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Abstract. A classical problem for Markov chains is determining their
stationary (or steady-state) distribution. This problem has an equally
classical solution based on eigenvectors and linear equation systems.
However, this approach does not scale to large instances, and iterative
solutions are desirable. It turns out that a naive approach, as used by
current model checkers, may yield completely wrong results. We present
a new approach, which utilizes recent advances in partial exploration and
mean payoff computation to obtain a correct, converging approximation.

1 Introduction

Discrete-time Markov chains (MCs) are an elegant and standard framework to
describe stochastic processes, with a vast area of applications such as computer
science [4], biology [28], epidemiology [13], and chemistry [12], to name a few.
In a nutshell, MC comprise a set of states and a transition function, assigning
to each state a distribution over successors. The system evolves by repeatedly
drawing a successor state from the transition distribution of the current state.
This can, for example, model communication over a lossy channel, a queuing
network, or populations of predator and prey which grow and interact randomly.
For many applications, the stationary distribution of such a system is of particular
interest. Intuitively, this distribution describes in which states the system is in
after an “infinite” number of steps. For example, in a chemical reaction network
this distribution could describe the equilibrium states of the mixture.

Traditionally, the stationary distribution is obtained by computing the domi-
nant eigenvector for particular matrices and solving a series of linear equation
systems. This approach is appealing in theory, since it is polynomial in the size
of the considered Markov chain. Moreover, since linear algebra is an intensely
studied field, many optimizations for the computations at hand are known.

In practice, these approaches however often turn out to be insufficient. Real-
world models may have millions of states, often ruling out exact solution ap-
proaches. As such, the attention turns to iterative methods. In particular, the
popular model checker PRISM [21] employs the power method (or power iteration)
to approximate the stationary distribution. Similar to many other problems on
Markov chains, such iterative methods have an exponential worst-case, however
obtain good results quickly on many models. (Models where iterative methods
indeed converge slowly are called stiff.) However, as we show in this work, the
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“absolute change”-criterion used by PRISM to stop the iteration is incorrect. In
particular, the produced results may be arbitrarily wrong already on a model
with only four states. In [14,7] the authors discuss a similar issue for the problem
of reachability, also rooted in an incorrect absolute change stopping criterion, and
provide a solution through converging lower and upper bounds. In our case, the
situations is more complicated. The convergence of the power method is quite
difficult to bound: A good (and potentially tight) a-priori bound is given by
the ratio of first and second eigenvalues, which however is as hard to determine
as solving the problem itself. In the case of MC, only a crude bound on this
ratio can be obtained easily, which gives an exponential bound on the number of
iterations required to achieve a given precision. More strikingly, in contrast to
reachability, there is to our knowledge no general adaptive stopping criterion for
power iteration, i.e. a way to check whether the current iterates are already close
to the correct result. Thus, one would always need to iterate for as many steps
as given by the a-priori bound to obtain guarantees on the result. In summary,
exact solution approaches do not scale well, and the existing iterative approach
may yield wrong results or requires an intractable number of steps.

Another, orthogonal issue of the mentioned approaches is that they construct
the complete system, i.e. determine the stationary distribution for each state.
However, when we figure out that, for example, the stationary distribution has
a value of at least 99% for one state, all other states can have at most 1% in
total. In case we are satisfied with an approximate solution, we could already
stop the computation here, without investigating any other state. Inspired by the
results of [7,18], we thus also want to find such an approximate solution, capable
of identifying the relevant parts of the system and only constructing those.

1.1 Contributions

In this work, we address all the above issues. To this end, we

– provide a characterization of the stationary distribution through mean payoff
which allows us to obtain provably correct approximations (Section 3),

– introduce a general framework to approximate the stationary distribution in
Markov chains, capable of utilizing partial exploration approaches (Section 4),

– as the main technical contribution, provide very general, precise correctness
and termination proofs, requiring only minimal assumptions (Theorem 3),

– instantiate this framework with both the classical solution approach as well
as our novel sampling-based interval approximation approach (Section 4.2),

– evaluate the variants of our framework experimentally (Section 5), and
– demonstrate with a minimal example that the standard approach of PRISM

may yield arbitrarily wrong results (Fig. 2).

1.2 Related Work

Most related is the work of [30], which also try to identify the most relevant
parts of the system, however they employ the special structure given by cellular
processes to find these regions and estimate the subsequent approximation
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error. Many other works deal with special cases, such as queueing models [1,17],
time-reversible chains [8], or positive rows (all states have a transition to one
particular state) [9,11,27]. In contrast, our methods aim to deal with general
Markov chains. We highlight that for the “positive row” case, [11] also provides
converging bounds, however through a different route. Another topic of interest
are continuous time Markov chains, where abstraction- and truncation-based
algorithms are applicable [20,3] and computation of the stationary distribution
can be used for time-bounded reachability [16].

2 Preliminaries
As usual, N and R refer to the (positive) natural numbers and real numbers,
respectively. For a set S, S denotes its complement, while S⋆ and Sω refer to the
set of finite and infinite sequences comprising elements of S, respectively. We
write 1S(s) = 1 if s ∈ S and 0 otherwise for the characteristic function of S.

We assume familiarity with basic notions of probability theory, e.g., probability
spaces, probability measures, and measurability; see e.g. [6] for a general introduc-
tion. A probability distribution over a countable set X is a mapping d : X → [0, 1],
such that

∑
x∈X d(x) = 1. Its support is denoted by supp(d) = {x ∈ X | d(x) > 0}.

D(X) denotes the set of all probability distributions on X. Some event happens
almost surely (a.s.) if it happens with probability 1.

The central object of interest are Markov chains, a classical model for systems
with stochastic behaviour: A (discrete-time time-homogeneous) Markov chain
(MC) is a tuple M = (S, δ), where S is a finite set of states, and δ : S → D(S) is
a transition function that for each state s yields a probability distribution over
successor states. We deliberately exclude the explicit definition of an initial state.
We direct the interested reader to, e.g., [4, Sec. 10.1], [29, App. A], or [19] for
further information on Markov chains and related notions.

For ease of notation, we write δ(s, s′) instead of δ(s)(s′), and, given a function
f : S → R mapping states to real numbers, we write δ(s)⟨f⟩ :=

∑
s′∈S δ(s, s′) ·

f(s′) to denote the weighted sum of f over the successors of s.
We always assume an arbitrary but fixed numbering of the states and identify

a state with its respective number. For example, given a vector v ∈ R|S| and a
state s ∈ S, we may write v[s] to denote the value associated with s by v. In this
way, a function v : S → R is equivalent to a vector v ∈ R|S|.

For a set of states R ⊆ S where no transitions leave R, i.e. δ(s, s′) = 0 for all
s ∈ R, s′ ∈ S \ R, we define the restricted Markov chain M|R := (R, δ|R) with
δ|R : R → D(R) copying the values of δ, i.e. δ|R(s, s′) = δ(s, s′) for all s, s′ ∈ R.

Paths An infinite path ρ in a Markov chain is an infinite sequence ρ = s1s2 · · · ∈
Sω, such that for every i ∈ N we have that δ(si, si+1) > 0. We use ρ(i) to refer to
the i-th state si in a given infinite path. We denote the set of all infinite paths of
a Markov chain M by PathsM. Observe that in general PathsM is a proper subset
of Sω, as we imposed additional constraints. A Markov chain together with an
initial state ŝ ∈ S induces a unique probability measure PrM,ŝ over infinite paths
[4, Sec. 10.1]. Given a measurable random variable f : PathsM → R, we write
EM,ŝ[f ] :=

∫
ρ∈Paths f(ρ) dPrM,ŝ to denote its expectation w.r.t. this measure.
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Reachability An important tool in the following is the notion of reachability
probability, i.e. the probability that the system, starting from a state ŝ, will
eventually reach a given set T . Formally, for a Markov chain M and set of states
T , we define the set of runs which reach T (i) at step n by ♢=nT := {ρ ∈ PathsM |
ρ(n) ∈ T} and (ii) eventually by ♢T =

⋃∞
i=1 ♢

=iT . (For a measurability proof see
e.g. [4, Chp. 10].) For a state ŝ, the probability to reach T is given by PrM,ŝ[♢T ].

Classically, the reachability probability can be determined by solving a linear
equation system, as follows. For a fixed target set T , let S0 be all states that
cannot reach T . Note that S0 can be determined by simple graph analysis. Then,
the reachability probability PrM,ŝ[♢T ] is the unique solution of [4, Thm. 10.19]

f(s) = 1 if s ∈ T , 0 if s ∈ S0, and δ(s)⟨f⟩ otherwise. (1)

Value Iteration A classical tool to deal with Markov chains is value iteration (VI)
[5]. It is a simple yet surprisingly efficient and extendable approach to solve a
variety of problems. At its heart, VI relies, as the name suggests, on iteratively
applying an operation to a value vector. This operation often is called “Bellman
backup” or “Bellman update”, usually derived from a fixed-point characterization
of the problem at hand. Thus, VI often can be viewed as fixed point iteration.
For reachability, inspired by Eq. (1), we start from v1[s] = 0 and iterate

vk+1[s] = 1 if s ∈ T , 0 if s ∈ S0, and δ(s)⟨vk⟩ otherwise. (2)
This iteration monotonically converges to the true value in the limit from below
[4, Thm. 10.15], [29, Thm. 7.2.12]. Convergence up to a given precision may
take exponential time [14, Thm. 3], but in practice VI often is much faster than
methods based on equation solving. For further details, see [26, App. A.2].

Strongly Connected Components A non-empty set of states C ⊆ S in a Markov
chain is strongly connected if for every pair s, s′ ∈ C there is a non-empty finite
path from s to s′. Such a set C is a strongly connected component (SCC) if it
is inclusion maximal, i.e. there exists no strongly connected C ′ with C ⊊ C ′.
SCCs are disjoint, each state belongs to at most one SCC. An SCC is bottom
(BSCC) if additionally no path leads out of it, i.e. for all s ∈ C, s′ ∈ S \ C we
have δ(s, s′) = 0. The set of BSCCs in an MC M is denoted by BSCC(M) and
can be determined in linear time by, e.g., Tarjan’s algorithm [32].

The bottom components fully capture the limit behaviour of any Markov
chain. Intuitively, the following statement says that (i) with probability one a
run of a Markov chain eventually forever remains inside one single BSCC, and
(ii) inside a BSCC, all states are visited infinitely often with probability one.

Lemma 1 ([4, Thm. 10.27]). For any MC M and state s, we have
PrM,s[{ρ | ∃Ri ∈ BSCC(M).∃n0 ∈ N.∀n > n0.ρ(n) ∈ Ri}] = 1.

For any BSCC R ∈ BSCC(M) and states s, s′ ∈ R, we have PrM,s[♢{s′}] = 1.

Stationary Distribution Given a state ŝ, the stationary distribution (also known
as steady-state or long-run distribution) of a Markov chain intuitively describes,
for each state s, the probability for the system to be at this particular state at an
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Fig. 1. Example MC to demonstrate the stationary distribution. We have that π∞
M,s =

{p 7→ 1
2 , s 7→ 0, q1 7→ 1

2 ·
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2 ·
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arbitrarily chosen step “at infinity”. There are several ways to define this notion.
In particular, there is a subtle difference between the limiting and stationary
distribution, which however coincide for aperiodic MC. For the sake of readability,
we omit this distinction and assume w.l.o.g. that all MCs we deal with are
aperiodic. See [26, App. A.1] for further discussion. Our definition follows the
view of [4, Def. 10.79]; see [29, Sec. A.4] for a different approach.
Definition 1. Fix a Markov chain M = (S, δ) and initial state ŝ. Let πn

M,ŝ(s) :=
PrM,ŝ[♢=n{s}] the probability that the system is at state s in step n. Then,
π∞

M,ŝ(s) := limn→∞
1
n

∑n
i=1 πi

M,ŝ(s) is the stationary distribution of M.
See Fig. 1 for an example. Whenever the reference is clear from context, we omit
the respective subscripts from π∞

M,ŝ.
We briefly recall the classical approach to compute stationary distributions

(see e.g. [19, Sec. 4.7]). By Lemma 1, almost all runs eventually end up in a BSCC.
Thus, π∞(s) = 0 for all states s not in a BSCC, or, dually,

∑
s∈B π∞(s) = 1

for B =
⋃

R∈BSCC(M) R. Moreover, once in a BSCC, we always obtain the
same stationary distribution, irrespective of through which state we entered the
BSCC. Formally, for each BSCC R ∈ BSCC(M) and s, s′ ∈ R, we have that
π∞

M,s = π∞
M,s′ = π∞

M|R,s, i.e. each BSCC R has a unique stationary distribution,
which we denote by π∞

R . Note that supp(π∞
R ) = R, i.e. π∞

R (s) ̸= 0 if and only if
s ∈ R. Together, we observe that the stationary distribution of a Markov chain
decomposes into (i) the steady state distribution in each BSCC and (ii) the
probability to end up in a particular BSCC. More formally, for any state s ∈ S

π∞
M,ŝ(s) =

∑
R∈BSCC(M)

PrM,ŝ[♢R] · π∞
R (s). (3)

Consider the example of Fig. 1: We have two BSCCs, {p} and {q1, q2}, which
both are reached with probability 1

2 , respectively. The overall distribution π∞
M,s

then is obtained from π∞
{p} = {p 7→ 1} and π∞

{q1,q2} = {q1 7→ 1
6 , q2 7→ 5

6}.
As mentioned, we can compute reachability probabilities in Markov chains by

solving Eq. (1). Thus, the remaining concern is to compute π∞
R , i.e. the stationary

distribution of M|R. In this case, i.e. Markov chains comprising a single BSCC,
the steady state distribution is the unique fixed point of the transition function
(up to rescaling). By defining the row transition matrix of M as Pi,j = δ(i, j),
we can reformulate this property in terms of linear algebra. In particular, we
have that P · π∞

R = π∞
R , or, in other words, (P − I) · π∞

R = 0⃗, where I is an
appropriately sized identity matrix [29, Thm. A.2]. This equation again can be
solved by classical methods from linear algebra. In summary, we (i) compute
BSCC(M), (ii) for each BSCC R, compute π∞

R and PrM,ŝ[♢R], and (iii) combine
according to Eq. (3).
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However, as also mentioned in the introduction, precisely solving linear
equation systems may not scale well, both due to time as well as memory
constraints. Thus, we also are interested in relaxing the problem slightly and
instead approximating the stationary distribution up to a given precision of ε > 0.

Problem Statement Given a Markov chain M and precision requirement
ε > 0, compute bounds l, u : S → [0, 1] such that (i) maxs∈S u(s) − l(s) ≤ ε
and (ii) for all s ∈ S we have l(s) ≤ π∞

M,ŝ(s) ≤ u(s).

Approximate Solutions Aiming for approximations is not a new idea; to achieve
practical performance, current model checkers employ approximate, iterative
methods by default for most queries (typically a variant value iteration). In
particular, this also is the case for stationary distribution: Instead of solving the
equation system for each BSCC R precisely, we can approximate the solution by,
e.g., the power method. This essentially means to repeatedly apply the transition
matrix (of the model restricted to the BSCC) to an initial vector v0, i.e. iterating
vn+1 = PR · vn (or vn+1 = P n

R · v1). Similarly, the reachability probability for
each BSCC then also is approximated by value iteration.

It is known that (for aperiodic MC) limn→∞ vn = π∞
R (see e.g. [31,16,27]),

however convergence up to a precision of ε may take exponential time in the
worst case. Moreover, there is no known stopping criterion which allows us to
detect that we have converged and stop the computation early. Yet, similar to
reachability [7,14], current model checkers employ this method without a sound
stopping criterion, leading to potentially arbitrarily wrong results, as we show in
our evaluation (Fig. 2). See [16] for a related, in-depth discussion of these issues
in the context of CTMC.

We thus want to find efficient methods to derive safe bounds on the station-
ary distribution of a BSCC with a correct stopping criterion and combine it
with correct reachability approximations to obtain an overall fast and sound
approximation. To this end, we exploit two further concepts.

Partial Exploration Recent works [7,2,18,24] demonstrate the applicability of
partial exploration to a variety of problems associated with probabilistic systems
such as reachability. Essentially, the idea is to “omit” parts of the system which
can be proven to be irrelevant for the result, instead focussing on important areas
of the system. Of course, by omitting parts of the system, we may incur a small
error. As such, these approaches naturally aim for approximate solutions.

Mean payoff We make use of another property, namely mean payoff (also known
as long-run average reward). We provide a brief overview and direct to e.g.
[29, Chp. 8 & 9] or [2] for more information. Mean payoff is specified by a
Markov chain and a reward function r : S → R, assigning a reward to each state.
Given an infinite path ρ = s1s2 · · · , this naturally induces a stream of rewards
r(ρ) := r(s1)r(s2) · · · . The mean payoff of this path then equals the average
reward obtained in the limit, mp′

r(ρ) := lim infn→∞
1
n

∑n
i=1 r(si). (The limit
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might not be defined for some paths, hence considering the lim inf is necessary.)
Finally, the mean payoff of a state s is the expected mean payoff according to
PrM,s, i.e. mpr(s) := EM,s[mp′

r].
Classically, mean payoff is computed by solving a linear equation system [29,

Thm. 9.1.2]. Instead, we can also employ value iteration to approximate the
mean payoff, however with a slight twist. We iteratively compute the expected
total reward, i.e. the expected sum of rewards obtained after n steps, by iterating
vn+1(s) = r(s) + δ(s)⟨vn⟩. It turns out that the increase ∆n(s) = vn+1(s)− vn(s)
approximates the mean payoff, i.e. mpr(s) = limn→∞ ∆n(s) [29, Thm. 9.4.5
a)]. Moreover, we have mins′∈S ∆n(s′) ≤ mpr(s) ≤ maxs′∈S ∆n(s′), yielding a
correct stopping criterion [29, Thm. 9.4.5 b)]. Finally, on BSCCs these upper and
lower bounds always converge [29, Cor. 9.4.6 b)], yielding termination guarantees.
We provide further details on VI for mean payoff in [26, App. A.3].

3 Building Blocks

To arrive at a practical algorithm approximating the stationary distribution, we
propose to employ sampling-based techniques, inspired by, e.g. [7,2,18]. Intuitively,
these approaches repeatedly sample paths and compute bounds on a single
property such as reachability or mean payoff. The sampling is designed to follow
probable paths with high probability, hence the computation automatically
focuses on the most relevant parts of the system. Additionally, by building the
system on the fly, construction of hardly reachable parts of the system may be
avoided altogether, yielding immense speed-ups for some models (see, e.g., [18] for
additional background). We apply a series of tweaks to the original idea to tailor
this approach to our use case, i.e. approximating the stationary distribution.

In this section, we present the “building blocks” for our approximate approach.
In the spirit of Eq. (3), we discuss how we handle a single BSCC and how to
approximate the reachability probabilities of all BSCCs. In the following section,
we then combine these two approaches in a non-trivial manner.

3.1 Bounds in BSSCs through Mean Payoff

It is well known that the mean payoff can be computed directly from the stationary
distribution [29, Prop. 8.1.1], namely:

mpr(s) =
∑

s′∈S
π∞

M,s(s′) · r(s′) (4)

In this section, we propose the opposite, namely computing the stationary
distribution of a BSCC through mean payoff queries. Fix a Markov chain M =
(S, δ) which comprises a single BSCC, i.e. S ∈ BSCC(M), and define r(s′) =
1{s}(s′), i.e. 1 for s and 0 otherwise. Then, the mean payoff corresponds to the
frequency of s appearing, i.e. the stationary distribution. Formally, we have that
π∞

M,ŝ(s) = mpr(s′) for any state s′ (in a BSCC, all states have the same value).
This also follows directly by inserting in Eq. (4). So, naively, for each state of
the BSCC, we can solve a mean payoff query, and from these results obtain the
overall stationary distribution.
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Algorithm 1 Approximate Stationary Distribution in BSCC
Input: Markov chain M = (S, δ) with BSCC(M) = {S}
Output: Bounds l, u on stationary distribution π∞

S .
1: n← 1
2: for s ∈ S do l1(s)← 0, u1(s)← 1
3: for s ∈ S do
4: m← 1, v1 ← InitGuess(s)
5: while not ShouldStop(s, m, ∆m) do ▷ Iterate until some stopping criterion
6: for s′ ∈ S do vm+1(s′)← 1{s}(s′) + δ(s′)⟨vm⟩ ▷ Mean payoff VI for s
7: m← m + 1
8: l′n(s)← max

(
ln(s), mins′∈S ∆m(s′)

)
, u′

n(s)← min
(
un(s), maxs′∈S ∆m(s′)

)
9: for s′ ∈ S \ {s} do l′n(s′)← ln(s′), u′

n(s′)← un(s′)
10: for s′ ∈ S do ▷ Update bounds based on current results (optional)
11: ln+1(s′)← max

(
l′n(s′), 1−

∑
s′′∈S,s′′ ̸=s′ u′

n(s′′)
)

12: un+1(s′)← min
(
u′

n(s′), 1−
∑

s′′∈S,s′′ ̸=s′ l′n(s′′)
)

13: n← n + 1 and copy all unchanged values from n to n + 1
14: return (ln, un)

At first, this may seem excessive, especially considering that computing the
complete stationary distribution is as hard as determining the mean payoff for
one state (both can be obtained by solving a linearly sized equation system).
However, this idea yields some interesting benefits. Firstly, using the approxi-
mation approach discussed in Section 2, we obtain a practical approximation
scheme with converging bounds for each state. As such, we can quickly stop the
computation if the bounds converge fast. Moreover, we can pause and restart the
computation for each state, which we will use later on in order to focus on crucial
states. Finally, observe that π∞

R is a distribution. Thus, having lower bounds on
some states actually already yields upper bounds for remaining states. Formally,
for some lower bound l : S → [0, 1], we have π∞

R (s) ≤ 1 −
∑

s′∈S,s′ ̸=s l(s′). If
during our computation it turns out that a few states are actually visited very
frequently, i.e. the sum of their lower bounds is close to 1, we can already stop
the computation without ever investigating the other states. Note that this only
is possible since we obtain provably correct bounds.

Combining these ideas, we present our first algorithm template in Algorithm 1.
We solve each state separately, by applying the classical value iteration approach
for mean payoff until a termination criterion is satisfied. To allow for modifica-
tions, we leave the definition of several sub-procedures open. Firstly, InitGuess
initializes the value vector for each mean payoff computation. We can naively
choose 0 everywhere, obtain an initial guess by heuristics, or re-use previously
computed values. Secondly, ShouldStop decides when to stop the iteration for
each state. A simple choice is to iterate until max ∆m(s) − min ∆m(s) < ε for
some precision requirement ε. By results on mean payoff, we can conclude that in
this case the stationary distribution is computed with a precision of ε. However,
as we argue later on, more sophisticated choices are possible. Finally, the order
in which states are chosen is not fixed. Indeed, any order yields correct results,
however heuristically re-ordering the states may also bring practical benefits.

Before we continue, we briefly argue that the algorithm is correct.
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Theorem 1. The result returned by Algorithm 1 is correct for any MC M = (S, δ)
with BSCC(M) = {S}.

Proof (Sketch). Correctness of the mean payoff iteration follows from the defini-
tion of the reward function, Eq. (4), and the correctness of value iteration for
mean payoff [29, Sec. 8.5]. In particular, note that the states of the MC form a
single BSCC and the model is unichain (see [29, Chp. A]), implying that all states
have the same value. For l and u, we prove correctness inductively. The initial
values are trivially correct. The updates based on the mean payoff computation
are correct by the above arguments and by induction hypothesis: The maximum
of two correct lower bounds still is a lower bound, analogous for the upper bound.
The updates based on the bounds are correct since π∞

R is a distribution and l′,
u′ are correct bounds. ⊓⊔

We deliberately omit introducing an explicit precision requirement in the algo-
rithm, since we will use it as a building block later on.

Remark 1. A variant of this approach also allows for memory savings: By handling
one state at a time, we only need to store linearly many additional values (in the
number of states) at any time, while an explicit equation system may require
quadratic space. This only yields a constant factor improvement if the system
is represented explicitly (storing δ requires as much space), however can be of
significant merit for symbolically encoded systems. Note that this comes at a
cost: As we cannot stop and resume the computation for different states, we have
to determine the correct result up to the required precision immediately.

3.2 Reachability and Guided Sampling

As mentioned before, the second challenge to obtain a stationary distribution
is the reachability probability for each BSCC. We employ a sampling-based ap-
proach using insights from [7]. There, the authors considered a single reachability
objective, i.e. a single value per state. In contrast, we need to bound reachabil-
ity probabilities for each BSCC. For now, suppose that all BSCCs are already
discovered and their respective stationary distribution is already computed (or
approximated). In other words, we have for each BSCC R ∈ BSCC(M) bounds
lR, uR : R → [0, 1] with lR(s) ≤ π∞

R (s) ≤ uR(s), and we want to obtain bounds
on the stationary distribution, i.e. functions l, u such that l(s) ≤ π∞

M,ŝ(s) ≤ u(s).
We propose to additionally compute bounds on the probability to reach each
BSCC R, i.e. functions l♢R and u♢R such that l♢R(s) ≤ PrM,s[♢R] ≤ u♢R(s). By
Eq. (3), we then have for each state s a bound on the stationary distribution∑

R∈BSCC(M)
l♢R(ŝ) · lR(s) ≤ π∞

M,ŝ(s) ≤
∑

R∈BSCC(M)
u♢R(ŝ) · uR(s).

We take a route similar to [7]. There, the algorithm essentially samples a
path through the system, possibly guided by a heuristic, terminates the sampling
based on several criteria, and then propagates the reachability value backwards
along the path, repeating until termination. We propose a simple modification,
namely to sample until a BSCC is reached, and then propagate the reachability
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Algorithm 2 Approximate BSCC Reachability
Input: Markov chain M = (S, δ)
Output: For each BSCC R bounds l♢R, u♢R on the probability to reach R.
1: B ←

⋃
R∈BSCC(M) R, n← 1

2: for R ∈ BSCC(M) do
3: for s ∈ R do l♢R

1 (s)← 1, u♢R
1 (s)← 1

4: for s ∈ B \R do l♢R
1 (s)← 0, u♢R

1 (s)← 0
5: for s ∈ S \B do l♢R

1 (s)← 0, u♢R
1 (s)← 1

6: while ShouldSample do ▷ Sample until some stopping criterion
7: P ← SampleStates ▷ Select states to update (e.g. sample a path)
8: for R ∈ SelectUpdate(P ) do ▷ Select BSCCs to update
9: for s ∈ P do

10: l♢R
n+1(s)← δ(s)⟨l♢R

n ⟩
11: u♢R

n+1(s)← δ(s)⟨u♢R
n ⟩

12: for s ∈ S do ▷ Update bounds based on current results (optional)
13: for R ∈ BSCC(M) do
14: l♢R

n+1(s)← max
(
l♢R
n (s), 1−

∑
R′∈BSCC(M),R′ ̸=R

uR′
n (s)

)
15: u♢R

n+1(s)← min
(
u♢R

n (s), 1−
∑

R′∈BSCC(M),R′ ̸=R
lR′
n (s)

)
16: n← n + 1 and copy unchanged values from l♢R

n and u♢R
n to l♢R

n+1 and u♢R
n+1

17: return {(l♢R, u♢R) | R ∈ BSCC(R)}

values of that particular BSCC back along the path. Moreover, we can employ a
similar trick as above: Due to Lemma 1, the reachability probabilities of BSCCs
sum up to one, i.e.

∑
R∈BSCC(M) PrM,s[♢R] = 1 for every state s. Hence, the sum

of lower bounds also yields upper bounds for other BSCCs, even those we have
never encountered so far.

Our ideas are summarized in Algorithm 2. As before, the algorithm leaves
several choices open. Instead of requiring to sample a path, our algorithm allows
to select an arbitrary set of states to update. We note that the exact choice of
this sampling mechanism does not improve the worst case runtime. However, as
first observed in [7], specially crafted guidance heuristics can achieve dramatic
practical speed-ups on several models. Later on, we combine our two algorithms
and derive such a heuristic. For now, we briefly prove correctness.

Theorem 2. The result returned by Algorithm 2 is correct for any MC M = (S, δ)
with BSCC(M) = {S}.

Proof (Sketch). Similar to the previous algorithm, we prove correctness by induc-
tion. The initial values for l♢R and u♢R are correct. Then, assume that l♢R

n and
u♢R

n are correct bounds. The correctness of the back propagation updates follows
directly by inserting in Eq. (1) (or other works on interval value iteration [7,14]).
Updates based on the bounds in other states are correct by Lemma 1 – the sum
of all BSCC reachability probabilities is 1. Together, this yields correctness of
the bounds computed by the algorithm. ⊓⊔

To obtain termination, it is sufficient to require that every state eventually is
selected “arbitrarily often” by SampleStates. However, as before, we delegate
the termination proof to our combined algorithm in the following section.
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4 Dynamic Computation with Partial Exploration

Recall that our overarching goal is to approximate the stationary distribution
through Eq. (4). In the previous section, we have seen how we can (i) obtain
approximations for a given BSCC and (ii) how to approximate the reachability
probabilities of all BSCCs through sampling. However, the naive combination of
these algorithms would require us to compute the set of all BSCCs, approximate
the stationary distribution in each of them until a fixed precision, and additionally
approximate reachability for each of them.

We now combine both ideas to obtain a sampling-based algorithm, capable of
partial exploration, that focusses computation on relevant parts of the system.
In particular, we construct the system dynamically, identify BSCCs on the fly,
and interleave the exploration with both the approximation inside each explored
BSCC (Algorithm 1) and the overall reachability computation (Algorithm 2).
Moreover, we focus computation on BSCCs which are likely to be reached and
thus have a higher impact on the overall error of the result. Together, our approach
roughly performs the following steps until the required precision is achieved:

– Sample a path through the system, guided by a heuristic,
– check if a new BSCCs is discovered or sampling ended in a known BSCC,
– refine bounds on the stationary distribution in the reached BSCC, and
– propagate reachability bounds and additional information along the path.

We first formalize a generic framework which can instantiate the classical, precise
approach as well as our approximation building blocks and then explain our
concrete variant of this framework to efficiently obtain ε-precise bounds.

4.1 The Framework

Since our goal is to allow for both precise as well as approximate solutions, we
phrase the framework using lower and upper bounds together with abstract
refinement procedures. We first explain our algorithm and how it generalizes the
classical approach. Then, we prove its correctness under general assumptions.
Finally, we discuss several approximate variants.

Algorithm 3 essentially repeats three steps until the termination condition in
Line 4 is satisfied. First, we update the set of known BSCCs through UpdateB-
SSCs. In the classical solution, this function simply computes BSCC(M) once;
our on-the-fly construction would repeatedly check for newly discovered BSCCs,
dynamically growing the set Bn. Then, we select BSCCs for which we should
update the stationary distribution bounds. The classical solution solves the fixed
point equation we have discussed in Section 2 for all BSCCs, i.e. SelectDis-
tributionUpdates yields BSCC(M) and RefineDistribution the precisely
computed values both as upper and lower bounds. Alternatively, we could, for
example, select a single BSCC and apply a few iterations of Algorithm 1. Next,
we update reachability bounds for a selected set of BSCCs. Again, the classical
solution solves the reachability problem precisely for each BSCC through Eq. (1).
Instead, we could employ value iteration as suggested by Algorithm 2.
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Algorithm 3 Stationary Distribution Computation Framework
Input: Markov chain M = (S, δ), initial state ŝ, precision ε > 0
Output: ε-precise bounds l, u on the stationary distribution π∞

M,ŝ

1: for s ∈ S do ▷ Initial bounds for all possible BSSCs that can be discovered
2: l♢◦

1 (s) = 0, u♢◦
1 (s) = 1, l◦1(s)← 0, u◦

1(s)← 1
3: n← 1, B1 ← ∅
4: while

(
1−

∑
R∈Bn

l♢R
n (ŝ)

)
+
∑

R∈Bn

(
l♢R
n (ŝ) ·maxs∈S(uR

n (s)− lR
n (s))

)
> ε do

5: n← n + 1
6: Bn ← UpdateBSSCs, Bn ←

⋃
R∈Bn

R ▷ Discover new BSCCs
7: for R ∈ Bn \ Bn−1, s ∈ R do ▷ Update trivial reach bounds
8: l♢R

n (s)← 1 ▷ s ∈ R surely reaches R
9: for ◦ ̸= R do u♢◦

n (s)← 0 ▷ s ∈ R reaches no other BSCC
10: for R ∈ SelectDistributionUpdates(Bn) ∩ Bn do
11: (lR

n , uR
n )← RefineDistribution(R) ▷ Update BSCC bounds

12: for R ∈ SelectReachUpdates(Bn) ∩ Bn do
13: (l♢R

n , u♢R
n )← RefineReach(R) ▷ Update reachability bounds

14: Copy unchanged variables from n− 1 to n
15: L←

∑
R∈Bn

l♢R
n (ŝ)

16: for R ∈ Bn, s ∈ R do
17: l(s)← l♢R

n (ŝ) · lR
n (s)

18: u(s)← min(u♢R
n (ŝ), 1− L + l♢R

n (ŝ)) · uR
n (s)

19: for s ∈ S \Bn do l(s)← 0, u(s)← 0
20: return (l, u)

Before we present our variant, we prove correctness under weak assumptions.
We note a subtlety of the termination condition: One may assume that upper
bounds on the reachability are required to bound the overall error caused by each
BSCC. Yet, as we show in the following theorem, lower bounds are sufficient. The
upper bound is implicitly handled by the first part of the termination condition.

Theorem 3. The result returned by Algorithm 3 is correct, i.e. ε precise bounds
on the stationary distribution, if (i) Bn ⊆ Bn+1 ⊆ BSCC(M) for all n, and
(ii) RefineDistribution and RefineReach yield correct, monotone bounds.

The proof can be found in [26, App. B.1].

Remark 2. Technically, the algorithm does not need to track explicit upper
bounds on the reachability of each BSCC at all. Indeed, for a BSCC R ∈ Bn, we
could use 1−

∑
R′∈BSCC(M)\{R} l♢R′

n (s) as upper bound and still obtain a correct
algorithm. However, tracking a separate upper bound is easier to understand and
has some practical benefits for the implementation.

We exclude a proof of termination, since this strongly depends on the interplay
between the functions left open. We provide a general, technical criterion to-
gether with a proof in [26, App. B.2]. Intuitively, as one might expect, we require
that eventually UpdateBSSCs identifies all relevant BSCCs, SelectDistri-
butionUpdates and SelectReachUpdates select all relevant BSCCs, and
RefineDistribution and RefineReach converge to the respective true value.
In the following, we present a concrete template which satisfies this criterion.
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4.2 Sampling-Based Computation

We present our instantiation of Algorithm 3 using guided sampling and heuristics.
Since the details of the sampling guidance heuristic are rather technical, we focus
on how the template functions UpdateBSSCs, SelectDistributionUpdates,
RefineDistribution, SelectReachUpdates, and RefineReach are instan-
tiated. For now, the reader may assume that states are, e.g., selected by sampling
random paths through the system.

– UpdateBSSCs: We track the set of explored states, i.e. states which have
already been sampled at least once. On these, we search for BSCCs whenever
we repeatedly stop sampling due to a state re-appearing.

– SelectDistributionUpdates: If we stopped sampling due to entering a
known BSCC, we update the bounds of this single one, otherwise none.

– RefineDistribution: We employ Algorithm 1 to refine the bounds until
the error over all states is halved.

– SelectReachUpdates: We refine the reach values for all sampled states.
– RefineReach: If we stopped sampling due to entering a BSCC, we back-

propagate the reachability bounds for this BSCC in the spirit of Algorithm 2,
i.e. for all sampled states set l♢R

n+1(s) = δ(s)⟨l♢R
n ⟩ and u♢R

n+1(s) = δ(s)⟨u♢R
n ⟩.

We prove that this yields correct results and terminates with probability 1 through
Theorem 3. Note that this description leaves exact details of the sampling open.
Thus, we prove termination using (weak) conditions on the sampling mechanism.
For readability, we define the shorthand errR

n = maxs∈R uR
n (s) − lR

n (s) denoting
the overall error of the stationary distribution in BSCC R and err♢R

n (s) =
u♢R

n (s) − l♢R
n (s) the error bound on the reachability of R from s.

Theorem 4. Algorithm 3 instantiated with our sampling-based approach yields
correct results and terminates with probability 1 if, with probability 1,

(S.i) the sampled states P ⊆ S satisfy PrM,ŝ[♢P ] < ε
4 (P is a ε

4 -core [18]),
(S.ii) the initial state is sampled arbitrarily often, and

(S.iii) for each state s sampled arbitrarily often, every successor s′ ∈ P with
En(s′) := maxR∈Bn

u♢R
n (s′) · errR

n + maxR∈Bn
err♢R

n (s) ≥ ε
4(|Bn|+1) is

sampled arbitrarily often,

where “arbitrarily often” means that if the algorithm would not terminate, this
would happen infinitely often.

The proof can be found in [26, App. B.3].
Due to space constraints, we omit an in-depth description of our sampling

method and only provide a brief summary here. In summary, our algorithm
first selects a “sampling target” which is either “the unknown”, i.e. states not
seen so far, to encourage exploration in the style of [18], or a known BSCC, to
bias sampling towards it. We select a choice randomly, weighted by its current
potential influence on the precision. The sampling process is guided by the
chosen target, taking actions which lead to the respective target with high
probability. In technical terms, we sample successors weighted by the upper
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bound on reachability probability times the transition probability. Once the
target is reached, we either explore the unknown, or improve precision in the
reached BSCC. Finally, information is back-propagated along the path. Further
details, in particular pitfalls we encountered during the design process, together
with a complete instantiation of our algorithm can be found in [26, App. C].

5 Experimental Evaluation

In this section, we evaluate our approaches, comparing to both our own reference
implementation using classical methods, as well as the established model checker
PRISM [21]. (The other popular model checkers Storm [10] and IscasMC/ePMC
[15] do not directly support computing stationary distributions.) We implemented
our methods in Java based on PET [24], running on consumer hardware (AMD
Ryzen 5 3600). To solve arising linear equation systems, we use Jeigen v1.2.
All executions are performed in a Docker container, restricted to a single CPU
core and 8GB of RAM. For approximations, we require a precision of ε = 10−4.

Tools Aside from PRISM1, we consider three variants of Algorithm 3, namely
Classic, the classical approach, solving each BSCC through a linear equation
system and then approximating the reachability through PRISM (using interval
iteration), Naive, the naive sampling approach, following the transition dynamics,
and Sample, our sampling approach, selecting a target and steering towards it.
The sourcecode of our implementation used to run these experiments as well as
all models and our data is available at [25]. Moreover, the current version can be
found at GitHub [23].

We mention two points relevant for the comparison. First, as we show in the
following, PRISM may yield wrong results due to a (too) simple computation. As
such, we should not expect that our correct methods are on par or even faster.
Second, our implementation employs conservative procedures to further increase
quality of the result, such as compensated summation to mitigate numerical error
due to floating-point imprecision, noticeably increasing computational effort.

Models We consider the PRISM benchmark suite2 [22], comprising several prob-
abilistic models, in particular DTMC, CTMC, and MDP. Since there are not too
many Markov chains in this set, we obtain further models as follows. For each
CTMC, we consider the uniformized CTMC (which preserves the steady state
distribution), and for MDP we choose actions uniformly at random. Unfortu-
nately, all models obtained this way either comprise only single-state BSCCs or
the whole model is a single BSCC. In the former case, our approximation within
the BSCC is not used at all, in the latter, a sampling based approach needs to
invest additional time to discover the whole system. In order to better compare
the performance of our mean payoff based approximation approach, in these cases
1 We observed that the default hybrid engine typically is significantly slower than the

“explicit” variant and thus use that one, see [26, App. D].
2 Obtained from https://github.com/prismmodelchecker/prism-benchmarks.

https://github.com/prismmodelchecker/prism-benchmarks
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Fig. 2. A small MC where PRISM reports wrong results for e ≤ 10−7.

we pre-explore the whole system and compute the stationary distribution directly
through Algorithm 1. To compare the combined performance, we additionally
consider a handcrafted model, named branch, which comprises both transient
states as well as several non-trivial BSCCs.

We present selected results, highlighting different strengths and weaknesses of
each approach. An evaluation of the complete suite can be found in [26, App. D].

Correctness We discovered that PRISM potentially yields wrong results, due to
an unsafe stopping criterion. In particular, PRISM iterates the power method
until the absolute difference between subsequent iterates is small, exactly as
with its “unsafe” value iteration for reachability, as reported by e.g. [7]. On
the model from Fig. 2, PRISM (with explicit engine) immediately terminates,
printing a result of ≈ ( 1

6 , 1
6 , 1

3 , 1
3 ). However, the correct stationary distribution is

≈ ( 1
9 , 2

9 , 4
9 , 2

9 ) (from left to right), which both of our methods correctly identify.
This behaviour is due to the small difference between first and second eigenvalue
of the transition matrix, which in turn implies that the iterates of the power
method only change by a small amount. We note that on this example, PRISM’s
default hybrid engine eventually yields the correct result (after ≈ 108 iterations)
due to the used iteration scheme. On small variation of the model (included in
the artefact) it also terminates immediately with the wrong result.

Results We summarize our results in Table 1. We observe several points. First,
we see that the naive sampling approach can hardly handle non-trivial models.
Second, our guided sampling approach achieves significant improvements on
several models over both the classical, correct method as well as the potentially
unsound approach of PRISM, in particular when hardly reachable portions of the
state space can be completely discarded. However, on other models, the classical
approach seems to be more appropriate, in particular on models with many likely
to be reached BSCCs. Here, the sampling approach struggles to propagate the
reachability bounds of all BSCCs simultaneously. Finally, as suggested by the
phil and rabin models, using mean payoff based approximation can significantly
outperform classical equation solving. In summary, PRISM, Classic, and Sample
all can be the fastest method, depending on the structure of the model. However,
recall that PRISM’s method does not give guarantees on the result.

Further Discussion As expected, we observed that the runtime of approximation
can increase drastically for smaller precision requirements (e.g. ε = 10−8) and
solving the equation system precisely may actually be faster for some BSCCs.
However, especially in the combined approach, if we already have some upper
bounds on the reachability probability of a certain BSCC, we do not need to solve
it with the original precision. Hence, a future version of the implementation could
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Table 1. Overview of our results. For each model, we list its parameters, overall size,
and number of BSCCs, followed by the total execution time in seconds for each tool,
TO denotes a timeout (300 seconds), MO a memout, and err an internal error. On
systems comprising a single BSCC, the Naive and Sample approach coincide.

Model Parameters |S| |BSCC| PRISM Classic Naive Sample

brp N=64,MAX=5 5,192 134 1.2 11 TO 4.9
nand N=15,K=2 56,128 16 4.9 30 TO 64

zeroconf_dl reset=false,deadline=40,N=1000,K=1 251,740 10,048 99 238 8.0 1.0
phil4 9,440 1 err TO 51

rabin3 27,766 1 err MO 178

branch 1,087,079 1,000 155 TO TO 20

dynamically decide whether to solve a BSCC based on mean payoff approximation
or equation solving, combining advantages of both worlds.

Secondly, this also highlights an interesting trade-off implicit to our approach:
The algorithm needs to balance between exploring unknown areas and refining
bounds on known BSCCs, in particular, since exploring a new BSCC adds
noticeable effort: One more target for which the reachability has to be determined.
Here, more sophisticated heuristics could be useful.

Finally, for models with large BSCCs, such as rabin, we also observed that
the classical linear equation approach indeed runs out of memory while a variant
of the approximation algorithm can still solve it, as indicated by Remark 1.
Thus, the implementation could moreover take memory constraints into account,
deciding to apply the memory-saving approach in appropriate cases.

6 Conclusion

We presented a new perspective on computing the stationary distribution in
Markov chains by rephrasing the problem in terms of mean payoff and reachability.
We combined several recent advances for these problems to obtain a sophisti-
cated partial-exploration based algorithm. Our evaluation shows that on several
models our new approach is significantly more performant. As a major technical
contribution, we provided a general algorithmic framework, which encompasses
both the classical solution approach as well as our new method.

As hinted by the discussion above, our framework is quite flexible. For future
work, we particularly want to identify better guidance heuristics. Specifically,
based on experimental data, we conjecture that the reachability part can be
improved significantly. Moreover, due to the flexibility of our framework, we can
apply different methods for each BSCC to obtain the reachability and stationary
distribution. Thus, we want to find meta-heuristics which suggest the most
appropriate method in each case. For example, for smaller BSCCs, we could
use the classical, precise solution method to obtain the stationary distribution,
while for larger ones we employ our mean payoff approach, and, in the spirit of
Remark 1, for even larger ones we approximate them to the required precision
immediately, saving memory. Additionally, we could identify BSCCs that satisfy
the conditions of specialized approaches such as [11].
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