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1 Introduction and the main result

Let (X,X ) be a measurable space with σ-algebra X , and assume that points in X are
measurable, i.e. {x} ∈ X for every x ∈ X. For any (non-negative) measure µ on (X,X ),
and any X -measurable f : X → R :=R∪{±∞} we denote by µf the integral of f with
respect to µ, whenever this makes sense.

We denote by M :=M(X) the cone of all measures on X with values in [0,+∞], and
by Rb(X), respectively R+(X) the linear space of all bounded, respectively non-negative,
X -measurable R-valued functions. We endow M with the coarsest σ-algebraM for which
all functions of the form µ 7→ µB ∈ [0,+∞] with B ∈ X are measurable for the Borel
σ-algebra of the extended half-line. We denote by N :=N(X) the space of all N0-valued
elements of M. Here and elsewhere we set N0 :=N0 ∪{+∞}. It holds that N ∈M.

When (X,X ) is a Borel space, for each γ ∈ N there exists an at most countable family
of not necessarily distinct points xi ∈ X such that γ =

∑γX
i=1 δxi

, see e.g. [17, Prop. 6.2].
By a random measure on X we mean any (M,M)-valued random field. If a random

measure γ is concentrated on N, we say that it is a point process in X. Following [17,
§2.1] we say that a measure in M is s-finite if it is the sum of at most countably many
finite measures in M. Everywhere in the following let σ be an s-finite element of M. A
random measure ν has intensity (measure) σ if

E
[
νB
]

= σB , B ∈ X . (1.1)
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Poisson measures Among all point processes, a remarkable and ubiquitous example
is given by the Poisson point process γ with intensity σ, i.e., the point process in X with
Laplace transform

E
[
e−γf

]
= exp

[
−
∫ (

1− ef(x)
)

dσ(x)

]
, f ∈ R+(X) , (1.2)

see e.g. [14, §3.1] or [17, Thm. 3.9].
We denote by Pσ the law of a Poisson point process with intensity σ, and we write γ ∼

Pσ to indicate that γ is distributed as Pσ. Recall the following characterization of γ ∼ Pσ,
usually known as the Mecke identity.

Theorem (Mecke identity for Pσ [20, Satz 3.1], [17, Thm. 4.1]). Let X and σ be as above
and let γ be a random measure over X. Then, the following statements are equivalent:

(i) γ is a Poisson point process with intensity σ;

(ii) for every measurable function F : M×X→ [0,+∞),

E

[∫
F (γ, x) dγ(x)

]
=

∫
E
[
F (γ + δx, x)

]
dσ(x) . (1.3)

Main result Let P be the subset of probability measures in M. It holds that P ∈M.
If a random measure is almost surely an element of P, we say that it is a random
probability (measure).

The aim of this work is to show how the law Dσ of a Dirichlet–Ferguson process
(see §2 below) may be regarded as the natural analog of the Poisson measure Pσ when
one replaces N with P.

Theorem 1.1 (A Mecke-type characterization of Dσ). Let σ be a finite diffuse (i.e.,
atomless) measure on (X,X ), and set β :=σX. Then, for any random measure η over X,
the following statements are equivalent:

(i) η is a Dirichlet–Ferguson process on X with intensity σ;

(ii) for every measurable function G : M→ R+,

E
[
ηXG(η)

]
=

∫ ∫ 1

0

E
[
G
(
(1− t)η + tδx

)]
(1− t)β−1 dtdσ(x) . (1.4)

Moreover, if η is a Dirichlet–Ferguson process on X with intensity σ, then for every
non-negative (or bounded) measurable function F : P ×X→ R,

E

[∫
F (η, x) dη(x)

]
=

∫ ∫ 1

0

E
[
F
(
(1− t)η + tδx, x

)]
(1− t)β−1 dtdσ(x) , (1.5)

and for every non-negative (or bounded) measurable function R : P ×X× [0, 1]→ R,

E

[∫
R
(
η, x, η(x)

)
dη(x)

]
=

∫ ∫ 1

0

E
[
R
(
(1− t)η + tδx, x, t

)]
(1− t)β−1 dtdσ(x) . (1.6)

In formula (1.6) we set η(x) := η({x}).
Remark 1.2. Formula (1.4) is a special case of formula (1.5), while formulas (1.5)
and (1.6) are in fact equivalent. Formulas (1.5) and (1.6) are an integral reformulation
of the celebrated stick-breaking construction of Dσ obtained by J. Sethuraman, [24, §3].
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Remark 1.3. By Theorem 1.1, the law of a random probability measure η on X is the
Dirichlet–Ferguson measure Dσ with intensity σ if and only if, for every measurable
function G : P → R+

E
[
G(η)

]
=

∫ ∫ 1

0

E
[
G
(
(1− t)η + tδx

)]
(1− t)β−1 dtdσ(x) .

Remark 1.4. Note that, when σ is a probability measure on X, in formulas (1.4)–(1.6),
the factor (1 − t)β−1 becomes 1. If σ is not a probability measure, let σ :=σ/β ∈ P,
denote by B the Beta function and by

dBa,b(t) :=
ta−1(1− t)b−1 dt

B(a, b)

the Beta distribution on [0, 1] with shape parameters a > 0 and b > 0. Then we have the
following equality of probability measures on X× [0, 1]:

dσ(x) (1− t)β−1 dt = dσ(x)β(1− t)β−1 dt = dσ(x) dB1,β(t) .

Remark 1.5. A first version of this paper appeared as the arXiv preprint 1706.07602.
The main difference with the present work is that the space X in the preprint was
assumed to be a locally compact Polish space. After the publication of arXiv:1706.07602,
G. Last [16] proved a characterization of the Dirichlet–Ferguson process that uses a
weaker form of equality (1.5). More precisely, by [16, Thm. 1.5], if a random measure
satisfies, for all measurable functions F : M×X→ [0,+∞],

E

[∫
F (η, x) dη(x)

]
=

∫ ∫ 1

0

E
[
F
(
(1− t)η + tδx, x

)]
dG(t) dσ(x)

for some probability measure G on [0, 1], then G = B1,β and so η is a Dirichlet–Ferguson
process with intensity σ. Note that this result does not imply Theorem 1.1 since for-
mula (1.4) is a special case of (1.5).

Remark 1.6. Other characterizations of the Dirichlet–Ferguson measure and of the
Dirichlet distribution are also available, e.g.: [23] for a characterization of (functionals)
of Dσ via contour-integral methods, [13] for a characterization via c-transform, and [6]
for a characterization via Fourier transform.

Motivations and applications The Mecke identity (1.3) and its generalization to other
random measures, e.g. the Georgii–Nguyen–Zessin formula for Gibbs measures [11, 21,
19], have important applications in the theory of point processes and stochastic dynamics
of interacting particle systems, see e.g. [5, 18]. In a similar fashion, when η is a measure-
valued Lévy process, suitable Mecke-type identities for η have been a key tool in the
study of stochastic dynamics of measure-valued diffusion processes having the law of η
as their invariant measure. Among such Mecke-type identities we have also identity (2.4)
for the gamma measure Gσ (see §2 below), used to establish an integration-by-parts
formula for the Gσ-invariant diffusions in [4, 15].

After the publication of this work as the arXiv preprint 1706.07602, several applica-
tions of our main result have appeared. We briefly summarize them in §4.

Plan of the work Below, in §2, we discuss preliminary notions and facts, and in §3 we
prove Theorem 1.1 and discuss several corollaries, including a characterization of the
Dirichlet distribution.
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2 Preliminaries

The Dirichlet–Ferguson measure For integer k ≥ 2, let ∆k−1 denote the standard
closed (k − 1)-dimensional simplex in Rk, i.e.,

∆k−1 :=
{

(y1, . . . , yk) : yi ≥ 0, y1 + · · ·+ yk = 1
}

.

Write R+ :=(0,∞). For α := (α1, . . . , αk) in Rk+ , the Dirichlet distribution with parame-
ter α is the probability measure on ∆k−1 denoted by Dα and defined by

Dα(A) :=
1

B(α)

∫
A

(
k∏
i=1

yαi−1
i

)
dHk−1(y1, . . . , yk) (2.1)

for each measurable subset A of ∆k−1, where Hk−1 denotes the Hausdorff measure
on ∆k−1. In formula (2.1), B(·) is the multivariate Beta function.

For integer k ≥ 2, an ordered partition is a vector (X1, . . . , Xk) with the following
properties:

(a) Xi ∈ X is a non-empty measurable subset of X for each i ≤ k;

(b) the sets Xi form a partition of X, i.e. they are pairwise disjoint and their union
coincides with X.

We denote by Pk(X) the set of ordered partitions X := (X1, . . . , Xk) of X. For each
X ∈ Pk(X), we define the evaluation map evX : M→ Rk+ by

evX : η 7−→ (ηX1, . . . , ηXk) .

Note that the map evX is measurable, and so is its restriction evX : P → ∆k−1.

Lemma 2.1. Let P and Q be probability measures on (M,M). Then, P = Q if and only
if (evX)∗P = (evX)∗Q for every X ∈ Pk(X) and every k ≥ 2.

Proof. The forward implication is trivial, thus it suffices to show the reverse one. Since P
and Q are probability measures, by e.g. [3, Lem. I.9.4], it suffices to verify that P and Q
coincide on any algebra of sets generating the σ-algebra M. By definition of push-
forward measure, for each Borel measurable A ⊆ Rk+,

P
[
ev−1

X (A)
]

= Q
[
ev−1

X (A)
]

,

and the conclusion follows sinceM is generated by all sets of the form ev−1
X (A) with A ⊆

Rk+ Borel measurable, k ≥ 2, and X ∈ Pk(X).

The Dirichlet–Ferguson process η with intensity σ, see [9], is the unique random
probability measure over X satisfying the following two conditions:

(a) for each B ∈ X with σB = 0, we have ηB = 0 a.s.;

(b) for each integer k ≥ 2 and X ∈ Pk(X) additionally so that σXi > 0 for each i ≤ k,

evX(η) ∼ DevX(σ) , (2.2)

i.e., the push-forward of Dσ under evX is equal to the Dirichlet distribution DevX(σ)

with parameter (σX1, . . . , σXk).
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The gamma measure A compound Poisson process ν on X is a random measure
on (X,X ) of the form

νA =

∫
R+

∫
A

sdγ(x, s) ,

where γ is a Poisson point process on X̂ :=X×R+ with a given intensity σ̂. When

σ̂ = σ ⊗ s−1e−s ds , (2.3)

the corresponding compound Poisson process is termed gamma process with intensity σ,
and we denote its law by Gσ. It has Laplace transform

E
[
e−νf

]
= exp

[
−
∫

log
(
1 + f(x)

)
dσ(x)

]
, f ∈ R+(X) ,

see [26, Eqn. (7)] or [17, Example 15.6].

Lemma 2.2 (Mecke identity for the gamma measure). Let ν be a gamma process on X
with finite diffuse intensity σ. Then, for every measurable function G : M×X→ R+,

E

[∫
G(ν, x) dν(x)

]
=

∫ ∫ ∞
0

E
[
G(ν + sδx, x)

]
e−s dsdσ(x) . (2.4)

Proof. Let σ̂ be as in (2.3) and γ ∼ Pσ̂ be a Poisson point process on X × R+ with
intensity σ̂. By definition of the gamma process and by (1.3) for γ, for every measurable
function G : M×X→ R+,

E

[∫
G(ν, x) dν(x)

]
=

= E

[∫
X×R+

G

(∫ ∞
0

s′ dγ( · , s′), x
)
sdγ(x, s)

]

= E

[∫
X×R+

G

(∫ ∞
0

s′ dγ( · , s′) +

∫
R+

s′ dδ(x,s)( · , s′), x

)
sdσ̂(x, s)

]

=

∫
X

∫ ∞
0

E [G(ν + sδx, x)] e−s dsdσ(x) .

It was shown in [9, §4, Thm. 2, p. 219] (see also [25, Lem. 1]) that the Dirichlet–
Ferguson measure Dσ is the ‘simplicial part’ of Gσ. More precisely, denote by Γ(·) the
gamma function and by

dGk,θ(s) :=
θ−k

Γ(k)
sk−1e−

s
θ ds

the gamma distribution on R+ with shape parameter k ∈ R+ and scale parameter θ ∈ R+.
Further consider the bi-measurable bijection R : M \ {0} →P ×R+ given by

R(ν) :=
( ν

νX
, νX

)
.

Then, ν is a gamma process with intensity σ if and only if ν/νX is a Dirichlet–Ferguson
process with intensity σ, the random fields ν/νX and νX are independent, and νX is a
Gβ,1-distributed R+-valued random variable. (Recall that β = σX.) Equivalently,

R∗ Gσ = Dσ ⊗Gβ,1, (2.5)

i.e., the push-forward of Gσ under R is the product measure Dσ ⊗Gβ,1.
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3 Proof and corollaries

Proof of Theorem 1.1. We first prove that a Dirichlet–Ferguson process η satisfies for-
mula (1.5), hence (1.4). Let η ∼ Dσ, and R be a random variable with values in R+ and
gamma distribution Gβ,1, independent of the random probability η. Note that E[R] =
Γ(β+1)

Γ(β) . We define a random measure ν :=Rη. By (2.5) we have ν ∼ Gσ and, by construc-
tion, R = νX and η = ν

νX . Then we have

E

[∫
F (η, x) dη(x)

]
=

Γ(β)

Γ(β + 1)
E

[
R

∫
F (η, x) dη(x)

]
=

Γ(β)

Γ(β + 1)
E

[∫
F (η, x)R dη(x)

]
=

Γ(β)

Γ(β + 1)
E

[∫
F
( ν

νX
, x
)

dν(x)

]
.

Using Lemma 2.2, we continue the above chain of equalities as follows:

=
Γ(β)

Γ(β + 1)
E

[∫ ∫ ∞
0

F

(
ν + sδx
νX+ s

, x

)
e−s dsdσ(x)

]
=

Γ(β)

Γ(β + 1)
E

[∫ ∫ ∞
0

F

(
Rη + sδx
R+ s

, x

)
e−s dsdσ(x)

]
=

Γ(β)

Γ(β + 1)

∫ ∫ ∞
0

∫ ∞
0

E

[
F

(
rη + sδx
r + s

, x

)]
e−s dsdGβ,1(r) dσ(x)

=
1

Γ(β + 1)

∫ ∫ ∞
0

∫ ∞
0

E

[
F

(
r

r + s
η +

s

r + s
δx, x

)]
e−s ds rβ−1e−r dr dσ(x) ,

whence the change of variable t = s
r+s (for a fixed s) yields

=
1

Γ(β + 1)

∫ ∫ ∞
0

∫ 1

0

sβ−1 (1− t)β−1

tβ−1
e−

s(1−t)
t E

[
F
(
(1− t)η + tδx, x

)] s dt

t2
e−s dsdσ(x)

=
1

Γ(β + 1)

∫ ∫ 1

0

(1− t)β−1

tβ+1
E
[
F
(
(1− t)η + tδx, x

)]
dσ(x)

∫ ∞
0

e−ssβe−
s(1−t)

t dsdt

=

∫ ∫ 1

0

E
[
F
(
(1− t)η + tδx, x

)]
(1− t)β−1 dtdσ(x) .

To prove formula (1.6), choose F (η, x) = R
(
η, x, η(x)

)
in (1.5), which gives

E

[∫
R
(
η, x, η(x)

)
dη(x)

]
=

=

∫ ∫ 1

0

E
[
R
(
(1− t)η + tδx, x, (1− t)η(x) + t

)]
(1− t)β−1 dtdσ(x)

=

∫ ∫ 1

0

E
[
R
(
(1− t)η + tδx, x, t

)]
(1− t)β−1 dtdσ(x) ,

where we used that, for a fixed η ∈ P, we have η(x) = 0 for σ-a.e. x ∈ X, as a
consequence of (1.1) for η ∼ Dσ in place of ν ∼ Gσ.

For the reverse implication we consider a random measure η overX that satisfies (1.4).
We need to show that law η = Dσ. Let us first show that η ∈ P a.s. Choosing G ≡ 1

in (1.4), we get
E
[
ηX
]

= 1 . (3.1)

In particular, ηX <∞ a.s. Next, choosing G(η) = ηX in (1.4) and using (3.1), we get

E
[
(ηX)2

]
=

∫ ∫ 1

0

E
[
(1− t) ηX+ t

]
(1− t)β−1 dtdσ(x) (3.2)
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=

∫
dσ(x)

∫ 1

0

(
(1− t) + t

)
(1− t)β−1 dt = 1 .

By (3.1) and (3.2), the random variable ηX has zero variance, hence it is deterministic.
Thus, ηX = 1 a.s., so η ∈P a.s. Hence, formula (1.4) becomes

E
[
G(η)

]
=

∫ ∫ 1

0

E
[
G
(
(1− t)η + tδx

)]
(1− t)β−1 dtdσ(x) , (3.3)

and it holds for every measurable bounded function G : P → R.
Let B ∈ X be such that σB = 0. By (3.3),

E [ηB] =

∫ ∫ 1

0

E
[
(1− t) ηB + t1B(x)

]
(1− t)β−1 dtdσ(x)

= E [ηB]β

∫ 1

0

(1− t)β dt+ σB

∫ 1

0

t(1− t)β−1 dt

=
β

β + 1
E
[
ηB
]

+ 0 ,

which implies
E
[
ηB
]

= 0 .

Hence, ηB = 0 a.s.
Let k ≥ 2 and X = (X1, . . . , Xk) ∈ Pk(X) be an ordered partition with σXi > 0 for

all i ≤ k. In order to prove that η ∼ Dσ, it remains to show that the distribution of the
random vector evX(η) in Rk (in fact, in ∆k−1) is DevX(σ).

We recall that the Hadamard product � : Rk ×Rk → Rk is defined by

s(1) � s(2) :=(s(1)1 s(2)1 , . . . , s(1)k s
(2)

k ), s(i) = (s(i)1 , . . . , s
(i)

k ) ∈ Rk, i = 1, 2 .

This binary operation is obviously associative and commutative.
Write α := evX(σ). Fix any s = (s1, . . . , sk) ∈ Rk, and let g(x) :=

∑k
i=1 si1Xi

(x) ∈
Rb(X). Then

ηg = s · evX(η), η ∈P , (3.4)

and
σ(gn) = s�n ·α, n ∈ N0 . (3.5)

For n ∈ N, we get, by (3.3)–(3.5),

E
[(
s · evX(η)

)n]
=

∫ ∫ 1

0

E
[(

(1− t) ηg + tg(x)
)n]

(1− t)β−1 dtdσ(x)

=

n∑
i=0

(
n

i

)
E
[
(ηg)i

] ∫
g(x)n−i dσ(x)

∫ 1

0

(1− t)β+i−1tn−i dt

=

n∑
i=0

(
n

i

)
B(β + i, n− i+ 1)E

[(
s · evX(η)

)i
(s�(n−i) ·α)

]
=

n∑
i=0

n! Γ(β + i)

i! Γ(β + n+ 1)
E
[(
s · evX(η)

)i
(s�(n−i) ·α)

]
=

n∑
i=0

(n)n−i
(β + n)n+1−i

E
[(
s · evX(η)

)i
(s�(n−i) ·α)

]
=

β

β + n
E
[(
s · evX(η)

)n]
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+

n−1∑
i=0

(n)n−i
(β + n)n+1−i

E
[(
s · evX(η)

)i]
(s�(n−i) ·α) ,

where (r)k denotes the falling factorial: (r)0 := 1 and (r)k := r(r−1) · · · (r−k+1) for k ∈ N.
Therefore,

E
[(
s · evX(η)

)n]
=
β + n

n

n−1∑
i=0

(n)n−i
(β + n)n+1−i

E
[(
s · evX(η)

)i]
(s�(n−i) ·α) (3.6)

=

n−1∑
i=0

(n− 1)n−1−i

(β + n− 1)n−i
E
[(
s · evX(η)

)i]
(s�(n−i) ·α) .

The recurrence relation (3.6), with initial condition E
[(
s ·evX(η)

)0]
= 1 for every s and X,

uniquely determines the moments

E
[(
s · evX(η)

)n]
, s ∈ Rk , n ∈ N0 . (3.7)

By the polarization identity (see e.g. [2, Ch. 2 §2.1, Eqn. (2.7)], p. 132), we therefore
conclude that the recurrence relation (3.6) uniquely determines the moments

E
[(
s1 · evX(η)

)
· · ·
(
sn · evX(η)

)]
, s1, . . . , sn ∈ Rk , n ∈ N0 .

In turn, this implies that the moments

E
[
(ηX1)j1 · · · (ηXk)jk

]
, j1, . . . , jk ∈ N0 , (3.8)

too are uniquely determined by (3.6). Since η is a random probability measure,
(evX)∗ law η is supported on the unit simplex ∆k−1. Thus, each of the moments in (3.8) is
bounded in modulus by 1. Hence, by [1, Ch. 8, §5.7, Thm. 5.10, p. 735] there exists a
unique measure µX on Rk such that∫

Rk

tj11 · · · t
jk
k dµX(t1, . . . , tk) = E

[
(ηX1)j1 · · · (ηXk)jk

]
.

Since the Dirichlet–Ferguson process satisfies (1.4), we conclude that

(evX)∗ law η = µX = DevX(σ) ,

which proves the assertion.

Remark 3.1. We stress that our proof of the reverse implication in Theorem 1.1 is
different from the proof of the analogous characterization for the gamma measure, [12,
Thm. 6.3] for the case of Rd. Indeed, the latter proof relies on a characterization of the
Laplace transform of the random measure in question by some ordinary differential equa-
tion. This approach seems however not possible in the case of the Dirichlet–Ferguson
measure, the Laplace transform of which is a kind of infinite-variable hypergeometric
function (see [6, §4]). On the other hand, a proper analog of our proof (through the
uniqueness of the solution of a multidimensional moment problem under an appropriate
bound on the moments) allows one to prove the corresponding statement for the gamma
measure.

Corollary 3.2 (Moments of the Dirichlet distribution). Let α = (α1, . . . , αk) ∈ Rk+ and
assume that |α| :=α1 + · · ·+ αk = 1. Then
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(i) The moments of the Dirichlet distribution Dα satisfy the following recurrence
relation:∫

Rk

n∏
i=1

(s(i) · y) dDα(y) (3.9)

=
1

n

∑
ξ⊆{1,...,n}
|ξ|<n

(
n

|ξ|

)−1 ∫
Rk

∏
i∈ξ

(s(i) · y) dDα(y)

(
3

j∈{1,...,n}\ξ
s(j)

)
·α

for all n ∈ N and s(1), . . . , s(n) ∈ Rk. (Here, |ξ| denotes the number of elements of
the set ξ.) In particular, for all n ∈ N and s ∈ Rk,∫

Rk

(s · y)n dDα(y) =
1

n

n−1∑
i=0

∫
Rk

(s · y)i dDα(y)
(
s�(n−i) ·α

)
. (3.10)

(ii) For all n ∈ N and s ∈ Rk,∫
Rk

(s · y)n dDα(y) = Zn(s�1 ·α, . . . , s�n ·α) ,

where Zn denotes the cycle index polynomial of the symmetric group Sn.

Proof. Choose X = [0, 1], dσ(x) = dx, and choose a partition X such that evX(σ) = α.
Then formula (3.10) follows from (3.6) if we note that, for β = 1,

(n− 1)n−1−i

(β + n− 1)n−i
=

(n− 1)n−1−i

(n)n−i
=

1

n
.

Next, note that the right hand side of formula (3.9) is an n-linear symmetric form of
s(1), . . . , s(n) ∈ Rk, and for s = s(1) = · · · = s(n), the right hand side of (3.9) is equal to the
right hand side of formula (3.10). Hence, (3.9) follows from (3.10) and the polarization
identity. The second statement follows by noticing that the cycle index polynomials of Sn

satisfy the recurrence relation (3.10), e.g. [6, Eqn. (2.2)].

Remark 3.3. Statement (ii) of Corollary 3.2 is shown in [6, Thm. 3.3] by different
methods.

Remark 3.4. By using formula (3.6), one can immediately extend Statement (i) of
Corollary 3.2 to the case of a general α ∈ Rk+.

Corollary 3.5 (Moments of the Dirichlet–Ferguson measure). Let σ ∈P (i.e. β = 1) and η
be a Dirichlet–Ferguson process. Then, the moments of η satisfy the following recurrence
relation:

E

[
n∏
i=1

ηgi

]
=

1

n

∑
ξ⊆{1,...,n}
|ξ|<n

(
n

|ξ|

)−1

E

∏
i∈ξ

ηgi

∫ ∏
j∈{1,...,n}\ξ

gj dσ (3.11)

for all n ∈ N and g1, . . . , gn ∈ Rb(X). In particular, for all n ∈ N and g ∈ Rb(X),

E [(ηg)n] =
1

n

n−1∑
i=0

E
[
(ηg)i

] ∫
gn−i dσ .

Proof. In the case where the functions g1, . . . , gn ∈ Rb(X) take on a finite number of
values, formula (3.11) follows from (3.4) and (3.9). In the general case, formula (3.11)
follows by approximation and the dominated convergence theorem.
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Remark 3.6. Similarly to Remark 3.4, one can easily extend Corollary 3.5 to the case of
a general finite intensity measure σ.

Remark 3.7. A non-recursive formula for the moments of the Dirichlet–Ferguson mea-
sure, namely the full expansion of (3.11), may be found in [8, Lemma 5.2].

Corollary 3.8 (A characterization of the Dirichlet distribution). Let k ≥ 2. Let θ be a
probability measure on Rk+. Then, the following statements are equivalent:

(i) θ is the Dirichlet distribution Dα with parameter α ∈ Rk+;

(ii) for every non-negative measurable function g : Rk+ → R,∫
Rk

+

|y| g(y) dθ(y) =

∫
Rk

+

∫ 1

0

(1− t)|α|−1
k∑
i=1

αi g
(
(1− t)y + tei

)
dtdθ(y) . (3.12)

Here |y| := y1 + · · ·+ yk for y ∈ Rk+ and (ei)i=1,...,k is the canonical basis in Rk.

Moreover, for every non-negative (or bounded) measurable function f : ∆k−1 ×
{1, . . . , k} → R,∫

∆k−1

k∑
i=1

yif(y, i) dDα(y) =

∫
∆k−1

∫ 1

0

k∑
i=1

αi f
(
(1− t)y + tei, i

)
(1− t)|α|−1 dtdDα(y) .

(3.13)

Proof. Assume (i) holds. Similarly to the proof of Corollary 3.2, choose X = [0, 1],
dσ(x) = |α|dx, so that β = |α|, and choose a partition X such that evX(σ) = α. Let η be
a Dirichlet–Ferguson process. Applying formula (3.3) to G := g ◦ evX and recalling (2.2)
gives∫

∆k−1

g(y) dDα(y) = E
[
g(ηX1, . . . , ηXk)

]
=

k∑
i=1

∫
Xi

∫ 1

0

E
[
g
(
(1− t) ηX1, . . . , (1− t) ηXi + t, . . . , (1− t) ηXk

)]
(1− t)|α|−1 dtdx

=

∫
∆k−1

∫ 1

0

k∑
i

αig
(
(1− t)y + tei

)
(1− t)|α|−1 dtdDα(y) .

Thus, (3.12) holds for θ = Dα. Formula (3.13) is proven analogously by applying
formula (1.5) to

F (η, x) =

k∑
i=1

f
(

evX(η), i
)
1Xi

(x) .

In order to prove that formula (3.12) uniquely identifies the measure θ, one uses
essentially the same arguments as in the proof of Theorem 1.1. One first shows that∫

Rk
+

dθ(y) |y|n = 1 , n = 1, 2 ,

which implies |y| = 1 θ-a.s., i.e., θ is concentrated on ∆k−1. Choosing g(y) :=(s · y)n one
finds the recurrence relation for the moments of θ.

4 Known applications

Our main result Theorem 1.1 has already found several applications —in particular
to the study of stochastic dynamics for measure-valued processes— some of which we
briefly discuss below.
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The Dirichlet–Ferguson diffusion In the case when X is a closed Riemannian man-
ifold with volume measure σ, the first named author constructs and studies in [7] a
P-valued Markov diffusion η with invariant measure Dσ. Theorem 1.1 plays a crucial
role in establishing an integration-by-parts formula for (whence the closability of) the
Dirichlet form on L2(Dσ) corresponding to η, thus showing that η is a candidate for the
‘Brownian motion’ of the celebrated L2-Wasserstein geometry on P.

Integration by parts for the discrete gradient In [10], I. Flint and G.L. Torrisi study
a discrete gradient operator for functions on P defined as

D(x,t)F (µ) :=F
(
(1− t)µ+ tδx

)
− F (µ) , x ∈ X , t ∈ [0, 1] , µ ∈P .

Using our Theorem 1.1, the authors prove an integration-by-parts formula for the
discrete gradient, [10, Thm. 1.1], computing the associated divergence (adjoint operator)
with respect to the L2(σ ⊗ B1,β)-scalar product. This is subsequently used to obtain
a Gaussian bound for the Wasserstein distance between any first-order integral of a
Dirichlet–Ferguson process and a standard Gaussian random variable [10, Thm. 1.3],
and to prove a Gaussian quantitative CLT for the first chaos [10, Cor. 5.3].

The Fleming–Viot process The Dirichlet–Ferguson measure Dσ is the unique sta-
tionary, reversible distribution for the Fleming–Viot process with parent-independent
mutation, see, e.g., [8, Thm.s 5.3, 5.4]. Similarly to [7], one can use identity (1.5) to
re-establish an integration-by-parts formula for the Dirichlet form of the Fleming–Viot
process which was shown by other means in [22, §5.1].
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