S1). However, for the sake of convenience, we denote the silver selenide as $Ag₂Se$. The SEM images, To demonstrate the versatility of the synthesis approach here reported, EDX data and XRD patterns of other MX $(M = Ag, Cu, Pb, and Bi, X = S and Se)$ are displayed in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S2, Table S2, and Figure S3, respectively.

Figure 2a shows a general view bright field transmission electron microscopy (TEM) image of produced Ag_2Se . Figure 2b shows a high-resolution HRTEM micrograph from an Ag2Se particle and its corresponding power spectrum revealing an orthorhombic crystal phase (space group $P2_12_12_1$) with $a =$ 4.334 Å, *b* = 7.070 Å, *c* = 7.774 Å. The high-angle annular dark field (HAADF) scanning TEM (STEM) micrographs and electron energy loss spectroscopy (EELS) composition maps of Ag2Se particles show a homogeneous distribution of both elements (Figure 2c).

 $Bi₂S₃$ particles were also synthesized in an aqueous solution at ambient temperature. Figure 2d,e shows representative SEM and TEM images of the obtained product. $Bi₂S₃$ particles were highly polycrystalline and presented a flowerlike morphology. Crystallites had an average size of ca. 10 nm. EDX analysis showed the atomic ratio of Bi to S to be consistent with stoichiometric $Bi₂S₃$. HRTEM analysis showed the particle crystal structure to agree with the $Bi₂S₃$ orthorhombic phase (space group = *Pmcn*) with *a* = 3.9810 Å, *b* = 11.1470 Å, and *c* = 11.3050 Å (Figure 2f). EELS compositional maps showed a homogeneous distribution of Bi and S (Figure 2g). Besides,

Figure 3. (a) SEM image of the polished Ag₂Se-1.0 wt % Bi₂S₃ pellet and corresponding EDX compositional maps of Ag, Se, Bi, and S (Se-rich regions marked with white circles). (b) XRD patterns of consolidated Ag₂Se-*x* wt % Bi₂S₃ pellets.

Figure 4. Temperature dependence of (a) Seebeck coefficient and *S*. (b) electrical conductivity, σ . (c) Hall carrier concentration (n_H) and mobility (μ_H) at room temperature. (d) Power factor PF of Ag₂Se-*x* wt % Bi₂S₃.

XRD data confirmed the orthorhombic phase (PDF 03−065− 3884) of the $Bi₂S₃$ particles ([Figure](#page-2-0) 2h).

 Ag_2Se/Bi_2S_3 composites were produced by blending the proper ratio of particles in solution and hot pressing the resulting dried powder at 50 MPa and 250 °C inside an argonfilled glovebox (see the Experimental section for details). An SEM image of the polished surface of the Ag₂Se-1.0 wt % $Bi₂S₃$ composite and its corresponding EDX elemental maps are shown in [Figure](#page-3-0) 3a. Besides, the morphology of a fractured Ag₂Se-1.0 wt % $Bi₂S₃$ sample and its compositional map and EDX compositions of all fractured pellets are shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S4 and [Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S3. An overall homogeneous distribution of the constituent elements, including S and Bi, is observed, denoting atomic doping of the Ag₂Se with these two elements. Only some small Se-rich inhomogeneities can be found, as marked with white circles. [Figure](#page-3-0) 3b shows the XRD patterns of the hot-pressed Ag₂Se- x wt % $Bi₂S₃$ composites, which can be indexed with the orthorhombic Ag2Se phase (PDF 00−024− 1041). As the $Bi₂S₃$ content increases, the XRD peaks shift slightly to lower angles, indicating an expansion of the lattice associated with the partial substitution of $Ag⁺$ ions (0.67 Å) by Bi^{3+} ions (1.03 Å) with a larger ionic radius.⁴⁹ However, when the Bi_2S_3 content exceeds 1.0 wt %, the XRD peaks no longer shift due to the limited solubility of Bi^{3+} in the matrix. No impurity XRD peaks and particularly $Bi₂S₃$ peaks were detected, indicating notable alloying of $Bi₂S₃$ with $Ag₂Se³⁴$ The density of the composite slightly decreases with the increase of the Bi_2S_3 fraction due to the lower density of Bi_2S_3 (~6.78 g/cm³) compared with Ag₂Se^{[35](#page-7-0)} but all samples reach relative densities above 90% [\(Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S4).

The temperature dependence of the Seebeck coefficient (*S*) of the different composites is shown in [Figure](#page-3-0) 4a. All samples show n-type semiconducting behavior with negative S values. The absolute values of S monotonously decrease with temperature over the entire measured range. The *S* of the pure Ag2Se sample reaches up to −158.4 *μ*V/K at 300 K and decreases to −146.7 *μ*V/K at 390 K. With the introduction of $Bi₂S₃$, the absolute *S* values increased significantly reaching up to -178.5μ V/K at 300 K for the Ag₂Se-1.0 wt % Bi₂S₃ pellet.

As displayed in [Figure](#page-3-0) 4b, the temperature dependence of the electrical conductivity (σ) of the different composites shows a typical nondegenerate semiconductor characteristic with σ monotonously increasing with temperature. Relatively similar σ values were obtained for the different doping composites.

The charge carrier concentration ($n_{\rm H}$) and mobility ($\mu_{\rm H}$) as a function of the $Bi₂S₃$ amount were measured by Hall and are displayed in [Figure](#page-3-0) 4c. As the concentration of $Bi₂S₃$ increases, the n_H for Ag₂Se-*x* wt % Bi_2S_3 exhibits a moderate decrease $(6.4 \times 10^{18} \text{ cm}^{-3}$ for pure Ag₂Se and $4.9 \times 10^{18} \text{ cm}^{-3}$ for Ag₂Se-1.5 wt % Bi₂S₃). In contrast, the μ_H for Ag₂Se-*x* wt % $Bi₂S₃$ samples first rises and then decreases gradually with rising Bi₂S₃ concentration. In detail, the μ _H is 958.9 cm² V⁻¹ s^{-1} for the pure Ag₂Se sample, and the largest value of 1310.4 $\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ is found as $\text{Bi}_2 \text{S}_3$ amount increases to 1.0 wt %. A further increase of $Bi₂S₃$ doping concentration to 1.5 wt % reduces the μ_H of Ag₂Se-*x* wt % Bi₂S₃ samples.

The increase in the absolute value of the Seebeck coefficient with the introduction of $Bi₂S₃$ is in part associated with the decrease in the charge carrier concentration. Previous studies also demonstrate an increase in the absolute value of the Seebeck coefficient and also the charge carrier mobility with the partial replacement of Se with $S^{13,50}$ $S^{13,50}$ $S^{13,50}$ $S^{13,50}$ Besides, the Bi doping within the Ag₂Se lattice expands the lattice, as observed by XRD, which according to previous publications could increase the density of states near the Fermi level, $51-53$ $51-53$ $51-53$ thereby further enhancing the Seebeck coefficient of the Ag₂Se-based materials. At too high, $Bi₂S₃$ precipitates are found as a secondary phase inside the Ag₂Se matrix, which reduces the charge carrier mobility and the absolute value of the Seebeck coefficient. This reduction may be related to a higher bipolar

contribution associated with the preferential scattering of electrons over holes at the Ag_2Se/Bi_2S_3 interphase owing to the upward band bending generated at the Ag_2Se side. It is therefore crucial to maintain the $Bi₂S₃$ content below 1% to achieve an optimal thermoelectric performance in Ag₂Se−Bi₂S₃ composites. Notice that a similar evolution of the Seebeck coefficient with dopant concentration, first increasing and later decreasing at higher dopant concentrations, has been reported in other systems, and diverse mechanisms have been reported.[54](#page-7-0)−[57](#page-8-0) Besides, previous studies have also shown increased Seebeck coefficients without affecting the electrical conductivity.[58](#page-8-0)−[60](#page-8-0) The preserved electrical conductivity of Ag₂Se after being mixed with $Bi₂S₃$ is attributed to the notable increase in charge carrier mobility, which compensates for the moderate decrease in charge carrier concentration.

[Figure](#page-3-0) 4d shows the power factor (PF, $S^2\sigma$) of Ag₂Se-*x* wt % $Bi₂S₃$ samples as a function of temperature. For the pure $Ag₂Se$ sample, the PF slightly increases, from 2.06 to 2.24 mW m⁻¹ K⁻² over 300–390 K. The PF of the Ag₂Se −1.0 wt % Bi₂S₃ composite is significantly larger, reaching up to 2.66 mW m^{-1} K⁻² at 360 K. Notice also that the Ag₂Se-1.0 wt % Bi₂S₃ pellet exhibits good stability even after multiple tests ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S5).

The experimental thermal diffusivities, *α*, are presented in [Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S4. The measured heat capacities, C_p , and the limit C_p calculated by the Dulong−Petit law are shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S6. Notice that while the measured *C*^p is very close to the calculated limit for the Ag_2Se-x wt % Bi_2S_3 composite and slightly below this limit for the pure Ag₂Se sample, the limit is approximately within the error range of the measured values.^{[61,62](#page-8-0)} The total thermal conductivity (κ_{tot}) is determined by the equation

$$
\kappa_{\rm tot} = \alpha \rho C_{\rm p} \tag{3}
$$

where ρ is density. Figure 5a displays the obtained thermal conductivity of Ag₂Se and Ag₂Se-*x* wt % $Bi₂S₃$ samples over the

Figure 5. Thermal conductivity of (a) total thermal conductivity, κ_{tot} . (b) Lattice thermal conductivity κ_L .

whole temperature range. The pure Ag_2Se pellet is characterized by a moderate κ_{tot} of 0.99 W m⁻¹ K⁻¹ at 300 K and 1.15 W m^{-1} K⁻¹ at 390 K. These values are consistent with previous reports on Ag_2Se^{25} Ag_2Se^{25} Ag_2Se^{25} With the introduction of Bi₂S₃, *κ*_{tot} significantly decreases. The Ag₂Se-1.5 wt % Bi₂S₃ sample displayed the lowest κ_{tot} , 0.76 W m⁻¹ K⁻¹ at 300 K and 0.90 W m[−]¹ K[−]¹ at 390 K. Figure 5b displays the lattice thermal conductivity (κ_L) obtained by subtracting the electronic contribution to the thermal conductivity calculated using a single parabolic band (SPB) model according to Wiedemann–Franz (κ_e = $L\sigma T$, where *L* is the Lorentz number) from the total thermal conductivity ($\kappa_L = \kappa_{tot} - \kappa_e$). The Lorenz number *L* is calculated by

$$
L = 1.5 + \exp\left[-\frac{|S|}{116}\right] \tag{4}
$$

The plot is displayed in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S7a. [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S7b shows the temperature dependence of κ_e . While similar κ_e values were obtained for the different materials, composites displayed lower κ_L , down to 0.34–0.17 W m⁻¹ K⁻¹ for Ag₂Se-1.5 wt % $Bi₂S₃$. The lower κ_{tot} measured for the composites is associated with a more effective scattering of phonons at point defects created by Bi^{3+} and extensive interphases between Ag₂Se and $Bi₂S₃$ in the case of the highest doped samples. Numerous previous works have reported a decrease of thermal conductivity with a minor effect on electrical conductivity and have associated this phenomenon with different explanations, including a strong scattering on phonons created by precipitates without strongly affecting electrical conductiv- $ity₀⁶³$ $ity₀⁶³$ $ity₀⁶³$ hierarchical architecture with multiscale defects differently affecting phonons and electrons, 60 phonon scattering by introduced electrically dopant atoms, 64 and preferential phonon scattering by introduced nanoparticles.^{[65](#page-8-0)}

The temperature dependence of the TE figure or merit, *zT*, is displayed in Figure 6a. For the pristine Ag₂Se pellet, the zT

Figure 6. Temperature dependence of (a) zT values of Ag₂Se- x wt % Bi_2S_3 , (b) a comparison with reported silver selenide-based thermo-electric materials,^{5,[10,19](#page-6-0)[,25,](#page-7-0)[66](#page-8-0),[69](#page-8-0),[70](#page-8-0)} and (c) a comparison of zT_{ave} with reported data of silver selenide-based thermoelectric materi a ls.^{5,[11](#page-6-0),[13,15,18,](#page-6-0)[68](#page-8-0)}

value increases from 0.62 at 300 K to 0.76 at 380 K. The *zT* values of the Ag₂Se- x wt % $Bi₂S₃$ composites increase with the introduction of $0.5-1.0$ wt % $Bi₂S₃$. A maximum zT value of 0.96 was obtained for the Ag₂Se-1.0 wt % $Bi₂S₃$ sample at 370 K, which is ascribed to the highest PF value and slightly decreased κ_{tot} . These zT values are above those previously reported n-type Ag₂Se -based TE materials prepared by wet chemistry 18,19,22,23,25,27,66 18,19,22,23,25,27,66 18,19,22,23,25,27,66 18,19,22,23,25,27,66 18,19,22,23,25,27,66 18,19,22,23,25,27,66 and other methods 15,32,67,68 15,32,67,68 15,32,67,68 15,32,67,68 15,32,67,68 15,32,67,68 [\(Figure](#page-4-0) [5](#page-4-0)b and [Table](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S5). We further determined the thermoelectric properties of a pure Ag2Se sample up to 480 K ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf) S8). We noticed that above 400 K, coinciding with the Ag₂Se phase transition, a large decrease in the absolute value of the Seebeck coefficient and electrical conductivity was obtained, which

resulted in an abrupt drop of *zT*. Thus, the material application is limited to a temperature range extending up to about 390 K.

zT values remain constant throughout the whole temperature range tested, providing a high average *zT* (*zT*ave) calculated as

$$
zT_{\text{ave}} = \frac{1}{T_{\text{h}} - T_{\text{c}}} \int_{T_{\text{c}}}^{T_{\text{h}}} zT dT \tag{5}
$$

where T_h is the hot-side temperature, T_c is the cold-side temperature, and zT_{ave} is thus the area under the zT curve divided by the value of $T_h - T_c$. As shown in Figure 6c, a zT_{ave} = 0.93 is obtained in the temperature range of 300 to 390 K for the Ag₂Se-1.0 wt % $Bi₂S₃$ sample, significantly above previously reported values.

■ **CONCLUSIONS**

In conclusion, a facile, rapid, high-yield, and componentcontrollable room-temperature aqueous synthesis method was adopted to prepare a plethora of metal chalcogenide MX nanoparticles ($M = Ag$, Cu, Pb, Bi; $X = S$, Se). Using this procedure, a series of Ag₂Se- x wt % $Bi₂S₃$ composites was obtained by blending the materials in solution and hot press sintering the obtained dried powder. A maximum *zT* value of 0.76 for pure Ag2Se was obtained at 380 K. Further investigation illustrates that moderate $Bi₂S₃$ doping can effectively increase the absolute S value and reduce κ _L without significant harm to *σ*, which contributes to a remarkable PF of 2.66 mW m[−]¹ K[−]² and a maximum *zT* of 0.96 at 370 K. Besides, a remarkable $zT_{\rm ave}$ of 0.93 was obtained for Ag₂Se-1.0 wt % $Bi₂S₃$ nanocomposites, above the values obtained in most previous silver selenide-based thermoelectric materials fabricated via wet chemical approaches.

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acsaelm.3c00055.](https://pubs.acs.org/doi/10.1021/acsaelm.3c00055?goto=supporting-info)

Experimental characterization details, additional SEM, XRD, EDX data, reproducibility results, heat capacities, calculation of the Lorenz number, and comparison with previous literature ([PDF\)](https://pubs.acs.org/doi/suppl/10.1021/acsaelm.3c00055/suppl_file/el3c00055_si_001.pdf)

■ **AUTHOR INFORMATION**

Corresponding Authors

- Yu Zhang − *Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United Sates*; Email: yvz5897@psu.edu
- Andreu Cabot − *Catalonia Institute for Energy Research*−*IREC, Sant Adria*̀*del Besos*̀ *08930, Spain; ICREA, Barcelona 08010 Catalonia, Spain;* [orcid.org/](https://orcid.org/0000-0002-7533-3251) [0000-0002-7533-3251](https://orcid.org/0000-0002-7533-3251); Email: acabot@irec.cat

Authors

- Bingfei Nan − *Catalonia Institute for Energy Research*−*IREC, Sant Adria*̀*del Besos*̀ *08930, Spain; Departament d*′*Enginyeria Electronica* ̀ *i Biomedica,* ̀ *Universitat de Barcelona, Barcelona 08028 Catalonia, Spain*
- Mengyao Li − *Catalonia Institute for Energy Research*−*IREC, Sant Adria*̀*del Besos*̀ *08930, Spain; School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China*; ● orcid.org/0000-0002-9082-7938
- Ke Xiao − *Catalonia Institute for Energy Research*−*IREC, Sant Adria*̀*del Besos*̀ *08930, Spain; Departament d*′*Enginyeria Electronica* ̀ *i Biomedica,* ̀ *Universitat de Barcelona, Barcelona 08028 Catalonia, Spain*
- Khak Ho Lim − *Institute of Zhejiang University*−*Quzhou, Quzhou 324000 Zhejiang, P.R. China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007 Zhejiang, P.R. China*
- Cheng Chang − *Institute of Science and Technology Austria (ISTA), Klosterneuburg 3400, Austria; School of Materials Science and Engineering, Beihang University, Beijing 100191, China*
- Xu Han − *Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona 08193 Catalonia, Spain*
- Yong Zuo − *Istituto Italiano di Tecnologia, Genova 16163, Italy*
- Junshan Li − *Institute for Advanced Study, Chengdu University, Chengdu 610106, China*
- Jordi Arbiol − *Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona 08193 Catalonia, Spain; ICREA, Barcelona 08010 Catalonia, Spain;* [orcid.org/](https://orcid.org/0000-0002-0695-1726) [0000-0002-0695-1726](https://orcid.org/0000-0002-0695-1726)
- Jordi Llorca − *Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Barcelona East School of Engineering, Universitat Politecnica* ̀ *de Catalunya, Barcelona 08019 Catalonia, Spain;* [orcid.org/0000-0002-7447-](https://orcid.org/0000-0002-7447-9582) [9582](https://orcid.org/0000-0002-7447-9582)
- Maria Ibán**̃**ez − *Institute of Science and Technology Austria (ISTA), Klosterneuburg 3400, Austria;* [orcid.org/0000-](https://orcid.org/0000-0001-5013-2843) [0001-5013-2843](https://orcid.org/0000-0001-5013-2843)

Complete contact information is available at: [https://pubs.acs.org/10.1021/acsaelm.3c00055](https://pubs.acs.org/doi/10.1021/acsaelm.3c00055?ref=pdf)

Funding

Open Access is funded by the Austrian Science Fund (FWF). **Notes**

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

B.N., M.L., Y.Z., K.X., and X.H. thank the China Scholarship Council (CSC) for the scholarship support. C.C. received funding from the FWF "Lise Meitner Fellowship" grant agreement M 2889-N. M.I. acknowledges the financial support from ISTA and the Werner Siemens Foundation. ICN2 acknowledges funding from Generalitat de Catalunya 2021SGR00457 and project NANOGEN (PID2020- 116093RB-C43) funded by MCIN/AEI/10.13039/ 501100011033/. ICN2 was supported by the Severo Ochoa program from Spanish MCIN/AEI (Grant No.: CEX2021- 001214-S) and was funded by the CERCA Programme/ Generalitat de Catalunya. J.L. is a Serra Húnter Fellow and is grateful to the ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and 2021 SGR 01061. K.H.L. acknowledges support from the National Natural Science Foundation of China (22208293). This study is part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat de Catalunya.

■ **REFERENCES**

(1) Liu, W.-D.; Shi, X.-L.; Moshwan, R.; Yang, L.; Chen, Z.-G.; Zou, J. [Solvothermal](https://doi.org/10.1016/j.cej.2019.121996) synthesis of high-purity porous $Cu_{1.7}Se$ approaching low lattice thermal [conductivity.](https://doi.org/10.1016/j.cej.2019.121996) *Chem. Eng. J.* 2019, *375*, 121996.

(2) He, J.; Tritt, T. M. Advances in [thermoelectric](https://doi.org/10.1126/science.aak9997) materials [research:](https://doi.org/10.1126/science.aak9997) Looking back and moving forward. *Science* 2017, *357*, 9.

(3) Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced [Thermoelectric](https://doi.org/10.1021/acs.chemrev.0c00026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Design: From Materials and [Structures](https://doi.org/10.1021/acs.chemrev.0c00026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) to Devices. *Chem. Rev.* 2020, *120*, 7399−7515.

(4) Zhang, Y.; Li, Z.; Singh, S.; Nozariasbmarz, A.; Li, W.; Genç, A.; Xia, Y.; Zheng, L.; Lee, S. H.; Karan, S. K.; et al. Defect [Engineering](https://doi.org/10.1002/adma.202208994) Stabilized AgSbTe₂ with High [Thermoelectric](https://doi.org/10.1002/adma.202208994) Performance. Adv. *Mater.* 2023, *35*, 2208994.

(5) Wang, H. T.; Ma, H. Q.; Duan, B.; Geng, H. Y.; Zhou, L.; Li, J. L.; Zhang, X. L.; Yang, H. J.; Li, G. D.; Zhai, P. C. [High-Pressure](https://doi.org/10.1021/acsaem.0c02810?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Rapid Preparation of [High-Performance](https://doi.org/10.1021/acsaem.0c02810?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Binary Silver Sulfide [Thermoelectric](https://doi.org/10.1021/acsaem.0c02810?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Materials. *ACS Appl. Energy Mater.* 2021, *4*, 1610− 1618.

(6) Ferhat, M.; Nagao, J. [Thermoelectric](https://doi.org/10.1063/1.373741) and transport properties of *β*-Ag2Se [compounds.](https://doi.org/10.1063/1.373741) *J. Appl. Phys.* 2000, *88*, 813−816.

(7) Dalven, R.; Gill, R. [Energy](https://doi.org/10.1103/PhysRev.159.645) Gap in *β*−Ag₂Se. *Phys. Rev.* 1967, *159*, 645−649.

(8) Chen, J.; Sun, Q.; Bao, D.; Liu, T.; Liu, W.-D.; Liu, C.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. [Hierarchical](https://doi.org/10.1021/acsami.0c15341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Structures Advance [Thermoelectric](https://doi.org/10.1021/acsami.0c15341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Properties of Porous n-type β-Ag₂Se. ACS Appl. *Mater. Interfaces* 2020, *12*, 51523−51529.

(9) Conn, J. B.; Taylor, R. C. Thermoelectric and [Crystallographic](https://doi.org/10.1149/1.2427584) [Properties](https://doi.org/10.1149/1.2427584) of Ag2Se. *J. Electrochem. Soc.* 1960, *107*, 977.

(10) Day, T.; Drymiotis, F.; Zhang, T.; Rhodes, D.; Shi, X.; Chen, L.; Snyder, G. J. Evaluating the potential for high [thermoelectric](https://doi.org/10.1039/c3tc31810a) [efficiency](https://doi.org/10.1039/c3tc31810a) of silver selenide. *J. Mater. Chem. C* 2013, *1*, 7568−7573.

(11) Mi, W.; Qiu, P.; Zhang, T.; Lv, Y.; Shi, X.; Chen, L. [Thermoelectric](https://doi.org/10.1063/1.4870509) transport of Se-rich Ag₂Se in normal phases and phase [transitions.](https://doi.org/10.1063/1.4870509) *Appl. Phys. Lett.* 2014, *104*, 133903.

(12) Ahmad, S.; Singh, A.; Bhattacharya, S.; Basu, R.; Bhatt, R.; Muthe, K. P. Near room temperature [thermoelectrics:](https://doi.org/10.1063/5.0017451) Ag₂Se. J. Appl. *Phys.* 2020, *2265*, No. 030429.

(13) Jood, P.; Chetty, R.; Ohta, M. [Structural](https://doi.org/10.1039/D0TA02614J) stability enables high [thermoelectric](https://doi.org/10.1039/D0TA02614J) performance in room temperature Ag2Se. *J. Mater. Chem. A* 2020, *8*, 13024−13037.

(14) Jood, P.; Ohta, M. [Temperature-Dependent](https://doi.org/10.1021/acsaem.9b02231?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Structural Variation and Cu Substitution in [Thermoelectric](https://doi.org/10.1021/acsaem.9b02231?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Silver Selenide. *ACS Appl. Energy Mater.* 2020, *3*, 2160−2167.

(15) Huang, S.; Wei, T.-R.; Chen, H.; Xiao, J.; Zhu, M.; Zhao, K.; Shi, X. [Thermoelectric](https://doi.org/10.1021/acsami.1c18483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ag₂Se: Imperfection, Homogeneity, and [Reproducibility.](https://doi.org/10.1021/acsami.1c18483?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Appl. Mater. Interfaces* 2021, *13*, 60192−60199.

(16) Lee, C.; Park, Y.-H.; Hashimoto, H. Effect of [nonstoichiometry](https://doi.org/10.1063/1.2429727) on the [thermoelectric](https://doi.org/10.1063/1.2429727) properties of a Ag₂Se alloy prepared by a [mechanical](https://doi.org/10.1063/1.2429727) alloying process. *J. Appl. Phys.* 2007, *101*, No. 024920.

(17) Perez-Taborda, J. A.; Caballero-Calero, O.; Vera-Londono, L.; Briones, F.; Martin-Gonzalez, M. High [Thermoelectric](https://doi.org/10.1002/aenm.201702024) zT in n-Type Silver Selenide films at Room [Temperature.](https://doi.org/10.1002/aenm.201702024) *Adv. Energy Mater.* 2018, *8*, 1702024.

(18) Lim, K. H.; Wong, K. W.; Liu, Y.; Zhang, Y.; Cadavid, D.; Cabot, A.; Ng, K. M. Critical role of [nanoinclusions](https://doi.org/10.1039/C9TC00163H) in silver selenide [nanocomposites](https://doi.org/10.1039/C9TC00163H) as a promising room temperature thermoelectric [material.](https://doi.org/10.1039/C9TC00163H) *J. Mater. Chem. C* 2019, *7*, 2646−2652.

(19) Xiao, C.; Xu, J.; Li, K.; Feng, J.; Yang, J.; Xie, Y. [Superionic](https://doi.org/10.1021/ja2104476?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Phase Transition in Silver [Chalcogenide](https://doi.org/10.1021/ja2104476?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Nanocrystals Realizing Optimized [Thermoelectric](https://doi.org/10.1021/ja2104476?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Performance. *J. Am. Chem. Soc.* 2012, *134*, 4287−4293.

(20) Liu, Y.; Cadavid, D.; Ibáñez, M.; De Roo, J.; Ortega, S.; Dobrozhan, O.; Kovalenko, M. V.; Cabot, A. [Colloidal](https://doi.org/10.1039/C6TC00893C) AgSbSe2 [nanocrystals:](https://doi.org/10.1039/C6TC00893C) surface analysis, electronic doping and processing into [thermoelectric](https://doi.org/10.1039/C6TC00893C) nanomaterials. *J. Mater. Chem. C* 2016, *4*, 4756−4762. (21) Cadavid, D.; Ibáñez, M.; Shavel, A.; Durá, O. J.; López de la Torre, M. A.; Cabot, A. Organic ligand [displacement](https://doi.org/10.1039/c3ta01455j) by metal salts to enhance nanoparticle functionality: [thermoelectric](https://doi.org/10.1039/c3ta01455j) properties of [Ag2Te.](https://doi.org/10.1039/c3ta01455j) *J. Mater. Chem. A* 2013, *1*, 4864−4870.

(22) Wang, H.; Chu, W.; Wang, D.; Mao, W.; Pan, W.; Guo, Y.; Xiong, Y.; Jin, H. [Low-Temperature](https://doi.org/10.1007/s11664-010-1484-x) Thermoelectric Properties of *β*-Ag2Se Synthesized by [Hydrothermal](https://doi.org/10.1007/s11664-010-1484-x) Reaction. *J. Electron. Mater.* 2011, *40*, 624−628.

(23) Chen, N.; Ren, C.; Sun, L.; Xue, H.; Yang, H.; An, X.; Yang, X.; Zhang, J.; Che, P. Improved [thermoelectric](https://doi.org/10.1039/D1CE01442K) properties of multi-walled carbon [nanotubes/Ag2Se](https://doi.org/10.1039/D1CE01442K) via controlling the composite ratio. *CrystEngComm* 2022, *24*, 260−268.

(24) Pei, J.; Chen, G.; Jia, D.; Jin, R.; Xu, H.; Chen, D. [Rapid](https://doi.org/10.1039/C2NJ40641A) synthesis of Ag₂Se dendrites with enhanced electrical [performance](https://doi.org/10.1039/C2NJ40641A) by [microwave-assisted](https://doi.org/10.1039/C2NJ40641A) solution method. *New J. Chem.* 2013, *37*, 323− 328.

(25) Wang, H.; Liu, X.; Zhang, B.; Huang, L.; Yang, M.; Zhang, X.; Zhang, H.; Wang, G.; Zhou, X.; Han, G. General [surfactant-free](https://doi.org/10.1016/j.cej.2020.124763) synthesis of binary silver chalcogenides with tuneable [thermoelectric](https://doi.org/10.1016/j.cej.2020.124763) [properties.](https://doi.org/10.1016/j.cej.2020.124763) *Chem. Eng. J.* 2020, *393*, 124763.

(26) Tee, S. Y.; Tan, X. Y.; Wang, X.; Lee, C. J. J.; Win, K. Y.; Ni, X. P.; Teo, S. L.; Seng, D. H. L.; Tanaka, Y.; Han, M.-Y. [Aqueous](https://doi.org/10.1021/acs.inorgchem.2c00060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Synthesis, Doping, and [Processing](https://doi.org/10.1021/acs.inorgchem.2c00060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of n-Type Ag₂Se for High Thermoelectric Performance at [Near-Room-Temperature.](https://doi.org/10.1021/acs.inorgchem.2c00060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2022, *61*, 6451−6458.

(27) Li, D.; Zhang, J. H.; Li, J. M.; Zhang, J.; Qin, X. Y. [High](https://doi.org/10.1039/C9QM00487D) [thermoelectric](https://doi.org/10.1039/C9QM00487D) performance for an $Ag₂Se-based material prepared by a$ wet [chemical](https://doi.org/10.1039/C9QM00487D) method. *Mater. Chem. Front.* 2020, *4*, 875−880.

(28) Zhang, Q.; Wu, G.; Guo, Z.; Sun, P.; Wang, R.; Chen, L.; Wang, X.; Tan, X.; Hu, H.; Yu, B.; Noudem, J. G.; Liu, G.; Jiang, J. Enhanced [Thermoelectric](https://doi.org/10.1021/acsami.1c05525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Mechanical Performances in Sintered [Bi0.48Sb1.52Te3](https://doi.org/10.1021/acsami.1c05525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)−AgSbSe2 Composite. *ACS Appl. Mater. Interfaces* 2021, *13*, 24937−24944.

(29) Liu, H.-T.; Sun, Q.; Zhong, Y.; Deng, Q.; Gan, L.; Lv, F.-L.; Shi, X.-L.; Chen, Z.-G.; Ang, R. [High-performance](https://doi.org/10.1016/j.nanoen.2021.106706) in n-type PbTebased [thermoelectric](https://doi.org/10.1016/j.nanoen.2021.106706) materials achieved by synergistically dynamic doping and energy [filtering.](https://doi.org/10.1016/j.nanoen.2021.106706) *Nano Energy* 2022, *91*, 106706.

(30) Chen, Y.; Chen, J.; Zhang, B.; Yang, M.; Liu, X.; Wang, H.; Yang, L.; Wang, G.; Han, G.; Zhou, X. Realizing [enhanced](https://doi.org/10.1016/j.jmst.2020.10.062) [thermoelectric](https://doi.org/10.1016/j.jmst.2020.10.062) properties in Cu₂S-alloyed SnSe based composites [produced](https://doi.org/10.1016/j.jmst.2020.10.062) via solution synthesis and sintering. *J. Mater. Sci. Technol.* 2021, *78*, 121−130.

(31) Zhang, Y.; Xing, C.; Liu, Y.; Li, M.; Xiao, K.; Guardia, P.; Lee, S.; Han, X.; Ostovari Moghaddam, A.; Josep Roa, J.; Arbiol, J.; Ibáñez, M.; Pan, K.; Prato, M.; Xie, Y.; Cabot, A. [Influence](https://doi.org/10.1016/j.cej.2021.129374) of copper telluride [nanodomains](https://doi.org/10.1016/j.cej.2021.129374) on the transport properties of n-type bismuth telluride. *Chem. Eng. J.* 2021, *418*, 129374.

(32) Ballikaya, S.; Oner, Y.; Temel, T.; Ozkal, B.; Bailey, T. P.; Toprak, M. S.; Uher, C. [Thermoelectric](https://doi.org/10.1016/j.jssc.2019.02.037) and thermal stability [improvements](https://doi.org/10.1016/j.jssc.2019.02.037) in Nano-Cu₂Se included Ag₂Se. *J. Solid State Chem.* 2019, *273*, 122−127.

(33) Ji, W.; Shi, X.-L.; Liu, W.-D.; Yuan, H.; Zheng, K.; Wan, B.; Shen, W.; Zhang, Z.; Fang, C.; Wang, Q.; Chen, L.; Zhang, Y.; Jia, X.; Chen, Z.-G. Boosting the [thermoelectric](https://doi.org/10.1016/j.nanoen.2021.106171) performance of n-type $Bi₂S₃$ by hierarchical structure [manipulation](https://doi.org/10.1016/j.nanoen.2021.106171) and carrier density optimiza[tion.](https://doi.org/10.1016/j.nanoen.2021.106171) *Nano Energy* 2021, *87*, 106171.

(34) Zhang, Y.-X.; Ge, Z.-H.; Feng, J. Enhanced [thermoelectric](https://doi.org/10.1016/j.jallcom.2017.08.224) properties of $Cu_{1.8}S$ via [introducing](https://doi.org/10.1016/j.jallcom.2017.08.224) Bi_2S_3 and $Bi_2S_3@Bi$ core-shell [nanorods.](https://doi.org/10.1016/j.jallcom.2017.08.224) *J. Alloy. Comp.* 2017, *727*, 1076−1082.

(35) Zhu, Y.-K.; Guo, J.; Zhang, Y.-X.; Cai, J.-F.; Chen, L.; Liang, H.; Gu, S.-W.; Feng, J.; Ge, Z.-H. Ultralow Lattice Thermal [Conductivity](https://doi.org/10.1016/j.actamat.2021.117230) and Enhanced Power Generation Efficiency Realized in $Bi_2Te_{2.7}Se_{0.3}/$ Bi2S3 [nanocomposites.](https://doi.org/10.1016/j.actamat.2021.117230) *Acta Mater.* 2021, *218*, 117230.

(36) He, R.; Yang, L.; Zhang, Y.; Wang, X.; Lee, S.; Zhang, T.; Li, L.; Liang, Z.; Chen, J.; Li, J.; Ostovari Moghaddam, A.; Llorca, J.; Ibáñez, M.; Arbiol, J.; Xu, Y.; Cabot, A. A [CrMnFeCoNi](https://doi.org/10.1016/j.ensm.2023.03.022) high entropy alloy boosting oxygen [evolution/reduction](https://doi.org/10.1016/j.ensm.2023.03.022) reactions and zinc-air battery [performance.](https://doi.org/10.1016/j.ensm.2023.03.022) *Energy Stor. Mater.* 2023, *58*, 287−298.

(37) Montaña-Mora, G.; Qi, X.; Wang, X.; Chacón-Borrero, J.; Martinez-Alanis, P. R.; Yu, X.; Li, J.; Xue, Q.; Arbiol, J.; Ibáñez, M.; Cabot, A. Phosphorous [incorporation](https://doi.org/10.1016/j.jelechem.2023.117369) into palladium tin nanoparticles for the [electrocatalytic](https://doi.org/10.1016/j.jelechem.2023.117369) formate oxidation reaction. *J. Electroanal. Chem.* 2023, *936*, 117369.

(38) Liao, Y.; Liu, W.; Jia, W.; Wang, B.; Chen, L.; Huang, K.; Montgomery, M. J.; Qian, J.; Lv, S.; Pfefferle, L. D. [Bismuth](https://doi.org/10.1002/aelm.202100468) Sulfide Strongly Coupled to [Functionalized](https://doi.org/10.1002/aelm.202100468) MWNTs Hybrids with Improved [Thermoelectric](https://doi.org/10.1002/aelm.202100468) Properties. *Adv. Energy Mater.* 2021, *7*, 2100468.

(39) Ni, J.; Zhao, Y.; Liu, T.; Zheng, H.; Gao, L.; Yan, C.; Li, L. Strongly Coupled $Bi_2S_3@CNT$ Hybrids for Robust Lithium Storage. *Adv. Energy Mater.* 2014, *4*, 1400798.

(40) Berestok, T.; Chacón-Borrero, J.; Li, J.; Guardia, P.; Cabot, A. Crystalline Magnetic Gels and Aerogels [Combining](https://doi.org/10.1021/acs.langmuir.2c03372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Large Surface Areas and Magnetic [Moments.](https://doi.org/10.1021/acs.langmuir.2c03372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Langmuir* 2023, *39*, 3692.

(41) Wang, X.; Han, X.; Du, R.; Xing, C.; Qi, X.; Liang, Z.; Guardia, P.; Arbiol, J.; Cabot, A.; Li, J. Cobalt Molybdenum [Nitride-Based](https://doi.org/10.1021/acsami.2c09272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Nanosheets](https://doi.org/10.1021/acsami.2c09272?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for Seawater Splitting. *ACS Appl. Mater. Interfaces* 2022, *14*, 41924−41933.

(42) Li, M.; Yang, D.; Biendicho, J. J.; Han, X.; Zhang, C.; Liu, K.; Diao, J.; Li, J.; Wang, J.; Heggen, M.; Dunin-Borkowski, R. E.; Wang, J.; Henkelman, G.; Morante, J. R.; Arbiol, J.; Chou, S.-L.; Cabot, A. Enhanced Polysulfide Conversion with Highly [Conductive](https://doi.org/10.1002/adfm.202200529) and [Electrocatalytic](https://doi.org/10.1002/adfm.202200529) Iodine-Doped Bismuth Selenide Nanosheets in Lithium−Sulfur [Batteries.](https://doi.org/10.1002/adfm.202200529) *Adv. Funct. Mater.* 2022, *32*, 2200529.

(43) Yang, D.; Li, M.; Zheng, X.; Han, X.; Zhang, C.; Jacas Biendicho, J.; Llorca, J.; Wang, J.; Hao, H.; Li, J.; Henkelman, G.; Arbiol, J.; Morante, J. R.; Mitlin, D.; Chou, S.; Cabot, A. [Phase](https://doi.org/10.1021/acsnano.2c03788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Engineering](https://doi.org/10.1021/acsnano.2c03788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Defective Copper Selenide toward Robust Lithium− Sulfur [Batteries.](https://doi.org/10.1021/acsnano.2c03788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Nano* 2022, *16*, 11102−11114.

(44) Wang, X.; Li, J.; Xue, Q.; Han, X.; Xing, C.; Liang, Z.; Guardia, P.; Zuo, Y.; Du, R.; Balcells, L.; Arbiol, J.; Llorca, J.; Qi, X.; Cabot, A. [Sulfate-Decorated](https://doi.org/10.1021/acsnano.2c12029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Amorphous−Crystalline Cobalt-Iron Oxide Nanosheets to Enhance O−O Coupling in the Oxygen [Evolution](https://doi.org/10.1021/acsnano.2c12029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reaction. *ACS Nano* 2023, *17*, 825−836.

(45) Du, R.; Xiao, K.; Li, B.; Han, X.; Zhang, C.; Wang, X.; Zuo, Y.; Guardia, P.; Li, J.; Chen, J.; Arbiol, J.; Cabot, A. [Controlled](https://doi.org/10.1016/j.cej.2022.135999) oxygen doping in highly dispersed Ni-loaded $g-C_3N_4$ [nanotubes](https://doi.org/10.1016/j.cej.2022.135999) for efficient [photocatalytic](https://doi.org/10.1016/j.cej.2022.135999) H2O2 production. *Chem. Eng. J.* 2022, *441*, 135999.

(46) Wang, X.; Han, X.; Du, R.; Liang, Z.; Zuo, Y.; Guardia, P.; Li, J.; Llorca, J.; Arbiol, J.; Zheng, R.; Cabot, A. [Unveiling](https://doi.org/10.1016/j.apcatb.2022.121988) the role of [counter-anions](https://doi.org/10.1016/j.apcatb.2022.121988) in amorphous transition metal-based oxygen evolution [electrocatalysts.](https://doi.org/10.1016/j.apcatb.2022.121988) *AppL. Catal. B* 2023, *320*, 121988.

(47) Yang, D.; Liang, Z.; Tang, P.; Zhang, C.; Tang, M.; Li, Q.; Biendicho, J. J.; Li, J.; Heggen, M.; Dunin-Borkowski, R. E.; et al. [A](https://doi.org/10.1002/adma.202108835) High [Conductivity](https://doi.org/10.1002/adma.202108835) 1D *π*−d Conjugated Metal−Organic Framework with Efficient Polysulfide [Trapping-Diffusion-Catalysis](https://doi.org/10.1002/adma.202108835) in Lithium− Sulfur [Batteries.](https://doi.org/10.1002/adma.202108835) *Adv. Mater.* 2022, *34*, 2108835.

(48) Zhang, C.; Fei, B.; Yang, D.; Zhan, H.; Wang, J.; Diao, J.; Li, J.; Henkelman, G.; Cai, D.; Biendicho, J. J.; Morante, J. R.; Cabot, A. Robust Lithium−Sulfur Batteries Enabled by Highly [Conductive](https://doi.org/10.1002/adfm.202201322) WSe₂-Based [Superlattices](https://doi.org/10.1002/adfm.202201322) with Tunable Interlayer Space. Adv. Funct. *Mater.* 2022, *32*, 2201322.

(49) Wu, G.; Yan, Z.; Wang, X.; Tan, X.; Song, K.; Chen, L.; Guo, Z.; Liu, G.-Q.; Zhang, Q.; Hu, H.; Jiang, J. Optimized [Thermoelectric](https://doi.org/10.1021/acsami.1c19893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Properties of $Bi_{0.48}Sb_{1.52}Te_3$ through AgCuTe Doping for Low-Grade Heat [Harvesting.](https://doi.org/10.1021/acsami.1c19893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Appl. Mater. Interfaces* 2021, *13*, 57514−57520.

(50) Xin, C.; Fang, Z.; Jiang, S.; Hu, Z.; Zhang, D.; Cassagne, F.; Aigouy, L.; Chen, Z. [Solution-processed](https://doi.org/10.1016/j.mtener.2023.101266) flexible n-type S-doped Ag₂Se thermoelectric generators for [near-ambient-temperature](https://doi.org/10.1016/j.mtener.2023.101266) energy [harvest.](https://doi.org/10.1016/j.mtener.2023.101266) *Mater. Today Energy* 2023, *33*, 101266.

(51) Kihoi, S. K.; Kahiu, J. N.; Kim, H.; Shenoy, U. S.; Bhat, D. K.; Yi, S.; Lee, H. S. [Optimized](https://doi.org/10.1016/j.jmst.2020.12.063) Mn and Bi co-doping in SnTe based [thermoelectric](https://doi.org/10.1016/j.jmst.2020.12.063) material: A case of band engineering and density of states [tuning.](https://doi.org/10.1016/j.jmst.2020.12.063) *J. Mater. Sci. Technol.* 2021, *85*, 76−86.

(52) Zhou, Z.; Yang, J.; Jiang, Q.; Luo, Y.; Zhang, D.; Ren, Y.; He, X.; Xin, J. Multiple effects of Bi doping in [enhancing](https://doi.org/10.1039/C6TA04240F) the [thermoelectric](https://doi.org/10.1039/C6TA04240F) properties of SnTe. *J. Mater. Chem. A* 2016, *4*, 13171−13175.

(53) Shenoy, U. S.; D, G. K.; Bhat, D. K. [Probing](https://doi.org/10.1016/j.jallcom.2022.165965) of Bi doped GeTe [thermoelectrics](https://doi.org/10.1016/j.jallcom.2022.165965) leads to revelation of resonant states. *J. Alloy. Comp.* 2022, *921*, 165965.

(54) Hu, L.; Meng, F.; Zhou, Y.; Li, J.; Benton, A.; Li, J.; Liu, F.; Zhang, C.; Xie, H.; He, J. [Leveraging](https://doi.org/10.1002/adfm.202005202) Deep Levels in Narrow Bandgap

Bi_{0.5}Sb_{1.5}Te₃ for Record-High zTave Near Room [Temperature.](https://doi.org/10.1002/adfm.202005202) *Adv. Funct. Mater.* 2020, *30*, 2005202.

(55) Zheng, W.; Bi, P.; Liu, F.; Liu, Y.; Shi, J.; Xiong, R.; Wang, Z. High Thermoelectric Performance of Au ω Sb₂Te₃ Heterostructure Derived from the Potential Barriers. *arXiv preprint*, 2018, arXiv:1805.08519.

(56) Ma, Z.; Wang, C.; Chen, Y.; Li, L.; Li, S.; Wang, J.; Zhao, H. Ultra-high [thermoelectric](https://doi.org/10.1016/j.mtphys.2021.100350) performance in SnTe by the integration of several [optimization](https://doi.org/10.1016/j.mtphys.2021.100350) strategies. *Mater. Today Phys.* 2021, *17*, 100350. (57) Chen, Z.; Wang, R.; Wang, G.; Zhou, X.; Wang, Z.; Yin, C.; Hu,

Q.; Zhou, B.; Tang, J.; Ang, R. Band engineering and [precipitation](https://doi.org/10.1088/1674-1056/27/4/047202) enhance [thermoelectric](https://doi.org/10.1088/1674-1056/27/4/047202) performance of SnTe with Zn-doping. *Chin. Phys. B* 2018, *27*, No. 047202.

(58) Athithya, S.; Jibri, K. P. M.; Harish, S.; Hayakawa, K.; Kubota, Y.; Ikeda, H.; Hayakawa, Y.; Navaneethan, M.; Archana, J. [Probing](https://doi.org/10.1063/5.0134959) an enhanced [anisotropy](https://doi.org/10.1063/5.0134959) Seebeck coefficient and low thermal conductivity in polycrystalline Al doped SnSe [nanostructure.](https://doi.org/10.1063/5.0134959) *AIP Adv.* 2023, *13*, No. 015311.

(59) Lin, Y.; Wood, M.; Imasato, K.; Kuo, J. J.; Lam, D.; Mortazavi, A. N.; Slade, T. J.; Hodge, S. A.; Xi, K.; Kanatzidis, M. G.; Clarke, D. R.; Hersam, M. C.; Snyder, G. J. [Expression](https://doi.org/10.1039/D0EE02490B) of interfacial Seebeck coefficient through grain boundary [engineering](https://doi.org/10.1039/D0EE02490B) with multi-layer graphene [nanoplatelets.](https://doi.org/10.1039/D0EE02490B) *Energy Environ. Sci.* 2020, *13*, 4114−4121.

(60) Zhang, X.; Wang, D.; Wu, H.; Yin, M.; Pei, Y.; Gong, S.; Huang, L.; Pennycook, S. J.; He, J.; Zhao, L.-D. [Simultaneously](https://doi.org/10.1039/C7EE02530K) enhancing the power factor and reducing the thermal [conductivity](https://doi.org/10.1039/C7EE02530K) of SnTe via [introducing](https://doi.org/10.1039/C7EE02530K) its analogues. *Energy Environ. Sci.* 2017, *10*, 2420−2431.

(61) Alleno, E.; Bérardan, D.; Byl, C.; Candolfi, C.; Daou, R.; Decourt, R.; Guilmeau, E.; Hébert, S.; Hejtmanek, J.; Lenoir, B.; Masschelein, P.; Ohorodnichuk, V.; Pollet, M.; Populoh, S.; Ravot, D.; Rouleau, O.; Soulier, M. Invited [Article:](https://doi.org/10.1063/1.4905250) A round robin test of the uncertainty on the measurement of the [thermoelectric](https://doi.org/10.1063/1.4905250) dimensionless figure of merit of [Co0.97Ni0.03Sb3.](https://doi.org/10.1063/1.4905250) *Rev. Sci. Instrum.* 2015, *86*, No. 011301.

(62) Wang, H.; Bai, S.; Chen, L.; Cuenat, A.; Joshi, G.; Kleinke, H.; König, J.; Lee, H. W.; Martin, J.; Oh, M.-W.; Porter, W. D.; Ren, Z.; Salvador, J.; Sharp, J.; Taylor, P.; Thompson, A. J.; Tseng, Y. C. International Round-Robin Study of the [Thermoelectric](https://doi.org/10.1007/s11664-015-4006-z) Transport Properties of an n-Type Half-Heusler [Compoundfrom](https://doi.org/10.1007/s11664-015-4006-z) 300 to 773 K. *J. Electron. Mater.* 2015, *44*, 4482−4491.

(63) Tian, B.-Z.; Jiang, X.-P.; Chen, J.; Gao, H.; Wang, Z.-G.; Tang, J.; Zhou, D.-L.; Yang, L.; Chen, Z.-G. Low lattice thermal [conductivity](https://doi.org/10.1007/s12598-021-01805-1) and enhanced [thermoelectric](https://doi.org/10.1007/s12598-021-01805-1) performance of SnTe via chemical [electroless](https://doi.org/10.1007/s12598-021-01805-1) plating of Ag. *Rare Met.* 2022, *41*, 86−95.

(64) Chen, T.; Ming, H.; Zhang, B.; Zhu, C.; Zhang, J.; Zhou, Q.; Li, D.; Xin, H.; Qin, X. Ultralow Thermal [Conductivity](https://doi.org/10.1021/acsaem.0c02820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Enhanced Figure of Merit for CuSbSe₂ via [Cd-Doping.](https://doi.org/10.1021/acsaem.0c02820?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Appl. Energy Mater.* 2021, *4*, 1637−1643.

(65) Cheng, Y.; Yang, J.; Luo, Y.; Li, W.; Vtyurin, A.; Jiang, Q.; Dunn, S.; Yan, H. Enhancement of [Thermoelectric](https://doi.org/10.1021/acsami.2c10424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Performance in $Bi_{0.5}Sb_{1.5}Te₃$ Particulate Composites Including [Ferroelectric](https://doi.org/10.1021/acsami.2c10424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) BaTiO₃ [Nanodots.](https://doi.org/10.1021/acsami.2c10424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Appl. Mater. Interfaces* 2022, *14*, 37204−37212.

(66) Dalmases, M.; Ibáñez, M.; Torruella, P.; Fernàndez-Altable, V.; López-Conesa, L.; Cadavid, D.; Piveteau, L.; Nachtegaal, M.; Llorca, J.; Ruiz-González, M. L.; Estradé, S.; Peiró, F.; Kovalenko, M. V.; Cabot, A.; Figuerola, A. Synthesis and [Thermoelectric](https://doi.org/10.1021/acs.chemmater.6b02845?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Properties of Noble Metal Ternary [Chalcogenide](https://doi.org/10.1021/acs.chemmater.6b02845?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Systems of Ag−Au−Se in the Forms of Alloyed Nanoparticles and Colloidal [Nanoheterostructures.](https://doi.org/10.1021/acs.chemmater.6b02845?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Mater.* 2016, *28*, 7017−7028.

(67) Duan, H. Z.; Li, Y. L.; Zhao, K. P.; Qiu, P. F.; Shi, X.; Chen, L. D. Ultra-Fast Synthesis for Ag₂Se and CuAgSe [Thermoelectric](https://doi.org/10.1007/s11837-016-1980-4) [Materials.](https://doi.org/10.1007/s11837-016-1980-4) *JOM* 2016, *68*, 2659−2665.

(68) Chen, J.; Sun, Q.; Bao, D.; Tian, B.-Z.; Wang, Z.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. [Simultaneously](https://doi.org/10.1016/j.actamat.2021.117335) enhanced strength and plasticity of Ag₂Se-based [thermoelectric](https://doi.org/10.1016/j.actamat.2021.117335) materials endowed by [nano-twinned](https://doi.org/10.1016/j.actamat.2021.117335) CuAgSe secondary phase. *Acta Mater.* 2021, *220*, 117335.

(69) Lei, Y.; Liu, W.; Zhou, X.; Luo, J.; Zhang, C.; Su, X.; Tan, G.; Yan, Y.; Tang, X. The [electronic-thermal](https://doi.org/10.1016/j.jssc.2020.121453) transport properties and the exploration of [magneto-thermoelectric](https://doi.org/10.1016/j.jssc.2020.121453) properties and the Nernst [thermopower](https://doi.org/10.1016/j.jssc.2020.121453) of Ag2(1+x)Se. *J. Solid State Chem.* 2020, *288*, 121453. (70) Chen, J.; Yuan, H.; Zhu, Y.-K.; Zheng, K.; Ge, Z.-H.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. Ternary Ag2Se_{1-x}Te_x: A [Near-Room-](https://doi.org/10.1021/acs.inorgchem.1c01563?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)Temperature [Thermoelectric](https://doi.org/10.1021/acs.inorgchem.1c01563?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Material with a Potentially High Figure of [Merit.](https://doi.org/10.1021/acs.inorgchem.1c01563?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2021, *60*, 14165−14173.