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Abstract. Reinforcement learning has received much attention for learn-
ing controllers of deterministic systems. We consider a learner-verifier
framework for stochastic control systems and survey recent methods that
formally guarantee a conjunction of reachability and safety properties.
Given a property and a lower bound on the probability of the property
being satisfied, our framework jointly learns a control policy and a for-
mal certificate to ensure the satisfaction of the property with a desired
probability threshold. Both the control policy and the formal certifi-
cate are continuous functions from states to reals, which are learned as
parameterized neural networks. While in the deterministic case, the cer-
tificates are invariant and barrier functions for safety, or Lyapunov and
ranking functions for liveness, in the stochastic case the certificates are
supermartingales. For certificate verification, we use interval arithmetic
abstract interpretation to bound the expected values of neural network
functions.

Keywords: Learning-based control · Stochastic systems · Martingales.
· Formal verification

1 Introduction

Learning-based control and verification of learned controllers. Learning-based
control and reinforcement learning (RL) were empirically demonstrated to have
enormous potential to solve highly non-linear control tasks. However, their de-
ployment in safety-critical scenarios such as autonomous driving or healthcare
requires safety assurances. Most safety-aware RL algorithms optimize expected
reward while only empirically trying to maximize safety probability. This to-
gether with the non-explainable nature of neural network controllers obtained
via deep RL raise questions about the trustworthiness of learning-based methods
for safety-critical applications [9,27]. To that end, formal verification of learned
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controllers as well as learning-based control with formal safety guarantees have
become very active research topics.

Learning certificate functions. A classical approach to formally proving proper-
ties of dynamical systems is to compute a certificate function. A certificate func-
tion [26] is a function that assigns real values to system states and its defining
conditions imply satisfaction of the property. Thus, in order to prove the prop-
erty of interest, it suffices to compute a certificate function for that property.
For instance, Lyapunov functions [46] and barrier functions [50] are standard
certificate functions for proving reachability of some target set and avoidance of
some unsafe set of system states, respectively, when the system dynamics are
deterministic. While both Lyapunov and barrier functions are well-studied con-
cepts in dynamical systems theory, early methods for their computation either
required designing the certificates by hand or using computationally intractable
numerical procedures. A more recent approach reduces certificate computation
to a semi-definite programming problem by using sum-of-squares (SOS) tech-
niques [33,49,37]. However, a limitation of this approach is that it is only appli-
cable to polynomial systems and computation of polynomial certificate functions,
whereas it is not applicable to systems with general non-linearities. Moreover,
SOS methods do not scale well with the dimension of the system.

Learning-based methods are a promising approach to overcome these limi-
tations and they have received much attention in recent years. These methods
jointly learn a neural network control policy and a neural network certificate
function, e.g. a Lyapunov function [53,18,3,17] or a barrier function [38,58,52,1],
depending on the property of interest. The neural network certificate is then
formally verified, ensuring that these methods provide formal guarantees. Both
learning and verification procedures developed for verifying neural network cer-
tificates are not restricted to polynomial dynamical systems. See [26] for an
overview of existing learning-based control methods that learn a certificate func-
tion to verify a system property in deterministic dynamical systems.

Prior works – deterministic dynamical systems. While the above works present
significant advancements in learning-based control and verification of dynamical
systems, they are predominantly restricted to deterministic dynamical systems.
In other words, they assume that they have access to the exact dynamics function
according to which the system evolves. However, for most control tasks, the
underlying models used by control methods are imperfect approximations of
real systems inferred from observed data. Thus, control and verification methods
should also account for model uncertainty due to the noise in observed data and
the approximate nature of model inference.

This survey – stochastic dynamical systems. In this work, we survey recent devel-
opments in learning-based methods for control and verification of discrete-time
stochastic dynamical systems, based on [44,68]. Stochastic dynamical systems
use probability distributions to quantify and model uncertainty. In stochastic
dynamical systems, given a property of interest and a probability parameter
p ∈ [0, 1], the goal is to learn a control policy and a formal certificate which
guarantees that the system under the learned policy satisfies the property of
interest with probability at least p.
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Supermartingale certificate functions. Lyapunov functions and barrier functions
can be used to prove properties in deterministic dynamical systems, however
they are not applicable to stochastic dynamical systems and do not allow rea-
soning about the probability of a property being satisfied. Instead, the learning-
based methods of [44,68] use supermartingale certificate functions to formally
prove properties in stochastic systems. Supermartingales are a class of stochas-
tic processes that decrease in expected value at every time step [66]. Their nice
convergence properties and concentration bounds allow their use in designing
certificate functions for stochastic dynamical systems. In particular, ranking su-
permartingales (RSMs) [15,44] were used to verify probability 1 reachability and
stochastic barrier functions (SBFs) [50] were used to verify safety with the speci-
fied probability p ∈ [0, 1]. Reach-avoid supermartingales (RASMs) [68] unify and
extend these two concepts and were used to verify reach-avoidance properties
with the specified probability p ∈ [0, 1], i.e. a conjunction of reachability and
safety properties. We define and compare these concepts in Section 3.

Learner Verifier

Certificate candidate

Counterexample set

Fig. 1: Schematic illustration of the learner-verifier loop.

Learner-verifier framework for stochastic dynamical systems. In Section 4, we
then present a learner-verifier framework of [44,68] for learning-based control
and for the verification of learned controllers in stochastic dynamical systems
in a counterexample guided inductive synthesis (CEGIS) fashion [55]. The al-
gorithm jointly learns a neural network control policy and a neural network
supermartingale certificate function. It consists of two modules – the learner,
which learns a policy and a supermartingale certificate function candidate, and
the verifier, which then formally verifies the candidate supermartingale certifi-
cate function. If the verification step fails, the verifier computes counterexamples
and passes them back to the learner, which tries to learn a new candidate. This
loop is repeated until a candidate is successfully verified, see Fig. 1.

This framework builds on the existing learner-verifier methods for learning-
based control in deterministic dynamical systems [18,2,26]. However, the ex-
tension of this framework to stochastic dynamical systems and the synthesis
of supermartingale certificate functions is far from straightforward. In particu-
lar, the methods of [18,2] use knowledge of the deterministic dynamics function
to reduce the verification task to a decision procedure and use an off-the-shelf
solver. However, verification of the expected decrease condition of supermartin-
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gale certificates by reduction to a decision procedure would require being able
to compute a closed-form expression of the expected value of a neural network
function over a probability distribution and provide it to the solver. It is not clear
how the closed-form expression can be computed, and it is not known whether
the closed-form expression exists in the general case.

This challenge is solved by using a method for efficient computation of tight
upper and lower bounds on the expected value of a neural network function. The
verifier module then verifies the expected decrease condition by discretizing the
state space and formally verifying a slightly stricter condition at the discretiza-
tion points by using the computed expected value bounds. By carefully choosing
the mesh of the discretization and adding an additional error term, we obtain
a sound verification method applicable to general Lipschitz continuous systems.
The expected value bound computation for neural network functions relies on
interval arithmetic and abstract interpretation, and since it is of independent
interest, we discuss it in detail in Section 5. We are not aware of any existing
methods that tackle this problem.
Extension to general stochastic certificates. We conclude this survey with a dis-
cussion of possible extensions of the learner-verifier framework in Section 6 and
of related work in Section 7.

2 Preliminaries

We consider discrete-time stochastic dynamical systems defined via

xt+1 = f(xt,ut, ωt), x0 ∈ X0.

The function f : X × U × N → X is the dynamics function of the system
and t ∈ N0 is the time index. We use X ⊆ Rm to denote the system state
space, U ⊆ Rn the control action space and N ⊆ Rp the stochastic disturbance
space. For each t ∈ N0, xt ∈ X the state of the system, ut ∈ U the action and
ωt ∈ N the stochastic disturbance vector at time t. The set X0 ⊆ X is the set
of initial states. In each time step, ut is chosen according to a control policy
π : X → U , i.e. ut = π(xt), and ωt is sampled according to some specified
probability distribution d over Rp. The dynamics function f , control policy π
and probability distribution d together define a stochastic feedback loop system.

A trajectory of the system is a sequence (xt,ut, ωt)t∈N0
such that, for each

t ∈ N0, we have ut = π(xt), ωt ∈ support(d) and xt+1 = f(xt,ut, ωt). For each
initial state x0 ∈ X , the system induces a Markov process. This gives rise to the
probability space over the set of all trajectories of the system that start in x0 [51].
We denote the probability measure and the expectation in this probability space
by Px0

and Ex0
, respectively.

Assumptions. We assume that X ⊆ Rm, X0 ⊆ Rm, U ⊆ Rn and N ⊆ Rp are all
Borel-measurable. This is necessary for the probability space of the set of all sys-
tem trajectories starting in some initial state to be mathematically well-defined.
We also assume that X ⊆ Rm is compact (i.e. closed and bounded) and that the
dynamics function f is Lipschitz continuous, which are common assumptions in
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control theory. Finally, we assume that the probability distribution d is a prod-
uct of independent univariate probability distributions, which is necessary for
efficient sampling and expected value computation.

2.1 Brief Overview of Martingale Theory

In this subsection, we provide a brief overview of definitions and results from
martingale theory that lie at the core of formal reasoning about supermartingale
certificate functions. We assume that the reader is familiar with the mathemati-
cal definitions of probability space, measurability and random variables, see [66]
for the necessary background. The results in this subsection will help in building
an intuition on supermartingale certificate functions, but omitting them would
not prevent the reader from following the rest of this paper.
Probability space. A probability space is a triple (Ω,F ,P) where Ω is a state
space, F is a sigma-algebra and P is a probability measure which is required to
satisfy Kolmogorov axioms [66]. A random variable is a function X : Ω → R that
is F -measurable. We use E[X] to denote the expected value of X. A (discrete-
time) stochastic process is a sequence (Xi)

∞
i=0 of random variables in (Ω,F ,P).

Conditional expectation. Let X be a random variable in a probability space
(Ω,F ,P). Given a sub-σ-algebra F ′ ⊆ F , a conditional expectation of X given
F ′ is an F ′-measurable random variable Y such that, for each A ∈ F ′, we have

E[X · I(A)] = E[Y · I(A)].

Here, I(A) : Ω → {0, 1} is an indicator function of A defined via I(A)(ω) = 1
if ω ∈ A, and I(A)(ω) = 0 if ω 6∈ A. Intuitively, conditional expectation of X
given F ′ is an F ′-measurable random variable that behaves like X whenever
its expected value is taken over an event in F ′. Conditional expectation of a
random variable X given F ′ is guaranteed to exist if X is real-valued and non-
negative [66]. Moreover, for any two conditional expectations Y and Y ′ of X
given F ′, we have that P[Y = Y ′] = 1. Therefore, the conditional expectation is
almost-surely unique and we may pick one such random variable as a canonical
conditional expectation and denote it by E[X | F ′].
Supermartingales. Let (Ω,F ,P) be a probability space and F0 ⊆ F1 ⊆ · · · ⊆ F
be an increasing sequence of sub-σ-algebras in F with respect to inclusion. A non-
negative supermartingale with respect to (Fi)∞i=0 is a stochastic process (Xi)

∞
i=0

such that each Xi is Fi-measurable, and Xi(ω) ≥ 0 and E[Xi+1 | Fi](ω) ≤ Xi(ω)
hold for each ω ∈ Ω and i ≥ 0. Intuitively, the second condition says that the
expected value of Xi+1 given the value of Xi has to decrease. This condition is
formalized by using conditional expectation.

The following two results that will be key technical ingredients in our design
of supermartingale certificate functions. The first theorem shows that nonneg-
ative supermartingales have nice convergence properties and converge almost-
surely to some finite value. The second theorem bounds the probability that the
value of the supemartingale ever exceeds some threshold, and it will allow us to
bound from above the probability of occurrence of some bad event.
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Theorem 1 (Supermartingale convergence theorem [66]). Let (Xi)
∞
i=0

be a nonnegative supermartingale with respect to (Fi)∞i=0. Then, there exists a
random variable X∞ in (Ω,F ,P) to which the supermartingale converges to with
probability 1, i.e. P[limi→∞Xi = X∞] = 1.

Theorem 2 ([41]). Let (Xi)
∞
i=0 be a nonnegative supermartingale with respect

to (Fi)∞i=0. Then, for every real λ > 0, we have P[supi≥0Xi ≥ λ] ≤ E[X0]/λ.

2.2 Problem Statement

We now formally define the properties and control tasks that we focus on in
this work. In what follows, let Xt,Xu ⊆ X be disjoint Borel-measurable sets and
p ∈ [0, 1] be a lower bound on the probability with which the system under the
learned controller needs to satisfy the property:

– Reachability. Let Reach(Xt) = {(xt,ut, ωt)t∈N0
| ∃t ∈ N0.xt ∈ Xt} be the

set of all trajectories that reach the target set Xt. The goal is to learn a
control policy under which the system reaches Xt with probability at least
p, i.e. Px0

[Reach(Xt)] ≥ p holds for every initial state x0 ∈ X0.
– Safety (or avoidance). Let Safe(Xu) = {(xt,ut, ωt)t∈N0

| ∀t′ ≤ t.xt′ 6∈ Xu}
be the set of all trajectories that do not visit the unsafe set Xu. The goal is
to learn a control policy under which the system stays away from Xu with
probability at least p, i.e. Px0

[Safe(Xu)] ≥ p holds for every initial state
x0 ∈ X0.

– Reach-avoidance. Let ReachAvoid(Xt,Xu) = {(xt,ut, ωt)t∈N0
| ∃t ∈ N0.xt ∈

Xt ∧ (∀t′ ≤ t.xt′ 6∈ Xu)} be the set of all trajectories that reach Xt without
reaching Xu. The goal is to learn a control policy under which the sys-
tem reaches Xt while staying away from Xu with probability at least p,
i.e. Px0

[ReachAvoid(Xt,Xu)] ≥ p holds for every initial state x0 ∈ X0.

3 Supermartingale Certificate Functions

We now overview three classes of supermartingale certificate functions that
formally prove reachability, safety and reach-avoidance properties. Supermartin-
gale certificate functions do not refer to a single class of certificate functions.
Rather, we use this term to refer to all certificate functions that exhibit a
supermartingale-like behavior and can formally verify properties in stochastic
dynamical systems. In what follows, we assume that the control policy π is
fixed. In the following section, we will then present a learner-verifier framework
for jointly learning a control policy and a supermartingale certificate function.
RSMs for probability 1 reachability. We start with ranking supermartingales
(RSMs), which can prove probability 1 reachability of some target set Xt. Intu-
itively, an RSM is a continuous function that maps system states to nonnegative
real values and is required to strictly decrease in expectation by some ε > 0 in
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every time step until the target Xt is reached. Due to the strict expected de-
crease as well as the Supermartingale Convergence Theorem (Theorem 1), one
can show that the existence of an RSM guarantees that the system under policy
π reaches Xt with probability 1. RSMs can be viewed as a stochastic extension
of Lyapunov functions. Note that RSMs can only be used to prove probabil-
ity 1 reachability, but cannot be used to reason about probabilistic reachability.
RSMs were originally used for proving almost-sure termination in probabilistic
programs [15] and were used to certify probability 1 reachability in stochastic
dynamical systems in [44].

Definition 1 (Ranking supermartingales [44]). Let Xt ⊆ X be a target set.
A continuous function V : X → R is a ranking supermartingale (RSM) with
respect to Xt if it satisfies:
1. Nonnegativity condition. V (x) ≥ 0 for each x ∈ X .
2. Expected Decrease condition. There exists ε > 0 such that, for each x ∈
X\Xt, we have V (x) ≥ Eω∼d[V (f(x, π(x), ω))] + ε.

Theorem 3 ([44]). Suppose that there exists an RSM with respect to Xt. Then,
for every x0 ∈ X0, we have Px0 [Reach(Xt)] = 1.

SBFs for probabilistic safety. On the other hand, stochastic barrier functions
(SBFs) can prove probabilistic safety. Given an unsafe set Xu and probability
p ∈ [0, 1), an SBF is also a continuous function mapping system states to non-
negative real values, which is required to decrease in expectation at each time
step. However, unlike RSMs, the expected decrease need not be strict and there
is no target set. In addition, its initial value must be at most 1, whereas its value
upon reaching an unsafe set must be at least 1/(1 − p). Thus, for the system
under policy π to violate the safety constraint, the value of the SBF needs to
increase from at most 1 to at least 1/(1−p) even though it is required to decrease
in expectation. The probability of this event can be bounded from above and
shown to be at most 1−p by using Theorem 2. We highlight the assumption that
p < 1, which is necessary for the safety constraint to be mathematically defined.
As the name suggests, SBFs are a stochastic extension of barrier functions.

Definition 2 (Stochastic barrier functions [50]). Let Xu ⊆ X be an unsafe
set and p ∈ [0, 1). A continuous function V : X → R is a stochastic barrier
function (SBF) with respect to Xu and p if it satisfies:
1. Nonnegativity condition. V (x) ≥ 0 for each x ∈ X .
2. Initial condition. V (x) ≤ 1 for each x ∈ X0.
3. Safety condition. V (x) ≥ 1

1−p for each x ∈ Xu.
4. Expected Decrease condition. For each x ∈ X , if V (x) ≤ 1

1−p then V (x) ≥
Eω∼d[V (f(x, π(x), ω))].

Theorem 4 ([50]). Suppose that there exists an SBF with respect to Xu and p.
Then, for every x0 ∈ X0, we have Px0

[Safe(Xu)] ≥ p.

RASMs for probabilistic reach-avoidance. Finally, reach-avoid supermartingales
(RASMs) unify and extend RSMs and SBFs in the sense that they allow simul-
taneous reasoning about reachability and safety and proving a conjunction of
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these properties, i.e. reach-avoid properties. Let Xt and Xu be disjoint target
and unsafe sets and let p ∈ [0, 1). Similarly to SBFs, an RASM is a continuous
nonnegative function which is required to be initially at most 1 but needs to
attain a value that is at least 1/(1− p) for the unsafe region to be reached. On
the other hand, similarly to RSMs, it is required to strictly decrease in expec-
tation by ε > 0 at every time step until either the target set Xt or a state in
which the value is at least 1/(1− p) is reached. Thus, RASMs can be viewed as
a stochastic extension of both Lyapunov functions and barrier functions, which
combines the strict decrease of Lypaunov functions and the level-set reasoning
of barrier functions.

Definition 3 (Reach-avoid supermartingales [68]). Let Xt ⊆ X and Xu ⊆
X be a target set and an unsafe set, respectively, and let p ∈ [0, 1] be a probability
threshold. Suppose that either p < 1 or that p = 1 and Xu = ∅. A continuous
function V : X → R is a reach-avoid supermartingale (RASM) with respect to
Xt, Xu and p if it satisfies:
1. Nonnegativity condition. V (x) ≥ 0 for each x ∈ X .
2. Initial condition. V (x) ≤ 1 for each x ∈ X0.
3. Safety condition. V (x) ≥ 1

1−p for each x ∈ Xu.
4. Expected Decrease condition. There exists ε > 0 such that, for each x ∈
X\Xt at which V (x) ≤ 1

1−p , we have V (x) ≥ Eω∼d[V (f(x, π(x), ω))] + ε.

Theorem 5 ([68]). Suppose that there exists an RASM with respect to Xt, Xu
and p. Then, for every x0 ∈ X0, we have Px0

[ReachAvoid(Xt,Xu)] ≥ p.

Note that RASMs indeed unify and generalize the definitions of RSMs and
SBFs. First, by setting Xu = ∅ and p = 1 (so 1/(1 − p) = ∞), RASMs reduce
to RSMs as the Initial condition that can be enforced without loss of generality
by rescaling. Second, by setting Xt = ∅, RASMs reduce to SBFs. In this case,
the Expected Decrease condition is strengthened as it requires strict decrease
by ε > 0. However, the proof of Theorem 5 which we outline below also implies
Theorem 4 and ε > 0 is only necessary to reason about the reachability of Xt.

We also note that RASMs strictly extend the applicability of RSMs, since
RASMs can be used to prove reachability with any lower bound p ∈ [0, 1] on
probability and not only probability 1 reachability. Indeed, if we set Xu = ∅ and
p ∈ [0, 1], in order to prove reachability of Xt with probability at least p the
RASMs require strict expected decrease in expectation by ε > 0 until either Xt
is reached or the RASM value exceeds 1/(1− p) (with 1/(1− p) =∞ if p = 1).

In the rest of this section, we outline the proof of Theorem 5 that was pre-
sented in [68]. This proof also implies Theorem 3 and Theorem 4. We do this to
highlight the connection of RSMs, SBFs and RASMs to the mathematical notion
of supermartingale processes. We also do this to illustrate the tools from mar-
tingale theory that are used in proving soundness of supermatingale certificate
functions, as we envision that they may be useful in designing supermatingale
certificate functions for more general classes of properties.

Proof (proof sketch of Theorem 5). Here we outline the main ideas behind the
proof, and for the full proof we refer the reader to [68]. Let x0 ∈ X0. We need to
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show that Px0
[ReachAvoid(Xt,Xu)] ≥ p. To do this, we consider the probability

space (Ωx0
,Fx0

,Px0
) of trajectories that start in x0 and for each time step t ∈ N0

define a random variable in this probability space via

Xt(ρ) =


V (xt), if xi 6∈ Xt and V (xi) <

1
1−p for each 0 ≤ i ≤ t

0, if xi ∈ Xt for some 0 ≤ i ≤ t, V (xj) <
1

1−p for each 0 ≤ j ≤ i
1

1−p , otherwise

for each trajectory ρ = (xt,ut, ωt)t∈N0
∈ Ωx0

. Hence, (Xt)
∞
t=0 defines a stochastic

process whose value at each time step is equal to the value of V at the current
system state unless either the target set Xt has been reached after which future
values of Xt are set to 0, or a state in which V exceeds 1/(1−p) has been reached
after which future values of Xt are set to 1/(1−p). It can be shown that (Xt)

∞
t=0

is a nonnegative supermartingale (Ωx0
,Fx0

,Px0
). This claim can be proved by

using the Nonnegativity and the Expected Decrease condition of RASMs. Here
we do not yet need that the expected decrease is strict, i.e. ε ≥ 0 in the Expected
Decrease condition of RASMs is sufficient.

Since (Xt)
∞
t=0 is a nonnegative supermartingale, substituting λ = 1/(1 − p)

into the inequality in Theorem 2 shows that

Px0

[
sup
i≥0

Xi ≥
1

1− p

]
≤ (1− p) · Ex0 [X0] ≤ 1− p.

The second inequality follows since X0(ρ) = V (x0) ≤ 1 for every ρ ∈ Ωx0
by the

Initial condition of RASMs. Hence, by the Safety condition of RASMs it follows
that the system under policy π reaches the unsafe set Xu with probability at
most 1− p. Note that here we can already conclude the claim of Theorem 4.

Finally, as (Xt)
∞
t=0 is a nonnegative supermartingale, by Theorem 1 its value

converges with probability 1. One can then prove that this value has to be either
0 or ≥ 1/(1 − p) by using the fact that the expected decrease in the Expected
Decrease condition of RASMs is strict. But we showed above that a state in
which V is ≥ 1/(1 − p) is reached with probability at most 1 − p. Hence, the
probability that the system under policy π reaches the target set Xt without
reaching the unsafe set Xu is at least p, i.e. Px0

[ReachAvoid(Xt,Xu)] ≥ p. ut

4 Learner-Verifier Framework for Stochastic Systems

We now present the learner-verifier framework of [44,68] for the learning-based
control and verification of learned controllers in stochastic dynamical systems.
We focus on the probabilistic reach-avoid problem, assume that we are given a
target set Xt, unsafe set Xu and a probability parameter p ∈ [0, 1], and learn a
control policy π and an RASM which certifies that Px0 [ReachAvoid(Xt,Xu)] ≥ p
for all x0 ∈ X0. The algorithm for learning RSMs and SBFs can be obtained
analogously, since we showed that RASMs unify and generalize RSMs and SBFs.

The algorithm behind the learner-verifier framework consists of two modules
– the learner, which learns a neural network control policy πθ and a neural
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network supermartingale certificate function Vν , and the verifier, which then
formally verifies the learned candidate function. If the verification step fails, the
verifier produces counterexamples that are passed back to the learner to fine-tune
its loss function. Here, θ and ν are vectors of neural network parameters. The
loop is repeated until either a certificate function is successfully verified, or some
specified timeout is reached. By incorporating feedback from the verifier, the
learner is able to tune the policy and the certificate function towards ensuring
that the resulting policy meets the desired reach-avoid specification.

Applications. As outlined above, the learner-verifier framework can be used for
learning-based control with formal guarantees that a property of interest is satis-
fied by jointly learning a control policy and a supermartingale certificate function
for the property. On the other hand, it can also be used to formally verify a pre-
viously learned control policy by fixing policy parameters and only learning a
supermartingale certificate function. Finally, if one uses a different method to
learn a policy that turns out to violate the desired property, one can use the
learner-verifier framework to fine-tune an unsafe policy towards repairing it and
obtaining a safe policy for which a supermartingale certificate function certifies
that the property of interest is satisfied.

4.1 Algorithm Initialization

As mentioned in Section 1, the key challenge for the verifier is to check the Ex-
pected Decrease condition of supermartingale certificates. Our algorithm solves
this challenge by discretizing the state space and verifying a slightly stricter con-
dition at discretization vertices which we show to imply the Expected Decrease
condition over the whole region required by Definition 3. On the other hand,
learning two neural networks in parallel while simultaneously optimizing several
objectives can be unstable due to inherent dependencies between two networks.
Thus, proper initialization of networks is important. We allow all neural net-
work architectures so long as all activation functions are continuous functions.
Furthermore, we apply the softplus activation function to the output neuron of
Vν , in order to ensure that the value of Vν is always nonnegative.

Discretization. A discretization X̃ of X with mesh τ > 0 is a set of states such
that, for every x ∈ X , there exists a state x̃ ∈ X̃ such that ||x − x̃||1 < τ . The
algorithm takes mesh τ as a parameter and computes a finite discretization X̃
with mesh τ by simply taking a hyper-rectangular grid of the sufficiently small
cell size. Since X is compact, this yields a finite discretization.

Network initialization. The policy network πθ is initalized by running proximal
policy optimization (PPO) [54] on the Markov decision process (MDP) defined by
the stochastic dynamical system with a reward function rt = 1[Xt](xt)−[Xu](xt).

The discretization X̃ is used to define three sets of states which are then used
by the learner to initialize the certificate network Vν and to which counterexam-
ples computed by the verifier will be added later. In particular, the algorithm
initializes Cinit = X̃ ∩ X0, Cunsafe = X̃ ∩ Xu and Cdecrease = X̃ ∩ (X\Xt).
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4.2 The Learner module

The Learner updates the parameters θ of the policy and ν of the neural network
certificate function candidate Vν with the objective of the candidate satisfying
the supermartingle certificate conditions. The parameter updates happen incre-
mentally via gradient descent of the form θ ← θ−α∂L(θ,ν)∂θ and ν ← ν−α∂L(θ,ν)∂ν ,
where α > 0 is the learning rate and L is a loss function that corresponds to a
differentiable optimization objective of the supermartingle certificate conditions.
Ideally, the global minimum of L should correspond to a policy π and a neu-
ral network Vν that fulfills all certificate conditions. In practice, however, due
to the non-convexity of the network Vν , gradient descent is not guaranteed to
converge to the global minimum. As a result, the learner is not monotone, i.e. a
new iteration does not guarantee improvement over the previous iteration. The
training process usually applies a fixed number of gradient descent iterations or,
alternatively, continues until a certain threshold on the loss value is achieved.
Loss functions. The particular type of loss function L depends on the type of
supermartingale certificate function that should be learned by the network, but
is of the general form

L(θ, ν) = LCertificate(θ, ν) + λ ·
(
LLipschitz(θ) + LLipschitz(ν)

)
, (1)

where LCertificate is the specification-specific loss. The auxiliary loss terms LLipschitz
regularize the training to obtain networks πθ and Vν that have a low upper bound
of their Lipschitz constant. The purpose of this regularization is that networks
with low Lipschitz upper bound are easier to check by the verifier module, i.e. re-
quiring a coarser discretization grid. The value of λ > 0 decides the strength of
the regularization that is applied. The regularization loss is based on the upper
bound derived in [57] and defined as

LLipschitz(θ) = max
{
LVθ −

δ

τ · (Lf · (Lπ + 1) + 1)
, 0
}
. (2)

In the case of a reach-avoid specification, the RASM certificate loss is

LCertificate(θ, ν) = LExpected(θ, ν) + LUnsafe(ν) + LInit(ν), (3)

with

LExpected(θ, ν) =
1

|Cdecrease|
·

∑
x∈Cexpected

(
max

{
∑

ω1,...,ωN∼N

Vν
(
f(x, πθ(x), ωi)

)
N

− Vθ(x) + τ ·K, 0
})

LInit(ν) = max
x∈Cinit

{Vν(x)− 1, 0}

LUnsafe(ν) = max
x∈Cunsafe

{ 1

1− p
− Vν(x), 0}.

The sets Cexpected, Cinit and Cunsafe are the training sets for achieving the ex-
pected decrease, initial and unsafe RASM conditions. Each of the three sets is
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initialized with a coarse discretization of the state space to guide the learning
toward learning a correct RASM already in the first loop iteration. In the subse-
quent calls to the learner, these sets are extended by counterexamples computed
by the verifier. In [68] it was shown that, if Vθ is a RASM and satisfies all con-
ditions checked by the verifier below, then LCertificate(θ, ν) → 0 as the number
of samples N used to estimate expected values in LExpected(θ, ν) increases.

4.3 The Verifier module

Verification task. The verifier now formally checks whether the learned RASM
candidate Vν satisfies the four RASM defining conditions in Definition 3. Since we
applied the softplus activation function to the output neuron of Vν , we know that
the Nonnegativity condition is satisfied by default. Thus, the verifier only needs
to check the Initial, Safety and Expected Decrease conditions in Definition 3.
Expected Decrease condition. To check the Expected Decrease condition, we uti-
lize the fact that the dynamics function f is Lipschitz continuous and that the
state space X is compact to show that it suffices to check a slightly stricter con-
dition at the discretization points. Let Lf be a Lipschitz constant of f . Since πθ
and Vν are continuous functions defined over the compact domain X , we know
that they are also Lipschitz continuous. Let Lπ and LV be their Lipschitz con-
stants. We assume that Lf is provided to the algorithm, and use the method
of [57] for computing neural network Lipschitz constants to compute Lπ and LV .

To verify the Expected Decrease condition, the verifier collects a subset
X̃e ⊆ X̃ of all discretization vertices whose adjacent grid cells contain a non-
target state and over which Vν attains a value that is smaller than 1

1−p . To
compute this set, the algorithm first collects all grid cells that intersect X\Xt.
For each collected cell, it then uses interval arithmetic abstract interpretation
(IA-AI) [24,30] to propagate interval bounds across neural network layers to-
wards bounding from below the minimal value that Vν attains over the cell.
Finally, it adds to X̃e vertices of those cells at which the computed lower bound
is less than 1/(1− p).

Finally, the verifier checks if the following condition is satisfied at each x̃ ∈ X̃e

Eω∼d
[
Vν

(
f(x̃, πθ(x̃), ω)

)]
< Vν(x̃)− τ ·K, (4)

where K = LV · (Lf · (Lπ + 1) + 1). Note that this condition is a strengthened
version of the Expected Decrease condition, where instead of strict decrease by
arbitrary ε > 0 we require strict decrease by at least τ · K which depends on
the discretization mesh τ and Lipschitz constants of f , πθ and Vν . To compute
Eω∼d[Vν(f(x̃, πθ(x̃), ω))] in eq. (4), we cannot simply evaluate the expected value
in state x̃ by substituting x̃ into some expression, as we do not know a closed-
form expression for the expected value of a neural network function. Instead,
the algorithm uses the method of [44] to compute upper and lower bounds on
the expected value of a neural network function, which we describe in Section 5.
This upper bound is then plugged it into eq. (4).

If no violations to eq. (4) are found, the verifier concludes that the Expected
Decrease condition is satisfied. Otherwise, for any counterexample x̃ to eq. (4),
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the algorithm checks if x̃ ∈ X\Xt and Vν(x) < 1/(1− p) and if so adds it to the
counterexample set Cdecrease.
Initial and safety conditions. The Initial and Safety conditions are checked using
IA-AI. To check the Initial condition, the verifier collects the set CellsX0

of all
grid cells that intersect the initial set X0, and for each cell in CellsX0

checks if

sup
x∈ cell

Vν(x) > 1. (5)

The supremum is bounded from above via IA-AI by propagating interval bounds
across neural network layers. If no violations are found, the verifier concludes
that Vν satisfies the Initial condition. Otherwise, vertices of any grid cells which
are counterexamples to eq. (5) and which are contained in X0 are added to Cinit.
Analogously, to check the Safety condition, the verifier collects the set CellsXu
of all grid cells that intersect the unsafe set Xu, and for each cell checks if

inf
x∈ cell

Vν(x) <
1

1− p
. (6)

If no violations are found, the verifier concludes that Vν satisfies the Safety
condition. Otherwise, vertices of any grid cells which are counterexamples to
eq. (6) and which are contained in Xu are added to Cunsafe.
Algorithm output and correctness. If all three checks are successful and no coun-
terexample is found, the algorithm concludes that πθ guarantees reach-avoidance
with probability at least p and outputs the policy pθ. Otherwise, it proceeds to
the next learner-verifier iteration where computed counterexamples are added to
sets Cinit, Cunsafe and Cdecrease to be used by the learner. The following theorem
establishes correctness of the verifier module, and its proof can be found in [68].

Theorem 6 ([68]). Suppose that the verifier verifies that the certificate Vν sat-
isfies eq. (4) for each x̃ ∈ X̃e, eq. (5) for each cell ∈ CellsX0 and eq. (6) for each
cell ∈ CellsXu . Then the function Vν is an RASM for the system with respect to
Xt, Xu and p.

Optimizations. The verification task can be made more efficient by a discretiza-
tion refinement procedure. In particular, the verifier may start with a coarse grid
and decomposes each grid cell on demand into a finer discretization in case the
check when some RASM condition fails. This procedure can be used recursively
to refine further in the case when elements of the decomposed grid cannot be
verified. In case the recursion encounters a grid element that violates Eq. 4 even
for τ = 0, the refinement procedure terminates unsuccessfully with the grid cen-
ter point as a counterexample of the RASM condition. This optimization with
a maximum recursion depth of 1 has been applied in [68].

5 Bounding Expected Values of Neural Networks

We now present the method for computing upper and lower bounds on the
expected value of a neural network function over a given probability distribution.
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We are not aware of any existing methods for solving this problem, so believe
that this is a result of independent interest.

To define the setting of the problem at hand, let x ∈ X ⊆ Rn be a sys-
tem state and suppose that we want to compute upper and lower bounds the
expected value Eω∼d[V (f(x, π(x), ω))]. Here d is a probability distribution over
the stochastic disturbance space N ⊆ Rp from which the stochastic disturbance
is sampled independently at each time step. As noted in Section 2, we assume
that d is a product of independent univariate probability distributions. Alterna-
tively, the method is also applicable if the support of d is bounded.

The method first partitions the stochastic disturbance space N ⊆ Rp into
finitely many cells cell(N ) = {N1, . . . ,Nk}. Let maxvol = maxNi∈cell(N ) vol(Ni)
and minvol = minNi∈cell(N ) vol(Ni) denote the maximal and the minimal vol-
ume of any cell in the partition with respect to the Lebesgue measure over Rp,
respectively. Also, for each ω ∈ N let F (ω) = V (f(x, π(x), ω)). The upper and
the lower boundd on the expected value are computed as follows

Eω∼d
[
V
(
f(x, π(x), ω)

)]
≤

∑
Ni∈cell(N )

maxvol · sup
ω∈Ni

F (ω),

Eω∼d
[
V
(
f(x, π(x), ω)

)]
≥

∑
Ni∈cell(N )

minvol · inf
ω∈Ni

F (ω).

Each supremum (resp. infimum) in the sum is then bounded from above (resp. from
below) via interval arithmetic abstract interpretation by using the method of [30].

If the support of d is bounded, then no further adjustments are needed.
However, if the support of d is unbounded, maxvol and minvol may not be finite.
In this case, since we assume that d is a product of univariate distributions, the
method first applies the probability integral transform [48] to each univariate
probability distribution in d in order to reduce the problem to the case of a
probability distribution of bounded support.

6 Discussion on Extension to General Certificates

The focus of this survey has primarily been on three concrete classes of super-
martingale certificate functions in stochastic systems, namely RSMs, SBFs and
RASMs, and the learner-verifier framework for their computation. For each class
of supemartingale certificate functions, the learner module encodes the defining
conditions of the certificate as a differentiable loss function whose minimiza-
tion leads to a candidate certificate function. The verifier module then formally
checks whether the defining conditions of the certificate function are satisfied.
These checks are performed by discretizing the state space and using interval
arithmetic abstract interpretation and the previously discussed method for com-
puting bounds on expected values of neural network functions.

It should be noted that the design of both the learner and the verifier modules
was not specifically tailored to any of the three certificate functions. Rather, both
the learner and the verifier follow very general design principles that we envision
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are applicable to more general classes of certificate functions. In particular, we
hypothesize that as long as the state space of the system is compact and a
certificate function can be defined in terms of

– exact and expected value evaluations of Lipschitz continuous functions, and
– inequalities between such evaluations imposed over state space regions,

then the learner-verifier framework in Section 4 may present a promising ap-
proach to learning and verifying the certificate function. In particular, the learner-
verifier framework presents a natural candidate for automating the computa-
tion of any supermartingale certificate function that may be designed for other
properties in the future. Furthermore, while RSMs, SBFs and RASMs exhibit
a supermartingale-like behavior which is fundamental for their soundness, the
learner-verifier framework does not rely or depend on their supermartingale-like
behavior. Hence, we envision that the learner-verifier framework could also be
used to compute other classes of stochastic certificate functions.

Even more generally, note that all certificate functions that we have consid-
ered so far are of the type X → R. One could also consider extensions of the
learner-verifier framework to learning certificate functions of different datatypes.
For instance, the work [43] uses a learner-verifier framework to learn an induc-
tive transition invariant of type X ×X → R that certifies safety in deterministic
systems. On the other hand, lexicographic ranking supermartingales are a multi-
dimensional generalization of RSMs of type X → Rk that provide a more efficient
and compositional approach to proving probability 1 termination in probabilistic
programs [5,22]. Studying possible extensions of the learner-verifier framework
for stochastic systems to learn certificate functions of different arity of both
domain and codomain is a very interesting direction of future work.

7 Related Work

Existing learning-based methods for learning and verification of certificate func-
tions in deterministic and stochastic systems have been discussed in Section 1. In
this section, we overview some other existing methods for verification and con-
trol of stochastic dynamical systems, as well as some other uses of martingale
theory in stochastic system verification.
Abstraction-based methods. Another class of approaches to stochastic dynami-
cal system control with formal safety guarantees are abstraction based meth-
ods [56,42,14,63,60,25]. These methods consider finite-time horizon systems and
approximate them via a finite-state Markov decision process (MDP). The control
problem is then solved for the obtained MDP and the computed policy is used
to exhibit a policy for the original stochastic dynamical system. The key differ-
ence in applicability between abstraction based methods and our framework is
that abstraction based methods consider finite-time horizon systems, whereas
we consider infinite-time horizon systems.
Safe control via shielding. Shielding is an RL framework that ensures safety in
the context of avoidance of unsafe regions by computing two control policies –
the main policy that optimizes the expected reward, and the backup policy that
the system falls back to whenever the safety constraint may be violated [7,36,29].
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Constrained MDPs. A standard approach to safe RL is to solve constrained
MDPs (CMDPs) [8,28] which impose hard constraints on expected cost for one or
more auxiliary cost functions. Several efficient RL algorithms for solving CMDPs
have been proposed [59,4], however their constraints are only satisfied in expec-
tation, hence constraint satisfaction is not formally guaranteed.
RL reward specification and neurosymbolic methods. There are several works
on solving model-free RL tasks under logic specifications. In particular, several
works propose methods for designing reward functions that encode temporal
logic specifications [6,12,32,31,45,34,13,40,39]. Formal methods have also been
used for extraction of interpretable policies [62,61,35] and safe RL [10,67,11].
Deterministic systems with stochastic controllers. Another way to give rise to a
stochastic dynamical system is to consider a dynamical system with deterministic
dynamics function and use a stochastic controller, which helps in quantifying
uncertainty in the controller’s prediction. Formal verification of deterministic
dynamical systems with Bayesian neural network controllers has been considered
in [43]. In particular, this work also uses a learner-verifier method to learn an
inductive invariant for the deterministic system which formally proves safety.
Supermartingales for probabilistic program analysis. Supermartingales have also
been used for the analysis of probabilistic programs (PPs). In particular, RSMs
were originally introduced in the setting of PPs to prove almost-sure termi-
nation [15] and have since been extensively used, see e.g. [19,20,5,47,22]. The
work [1] proposed a learner-verifier method to learn an RSM in the PP. Super-
martingales were also used for safety [23,64,21], cost [65] and recurrence and
persistence [16] analysis in PPs.

8 Conclusion

This paper presents a framework for learning-based control with formal reach-
ability, safety and reach-avoidance guarantees in stochastic dynamical systems.
We present a learner-verifier framework in which a neural network control pol-
icy is learned together with a neural network certificate function that formally
proves that the property of interest holds with at least some desired proba-
bility p ∈ [0, 1]. For certification, we use supermartingale certificate functions.
The learner module encodes the defining certificate function conditions into a
differentiable loss function which is then minimized to learn a candidate certifi-
cate function. The verifier then formally verifies the candidate by using interval
arithmetic abstract interpretation and a novel method for computing bounds on
expected values of neural networks.

The learner-verifier framework presented in this work opens several interest-
ing directions for future work. The first is the design of supermartingale cer-
tificates for more general properties of stochastic systems and the use of our
learner-verifier framework for their computation. The second is to study and un-
derstand the general class of certificate functions in stochastic systems that the
learner-verifier can be used to compute, possibly going beyond supermartingale
certificate functions. Finally, on the practical side, a venue for future work is
to explore methods for reducing the computational cost of the framework and
extensions that can handle more complex and higher dimensional systems.
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