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Abstract
We study the representative volume element (RVE) method, which is a method to
approximately infer the effective behavior ahom of a stationary random medium. The
latter is described by a coefficient field a(x) generated from a given ensemble 〈·〉
and the corresponding linear elliptic operator −∇ · a∇. In line with the theory of
homogenization, the method proceeds by computing d = 3 correctors (d denoting
the space dimension). To be numerically tractable, this computation has to be done
on a finite domain: the so-called representative volume element, i.e., a large box with,
say, periodic boundary conditions. The main message of this article is: Periodize the
ensemble instead of its realizations. By this, we mean that it is better to sample from a
suitably periodized ensemble than to periodically extend the restriction of a realization
a(x) from the whole-space ensemble 〈·〉. We make this point by investigating the bias
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(or systematic error), i.e., the difference between ahom and the expected value of the
RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of
periodizing a(x), we heuristically argue that this error is generically O(L−1). In case
of a suitable periodization of 〈·〉, we rigorously show that it is O(L−d). In fact, we give
a characterization of the leading-order error term for both strategies and argue that
even in the isotropic case it is generically non-degenerate. We carry out the rigorous
analysis in the convenient setting of ensembles 〈·〉 of Gaussian type, which allow for
a straightforward periodization, passing via the (integrable) covariance function. This
setting has also the advantage of making the Price theorem and the Malliavin calculus
available for optimal stochastic estimates of correctors. We actually need control of
second-order correctors to capture the leading-order error term. This is due to inversion
symmetry when applying the two-scale expansion to the Green function. As a bonus,
we present a stream-lined strategy to estimate the error in a higher-order two-scale
expansion of the Green function.

Keywords Stochastic homogenization · Random media · Representative volume
element method · Gaussian calculus
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1 Introduction and Statement of Rigorous Result

1.1 Uniformly Elliptic Coefficient Fields

The basic objects of this paper are λ-uniformly elliptic tensor fields a = a(x) (that
are not necessarily symmetric) in d-dimensional space, by which we mean that for all
points x

ξ · a(x)ξ ≥ λ|ξ |2 and ξ · a(x)ξ ≥ |a(x)ξ |2 for all x, ξ ∈ R
d . (1)

Note that the second condition implies |a(x)ξ | ≤ |ξ |. These conditions are not
equivalent unless a(x) is symmetric; however, the form of the bounds in (1) is the one
preserved under homogenization [58, Definition 6]. Such a tensor field a gives rise to
the heterogeneous elliptic operator −∇ · a∇ acting on functions u.1

Homogenization means assimilating the effective, i.e., large scale, behavior of a
heterogeneous medium to a homogeneous one, as described by the constant tensor
ahom. By this, one means that the difference of the solution operators (−∇ · a∇)−1

−(−∇ · ahom∇)−1 converges to zero when applied to functions f varying only on
scales L ↑ ∞. Homogenization is known to take place in a number of situations, see
[58] for a general notion, e. g. when the coefficient field a is periodic or when it is
sampled from a stationary and ergodic ensemble 〈·〉. While we are interested in the
latter, it is convenient to introduce the representative volume element (RVE) method
in the context of the former.

1.2 The RVEMethod

Unless d = 1, there is no explicit formula that allows to compute in practice ahom for
a general ensemble 〈·〉. Early work treated specific ensembles that admit asymptotic
explicit formulas in limiting regimes, like spherical inclusions covering a low volume
fraction in [49, p. 365]. Explicit upper and lower bounds on ahom in terms of features
of the ensemble 〈·〉 play a major role in the engineering literature, see for instance
[50, 59]. On the contrary, the RVE method is a computational method to obtain con-
vergent approximations to ahom for a general the ensemble 〈·〉. As the name “volume
element” indicates, it is based on samples a of 〈·〉 in a (computational) domain, typ-
ically a cube of side-length L . It consists in inverting −∇ · a∇ for d (representative)
boundary conditions. The question of the appropriate size L of the RVE evolved from
a philosophical one in [36] (large enough to be statistically typical and so that bound-
ary effects are dominated by bulk effects) towards a more practical one in [17] (just
large enough so that the statistical properties relevant for the physical quantity ahom

1 While we use scalar language and notation, R as a space for the values of u may be replaced by a
finite-dimensional vector space.
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are captured). The convergence of the method has been extensively investigated by
numerical experiments in the engineering literature, see some references below. In
this paper, we rigorously analyze some aspects of the convergence for a certain class
of ensembles 〈·〉.

We now introduce the RVE method. Suppose (momentarily) that the coefficient
field a is L-periodic, meaning that a(x + Lk) = a(x) for all x and k ∈ Z

d . Given a
Cartesian coordinate direction i = 1, . . . , d and denoting by ei the unit vector in the
i-th direction, we define (up to additive constants) φ

(1)
i as the L-periodic solution of

−∇ · a(∇φ
(1)
i + ei ) = 0. (2)

The function φ
(1)
i is called first-order corrector, because it additively corrects the

affine coordinate function xi in such away that the resulting function x 
→ xi +φ
(1)
i (x)

is a-harmonic, by which we understand that it vanishes under application of −∇ ·a∇.
Let usmomentarily adopt the languageof a conductingmedium:On themicroscopic

level, multiplication with the tensor field a converts the electric field into the electric
flux. On the macroscopic level, it is ahom that relates the averaged field to the averaged
flux. In view of (2), ∇φ

(1)
i + ei can be considered as an electric field in the absence

of charges, arising from the electric potential −(φ
(1)
i + xi ). In view of the periodicity

of φ
(1)
i , the large-scale average of ∇φ

(1)
i + ei is just ei . Now a(∇φ

(1)
i + ei ) is the

corresponding flux. It is periodic, so its large-scale average is given by its average on
the periodic cell

āei :=
 

[0,L)d
a(∇φ

(1)
i + ei ). (3)

Observe that the notation ā without reference to the period L is legitimate since
(3) is equivalent to āei = limR↑∞

ffl
[0,R)d

a(∇φ
(1)
i + ei ). A well-known feature of

homogenization is that ā inherits the bounds (1) from a, as can be derived with the
help of the dual problem (20). In the periodic case, (3) in fact coincides with the
homogenized coefficient ahom.

On the contrary, in the random case which we introduce now, (3) provides only a
fluctuating approximation to the deterministic ahom. Homogenization is known to take
place when a is sampled from a stationary and ergodic ensemble 〈·〉, see [38, 53]. By
the latter, we mean a probability measure2 on the space of tensor fields a satisfying
(1); we use the symbol 〈·〉 to address both the ensemble and to denote its expectation
operator. Stationarity is the crucial structural assumption and means that the shifted
random field x 
→ a(z + x) has the same (joint) distribution as a for any shift vector
z ∈ R

d . Ergodicity is a qualitative assumption3 that encodes the decorrelation of the
values of a over large distances.

2 We are deliberately vague on the σ -algebra, which could be taken as generated by the Borel algebra
induced by H -convergence as in [31], because we will consider a very explicit class in this paper.
3 Again, we are deliberately vague since this qualitative assumption will be replaced by an explicit quan-
titative one.
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1.3 Two Strategies of Periodizing

In order to apply the RVE method in form of (3), considered as an approximation for
ahom, one needs to produce samples a of L-periodic coefficient fields connected to
the given ensemble 〈·〉. The goal of this paper is to compare two strategies to procure
such L-periodic samples. The first strategy relies on “periodizing the realizations” in
its most naive form—we shall actually consider a seemingly less naive form of it, see
Sect. 4—and goes as follows: Taking a coefficient field a in R

d , we restrict it to the
box [0, L)d and then periodically extend it. This defines a map a 
→ aL . We then take
aL , cf. (3), as an approximation for ahom. One unfavorable aspect of this strategy is
obvious: The push-forward of 〈·〉 under this map a 
→ aL is no longer stationary—an
imagined glance at a typical realization would reveal d families of parallel artificial
hypersurfaces.

Related variants of this strategy consist in still restricting a to [0, L)d but then
imposing Dirichlet or Neumann boundary conditions instead of periodic boundary
conditions. (Neumann conditions will actually be analyzed in Sect. 4.) Both boundary
conditions for the random (vector) field ∇φ(1) = ∇φ(1)(a, x) destroy its stationarity
in the sense of shift-covariance: It is no longer true that for any shift-vector z ∈ R

d

we have ∇φ(1)(a, z + x) = ∇φ(1)(a(z + ·), x).
The second strategy relies on “periodizing the ensemble” and is more subtle: Given

an ensemble 〈·〉, one constructs a “related” stationary ensemble 〈·〉L of L-periodic
fields, samples a from 〈·〉L and takes ā as an approximation. The quality of this second
method was numerically explored in [35] for random non-overlapping inclusions and
(next to the first strategy) in [40] for random Voronoi tessellations4; in both cases,
the periodization is obvious. Requirements on the periodization of ensembles were
formulated in [55, Section 4], a general construction idea was given in [28, Remark 5].
In this paper,we advocate thinking of themap 〈·〉 � 〈·〉L as conditioning on periodicity
and will construct it for a specific but relevant class of 〈·〉 given in Assumption 1.

The second strategy obviously capitalizes on the knowledge of the ensemble 〈·〉
and not just of a single realization (a “snapshot”), in the sense of “known unknowns”
as opposed to “unknown unknowns”. This is in contrast to the numerical analysis on
inferring ahom in [51], or on constructing effective boundary conditions in [47, 48]
from a snapshot.

1.4 Fluctuations and Bias

In this paper, we are interested in comparing these two strategies in terms of their bias
(also called systematic error): How much do the two expected values 〈aL 〉 and 〈ā〉L
deviate from ahom, which by qualitative theory is their common limit for L ↑ ∞ (see
[15] for 〈aL 〉 and Corollary 1 i i i) for 〈a〉L ). We shall heuristically argue that

〈aL 〉 − ahom = O(L−1), (4)

4 The periodization is mentioned in a somewhat hidden way on p.3658.
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see Sect. 4, while proving

〈ā〉L − ahom = O(L−d), (5)

see Theorems 1 and 2. Here L should be thought of as the (non-dimensional) ratio
between the actual period L and a suitably defined correlation length of 〈·〉 set to
unity. The quantification of the convergence in L is clearly of practical interest: After
a discretization that resolves the correlation length, the number of unknowns of the
linear algebra problem (2) scales with Ld for L � 1. Numerical experiments confirm
the O(L−d) scaling [41, Figure 5] and the substantially worse behavior (4) for the
other strategy [56]. In this regard, result (4) is not unexpected either from a theoretical
or a numerical perspective, cf. [24, (3.4)], [15, 23], respectively. Nevertheless, to the
best of our knowledge, we provide here the first formal argument in favor of such a
behavior.

We note that fluctuations (which are at the origin of the random part of the error), as
for instancemeasured in terms of the square root of the variance, are inmany situations
proven to be of the order (see, e.g., [28, Theorem 2])

〈|ā − 〈ā〉L |2〉
1
2
L = O(L− d

2 ), (6)

see, e.g., [41, Figure 6] for a numerical validation, and the same is expected to hold
for the other strategy ([60, Fig.3] and [24, (3.3)])

〈|aL − 〈aL 〉|2〉 1
2 = O(L− d

2 ).

Hence, the variance scales like the inverse of the volume Ld of the periodic cell [0, L)d ,
as if we were averaging over [0, L)d some field of unit range of dependence instead of
the long-range correlated a(∇φi + ei ). In view of this identical fluctuation scaling for
both strategies, the different bias scaling is significant in the most relevant dimension
d = 3, which we mostly focus in this paper: For the first strategy, the bias dominates,
so that taking the empirical mean of aL over many realizations a does not substantially
reduce the total error. It does so in the second scenario, which suggests to use variance
reduction methods, like analyzed in [25, 45].

Theoretical results on the random error in RVE, at least for the second strategy like
in (6), are by now abundant, starting from [30, Theorem 2.1] for a discrete medium
with i. i. d. coefficient, over [27, Theorem 1] for a class of continuum media based
on the Poisson point process, to the leading-order identification of the variance in
in [19, Theorem 2]. The last result arises from the characterization of leading-order
variances in stochastic homogenization in general, starting from [52, Theorem 2.1] for
correctors, and is in the spirit of the general approach laid out in [34]. These estimates of
variances and fluctuations in homogenization rely on a functional calculus (Malliavin
derivatives, Spectral Gap inequalities). There is an alternative approach based on a
finite range assumption (and its relaxation via mixing conditions) that was shown to
yield optimal results in [3, 31], and culminated in the monograph [4]. In this paper,
we make use of the first approach.
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Theoretical results on the systematic error in RVE, again for the second strategy as
in (5), seem to have been restricted to the case of a discrete medium with i. i. d. coeffi-
cients, see [28, Proposition 3], where the construction of 〈·〉L is obvious. The argument
for [28, Proposition 3] is based on a (necessarily non-stationary) coupling of 〈·〉 and
〈·〉L and introduces a massive term into the corrector equation in order to screen the
resulting boundary layer, which leads to a logarithmically worse estimate than (5).
Our analysis avoids this coupling and suggests that such a logarithmic correction is
artificial. (Incidentally, the phenomenon that the bias decays to an order that is twice
the order of the fluctuation decay occurs also in the analysis of the homogenization
error (−∇ · a∇)−1 f − (−∇ · ahom∇)−1 f itself: While the variance can be character-
ized to order O(L−d), where L � 1 now is the ratio between the scale of f and the
correlation length, see [20, Theorem 1], the expectation seems to be characterized to
order O(L−2d), see [14, 18, 43].)

The first strategy is appealing since it only requires a snapshot, which could come
from an actual material image, whereas the second one requires knowledge of the
underlying ensemble, which has to be estimated or imposed as a model. Several meth-
ods to overcome the effect of boundary layers on the first strategy have been proposed:
Motivated by the treatment of periodic coefficient fields of unknown period and the
ensuing resonance error, oversampling [37] and filtering [11] strategieswere proposed.
Until recently, in case of random media, however, because of the slow decay of the
boundary layer, they were not expected to perform better than O(L−1), see [24, (3.4)].
This motivated [26] to screen the boundary effects by a massive term to the corrector
equation (2), cf. (51). However, results in preparation [8] suggest that, in the case of
an isotropic ensemble, oversampling strategies may give rise to an improved rate that

is at most of the order of the random error O(L− d
2 ). Screening strategies based on

semi-group [1, 51] or wave-equation [2] versions of the corrector equation have also
been analyzed. Screening by a massive term, in conjunction with extrapolation in the
massive parameter, has been proven to reduce the systematic error to O(L−d) [28,
Thm. 2]. Based on screening and extrapolation, [51, Prop. 1.1 & Th. 1.2] formulated a
numerical algorithm that extracts ahom from a snapshot a up to the optimal total error

O(L− d
2 ) with only O(Ld) operations.

1.5 Assumptions and Formulation of Rigorous Result

We now introduce a class of ensembles 〈·〉 of λ-uniform coefficient fields a that can
be easily periodized. Loosely speaking, the natural way to periodize a general station-
ary ensemble 〈·〉 of coefficient fields a on R

d is to condition on a being L-periodic.
Clearly, this conditioning is highly singular, and we thus shall restrict ourselves to
stationary and centered Gaussian ensembles 〈·〉. Since a realization g of such a Gaus-
sian ensemble is obviously not (λ-uniformly) elliptic, we will work with a (nonlinear)
map A and consider the pointwise transformation a(x) = A(g(x)). More precisely,
we will identify 〈·〉 with its push-forward under

g 
→ a := (
x 
→ A(g(x))

)
. (7)
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Centered Gaussian ensembles on some (infinite-dimensional) Banach space X are
characterized through their covariance, which is a semi-definite bounded bilinear form
on X∗, defining a Hilbert space (known as the Cameron–Martin space) H ⊂ X . When
H is a Hilbert space of Hölder continuous functions on R

d , this operator is best
represented by its kernel c(x, y) = 〈g(x)g(y)〉. Stationarity of 〈·〉 then amounts to
c = c(x − y); the positive-semidefinite character of the bilinear form translates into
non-negativity of the Fourier transform Fc(q) ≥ 0 for all wave vectors q ∈ R

d .
We now argue that periodization by conditioning can be characterized as follows:
〈·〉L is the stationary centered Gaussian measure with L-periodic covariance cL with
Fourier coefficients given by restricting the Fourier transformFc(q) to the dual lattice
q ∈ 2π

L Z
d , defining the k-th Fourier mode of cL as:

1√
Ld

ˆ
[0,L)d

dx e−i 2πkL ·x cL(x) := 1√
Ld

Fc
(
2πk

L

)
for all k ∈ Z

d . (8)

Since loosely speaking, the contributions to 〈·〉 from every wave vector q ∈ R
d are

independent, this restriction indeed corresponds to conditioning. This definition also
highlights that information is lost when passing from 〈·〉 to 〈·〉L . In terms of real space,
the passage from c to cL amounts to periodization of the covariance function:

cL(x) =
∑

k∈Zd

c(x + Lk). (9)

As for the whole space ensemble, we identify 〈·〉L with its push-forward under (7).
We now collect the technical assumptions on 〈·〉, that is, on the covariance function

c and the map A. Loosely speaking, we need that A is regular and that c is regular
with integrable decay, both up to second derivatives. A subclass of these ensembles,

namely those of Matérn formFc(q) = (1+|q|2)− d
2 −ν , is, for instance, used as a prior

for elastic microstructures, where the smoothness parameter ν is estimated from real
material images, and the effectivemoduli ahom are computed byRVE via periodization
of ensembles, see [42, (2.10) and Fig. 9].

Assumption 1 Let 〈·〉 be a stationary, ergodic and centered Gaussian ensemble of
scalar5 fields g on Rd , as determined by the covariance function c(x) := 〈g(x)g(0)〉.
We assume that there exists an α > 0 such that

sup
x∈Rd

(1 + |x |2) d+2
2 +α|∇2c(x)| < ∞. (10)

We identify 〈·〉 with its push-forward under the map (7), where A : R → R
d×d is

such that the coefficient field a is λ-uniformly elliptic, see (1). We assume that

sup
g∈R

|A′(g)| + |A′′(g)| < ∞. (11)

5 For notational simplicity, we consider scalar Gaussian field. However, the Gaussian field g may take
values in any finite-dimensional linear space, which gives a high degree of flexibility.
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We now comment on some direct consequences of Assumption 1. On the one hand,
since we implicitly assume that lim|x |↑∞ c(x) = 0 by ergodicity, (10) implies by

integration supx∈Rd (1 + |x |2) d
2 +α|c(x)| < ∞ and thus because of α > 0

sup
q∈Rd

Fc(q) �
ˆ
Rd

dx |c(x)| < ∞, (12)

where, all along the paper,�means≤ up to amultiplicative constant that only depends
on d, λ, and the constants implicit in (10) and (11) of Assumption 1. Further subscripts
will indicate an additional dependence. Via (8), (12) yields that the Cameron–Martin
norm of 〈·〉L dominates the L2([0, L)d)-norm. This implies that 〈·〉L endowed with
the Hilbert structure of L2([0, L)d) has a uniform spectral gap in L , see [12, Poincaré
inequality (5.5.2)]. By (11), this transmits to the ensemble of a’s, see (7), and will be
used for the stochastic estimates.

On the other hand, (10) ensures that the realizations of a belongs to C0,α
loc for any

α < 1 [unrelated to the one in (10)], namely

sup
x

〈‖a‖p
C0,α(B1(x))

〉 < ∞ for all α < 1, p < ∞, (13)

which will allow us to appeal to Schauder theory for local regularity. For the reader’s
convenience, we repeat the standard Kolmogorov argument for (13). The assump-
tion (10) implies supx |∇2c(x)| < ∞ and thus supx,y |y − x |−2〈(g(y) −g(x))2〉
= supz |z|−2(c(0) −c(z)) < ∞. Since g is Gaussian, this extends to arbitrary

moments: supx,y |y − x |−1 〈|g(y) − g(x)|p〉 1
p < ∞. Estimating the Hölder semi-

norm [g]pα,B1
by the Besov norm

´
B1

dz|z|−d−pα
´
B1

dx |g(x+z) −g(x)|p, one derives
supx 〈[g]pα,B1(x)

〉 < ∞ for any α < 1 [unrelated to the one in (10)] and p < ∞. By
(11), this transmits to the coefficient field a in form of (13).

Since because of (10) we also have supL≥1 |∇2cL(x)| < ∞, (13) extends to 〈·〉L :

sup
L≥1

sup
x

〈‖a‖p
C0,α(B1(x))

〉L < ∞ for any α < 1, p < ∞. (14)

Equipped with the definition of the periodized ensembles 〈·〉L , we can state our main
result.

Theorem 1 Let d > 2 and A be symmetric. Under Assumption 1 on 〈·〉, for all L, and
with 〈·〉L defined with (8) we have for the expectation 〈ā〉L of ā defined in (3)

lim sup
L↑∞

Ld |〈ā〉L − ahom| < ∞. (15)

Let us motivate the scaling (15). For fixed i = 1, . . . , d we consider the flux

q := a(∇φ
(1)
i + ei ), (16)
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which is a random (vector) field,meaning that q = q(g, x).We note that by uniqueness
for (2), q is stationary, where we recall that it means that for every shift vector z ∈ R

d ,
we have q(g, z + x) = q(g(z + ·), x) for all points x and (periodic) fields g. Hence
by stationarity of 〈·〉L , we may write 〈ā〉L = 〈q(0)〉L . Clearly, q(0), as arising from
the solution of the PDE (2), depends via a = A(g) on the value of g in any point y,
no matter how distant from 0.

Let us assume for a moment that q were more local, meaning that q(0) depends
on g only through its restriction g|BR for some radius R < ∞. Let us also assume for
simplicity that 〈·〉 has unit range, which amounts to assume that c is supported in B1,
a sharpening of (10). We then claim that

〈q(0)〉L is independent of L ≥ 2R + 2.

Indeed, by the locality assumption and (centered) Gaussianity, the distribution of the
value q(0) = q(g, 0) is determined by cL |B2R . In view of (9) and by the finite range
assumption, cL |B2R = c|B2R for L ≥ 1 + 2R + 1.

As mentioned, our flux q(g, 0) does depend on g(y) even for R = |y| � 1. This
dependence is described by the mixed derivative ∇∇G(a, 0, y) of the Green function
G(a, x, y) for −∇ · a∇, see Sect. 2.2. Stochastic estimates show that, at least on an
annealed6 level, the decay of this variable-coefficient Green’s function is no worse
than of its constant-coefficient counterpart so that Rd |∇∇G(a, 0, y)| � 1. Loosely
speaking, it is this exponent d that shows up in (15).

In Sect. 2, we will refine Theorem 1 by characterizing the leading-order error term
in Theorem 2.

2 Theorem 1: Refinement andMain Ideas

The two ingredients for Theorem 1 are a suitable representation formula for 〈ā〉L , see
Sect. 2.1, and its asymptotics through stochastic homogenization, here on the level of
the mixed derivatives of the Green function, see Sect. 2.2. We need the second-order
version of stochastic homogenization because of an inversion symmetry. We refine
Theorem 1 in Sect. 2.3 by identifying the leading-order error term, see Theorem 2.
In Sect. 2.4, we will argue that the leading-order error typically does not vanish, by
exploring the regime of small ellipticity contrast. In Sect. 2.5, we discuss the structure
of the leading-order error term in the case of an isotropic ensemble.

2.1 Representation Formula

We start with an informal, but detailed, derivation of the representation formula, see
(26), which might be the most conceptual piece of our work.

Let us fix two vectors ξ and ξ∗ and focus on the component ξ∗ · āξ ; we denote by
φ(1) the solution of (2) with ei replaced by ξ , where by linearity and uniqueness (up

6 The language of quenched and annealed arises from metallurgy estimate and made its to model with
disorder in statistical mechanics.
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to additive constants) we have φ(1) = ∑
i ξiφ

(1)
i . By stationarity of ∇φ(1) and 〈·〉L ,

we have

〈ξ∗ · āξ 〉L = 〈F〉L where F := (ξ∗ · a(∇φ(1) + ξ))(0). (17)

Instead of directly estimating 〈ξ∗ · āξ 〉L −ξ∗ ·ahomξ , we will estimate its derivative
w.r.t. L , that is d

dL 〈ξ∗ · āξ 〉L . The reason is that by general Gaussian calculus (in form
of the Price formula) applied to the ensemble 〈·〉L of (periodic) fields g that depends
on a parameter L , we have for any F = F(g)

d

dL
〈F〉L = 1

2

ˆ
Rd

dx
ˆ
Rd

dy
〈 ∂2F

∂g(−x)∂g(−y)

〉

L

∂cL
∂L

(x − y), (18)

where the twominus signs in the denominator are for later convenience.Here ∂2F
∂g(x)∂g(y)

denotes the kernel representing the second Fréchet derivative of F , seen as a bilinear
form on the space of functions on Rd . As a derivative w.r.t. the noise g, it can be seen
as a Malliavin derivative. We refer the reader to [16] for a rigorous proof of (18).

We define F by (17). By the change of variables z � x − y, which capitalizes
on the translation invariance of the covariance, and (more directly) by the stationarity

of 〈·〉L in conjunction with the stationarity of ∇φ(1) that leads to
〈

∂2F
∂g(−x)∂g(z−x)

〉

L

=
〈
ξ∗ · ∂2a(∇φ(1)+ξ)(x)

∂g(0)∂g(z)

〉

L
, we obtain

d

dL
〈ξ∗ · āξ 〉L = 1

2

ˆ
Rd

dz
〈ˆ

Rd
ξ∗ · ∂2a(∇φ(1) + ξ)

∂g(0)∂g(z)

〉

L

∂cL
∂L

(z). (19)

With help of the corrector for the (pointwise) dual coefficient field a∗ in direction
ξ∗ (while we work with the assumption A∗ = A and thus have a∗ = a, keeping the
primal and dual medium apart reveals more of the structure), i.e., the periodic solution
φ∗(1) of

∇ · a∗(∇φ∗(1) + ξ∗) = 0, (20)

the inner integral can be rewritten more symmetrically as

ˆ
Rd

ξ∗ · ∂2a(∇φ(1) + ξ)

∂g(0)∂g(z)
=
ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂2a(∇φ(1) + ξ)

∂g(0)∂g(z)

=
ˆ
Rd

(∇φ∗(1) + ξ∗) ·
[

∂2

∂g(0)∂g(z)
, a

]
(∇φ(1) + ξ);

indeed, the first identity (formally) follows fromapplying ∂2

∂g(0)∂g(z) to (2) and then test-

ing with φ∗(1), whereas the second identify follows from testing (20) with ∂2φ(1)

∂g(0)∂g(z) .
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Resolving the commutator
[

∂2

∂g(0)∂g(z) , a
]
by Leibniz’ rule we obtain

ˆ
Rd

ξ∗ · ∂2a(∇φ(1) + ξ)

∂g(0)∂g(z)
= 2

ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂2a

∂g(0)∂g(z)
(∇φ(1) + ξ)

+
ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂a

∂g(0)
∇ ∂φ(1)

∂g(z)

+
ˆ
Rd

(∇φ∗(1) + ξ∗) · ∂a

∂g(z)
∇ ∂φ(1)

∂g(0)
. (21)

Denoting a′ := A′(g) and a′′ := A′′(g), we remark that by (7) we have ∂a(x)
∂g(z) =

a′(z)δ(x − z). Applying operator ∂
∂g(z) on (2), we thus obtain the representation

∂∇φ(1)(x)

∂g(z)
= −∇∇G(x, z)a′(z)(∇φ + e)(z) (22)

in terms of the mixed derivatives of the non-periodic Green function (since we are
only interested in themixed gradient of the Green function, the dimension d = 2 poses
no problems here) G = G(a, x, y) associated with the operator −∇ · a∇. Hence the
above turns into

ˆ
Rd

ξ∗ · ∂2a(∇φ(1) + ξ)

∂g(0)∂g(z)
= δ(z)

(
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

)
(0)

− (
a′(∇φ∗(1) + ξ∗)

)
(0) · ∇∇G(0, z)

(
a′(∇φ(1) + ξ)

)
(z)

− (
a′(∇φ∗(1) + ξ∗)

)
(z) · ∇∇G(z, 0)

(
a′(∇φ(1) + ξ)

)
(0).

Applying 〈·〉L , we obtain by stationarity

〈 ˆ
Rd

ξ∗ · ∂2a(∇φ(1) + ξ)

∂g(0)∂g(z)

〉
L

= δ(z)
〈
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

〉
L

−〈(
a′(∇φ∗(1) + ξ∗)

)
(0) · ∇∇G(0, z)

(
a′(∇φ(1) + ξ)

)
(z)

〉
L

−〈(
a′(∇φ∗(1) + ξ∗)

)
(0) · ∇∇G(0,−z)

(
a′(∇φ(1) + ξ)

)
(−z)

〉
L . (23)

Inserting this into (19), and noting that since ∂cL
∂L is even (as derivative of a covariance

function), the two last terms have the same contribution, we obtain

d

dL
〈ξ∗ · āξ〉L

= −
ˆ
Rd

dz
〈(
a′(∇φ∗(1) + ξ∗)

)
(0) · ∇∇G(0, z)

(
a′(∇φ(1) + ξ)

)
(z)

〉
L

∂cL
∂L

(z)

+ 1

2

〈
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

〉
L

∂cL
∂L

(0).

(24)
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We now insert (9) in form of

∂cL
∂L

(z)
(9)=

∑

k∈Zd

k · ∇c(z + Lk). (25)

This relation highlights that the z-integral in (24) is not absolutely convergent for
|z| ↑ ∞, not even borderline: While ∇∇G(0, z) decays as |z|−d , a glance at (25)
reveals that ∂cL

∂L (z) grows as |z|. Part of the rigorous work is devoted to justify this
formal derivation of (24) by replacing the operator −∇ · a∇ by 1

T − ∇ · a∇, see
Proposition 1.

In order to access the cancellations, we will perform a re-summation. Assuming
for simplicity for this exposition that 〈·〉 has unit range of dependence, so that c is
supported in the unit ball, we have that cL(z = 0) does not depend on L ≥ 2. Hence,
the second r.h.s. term in (24) does not contribute. By L-periodicity of the correctors,
(24) can be re-summed to

d

dL
〈ξ∗ · āξ 〉L =

ˆ
Rd

dz
〈(
a′(∇φ∗(1) + ξ∗)

)
(0)

·(
∑

k∈Zd

kn∇∇G(0, z + Lk)
)(
a′(∇φ(1) + ξ)

)
(z)

〉
L∂nc(z),

(26)

where from now on we use Einstein’s convention of summation over repeated indices,
here n ∈ {1, . . . , d}. Formula (26) is our final representation. Clearly, the sum over k
is still not absolutely convergent. However, as we shall see in the next subsection, it
converges after homogenization.

2.2 Approximation by Second-Order Homogenization

In this subsection, we turn to the asymptotics of the representation (26) for L ↑ ∞.
In particular, we shall argue why first-order homogenization is not sufficient and give
an efficient introduction into second-order correctors.

As there is no contribution from k = 0, and since by our finite range assumption
(for the sake of this discussion), z is constrained to the unit ball, the argument z+Lk of
the Green function satisfies |z+Lk| � L . Hence, wemay appeal to homogenization to
replace G(x, y) by G(x − y), where Ḡ denotes the fundamental solution of −∇ · ā∇.
This appears like periodic homogenization as long as L is fixed, but in fact amounts to
stochastic homogenization since we are interested in L ↑ ∞. Since we are interested
in its gradient, we need to replace G by the two-scale expansion of G. (See below
for more details on the two-scale expansion.) Since we are interested in the mixed
gradient, the two-scale expansion acts on both variables. Hence in a first Ansatz, we
approximate

∇∇G(0, x) ≈ −∂i j G(x)(ei + ∇φ
(1)
i )(0) ⊗ (e j + ∇φ∗

j
(1)

)(x), (27)
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where φ∗
j
(1) denotes the solution of (20) with ξ∗ replaced by e j . To leading order, this

yields by the periodicity of correctors

∇∇G(0, z + Lk) ≈ −∂i j G(Lk) (ei + ∇φ
(1)
i )(0) ⊗ (e j + ∇φ∗

j
(1)

)(z). (28)

Applying
∑

k∈Zd kn to the r.h.s., we see that it vanishes by parity w.r.t. inversion
k � −k. This is an indication that the first-order two-scale expansion (27) is not
sufficient and that we have to go to a second-order expansion, which we shall describe
now.

We need to replace the first-order version of the two-scale expansion of G by
its second-order version. We recall the two-scale expansion in its first-order ver-
sion: Given an ā-harmonic function ū, one considers u = (1 + φ

(1)
i ∂i )ū as a good

approximation to an a-harmonic function. Indeed, it follows from (2) that when ū is
a first-order polynomial, u is exactly a-harmonic. In fact, this is a characterization of
the first-order correctors φ

(1)
i . Second-order correctors φ

(2)
i j can be characterized in

a similar way: For every ā-harmonic second-order polynomial ū, we impose that u
= (1 + φ

(1)
i ∂i + φ

(2)
i j ∂i j )ū is a-harmonic.7 It is clear from this characterization that

φ
(2)
i j depends on the choice of the additive constant in φ

(1)
i , which we now fix through

 
[0,L)d

φ
(1)
i = 0. (29)

Since for our second-order polynomial ū we have

∇u = ∂i ū(ei + ∇φ
(1)
i ) + ∂i j ū(φ

(1)
i e j + ∇φ

(2)
i j ), (30)

so that ∇ · a∇u = 0 turns into ∇∂i ū · a(ei + ∇φ
(1)
i ) +∂i j ū∇ · a(φ

(1)
i e j +∇φ

(2)
i j ) = 0,

and using that ∇ · ā∇ū = 0, we obtain the following standard PDE characterization
of φ

(2)
i j :

−∇ · a(∇φ
(2)
i j + φ

(1)
i e j ) = e j · (a(∇φ

(1)
i + ei ) − āei ). (31)

Note that (31) is uniquely solvable (up to additive constants) for a periodic φ
(2)
i j

because the r.h.s. of (31) has vanishing average in view of (3). The definition of φ∗
i j

(2)

for the dual medium a∗ is analogous.
In view of (30), we thus replace (27) by

∇∇G(0, x) ≈ −∂i j G(x)(ei + ∇φ
(1)
i )(0) ⊗ (e j + ∇φ∗

j
(1)

)(x)

− ∂i jmG(x)(φ(1)
i em + ∇φ

(2)
im )(0) ⊗ (e j + ∇φ∗

j
(1)

)(x)

+ ∂i jmG(x)(ei + ∇φ
(1)
i )(0) ⊗ (φ∗

j
(1)em + ∇φ

∗(2)
jm )(x).

(32)

7 This does not characterize all components φ
(2)
i j separately but only the trace-free and symmetric part of

this tensor, where the trace is defined w.r.t. ā. Since we apply the two-scale expansion only to ā-harmonic
functions like G, this is not an issue.
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It is here that the assumption of symmetry of A is convenient: Otherwise, the

instance of G in the first r.h.s. term of (32) would have to be replaced by G + G
(2)

where G
(2)

is the (1 − d)-homogeneous solution of ∇ · (ā∇G
(2) + ā(2)

m ∇∂mG) = 0,

where ā(2) is the second-order homogenized coefficient, see (66). Since G
(2)

, as a
dipole, is odd w.r.t. point inversion, its contribution does not vanish as for G, c. f. (28).
For the analogue of (28), we now turn to the first-order Taylor expansion (recall k �= 0)

∇∇G(0, z + Lk)≈ −(
∂i j G(Lk)+zm∂i jmG(Lk)

)
(ei +∇φ

(1)
i )(0)⊗(e j + ∇φ∗

j
(1)

)(z)

− ∂i jmG(Lk)(φ(1)
i em + ∇φ

(2)
im )(0) ⊗ (e j + ∇φ∗

j
(1)

)(z)

+ ∂i jmG(Lk)(ei + ∇φ
(1)
i )(0) ⊗ (φ∗

j
(1)em + ∇φ

∗(2)
jm )(z).

By the inversion symmetry of G and the −d − 1-homogeneity of ∂i jmG, this implies

∑

k∈Zd

kn∇∇G(0, z + Lk) ≈ L−d−1
∑

k∈Zd

kn∂i jmG(k)
(

− zm(ei + ∇φ
(1)
i )(0)

⊗ (e j + ∇φ∗
j
(1)

)(z) − (φ
(1)
i em + ∇φ

(2)
im )(0)

⊗ (e j + ∇φ∗
j
(1)

)(z) + (ei + ∇φ
(1)
i )(0) ⊗ (φ∗

j
(1)em

+ ∇φ
∗(2)
jm )(z)

)
.

(33)

In viewof ā ≈ ahom,wefinally replaceG, which is still random, by the deterministic
Ghom that may be pulled out of 〈·〉L when inserting (33) into (26). Hence, we obtain
the approximation

d

dL
〈ξ∗ · āξ 〉L ≈ L−d−1�hom,i jmn

ˆ
Rd

dz ξ∗ · QLi jm(z)ξ ∂nc(z), (34)

where the five-tensor fieldQL is defined through a combination of three covariances of
quadratic expressions in correctors, see Definition 1, and where the four-tensor �hom
is formally given by the (borderline) divergent lattice sum

∑
k∈Zd kn∂i jmGT ,hom(k),

which in line with the remark at the end of Sect. 2.1 we replace by

�hom = lim
T↑∞ �hom,T where �hom,T i jmn :=

∑

k∈Zd

kn∂i jmGT ,hom(k), (35)

with GT ,hom denoting the fundamental solution of 1
T − ∇ · ahom∇.

2.3 Refinement of Rigorous Result

We start with the full definition of the tensor field QL appearing in (34).
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Definition 1 Recall the definitions (2) and (31) of first- and second-order correctors
φ

(1)
i and φ

(2)
i j , and their versions φ∗

i
(1) and φ

∗(2)
i j with a replaced by a∗. For given

vectors ξ and ξ∗, we continue to write φ(1) = ξiφi and φ∗(1) = ξ∗
i φ∗(1)

i . Consider the
random tensor fields

ξ∗ · Q(1)
i j (z)ξ := (

(ξ∗ + ∇φ∗(1)
) · a′(ei + ∇φ

(1)
i )

)
(0)

(
(e j + ∇φ∗

j
(1)

) · a′(ξ + ∇φ(1))
)
(z), (36)

ξ∗ · Q(2)
i jm(z)ξ := −(

(ξ∗ + ∇φ∗(1)
) · a′(φ(1)

i em + ∇φ
(2)
im )

)
(0)

(
(e j + ∇φ∗

j
(1)

) · a′(ξ + ∇φ(1))
)
(z)

+(
(ξ∗ + ∇φ∗(1)

) · a′(ei + ∇φ
(1)
i )

)
(0)

(
(φ

∗(1)
j em + ∇φ

∗(2)
jm ) · a′(ξ + ∇φ(1))

)
(z). (37)

For any L , we consider the ensemble 〈·〉L from Definition (9) and define

QLi jm(z) := −zm〈Q(1)
i j (z)〉L + 〈Q(2)

i jm(z)〉L . (38)

Here comes the more precise version of Theorem 1, which consists in making (34)
rigorous:

Theorem 2 Let d > 2 and A be symmetric. Suppose 〈·〉 satisfies Assumption 1 and
let ahom denote the homogenized coefficient. For all L, let 〈·〉L defined with (8), ā
be defined by (3), �hom,T defined by (35), and QL be as in Definition 1. Then, the
following limits exist:

�hom,i jmn := lim
T↑∞ �hom,T i jmn,

Qi jm(z) := lim
L↑∞QLi jm(z) for any z ∈ R

d ,

and the latter only depends on 〈·〉 (and not the lattice). Moreover, we have

lim
L↑∞ Ld+1 d〈ā〉L

dL
= �hom,i jmn

ˆ
Rd

dzQi jm(z)∂nc(z). (39)

With the tools of this paper, the asymptotics of d〈ā〉L
dL could be characterized up

to order O(L−d− d
2 ). Let us comment on the representation of the leading error term

arising from (39), namely

d lim
L↑∞ Ld(ahom − 〈ā〉L

) = �hom,i jmn

ˆ
Rd

dzQi jm(z)∂nc(z). (40)
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This representation separates a first factor �hom, which only depends on the type of
the periodic lattice (here cubic) and the homogenized coefficient ahom, from a second
factor that only depends on the whole-space ensemble 〈·〉, via its covariance function
c and covariances involving its first- and second-order correctors.

Let us address the coordinate-free interpretation of QL (and its limit Q), i.e., its
transformation behavior. We note that ξ , and likewise ξ∗, should be seen as a linear
form (rather than a vector), since it gives rise to a coordinate function: namely affine
coordinates via ξ · x and harmonic coordinates via φ(x) + ξ · x . A glance at the first
r.h.s. term in (38) shows that the indices i and j label the first-order correctors and thus
take in linear forms; this is evenmore obvious for the indexm that takes in a linear form
in the z-variable. The second, and likewise the third, r.h.s. term in (38) is of the same
nature since the second-order corrector naturally takes in a (homogeneous) second-
order polynomial, which can be identified with linear combinations of (symmetric)
tensor products of linear coordinates. Hence, in the language of differential geometry
QL(z) is a five-contravariant tensor field—as it takes in the five linear forms.

The four-tensor �hom,T (and its limit �hom) allows for a coordinate-free interpreta-
tion: �hom,T takes in three vectors (namely the directions of the derivatives of Ghom)
and renders a vector; as a form it is thus three-covariant and one-contravariant, and
in the traditional notation of differential geometry one would write �n

hom,T i jm , high-

lighting that contraction in (39) with the three-contravariant tensor field ξ∗ · Qi jmξ

(with ξ , ξ∗ fixed) is natural. In view of calculus, �hom,T is invariant under permuta-
tion of the covariant indices. There is an isomorphic way of seeing �hom,T that allows
for an electrostatic interpretation: �hom,T in fact takes in an endomorphism8 and ren-
ders a (symmetric) bilinear form. Indeed, for some endomorphism B of Rd consider
the lattice BZd , and the accordingly periodized version of GT ,hom, that is GT ,hom,B

:= ∑
k∈Zd GT ,hom(x + Bk). We then have

�n
hom,T i jmviv j umξn = d

dt |t=0
v · ∇2GT ,hom,id+tu⊗ξ (x = 0)v. (41)

Hence, �n
hom,T i jm describes, on the level of the second derivatives, how (the regular

part of) the fundamental solution (infinitesimally) depends on the lattice w.r.t. which
one periodizes it.

2.4 Small Contrast Regime and Non-degeneracy

In this subsection, we (formally) identify the leading order (42) of the r.h.s. of (40) in
the small-contrast regime. We then argue that this leading-order error term typically
does not vanish, even in the high-symmetry case of an isotropic ensemble.

We start with the derivation of (42): To leading order in a small ellipticity contrast
1− λ, the quantity ∇φ

(1)
i may be neglected w.r.t. ei ; likewise φ

(1)
i em + ∇φ

(2)
im may be

8 An endomorphism is a linear combination of tensor products of a vector (contra-variant) and a linear
form (co-variant).
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neglected w.r.t. ei . Hence to leading order, (38) reduces to

ξ∗ · Qi jm(z)ξ ≈ −zm
〈
ξ∗ · a′(0)ei e j · a′(z)ξ

〉
.

Restricting to the case of scalar A for convenience, the expression further simplifies
to

Qi jm(z) ≈ −zm 〈a′(0)a′(z)〉 ei ⊗ e j .

Restricting ourselves w. l. o. g. to ensembles 〈·〉 with c(0) = 〈g2(0)〉 = 〈g2(z)〉 = 1,
we see that 〈a′(0)a′(z)〉 depends on the Gaussian ensemble 〈·〉 only through c(z). We
thus write 〈a′(0)a′(z)〉 = A′(c(z)) for some function A, so that by the chain rule

Qi jm(z)∂nc(z) ≈ −zm ∂nA(c(z)) ei ⊗ e j .

Normalizing A such that A(0) = 0, we obtain by integration by parts

ˆ
Rd

dzQi jm(z)∂nc(z) ≈ δmn

ˆ
Rd

dzA(c(z)) ei ⊗ e j .

Hence, the r.h.s. of (40) is given by

(
lim
T↑∞

∑

k∈Zd

km∂m∇2GT ,hom(k)
) ˆ

Rd
dzA(c(z)) (42)

to leading order in the contrast.
It remains to argue that the two factors in (42) typically do not vanish. The second

factor in (42) does not vanish in the typical case of A′ > 0 and c ≥ 0. Indeed,
by definition of A, we then have A′ > 0 and thus A(c) > 0 for c > 0, so that´
Rd dzA(c(z)) > 0 because of c(0) = 1.
For the first factor in (42), we restrict ourselves to an isotropic ensemble, namely

the case where c is radially symmetric, in addition to A being scalar. In line with this,
we show that the trace of the first factor in (42) does not vanish:

lim
T↑∞

∑

k∈Zd

km∂m�GT ,hom(k) �= 0. (43)

For our isotropic ensemble, the contravariant two-form a is invariant in law under
orthogonal transformations, and so is ahom, which thus is a multiple of the identity, so
that � is a multiple of ∇ · ahom∇. Hence by definition of GT ,hom, (43) follows from

lim
T↑∞

1

T

∑

k∈Zd

km∂mGT ,hom(k) �= 0. (44)
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By scaling, we have GT ,hom(k) = 1√
T
d−2G1,hom( k√

T
). Hence we see that the sum

in (44) can be interpreted as a Riemann sum that in the limit T ↑ ∞ converges to the
integral

ˆ
Rd

dkkm∂mG1,hom(k) = −d
ˆ
Rd

dkG1,hom(k) = −d,

where the identity follows from integrating the defining equation G1,hom − ∇ ·
ahom∇G1,hom = δ overRd . In particular, we find that 〈ā〉L > ahom for L large enough,
which is consistent with numerical simulations in [40, Fig. 7 & 8], [56, Tab. 3] and
[41, Tab. 5.2], where however types of ensembles are considered that are different
from our class.

2.5 Isotropic Ensembles

In this subsection, we address the case of an isotropic ensemble. The main step is to
characterize the structure of �hom, see (50), which amounts to an elementary exercise
in representation theory.

We recall that by an isotropic ensemble we mean that c is radially symmetric and
that A is scalar. As a consequence, the law of the scalar a under 〈·〉L is invariant under
a change of variables by the octahedral group, and its law under 〈·〉 is invariant under
the full orthogonal group. As a consequence, both 〈ā〉L and ahom are multiples of the
identity. As a consequenceGT ,hom is radially symmetric. Hence by definition (35), the
3-covariant and 1-contravariant tensor �hom,T , like its limit �hom, is invariant under
the octahedral group. Furthermore, it is obviously invariant under the permutation of
its first three (covariant) derivatives.

We now derive the (quite restricted) form �hom takes as a consequence of these
symmetries. We recall that the four-linear form �hom = �hom(v, v′, u, ξ) takes in
three vectors v, v′, u and the form ξ . Choosing the standard basis {em}m and its dual
basis {en}n , by linearity and invariance under the octahedral group, it is enough to
characterize the two bilinear forms �hom(v, v′, e1, e1) and �hom(v, v′, e2, e1). The
first form is invariant under the octahedral subgroup that fixes e1, which contains in
particular reflections xi � −xi for i �= 1. Since the form is symmetric and thus
diagonalizable, this first implies that e1 is an eigenvector, and then that {e1}⊥ is an
eigenspace. Hence, the bilinear form can be written as:

�hom(v, v′, e1, e1) = μ⊥v · v′ + μ||(v · e1)(v′ · e1) (45)

for some constants μ⊥ and μ||. For the second bilinear form �hom(v, v′, e2, e1), the
same argument yields that it has block diagonal form w.r.t. the span of {e1, e2} and
its orthogonal complement. In particular, we have

�hom(v, v′, e2, e1) = cv · v′ for v · e1 = v · e2 = 0
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for some constant c, which we may recover through c = �hom(e3, e3, e2, e1). By
invariance under the octahedral transformation x2 � −x2, this expression vanishes,
so that in fact

�hom(v, v′, e2, e1) = 0 for v · e1 = v · e2 = 0. (46)

For the same reason, we have

�hom(e2, e2, e2, e
1) = 0. (47)

By the permutation symmetry in the first three arguments, we obtain from (45)

�hom(e1, e1, e2, e
1) = 0 and �hom(e1, e2, e2, e

1) = �hom(e2, e1, e2, e
1) = μ⊥.

(48)

Statements (46), (48), and (47) combine to

�hom(v, v′, e2, e1) = μ⊥
(
(v · e1)(v′ · e2) + (v′ · e1)(v · e2)

)
.

A short computation shows that the combination of this with (45) yields

�hom(v, v′, u, ξ) = ξ.
(
μ⊥

(
(v · v′)u + (v · u)v′ + (v′ · u)v

)

+(μ|| − 2μ⊥)T (v, v′, u)
)
, (49)

where we have introduced the trilinear map

Ti (v, v′, u) = viv
′
i ui (no summation),

which is invariant under permutations and octahedral transformations, but not under
all orthogonal transformations. In terms of indices, we may rewrite (49) as

�hom,i jmn = μ⊥
(
δi jδmn + δimδ jn + δinδ jm

) + (μ|| − 2μ⊥)δi jmn . (50)

Hence in the isotropic case, �hom is determined by just two numbers.
We now turn to the second factor on the r.h.s. of (40). As discussed after Definition

1, ξ∗ · Qi jm(z)ξ is a five-covariant tensor field, so that
´
Rd dzξ∗ · Qi jm(z)ξ∂nc(z) is

a five-covariant and one-contravariant tensor. In our case of an isotropic ensemble,Q
is invariant under the entire orthogonal group (not just the discrete octahedral group)
as a consequence of L ↑ ∞. Since the l.h.s. of (40) is a multiple of the identity, it is
enough to consider the trace of

´
Rd dzξ∗ · Qi jm(z)ξ∂nc(z) in ξ, ξ∗:

Qi jmn :=
ˆ
Rd

dz
(
e1 · Qi jm(z)e1 + · · · + ed · Qi jm(z)ed

)
∂nc(z),

which is a three-covariant and one-contravariant tensor, still invariant under the (full)
orthogonal group. Since in (40), it is contracted with a tensor, namely �hom, that
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is symmetric under permutation of i, j,m, we may pass to the orthogonal projection
Qsym of Q onto this subspace, which preserves invariance under the orthogonal group.
Hence as for �hom, we obtain that Qsym must be of the form (50). However, while the
first three terms in (50) are invariant under the entire orthogonal group, the last is not.
Hence, Qsym must be of the more restricted form

Qsym
i jmn = ν⊥

(
δi jδmn + δimδ jn + δinδ jm

)

for some constant ν⊥. Hence for an isotropic ensemble, the relevant information of
the entire six-tensor

´
Rd dzξ∗ · Qi jm(z)ξ∂nc(z) is the single number ν⊥.

3 Structure of the Proof of Theorem 2

In this section, we formulate the main intermediate results that lead to Theorem 2:
In Sect. 3.1, we introduce the massive approximation in order to rigorously derive
the analogue of the representation formula (44) from Sect. 2.1, see Proposition 1.
In Sect. 3.2 we argue, following Sect. 2.1, that a re-summation allows for removing
the massive approximation in the representation formula, see Proposition 2. It relies
on second-order homogenization, as introduced in Sect. 2.2. In Sect. 5.1, we sketch
how to pass from the representation given by Proposition 2 to the asymptotics stated
in Theorem 2. This essentially relies on corrector estimates and the estimate of the
homogenization error, see Sects. 3.3 and 3.4. In Sect. 3.3, we formulate the uniform
stochastic estimates on first- and second-order correctors needed to capture the asymp-
totics L ↑ ∞, see Proposition 3. In Sect. 3.4, we formulate the stochastic second-order
estimate of the homogenization error, applied to the Green function, see Proposition
4.

3.1 Massive Approximation

As became apparent in Sect. 2.1, there is divergence in the sum over the periodic cells,
see (24).We avoid it by replacing the operator−∇·a∇ by 1

T −∇·a∇ where T < ∞will
eventually tend to infinity. This has the desired effect that the corresponding Green’s
function GT (a, x, y) and its derivatives now decay exponentially in |y−x |√

T
, which can

be seen for instance from the homogenization result in Proposition 5. The language
of “massive” approximation arises from field theory where such a zero-order term
is often introduced to suppress an infrared divergence, like here. Assimilating m2 to
the inverse of a time scale T , however, makes the connection to stochastic processes,
since 1

T − ∇ · a∇ is the generator of a diffusion-desorption process where T is the
time scale of desorption, and ultimately to parabolic intuition. As a collateral of the
massive approximation, we have to replace the definitions (2) and (3) by

1

T
φ

(1)
T i − ∇ · a(∇φ

(1)
T i + ei ) = 0, āT ei :=

 
[0,L)d

a(∇φ
(1)
T i + ei ); (51)
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with analogous definitions for the transposed medium a∗.
We collect in the following some estimates on the massive quantities that are useful

in the proofs of this section.
From Schauder’s theory, φ(1)

T belongs to C1,α
loc (Rd) and

‖(φ(1)
T ,∇φ

(1)
T )‖C0,α([0,L)d ) ≤ C(Lα[a]α)

and ‖(φ(1)
T − φ(1),∇φ

(1)
T − ∇φ(1))‖C0,α([0,L)d ) ≤ C(Lα[a]α)T−1,

where we recall that [a]α denotes the Hölder semi-norm of a. Knowing that C grows
at most polynomially in its argument [a]α , we deduce from (14) that the estimates
above can be converted into, for any p < ∞

〈‖(φ(1)
T ,∇φ

(1)
T )‖p

C0,α([0,L)d )
〉L �p,L 1

and 〈‖(φ(1)
T − φ(1),∇φ

(1)
T − ∇φ(1))‖p

C0,α([0,L)d )
〉L �p,L T−1. (52)

Analogously, we obtain at the level of the massive Green functions GT and ḠT of the
operators 1

T − ∇ · a∇ and 1
T − ∇ · ā∇, respectively:

〈|∇∇GT (x, y) − ∇∇G(x, y)|p〉L →
T↑∞ 0 for any x �= y, (53)

as well as

〈|(∇3ḠT (x),∇2ḠT (x)) − (∇3Ḡ(x),∇2Ḡ(x))|p〉L →
T↑∞ 0 for any x �= 0. (54)

Finally, we have the following moment bounds on the massive Green function GT ,

〈|∇∇GT (x, y)|p〉
1
p
L �p,L |x − y|−d exp

(
−|x − y|

C
√
T

)

provided T ≥ L2 and
L

2
≤ |x − y| < ∞, (55)

that we deduce from Proposition 5 and the bound on the constant-coefficient Green
function ḠT and its derivatives

|∇2ḠT (x)| + |x ||∇3ḠT (x)| � |x |−d exp
( − |x − y|

C
√
T

)
for any x �= 0, (56)

that are uniform in T ↑ ∞.
We now can state the massive version of formula (24). Its rigorous proof will be

established in [16].
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Proposition 1 It holds

d

dL
〈ξ∗ · āT ξ〉L = −

ˆ
Rd

dz
〈(
a′(∇φ

∗(1)
T + ξ∗)

)
(0)∇∇GT (0, z)

(
a′(∇φ

(1)
T + ξ)

)
(z)

〉
L

∂cL
∂L

(z)

+ 1

2

〈
(∇φ

∗(1)
T + ξ∗) · a′′(∇φ

(1)
T + ξ)

〉
L

∂cL
∂L

(0),

(57)

where we recall that φ(1)
T = ∑

i ξiφ
(1)
T i .

The z-integral on the r.h.s. of (57) converges absolutely for |z| ↑ ∞ since the
exponential decay of ∇∇GT (0, z) dominates the linear growth of ∂cL

∂L (z), cf. (25).
The singularity at z = 0 is to be interpreted by duality, using that the other factors are
continuous in z.

3.2 Re-summation

Following Sect. 2.2, we now appeal to second-order homogenization, which allows
for a re-summation. As a by-product of the re-summation, we may pass to the limit
T ↑ ∞ in (57). The difficulty with passing to the limit T ↑ ∞ lies in the {|z| ≥ L}-part
of the integral in (57). We thus fix a smooth cutoff function η for B 1

2
in B1, rescaled

according to

ηL(z) = η( z
L ),

and we split the z-integral into the benign near-field part
´
Rd dzηL(z) and the delicate

far-field part
´
Rd dz(1 − ηL)(z). On the far-field part, we appeal to the two-scale

expansion (32). Hence, we have to monitor the homogenization error

E(x, y) := ∇∇G(x, y) + ∂i j G(x − y)(ei + ∇φ
(1)
i )(x) ⊗ (e j + ∇φ∗

j
(1)

)(y)

+ ∂i jmG(x − y)(φ(1)
i em + ∇φ

(2)
im )(x) ⊗ (e j + ∇φ∗

j
(1)

)(y)

− ∂i jmG(x − y)(ei + ∇φ
(1)
i )(x) ⊗ (φ∗

j
(1)em + ∇φ

∗(2)
jm )(y),

(58)

where we recall that G denotes the fundamental solution for the constant-coefficient
operator −∇ · ā∇.

The translation invariance ofG together with the periodicity of φ(1) and φ(2) allows
for a re-summation. As in Sect. 2.2, we feed in a zeroth- and first-order Taylor expan-
sion of G. This gives rise to the analogue of (35), namely

�i jmn = lim
T↑∞ �T i jmn where �T i jmn :=

∑

k∈Zd

kn∂i jmGT (k), (59)

where we recall thatGT denotes the fundamental solution of 1
T −∇·ā∇. The existence

of this limit, which is borderline summable, is established in Step 2 of the proof of
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Proposition 2. The Taylor expansion generates the additional error terms

ε
(1)
Li jn(z) :=

∑

k∈Zd

kn
(
((1 − ηL)∂i j G)(z + Lk) − ∂i j G(Lk) − zm∂i jmG(Lk)

)
, (60)

ε
(2)
Li jmn(z) :=

∑

k∈Zd

kn
(
((1 − ηL)∂i jmG)(z + Lk) − ∂i jmG(Lk)

)
. (61)

Thanks to this re-summation, the subtlety of the T ↑ ∞ is limited to the not
absolutely convergent sum in (59). The sums in (60) and (61) are absolutely convergent
since both summands decay as |k|−(d+1) for |k| � |z|

L , see (120) and (121) for a more
quantitative discussion. Equipped with these definitions, we are now able to express
the limit T ↑ ∞ of (57):

Proposition 2 Let �̄ be as in (59), ε(1) and ε(2) as in (60) and (61), and E as in (58).
Let Q(1) and Q(2) be defined as in (36) and (37). Then, we have

d

dL
〈ξ∗ · āξ 〉L

= L−(d+1)
ˆ
Rd

dz
〈
�i jmn

(
ξ∗ · Q(2)

i jm(z)ξ − zmξ∗ · Q(1)
i j (z)ξ

)〉
L∂nc(z)

+
ˆ
Rd

dz
〈
ε
(2)
Li jmn(z)ξ

∗ · Q(2)
i jm(z)ξ + ε

(1)
Li jn(z)ξ

∗ · Q(1)
i j (z)ξ

)〉
L∂nc(z)

−
ˆ
Rd

dz(1 − ηL)(z)
〈(
a′(∇φ∗(1) + ξ∗)

)
(0)E(0, z)(a′(∇φ(1) + ξ)

)
(z)

〉
L

∂cL
∂L

(z)

−
ˆ
Rd

dzηL(z)
〈(
a′(∇φ∗(1) + ξ∗)

)
(0)∇∇G(0, z)

(
a′(∇φ(1) + ξ)

)
(z)

〉
L

∂cL
∂L

(z)

+1

2

〈
(∇φ∗(1) + ξ∗) · a′′(∇φ(1) + ξ)

〉
L

∂cL
∂L

(0). (62)

Periodic homogenization theory suffices to establish Proposition 2 and in particular
to ensure that all five expressions on the r.h.s. of (62) are well-defined, including the
third one. Indeed, it helps to momentarily think of having rescaled length by the fixed
L . This puts us into the context of a 1-periodic coefficient field a, which in addition
is Hölder continuous. By periodic homogenization, we prove in Proposition 5 (in a
more general case for the massive quantity ET )

sup
x,y

|y − x |d+2〈|E(x, y)|p〉
1
p
L < ∞ for any p < ∞. (63)

This estimate yields the absolute convergence of the third term on the r.h.s. of (62),
since the decay (63) over-compensates the linear growth of ∂cL

∂L .
In order to pass from the representation in Proposition 2 to the asymptotics in

Theorem 2, we have to show that the first r.h.s. term of (62), up to the factor Ld+1,
converges to the r.h.s. term of (39), and that the remaining terms are o(L−(d+1)). The
proof relies on stochastic estimates on the correctors φ

(1)
i and φ

(2)
i j in order to control

123



Foundations of Computational Mathematics (2024) 24:1305–1387 1329

moments of Q(1)
i j and Q(2)

i jm together with moment estimates on the homogenization
error E. This is the purpose of the two next section. The proof of Theorem 2 is carried
out in Sect. 5.1.

3.3 Stochastic Corrector Estimates Up to Second Order

As just discussed, the proof of Theorem 2 will rely on estimates of not only the first-
order corrector φ

(1)
i , but also its second-order version φ

(2)
i j , see part i) of Proposition

3. Since the period L of the ensemble 〈·〉L tends to infinity, these have to rely on
stochastic (and not periodic) homogenization. This is the reason for the restriction to
d > 2 (which is just a more telling way of saying d ≥ 3 since it is rather d = 2 that
is borderline): For d = 2, the first-order corrector in the whole-space ensemble 〈·〉 is
not stationary, so that one looses (pointwise) control even of a centered second-order
corrector. Only for d > 2 one has the middle item in (69), see for instance [32]. For the
(limiting) whole-space ensemble 〈·〉, such higher-order corrector estimates have first
been established in [33] (however suboptimal in odd dimensions) and [7, Theorem
3.1] (see [20, Proposition 2.2] for a treatment of any order). These works, like ours,
rely on Malliavin calculus and a suitable spectral gap estimate, as is available under
Assumption 1. (Incidentally, the quantitative theory based on finite-range assumptions
as started in [5] has also been extended to get stochastic estimates on φ(2) in [48].)
Unfortunately,we cannot simplyquote [7] sinceweneed the estimate for the periodized
ensembles 〈·〉L (uniform for L ↑ ∞, of course).

For Proposition 4, we need to also estimate the flux correctors, both first order
and second order, which we shall recall now. (We also refer to [20, Section 2] for a
compact introduction into all higher-order correctors.) It follows from (2) and (3) that
a(∇φ

(1)
i + ei )− āei is divergence-free, periodic, and of zero average. Hence it allows

for, in the language of d = 2, a periodic stream function, or in the language of d = 3,
a periodic vector potential. For general d, it can be represented in terms of a periodic
tensor field σi with

a(∇φ
(1)
i + ei ) = āei + ∇ · σ (1)

i and σ
(1)
imn = −σ

(1)
inm, (64)

where for a (skew symmetric) tensor field σ , we write (∇ · σ)m := ∂nσmn , as an
instance of an exterior derivative. Observe that (64) does not determine σ

(1)
i . Indeed,

σ
(1)
i , which can be interpreted as an alternating (d−2)-form, is only determined up to

a (d − 3)-form. For estimates like in Proposition 3, we choose a suitable (and simple)
gauge, that is

−�σ
(1)
imn = ∂m(en · a(ei + ∇φ

(1)
i )) − ∂n(em · a(ei + ∇φ

(1)
i )).

Note also that (31) can be reformulated in divergence form

∇ · a(∇φ
(2)
i j + φ

(1)
i e j ) = (∇ · σ

(1)
i )e j . (65)
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This shows that there is a second-order analogue of (64): For every coordinate direction
i , let the matrix ā(2) be defined through

ā(2)
i e j :=

 
[0,L)d

a(∇φ
(2)
i j + φ

(1)
i e j ) (66)

for any j = 1, . . . , d, and the periodic tensor field σ
(2)
i j through

a(∇φ
(2)
i j + φ

(1)
i e j ) = ā(2)

i e j + σ
(1)
i e j + ∇ · σ

(2)
i j and σ

(2)
i jmn = −σ

(2)
i jnm . (67)

Themerits of the flux correctors σ
(1)
i and σ

(2)
i j will become clear in Sect. 3.4. In fact,

in that context it will be convenient to have yet one more object, namely the periodic
solution ωi of

−�ωi = φ
(1)
i . (68)

Proposition 3 Let d > 2 and 〈·〉 satisfy Assumptions 1; let 〈·〉L be defined with (8).
Let p < ∞ be arbitrary.

(i)We have

〈|∇φ
(1)
i |p〉

1
p
L + 〈|φ(1)

i |p〉
1
p
L + 〈|∇φ

(2)
i j |p〉

1
p
L �p 1. (69)

(ii) The random tensor fields σ
(1)
i and σ

(2)
i j can be constructed such that

〈|σ (1)
i |p〉

1
p
L + 〈|∇σ

(2)
i j |p〉

1
p
L �p 1.

(iii)We have for any deterministic periodic vector field h and function η

〈∣∣∣
ˆ

[0,L)d
h · (qi − 〈qi 〉,∇φ

(1)
i )

∣∣∣
p〉 1

p

L
�p

(ˆ
[0,L)d

|h|2
) 1

2

and
〈∣∣∣
ˆ

[0,L)d
ηφ

(1)
i

∣∣∣
p〉 1

p

L
�p

(ˆ
[0,L)d

|η| 2d
d+2

) d+2
2d

, (70)

where we recall the definition of the flux qi := a(∇φ
(1)
i + ei ).

(iv)We have for all z

〈|φ(2)
i j (z) − φ

(2)
i j (0)|p〉

1
p
L + 〈|σ (2)

i j (z) − σ
(2)
i j (0)|p〉

1
p
L �p μ

(2)
d (|z|), (71)
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where

μ
(2)
d (r) :=

⎧
⎪⎪⎨

⎪⎪⎩

r for 2 > r

r
1
2 for 2 ≤ r and d = 3

ln
1
2 r for 2 ≤ r and d = 4
1 for 2 ≤ r and d > 4

⎫
⎪⎪⎬

⎪⎪⎭
. (72)

(v)We have for all z

〈|∇ωi (z) − ∇ωi (0)|p〉
1
p
L �p μ

(2)
d (|z|). (73)

While part i) of Proposition 3 is explicitly used in Sect. 5.1, the usage of the other
parts is more indirect: Part ii) is used in Corollary 1, part iii) is used to estimate the
second-order homogenization error in Lemma 3; and part iv) and v) are used to apply
this to the Green function, see Proposition 4.

The proof of Proposition 3 essentially follows the strategy of [39, Section 4] and
extends it from first-order to second-order correctors; the passage from 〈·〉 to 〈·〉L is
only a minor change. Another additional feature is the second estimate of (70) that
we deduce as follows: Given a deterministic periodic function η (where w. l. o. g we
may assume that

´
[0,L)d

η = 0 since
´
[0,L)d

φ(1) = 0), we consider the solution of

−�ζ = η and set h = ∇ζ to the effect of
´
[0,L)d

ηφ
(1)
i = ´

[0,L)d
h · ∇φ

(1)
i . By max-

imal regularity for the Laplacian and Sobolev’s estimate, we have (
´
[0,L)d

|h|2) 1
2 �

(
´
[0,L)d

|η| 2d
d+2 )

d+2
2d so that the second estimate follows from the first. In this paper,

we will only establish the most important ingredient for Proposition 3, namely the
characterization of stochastic cancellations of the gradient of the correctors in Lemma
1. While (74) reproduces [39, Proposition 4.1], the new element is its second-order
counterpart (75). The first item of (71) is a consequence of (75), adapting [39, Propo-
sition 4.1, Part 1, Step 5]. The second item of (71) follows from the analogue of (75)
on the level of the second-order flux (67), adapting [39, Proposition 4.1, Part 2].

Lemma 1 Let d > 2 and 〈·〉 satisfy Assumptions 1; let 〈·〉L be defined with (8). For
any deterministic periodic vector field h and any p < ∞, we have

〈∣∣∣
ˆ

[0,L)d
h · ∇φ

(1)
i

∣
∣∣
p〉 1

p

L
�p

( ˆ
[0,L)d

|h|2
) 1

2
, (74)

〈∣∣∣
ˆ

[0,L)d
h · ∇φ

(2)
i j

∣∣∣
p〉 1

p

L
�p

( ˆ
[0,L)d

|x |2L |h|2
) 1

2
, (75)

where |x |L := infk∈Zd |x + kL|.
The choice of the origin of the weight in (75) is of course arbitrary. We note that (75)

also holds with the weighted L2-norm
( ´

[0,L)d
|x |2L |h|2) 1

2 replaced by the Lq -norm

of the same scaling, namely
( ´

[0,L)d
|h|q) 1

q with q = 2d
d+2 . However when passing
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from (75) to (71), we essentially choose h = ∇Ḡ(· − z) − ∇Ḡ, and in the critical
dimension d = 4, we thus would have | f |q = O(|x |−4) for 1 � |x | � |z| and thus
would obtain a power 3

4 on the logarithm ln |z| instead of the optimal power 1
2 .

In establishing (75), we use the same approach as [39, Proposition 4.1] for (74),
namely we identify and estimate the Malliavin derivative of the l.h.s. and then appeal
to the spectral gap estimate. However, while, for the first-order result (74), a buckling
is required, it is not necessary for its second-order counterpart (75). One can avoid it by
appealing to the quenched Calderón–Zygmund estimate, see [20] and [39, Proposition
7.1 ii)], albeit in the weighted form of Lemma 2:

Lemma 2 Let d > 2 and let 〈·〉L be an ensemble of λ-uniformly elliptic coefficient
fields that are L-periodic. Let the random periodic fields f and u be related by

∇ · (a∇u + f ) = 0.

Let 1 < p < p′ < ∞ and 1 < q < ∞. Suppose that w is arbitrary L-periodic
function in Muckenhoupt class Aq ,9 then the weighted annealed Calderón–Zygmund
estimates hold, i.e.,

( ˆ
[− L

2 , L2 )d
dxw

〈|∇u|p〉
q
p
L

)1/q

�p,p′,q

(ˆ
[− L

2 , L2 )d
dxw

〈| f |p′ 〉 q
p′
L

)1/q

, (76)

where the implicit multiplicative constant depends in addition on the Muckenhoupt
norm of w. In particular, for w = |x |2L , we obtain

(ˆ
[− L

2 , L2 )d
dx |x |2L

〈|∇u|p〉
2
p
L

)1/2

�p,p′
(ˆ

[− L
2 , L2 )d

dx |x |2L
〈| f |p′ 〉 2

p′
L

)1/2

. (77)

An inspection of the proof of [39, Proposition 7.1 ii)] shows that the argument extends
to the case with a weight in the corresponding Muckenhoupt class. Indeed, the only
essential new ingredient is that this weighted annealed estimate holds for the constant
coefficient operator, i.e., the analogue of [39, Lemma 7.4]. This in turn follows from
[54,Theorem5, p.219] or [46,Theorem7.1].Alternatively, one canderive theweighted
estimate from the unweighted one and the dualized Lipschitz estimate Lemma 5,
following the strategy of [29, Corollary 5]. We finally mention [22, Theorem 4.4]
where such annealed regularity estimates are stated and will be proven in [21].

The limit L ↑ ∞ for the first r.h.s. term in (62) relies on the following purely
qualitative consequence of Proposition 3.

Corollary 1 Let d > 2 and 〈·〉 satisfy Assumptions 1; let 〈·〉L be defined with (8).

9 For reader’s convenience, we recall that w is in Muckenhoupt class Aq , if it satisfies

( 
Q

w

)( 
Q

w
−1
q−1

)q−1
≤ C1

for any cubes Q in Rd , where C1 is independent of Q.
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(i) For i = 1, · · · , d there exists a unique stationary random field φ
(1)
i with

〈|φ(1)
i |p + |∇φ

(1)
i |p〉 <∼p 1 for any p < ∞,

which decays in the sense of

〈∣∣∣
ˆ
Rd

ηφ
(1)
i

∣∣∣
p〉 1

p �p

( ˆ
Rd

|η| 2d
d+2

) d+2
2d

for all deterministic functions η, (78)

and which satisfies

∇ · a(∇φ
(1)
i + ei ) = 0 a. s.. (79)

(ii) For i, j = 1, · · · , d there exists a unique random field φ
(2)
i j such that ∇φ

(2)
i j is

stationary and satisfies 〈|∇φ
(2)
i j |p〉 �p 1, such that φ(2)

i j has moderate growth10 in the

sense11 of

〈|φ(2)
i j (z)|p〉 1

p �p μ
(2)
d (|z|) for all z, (80)

and which satisfies

−∇ · a(∇φ
(2)
i j + φ

(1)
i e j ) = e j · (a(∇φ

(1)
i + ei ) − ahomei ) a. s.. (81)

(iii)We have

lim
L↑∞〈|a − ahom|〉L = 0, lim

L↑∞〈Q(1)
i j (z)〉L = 〈Q(1)

i j (z)〉

and lim
L↑∞〈Q(2)

i jm(z)〉L = 〈Q(2)
i jm(z)〉 for all z, (82)

where also the r.h.s. integrands are defined by the formulas (36) and (37).

The important element of part i) of Corollary 1 is the stationarity of φ
(1)
i itself, not

just of ∇φ
(1)
i . Note in particular that because of 2d

d+2 > 1, (78) implies 〈φ(1)
i 〉 = 0.

Such a result was first established in [30, Proposition 2.1] in the case of a discrete
medium, see [27, Proposition 1] for the first result for a continuum medium. For part
ii), we note that we cannot expect φ

(2)
i j to be stationary unless d > 4. Part iii) is new

and relies on a soft argument based on the uniform bounds of Proposition 3.

10 Which implies that 〈∇φ
(2)
i j 〉 = 0

11 Which by definition (72) implies that φ(2)
i j (0) = 0

123



1334 Foundations of Computational Mathematics (2024) 24:1305–1387

3.4 Estimate of Homogenization Error to Second Order, Application to the Green
Function

Asecondmain role of the corrector estimates of Proposition 3, in particular the estimate
of the flux correctors, is to provide an estimate of the homogenization error. On our
second-order level, this connection relies on identity (85) involving the two-scale
expansion (84), which we recall now. Suppose that u and ū are related via

∇ · a∇u = ∇ · ā∇ū

and that ū(2) is related to ū via

∇ · (ā∇ū(2) + a(2)
i ∇∂i ū) = 0. (83)

Consider the error in the second-order two-scale expansion

w := u − (1 + φ
(1)
i ∂i + φ

(2)
i j ∂i j )(ū + ū(2)). (84)

Then, σ (2)
i j allows to write the residuum in divergence form:

−∇ · a∇w = ∇ · (
(φ

(2)
i j a − σ

(2)
i j )∇∂i j (ū + ū(2)) + ā(2)

i ∇∂i ū
(2)). (85)

Now the advantage of A and thus a being symmetric becomes apparent: It implies
that the symmetric part of the three-tensor with entries ā(2)

imn vanishes (see, e.g., [20,

Lemma 2.4]). Since (83) may be rewritten as −∇ · ā∇ū(2) = ā(2)
imn∂imnū, we may

assume ū(2) = 0 under our symmetry assumption. Hence (84) simplifies to

w := u − (
1 + φ

(1)
i ∂i + (φ

(2)
i j − φ

(2)
i j (0))∂i j

)
ū (86)

and (85) may be rewritten as

−∇ · a∇w = ∇ · (
(φ

(2)
i j − φ

(2)
i j (0))a − (σ

(2)
i j − σ

(2)
i j (0))

)∇∂i j ū. (87)

We are allowed to pass to the centered versions of the second-order (flux) corrector,
bywhichwemean that (φ(2)

i j , σ
(2)
i j ) is replacedby (φ

(2)
i j −φ

(2)
i j (0), σ (2)

i j −σ
(2)
i j (0)),which

we do with (71) in mind, since a change by an additive constant does not affect any-
thing stated so far, and in particular not formula (67), on which (85) solely relies. The
upcoming lemma provides an estimate of the second-order stochastic homogenization
errorw; (89) is optimal since the rate is governed by the dimension-dependent expres-
sion μ

(2)
d with its argument given by the scale of the r.h.s. h, which here is expressed

by the diameter 2R of its support. Since the estimate is pointwise in the gradient, a

123



Foundations of Computational Mathematics (2024) 24:1305–1387 1335

logarithm is unavoidable,12 and a r.h.s. norm marginally stronger than sup |∇2h| has
to be used.13

Lemma 3 Let d > 2 and 〈·〉 satisfy Assumptions 1with symmetric A; let 〈·〉L be defined
as in Sect. 1.5. Given a deterministic and smooth function f supported in BR(y) with
y ∈ R

d and some R < ∞, let u and ū be the decaying solutions of

−∇ · a∇u = f = −∇ · ā∇ū. (88)

Then, w defined in (86) satisfies for all p < ∞

〈|∇w(0)|p〉
1
p
L �p max{μ(2)

d (R), ln R}R sup |∇2 f |. (89)

This pointwise estimate (89) relies on a decomposition of the r.h.s. of (87) into pieces
supported on dyadic annuli. For each piece, we first apply Lemma 5 combined with
the energy estimate, into which we feed (71) and a pointwise bound on ∇3ū relying
on the bounds on the Green function of the constant coefficient operator ∇ · a∇, see
(88).

The main goal of this subsection is to estimate the homogenization error on the
level of the Green function, see Proposition 4. This type of homogenization result
with singular r.h.s. has been worked out on the level of the first-order approximation
in [10, Corollary 3] and extended to second order in [9, Theorem 1], where these
estimates are derived from estimates on (φ

(1)
i , σ

(1)
i ) and (φ

(2)
i j , σ

(2)
i j ) of the type of

Proposition 3, however in a pathwise way, see [9, Proposition 1]. While equipped with
Proposition 3, we could post-process [9, Theorem 1] to obtain Proposition 4, we take
a different, and shorter, route in this paper. Note that [9, Theorem 1] is not formulated
in terms of the Green function G, but in terms of decaying a-harmonic functions in
exterior domains. Recovering a statement on the Green function would require [10,
Lemma 4], which we restate as Lemma 4 below for the convenience of the reader.

Proposition 4 . Let d > 2 and 〈·〉 satisfy Assumptions 1 with symmetric A; let 〈·〉L be
defined as in Sect. 1.5. Then we have for E defined in (58)

|y − x |d+2〈|E(x, y)|p〉
1
p
L �p max{μ(2)

d (|y − x |), ln |x − y|} (90)

provided |y − x | ≥ 2 and for all p < ∞.

Here comes the crucial Lemma that converts weak into strong control.

Lemma 4 Let 〈·〉 be an ensemble of λ-uniformly elliptic coefficient fields.14 Let the
random function u be a-harmonic in the ball BR of radius R. Then, we have for all

12 Which, however, is over-shadowed by μ
(2)
d for d = 3

13 We pass to the scaling-wise identical norm R sup |∇3h| for convenience.
14 We will apply it to 〈·〉L
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p < ∞

〈(  
B R

2

|∇u|2
) p

2
〉 1

p

�p sup
h∈C∞

0 (BR)

〈
| fflBR

h · ∇u|p
〉 1

p

R3 sup |∇3h| . (91)

Here �p has the same meaning as in Proposition 3.

Lemma 4 amounts to an inner regularity estimate for a-harmonic functions u, in
terms of the norms L p

〈·〉L2
x and W−2,1

x L p
〈·〉 on the level of the gradient ∇u. As [10,

Lemma 4], estimate (91) is a consequence of an inner regularity estimate, uniform
in a, with respect to norms L2

x and H−n
x (the case W−2,1

x of (91) is obtained for
n > d

2 + 2). However, it strengthens [10, Lemma 4] by restricting the r.h.s. functional
to smooth functions g with compact support, i.e., functions that vanish to appropriate
order at the boundary.

Nevertheless, it requires only a minor modification of the proof. It is obtained as
a combination of two ingredients. First, by the Caccioppoli estimate and by an L2

x
interpolation estimate, we may estimate the l.h.s. of (91) by the L2

x norm of w for
�2nw = u. Second, appealing to the fact that the Dirichlet operator �2n has finite
trace for 2n > d, we may obtain (91). This second step differs from [10, Lemma 4],
where the Fourier decomposition was explicitly used to solve �2nw = u (thus, losing
the property of compact support). This argument also shows that the second derivative
on g, that we need here for our second-order homogenization, could be replaced by
any order (properly non-dimensionalized).

We use Lemma 4 only in combination with a second inner regularity estimate,
Lemma 5, which amounts to a Lipschitz estimate. Lipschitz estimates are central in
the large-scale regularity theory in homogenization as initiated by Avellaneda and Lin
in the periodic context, and as introduced by Armstrong and Smart [5] to the random
context.

Lemma 5 Let d > 2 and 〈·〉 satisfy Assumptions 1; let 〈·〉L be defined as in Sect. 1.5.
Let the random function u be a-harmonic in the ball BR of radius R. Then, we have
for all p′, p < ∞

〈|∇u(0)|p′ 〉
1
p′
L �p′,p

〈( 
BR

|∇u|2
) p

2
〉 1

p

L

provided p′ < p. (92)

Here �p,p′ has the same meaning as in Proposition 3.

Lemma 5 is an easy consequence of the pathwise Lipschitz estimate [29, Theorem 1].
More precisely, we refer to [29, (16)], which takes the form of

(  
B1

|∇u|2
) 1

2

� r
d
2∗
( 

BR

|∇u|2
) 1

2

,
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with the random radius r∗ defined in [29, (12)]. It easily follows from the estimates

on (φ
(1)
i , σ

(1)
i ) in Proposition 3 that 〈r p∗ 〉

1
p
L �p 1 for all p < ∞. On the other hand, by

standard Schauder theory in Cα′
we have

|∇u(0)| ≤ C(a)
(  

B1
|∇u|2) 1

2 ,

where C depends at most polynomially on the local Hölder norm [a]α,B1 (recalling
that it satisfies (14)). Now (92) follows from combining both estimates; note that the
loss in stochastic integrability is unavoidable, since it compensates the fact that both
r∗ and [a]α,B1 are not uniformly bounded.

As mentioned, we use Lemma 4 only in its form combined with Lemma 5

Corollary 2 Let d > 2 and 〈·〉 satisfy Assumptions 1; let 〈·〉L be defined as in Sect. 1.5.
Let the random function u be a-harmonic in the ball BR of radius R. Then, we have
for all p′, p < ∞

〈|∇u(0)|p′ 〉
1
p′
L �p′,p sup

h∈C∞
0 (BR)

〈| fflBR
h · ∇u|p〉

1
p
L

R3 sup |∇3h| provided p′ < p. (93)

Corollary 2 amounts to an inner regularity estimate for a-harmonic functions u, in
terms of the norms L∞

x L p
〈·〉 and W−2,1

x L p
〈·〉 on the level of the gradient ∇u. We call

this estimate an annealed estimate, since now on both sides of (93), the probabilistic
norm is inside.

In this paper, we use Lemma 4, or rather Corollary 2, in a more substantial way than
it is used in [10, Corollary 3]. Here comes an outline of the argument for Proposition
4: We apply Lemma 3 with the origin replaced by a general point x0. Writing u(x) =´
Rd dy h(y) · ∇yG(x, y) and ū(x) = ´

Rd dy h(y) · ∇yG(x, y), this provides control
of

ˆ
Rd

dy(∇ · h)(y)

(
∇xG(x0, y) − ∂i G(x0 − y)(ei + ∇φ

(1)
i (x0))

− ∂i j G(x0 − y)(φ(1)
i (x0)e j + ∇φ

(2)
i j (x0))

)
,

in terms of μ
(2)
d (R) sup |∇2 h| with 2R the diameter of supp g; here we used the

centering of φ
(2)
i j in x0. We now fix a point y0 with |y0 − x0| ≥ 4 and replace both

instances of G(x0 − y) by what we obtain from applying the two-scale expansion
operator in the y-variable

1 + φ∗(1)
m (y)

∂

∂ ym
+ (φ∗(2)

mn (y) − φ∗(2)
mn (y0))

∂2

∂ ym∂ yn
.
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Provided h is supported in BR(y0) with R := 1
2 |y0 − x0| ≥ 2, this preserves the

estimate: While for three out of the four extra terms, this follows directly from parts
i) through iii) of Proposition 3, we need part iv) and an integration by parts in y for
the contribution coming from φ

∗(1)
i (y)∂imG(x0 − y) (ei + ∇φ

(1)
i (x0)). Keeping only

first- and second-order terms and recalling the definition (58), this yields

〈∣∣∣∣

ˆ
Rd

dy h(y) · Em(x0, y)

∣
∣∣∣

p〉 1
p

L
� μ

(2)
d (R) sup |∇2h| (94)

for any h supported in BR(y0). By construction, up to third-order terms, Rd − {x0} �
y 
→ Em(x0, y) is a linear combination of a gradient of an a∗-harmonic function,
namely ∂G

∂xm
(x0, y), and gradients of two-scale expansions of ā∗-harmonic functions,

namely of ū(y) = ∂i G(x0 − y)(δim + ∂mφ
(1)
i (x0)) and of ū(y) = ∂i j G(x0 − y)

(φ
(1)
i (x0)δ jm +∂mφ

(2)
i j (x0)). Hence we may appeal once more to (87), this time in

the y-variable and thus for the dual medium, and with the origin replaced by y0. We
decompose the r.h.s. of (87) into a far field supported on Rd − BR(y0) and a near field
supported on dyadic annuli centered at y0 of radii R, R

2 , R
4 , · · · . For the near-field

contributions, we appeal to the energy estimate followed by Lemma 5. For the far-
field contribution, we use (94) (in conjunction with the estimate of the near-field part)
by appealing to Corollary 2, both with the origin replaced by y0. It is thus Corollary
2 that converts the weak control (94) into pointwise control (90).

4 Heuristic Result

In this section, we heuristically argue that the strategy of “periodizing the realizations”
leads to a bias that is of order O(L−1), as announced in (4). We argue that this is the
case even for an isotropic15 range-one medium in the small contrast regime.16 How-
ever, rather than extending the a restricted to the RVE periodically, we extend it by
even reflection; this amounts to imposing flux boundary instead of periodic bound-
ary conditions. More precisely, fixing a direction ξ = e1, we impose flux boundary
conditions in just one of the directions orthogonal to e1, say ed , and resort to the strat-
egy of “periodizing the ensemble” in the other d − 1 directions. Hence, we give the
naive strategy a pole position: We implement it in the less intrusive form of reflection
rather than periodization—less intrusive because it does not create discontinuities in
the coefficient field. Nonetheless, treating just one of the directions in this naive way
increases the bias scaling from O(L−d) to O(L−1). Admittedly, the heuristic analysis
also becomes simpler by considering the reflective version, and by implementing it
in just one direction. Incidentally, by a similar heuristic argument we also convinced
ourselves that the Dirichlet boundary condition leads to a bias of the same order (but
different sign).

15 cf. Sect. 2.5
16 cf. Sect. 2.4
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We now make this more precise: Periodizing our stationary centered Gaussian
ensemble in directions i = 1, . . . , d − 1 on the level of the covariance function
amounts to

c′
L(z) :=

∑

k′∈Zd−1×{0}
c(z + Lk′), (95)

cf. (9).We pick a realization according to this 〈·〉′L , restrict it to the stripeRd−1×[0, L
2 ],

extend it by even reflection toRd−1×[− L
2 , L

2 ] and then extend it L-periodically in the
ed -direction to all of Rd . This defines a (non-stationary) centered Gaussian ensemble
〈·〉symL , as such determined by its covariance function csymL (y, x) = csymL (x, y) :=
〈g(x)g(y)〉symL . The covariance function is characterized by its connection to c′

L via

csymL (x, y) = c′
L(x − y) provided x, y ∈ R

d−1 × [0, L
2 ] (96)

and its reflection and translation symmetries17

csymL (x, y) = csymL (x, y − 2yded), (97)

csymL (x, y) = csymL (x, y + Led), (98)

see Fig. 1.
It obviously inherits stationarity and periodicity in directions i = 1, . . . , d−1 from

c′
L so that

csymL (x, y) = csymL (x + z′, y + z′) for z′ ∈ R
d−1 × {0},

csymL (x, y) = csymL (x, y + Lei ) for i = 1, · · · , d. (99)

Hence comparing 〈·〉L to 〈·〉symL , we keep (full) periodicity, lose stationarity in
direction ed but gain reflection symmetry in that direction. There are two derived
symmetries that will play a role, namely

csymL (x, y) = csymL (x, y + (L − 2yd)ed), (100)

csymL (x, y) = csymL (x + L
2 ed , y + L

2 ed). (101)

While (100) is an obvious combination of (97) and (98), (101) requires an argument,
see Appendix B.1.

As for (7), we think of 〈·〉symL as denoting also the push-forward of the Gaussian
ensemble under a = A(g).We now sample a from 〈·〉symL . By construction, the scalar a
is not only L-periodic in every direction, cf. (99), but in addition even under reflection
along the hyper planes {xd = 0} and {xd = L

2 }, cf. (97), (100) and Fig. 1. These

invariances are transmitted to the solution φ
(1)
i of (2), and to the flux components

ei ·a(∇φ
(1)
i +ei ) for any i �= d. On the other hand, the flux component ed ·a(∇φ

(1)
1 +e1)

17 By csymL (y, x) = c
sym
L (x, y), it is enough to state it for the y-variable.
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Fig. 1 Piecewise definition of csymL (x, y) as a function of xd , yd (with the argument x ′−y′ of c′L suppressed)

is odd w.r.t. these reflections and thus vanishes along these two hyper planes. Hence
when it comes to φ

(1)
1 , the box [− L

2 , L
2 ]d−1×[0, L

2 ] can be seen as an RVE with a flux
boundary conditions in direction ed and periodic boundary conditions in directions
i = 1, · · · , d − 1. By the above reflection symmetry, we have

 
[− L

2 , L2 ]d−1×[0, L2 ]
e1 · a(∇φ

(1)
1 + e1) = e1 · āe1,

where ā is defined as in (3). We shall heuristically establish (4) in the form of

e1 · (〈ā〉symL − ahom)e1 = O(L−1).

More precisely, we shall show that to leading order in 1 − λ � 1 and L � 1,

e1 · (〈ā〉symL − ahom)e1 ≈ −L−1 I with I > 0. (102)

The sign of the leading-order correction I is consistentwith the following heuristics:
The no-flux boundary conditions means that the current is restricted to the stripe
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R
d−1 ×[0, L

2 ]; for d = 2 and as L ↓ 0, the medium thus is close to a one-dimensional
medium, for which one has the effective conductivity 〈a−1〉−1 ≤ ahom (note that by
statistical isotropy, also ahom is scalar).

As for 〈ā〉L , we shall establish (102) bymonitoring its L-derivative.More precisely,
appealing to (39), we shall establish (102) in form of

d

dL
e1 · (〈ā〉symL − 〈ā〉L)e1 ≈ L−2 I . (103)

The advantage of monitoring the difference between two ensembles is that we
may use Price’s formula in a different, much less subtle, way than in Sect. 2.1. More
precisely, in Appendix B.3, for a general [0, L)d -periodic centered Gaussian ensemble
〈·〉cL we shall establish the formula

d

dL
〈e1 · āe1〉cL = −L−d

ˆ
[− L

2 , L2 )d
dx

ˆ
[− L

2 , L2 )d
dy

×〈(
a′(∇φ

(1)
1 + e1)

)
(x) · ∇∇Gper (x, y) · (

a′(∇φ
(1)
1 + e1)

)
(y)

〉
cL

DcL

∂L
(x, y),

(104)

where the “material” derivative of the covariance function cL(x, y) is defined via:

DcL

∂L
(Lx̂, L ŷ) = d

dL

(
cL(Lx̂, L ŷ)

)
, (105)

and where Gper denotes the Green function associated with the operator −∇ · a∇
on the torus [0, L)d , which is unambiguously defined in terms of its first and mixed
derivatives. The present version of (104) also relies on the assumption

DcL

∂L
(x, y) = 0 for x = y. (106)

Note that definition (105) implies

DcL

∂L
is [0, L)d − periodic in both arguments, (107)

DcL

∂L
= ∂cL

∂L
+ L−1(x · ∇x + y · ∇y)cL . (108)

Let us compare formula (104), which in the presence of stationarity simplifies (in
the sense that L−d

´
[− L

2 , L2 )d
dy is replaced by the evaluation at y = 0), to (24). The

main difference does not lie in the periodic setting (in view of (107),
´
[− L

2 , L2 )d
dx and

Gper can formally be replaced by
´
Rd dx and G, respectively), but in the convective

contribution to (108), which is the generator of rescaling the space variables of c,
and thus describes a rescaling of a. Indeed, this contribution vanishes after applying
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´
Rd dx (only formally, since the integral does not converge absolutely) because the

space average āe1 = limR↑∞
ffl
[0,R)d

a(∇φ
(1)
1 + e1) is invariant under rescaling of a.

As in Sect. 2.4, in the small contrast regime, we have

〈(a′(∇φ
(1)
1 + e1)

)
(x) · ∇∇Gper (x, y) · (

a′(∇φ
(1)
1 + e1)

)
(y)

〉
cL

≈ −∂21G
per
hom(x − y)〈a′(x)a′(y)〉cL ,

so that (104) simplifies to

d

dL
〈e1 · āe1〉cL ≈ L−d

ˆ
[− L

2 , L2 )d
dx

ˆ
[− L

2 , L2 )d
dy∂21G

per
hom(x − y)〈a′(x)a′(y)〉cL

DcL

∂L
(x, y).

(109)

We apply (109) to both [0, L)d -periodic ensembles, 〈·〉symL and 〈·〉L , which we may
since (106) is satisfied (almost everywhere) for both: Indeed, by reflection symmetry
(97) and periodicity (98), it is enough to consider x ∈ R

d−1 × [0, L
2 ). Then, for

|y− x | sufficiently small we have csymL (x, y) = cL(x − y) by (96). By the finite-range
assumption on c, this yields

csymL (x, y)=cL (x − y)=c(x − y) provided |x − y| is sufficiently small and L � 1.

Hence, we have for y = x that ∂
∂L c

sym
L (x, y) = ∂

∂L cL(0) = 0 and −∇yc
sym
L (x, y)

= ∇xc
sym
L (x, y) = ∇cL(0) = 0. Introducing in addition the functionA as in Sect. 2.4

for both 〈a′(x)a′(y)〉L = A′(cL(x, y)) and 〈a′(x)a′(y)〉symL = A′(csymL (x, y)), we
obtain from (109)

d

dL
e1 · (〈ā〉symL − 〈ā〉L)e1 ≈ L−d

ˆ
[− L

2 , L2 )d
dx

ˆ
[− L

2 , L2 )d
dy∂21G

per
hom(x − y)

D

∂L

(A(csymL ) − A(cL)
)
(x, y). (110)

There is a cancellation when considering the difference in (110): Indeed, by (96)
and (97) (see also Fig. 1) we have

csymL (x, y) = c′
L(x − y) provided (xd , yd) ∈ [− L

2
, 0]2 ∪ [0, L

2
]2.

Likewise, we obtain from (9), (95) and the finite range of dependence assumption

cL(x − y) = c′
L(x − y) provided (xd , yd) ∈ [− L

2
, 0]2 ∪ [0, L

2
]2.

Hence the integral in (110) reduces to (xd , yd) ∈ ([− L
2 , 0] × [0, L

2 ]) ∪([0, L
2 ] ×

[− L
2 , 0]). Moreover, since the integrand in (109) is invariant under permuting x and
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y, we obtain

d

dL
e1 · (〈ā〉symL − 〈ā〉L)e1 ≈ 2L−d

ˆ
[− L

2 , L2 )d−1×[0, L2 ]
dx

ˆ
[− L

2 , L2 )d−1×[− L
2 ,0]

dy

× ∂21G
per
hom(x − y)

D

∂L

(A(csymL ) − A(cL)
)
(x, y). (111)

It follows from a combination of symmetries (97) and (98) and (101) that csymL is
invariant under the inversion at ( L4 ,− L

4 ) in the (xd , yd) plane, that is,

(x, y) 
→ ((x ′, L
2 − xd), (y

′,− L
2 − yd)). (112)

By stationarity, periodicity, and (236), cL has the same symmetry (112). By periodicity
and radial symmetry, (x, y) 
→ ∂21G

per
hom(x − y) also has symmetry (112). Since the

triangle in the (xd , yd) plane

� := {
xd ≥ 0, yd ≤ 0, xd − yd ≤ L

2

}
(113)

is such that its (disjoint) unionwith its image under (112) renders the rectangle [0, L
2 ]×

[− L
2 , 0], (111) may be rewritten as

d

dL
e1 · (〈ā〉symL − 〈ā〉L)e1 ≈ 4L−d

ˆ
[− L

2 , L2 )d−1
dx ′

ˆ
[− L

2 , L2 )d−1
dy′

ˆ
�

dxddyd

× ∂21G
per
hom(x − y)

D

∂L

(A(csymL ) − A(cL)
)
(x, y). (114)

By the finite range assumption and for L � 1, we have (where for a stationary
ensemble we identify c(x, y) = c(x − y))

cL(x, y) = c′
L(x, y) provided (xd , yd) ∈ �,

so that in (114), we may replace cL by c′
L . Likewise, by definition (96) and (97) (see

also Fig. 1) we have

csymL (x, y) = c′
L(x, y − 2yded) provided (xd , yd) ∈ �,

so that in (114), we may express csymL in terms of c′
L . Since both ensembles 〈·〉′L and

〈·〉symL are stationary in directions i = 1, · · · , d − 1, (114) may be rewritten as

d

dL
e1 · (〈ā〉symL − 〈ā〉L)e1 ≈ 4L−1

ˆ
[− L

2 , L2 ]d−1
dx ′

ˆ
�

dxddyd ∂21G
per
hom(x − (0, yd))

× ( D

∂L
A(c′

L)(x, (0,−yd)) − D

∂L
A(c′

L)(x, (0, yd))
)
. (115)
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By the finite range assumption and for L � 1, we have

c′
L(x, (0, yd)) = c(x, (0, yd)) provided x ∈ [− L

2 , L
2 ]d−1,

so that the material derivative in (115) reduces to the convective derivative; on station-
ary c’s, the convective derivative L−1(x ·∇x + y ·∇y) acts as L−1z ·∇ with z = x − y,
and thus as the radial derivative L−1r∂r with R = |z|. Hence, (115) takes the form

d

dL
e1 · (〈ā〉symL − 〈ā〉L)e1 ≈ 4L−2

ˆ
[− L

2 , L2 ]d−1
dx ′

ˆ
�

dxddyd ∂21G
per
hom(x ′, xd − yd)

× (
(r∂r )A(c)(x ′, xd + yd) − (r∂r )A(c)(x ′, xd − yd)

)
. (116)

We now proceed to a second (and last) approximation. Recall our assumption that
c is supported on the unit ball, hence the effective domain of integration in (116) is
|x ′| ≤ 1, next to 0 ≤ xd − yd ≤ L

2 , cf. (113). In this range, we may approximate
Gper

hom(x ′, xd − yd) by Ghom(x ′, xd − yd). After this substitution, we may neglect the
restriction xd − yd ≤ L

2 . Hence (116) implies (103) where the L-independent quantity
I is defined via

I := 4
ˆ
Rd−1

dx ′
ˆ ∞

0
dxd

ˆ 0

−∞
dyd ∂21Ghom(x ′, xd − yd)

× (
(r∂r )A(c)(x ′, xd + yd) − (r∂r )A(c)(x ′, xd − yd)

)
. (117)

In Appendix B.2, we compute this integral:

I = 32

(d + 1)(d − 1)

|B ′
1|

|∂B1|
ˆ ∞

0
drA(c), (118)

where B1 is the unit ball in Rd−1 and B ′
1 in R

d−1.
In particular,wehave I > 0, seeSect. 2.4 for the explanationwhyA is a nonnegative

function (different from 0).

5 Proofs

5.1 Proof of Theorem 2: Asymptotic of the Bias

The goal is to pass from the representation in Proposition 2 to the asymptotics in
Theorem 2. To do so, we have to show that the first r.h.s. term of (62), up to the factor
Ld+1, converges to the r.h.s. term of (39), and that the remaining terms are o(L−(d+1)).
Note that by integration, (10) implies

sup
x

(1 + |x |2) d+1
2 +α|∇c(x)| < ∞, (119)
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so that from (25) and Proposition 3 i), the fifth term is directly of order L−(d+1+2α)

which as desired is o(L−(d+1)). We now discuss the first four terms. Without loss of
generality, we henceforth assume that the exponent α > 0 is (sufficiently) small.

We start with the second term and estimate ε(1), see (60): In the range |k| ≥ |z|
L ,

we obtain from Taylor applied to (1 − ηL)∂i j Ḡ that the summand is estimated by
|k||z|2(L|k|)−(d+2) ≤ |z|(L|k|)−(d+1). Hence, the contribution to the sum from this
range is dominated by min{|z|2 L−(d+2), |z|L−(d+1)}. In the other range |k| ≤ |z|

L , the
contribution from the middle term vanishes by parity, the contribution from the last
term is estimated by |z|L−(d+1) (by a similar argument to the one that shows that the
limit (59) exists), and the first term in the summand is estimated by |k|(|k|L)−d so that
its contribution to the sum is also dominated by |z|L−(d+1). Since this second range
is only present for |z| ≥ L , we obtain in conclusion

|ε(1)
Li jn(z)| � min{|z|2L−(d+2), |z|L−(d+1)}. (120)

For the estimate of ε(2), see (61), we proceed in a similar way and obtain the stronger
estimate

|ε(2)
Li jmn(z)| � |z|L−(d+2). (121)

We combine the estimates (120) and (121) with the corrector estimates of Proposition
3 i), which by definitions (36) and (37) yield for all p < ∞

〈|Q(1)
i j (z)|p〉

1
p
L + 〈|Q(2)

i jm(z)|p〉
1
p
L � 1. (122)

We now see that Assumption 1 is just what we need: By (119), we obtain for the
second term in (62)

∣∣∣
ˆ
Rd

dz
〈
ε
(2)
Li jmn(z)Q

(2)
i jm(z) + ε

(1)
Li jn(z)Q

(1)
i j (z)

〉

L
∂nc(z)

∣∣∣ � L−(d+2) + L−(d+1+2α),

which as desired is o(L−(d+1)). In this subsection, � means ≤ up to a multiplicative
constant that only depends on d, λ, and the constants implicit in (10) and (11) of
Assumption 1.

We now turn to the third term on the r.h.s. of (62). It follows from Proposition 3 i)
and Proposition 4, together with (11) in Assumption 1, that

∣∣∣
〈
(∇φ∗(1) + ξ∗)(0) · a′(0)E(0, z)a′(z)(∇φ(1) + ξ)(z)

〉

L

∣∣∣

� max{μ(2)
d (|z|), ln |z|}|z|−(d+2) � |z|−(d+ 3

2 ).

Inserting (25), we obtain the following estimate

∣∣
∣
ˆ
Rd

dz(1 − ηL(z))
〈
(∇φ∗(1) + ξ∗)(0) · a′(0)E(0, z)a′(z)(∇φ(1) + ξ)(z)

〉

L

∂cL
∂L

(z)
∣∣
∣
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�
∑

k

|k|
ˆ
Rd

dz(1 − ηL)(z)|z|−(d+ 3
2 )|∇c(z + Lk)|.

Using (119) and splitting the integral into {|z| ≤ 1
2 L|k|} and its complement, we

obtain that the z-integral is estimated by (|k|L)−(d+1+2α), which implies that the sum
converges and is estimated by L−(d+1+2α), which as desired is o(L−(d+1)).

We now address the first term in (62). The argument is based on the qualitative
result of Corollary 1 in the following subsection. By the first item in (82) we obtain,
by the explicit dependence of ḠT and thus �̄ on ā,

lim
L↑∞〈|�̄ − �hom|〉L = 0.

Since, on the other hand, �̄ is uniformly bounded (recall that ā is confined to the
set (1)), and by (122), the convergence of the first term in (62) to the r. h. s of (39)
follows from the two last items in (82), the definition (38) and Lebesgue’s convergence
theorem.

We finally turn to the fourth r. h. s term of (62). We first reinterpret and bound this
term using the solution of a PDE: considering u the decaying solution of

−∇ · a∇u = ∇ ·
(
ηLa

′(∇φ(1) + ξ)
∂cL
∂L

)
,

we have from Proposition 3 i) and (11)

∣∣
∣
ˆ
Rd

dzηL(z)
〈
(∇φ∗(1) + ξ∗)(0) · a′(0)∇∇G(0, z)a′(z)(∇φ(1) + ξ)(z)

〉

L

∂cL
∂L

(z)
∣∣
∣

= |〈(∇φ∗(1) + ξ∗)(0) · a′(0)∇u(0)〉L | � 〈|∇u(0)|2〉
1
2
L .

We split u into the near-origin and the far-origin contribution u = uN +∑
1≤2k≤L ukF

with

−∇ · a∇uN = ∇ ·
(
η1a

′(∇φ(1) + ξ)
∂cL
∂L

)
,

−∇ · a∇ukF = ∇ ·
(
(η2k − η2k−1)a′(∇φ(1) + ξ)

∂cL
∂L

)
.

The near-origin contribution is directly estimated using Schauder’s theory. Indeed,
making use of the α-Hölder regularity (14) and ∇φ(1) (itself a consequence of
Schauder’s theory applied to the equation (2)), the moment bounds Proposition 3
i) as well as (25), (10) and (119) imply:

〈‖η1a′(∇φ(1) + ξ)
∂cL
∂L

‖p
C0,α(B1)

〉
1
p
L � sup

B1

∣∣∣∣
∂cL
∂L

∣∣∣∣ + sup
B1

∣∣∣∣∇
∂cL
∂L

∣∣∣∣ � L−(d+1+2α).
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Therefore, from Schauder’s theory and the energy estimate we deduce

〈|∇uN (0)|2〉
1
2
L �

〈( ˆ
B1

|∇uN |2
)2〉 1

4

L
+ 〈‖η1a′(∇φ(1) + ξ)

∂cL
∂L

‖4C0,α(B1)
〉
1
4
L

�
( ˆ

Rd
η21

∣∣∣
∂cL
∂L

∣∣∣
2) 1

2 + L−(d+1+2α)

� L−(d+1+2α).

We now turn to the far-field contribution ∇uF (0) := ∑
1≤2k≤L ∇ukF (0). Using the

Lipschitz estimate of Lemma 5 together with an energy estimate and Proposition 3 i)
as well as (25), and (119), we derive

〈|∇uF (0)|2〉
1
2
L ≤

∑

1≤2k≤L

〈|∇ukF (0)|2〉
1
2
L �

∑

1≤2k≤L

〈( 
B2k−2

|∇ukF |2)2〉
1
4
L

�
∑

1≤2k≤L

2− kd
2
( ˆ

Rd
(η2k − η2k−1)

∣
∣∂cL
∂L

∣
∣2)

1
2

�(ln L)L−(d+1+2α).

This shows that the fourth r. h. s term is o(L−(d+1)).

5.2 Proof of Proposition 2: Limit T ↑ ∞

The strategy of proof is as follows. First, we reorder the terms of the derivative of
d
dL 〈ξ∗ · āT ξ 〉L in order to make appear the “massive” analogue (that is, involving the
massive operator 1

T − ∇ · a∇) of the r.h.s. of (62). For this first step, we essentially
make rigorous the computations done in Sect. 2.2. Second, we systematically make
use of the dominated convergence theorem to obtain the convergence of each term to
its massless counterpart, yielding the formula (62).
Step 1. Formula for

d
dL 〈ξ∗ · āT ξ 〉L . We establish the “massive analogue” of (62),

namely

d

dL
〈ξ∗ · āT ξ〉L

= L−(d+1)
ˆ
Rd

dzξ∗ · 〈
�T /L2i jmn

( − zmQ(1)
T i j (z) + Q(2)

T i jm(z)
)〉
Lξ∂nc(z)

+
ˆ
Rd

dzξ∗ · 〈
ε
(1)
T Li jn(z)Q

(1)
T i j (z) + ε

(2)
T Li jmn(z)Q

(2)
T i jm(z)

〉
Lξ∂nc(z)

−
ˆ
Rd

dz(1 − ηL )(z)
〈
(∇φ

∗(1)
T + ξ∗)(0) · a′(0)ET (0, z)a′(z)(∇φ

(1)
T + ξ)(z)

〉
L

∂cL
∂L

(z)

−
ˆ
Rd

dzηL (z)
〈
(∇φ

∗(1)
T + ξ∗)(0) · a′(0)∇∇GT (0, z)a′(z)(∇φ

(1)
T + ξ)(z)

〉
L

∂cL
∂L

(z)

+1

2

〈
(∇φ

∗(1)
T + ξ∗) · a′′(∇φ

(1)
T + ξ)

〉
L

∂cL
∂L

(0), (123)
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where ε
(1)
T Li jn & ε

(2)
T Li jlm are defined as in (60)& (61) with Ḡ replaced by ḠT , where ET

is defined like in (58) with G & Ḡ replaced by GT & ḠT (but with non-massive first-
and second-order correctors), and where Q(1)

T & Q(2)
T , which are quartic expressions

in the correctors, are defined like in (36) & (37) with the first-order correctors φ(1)

& φ∗(1) (those linear in ξ & ξ∗) replaced by their massive counterparts φ
(1)
T & φ

∗(1)
T

(but keeping the non-massive first and second order correctors φ
(1)
i , φ∗(1)

j , φ(2)
im , φ∗(2)

jm ).

Recall that �T /L2i jmn is defined in (59).
The starting point is (57); the second r.h.s. term remains untouched and reappears as

the last term in (123). Writing
´
dz = ´

dz(1− ηL)(z) + ´
dzηL(z), we split the first

r.h.s. term in (57) into a far- and near-field part. The near-field part remains untouched
and reappears as the previous to last term in (123). In the far-field part, we replace
∇∇GT (0, z) according to the massive version of (58) by ET (0, z) and terms involving
ḠT . The contribution with ET (0, z) reappears as the third r.h.s. term in (123). By the
massive version of the definition (36) & (37) specified above, the terms involving ḠT

give rise to

−
ˆ
Rd

dz(1 − ηL )(z)ξ∗ · ( − 〈
∂i j ḠT (z)Q(1)

T i j (z)
〉
L + 〈

∂i jm ḠT (z)Q(2)
T i jm(z)

〉
L

)
ξ

∂cL
∂L

(z).

We now insert (25) and perform the resummation at the end of Sect. 2.1, which is
based on the periodicity of Q(1) and Q(2) under 〈·〉L , and now is legitimate in view of
the good decay properties of ∇∇GT (see (55)):

ˆ
Rd

dz
∑

k

kn(1 − ηL)(z)ξ∗ · ( − 〈
∂i j ḠT (z + Lk)Q(1)

T i j (z)
〉
L

+〈
∂i jm ḠT (z + Lk)Q(2)

T i jm(z)
〉
L

)
ξ∂nc(z).

Using that by parity,
∑

k kn∂i j ḠT (Lk) = 0, we now appeal to the massive version
of the definitions (60) & (61). This gives rise to the second r.h.s. of (123) and the
leading-order term

ˆ
Rd

dzξ∗ ·
〈∑

k

kn∂i jm ḠT (Lk)
( − zmQ

(1)
T i j (z) + Q(2)

T i jm(z)
)〉

L
ξ∂nc(z).

It remains to insert the definition (59) and appeal to the scaling ḠT (Lx) =
L2−d ḠT /L2(x).
Step 2. Limit T ↑ ∞.We now show that each term in (123) passes to the limit as T ↑
∞ and converges to its massless counterpart. To do so, we need to establish that this
limit makes sense for each of the five r.h.s. terms of (123); in this task, the dominated
convergence theorem is our main tool. Note that (120) and (121) hold uniformly
in T , at the level of the massive quantities. Therefore, combined with the bounds
and convergences of the massive quantities (52), (53), (54), (55) and Proposition 5,
the second, third, fourth and fifth r.h.s. terms of (123) converge to their massless
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counterparts as T ↑ ∞. Consequently, the subtle part is in the first r.h.s. term of (123),
that we treat in detail.

In the sequel, L ≥ 1 is fixed. We prove that

lim
T↑∞

ˆ
Rd

dz
〈
�T /L2i jmn

(
ξ∗ · Q(2)

T i jm(z)ξ − zmξ∗ · Q(1)
T i j (z)ξ

)〉
L∂nc(z)

=
ˆ
Rd

dz
〈
�i jmn

(
ξ∗ · Q(2)

i jm(z)ξ − zmξ∗ · Q(1)
i j (z)ξ

)〉
L∂nc(z).

(124)

We claim that the only additional ingredient is the well-posedness of �i jmn :=
limT↑∞ �T i jmn along with the bound

∣∣�i jmn
∣∣ ≤ sup

T≥1
|�T i jmn| � 1〈·〉L − almost-surely, (125)

where we recall (59)

�T i jmn :=
∑

k∈Zd

kn∂i jm ḠT (k).

Indeed, thanks to the assumption (10) on c, the bounds on the correctors (52),
and (125), the integrand of the l. h. s integral in (124) are bounded (uniformly in T )
by (1 + |z|)−d−2α . We then conclude using the convergences (53) together with the
Lebesgue convergence theorem.

Here comes the argument for (125). We fix a smooth compactly supported η with
η = 1 on the unit cube (− 1

2 ,
1
2 )

d that we use it to split the lattice, which we interpret
as a Riemann sum:

∑

k �=0

kn∂i jm ḠT (k)

=
ˆ
Rd\(− 1

2 , 12 )d
dxη(x)xn∂i jm ḠT (x) +

ˆ
Rd

dx(1 − η)(x)xn∂i jm ḠT (x)

+
∑

k �=0

(
kn∂i jm ḠT (k) −

ˆ
k+(− 1

2 , 12 )d
dxxn∂i jm ḠT (x)

)
. (126)

The first r.h.s. integral effectively extends over a compact subset of Rd\{0} and thus
obviously converges for T ↑ ∞, thanks to (53). On the second r.h.s. integral in (126),
we perform two integrations by parts:

ˆ
Rd

dx(1 − η)(x)xn∂i jm ḠT (x) =
ˆ
Rd

dx
( − ∂ jη(x)δmn∂i ḠT (x) + ∂mη(x)xn∂i j ḠT (x)

)
.

Again, the r.h.s. integral effectively extends over a compact subset of Rd\{0} and
converges for T ↑ ∞, thanks to (53). We finally turn to the last contribution in (126)
where each summand has a limit T ↑ ∞. This extends to the sumbecause of dominated
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convergence: Each summand is dominated, in absolute value, by the Lipschitz norm of
x 
→ xn∂i jm ḠT (x) on the translated cube k + (− 1

2 ,
1
2 )

d , which by the uniform-in-T
decay of the derivatives of ḠT (see (56)), gives an expression that is summable in
k ∈ Z

d\{0}.

5.3 Proof of Lemma 1: Fluctuation Estimates

As announced above, we showonly (75) by closely following [39]. The only difference
is that we appeal not only to the annealed Calderón–Zygmund estimates as in [39],
but also to the annealed weighted estimates contained in Lemma 2.

For a deterministic and periodic vector field h, we consider the random variable of
zero average

F :=
ˆ

[0,L)d
h · ∇φ

(2)
i j .

We employ on it the spectral gap inequality (cf. [39, Lem. 3.1]), which, combined with
Minkowski’s integral inequality (assuming that p ≥ 2), reads

〈|F |p〉
1
p
L �p

( ˆ
[0,L)d

〈∣∣∂F
∂g

∣∣p〉
2
p
L

) 1
2
, (127)

where ∂F
∂g = ∂F(g)

∂g(x) is the Fréchet (or functional or vertical or Malliavin) derivative on

L2([0, L)d) of F w.r.t. g defined by, for all periodic perturbation δg ∈ L2([0, L)d)

lim
ε↓0

F(g + εδg) − F(g)

ε
:=

ˆ
[0,L)d

dx δg(x)
∂F(g)

∂g(x)
.

(Since L2([0, L)d) is a Hilbert space, this Fréchet derivative is actually a gradient.)
We split the proof into three steps. First, we establish that the Fréchet derivative of F
is given by

∂F

∂g
= ∇v · a′(∇φ

(2)
i j + φ

(1)
i e j ) − (∇w j + ve j ) · a′(∇φ

(1)
i + ei ), (128)

where v and w j are defined through (133) and (135). Next, we show that the annealed
estimates of Lemma 2 imply

( ˆ
[0,L)d

〈|∇v|2p〉
1
p
L

) 1
2

�p

(ˆ
[0,L)d

|h|2
) 1

2

, (129)

( ˆ
[0,L)d

〈|∇w j + ve j |2p〉
1
p
L

) 1
2

�p

( ˆ
[0,L)d

|x |2L |h|2
) 1

2

, (130)
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where we recall that |x |L = infk∈Zd |x + kL|. Last, we insert (128) into (127), and
we appeal to the Cauchy–Schwarz inequality [we also employ (11)], to the effect of

〈|F |p〉 1
p �p

( ˆ
[0,L)d

(〈|∇v2p|〉 1
p 〈|∇φ

(2)
i j + φ

(1)
i e j |2p〉

1
p

+ 〈|∇w j + ve j |2p〉
1
p 〈|∇φ

(1)
i + ei |2p〉

1
p
)) 1

2
.

Invoking (69) and recalling (129) and (130) finally yields the desired estimate (75).
Step 1. Argument for (128). We give ourselves infinitesimal (periodic) perturba-
tion δg ∈ L2([0, L)d) of g. In view of (2) and (29), it generates a perturbation δφ

(1)
i

characterized by

∇ · (
a∇δφ

(1)
i + δga′(∇φ

(1)
i + ei )

) = 0 and
 

[0,L)d
δφ

(1)
i = 0. (131)

In view of (31), this in turn generates the perturbation ∇δφ
(2)
i j characterized by

−∇ · (
a(∇δφ

(2)
i j + δφ

(1)
i e j ) + δga′(∇φ

(2)
i j + φ

(1)
i e j )

)

= Pe j · (
a∇δφ

(1)
i + δga′(∇φ

(1)
i + ei )

)
, (132)

where P denotes the (L2-orthogonal) projection onto functions of vanishing spatial
mean, i.e., Ph = h − ffl

[0,L)d
h. The form of (132) motivates the introduction of the

periodic function v defined through

∇ · (a∗∇v + h) = 0 and
 

[0,L)d
v = 0, (133)

so that, by testing (133) with δφ
(2)
i j and (132) with v, we obtain the representation for

δF := ´
[0,L)d

h · ∇δφ
(2)
i j :

δF =
ˆ

[0,L)d

(
∇v · (

aδφ
(1)
i e j + δga′(∇φ

(2)
i j + φ

(1)
i e j )

)

−ve j · (
a∇δφ

(1)
i + δga′(∇φ

(1)
i + ei )

))
. (134)

This in turn prompts the introduction of a second auxiliary periodic function w j of
zero mean

−∇ · a∗(∇w j + ve j ) = Pe j · a∗∇v, (135)
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so that by testing (131) withw j and (135) with δφ
(1)
i , we may eliminate δφ

(1)
i in (134)

and recover (128) in form of

δF =
ˆ

[0,L)d
δg

(
∇v · a′(∇φ

(2)
i j + φ

(1)
i e j ) − (ve j + ∇w j ) · a′(∇φ

(1)
i + ei )

)
.

Step 2. Argument for (129) and (130). Notice first that (129) is a direct conse-
quence of Lemma 2 with weight w = 1 applied to v satisfying (133). Therefore, it
remains to establish (130). In this perspective, we introduce the (gradient) field h j

such that the r.h.s. of (135) reads Pe j · a∗∇v = ∇ · h j . As a consequence of annealed
unweighted estimates on ∇(−∇ · a∗∇)−1∇· (namely, Lemma 2 with weight w = 1),
we get

( ˆ
[0,L)d

〈|∇w j |2p〉
1
p
L

) 1
2

�p

(ˆ
[0,L)d

〈|h j |2p + |v|2p〉
1
p
L

) 1
2

. (136)

We now claim the following annealed Hardy inequality:

( ˆ
[0,L)d

〈|v|2p〉
1
p
L

) 1
2

�
( ˆ

[0,L)d
|x |2L〈|∇v|2p〉

1
p
L

) 1
2

. (137)

As a consequence of annealed weighted estimates on ∇(−∇ · a∗∇)−1∇· (namely,
Lemma 2 with weight w = | · |2L ) applied to (133), we have

( ˆ
[0,L)d

|x |2L〈|∇v|2p〉
1
p
L

) 1
2

�p

( ˆ
[0,L)d

|x |2L |h|2
) 1

2

, (138)

and therefore, by (137), there holds

(ˆ
[0,L)d

〈|v|2p〉
1
p
L

) 1
2

�p

(ˆ
[0,L)d

|x |2L |h|2
) 1

2

. (139)

Moreover, by the annealed weighted estimates on ∇2(−�)−1 [46, Theorem 7.1], we
obtain

(ˆ
[0,L)d

|x |2L〈|∇h j |2p〉
1
p
L

) 1
2

�p

(ˆ
[0,L)d

|x |2L〈|∇v|2p〉
1
p
L

) 1
2

.

Combining it with the Hardy inequality (137) for h j and with (138) yields

( ˆ
[0,L)d

〈|h j |2p〉
1
p
L

) 1
2

�p

( ˆ
[0,L)d

|x |2L |h|2
) 1

2

.
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Inserting this and (139) into (136), and employing once more (139) in the triangle
inequality gives (130).
Step 3. Argument for (137). W. l. o. g. we may assume that L = 1, and we con-
sider randomperiodic functions of vanishing average v. The annealedHardy inequality

(137) relies on three ingredients. First, if 〈|u|2p〉 1
p is compactly supported, we have

ˆ
Rd

〈|u|2p〉 1
p �

ˆ
Rd

|x |2〈|∇u|2p〉 1
p . (140)

Next, for � := [− 1
2 ,

1
2 )

d\[− 1
4 ,

1
4 )

d , the following annealed Poincaré estimate holds:

( ˆ
�

〈|v|2p〉 1
p

) 1
2

�
(ˆ

�

〈|∇v|2p〉 1
p

) 1
2

+
ˆ

�

〈|v|2p〉 1
2p . (141)

Last, we make use of an annealed Poincaré–Wirtinger estimate

ˆ
[− 1

2 , 12 )d
〈|v|2p〉 1

2p �
ˆ

[− 1
2 , 12 )d

〈|∇v|2p〉 1
2p . (142)

Using (140) for u := ηv where η is a cutoff function of [− 1
2 ,

1
2 )

d into [− 3
4 ,

3
4 )

d , we
have by periodicity of v

ˆ
[− 1

2 , 12 )d
〈|v|2p〉 1

p �
ˆ

[− 1
2 , 12 )d

|x |21〈|∇v|2p〉 1
p +

ˆ
�

〈|v|2p〉 1
p ,

Inserting (141) and then (142) into the above estimate yields

ˆ
[− 1

2 , 12 )d
〈|v|2p〉 1

p �
ˆ

[− 1
2 , 12 )d

|x |21〈|∇v|2p〉 1
p +

( ˆ
[− 1

2 , 12 )d
〈|∇v|2p〉 1

2p

)2
. (143)

Since d > 2, we may employ the Cauchy–Schwarz inequality to get

( ˆ
[− 1

2 , 12 )d
〈|∇v|2p〉 1

2p

)2

≤
ˆ

[− 1
2 , 12 )d

|x |21〈|∇v|2p〉 1
p

ˆ
[− 1

2 , 12 )d
|x |−2

1

�
ˆ

[− 1
2 , 12 )d

|x |21〈|∇v|2p〉 1
p .

Inserting this into (143) yields the desired (137) (noting that by periodicity, we can
replace [− 1

2 ,
1
2 ) by [0, 1)d ).

We now establish successively (140), (141), and (142). First, (140) comes by
applying the following Hardy inequality for compactly supported functions φ (see
[6, Theorem 1.2.8] with p = 2 and V = |x |2):

ˆ
Rd

|φ|2 �
ˆ
Rd

|x |2|∇φ|2,

123



1354 Foundations of Computational Mathematics (2024) 24:1305–1387

to φ � 〈|u|2p〉 1
2p , and noticing that by the Hölder inequality with exponents

(
2p

2p−1 , 2p)

|∇〈|u|2p〉 1
2p | = |〈|u|2p〉 1

2p −1〈|u|2p−1∇|u|〉| ≤ 〈|∇u|2p〉 1
2p .

Similarly, we get (141) from the usual Poincaré inequality applied to the function

〈|v|2p〉 1
2p . Last, we get (142) by recalling that v is periodic of vanishing average in

[− 1
2 ,

1
2 )

d , so that

ˆ
[− 1

2 , 12 )d
〈|v|2p〉 1

2p =
ˆ

[− 1
2 , 12 )d

〈∣∣v −
ˆ

[− 1
2 , 12 )d

v
∣∣2p〉

1
2p

≤
ˆ

[− 1
2 , 12 )d

dx
ˆ

[− 1
2 , 12 )d

dy〈|v(x) − v(x + y)|2p〉 1
2p

≤
ˆ

[− 1
2 , 12 )d

dx
ˆ

[− 1
2 , 12 )d

dy
〈(|y|

ˆ 1

0
ds|∇v(x + sy)|)2p〉 1

2p

�
ˆ

[− 1
2 , 12 )d

dx
ˆ

[− 1
2 , 12 )d

dz〈|∇v(z)|2p〉 1
2p =

ˆ
[− 1

2 , 12 )d
〈|∇v|2p〉 1

2p .

5.4 Proof of Corollary 1: Limit L ↑ ∞

In view of (2) and (29), we may consider the field φ(1) as a function of g, provided
the latter is periodic. The same applies to φ(2), cf. (31), provided we make it unique
through

φ
(2)
i j (0) = 0. (144)

We will monitor the joint distribution of the triplet of fields (g, φ(1)
i (g), φ(2)

i j (g))
under 〈·〉L . This amounts to the push-forward 〈·〉L,ext of 〈·〉L under the map g 
→
(g, φ(1)

i (g), φ(2)
i j (g)), which we denote by (Id, φ(1)

i , φ
(2)
i j ):

〈·〉L,ext := (Id, φ(1)
i , φ

(2)
i j )#〈·〉L ; (145)

the index “ext” hints to the fact that 〈·〉L,ext is an extension of 〈·〉L in the sense that the
latter is the marginal of the former w.r.t. the first component. As will become apparent
in Step 1, 〈·〉L,ext is a probabilitymeasure on the product space C0,α,β ×C1,α,β ×C1,α,β ,
provided α ∈ (0, 1) and β ∈ ( 12 ,∞), where Cn,α,β denotes the space of functions that
are locally in Cn,α but are allowed to grow at rate β:

Cn,α,β := { ζ : Rd → R | ‖ζ‖n,α,β := sup
x∈Rd

(1 + |x |)−β‖ζ‖Cn,α(B1(x)) < ∞}.

On the one hand, this norm is weak enough so that Proposition 3 implies that the
family {〈·〉L,ext }L↑∞ is tight, see Step 1. On the other hand, it is (obviously) strong
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enough so that q, Q(1)
i j (z) and Q(2)

i jm(z) are continuous functions on the product space

C0,α,β × C1,α,β × C1,α,β , cf. (16), (36) and (37), which will imply part i i i) of the
corollary. In Step 2, we show that any (weak) limit18 〈·〉ext is stationary, satisfies the
moment bounds of Corollary 1, and is supported on fields that satisfy the relations of
Corollary 1. In Step 3, we identify the first marginal of 〈·〉ext with our whole-space
ensemble 〈·〉. In Step 4, we construct φ

(1)
i and φ

(2)
i j , now only defined almost surely,

satisfying the requirements of Corollary 1. Finally, in Step 5, we argue that 〈·〉ext is
the push-forward of the whole-space ensemble 〈·〉 under the map (Id, φ(1)

i , φ
(2)
i j ). In

the following, we drop the indices i and j .
Step 1. Compactness result.We show that Proposition 3 implies for α ∈ (0, 1),
β ∈ ( 12 ,∞), and p < ∞

sup
L≥1

〈(‖Id‖0,α,β + ‖(φ(1), φ(2))‖1,α,β)p〉L < ∞. (146)

We combine this with the compact embedding Cn,α′,β ′ ⊂ Cn,α,β for α < α′ and β ′ <

β, which is a consequence of Arzelà-Ascoli’s theorem. This implies by Prohorov’s
theorem [13, Theorem 3.8.4] that there exists a probability measure 〈·〉ext on C0,α′,β ′ ×
C1,α′,β ′ × C1,α′,β ′

such that, up to a subsequence that we do not relabel,

〈·〉L,ext ⇀
L↑∞〈·〉ext. (147)

We argue for (146). Since the balls {B1(x)}x∈ 1√
d
Zd cover Rd , we have by a union

bound argument

〈(‖g‖0,α,β + ‖(φ(1), φ(2))‖1,α,β

)p〉
L

�
〈(

sup
x∈ 1√

d
Zd

(1 + |x |)−β(‖g‖C0,α(B1(x)) + ‖(φ(1), φ(2))‖C1,α(B1(x)))
)p〉

L

≤
∑

x∈ 1√
d
Zd

(1 + |x |)−pβ〈(‖g‖C0,α(B1(x)) + ‖(φ(1), φ(2))‖C1,α(B1(x)))
p〉L . (148)

By local Schauder theory, we obtain from (2) and (31)

‖φ(1)‖C1,α(B1(x)) � C(‖a‖C0,α(B2(x)))
(
1 +

( ˆ
B2(x)

|φ(1)|2
) 1

2
)
,

‖φ(2)‖C1,α(B1(x)) � C(‖a‖C0,α(B2(x)))
(
‖φ(1)‖C1,α(B2(x)) +

( ˆ
B2(x)

|φ(2)|2
) 1

2
)

18 We use here the notion of tight convergence of measures, namely for all p < ∞ and for all continuous
function F on C0α,β × C1α,β × C1α,β such that |F(g, φ, ψ)| � 1 + ‖g‖p0,α,β + ‖φ,ψ‖p1,α,β there holds
〈F〉L,ext →

L↑+∞ 〈F〉ext .
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with an at most polynomial dependence of the constant on ‖a‖C0,α(B2(x)). By (13), this
yields

〈(‖g‖C0,α(B1(x)) + ‖(φ(1), φ(2))‖C1,α(B1(x))

)p〉 1p
L �p,p′ 1 +

ˆ
B2(x)

〈|(φ(1), φ(2))|p′ 〉
1
p′
L ,

(149)

provided p < p′. By Proposition 3 i) for φ(1) and by iv) for φ(2) together with (144),

we have that the r.h.s. of (149) is estimated by (1 + |x |) 1
2 . Hence, the summand on

the r.h.s. of (148) is estimated by (1 + |x |)−p(β− 1
2 ), which is summable provided

p > d
β− 1

2
. The remaining range is then obtained by Jensen’s inequality.

Step 2. Stationarity, moment bounds, and PDE- constrained support

of 〈·〉ext. Here and in the sequel, we denote by (g, φ, ψ) ∈ C0,α,β ×C1,α,β ×C1,α,β the
integration variables of 〈·〉L,ext and its limit 〈·〉ext. First, because C1,α,β � ψ 
→ ψ2(0)
is continuous, (144) is preserved under (147):

ψ(0) = 0 for 〈·〉ext − a. e.ψ. (150)

Next, note that φ(1) and ∇φ(2) are stationary19 (the anchoring (144) of φ(2) does not
admit stationarity, but does not affect the stationarity property of ∇φ(2)) and 〈·〉L is
stationary.20 Hence, we may introduce the push-forward of 〈·〉L,ext under the map
(g, φ, ψ) 
→ (g, φ,∇ψ), which we call (Id, Id,∇) and which is stationary, a linear
constraint that is preserved under the weak convergence (147):

(Id, Id,∇)#〈·〉ext is stationary. (151)

We now turn to the estimates of Proposition 3. Clearly, the bounds (69), the second
bound in (70) for any compactly supported function η and (71) is preserved under
(147):

〈|∇φ|p + |φ|p + |∇ψ |p〉ext �p 1,
〈∣∣
ˆ
Rd

ηφ
∣
∣p〉

1
p
ext �p

( ˆ
Rd

|η| 2d
d+2

) d+2
2d ,

and 〈|ψ(z)|p〉
1
p
ext �p μ

(2)
d (|z|). (152)

Finally, from theweak convergence (147), the definition of a in (3) together with the
stationarity of 〈·〉L in form of 〈a〉L = 〈a(∇φ(1) + ei )(0)〉L and the decay of averages
(70) for the flux (applied with η = L−d1[0,L)d ), one has

〈a〉L →
L↑∞ 〈a(∇φ + ei )(0)〉ext and 〈|a − 〈a〉L |〉L � L− d

2 ,

19 We recall that a random field φ = φ(g, x) is called stationary iff φ(g, z + x) = φ(g(z + ·), x).
20 We recall that a measure on a function space is called stationary iff it is invariant under shift of the
functions.
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so that 〈|a−〈a(∇φ+ei )〉ext|〉L →
L↑∞ 0. Therefore, introducing the notation ahom,ext :=

〈a(∇φ + ei )(0)〉ext, we obtain under the weak convergence (147) that the Eqs. (2) and
(31), when tested against smooth compactly supported functions, are preserved in the
sense that

∇ · a(∇φ + ei ) = 0 and − ∇ · a(∇ψ + φe j )

= e j · (a(∇φ + ei ) − ahom,ext ei ) for 〈·〉ext-a. e. (g, φ, ψ).

(153)

Step 3. Identification of the first marginal of 〈·〉ext. We show that the
first marginal of 〈·〉ext is given by 〈·〉. By the definition (145), the first marginal of
〈·〉L,ext is the Gaussian measure 〈·〉L . By (147), the sequence {〈·〉L}L↑∞ of Gaussian
measures is tight on C0,α,β . By [13, Corollary 3.8.5], it is thus enough to prove the
weak convergence of 〈·〉L to 〈·〉 on squares of bounded linear forms:

lim
L↑∞〈�2〉L = 〈�2〉 for all � ∈ (C0,α,β)∗. (154)

By density and tightness, it is enough to check (154) for linear forms � of the form
g 
→ ´

ζ g for an arbitrary Schwartz function ζ . The definition (9) of cL can also be
stated in terms of the (distributional) Fourier transform of the (periodic) cL as

FcL = (2π
L

)d ∑

q∈ 2π
L Zd

Fc(q)δ(· − q).

Hence, the l.h.s. of (154) assumes the form of a Riemann sum:

〈�2〉L = (2π
L

)d ∑

q∈ 2π
L Zd

Fc(q)|Fζ(q)|2.

Since by Assumption 1 in form of the integrability of c, see (12), Fc is continuous,
we obtain (154):

lim
L↑∞〈�2〉L =

ˆ
Rd

Fc|Fζ |2 = 〈�2〉.

Step 4. Construction of φ(1)
and φ(2). We show that there exist φ(1) and φ(2)

satisfying Corollary 1 i) and i i), respectively.We construct these random variables via
disintegration of the measure 〈·〉ext with respect to its first marginal 〈·〉, which amounts
to conditional expectation w.r.t. g. By [44, Theorem 6.4] there exists a family of
measures {〈·|g〉ext}g∈C0α,β

on C1,α,β ×C1,α,β such that for all 〈·〉ext-integrable functions
F ,

〈F〉ext = 〈〈F |g〉ext〉.
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We now define the 〈·〉-integrable functions φ(1) and φ(2) through conditional expecta-
tion

φ(1)(g) := 〈φ|g〉ext and φ(2)(g) := 〈ψ |g〉ext for all g ∈ C0α,β (155)

and verify that they satisfy all the requirements of Corollary 1 i) and i i). Since the
conditioning w.r.t. g commutes with the multiplication by a = A(g), the linear equa-
tions (153) are preserved and give rise to (79) and (81). It is easy to check that the
stationarity (151) translates into stationarity of φ(1) and ∇φ(2). It follows from (150),
via Jensen’s inequality applied to the conditional expectation, that φ(1) and φ(2) satisfy
the moment bounds of Corollary 1 i) and i i), and also the decay bound (78) and the
growth bound (80).
Step 5. Identification of 〈·〉ext. We now establish

〈·〉ext = (Id, φ(1), φ(2))#〈·〉.

by showing

u(1) := φ − φ(1)(g) = 0 and u(2) := ψ − φ(2)(g) = 0 for 〈·〉ext − a. e. (g, φ, ψ).

(156)

By (79) and (153), we have −∇ · a∇u(1) = 0 〈·〉ext-a. s. By Caccioppoli’s inequality,
we thus obtain

 
BR

|∇u(1)|2 � 1

R2

 
B2R

|u(1)|2 for all R < ∞.

Taking the expectation 〈·〉ext and using the stationarity of φ(1) and (151), this implies

〈|∇u(1)|2〉ext � 1

R2 〈|u(1)|2〉ext for all R < ∞.

Letting R ↑ ∞ while appealing to (69) and (152) yields ∇u(1) = 0. We now use
(78) and the associated property in (152), for the averaging function η = R−d1BR .
Because of 2d

d+2 > 1, this yields limR↑∞〈| fflBR
u(1)|2〉ext = 0. Hence, we obtain the

first claim of (156). Note that this implies in particular ahom,ext = ahom, namely the
first claim of Corollary 1 i i i).

It now follows from (81) and (153) that −∇ · a∇u(2) = 0 〈·〉ext-a. s.. Starting again
with Caccioppoli’s inequality, followed by the combination of the stationarity of∇φ(2)

and (151), finally followed by the combination of (80) and (152), we obtain

〈|∇u(2)|2〉ext � 1

R2

 
B2R

dz〈|u(2)(z)|2〉ext �
(μ

(2)
d (R)

R

)2 for all R < ∞.

Letting R ↑ ∞ we conclude ∇u(2) = 0. Using once more the combination of (80)
and (152), this time for z = 0, we find u(2)(0) = 0, which gives the second claim of
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(156). The same argument shows that there is at most one pair (φ(1), φ(2)) of random
variables satisfying the properties of Corollary 1 i) and i i). Therefore, 〈·〉ext is unique
and thus the limit of 〈·〉L,ext for the entire sequence L ↑ ∞.

5.5 Proof of Lemma 4: Improved Caccioppoli Inequality

By scaling, it is enough to consider R = 2; we fix a smooth cutoff function η for
B1 in B2. Our starting point is the following localized version of a standard L2-based
interpolation estimate, with n ∈ N to be fixed later, which we take from the proof of
[10, Lemma 4]:

ˆ
Rd

(η4n�2nw)2 �
( ˆ

Rd
|η4n+1∇�2nw|2

) 4n
4n+1

( ˆ
Rd

w2
) 1

4n+1 +
ˆ
Rd

w2. (157)

We apply it to w ∈ H2n
0 (B2) (as usual, H2n

0 (B2) denotes the closure of C∞
0 (B2)

w.r.t. the H2n(B2)-norm) that (weakly) solves

�2nw = u in B2. (158)

We constructwwith help of the Riesz representation theorem, so that we automatically
have

ˆ
Rd

uw =
ˆ
Rd

(�nw)2 ∼
ˆ
Rd

|∇2nw|2 �
ˆ
Rd

w2, (159)

where we used higher-order L2-regularity and a higher-order Poincaré estimate. We
obtain from inserting (158) into (157)

ˆ
Rd

(η4nu)2 �
(ˆ

Rd
|η4n+1∇u|2

) 4n
4n+1

(ˆ
Rd

w2
) 1

4n+1 +
ˆ
Rd

w2.

Combining this with Caccioppoli’s estimate
´
Rd |η4n+1∇u|2 �

´
Rd (η

4nu)2 and
Young’s inequality, we obtain

ˆ
Rd

(η4nu)2 �
ˆ
Rd

w2,

so that, by the choice of η, we deduce

ˆ
B1

|∇u|2 ≤
ˆ
Rd

(η4nu)2 �
ˆ
Rd

w2. (160)

It remains to post-process this inner regularity estimate for an a-harmonic function u.
In route to an annealed estimate, we express the r.h.s. of (160) in terms of u, which

is conveniently done in terms of the complete orthonormal system of eigenfunctions
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{wk}k∈N ⊂ H2n
0 (B2) and eigenvalues {λk}k ⊂ (0,∞) of the Dirichlet-�2n , which is

a positive operator with compact inverse:

ˆ
Rd

w2 =
∑

k

1

λ2k

( ˆ
Rd

uwk

)2

=
∑

k

1

λk

( ´
Rd uwk

)2

´
Rd (�nwk)2

(159)
�

∑

k

1

λk

( ´
Rd uwk

)2

´
Rd |∇2nwk |2 .

We insert this into (160)

ˆ
B1

|∇u|2 �
∑

k

1

λk

( ´
Rd uwk

)2

´
Rd |∇2nwk |2

and apply 〈(·) p
2 〉. By Hölder’s inequality in k, we obtain

〈( ˆ
B1

|∇u|2
) p

2
〉

�
( ∑

k′

1

λk′

) p
2 −1 ∑

k

1

λk

〈∣∣∣∣
´
Rd uwk

∣
∣∣∣

p〉

( ´
Rd |∇2nwk |2

) p
2
.

In order to proceed, we need
∑

k
1
λk

< ∞, which means that the inverse of the

Dirichlet-�2n has finite trace, which in turn follows from the finiteness of the corre-
sponding Green function along the diagonal, which requires that Dirac distributions
are in H−2n(B2), which amounts to the Sobolev embedding H2n

0 (B2) ⊂ C0
0 (B2) and

thus holds provided 2n > d, which we henceforth assume. Hence by the density of
C∞
0 (B2) in H2m

0 (B2) � wk , we obtain the annealed inner regularity estimate

〈( ˆ
B1

|∇u|2) p
2

〉
� sup

w∈C∞
0 (B2)

〈∣∣
∣∣
´
Rd uw

∣∣
∣∣

p〉

( ´
Rd |∇2nw|2

) p
2
. (161)

It remains to post-process (161). Provided 2n > d
2 +3, we may appeal to Sobolev’s

embedding applied to ∇3w in order to upgrade (161) to

〈( ˆ
B1

|∇u|2
) p

2
〉 1

p

� sup
w∈C∞

0 (B2)

〈∣∣∣∣
´
Rd uw

∣∣∣∣

p〉 1
p

sup |∇3w| . (162)
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Since we may w. l. o. g. assume
´
B2

u = 0, we may restrict to w with
´

w = 0. A

standard argument21 in the theory of distributions yields the existence of a vector field
g ∈ C∞

0 ((−2, 2)d) ⊂ C∞
0 (B2

√
d) such that

∇ · g = w and sup |∇3g| � sup |∇3w|.

Hence (162) may be upgraded to the desired

〈( ˆ
B1

|∇u|2
) p

2
〉 1

p

� sup
g∈C∞

0 (B2
√
d )

〈∣∣∣∣
´
Rd g · ∇u

∣∣∣∣

p〉 1
p

sup |∇3g| . (163)

��

5.6 Proof of Lemma 3: Annealed Estimate on the Two-Scale Expansion Error

In Step 1, we establish a pointwise bound on ∇3u, which in Step 2 we combine with
a dyadic decomposition argument.
Step 1. Pointwise bound on ∇3ū. We claim that

〈|∇3ū(x)|p〉
1
p
L � R sup |∇2 f |

(
R

R + |x − y|
)d

. (164)

Indeed, by (88) we have ū(x) = ´
BR(y) dz f (z)Ḡ(x − z). From the bounds on the

constant-coefficient Green function Ḡ, which are uniform in the random coefficient
λid ≤ ā ≤ id, we obtain

〈|∇3ū(x)|p〉
1
p
L

�

⎧
⎨

⎩
for |x − y| ≤ 2R : ´BR (y) dz |∇2h(z)|〈|∇Ḡ(x − z)|p〉 1

p � sup |∇2 f |R
for |x − y| ≥ 2R : ´BR (y) dz |∇ f (z)|〈|∇2Ḡ(x − z)|p〉 1

p � sup |∇ f |( R
|x−y| )

d

⎫
⎬

⎭
.

It remains to appeal to sup |∇ f | ≤ R sup |∇2 f |.
Step 2. Dyadic decomposition. We restrict the r.h.s. of (87) to dyadic annuli:

hk := 1B2k \B2k−1

(
(φ

(2)
i j − φ

(2)
i j (0))a − (σ

(2)
i j − σ

(2)
i j (0))

)
∇∂i j ū; (165)

21 We give the formula for d = 2: Fix a smooth η2 = η(x2) supported in (−2, 2) and of integral
1; then h(x) := (h1(x1)η(x2), h2(x)) with h1(x1) := ´ x1−∞ dx ′

1
´
dx ′

2w(x ′
1, x

′
2) and h2(x1, x2) :=´ x2−∞ dx ′

2(w(x1, x
′
2) − dh1

dx1
(x1)η(x ′

2)) has the desired support properties. By definition dh1
dx1

(x1) =´
dx ′

2w(x1, x
′
2), ∂2h2(x) = w(x) − dh1

dx1
(x1)η2(x2), and thus ∇ · h = w.
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this induces the decomposition ∇w = ∑
k∈Z ∇wk , where ∇wk is the square-

integrable solution of

−∇ · a∇wk = ∇ · hk .

We observe from (165) that wk is a-harmonic in B2k−1 .
Due to the above decomposition, the desired estimate (89) is reduced to estimat-

ing ∇wk(0) for each k. Using first Lemma 5, then the energy estimate, and finally
Minkowski’s inequality, we obtain provided p′ > p ≥ 2

〈|∇wk(0)|p〉
1
p
L

(92)
�

〈(  
B2k−1

|∇wk |2
) p′

2
〉 1

p′

L
�

〈( 
B2k−1

|hk |2
) p′

2
〉 1

p′

L

�
(  

B2k−1

〈
|hk |p′

〉 2
p′

L

) 1
2

.

(166)

In view of the definition (165) of hk , (71) in Proposition 3, and (164), we have for
p′′ > p′

( 
B2k

〈
|hk |p′

〉 2
p′

L

) 1
2 (165),(71)

� μ
(2)
d (2k)

(  
B2k

〈
|∇3ū|p′′

〉 2
p′′

L

) 1
2

� μ
(2)
d (2k)R sup |∇2 f |

( 
B2k

dx

(
R

R + |x − y|
)2d) 1

2

.

(167)

We now distinguish the two cases of 2k ≤ R, where we use
ffl
B2k

dx
( R
R+|x−y|

)2d ≤
1, and of 2k > R, where we use

 
B2k

dx

(
R

R + |x − y|
)2d

� 2−kd
ˆ
Rd

dx

(
R

R + |x − y|
)2d

�
(
R

2k

)d

.

The combination of (166), (167) and the two last estimates yields:

〈|∇w(0)|p〉
1
p
L �

( ∑

2k≤R

μ
(2)
d (2k) +

∑

2k>R

(
R

2k
)
d
2 μ

(2)
d (2k)

)
R sup |∇2h|. (168)

Since for any d > 2,μ(2)
d (r) is non-decreasing in r , linear for r ≤ 1, and not increasing

faster than r
1
2 for r ≥ 1, we recover (89).
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5.7 Proof of Proposition 4: Annealed Error Estimate on the Expansion of the Green
Function

Throughout the proof, we fix two “base points” x0, y0 ∈ R
d with |x0 − y0| ≥ 2.

Step 1. Passage to the full error in the two- scale expansion. Recall
that E, cf. (58) for its definition, is the truncated version, on the level of the mixed
derivatives, of the full error of the second-order two-scale expansion of the constant-
coefficient fundamental solution Ḡ, which is given by22

wx0,y0(x, y) := G(x, y) −
(
1 + φ

(1)
i (x)∂i + (φ

(2)
im − φ

(2)
im (x0))(x)∂im

)

×
(
1 − φ

∗(1)
j (y)∂ j + (φ

∗(2)
jn

− φ
∗(2)
jn (y0))(y)∂ jn

)
Ḡ(x − y).

(169)

We now find the mixed derivative:

∇∇wx0,y0(x, y) = ∇∇G(x, y)

− [
(ei + ∇φ

(1)
i )(x)∂i + (∇φ

(2)
im + φ

(1)
i em)(x)∂im + (φ

(2)
im

− φ
(2)
im (x0))(x)ek∂imk

]

⊗ [ − (e j + ∇φ
∗(1)
j )(y)∂ j + (∇φ

∗(2)
jn + φ

∗(1)
j en)(y)∂ jn

− (φ
∗(2)
jn − φ

∗(2)
jn (y0))(y)el∂ jnl

]
Ḡ(x − y).

(170)

We further consider the difference between the mixed derivative of full error and
its truncated version E by setting x = x0 and y = y0, which gives, together with
Proposition 3,

〈 ∣∣∇∇wx0,y0(x0, y0) − E(x0, y0)
∣∣p 〉 1p

L

� μ
(2)
d (|x0 − y0|)|x0 − y0|−d−2 for any p < ∞. (171)

Therefore, to obtain the desired estimate (90) it suffices to show

〈|∇∇wx0,y0(x0, y0)|p
〉 1p
L � max{μ(2)

d (|x0 − y0|), ln |x0 − y0|}|x0 − y0|−d−2.

(172)

Step 2. A decomposition of the full error ∇∇wx0,y0(x0, y0). In this step,
we shall derive a characterizing PDE (175) of the full error (169) in order to split it
into a far-field part wx0,y0,∞ and dyadic near-field parts wx0,y0,k(x, ·), which will be
explicitly given later on. The distinction between far and near fields refers to the scale

22 Note the change of sign that is due to the fact that ∂ j acts on the argument of Ḡ and not on y
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R := |x0 − y0|/2. Recall that wx0,y0(x, y) involves the two-scale expansion in both
the x and y variables; we now freeze x = x0 and consider y as the “active” variable.
For the ease of the statement, we make use of the notation

ūx0(x, ·) :=
(
1 + φ

(1)
i (x)∂i + (φ

(2)
im (x) − φ

(2)
im (x0))∂im

)
Ḡ(x − ·). (173)

This amounts to rewriting wx0,y0(x0, ·) as follows:

wx0,y0(x0, ·) = G(x0, ·) −
(
1 − φ

∗(1)
j ∂ j + (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn

)
ūx0(x0, ·).

(174)

Wenote thatG(x0, ·) is a∗-harmonic,whereas ux0(x0, ·) is a∗-harmonic inRd\{x0}.
Hence, the representation of the error in the second-order two-scale expansion intro-
duced in Sect. 3.4, we thus have

− ∇ · a∗∇wx0,y0(x0, ·) = ∇ · hx0,y0(x0, ·) in R
d \ {x0}, (175)

where the vector field hx0,y0 is given by

hx0,y0(x, ·) :=
(

(φ
∗(2)
jn − φ

∗(2)
jn (y0))a

∗ − (σ
∗(2)
jn − σ

∗(2)
jn (y0))

)
∇∂ jn ūx0(x, ·). (176)

Next we define the dyadic near-field (scalar) functions:

−∇ · a∗∇wx0,y0,k(x, ·) = ∇ · 1B2k (y0)\B2k−1 (y0)hx0,y0(x, ·),
(177)

and the far-field function:

wx0,y0,∞ := wx0,y0 −
∑

2k≤R

wx0,y0,k, (178)

In fact, we are interested in the quantities ∇xwx0,y0,k(x0, ·) and ∇xwx0,y0,∞(x0, ·),
which we address in two steps.
Step 3. Estimate of the near- field parts∇∇xwx0,y0,k(x0, ·). Note that apply-
ing ∇x and evaluating at x = x0 commutes with the differential operator ∇ · a∗∇.
For the ease of notation, we fix an arbitrary coordinate direction i = 1, · · · , d and
introduce the abbreviation23 wk,i (y) := ∂xiwx0,y0,k(x0, y). We start by estimating
its constitutive element ūx0 (see (173)) and we obtain from Proposition 3 and the

23 Throughout the proof, we use ∂xi (or ∇x ) if the partial derivative (or the gradient) is taken w.r.t. the first
variable. But we may write ∇ for ∇y since y here is the “active” variable.
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−d-homogeneity of Ḡ

sup
y∈BR(y0)

〈 ∣∣∣∇ j∂xi ūx0(x0, y)
∣∣∣
p 〉 1p

L

� R− j−d+1
(
1 +

〈∣∣
∣∣

(
∇φ(1)(x0),

φ(1)(x0)

R
,
∇φ(2)(x0)

R

)∣∣
∣∣

p〉 1
p

L

)
� R− j−d+1

(179)

for any j ≥ 0 and p < ∞ (we also used R ≥ 1 in the last estimate). As in the
proof of Lemma 3, 2 < p < p′ denote generic exponents for stochastic integrability.
Thus, using (92) in Lemma 5 and the energy estimate, we have

∑

2k≤R

〈|∇wk,i (y0)|p
〉 1p
L

(92)
�

∑

2k≤R

〈(  
B2k−1 (y0)

|∇wk,i |2
) p′

2
〉 1

p′

L

�
∑

2k≤R

〈(  
B2k (y0)

|∂xi hx0,y0(x0, ·)|2
) p′

2
〉 1

p′

L

.

(180)

By Minkowski’s inequality and Proposition 3, we also have

∑

2k≤R

〈( 
B2k (y0)

|∂xi hx0,y0 (x0, ·)|2
) p′

2
〉 1

p′

L
≤

∑

2k≤R

( 
B2k (y0)

〈
|∂xi hx0,y0 (x0, ·)|p

′
〉 2

p′

L

) 1
2

(176)≤
∑

2k≤R

( 
B2k (y0)

〈∣∣
∣∣

(
φ

∗(2)
jn − φ

∗(2)
jn (y0), σ

∗(2)
jn − σ

∗(2)
jn (y0)

)∣∣
∣∣

2p′〉 2
p′

L

) 1
4

×
( 

B2k (y0)

〈|∇∂ jn∂xi ūx0 (x0, ·)|2p
′ 〉 2

p′
L

) 1
4

(71),(179)
�

∑

2k≤R

μ
(2)
d (2k)R−2−d � max{μ(2)

d (R), ln R}R−2−d .

(181)

The combination of (180) and (181) leads to

∑

2k≤R

〈|∇wk,i (y0)|p
〉 1p
L � max{μ(2)

d (R), ln R}R−2−d . (182)

Step 4. Estimate of the near- field parts ∇∇xwx0,y0,k(x0, ·) in a weak

norm. Let p < p′ < p′′ be three stochastic exponents. In the sequel, h = h(y)
always denotes an arbitrary smooth vector field compactly supported in BR(y0). We
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now justify a weak control on ∇∇xwx0,y0,∞(x0, ·) that will appear useful in Step 5
when appealing to Corollary 2:

∑

2k≤R

〈∣∣
ˆ
Rd

h · ∇wk,i
∣∣p〉

1
p
L � μ

(2)
d (R)R sup |∇3h|. (183)

We start with a strong estimate ofwk,i on this set. As opposed to (180), we use Jensen’s
inequality to pass to the spatial L2-norm and then replace the energy estimate by the
annealed Calderón–Zygmund estimate [39, Proposition 7.1],

∑

2k≤R

〈( 
BR (y0)

|∇wk,i |
)p〉 1

p

L
≤

∑

2k≤R

 
BR (y0)

〈
|∇wk,i |p

〉 1
p

L
≤

∑

2k≤R

( 
BR (y0)

〈
|∇wk,i |p

〉 2p
L

) 1
2

� R− d
2

∑

2k≤R

2
kd
2

( 
B2k (y0)

〈
|∂xi hx0,y0 (x0, ·)|p

′
〉 2

p′

L

) 1
2

.

Then, to bound the r.h.s., we appeal to the definition of hx0,y0 in (176), Proposition 3
and (179) to get the following estimate similar to (181),

∑

2k≤R

〈(  
BR(y0)

|∇wk,i |
)p〉 1

p

L
� R− d

2
∑

2k≤R

μ
(2)
d (2k)2

kd
2

sup
y∈BR(y0)

〈|∇3∂xi ūx0(x0, y)|p
′′ 〉 1

p′′
L

(179)
� μ

(2)
d (R)R−2−d .

This shows (183) in form of

∑

2k≤R

〈∣∣
ˆ
Rd

h · ∇wk,i
∣∣p′ 〉 1

p′
L ≤ sup |h|

∑

2k≤R

〈( ˆ
BR(y0)

|∇wk,i |
)p〉 1

p

L

� μ
(2)
d (R)R sup |∇3h|.

Step 5. Estimate of the far- field part ∇∇xwx0,y0,∞(x0, ·) by a dual-

ity argument. Again, for the ease of notation we introduce the abbreviation
w∞,i (y) := ∂xiwx0,y0,∞(x0, y) with an arbitrary coordinate direction i = 1, · · · , d,
which is a∗-harmonic on B2k0 (y0). While in the previous two steps (mostly) relied on
homogenization in the y-variable in form of control of (φ∗(2), σ ∗(2)), we now (pri-
marily) need homogenization in the x-variable, in form of Lemma 3, next to control
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of φ∗(2). of Corollary 2: there hoWe start with an application lds

〈|∇w∞,i (y0)|p
〉 1p
L

(93)
� p,p′ sup

h∈C∞
0 (BR(y0))

〈∣∣ ffl
BR(y0)

h · ∇w∞,i
∣∣p′ 〉 1

p′
L

R3 sup |∇3h|

(178)≤ sup
h∈C∞

0 (BR(y0))

〈∣∣ ´
Rd h · ∇∂xi wx0,y0(x0, ·)

∣∣p′ 〉 1
p′
L

Rd+3 sup |∇3h|

+ sup
h∈C∞

0 (BR(y0))

∑
2k≤R

〈∣∣ ´
Rd h · ∇wk,i

∣∣p′ 〉 1
p′
L

Rd+3 sup |∇3h| .

(184)

While the second contribution has been estimated in (183), we now need a similar
estimate on the first contribution, namely,

〈∣∣∣∣

ˆ
Rd

h · ∇∂xi wx0,y0(x0, ·)
∣∣∣∣

p〉 1
p

L

�p max{μ(2)
3 (R), ln R}R sup |∇3h| for any p < ∞. (185)

Equipped with (185), (172) follows from the combination of (184), (183), (182)
and (178).

Now, we focus on the argument for (185). Let h ∈ C∞
0 (BR(y0)) be arbitrary, with

u and ū satisfying (88). We recall the definition of the error in the two-scale expansion
that we express in terms of the Green functions G, Ḡ using (88):

wx0(x) := u(x) − (
1 + φ

(1)
i (x)∂i + (φ

(2)
im − φ

(2)
im (x0))(x)∂im

)
ū(x)

(88)=
ˆ
Rd

(∇ · h)(G(x, ·) − ux0(x, ·)),

where we recall that ūx0 is defined in (173). Then, by taking derivatives on the both
sides of the above equation with respect to the x-variable and by integrating by parts
with respect to the y-variable lead to

∂xi wx0(x) =
ˆ
Rd

(∇ · h)
(
∂xi G(x, ·) − ∂xi ūx0(x, ·)

)

= −
ˆ
Rd

h · ∇(
∂xi G(x, ·) − ∂xi ūx0(x, ·)

)
. (186)

We now express the integral in the l.h.s. of (185) with help of (186). First, by
applying ∇ to (174), we obtain

∇∂xi wx0,y0(x0, ·) = ∇∂xi G(x0, ·) − ∇∂xi ūx0(x0, ·)
+∇[(

φ
∗(1)
j ∂ j − (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn

)
∂xi ūx0(x0, ·)

]
.

(187)
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Second, we split the integral in the l.h.s. of (185) as follows:

ˆ
Rd

h · ∇∂xi wx0,y0(x0, ·) (187)=
ˆ
Rd

h · ∇(
∂xi G(x0, ·) − ∂xi ūx0(x0, ·)

)

+
ˆ
Rd

h · ∇[(
φ

∗(1)
j ∂ j − (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn

)
∂xi ūx0(x0, ·)

]

(186)= −∂xi wx0(x0) −
ˆ
Rd

(∇ · h)φ
∗(1)
j ∂ j∂xi ūx0(x0, ·)

+
ˆ
Rd

(∇ · h)(φ
∗(2)
jn − φ

∗(2)
jn (y0))∂ jn∂xi ūx0(x0, ·). (188)

For the first term r.h.s. termof (188), it follows fromLemma3 appliedwith f = ∇·h
that

〈|∇xwx0(x0)|p
〉 1p
L � max{μ(2)

d (R), ln R}R sup |∇3h|. (189)

For the second term r.h.s. term of (188), we exploit the structure (173) of
∂xi ūx0(x0, ·), the random part of which is independent of the integration variable
y. Hence, we may use the Cauchy–Schwarz inequality, and then appealing to the defi-
nition (68) of ω∗

j (with φ
(1)
j replaced by φ∗(1)) together with (73) and (69), and finally

recall that h is supported in BR , to the effect of

〈∣∣
∣
ˆ
Rd

(∇ · h)φ
∗(1)
j ∂ j∂xi ūx0(x0, ·)

∣∣
∣
p〉 1

p

L

≤
〈∣∣
∣
ˆ
Rd

(∇ · h)φ
∗(1)
j ∂ jk Ḡ(x0 − ·)

∣∣
∣
2p〉 1

2p

L

〈
|δik + ∂iφ

(1)
k (x0)|2p

〉 1
2p

L

+
〈∣∣∣∣

ˆ
Rd

(∇ · h)φ
∗(1)
j ∂ jkmḠ(x0 − ·)

∣∣∣
2p〉 1

2p

L

〈∣∣∣(φ(1)
k δim + ∂iφ

(2)
km )(x0)

∣
∣∣∣

2p〉 1
2p

L

�
(〈∣∣∣

ˆ
Rd

∇(∇ · h) · (∇ω∗
j − ∇ω∗

j (x0))∂ jk Ḡ(x0 − ·)
∣∣∣
2p〉 1

2p

L

+
〈∣∣∣
ˆ
Rd

(∇ · h)(∇ω∗
j − ∇ω∗

j (x0)) · ∇∂ jk Ḡ(x0 − ·)
∣∣∣
2p〉 1

2p

L

)

〈
|δik+∂iφ

(1)
k (x0)|2p

〉 1
2p

L

+
〈∣∣∣
ˆ
Rd

(∇ · h)φ
∗(1)
j ∂ jkmḠ(x0 − ·)

∣
∣∣
2p〉 1

2p

L

〈∣∣∣(φ(1)
k δim + ∂iφ

(2)
km )(x0)

∣
∣∣
2p〉 1

2p

L

� sup |∇2h|μ(2)
d (R) + sup |∇h|(μ(2)

d (R) + 1)R−1 � μ
(2)
d (R)R sup |∇3h|.

(190)

The third r.h.s. term in (188) is easily dealt with by recalling that h is of compact
support, using Jensen’s inequality and the Cauchy–Schwarz inequality, and then a
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combination of (71) and (179)

〈∣∣∣
∣

ˆ
Rd

(∇ · h)(φ
∗(2)
jn − φ

∗(2)
jn (y0))∂ jn∂xi ūx0(x0, ·)

∣∣∣
∣

p〉 1
p

L

� sup |∇h|
ˆ
BR

〈|φ∗(2)
jn − φ

∗(2)
jn (y0)|2p〉

1
2p 〈|∂ jn∂xi ūx0(x0, ·)|2p〉

1
2p
L

�p R sup |∇2h|Rdμ
(2)
d (R)R−d−1

� μ
(2)
d (R)R sup |∇3h|.

(191)

Inserting the estimates (189), (190), and (191), into (188) entails (185). ��
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Appendix A. 2nd-Order Two-Scale Expansion of the Mixed Derivative
of theMassive Green Function

We present in this section the proof of the periodic second order two-scale expansion
on the mixed derivative of the massive Green function (63) that we restate in the
following proposition.

Proposition 5 Let d > 2 and a being L-periodic and Hölder-continuous, for some
L ≥ 1. We define the homogenization error

ET (x, y) := ∇∇GT (x, y) + ∂i j ḠT (x − y)(ei + ∇φ
(1)
i )(x) ⊗ (e j + ∇φ∗

j
(1)

)(y)

+∂i jm ḠT (x − y)(φ(1)
i em + ∇φ

(2)
im )(x) ⊗ (e j + ∇φ∗

j
(1)

)(y)

−∂i jm ḠT (x − y)(ei + ∇φ
(1)
i )(x) ⊗ (φ∗

j
(1)em + ∇φ

∗(2)
jm )(y). (192)

There exists a constant C depending on d and λ such that

〈|ET (x, y)|p〉
1
p
L �p,L (ln |x − y|)|x − y|−d−2 exp(−|x − y|

C
√
T

) (193)

provided T ≥ L2, L
2 ≤ |x − y| < ∞ and for all p < ∞.
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The proof of Proposition 5 closely follows the strategy of Proposition 4 with some
changes due to the presence of the massive term. To begin with, thanks to the moment
bounds (13), (193) will follow from the deterministic estimate

Ld |ET (x, y)| ≤ C(Lα[a]α)(ln
|x − y|

L
)Ld+2|x − y|−d−2 exp(−|x − y|

C
√
T

), (194)

which here is written in a scale-invariant way so that w. l. o. g. wemay consider L = 1.
In order to use (13), we need that C grows at most polynomially in its argument [a]α .
Hence what we need to establish is a (fine) result on homogenization of a 1-periodic
Hölder-continuous coefficient field a. The proof of Proposition 5 relies on the periodic
and massive counterpart of the Lipschitz estimate of Lemma 5 and the bound of the
homogenization error of Lemma 3. We start with the Lipschitz estimate.

Lemma 6 Let the function u satisfy 1
T u−∇ ·a∇u = 0 in the ball BR of radius R with

R ≤ √
T . Then we have

|∇u(0)| ≤ C([a]α)

(  
BR

|(∇u, 1√
T
u)|2

) 1
2

, (195)

where the constant C([a]α) depends polynomially on the Hölder norm [a]α next to d
and λ.

Proof W. l. o. g. we may assume R � √
T . Second, we decompose BR into annuli

B2−k+1R\B2−k R , for k ∈ N and we define uk as the Lax-Milgram solution of

−∇ · a∇uk = − 1

T
1B2−k+1R\B2−k R

u

and set u0 := u−∑
k≥1 uk . Since uk is a-harmonic in B2−k R we have by the standard

Lipschitz estimate [57, Theorem 4.1.1] for k ≥ 0

 
Br

|∇uk |2 �
 
B2−k R

|∇uk |2 for r ≤ 2−k R, (196)

where � means ≤ up to a multiplicative constant that only depends polynomially on
[a]α next to d and λ. For k ≥ 1 we upgrade (196) by the energy estimate (where we
appeal to d > 2 to bring the non-divergence form r.h.s. into divergence form)

 
Br

|∇uk |2
(196)

� 1

(2−k R)d

ˆ
Rd

|∇uk |2 �
(
2−k R

T

)2  
B2−k+1R

u2,

which trivially also holds for r ≥ 2−k R. Hence we obtain by the triangle inequality

( 
Br

|∇u|2
) 1

2

�
( 

BR

|∇u|2
) 1

2 +
∑

k≥1

2−k R

T

(  
B2−k+1R

u2
) 1

2

(197)
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for all r ≤ R. By Poincaré’s inequality (with mean-value zero), we have

∣∣
∣
( 

B2−k R

u2
) 1

2 −
( 

B2−k+1R

u2
) 1

2 ∣∣
∣ � 2−k R

(  
B2−k+1R

|∇u|2
) 1

2

.

By convergence of the geometric series, this allows us to upgrade (197) to

sup
r≤R

( 
Br

|∇u|2
) 1

2

�
( 

BR

|∇u|2
) 1

2 + R

T

( 
BR

u2
) 1

2 + R2

T
sup
r≤R

( 
Br

|∇u|2
) 1

2

.

Since we are in the perturbative regime R � √
T , we may buckle to obtain for any

r ≤ R

( 
Br

|∇u|2) 1
2 �

( 
BR

|∇u|2) 1
2 + 1√

T

( 
BR

u2
) 1
2 ,

which turns into (195) by letting r ↓ 0. ��

Next, we prove an estimate of the second-order stochastic homogenization error.

Lemma 7 Given a deterministic and smooth function f supported in BR(y) with
|y| = 2R and some R < ∞, let u and ū be the decaying solutions of

1

T
u − ∇ · a∇u = f = 1

T
ū − ∇ · ā∇ū. (198)

Then w := u − (1 + φ
(1)
i ∂i + (φ

(2)
i j − φ

(2)
i j (0))∂i j )ū satisfies for some constant C

depending on d and λ

|∇w(0)| ≤ C(a)(ln R) exp

(
− R

C
√
T

)
R sup |∇2 f |, (199)

where the constant C(a) has the same meaning as in Lemma 6.

Proof We split the proof into three steps. In the following, � has the same meaning
as in the proof of Lemma 6 and the constant C denotes a general constant depending
on d, λ and [a]α which may change from line to line.

We split the arguments between the non-perturbative regime R ≥ 2
√
T , that we

address in the three first steps, and the perturbative regime R ≤ 2
√
T that we address

in the last step.
Step 1. Pointwise bounds on ū and its derivatives. We claim that

|(∇3ū(x), 1
R∇2ū(x), 1

R2 ∇ū(x))| � exp(− (|x − y| − R)+
C

√
T

)R sup |∇2 f |. (200)
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The estimate (200) follows from the representation formula ū(x) = ´
BR(y) dz f (z)ḠT

(x − z) and the bounds on the constant-coefficient Green function ḠT

|∇ j ḠT (x)| � |x |− j−d+2 exp(− |x |
C

√
T

) for any j ≥ 0, (201)

in form of

|(∇3ū(x), 1
R∇2ū(x), 1

R2 ∇ū(x))|
� sup |∇2 f |

ˆ
BR(y)

dz (|∇ḠT (x − z)| + 1

R
|ḠT (x − z)|)

+ 1

R2 sup |∇ f |
ˆ
BR(y)

dz |ḠT (x − z)|,

which turns into (200) by appealing to sup |∇ f | ≤ R sup |∇2 f |.
Step 2. The two- scale expansion error. Following the same computations
as for (87), the error w satisfies

1

T
w − ∇ · a∇w = ∇ · h + f ′, (202)

where the non-divergence form r. h. s term f ′ comes from the massive term and reads

f ′ := 1

T
((h(1)

i − h(1)
i (0))e j − (φ

(2)
i j − φ

(2)
i j (0)))∂i j ū,

where we introduce the periodic vector field (appealing to (29))

∇ · h(1)
i = φ

(1)
i . (203)

The divergence form r. h. s term contains an additional term coming from the massive
term and reads

h := ((φ
(2)
i j − φ

(2)
i j (0))a − (σ

(2)
i j − σ

(2)
i j (0)))∇∂i j ū − 1

T
(h(1)

i − h(1)
i (0))∂i ū.

Wenowgive an estimate on h and f ′ that will be useful in the next steps. By Schauder’s
theory we have

‖(φ(1), φ(2), σ (2), h(1))‖C1([0,1)d ) � 1, (204)

and the estimate (200) combined with (204) leads to

|(h(x),
√
T f ′(x))| � R2

T
exp(− (|x − y| − R)+

C
√
T

)min{|x |, 1}R sup |∇2 f |,
(205)
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where we used R ≥ 2
√
T .

Step 3. Dyadic decomposition argument. We restrict the r.h.s. of (202) to
dyadic annuli:

hk := 1B2k \B2k−1 h, f ′
k := 1B2k \B2k−1 f

′ for 2k ≤ √
T , (206)

and set

h∞ := 1Rd\B√
T
h, f ′∞ := 1Rd\B√

T
f ′. (207)

This induces the decomposition w = ∑
2k≤√

T wk + w∞, where wk and w∞ are the
bounded solutions of

1

T
wk − ∇ · a∇wk = ∇ · hk + f ′

k,
1

T
w∞ − ∇ · a∇w∞ = ∇ · h∞ + f ′∞.

We now treat separately the near-field part and the far-field part. For the near-field part,
we apply the Lipschitz estimate of Lemma 6 up to the scale 2k−1 which we combine
with an energy estimate to obtain

|∇wk(0)| �
(  

B2k−1

|(∇wk,
1√
T
wk)|2

) 1
2 �

(  
B2k

|(h,
√
T f ′)|2) 1

2 .

Since we are in the regime R ≥ 2
√
T , (205) implies

( 
B2k

|(h,
√
T f ′)|2

) 1
2

� exp(− R

C
√
T

)min{2k, 1}R sup |∇2 f |,

which provides

∣∣∣
∑

2k≤√
T

∇wk(0)
∣∣∣ � (ln R) exp(− R

C
√
T

)R sup
∣∣∣∇2 f

∣∣∣.

For the far-field part, we apply Lemma 6 up to the scale
√
T which we combine

with the localized energy estimate [29, (169)] in form of: there exists a constant C

depending on d and λ such that for η√
T := √

T
−d

exp(− |·|
C

√
T
),

|∇w∞(0)|
(195)
�

(  
B√

T

|(∇w∞, 1√
T
w∞)|2) 1

2

�
( ˆ

Rd
η√

T |(∇w∞, 1√
T
w∞)|2) 1

2

�
( ˆ

Rd
η√

T |(h,
√
T f ′)|2) 1

2 .
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We then split the integral into:

( ˆ
Rd

η√
T |(h,

√
T f ′)|2

) 1
2

≤ ( ˆ
B 3
2 R

(y)
η√

T |(h,
√
T f ′)|2) 1

2

+( ˆ
Rd\B 3

2 R
(y)

η√
T |(h,

√
T f ′)|2) 1

2 . (208)

Using (205) and η√
T (x) �

√
T

−d
exp(− R

C
√
T
) for any x ∈ B 3

2 R
(y) and

exp(− (|x−y|−R)+
C

√
T

) � exp(− R
C

√
T
) for any x ∈ R

d\B 3
2 R

(y), we obtain

(ˆ
Rd

η√
T |(h,

√
T f ′)|2) 1

2

� (1 + ( R√
T

) d
2 )

R2

T
exp(− R

C
√
T

)R sup |∇2 f | � exp(− R

C
√
T

)R sup |∇2 f |,

where we absorbed the ratio
( R√

T

) d
2 +2 into the exponential. This leads to

|∇w∞(0)| � exp(− R

C
√
T

)R sup |∇2 f |,

and concludes the proof for the regime R ≥ 2
√
T .

Step 4. The perturbative regime R ≤ 2
√
T . For this regime, we proceed in the

vein of the proof of Lemma 3. First, by absorbing the ratios |x |√
T
into the exponential,

we deduce from (201)

|∇2ḠT (x)| + ( 1

|x | + 1√
T

)|∇ḠT (x)| + ( 1

|x |2 + 1

T

)|ḠT (x)| � |x |−d .

This estimate together with the same computations done for (164) leads to

|(∇3ū(x), 1√
T
∇2ū(x), 1

T ∇ū(x))| �
( R

R + |x − y|
)d
R sup |∇2 f |. (209)

We then proceed as in Step 2 of this proof and from (209) and (204) we have

|(h(x),
√
T f ′(x))| �

( R

R + |x − y|
)d min{|x |, 1}R sup |∇2 f |. (210)

Finally, we do the dyadic decomposition of Step 3 up to the scale R
2 where the

near-field part is controlled using Lemma 6, (210) and the energy estimate by
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| ∑2k≤ R
2

∇wk(0)| � (ln R)R sup |∇2 f |, whereas the far-field part is estimated as
follows

|∇w∞(0)|
(195)
�

(  
B R

2

|(∇w∞, 1√
T
w∞)|2) 1

2 � R− d
2
( ˆ

Rd
|(h∞,

√
T f ′∞)|2) 1

2

(210)
� R− d

2 R sup |∇2 f |(
ˆ
Rd

dx
( R

R + |x − y|
)2d) 1

2

�R sup |∇2 f |,

which concludes the proof of (199) in the regime R ≤ 2
√
T . ��

We now turn to the proof of Proposition 5.

Proof of Proposition 5 In the following, � has the same meaning as in the proof of
Lemma 6 and the constant C denotes a general constant depending on d and λ which
may change from line to line.

The proof relies on a weaker version of Lemma 4 for the operator 1
T − ∇ · a∇: for

any u such that 1
T u −∇ · a∇u = 0 in BR(y) for some y ∈ R

d and R ≤ √
T , we have

|∇u(y)| � sup
f ∈C∞

0 (BR(y))

∣
∣ ffl

BR(y) f u
∣
∣

R3 sup |∇2 f | . (211)

The proof of (211) is more elementary, since we ask for a strong control of ∇u in
terms of weak-norms of u itself and relies only on Caccippoli’s inequality and an
interpolation estimate. In the following, we display the proof of (211).

First, since the constant in (211) depends on a only through d and λ, wemay rescale
and w. l. o. g. assume R = 1, T = 1 and y = 0. Second, we fix a cut-off function η

for B 1
2
in B 3

4
. Using the Lipschitz estimate in Lemma 6, (211) will follow from

( ˆ
Rd

η6|∇u|2
) 1

2

� sup
f ∈C∞

0 (B1)

´
Rd f u

( ´
Rd |∇2 f |2

) 1
2

. (212)

The starting point is the standard Caccioppoli estimate

( ˆ
Rd

η6|∇u|2
) 1

2

=
( ˆ

Rd
(η3|∇u|)2

) 1
2

�
( ˆ

Rd
(u|∇η3|)2

) 1
2

�
( ˆ

Rd
η4u2

) 1
2

.

The main ingredient is the interpolation estimate

ˆ
Rd

η4v2 �
(ˆ

Rd
η6|∇v|2

) 2
3
(ˆ

Rd
((1 − �)−1v)2

) 1
3

+
ˆ
Rd

((1 − �)−1v)2,

(213)
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which we apply to v = η0u, where we fix a cut-off function η0 for B 3
4
in B1, to the

effect of η4u2 = η4v2 and η6|∇v|2 = η6|∇u|2. The remaining ingredient is

( ˆ
Rd

(
(
1 − �

)−1
η0u)2

) 1
2 � sup

f ∈C∞
0 (BR)

´
Rd f u

( ´
Rd |∇2 f |2

) 1
2

. (214)

The argument for (214) is straightforward: As can be easily seen by means of the
Fourier transform, the l.h.s. is identical to

sup
f

´
Rd f η0u

( ´
Rd ( f 2 + 2|∇ f |2 + |∇2 f |2)

) 1
2

,

so that (214) follows from Leibniz’ rule in form of

ˆ
Rd

|∇2η0 f |2 �
ˆ
Rd

( f 2 + 2|∇ f |2 + |∇2 f |2).

Using the abbreviation w = (1 − �)−1v, the interpolation estimate (213) follows
from the two interpolation estimates

ˆ
Rd

η4v2 �
( ˆ

Rd
η6|∇v|2

) 1
2
( ˆ

Rd
η2|∇w|2

) 1
2

+
ˆ
Rd

η2(w2 + |∇w|2), (215)

ˆ
Rd

η2|∇w|2 �
( ˆ

Rd
η4v2

) 1
2
( ˆ

Rd
w2

) 1
2

+
ˆ
Rd

w2, (216)

namely by inserting (216) into (215) and appealing to Young’s inequality. For (215),
we write the l.h.s. as

´
η4v(1 − �)w, hence by integration by parts

ˆ
Rd

η4v2 =
ˆ
Rd

η4∇v · ∇w + 3
ˆ
Rd

η3v∇η · ∇w +
ˆ
Rd

η4vw,

so that (215) follows from Cauchy–Schwarz and Young. For (216), we use integration
by parts to rewrite the l.h.s. as

´
Rd η2w(−�)w + ´

Rd w2� 1
2η

2. Hence we obtain´
Rd η2|∇w|2 = ´

Rd η2wv + ´
Rd w2(� 1

2η
2 − η2), so that (216) reduces to Cauchy–

Schwarz.
As for Lemma 7, we split the argument between the non-perturbative regime R :=

|x0−y0|
2 ≥ √

T , that we address in the five first steps, and the perturbative regime
R ≤ √

T that we address in the last step.
Step 1. Passage to the full error in the two- scale expansion. The
computations done in the Step 1 of Sect. 5.7 extend in a straightforward way to the
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present setting: defining the full error of the second-order two-scale expansion of the
constant-coefficient fundamental solution ḠT , which is given by

wx0,y0,T (x, y) := GT (x, y)−(
1 + φ

(1)
i (x)∂i + (φ

(2)
im (x) − φ

(2)
im (x0))∂im

)

× (
1 − φ

∗(1)
j (y)∂ j + (φ

∗(2)
jn (y)

× −φ
∗(2)
jn (y0))(y)∂ jn

)
ḠT (x − y),

(217)

we have, from (204) and the bounds on ḠT (201)

|∇∇wx0,y0,T (x0, y0) − ET (x0, y0)| � |x0 − y0|−d−2 exp(−|x0 − y0|
C

√
T

). (218)

Therefore, to obtain the desired estimate (194) for L = 1 it suffices to show

|∇∇wx0,y0,T (x0, y0)| � (ln |x0 − y0|)|x0 − y0|−d−2 exp(−|x0 − y0|
C

√
T

). (219)

Step 2. A decomposition of the full error ∇∇wx0,y0,T (x0, y0). In this step,
we shall derive a characterizing PDE (221) of the full error (217) in order to split it
into a far-field part wx0,y0,T ,∞ and dyadic near-field parts wx0,y0,T ,k(x, ·), which will
be explicitly given later on. The distinction between far and near fields refers to the
scale R = |x0 − y0|/2. Recall that wx0,y0,T (x, y) involves the two-scale expansion
in both the x and y variables; we now freeze x = x0 and consider y as the “active”
variable. For the ease of the statement, we make use of the notation

ūx0,T (x, ·) := (
1 + φ

(1)
i (x)∂i + (φ

(2)
im (x) − φ

(2)
im (x0))∂im

)
ḠT (x − ·). (220)

This amounts to rewriting wx0,y0,T (x0, ·) as follows:

wx0,y0,T (x0, ·) =GT (x0, ·) − (
1 − φ

∗(1)
j ∂ j + (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn

)
ūx0,T (x0, ·).

We note that ( 1
T −∇ ·a∗∇)GT (x0, ·) = ( 1

T −∇ · ā∗∇)ūx0,T (x0, ·) = 0 inRd\{x0}.
Hence, as in (202), we obtain the representation of the error in the second-order two-
scale expansion

(
1

T
− ∇ · a∗∇)wx0,y0,T (x0, ·) = ∇ · hx0,y0,T (x0, ·) + fx0,y0,T in R

d \ {x0},
(221)

where

hx0,y0,T (x, ·) :=(
(φ

∗(2)
jn − φ

∗(2)
jn (y0))a

∗ − (σ
∗(2)
jn − σ

∗(2)
jn (y0))

)∇∂ jn ūx0,T (x, ·)
− 1

T
(h(1)

i − h(1)
i (y0))∂i ūx0,T (x, ·)

(222)
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and

fx0,y0,T (x, ·) := 1

T

(
(h(1)

i − h(1)
i (y0))e j − (φ

(2)
i j − φ

(2)
i j (y0))

)
∂i j ūx0,T (x, ·),

(223)

with h(1)
i given by (203). Next, we define the dyadic near-field (scalar) functions:

(
1

T
− ∇ · a∗∇)wx0,y0,T ,k(x, ·) =∇ · 1B2k (y0)\B2k−1 (y0)hx0,y0,T (x, ·)

+ 1B2k (y0)\B2k−1 (y0) fx0,y0,T (x, ·),
(224)

and the far-field function:

wx0,y0,T ,∞ := wx0,y0,T −
∑

2k≤√
T

wx0,y0,T ,k, (225)

In fact, we are interested in the quantities∇xwx0,y0,T ,k(x0, ·) and∇xwx0,y0,T ,∞(x0, ·),
which we address in two steps.

We finally give an estimate on hx0,y0,T and fx0,y0,T that will be useful in the next
steps: We start by estimating its constitutive element ūx0,T (see (220)) and we obtain
from (204), (201) and R ≥ 1

sup
y∈B√

T (y0)
|∇ j∂xi ūx0,T (x0, y)| � R− j−d+1 exp(− R

C
√
T

) for any j ≥ 0, (226)

so that applying once more (204) and absorbing the ratios R√
T
into the exponential

leads to

|(∂xi hx0,y0,T (x, ·),√T ∂xi fx0,y0,T (x, ·))| � R−d−2 exp(− R

C
√
T

)min{| · −y0|, 1}.
(227)

Step 3. Estimate of the near- field parts ∇∇wx0,y0,T ,k(x0, ·). Note that
applying∇x and evaluating at x = x0 commutes with the differential operator 1

T −∇ ·
a∗∇. For the ease of notation, we fix an arbitrary coordinate direction i = 1, · · · , d
and introduce the abbreviation wT ,k,i (y) := ∂xi wx0,y0,T ,k(x0, y). By applying the
Lipschitz estimate of Lemma 6 combined with the energy estimate and (227), we
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have

|∇wT ,k,i (y0)|
(195)
�

( 
B2k−1 (y0)

|(∇wT ,k,i ,
1√
T
wT ,k,i )|2

) 1
2

(224)
�

( 
B2k (y0)

|(∂xi hx0,y0,T (x0, ·),
√
T ∂xi fx0,y0,T )|2) 1

2

(227)
� R−d−2 exp(− R

C
√
T

)min{2k, 1}.

(228)

Then, summing up yields

∑

2k≤√
T

|∇wT ,k,i (y0)| � (ln R)R−d−2 exp(− R

C
√
T

). (229)

Step 4. Estimate of the near- field parts ∇xwx0,y0,T ,k(x0, ·) in a weak

norm. In the sequel, f = f (y) always denotes an arbitrary smooth function com-
pactly supported in B√

T (y0). We now justify a weak control on ∇xwx0,y0,∞(x0, ·)
that will be useful in Step 5 when appealing to (211):

∑

2k≤√
T

∣∣
ˆ
Rd

f wT ,k,i
∣∣ � exp(− R

C
√
T

)R−1 sup | f |, (230)

where we recall that wT ,k,i = ∂xi wx0,y0,T ,k where the latter is defined in (224). The
estimate (230) is a consequence ofCauchy-Schwarz’ inequality followed by the energy
estimate and (227):

∣∣
ˆ
Rd

f wT ,k,i
∣∣ ≤( ˆ

Rd
| f |2) 1

2
( ˆ

Rd
|wT ,k,i |2

) 1
2

�
√
T

d
2 +1

sup | f |(
ˆ
Rd

| 1√
T

wT ,k,i |2
) 1
2

(224)
�

√
T

d
2 +1

sup | f |(
ˆ
B2k (y0)

|(∂xi hx0,y0,T (x0, ·),
√
T ∂xi fx0,y0,T )|2) 1

2

(227)
� 2

kd
2
√
T

d
2 +1

R−d−2 exp(− R

C
√
T

) sup | f |.

Thus, summing up yields (230), by appealing to R ≥ √
T .

Step 5. Estimate of the far- field part ∇∇xwx0,y0,T ,∞(x0, ·) by a dual-

ity argument. Again, for the ease of notation we introduce the abbreviation
wT ,∞,i (y) := ∂xi wx0,y0,T ,∞(x0, y) with an arbitrary coordinate direction i =
1, · · · , d, which solves ( 1

T − ∇ · a∗∇)wT ,∞,i (y) = 0 on B2k0 (y0). While in the
previous two steps (mostly) relied on homogenization in the y-variable, we now (pri-
marily) need homogenization in the x-variable, in form of Lemma 7. We start with an
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application of (211) which we combine with (225) and the triangle inequality:

|∇wT ,∞,i (y0)|
(211)
� sup

f ∈C∞
0 (B√

T (y0))

∣∣ ffl
B√

T (y0)
f wT ,∞,i

∣∣

√
T
3
sup |∇2 f |

(225)
� sup

f ∈C∞
0 (B√

T (y0))

∣∣ ´
Rd f ∂xiwx0,y0,T (x0, ·)

∣∣
√
T
d+3

sup |∇2 f |

+ sup
f ∈C∞

0 (B√
T (y0))

∑
2k≤√

T

∣∣ ´
Rd f wT ,k,i

∣∣
√
T
d+3

sup |∇2 f |
.

(231)

The second contribution is a direct consequence of (230),

sup f ∈C∞
0 (B√

T (y0))

∑
2k≤√

T

∣∣ ´
Rd f wT ,k,i

∣∣
√
T
d+3

sup |∇2 f | �
(

R√
T

)d+3
R−d−2 exp(− R

C
√
T
)

� R−d−2 exp(− R
C

√
T
),

where we absorbed the ration ( R√
T
)d+3 into the exponential. We now need a similar

estimate on the first contribution, namely,

∣∣
ˆ
Rd

f ∂xi wx0,y0,T (x0, ·)
∣∣ � (ln R) exp(− R

C
√
T

)R sup |∇2 f |. (232)

Equipped with (232), (219) follows from applying the triangle inequality to (225),
into which we insert (229) and (231), where we use (232) and (230).

We now focus on the argument for (232). Let f ∈ C∞
0 (B√

T (y0)) be arbitrary, and
let u, ū as in (198). We recall the definition of the error in the two-scale expansion that
we express in terms of the Green functions GT , ḠT using (198):

wx0(x) := u(x) − (
1 + φ

(1)
i (x)∂i + (φ

(2)
im − φ

(2)
im (x0))(x)∂im

)
ū(x)

(220)=
ˆ
Rd

f (GT (x, ·) − ūx0,T (x, ·)),

Then, taking derivatives on the both sides with respect to the x-variable leads to

∂xi wx0(x) =
ˆ
Rd

f
(
∂xi GT (x, ·) − ∂xi ūx0,T (x, ·)). (233)
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We now express the integral on the l.h.s. of (232) with help of (233). We split the
integral on the l.h.s. of (232) as follows:

ˆ
Rd

f ∂xi wx0,y0,T (x0, ·)
(217),(220)=

ˆ
Rd

f
(
∂xi GT (x0, ·) − ∂xi ūx0,T (x0, ·)

)

+
ˆ
Rd

f
(
(φ

∗(1)
j ∂ j − (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn)∂xi ūx0,T (x0, ·)

)

(233)= ∂xi wx0(x0) +
ˆ
Rd

f
(
(φ

∗(1)
j ∂ j − (φ

∗(2)
jn − φ

∗(2)
jn (y0))

∂ jn)∂xi ūx0,T (x0, ·)
)
.

(234)

For the first r.h.s. term of (234), it follows from (199) that

|∇wx0(x0)| � (ln R) exp(− R

C
√
T

)R sup |∇2 f |. (235)

For the second r.h.s. term, we exploit the periodic vector field h(1)
j defined in (203)

to obtain
ˆ
Rd

f
(
(φ

∗(1)
j ∂ j − (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn)∂xi ūx0,T (x0, ·)

)

(203)=
ˆ
Rd

f
(
(∇ · h(1)

j ∂ j − (φ
∗(2)
jn − φ

∗(2)
jn (y0))∂ jn)∂xi ūx0,T (x0, ·)

)

= −
ˆ
Rd

f
(
(h(1)

jn − (φ
∗(2)
jn − φ

∗(2)
jn (y0)))∂ jn∂xi ūx0,T (x0, ·)

)

−
ˆ
Rd

∇ f · h(1)
j ∂ j∂xi ūx0,T (x0, ·)

Thus, using (226) and (204), we deduce

∣
∣
ˆ
Rd

f
(
(φ

∗(1)
j ∂ j − (φ

∗(2)
jn − φ

∗(2)
jn (y0))∂ jn)∂xi ūx0,T (x0, ·)

)∣∣

� exp(− R

C
√
T

)(R−1 sup | f | + sup |∇ f |)

� exp(− R

C
√
T

)R sup |∇2 f |,

which concludes the proof of (232).
Step 6. The perturbative regime R ≤ √

T . In this regime, we change Step 2 by
stopping the dyadic decomposition at scale R and replacing (226) by

sup
y∈BR(y0)

|∇ j∂xi ūx0,T (x0, y)| � R− j−d+1.
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We get as in (227), using R ≤ √
T

|(∂xi hx0,y0,T (x, ·),√T ∂xi fx0,y0,T (x, ·))| � R−d−2 min{| · −y0|, 1}.

The further steps are unchanged up to replacing
√
T by R (and ignoring the exponential

terms).

Appendix B. Intermediate Results for the Heuristic Result of Sect. 4

Weprove in this section some intermediate results for the heuristic argument in Sect. 4.

B.1. Argument for (101): Symmetry of csymL

By periodicity (98), it is enough to consider xd , yd ∈ [− L
2 , L

2 ]. If xd ∈ [− L
2 , 0]

we appeal to reflection symmetry (97) to replace the corresponding argument on
the l.h.s. of (101) by −xd ∈ [0, L

2 ]; if xd ∈ [0, L
2 ] we use both periodicity and

reflection symmetry to replace the corresponding argument on the r.h.s. of (101) by
L
2 − xd ∈ [0, L

2 ]. We proceed the same way for yd . This way, all four arguments are
in the range [0, L

2 ] where (96) applies. We also note that the isotropy of c leads to
reflection symmetry of c in xd , which by (95) transmits to c′

L , that is,

c′
L(z′, zd) = c′

L(z′,−zd). (236)

It remains to distinguish the three (relevant) cases,

if (xd , yd) ∈ [0, L
2 ]2 then

csymL (x + L
2 ed , y + L

2 ed) = csymL ((x ′, L
2 − xd), (y

′, L
2 − yd))

(96),(236)= csymL (x, y),

if (xd , yd) ∈ [0, L
2 ] × [− L

2 , 0] then
csymL (x + L

2 ed , y + L
2 ed) = csymL ((x ′, L

2 − xd), y + L
2 ed)

(96),(97),(236)= csymL (x, y),

if (xd , yd) ∈ [− L
2 , 0]2 then

csymL (x + L
2 ed , y + L

2 ed)
(96),(236)= csymL (x, y).

B.2. Computation of the Integral (118)

We change variables in (117) according to

zd = xd − yd , wd = xd + yd ,

so that
´∞
0

´ 0
−∞ dxddyd = 2

´∞
0 dzd

´ zd
−zd

dwd = 2
´∞
−∞ dwd

´∞
|wd | dzd . We note that

because of our isotropy assumption, r∂rA(c) is radial and thus the integrand in (117) is
in particular invariant under wd 
→ −wd . This allows to substitute

´∞
0 dzd

´ zd
−zd

dwd
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= 2
´∞
0 dzd

´ zd
0 dwd and

´∞
−∞ dwd

´∞
|wd | dzd = 2

´∞
0 dwd

´∞
wd

dzd . Hence from (117)
we obtain

I = 16
ˆ
Rd−1×(0,∞)

dx(r∂r )A(c)(x)
( ˆ ∞

xd
dyd∂

2
1Ghom(x ′, yd) − xd∂

2
1Ghom(x)

)

Once more by the isotropy assumption, the value of this expression is the same when
∂21 is replaced by ∂2i for i = 1, · · · , d − 1. By the characterizing property of the

fundamental solution we have
∑d−1

i=1 ∂2i Ghom = −δ − ∂2dGhom. The contribution
from the Dirac δ vanishes since r∂rA(c) vanishes (actually to second order) at x = 0.
Integrating in yd , this yields

I = 16

d − 1

ˆ
Rd−1×(0,∞)

dx(r∂r )A(c)
(
xd∂

2
dGhom + ∂dGhom

)
.

By radial symmetry of Ghom we have ∂dGhom = xd
r ∂rGhom, so that together with the

characterizing property ∂rGhom = − 1
|∂B1|

1
rd−1 we obtain ∂dGhom = − xd|∂B1|

1
rd

and

thus by xd∂2dGhom = − xd|∂B1|
1
rd

− xd|∂B1| (− dxd
rd+1 )

xd
r . Hence we obtain

I = 16

d − 1

ˆ
Rd−1×(0,∞)

dx(r∂r )A(c)
1

|∂B1|
1

rd+2

( − 2xdr
2 + dx3d

)
.

By radial coordinates, this expression factorizes into

I = 16

d − 1

( ˆ ∞

0
dr(r∂r )A(c)

) 1

|∂B1|
ˆ

∂B1∩{xd>0}
dx

( − 2xd + dx3d
)
.

Thanks to the normalizationA(0) = 0,wemay integrate by parts in the first expression
in order to obtain

I = 16

d − 1

1

|∂B1|
ˆ ∞

0
drA(c) I ′ where I ′ :=

ˆ
∂B1∩{xd>0}

dx
(
2xd − dx3d

)
.

It remains to compute I ′.
We first note that

I ′ = 2
ˆ

{|x |≤1}∩{xd>0}
xd ,

which can be seen from identifying the l.h.s. integrand with the normal component
of the vector field 2xd x − dx2ded , and applying the divergence theorem on {|x | ≤
1} ∩ {xd > 0}. The r.h.s. integral can easily be made explicit: Using first Fubini’s
theorem based on x = (x ′, xd), and then radial coordinates |x ′|, we obtain

I ′ =
ˆ

{|x ′|≤1}
(1 − |x ′|2) = (1 − d − 1

d + 1
)

ˆ
{|x ′|≤1}

1 = 2

d + 1
|B ′

1|.
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B.3. Argument for (104): Representation Formula for the L-Derivative

Let ĉL(x, y) := cL(Lx, Ly) be the rescaled covariance function. The family of covari-
ance functions ĉL is 1-periodic and we assume (106), which takes the form

d

dL
ĉL(x, x) = 0 for all x ∈ [− 1

2 ,
1
2 )

d . (237)

In this case, 〈·〉L is determined by its covariance function ĉL that we identify with
its push-forward under a = A(g). For any ξ, ξ∗ ∈ R

d , we define the corrector
φ := ∑

i ξiφi (and φ∗ accordingly) and

ξ∗ · aξ :=
ˆ

[− 1
2 , 12 )d

ξ∗ · a(ξ + ∇φ).

We shall prove, as a consequence Price’s formula, that

d

dL
〈ξ∗ · aξ 〉cL = −

ˆ
[− 1

2 , 12 )d
dx

ˆ
[− 1

2 , 12 )d
dy

〈
(a′(ξ∗ + ∇φ∗))(x)

· ∇x∇yG
per (x, y)(a′(ξ + ∇φ))(y)

〉
cL

d

dL
ĉL(x, y),

(238)

where Gper denotes the Green function associated with the operator −∇ · a∇ on the
torus [0, 1)d . Note that the rescaling in L of (238) is exactly (104).

In contrast to Sect. 2.1, here we assume that the Gaussian field g is not defined on
the whole space, but only restricted to the torus [0, 1)d . However, we may establish
(238) by following the lines leading to (26).

Indeed, applying Price’s formula [16], we get

d

dL
〈ξ∗ · aξ 〉cL = 1

2

ˆ
[− 1

2 , 12 )d
dx

ˆ
[− 1

2 , 12 )d
dy

ˆ
[− 1

2 , 12 )d
dz

〈
ξ∗ · ∂2(a(ξ + ∇φ))(z)

∂g(x)∂g(y)

〉
ĉL

d

dL
ĉL(x, y),

(239)

where, in contrast to (19), the partial derivatives ∂
∂g have to be understood in a periodic

sense. Then, notice that wemay apply the operator ∂2

∂g(x)∂g(y) to (2) for ei � ξ and test

it against φ∗; similarly, we may test (20) with the periodic function ∂2φ
∂g(x)∂g(y) . Since

the boundary contributions vanish because every considered function is periodic, this
yields

ˆ
[− 1

2 , 12 )d
∇φ∗ · ∂2a(ξ + ∇φ)

∂g(x)∂g(y)
= 0 =

ˆ
[− 1

2 , 12 )d
(ξ∗ + ∇φ∗) · a ∂2∇φ

∂g(x)∂g(y)
.
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Using Leibniz’ rule on (239) into which we insert the above identities yields

d

dL
〈ξ∗ · aξ 〉cL = 1

2

ˆ
[− 1

2 , 12 )d
dx

ˆ
[− 1

2 , 12 )d
dy

ˆ
[− 1

2 , 12 )d

(〈
(ξ∗ + ∇φ∗)

· ∂2a

∂g(x)∂g(y)
(ξ + ∇φ)

〉
cL

+ 〈
(ξ∗ + ∇φ∗) · ∂a

∂g(x)

∂∇φ

∂g(y)

〉
cL

+ 〈
(ξ∗ + ∇φ∗) · ∂a

∂g(y)

∂∇φ

∂g(x)

〉
cL

) d

dL
ĉL(x, y).

(240)

As in Sect. 2.1, we remark that by (7) we have ∂a(z)
∂g(x) = a′(x)δ(x − z) and ∂2a(z)

∂g(x)∂g(y)

= a′(x)δ(x − z)δ(y − z). Moreover, applying the operator ∂
∂g(x) on (2) for ei � ξ ,

we obtain the representation

∂∇φ(z)

∂g(x)
= −∇∇Gper (z, x)a′(x)(∇φ + ξ)(x).

Inserting these identities into (240), recalling (237), and using the symmetry
ĉL(x, y) = ĉL(y, x), we get (238).
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