
Cavity quantum electrooptics
by

Rishabh Sahu

April, 2023

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:
Jan Maas, Chair

Johannes M. Fink
Onur Hosten
Peter Rabl





The thesis of Rishabh Sahu, titled Cavity quantum electrooptics, is approved by:

Supervisor: Johannes M. Fink, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Onur Hosten, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Peter Rabl, Technische Universität München, TUM School of Natural
Sciences, Garching, Germany

Signature:

Defense Chair: Jan Maas, ISTA, Klosterneuburg, Austria

Signature:

Signed page is on file





© by Rishabh Sahu, April, 2023
CC BY-NC-SA 4.0 The copyright of this thesis rests with the author. Unless otherwise indicated,
its contents are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. Under this license, you may copy and redistribute the material in
any medium or format. You may also create and distribute modified versions of the work. This
is on the condition that: you credit the author, do not use it for commercial purposes and

share any derivative works under the same license.

ISTA Thesis, ISSN: 2663-337X

ISBN: 978-3-99078-030-5

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee, and that this thesis has not been submitted for a higher degree to any other
university or institution.

I certify that any republication of materials presented in this thesis has been approved by the
relevant publishers and co-authors.

Signature:

Rishabh Sahu
April, 2023

Signed page is on file

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/




Abstract

About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring
any physical quantity with a precision beyond a certain point is not possible because of an
omnipresent inherent noise. We call this - the quantum noise. Certain physical processes
allow this quantum noise to get correlated in conjugate physical variables. These quantum
correlations can be used to go beyond the potential of our inherently noisy universe and obtain
a quantum advantage over the classical applications.
Quantum noise being inherent also means that, at the fundamental level, the physical quantities
are not well defined and therefore, objects can stay in multiple states at the same time. For
example, the position of a particle not being well defined means that the particle is in multiple
positions at the same time. About 4 decades ago, we started exploring the possibility of using
objects which can be in multiple states at the same time to increase the dimensionality in
computation. Thus, the field of quantum computing was born. We discovered that using
quantum entanglement, a property closely related to quantum correlations, can be used to
speed up computation of certain problems, such as factorisation of large numbers, faster than
any known classical algorithm. Thus began the pursuit to make quantum computers a reality.
Till date, we have explored quantum control over many physical systems including photons,
spins, atoms, ions and even simple circuits made up of superconducting material. However,
there persists one ubiquitous theme. The more readily a system interacts with an external
field or matter, the more easily we can control it. But this also means that such a system can
easily interact with a noisy environment and quickly lose its coherence. Consequently, such
systems like electron spins need to be protected from the environment to ensure the longevity
of their coherence. Other systems like nuclear spins are naturally protected as they do not
interact easily with the environment. But, due to the same reason, it is harder to interact
with such systems.
After decades of experimentation with various systems, we are convinced that no one type of
quantum system would be the best for all the quantum applications. We would need hybrid
systems which are all interconnected - much like the current internet where all sorts of devices
can all talk to each other - but now for quantum devices. A quantum internet.
Optical photons are the best contenders to carry information for the quantum internet. They
can carry quantum information cheaply and without much loss - the same reasons which has
made them the backbone of our current internet. Following this direction, many systems, like
trapped ions, have already demonstrated successful quantum links over a large distances using
optical photons. However, some of the most promising contenders for quantum computing
which are based on microwave frequencies have been left behind. This is because high energy
optical photons can adversely affect fragile low-energy microwave systems.
In this thesis, we present substantial progress on this missing quantum link between microwave
and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced
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by using resonant cavities for all the involved modes leading to observation of strong direct
coupling between optical and microwave frequencies. With this strong coupling we are not only
able to achieve almost 100% internal conversion efficiency with low added noise, thus presenting
a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of
a microwave mode using optics. The strong coupling regime also leads to direct observation of
dynamical backaction effect between microwave and optical frequencies which are studied in
detail here. Finally, we also report first observation of microwave-optics entanglement in form
of two-mode squeezed vacuum squeezed 0.7 dB below vacuum level. With this new bridge
between microwave and optics, the microwave-based quantum technologies can finally be a
part of a quantum network which is based on optical photons - putting us one step closer to a
future with quantum internet.
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CHAPTER 1
Introduction

It was about 100 years ago when Einstein, Podolsky and Rosen (EPR) started a debate about
the fundamental nature of reality [EPR35]. They argued against a new interpretation of reality
given by quantum physics saying that, under certain circumstances, the postulates of quantum
physics violate the local realism of the universe. Einstein was especially against quantum
physics because quantum physics not only dealt with an inherent randomness in the universe
but also it seemed to postulate non-local realism or information travelling faster than the
speed of light - something which was impossible according to his theory of relativity. Just two
months after EPR published their argument, Niels Bohr shot it down essentially saying that
non-locally correlated information is random until casually connected [Boh35]. In other words,
only random information is instaneously transferred while any useful signal is still limited to
speed to light as theory of relativity predicts. Erwin Schrödinger also weighed in on the topic
and gave the phenomenon its name - "quantum entanglement" and called it "the characteristic
trait of quantum physics" [Sch35].

Optical photons, with their ability to preserve quantum mechanical properties even at room
temperature, pioneered the fundamental experiments verifying the existence of quantum
entanglement about 50 years ago [FC72]. This was followed by demonstration of quantum
entanglement between various other entities [HHHH09] such as electrons, spins, atoms, ions,
mechanical vibrations and even living objects [LTN+22].

Today, we know quantum entanglement as a resource which separates quantum applications
from their classical counterparts giving them distinct advantages in computation, commu-
nication and meteorology [HHHH09]. In the field of quantum communication, it has given
birth to a whole new field of quantum cryptography dealing with securely distributing in-
formation that is guaranteed to be free of eavesdropping by the fundamental laws of uni-
verse [KLH+15, XMZ+20]. On top of that quantum dense coding has shown higher channel
capacities on channels that can share entanglement [GLLG19]. Experimentally, optical photons
have already been used to distribute entanglement over tens of kilometer [YML+20]. This can
be further scaled with the help of quantum repeaters [CdF+05, RNH+12, RKRR14, RWM+18,
BRM+20, PHB+21, KGK+23, AEE+22]. On the meteorology front, quantum entanglement
can be used to go beyond the classical precision limit or yield better statistical precision with
fewer measurements [GLM11, DRC17].

Nevertheless, one of the most important applications of entanglement is in computation [GI19].
We have witnessed significant growth in classical computation power by making the transistor -
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1. Introduction

the smallest logical element - smaller and smaller. But now these transistor sizes have reached
the atomic limits and it gets more and more difficult to keep the computation purely classical
at these scales. The solution is to use a quantum computer which uses quantum entanglement
to gain a computational advantage in solving many problems over classical computers.
Over the last two decades, many systems have been used to demonstrate quantum control
and stability for quantum computation - photons [ZWD+20], trapped ions [MCD+21], elec-
tron spins [PTD+12], nuclear spins [PTD+13], quantum dots [BHJ+22] and other dopants
in solids such as nitrogen-vacancy centers [PG08], atomic ensembles [BL20], topological
qubits [NSS+08] and superconducting circuits [AAB+19]. Each platform has its own pros and
cons. Photons have excellent coherence times since they don’t interact with the environment
but, due to the same reason, it is a challenge to make efficient two-qubit gates for photons
since they also don’t easily interact with each other [SP19]. Trapped ions have shown great
coherence times and one-and two-qubit gate fidelities but slow gate times and scalabilty issues
remain a challenge [BCMS19]. Nuclear spins also boast very long coherence time (on the
order of hours) owing to their isolation from noisy environment but the same property makes
it really hard to efficiently control them [ZHA+15]. This makes weakly interacting nuclear
spins an ideal candidate for quantum information storage or quantum memories.
Microwave based platforms for quantum computation, such as superconducting circuits [HWFZ20]
and electrostatically defined quantum dots [XPv+21], provide a sweet spot high level of con-
trol (gate times ∼ 100 ns) and good coherence times (going up to ∼ 1 ms). A distinct
advantage of microwave-based qubits is that these can simply be etched on a silicon chip
much like today’s classical microprocessors [ZKW+22]. As a result, the best systems for
superconducting qubits boast ∼50 qubits [AAB+19] and same for quantum dot based system
is up to 16 qubits [BHJ+22]. A quantum computer based on superconducting circuits even
achieved quantum supremacy (it made calculations impossible to complete on a classical
computer) in 2019 and showed tangible improvement in logical errors using more physical
qubits [AAA+23]. However, since they are based on microwave frequencies, they can only
operate at millikelvin temperatures where the microwave frequency modes are in their ground
state and superconductors are near loss-less.
The progress of quantum technologies in the last decades has unambiguously shown that no sin-
gle quantum platform is the universal solution. We need to combine the best features of all the
available platforms together. In the future, a network of remote hybrid quantum nodes, capable
of storage and processing quantum information, seamlessly communicating with each other
via distributed entanglement based on optical photons and bolstered by quantum repeaters,
would be needed for general-purpose quantum computing and communication [KBK+15].
A distributed quantum network of quantum information processing nodes which can all share
entanglement would be an amazing resource [Kim08]. Distributed quantum computing would
allow not only for scalability of quantum computation but also cross-verification of classically
intractable quantum processor results [CCC20, KMC22]. Apart from distributed quantum
computing [ACC+22], quantum communication [PPH+22] and quantum cryptography related
uses, a quantum network would also be useful for distributed quantum sensing [GBB+20, ZZ21,
CVM+23]. It is now a well known result that a distributed network of entangled quantum
sensors can have significantly more sensitivity when measuring an aggregate property of all the
separate measurements [ZZ21, LZL+21]. Using this result, proposals have been made for a
globally synchronised clock network [KKB+14, MZF+18], spatially separated telescopes sharing
entanglement which can measure a distant events with better accuracy [GJC12, DBJK+21,
KBDGL19], and quantum phase imaging [PKD18, ZZL+21]. Another application is blind
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quantum computing, where by classically interacting with two quantum processors which share
entanglement and solving a part of problem on each processor, one can securely conduct
remote quantum computation without any processor knowing the final result of quantum
computation [HZM+17].

Motivated with this future of hybrid quantum networks, efforts have been made to con-
nect various localized quantum platforms with flying optical photons. Various qubit plat-
forms have shown remote entanglement between remote quantum nodes including trapped
ions [KGK+23], atomic ensembles [CdF+05], optically-addressed quantum dots [DSG+16],
rare-earth ions [UCB+12] and qubits based on imperfections in NV centers [BHP+13]. Notably,
trapped ions were shown to be entangled over a distance 230 m [KGK+23] and 3-node entan-
glement distribution was demonstrated with NV center qubits via optical photons [PHB+21].
Nevertheless, qubit platforms based on microwave technology - superconducting qubits and
electrically addressed quantum dots have yet not been connected via room temperature
channels owing to their incapability of directly coupling to optical frequency photons.

The lack of this vital connection did not go unnoticed and proposals to achieve such links
started surfacing about 10 years ago. One of the common theme for these proposals was to use
mechanics or phonons to link microwave and optics together [SP11, RL11, BVAC13] owing to
rapid development of optomechanics [GHV+09, SAR+09, PW09, AKM14] and experimental
demonstrations of coupling between microwave photons and phonons [THRL08, RNM+10].
Other proposals included electrooptic interfaces [Tsa10, Tsa11] atomic interfaces such as clouds
of ultracold atoms [HKR+12], coupling superconducting qubits to spins in NV centers via
magnetic coupling [MWT+10], via rare-earth ion doped crystals [OLB+14] and magneto-optic
modulation [WCL14].

One of the first experimental demonstrations used mechanical motion to couple microwave
and optics together. They were almost immediately divided into two categories - low frequency
capacitively-coupled mechanics with a membrane [APP+14, BSS+14] and high frequency
piezoelectrically-coupled mechanics [BVAC13]. The former use a mechanical motion of a
membrane, part of which is capacitively coupled to a microwave resonator and another part to
mirror of an optical Fabry-Perót cavity. Using such system, a significant result from the group
at NIST came already in 2014 boasting bidirectional coherent conversion efficiency of ∼ 10%
between classical microwave and optics signals using a thin film silicon nitride membrane.
Although, the conversion efficiency was quite high, the noise performance of the transducer
was not up to the mark owing to the low frequency (1.8 MHz) mechanical oscillator used which
was far from its ground state even at millikelvin temperatures. Additionally, it also limited the
conversion bandwidth of the transducer. For these systems, the main source of noise - thermal
noise in the mechanical mediatory mode - is shared with both the microwave and optical modes.
Since the source of the noise is the same, the output noise on the microwave and optics side
is correlated. Using this fact, one can measure the noise from one of the reflected output
signals and use a feedforward protocol to effectively cancel the noise from the other output. 4
years later, the group used this technique to bring down the added noise level to 38 quanta
while simultaneously achieving a higher conversion efficiency of 47% [HBU+18]. This was
further improved to just 3.2 added noise photons for the same conversion efficiency [BKU+22].
Recently, the group has demonstrated readout of a superconducting qubit in the optics
domain using their transducer [DUM+22]. It was the first demonstration yet which shows
that the qubit suffers from minimal backaction due to thermal noise added by the transducer.
Opto-mechanical transducers, meanwhile, were also demonstrated fully-integrated on a chip by
Arnold et al. in 2020 [AWB+20]. The demonstrated total bidirectional conversion efficiency
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was 1% with the output noise on the order of 100s of quanta.

On chip designs are a lot more prevalent on the piezo-optomechanics side [VSPC16, HFZ+20,
JSD+20, HPC+22, WDB+22]. In these devices, a phononic-photonic cavity is used where
mechanical and optical modes are co-localized for high opto-mechanical coupling. The
mechanical modes are also coupled to microwave electric field via piezoelectric effect. The
mechanical mode in these devices are also of higher frequency - usually on the order of
gigahertz. As a result, these modes are easier to cool to the ground state. In 2019, Forsch
et al. showed first successful microwave-optics transduction with a mechanical mode in its
ground state using a pulsed optical pump although with a limited conversion efficiency of
5.5× 10−12 [FSW+20]. One main factor limiting these transducers is the microwave coupling
efficiency which is limited by impedance mismatch between the microwave transmission line
and high impedance piezo-electric device. A solution to this is to go around this problem by
fabricating a qubit along side of the transducer on the chip and use a hybridised microwave-
mechanics mode to avoid coupling an itinerant microwave signal directly to the transducer via
a waveguide. This was demonstrated by Mirhosseini et al. in 2020 where by using a transmon
qubit directly coupled to the transducer, they were able to measure Rabi-oscillations of the
qubit in the optical domain - an astounding feat for the time [MSKP20]. The total conversion
efficiency improved significantly from other similar systems and total detection efficiency from
qubit to the photon detector was reported as ∼10−6. However, the main drawback of this
system is that the scattered optical pump pulse generates a lot of quasi-particles which breaks
the superconductivity and destroys the state of the qubit. This problem is not observed for
previously-stated opto-mechanical transducers [DUM+22].

Apart from mechanical systems, microwave-optics transduction has also been demonstrated with
cold atom systems such as Rydberg atoms using 4-wave and 6-wave mixing processes [HVG+18,
VGH+19, PMFS19] with efficiencies usually hovering around ∼ 1%. There is one notable
exception where Kumar et al. showed an internal (external) conversion efficiency of 58%(2.5%)
and thermal added noise referred to input1 of only 0.6 quanta. Here also, the total conversion
efficiency suffered from poor microwave coupling efficiency of ∼0.06 (optical coupling efficiency
is good 0.58) [KSS+23]. Transduction has also been shown with ferro-magnonic mode called
the Kittle mode [HOT+16, ZZH+20] and with rare-earth ion magneto-optical devices [BRX+20]
albeit with very low conversion efficiencies ∼10−10.

All the transduction approaches that we discussed till now use an intermediary mode that can
simultaneously couple to microwave and optics modes. However, there is a direct means of
achieving microwave to optics coupling.

Electro-optics effect or its linear version - the Pockels effect - was discovered in late 19th
century by Friedrich Carl Alwin Pockels who discovered that applying electric field to certain
crystals would change their refractive index. A varying electric field in time - say of a microwave
frequency - would apply the same modulation to the optical light. This turned out to be a
boon for our current communication technology. Our current high bandwidth communication
is based on microwave frequencies which are the fastest data rates that can be processed by
classical microprocessors. However, microwave frequencies travel in metal waveguides with
high transmission losses. Encoding the same information on high-bandwidth optics through
electro-optic modulation changed the whole scheme since light travelled in optical fibers
with extremely low loss ∼ 0.4 dB/km. Moreover since optical fibers are cheap and small,
electro-optic modulators became ubiquitous in our standard communication technology.

1described later in the introduction
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There was still one problem with electro-optic modulators. They are quite inefficient owing
to really small nonlinearities in only a few special crystals. The microwave power needed to
modulate with any significant modulation depth even in the best available electrooptic crystals,
like lithium niobate, needs microwave powers ∼ 1 W. About 30 years ago, people realized
that whispering gallery mode (WGM) resonators, which confine the fields in a concave space,
offered high quality factors which can effectively enhance the nonlinearity in the crystal by
increasing the interaction time with the nonlinear material, making them an attractive pursuit
for many application which relied on high optical nonlinearities [SMM+16, LCC17]. Proposals
and experiments with optical WGM resonators combined with 2D microwave resonators began
in early 2000s [CHL01, ISMM03, MSI+07] to resonantly enhance the electrooptic coupling.
Using cavities to enhance the effective nonlinearity increased the electrooptic modulation
efficiency but at the cost of giving up modulation bandwidth since high quality cavities needed
would have smaller bandwidths.
Around 2010, Mankei Tsang proposed a quantum electrooptic device which would be triply
resonant - optical pump and optical and microwave signals are all resonant modes[Tsa10, Tsa11].
With the right parameters, such a device would be able to do direct quantum transduction
between microwave and optical photons. Two main approaches sprouted from following the
proposed endeavour. On-chip approaches based on a 2D microwave cavity coupled to a
thin film optical WGM cavity [JPB+16, SZR+17, FZC+18, WMA+20, HSZ+20, MWP+20,
FXL+21, XSF+21] and another with a 3D microwave cavity which contained the optical
WGM resonator (made from a z-cut lithium niobate wafer) inside realized by Rueda et
al. [RSC+16, HRS+20, SHR+22].
The 2D microwave cavity approach uses a thin film aluminium nitride (AlN) optical WGM
resonator. The main advantage of this approach is that the super thin film of AlN allows a
stronger overlap between the microwave and optical fields allowing vacuum coupling rates
of ∼ 300 Hz. The higher vacuum coupling rate allows for higher cooperativities with less
optical pump power. Fan et al. demonstrated a conversion efficiency of 2% with a transducer
working at 2 K [FZC+18]. However, there are major drawbacks to using thin-film and 2D
cavities with small mode volumes. Since a superconducting microwave cavity is in close
proximity to high energy optics, there is a good possibility to break Cooper pairs and produce
quasi-particles which would inevitably shift the microwave mode resonance and increase internal
loss rates [WMA+20, FXL+21]. Moreover, for smaller mode volumes, undesirable optical
nonlinear effects such as photorefractive effect and thermo-optic effect can also shift the
optical resonance making it impossible to pump more than a certain amount of power in the
optical cavity [JLL+17, JPM+19].
In this thesis, we work with a WGM 3D microwave resonator which houses a bulk 5 mm radius
and ∼ 100 µm thick WGM optical resonator made out of lithium niobate [HRS+20, SHR+22].
Our machined cm-sized aluminium microwave cavity does not suffer heavily from quasi-particle
poisoning. The reason is that the produced quasi-particles on the surface get diluted in the bulk
limiting their density increase which keeps the mode from deforming. Nevertheless, we discuss
the small effects from quasi-particles in chapter 8. Similarly, the bulk lithium niobate supports
a large optical mode volume which prevents nonlinearities like photorefractive and thermo-optic
effect from kicking in even for large amount of pumped optical power. Consequently, we are
able to inject ∼ 100 mW of optical power without any undesirable effects making our system
the first to demonstrate high electrooptic cooperativities ∼ 1.
With high electrooptic cooperativity, we are able to do a lot of challenging experiments
such as high efficiency bi-directional microwave-optics quantum transduction, observe direct
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dynamical backaction between microwave and optics (similar to what people observed in
optomechanics [AKM14]) and even entanglement between microwave and optics. These
experiments form the crux of this thesis.
Transduction of quantum signals require good transduction efficiency as well as extremely low
added noise [ZSST20]. Efficiency is easy to understand, however we need to be careful how
we describe the noise performance of the transducer. A good noise merit to capture noise
properties of the transducer is to define added noise referred to the input Nin,

Nij,in = Ni,out/ηij (1.1)
where i, j ∈ {e, o} represent the microwave or optics port, Ni,out is the output noise at one
port and ηij is the conversion efficiency in j → i direction. An intuitive way to understand
Nin is to imagine it as the number of thermal noise photons measured at the output of the
transducer for every single transduced photon from the same port. This means when Nin = 1,
there is an equal probability to detect a noise photon and a transduced signal photon. When
Nin < 1, we call it quantum-enabled transducer regime, where certain heralded quantum
communication protocols which utilize heralded nonlinear detection method can be used to
transduce quantum information [KRH+21].
A quantum-limited transducer, that can deterministically transduce quantum states, needs
Nin < 0.5 for a conversion efficiency close to 1 [Cav82, ARC+15]. In this case, we need to also
consider the effect of quantum noise Nq = 1/2|1− 1/η| which includes the loss in efficiency
as an extra penalty. The total effective noise referred to the input is then Nin, tot = Nin +Nq.
Fig. 1.1 shows the overview of the state of the art in quantum transduction by plotting the
total added noise Nin, tot as a function of Nin and η and marking various reported results as
markers of different shapes.
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Figure 1.1: Total added noise as a function of thermal added noise Nin and transduction
coefficient η. The red dashed line shows the boundary below which a transducer is quantum-
enabled which is suitable for heralded transduction schemes. The red solid line shows the
boundary for quantum-limited transduction where deterministic transduction schemes start
to work with finite fidelities. Various markers on the plot mark the state of art transducer
experiments which have clearly reported their added noise and efficiency values, typically
referred to device input/output ports at millikelvin temperatures.

There are a number of results which are in the quantum-enabled regime including the one’s
presented in this thesis [SHR+22]. However, the limit of quantum-limited conversion is still
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far from reach. The total conversion efficiencies need to be improved significantly which
are currently limited by coupling efficiencies of the transducer cavities to the microwave and
optical waveguides. Thus, cavities with much better quality factors need to be engineered
such that they can be overcoupled to the waveguides. However, quantum-limited transduction
is not the only way towards deterministic quantum transduction.
Quantum dense coding has already showed that a combination of classical communication
and quantum entanglement can improve the channel capacity of a communication chan-
nel [GLLG19]. We can use a similar technique here to establish qubit state transfer via an
optical channel. If entanglement can be shared between two qubits, the quantum channel
capacity, assisted by classical communication, is never zero irrespective of the quality of
entanglement shared [WCFZ21, AMFR22]. This is in contrast to a quantum channel powered
only by transduction used twice - first microwave to optics and then optics to microwave -
which can drop to zero under a certain required set of parameters [WCFZ21]. Compared
to using transduction, the channel capacity for entanglement is also always higher for the
same parameters of a transducer (since it is assisted by classical channel) [RHBF19, ZWZ+20].
Consequently, using teleportation protocols is more desired than using direct transduction.
However, to produce microwave-optics entanglement, extremely low thermal mode occupancies
are needed since a small amount of thermal noise is enough to overpower any quantum
correlations and kill any produced entanglement. This is a huge challenge to overcome since
microwave mode is at a low frequency (∼ GHz) and tend to easily get hot. Producing
entanglement requires a lot of optical pump power which would inevitably heat the nearby
microwave cavity and also produce quasi-particles, which will contribute in adding to this
thermal noise. We discuss these challenges and ways to overcome them in more details in
chapter 9 where we demonstrate production of microwave-optics entanglement using our
device.
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CHAPTER 2
Cavity electrooptics

2.1 Electromagnetic waves in dielectrics
As the name suggests, an electromagnetic (EM) wave is comprised of oscillating electric and
magnetic fields which are usually treated as modes of a harmonic oscillator with a specific
frequency in classical electrodynamics. These electric and magnetic fields of an EM wave
can interact with the charges and magnetic fields of the materials they are passing through.
The materials in turn reacts on application of such external fields. Application of an external
electric field would cause formation of positive and negative regions polarizing the material.
For an ideal linear medium, the polarization P⃗ is proportional to the applied external field E⃗,

Pi = ϵ0χ
(1)
ij E

j (2.1)

where ϵ0 is the permittivity of vacuum and χ(1)
ij is the first-order electric susceptibility. χ(1)

ij

is a second rank tensor which is due to the fact that the induced polarization need not be
parallel to the applied electric field.

For linear media, the polarization can only oscillate with the same frequency as the applied
external field. As a result, an EM wave interacting with a linear material can at most only pick
up a phase change as it is passing through the material. However, the first order proportionality
breaks down for most materials when high amplitude electric fields are applied. This is because
with high amplitude electric fields, the motion of charges in the materials cannot be described
as a simple harmonic oscillator anymore.

With high amplitude electric field, the polarization response is nonlinear and is expressed in a
power series as,

Pi = ϵ0χ
(1)
ij E

j + ϵ0χ
(2)
ijkE

jEk + ϵ0χ
(3)
ijklE

jEkEl + ... (2.2)

where, χ(2)
ijk is the second order electric susceptibility tensor of rank three and χ

(3)
ijkl is the

third order electric susceptibility tensor of rank four and so on. In principle the higher order
susceptibility tensors are always present but they are exponentially weaker as their order
increases. Thus, their effect is visible only with high magnitude electric fields.

Another thing to note is that if the dielectric material is centrosymmetric, then the even-orders
of the susceptibility are zero. The reason is that, for a centrosymmetric crystal, if the applied
electric field changes sign (E⃗ → −E⃗), the polarization must also change sign (P⃗ → −P⃗ ).
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2. Cavity electrooptics

However, for the even terms, the sign change cancels out, leaving the only possibility for them
to be zero.
The higher order nonlinearities allow for more exotic phenomena than a simple phase shift
to an EM wave. One of the most useful applications of higher order nonlinearity is to mix
different frequency EM waves to produce sum and difference frequency generation. This is
discussed analytically in section 2.2.

Electro-optic effect This is a nonlinear effect where an external electric field induces a
refractive index change in the material [Boy08]. The change in refractive index is described in
terms of the impermeability tensor ηij = 1/ϵij, where ϵij is the relative permeability,

∆ηij = rijkE
k +RijklE

kEl (2.3)
where rijk and Rijkl are the linear (rank three) and the quadratic (rank four) electro-optic
tensors respectively. These tensors are responsible for Pockels and Kerr effect respectively. In
case of the Pockels effect, the change in refractive index is linearly proportional to the applied
electric field E while in the Kerr effect, the refractive index is proportional to the square of the
applied electric field. Note that Pockels effect is applicable only for a slowly varying applied
electric field (compared to frequency of light). Nevertheless, the frequency of the applied
electric field can be on the order of multiple gigahertz.
The Pockels effect corresponds to the second order nonlinearity and is related to the χ(2)

ijk

tensor as (see Appendix A of Ref. [RS18]),

χ
(2)
ijk = −n

4

2 rijk (2.4)

where, n is the refractive index. As explained earlier, since Pockels effect is a second-order
(even) nonlinearity, it is absent in centrosymmetric crystals.
Moreover, since the permeability tensor ϵij is real and symmetric, its inverse ηij must also be
real and symmetric. This means that the linear electrooptic tensor rijk must also be symmetric
in the first two indices. Historically, people have studied electro-optic materials way before
nonlinear optics came along. As a result, the electro-optic tensor formalism was established
with the first two indices contracted as rijk → rhk with,

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for ij = 11,
2 for ij = 22,
3 for ij = 33,
4 for ij = 23 or 32,
5 for ij = 13 or 31,
6 for ij = 12 or 21

(2.5)

In this thesis, we work only with lithium niobate crystals - a triclinic 3m structure with the
linear electro-optic tensor [Mat78]

rhk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.6)
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with r13 = 8.6, r22 = 3.4, r33 = 30.8 and r51 = 28 pm/V1.

2.2 Wave mixing of electromagnetic fields in nonlinear
media

In this section, we work with the simplest case of a monochromatic EM wave given by,

E(r, t) =
[︂
E1(t)u(r)e−iωt + E∗

1(t)u∗(r)eiωt
]︂

e (2.7)

where, E1(t) is the slowly-varying electric field amplitude, u(r) = eik.r with k being the wave
vector of magnitude |k| = ω/c′ and c′ = (µϵ)−1/2 is the wave velocity in the medium, and e
is a unit vector in the direction of the electric field.
Here, we consider the easiest case of three-wave mixing through a second-order non-linearity.
The second order polarization changes in the presence of external electric fields as

P (2) = ϵ0χ
(2)
ijkE

jEk. (2.8)

Consider two monochromatic fields E1 and E2 oscillating with frequencies ω1 and ω2 (ω1 ≫ ω2)
respectively. Substituting this in the above equation, we see that the second order polarization
can oscillate with new frequencies,

P (2) =ϵ0χ
(2)
ijkE

j
1E

k
2e

−i(ω1+ω2)t + ϵ0χ
(2)
ijkE

j∗
1 E

k∗
2 e

i(ω1+ω2)t

+ϵ0χ
(2)
ijkE

j∗
1 E

k
2e

i(ω1−ω2)t + ϵ0χ
(2)
ijkE

j
1E

k∗
2 e

−i(ω1−ω2)t.
(2.9)

The first two terms in the above expansion describe the sum frequency generation (SFG) and
the last two terms difference frequency generation (DFG). The newly scattered frequency EM
wave due to the polarization term P (2) oscillates with frequency ω3, which is ω3 = ω1 + ω2 or
ω3 = ω1−ω2 for SFG and DFG respectively. In principle, both these processes can occur in the
same system, however, for that, the participating EM waves need to satisfy some additional
constraints known as phase matching. These will be discussed later in section 2.4.
The energy stored in the polarization is calculated as

dU (2) =
∫︂

dt⟨E3.Ṗ ⟩

= 2ϵ0χ
(2)
ijk

[︂
Ei

3E
j∗
2 E

k∗
1 + Ei

3E
j∗
2 E

k
1

]︂
+ c.c.

(2.10)

Here, the terms, which do not satisfy either of SFG or DFG relation, have an oscillating
term in time domain and therefore, have a vanishing integral. The factor 2 in the Eqn. 2.10
is characteristic to second-order non-linearity and comes from the permutation relations of
χ(2) [RS18, ABDP62].
The stored energy in a volume V is, then, described as∫︂

⟨dU (2)⟩ = 2
∫︂

dV ϵ0χ
(2)
ijk

[︂
Ei

3E
j∗
2 E

k∗
1 + Ei

3E
j∗
2 E

k
1

]︂
+ c.c. (2.11)

The right hand side of the above equation is basically the spatial mode overlap of the involved
electric fields. The exact form of E or the distribution of electric fields governs the field
overlap and gives us the so-called ’phase matching’ conditions. When these phase matching
conditions are met, the spatial overlap is the maximum and the χ(2) non-linearity is observed
(via generation of new frequencies) to its full extent.

1Values for a congruent lithium niobate crystals.
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2.3 Quantum treatment of electric field interaction in
non-linear media

Although there are many classical applications of non-linear effects, this work focuses on
quantum applications. Hence, the quantum treatment of the interaction between the electric
fields in dielectric media is needed. For this purpose, we define the electric field operator [MW95]

Êj(r, t) = i

√︄
ℏω

2ϵVeff
(ψj(r)âje

−iωjt − ψ†
j(r)â†

je
iωjt), (2.12)

where, ψj is the spatial mode distribution over the effective volume Veff and âj and â†
j are the

annihilation and creation operators respectively.
The interaction Hamiltonian Ĥint is obtained from Eqn. 2.11 after substituting the electric
field operator from above

Ĥint = 2ϵ0χ
(2)

√︄
ℏ3ω1ω2ω3

8ϵ1ϵ2ϵ3V1V2V3

∫︂
dV (ψ3ψ

†
2ψ

†
1â3â

†
2â

†
1 + ψ3ψ

†
2ψ1â3â

†
2â1) + c.c. (2.13)

The two terms in the interaction Hamiltonian represent the two possible processes - the
first term represents the difference frequency generation ω1 = ω2 − ω3 and the second term
represents generation of sum frequency ω2 = ω1 + ω3.
The interaction Hamiltonian can be reorganized as Ĥint = ℏg0(â3â

†
2â

†
1 + â3â

†
2â1) + c.c., where

the integral over the volume has been absorbed into a coupling constant g0,

g0 = 2ϵ0χ
(2)

√︄
ℏω1ω2ω3

8ϵ1ϵ2ϵ3V1V2V3

∫︂
dV (ψ3ψ

†
2ψ

†
1). (2.14)

This coupling constant g depends only on the geometry, which in turn defines the electric field
distribution, for a given material or the value of χ(2). This means a better coupling constant
can be engineered by engineering a bigger overlap between the electric fields and reducing
their effective volume. This is achieved via cavities, which support the said fields and ensure
maximal overlap between them. The coupling constant g0 is usually referred to as the vacuum
coupling rate. It describes the rate of nonlinear electrooptic coupling for a single photon.

2.4 Cavity quantum electro-optics
In this work, we use the electrooptic nonlinearity where an optical field is modulated by
an external applied electric field. Consequently, the effective refractive index of dielectric
(affecting the optical EM fields) can be modulated by up to several gigahertz. This modulation
produces two optical sidebands through difference and sum frequency generation. Classically,
a simple electro-optic modulator can be made by putting a electro-optic material, such as
Lithium Niobate, between a parallel plate capacitor connected to a voltage oscillating with, for
example, microwave frequency. Such devices have found application in various domains such
as high-speed communication via optics, laser printing and digital data recording. However,
these devices are not fit for quantum applications such as quantum transduction between
microwave and optical photons, essentially due to the low efficiency of modulation, which stems
from ineffective coupling between the electric and optical fields. In other words, the coupling
constant g from Eqn. 2.14 is really small resulting in Vπ ∼ 6 V. Compared to the single
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photon voltages in a typical superconducting qubit which is ∼ µV, there is multiple orders of
magnitude difference making commercially available electrooptic modulators unsuitable for
efficiently converting single photons from qubits.

The high coupling constant required for quantum applications can be obtained by maximizing
the electric field overlap and reducing the effective mode volume (see Eqn. 2.14). Both of
these conditions can be met by smartly designing cavities for both microwave and optical fields
which simultaneously maximize the overlap between the fields and prolong the time which
the fields spend interacting. This idea of cavity quantum electro-optics was first theorized
by Mankei Tsang in 2010 [Tsa10] (although a similar system for classical applications was
already demonstrated by Ilchenko et al. [ISMM03]). Mankei suggests simultaneously placing an
electro-optic dielectric in an optical cavity as well as in the capacitor of a microwave resonator
as shown in Fig. 2.1.
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âe

âo

âtâpâs

χ(2)
exκo,

exκe,

ωpωp

ωe

- FSR ωp+ FSR

= FSR

Figure 2.1: A generic cavity electro-optic setup. âp, âs and ât are the annihilation operators
corresponding to the optical pump and the Stokes and anti-Stokes sideband respectively. âo

and âe represent the optical and microwave mode respectively. κi,ex represent the exterinsic
coupling rate of optical and microwave cavities.

In the shown setup, the optical cavity (with one partially reflecting mirror) supports optical
modes with different frequencies separated by the free spectral range (FSR). If we carefully
choose the capacitance C and inductance L of the microwave resonator, we can match the
optical FSR with the resonance frequency of the microwave resonator. In this case, this ensures
energy conservation when photons are converted between optical sideband modes and the
microwave mode. Thus, for this case, matching the microwave mode frequency with the
optical FSR is enough to satisfy the phase-matching condition allowing the microwave and
optical fields to interact with each other.

The Hamiltonian of the full system is, then, described as,

Ĥ = Ĥ0 + Ĥint, with (2.15)
Ĥ0 = ℏwpâ

†
pâp + ℏwsâ

†
sâs + ℏwtâ

†
t ât + ℏweâ

†
eâe, (2.16)

Ĥint = ℏg0(âpâ
†
sâ

†
e + âpâ

†
t âe) + c.c. (2.17)

where the full Hamiltonian is divided into a constant Ĥ0 and the part with the mode interaction
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Ĥint. âp, âs and ât describe the center optical pump mode2, the lower sideband Stokes mode
and the upper sideband anti-Stokes mode annihilation operators respectively. âe describes the
low frequency electrical part, the microwave mode annihilation operator. They oscillate with
their respective frequencies but since we impose the phase-matching conditions, ωs = ωp − ωe

and ωt = ωp + ωe. Also, note that in our system ωp, ωt, ωs ∼ 193 THz and ωe ∼ 9 GHz.
The interaction Hamiltonian in Eqn. 2.17 has two terms. The first term âpâ

†
sâ

†
e represents

the downconversion of the the optical pump mode âp to the optical Stokes mode and the
microwave mode. The second term âpâ

†
t âe is a sum frequency generation term where the

optical pump and the microwave mode combine to produce the optical anti-Stokes mode. The
conjugate â†

pâtâ
†
e of the second term captures the downconversion of anti-Stokes optical mode

to produce the optical pump mode along with the microwave mode. The modes interact via
the vacuum coupling constant g0 which has already been described in Eqn. 2.14.
The vacuum coupling rate g0 is enhanced by the optical pump mode. If we drive the âp mode
with a coherent tone, assuming a non-depleting pump, the interaction Hamiltonian in the
Eqn. 2.17 is approximated as [HRS+20]

Ĥint = ℏg0
√
np(â†

sâ
†
e + âsâe)⏞ ⏟⏟ ⏞

downconversion

+ ℏg0
√
np(â†

t âe + âtâ
†
e)⏞ ⏟⏟ ⏞

beam-splitter

, (2.18)

where, the optical pump mode has been approximated to be non-depleting coherent mode
with field amplitude αp = √np. np is the number of the optical pump photons in the optical
resonator. As a result, the coupling between the signal modes (the optical sidebands and the
microwave modes) is effectively enhanced by the presence of the optical pump photons. This
results in parametrically enhanced coupling constant g = g0

√
np. Intuitively, in presence of

more pump photons, a signal photon has higher probability of finding a pump photon and
interacting with it resulting in better coupling rates.
The first part of the Hamiltonian in Eqn. 2.18, effectively the two-mode squeezing term, can
be used to amplify a microwave or optical (at the Stokes mode frequency) signal via the
process of stimulated down-conversion or it can be used to produce a two-mode squeezed state
between microwave and optical frequency via spontaneous downconversion. The second part
is a beam-splitter like interaction between the optical anti-Stokes mode ât and the microwave
mode âe. Similar to a beam-splitter where a photon number different ports beam-splitter is
conserved, in this beam-splitter like interaction a photon from one mode is destroyed when
a photon in other mode is produced to conserve the photon number. As a result, this term
can be used to transduce photons from one mode to another (microwave-optics conversion)
fundamentally without adding any additional noise.
In an optical system with symmetric FSR around the âp mode, the microwave mode will interact
with both the optical Stokes and the anti-Stokes mode simultaneously. However, for most
applications, we want to suppress one effect while working with the other one because they
impair each-other’s effect. For example, while trying to generate two-mode squeezing between
microwave and optics, the beam-splitter interaction would up-convert the downconverted
microwave signal to the optical anti-Stokes mode increasing the loss on the microwave side.
Similarly, when trying to transduce signals between microwave and optics, the two-mode
squeezing term would amplify the vacuum noise and add it the converted signals reducing the
fidelity of the transduction.

2It is called pump mode because later we will treat the center mode as a classical coherent mode with
infinite photons.
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2.4. Cavity quantum electro-optics

A simple way of suppressing one process of the two interaction processes is to detune the
coherent optical pump from the optical pump mode âp as shown in Fig. 2.2. The microwave
mode is, then, matched to the frequency difference between the required optical sideband
(given by the needed interaction process) and the detuned optical pump. This ensures resonant
scattering in case of the required interaction process and off-resonant scattering in case of the
other process. This suppresses the participation of the unnecessary optical mode. However,
the price is payed by higher pump power requirements to achieve the same intra-cavity photon
numbers due to off-resonant pumping.

âtâpâs

ωeωe

- FSR + FSRωp ωp ωp

Figure 2.2: Optical Stokes sideband suppression via off-resonant optical pumping.

2.4.1 Steady state solutions for an open system
The beam-splitter interaction By suppressing one of the optical sidebands and, thus, one
of the two processes in the Hamiltonian - beam splitter interaction or amplification, we can
consider an effective Hamiltonian between only two signal modes - one optical sideband mode
and the microwave mode. Let us consider the case when only the optical Stokes sideband is
suppressed by pumping the optical pump off-resonance as shown in Fig. 2.2. The effective
interaction Hamiltonian, then, is simply,

Ĥint = ℏg0
√
np(â†

t âe + âtâ
†
e) (2.19)

This Hamiltonian effectively represents a beam-splitter interaction between modes ât and âe.
Using Heisenberg’s equation of motion, we can write the time dependence of these modes as

̇̂at = −iωtât − ig0
√
npâe, (2.20a)

̇̂ae = −iωeâe − ig0
√
npât. (2.20b)

These equations describe the energy oscillation between the two coupled modes.

For an open system, the Hamiltonian needs to be modified slightly to accommodate coupling
between the modes and their environment, i.e, a microwave coaxial cable and an optical fiber.
The total coupling rate κi (i ∈ {o, e}) is the sum of two parts - the internal loss rate κi,in
and the external loss rate κi,ex. The internal loss rate κi,in accounts for the losses to the
environment through various loss channels such as material absorption. κi,ex, on the other
hand, signifies the coupling rate to an external waveguide through which photons can be
coupled into and out of the mode (see Chapter 5 in Ref. [MS99]).

Substituting x̂(t) = X̂(t)eiωt (x̂ ∈ {ât, âe} and X̂ ∈ {Ât, Âe}), where X̂ is the slowly varying
part, we can go into the rotating frame of each respective mode. The full set of quantum
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2. Cavity electrooptics

Langevin equations [SZ97, GZ00] can, then, be written as,

̇̂
At = −κo

2 Ât − i∆tÂt − ig0
√
npÂe +√κo,exδât,ex +√κo,inδât,in (2.21a)

̇̂
Ae = −κe

2 Âe − i∆eÂe − ig0
√
npÂt +√κe,exδâe,ex +√κe,inδâe,in (2.21b)

where, ∆i = ω − ωi are the detuning around the respective mode resonances and δâi,in and
δâi,ex are Langevin noise operators. These noise operators satisfy the following equations,

⟨δâj,k(t)δâj,k(t′)†⟩ = (n̄k + 1)δ(t− t′), (2.22a)
⟨δâj,k(t)†δâj,k(t′)⟩ = n̄kδ(t− t′), (2.22b)

where k ∈ (in, ex) and nin and nex are the bath and waveguide noise occupancy respectively.
These equation can be solved in time domain as well as in frequency domain assuming a steady
state solution. Here, we will discuss the steady state frequency domain solutions. Numerical
time domain solutions will be discussed later in chapter 7.
Before proceeding to solve for the steady state solution, it helps to write these set of equations
in a vector form,

v̇(t) = Mv(t) + KA(t), (2.23)
where v(t) is [Ât, Â

†
t , Âe, Â

†
e],

M =

⎡⎢⎢⎢⎣
−i∆o − κo

2 0 −ig 0
0 i∆o − κo

2 0 ig∗

−ig∗ 0 −i∆e − κe

2 0
0 ig 0 i∆e − κe

2

⎤⎥⎥⎥⎦ , (2.24)

K =

⎡⎢⎢⎢⎢⎣
√
κo,in 0 √

κo,ex 0 0 0 0 0
0 √

κo,in 0 √
κo,ex 0 0 0 0

0 0 0 0 √
κe,in 0 √

κe,ex 0
0 0 0 0 0 √

κe,in 0 √
κe,ex

⎤⎥⎥⎥⎥⎦ , (2.25)

and A(t) = [δât,in, δâ
†
t,in, δât,ex, δâ

†
t,ex, δâe,in, δâ

†
e,in, δâe,ex, δâ

†
e,ex].

Equation 2.23 is solved in the Fourier domain, yielding

v(ω) = S(ω)A′(ω), (2.26)

where S = [−M − iω1]−1 and A′(ω) = KA(ω). The output field can be obtained via the
input-output theorem [GC85, Tsa11],

Âj,out(ω) = −Âj,in +√κj,exÂj, (2.27)

with j=t,e.
The set of Âj,out form the transfer matrix between the modes. The different elements of the
matrix describe the distribution of field amplitudes in different modes with Âj,in as the input
field amplitude.
By multiplying the two relevant matrix elements (conjugates of each other), we derive the
power scattered in optical mode in presence of microwave and vice-versa. This gives us the
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2.4. Cavity quantum electro-optics

total conversion efficiency between the modes - total conversion efficiency stands for waveguide
to waveguide efficiency. It is calculated as

ηtot = ηeηo
4C

(1 + C)2 , (2.28)

where, ηj = κj,ex/κj is the mode coupling efficiency and C = 4g2/(κoκe) is the cooperativity,
which is described next.

Cooperativity It is the figure of merit in our system which can be intuitively understood as
the enhanced coupling rate normalized with the geometric mean of the total loss rates in the
system. More intuitively, it compares the rate of conversion/coupling between the two signal
modes - optical and microwave - with the loss rates in the system.

The total conversion efficiency increases with cooperativity until it reaches its maximum value
at C = 1. Increasing cooperativity beyond that reduces the total conversion efficiency because
in the strong coupling regime of C > 1, the coupling rate exceeds the loss rate and, thus,
the converted signal from one mode to the other can now convert back to the original mode
before it is lost to the environment or coupled out from the waveguide. In other words, when
the enhanced coupling rate g exceeds the loss rates in the system, the energy between the
modes can oscillate between the two modes.

For the purpose of transduction, we don’t want the energy to oscillate and thus want to always
work with cooperativity close to 1 but never exceeding it. For C = 1, the total conversion
efficiency ηtot is limited by the product of the coupling efficiencies g to the two modes. This
corresponds to the power lost when trying to couple in and out of the cavity. This loss can be
managed by increasing the coupling efficiency ηi, i.e, by ensuring that the external coupling
rate is much higher than the internal losses of the cavity. However, increasing the external
coupling rate comes at the cost of increased total loss, which means for the same amount of
vacuum coupling rate g0, more optical pump power is needed to achieve the same cooperativity.
High optical pump powers have a multitude of issues as will be discussed in the next chapters.

The amplification interaction The Hamiltonian for the amplification interaction between
the optical Stokes mode âs and the microwave mode âe can be solved in the same way as
described above. Effectively only the sign of the interaction between the two coupled modes
changes. Since this is an amplification interaction, the interaction of the signal mode (s/e)
with the pump mode amplifies both itself and produces a copy in the other signal mode
(e/s). This can be interpreted as quasi-conversion and we can again define a total ’conversion’
efficiency between the modes which is only slightly different

ηtot = ηeηo
4C

(1− C)2 (2.29)

The ’conversion’ efficiency now approaches infinity as cooperativity approaches 1. Technically, it
is wrong to use the word conversion for this interaction since this is a stimulated downconversion
of the optical pump photon due to interaction with a signal photon. Thus, in this case, the
photon number in any signal mode is not depleted, both are amplified by the optical pump.

At the limit of C = 1, the downconverted signal photons can once again stimulate the optical
pump photon to downconvert before they are lost to the environment. This means that coupling
signal power from outside is no more necessary and the amplification is self-sustainable. Since,
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2. Cavity electrooptics

the rate of generation of downconverted signal photons exceed the loss rates, the amplified
signal grows exponentially. This is called the region of parametric instability. In this regime, a
seed signal is lased with the help of optical pump in the limit C ≥ 1. In practice, however,
the signal cannot grow exponentially. Lasing depletes the optical pump significantly and the
signal is amplified exponentially until the optical pump is depleted below C < 1. At this
stage, an equilibrium is reached which depends on the input optical pump power among other
parameters.

2.5 Conclusion
In this chapter, we have discussed a toy-experiment with cavity electrooptics. We explored the
different interactions of microwaves with the Stokes and anti-Stokes optical sideband modes
of the optical cavity and discussed briefly the steady state solutions of single sideband resolved
interactions - beam-splitter interaction and amplification interaction. In the next chapter, we
will discuss the full electrooptic system we used to do experiments in more detail including the
involved physics which has a few more elements than the toy model discussed in this chapter.
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CHAPTER 3
Cavity electro-optics with whispering

gallery modes

3.1 Introduction
In the last chapter, we saw that the use of resonances boosts the electro-optic coupling
as photons live longer in the resonator and, thus, interact with the non-linear medium for
longer. However, apart from making a higher quality resonator, squeezing the modes to a
smaller volume (resulting in higher energy density) and making sure the interacting field modes
overlap as much as possible also increases the interaction efficiency. It is the geometry of
the resonators which determines the mode energy density and mode overlap and hence, the
interaction efficiency.

In this chapter, we describe our device where we do cavity electro-optics using whispering
gallery resonators. A whispering gallery mode (WGM) is a mode-confined by concave walls
where it propagates while getting continuously reflected. In optics, a WGM resonator can
be made using a disk with polished circumference of a high refractive-index material. The
light then is confined within the disk due to total internal reflection. In our device, we keep
such an optical WGM resonator in a 3D microwave resonator which also supports a microwave
WGM. The microwave mode electric field are confined between two concave metallic rings.
The optical WGM resonator is placed between these two rings. This not only helps bring down
the resonant frequency of the microwave cavity to several GHz (by increasing the capacitance
between the rings) but also ensures maximal mode overlap between the optical and microwave
fields.

The optical WGM resonator is made out of lithium niobate which is routinely used in the
telecommunication industry for phase modulation of optical light due to its high χ(2) non-
linearity. More specifically, we use the highest r33 electro-optic coefficient of z-cut lithium
niobate to couple microwave and optical light most efficiently.

In the following sections, the optical and microwave WGM resonators are discussed in detail
including their supported modes, fabrication and coupling to external waveguides. The non-
linear vacuum coupling constant is, then, calculated for our system. Finally, suppressing the
interaction of the microwave mode with either the optical Stokes or anti-Stokes sideband via
the optical mode hybridisation is discussed.
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3. Cavity electro-optics with whispering gallery modes

Acknowledgement and contributions Optical resonator fabrication process presented in
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by Dante Loi and Paul Falthansl. Various images which showcase the fabrication process are
taken by Dante Loi and Paul Falthansl and are acknowledged accordingly.

3.2 Optical whispering gallery mode (WGM) resonators
The optical WGM resonators are essentially an ellipsoidal dielectric with a refractive index
higher than the surrounding media such that the light is trapped inside the high refractive index
dielectric through total internal reflection [LCC17]. In our case, the resonators are made out
of lithium niobate which is a birefringent crystal with two refractive indices - an extraordinary
refractive index ne = 2.13 and an ordinary refractive index no = 2.21 at 1550 nm. As a result,
the WGM resonators made of out of lithium niobate support modes with different polarization,
transverse electric (TE) and transverse magnetic (TM) with slightly different free spectral
ranges (FSRs).

x

z

φ

R
P

ρ

Φ θh

(ρ, θ, φ)

Figure 3.1: Toroidal coordinate system (ρ, θ, ϕ) to solve modes in a WGM resonator with
height h, radius R and radius of curvature at the rim P .

3.2.1 Modes in a cylindrical resonator
For a uniaxial cylindrical crystal of radius R, height h and radius of curvature at the rim P , the
supported WGMs can be calculated analytically using the Helmholtz equation. The solution of
the WGM electric field given in toroidal coordinates (ρ, θ, ϕ) and shown in Fig. 3.1 [BSS+13,
FSSL16] is

Eν
q,p,m(r) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E0 exp(− θ2

2θ2
m

)Hp( θ
θm

)A
[︂
f ν

m,q(ρ)
]︂
eimϕ if ρ < P

Aν exp(− θ2

2θ2
m

)Hp( θ
θm

) exp(−κν(ρ− P ))eimϕ if ρ > P,

(3.1)

where, ν represents the two orthogonal polarizations - TE (parallel to symmetry axis) and
TM (perpendicular to symmetry axis), κν = k0

√︂
n2

ν − 1, q = {1, 2, ...} is the radial mode
number representing the number of maxima in electric field intensity along the radial direction
ρ, p = {0, 1, 2, ...} is the polar mode number and m = {0, 1, 2, ...} is the azimuthal mode
number representing the number of maxima in the electric field intensity along the azimuthal
direction ϕ. Hp and A are the Hermite polynomials of degree p and Airy functions respectively.
E0 is a normalization constant. Aν describes the evanescent field amplitude which is different
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3.2. Optical whispering gallery mode (WGM) resonators

for two polarizations,

Aν =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E0A

[︂
fTE

m,q(P )
]︂

if TE

E0(2n4
o − n2

o)−1/2A
[︂
fTM

m,q(P )
]︂

if TM.
(3.2)

The abbreviations used in previous two equations are exanded as,

f ν
m,q(ρ) = (P + ∆ν − ρ)/um − αq, (3.3)

θm = (R̃ν/P )3/4 1√
m
, (3.4)

um = 2−1/3m−2/3R̃ν , (3.5)

∆ν =

⎧⎪⎨⎪⎩
1

k
√

n2
e−1

if TE
1

n2
ok
√

n2
o−1

if TM,
(3.6)

where, the effective radius R̃ = R + ∆ν and αq is the q-th root of the Airy function.

The mode amplitudes can also be solved using finite element method (FEM) simulations in
COMSOL. Fig. 3.2 shows a 2D axisymmetric simulation for an ellipsoidal WGM resonator
(geometry shown in Fig. 3.1) with h = 100 µm, R = 2.4 mm and P = 250 µm. The
fundamental mode with (ρ, θ, ϕ) = (1, 0, 20755) and a higher order mode with (ρ, θ, ϕ) =
(2, 2, 20755) are shown. The difference in mode distribution between the theory and the
numerical simulation typically has a deviation of less than 3% (see Chapter 3 in Ref. [RS18]
and also Ref. [BSS+13]).
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Figure 3.2: Optical mode numerical simulations. a[b] shows the simulation of the eigen
mode with (ρ, θ, ϕ) = (1, 0, 20755) [(ρ, θ, ϕ) = (2, 2, 20755)] for an optical resonator disk of
height 100 µm, radius 2.4 mm and radius of curvature 250 µm.

3.2.2 Losses in optical WGM resonator
In theory, the quality factor of these modes is limited only by radiation and material losses.
Radiation loss occurs due to finite total internal reflection from curved surfaces. There is
an analytical expression for the quality factor limited by radiation loss for light trapped in a
sphere [Ora02],

Qradiation ≈
2πR

λ0
√
n2 − 1

η exp
(︃4πR
λ0

cosh−1(n)−
√︂
n− 1/n

)︃
(3.7)
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where, η is 1 (n−2) for TE (TM) modes where n is the refractive index of the material. A
sphere is a good approximation for the whispering gallery modes trapped inside a resonator
shown in Fig. 3.2.
Similarly, the material loss due to absorption (due to impurities in the crystal) in the bulk
material also limits the internal quality factor. It is usually described as a spatial exponent
decay of the intensity in the bulk, αmaterial, the loss coefficient. Under the assumption of small
αmaterial, the quality factor limit due to material losses can be defined as,

Qmaterial ≈
2πn

λ0αmaterial
(3.8)

In the limit of large radius R, however, the main source of loss is practically the scattering
due to an imperfect surface. Since the losses are added, the total quality factor is related to
the individual loss channels as,

Q−1
tot = Q−1

radiation +Q−1
material +Q−1

surface (3.9)

Usually, Q−1
surface ≫ Q−1

radiation, Q
−1
material. As a result, the final quality factor of the device comes

down to the fabrication process and how good the concave surface of the WGM resonator is
polished. The fabrication process is discussed in detail in the next section.

3.2.3 Material choice for optical WGM resonator
This work remains focused mostly on lithium niobate due to its high electro-optic coefficient.
There are 3 main types of lithium niobate (LN) crystals that we have experimented with -
congruent LN without magnesium doping and stoichiometric LN with and without magnesium
doping. The difference between the two kinds of LN crystals is in the way these crystals
are grown [KMC+96]. Crystals grown from by simply melting a congruent mixture of 1 : 1
lithium to niobium results in crystals with lithium to niobium ratio of 0.945. This lower
amount of lithium allows for more number of defects in the crystal such a lithium vacancies.
Stoichiometric crystals have a higher ratio of lithium to niobium of 0.979 which means smaller
amount of probable defects. On a side note, small amount of magnesium doping in lithium
niobate crystals has shown higher resistance of crystals to large optical powers [MBPT20].
In our experiments, WGM resonators made from the stoichiometric LN without the magnesium
doping has resulted in the highest observed quality factors (up to 8× 108). Quality factors of
crystals made with congruent LN without Mg doping and stoichiometric LN with Mg doping
have always resulted in slightly lower quality factors (up to 2× 108). However, the maximum
achievable quality factor is not the only consideration when it comes to choosing the material.
Different types of LN crystals also have different physical properties, some of which can make
the crystal can make it better in fabrication purposes. Notably, we have found that working
with stoichiometric non-doped LN crystals is observed to be more difficult due to their more
brittle nature possibly due to a more perfect crystalline structure.
Additionally, there are other material options apart from LiNbO3 such as barium titanate
(BaTiO3) and lithium tantalate (LiTaO3), which also feature high electro-optic non-linearities.
Lithium tantalate (LiTaO3) has a specific advantage: it features only a negligible amount
of birefringence compared to lithium niobate (no = 2.1138 and ne = 2.1162) [MHS+11]. A
smaller birefringence can be advantageous to get higher quality factor optical modes (especially
TE modes). We believe that the birefringence in lithium niobate limits the quality factors of
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supported TE modes because slightly different refractive indices in two directions result in a
different round trip times for the two components of TE mode making it less resonant in the
resonator after a few round trips. Another advantage of using lithium tantalate (LT) optical
resonators was that the microwave resonators with LT optical resonators had a higher quality
factor - possibly due to lower piezoelectric losses (discussed in section 3.3.4. However, the
fact that LT has a smaller refractive index of 2.11 than LN means that a WGM resonator of
the same radius will have a larger free spectral range (FSR). This would change the complete
design and fabrication process of the full transducer - a microwave cavity which can account for
a higher FSR with the new optical resonator made with lithium tantalate has to be designed. A
lower dielectric material (lithium tantalate compared to lithium niobate) reduces the supported
microwave frequency by ∼2 GHz for the same cavity geometry. Increasing the microwave
resonance frequency by changing the resonator geometry back to the supported optical FSR
has proven to be rather challenging. As a result, we have not yet pursued fully-assembled
devices featuring lithium tantalate yet.
Other materials such as barium titanate have also not been looked into due to time constraints
even though they may turn out to be viable alternatives.

3.2.4 Fabrication of optical WGM resonator
In practice, to achieve the highest possible optical quality factor, it is imperative that rim
surface of the optical WGM resonator has the least possible surface roughness. As a result,
fabrication of optical resonators with a good rim surface is a crucial step in the fabrication of
the whole transducer. Over the years, the technique and materials used in the fabrication of
these resonators has been perfected by various group members. William Hease and Alfredo
Rueda started developing the initial fabrication techniques which were further worked by
William, Dante Loi and Paul Falthansl. A summary of these developed techniques is given
here.

Cutting disk The optical resonators are made from a 2 cm×2 cm z-cut LN crystal slab
which is 500 µm thick. The crystal is glued using wax to a microscope slide to help protect
the edges of LN wafer during the drilling process. The glued LN crystal and slide are, then,
glued to an aluminum plate with a wax glue to stabilize the crystal while cutting a disk out of
it. The aluminum plate is mounted on a precision XY stage. The stage is equipped with a
spring which pushes the crystal against a high precision lathe equipped with a hollow stainless
steel rod of 5.3 mm inner diameter. The spring equipped stage applies a constant force of
0.05− 0.1N during the whole disk cutting process. The hollow steel rod is lubricated with
WD-40 and a layer of slurry with 9 µm diamond particles is applied between the cutting rod
and the LN wafer. The lathe, then, rotates the cutting rod at 80 Hz to drill the LN wafer.
The process can take anywhere from 5 mins to 40 mins. To determine whether the drilling
is complete, we measure the XY position of the stage with calipers and wait until the drill
has travelled the required distance. The cut disk with glued LN wafer and glass slide can be
removed by heating the wax glue. The LN wafer is, finally, separated from the glass slide by
heating the assembly which melts the glue.
The cut disk has a diameter of ∼5.8 mm. This gives us enough room to shape and polish the
disk to its final desired diameter ∼5.0 mm.

Auto-centering process After the disk is cut, it is mounted on a custom-made aluminum
post with wax glue shown in Fig. 3.4. The stainless steel post is, then, mounted on a lathe for
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Figure 3.3: Disk cutting process. Picture credits: Dante Loi and Paul Falthansl.

further processing of the disk into a WGM resonator.

Figure 3.4: Lithium niobate cut disk on a custom-made aluminum post. Picture credits: Dante
Loi and Paul Falthansl.

In our experience, we have found that polishing to a high degree, which yields higher quality
factor resonators, is possible only when the disk does not wobble as it rotates on the lathe.
This would naturally happen if the center of the disk is not aligned with the center of rotation
of the spindle. Manually aligning the disk on the stainless steel post before mounting the
whole thing on a spindle is difficult as it is almost impossible to predict a slightly random axis
of rotation of the spindle. Consequently, we have developed a technique for auto-centering the
disk on the spindle. For that purpose, when the disk is mounted on the spindle, the wax glue
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that holds the disk on the post is left hot and slightly melted. In this state, the disk can still
move on the post. The spindle is then rotated at a small RPM and the disk is gently pushed
on the rim while the disk wobble is monitored through a microscope. This process is complete
when any significant disk wobble cannot be observed through the microscope.
The auto-centering process further continues to make the centering even more perfect. After
the glue has cooled and the disk is firmly mounted on the spindle, the disk is rotated at a
higher RPM of 100 Hz. A piece of P1000 roughness sandpaper stuck on an aluminum plate
which is setup on a XYZ stage is slowly brought in contact with the rotating disk (see Fig. 3.5).
This process removes any extra material which would otherwise cause wobble, essentially,
shaping the disk to be circular around the rotational axis of the spindle. Note that once the
disk is shaped around the rotational axis of the spindle, the post of the disk cannot be removed
and re-inserted into the spindle anymore. Doing so would void the guarantee that the disk is
still perfectly centered causing the wobble to come back. After this process, the diameter of
the sanded down disk reduces to 5.2 mm.

Figure 3.5: The second step of auto-centering process sanding the LN disk around the rotational
axis of lathe. Picture credits: Dante Loi and Paul Falthansl.

Shaping The next step in the resonator fabrication is shaping a convex rim from a flat rim
from the previous centering process. This shaping is done using a smoother P2000 sand paper.
During the shaping process, great care is needed to keep the rim aligned to the center, i.e,
keep the rim profile as symmetric as possible. Experimentally, we have found the best radius of
curvature for the rim to be between 0.8 mm and 1.0 mm in order to get the highest possible
mode quality factors.

Polishing After shaping the resonator, its surface needs to be polished. The polishing is
done in several steps. First, the disk is polished using a slurry with increasingly fine diamond
grain size - 9 µm, 3 µm and 1 µm, each time for 3 min. Between the steps the disk is cleaned
thoroughly. We make sure that there is no residue left from the previous polishing step
to prevent contamination. The final step of polishing is done using a chemical-mechanical
polishing (CMP) mix. This polishing is done using a 50-50 mix of CMP slurry and WD-40
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3. Cavity electro-optics with whispering gallery modes

lubricant. This solution is poured between a quarter arch of a rubber o-ring and the LN disk
while the disk rotates at about 6000 RPM. The polishing process is done for 5 minutes at
a time and the disk surface is inspected after each round. This last polishing step can be
repeated up to 3 times. Thereafter, the quality factor of the disk saturates to around a billion,
given a high quality LN wafer was used. An inspection under the microscope reveals the disk
surface to be near flawless.

The disk surface after each round of polishing along with the measured optical mode quality
factor is shown in Fig. 3.6.

CMP 1μm 3μm 9μm P2000

 Q
-f

a
c
to

r

109

108

107

106

Figure 3.6: Change in intrinsic optical mode quality factor after each polishing step along with
the resonator rim’s surface as inspected under a microscope. Figure credits: Dante Loi and
Paul Falthansl.

Lapping The final step in optical resonator fabrication is reducing the thickness from 500 µm
to the desired ∼150 µm while maintaining a symmetric rim profile. We will see in section 3.3
that a thinner optical resonator allows for a stronger coupling between microwave and optical
modes. We polish the top and bottom of the disk with a lapping machine. This lapping stage
is done after the shaping and polishing because it is easier to achieve the desired large rim
radius and polish the disk without altering this curvature when the disk is still thick. The
lapping is done in two stages - using a 9 µm particle size diamond slurry paste to remove
material and using the CMP mix for final polishing. The disk is lapped by an equal amount on
both sides to keep the center of radius of curvature aligned to the center of the disk. The
summary of the lapping process is shown in Fig. 3.7.

xRP ρ
θ

500μm
175μm

175μm

intial profile 1st thinning
flip disk 2nd thinning

150μm

Figure 3.7: Optical WGM resonator lapping process.

To lap the disk, we glue the disk on the metal plate using the wax. In this step, it is very
important that enough wax is used such that some of the wax covers the polished rim of the
resonator to protect it during the lapping process. One also needs to especially take care of
any bubbles that may form in the wax when the disk is mounted. Consequently, the wax is
heated well above its melting point to ensure its liquid state. Moreover, multiple attempts of
mounting the disk and inspection are needed to ensure that no bubbles are present in the wax
around the disk. When the disk is properly mounted, the process of lapping the disk can be
continued.
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3.2. Optical whispering gallery mode (WGM) resonators

3.2.5 Coupling via frustrated total internal reflection
Coupling of optical power to the WGM resonator is done via a diamond prism. Light is focused
via a GRIN (gradient index) lens on one of the flat surfaces on the prism which is facing
towards the optical WGM resonator as shown in Fig. 3.8. The angle of the incident light is
adjusted such that the angle of incidence of light on the flat surface Φ is greater than the
critical angle resulting in total internal reflection from the prism surface. However, beyond the
surface of total internal reflection, there exists an evanescent field which can overlap with the
evanescent field of the optical resonator if the prism is brought close enough to the WGM
resonator.
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Figure 3.8: Evanescent coupling of light to a WGM resonator via a prism.

Using Snell’s law, we can derive the angle required to couple the light into the optical resonator.
Since the frequency of light is the same, the wave vector in the optical resonator kr and the
prism kp follow,

kr

nr

= kp

np

(3.10)

where, np (nr) is the refractive index of the prism (resonator). The magnitude of kp in the
direction of kr is kp,∥ = kp sin(Φ). For efficient coupling, kp,∥ = kr, hence, the most efficient
coupling angle is achieved at Φ = arcsin(nr/np). This is only possible when the condition
np > nr must be satisfied.

However, a closer inspection of this criteria reveals that the coupling condition is much more
relaxed. Since the optical resonator has a curved surface, the wave-vectors of the evanescent
fields wrap around it. This means the wave-vectors of the evanescent field parallel to prism
surface form a distribution of different magnitudes around the center value kr. As a result,
it is possible to couple power into the optical resonator even with a prism with np < nr for
a certain range of incident angles Φ. The range increases when np > nr as there are many
more possibilities where some component of wave vectors can overlap.

It is worth noting that for lithium niobate the TE and TM modes correspond to different
refractive indices. As a result, there is a separate range of Φ for which coupling is efficient
to TE or TM modes. In our case, we also have a range of Φ angles for which coupling is
observed to both TE and TM modes simultaneously.

The more relaxed coupling condition has been derived in Ref. [SFV+17],

(nr − np)k ≤
√︃
κ

R
(3.11)
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where k = 2π/λ is the free space wave-vector, κ = k
√︂
n2

r − n2
h with nh being the refractive

index of medium between the prism and the resonator and R is the major radius from Fig. 3.1.

Estimating the mode mismatch factor Λ Coming with the right incident angle ensures a
finite amount of coupling to the optical resonator. However, to achieve efficient coupling, one
must also investigate the mode overlap between the incident mode shape and the mode shape
accepted by the optical resonator. In practice, we input a Gaussian mode shape to the prism
surface using a single mode fiber. However, as seen in the previous subsection, the mode
shape of the WGM resonator is never perfectly symmetric. This means it is difficult to get full
mode overlap with a Gaussian input beam. The mismatch in the mode shapes is described as
the mode overlap between the Gaussian mode and the optical WGM as Λ.
A lot of work has been done to understand and minimize this mode mismatch factor. In
Ref. [SFV+17], the far-field distribution of the emitted WGM is calculated in terms of the
Fourier components. In chapter 3 section 4 of Ref. [RS18], this is expanded in terms of
divergence angles in two directions. In Ref. [SFF+14], the emitted mode shape is directly
measured. They show that modes with p = 0 have an ellipsoidal (nearly Gaussian) profile
while modes with p = 2 have a flat-top profile and modes with p > 4 start to get more
than one lobe. This means that at least for modes with p = 0, the divergence angles in two
directions would suffice to describe the far-field distribution of emitted WGMs, since it is just
an ellipsoidal shape.
In Ref. [RS18], this ratio is calculated as,

∆Φ
∆Θ = cos (Φc)

√︄
R

P

⌜⃓⃓⃓
⎷1 + nr√︂

n2
r − 1

(︃
P

R

)︃1/2
(3.12)

where ∆Φ and ∆Θ are the divergence angles in two directions. If this ratio is 1, then the
far-field pattern is nearly Gaussian. Approximating to first order, the ratio is 1 when,

P = R[1− (nr/np)2]. (3.13)

In Ref. [SSMY09], they use this design to achieve a 99.96% coupling efficiency.
However, if the parameters of the optical resonator cannot be fine tuned, the coupling efficiency
could also be significantly increased by using a suitable elliptical lens along with a spherical
lens between the single mode fiber and the prism.

3.2.6 Optical mode characterization in the frequency domain
In our experiments, we used an optical WGM resonator with major radius R = 2.5 mm, the
rim radius P ≈ 0.7 mm and a height which was lapped down to h =150 µm. The optical
modes are characterized via the reflection spectrum from the single coupling port (prism). The
laser frequency is swept continuously and the reflected power is measured by a photodetector.
The reflected optical power around a mode resonance is given as [HRS+20],

|Soo(∆ω)|2 = 1− 4κex,oΛ2(κo − Λ2κex,o)
κ2

o + 4(∆ω)2 (3.14)

where ∆ω = 0 defines the mode resonance, κo is the total optical linewidth of the optical
mode, κex,o is the coupling loss of the mode and Λ is the factor accounting for the spatial
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mode mismatch between the optical WGM and the Gaussian mode from the single mode
fiber. The coupling ratio or coupling efficiency ηo is defined as ηo = κex,o/κo, where the total
linewidth κo is the sum of intrinsic κin,o and extrinsic κex,o optical linewidths. The mode is
critically-coupled when ηo = 0.5, under-coupled for ηo < 0.5 and over-coupled for ηo > 0.5.
The optical mode is characterized completely by three parameters - the total linewidth κo, the
coupling efficiency ηo and the mode mismatch factor Λ. From just the reflection spectrum,
only κo can be properly defined. For a given mode contrast, the coupling efficiency ηo has two
possible values, even for perfect mode matching Λ = 1, corresponding to an under-coupled or
an over-coupled mode. Since the coupling efficiency only affect the mode contrast, we can
simply try to solve for ηo at mode resonance as,

1− (|Soo(0)|2)Λ=1 = 4
κo

ηo(1− ηo) (3.15)

The quadratic equation points to two solutions of ηo - one being > 0.5 and the other being
< 0.5.
Putting the mode mismatch factor in the mix,

1− |Soo(0)|2 = 4
κo

Λ2ηo(1− Λ2ηo), (3.16)

we can simply consider Λ2η as the new effective coupling efficiency. In other words, by fitting
just the reflection spectrum we can find only two possible values of Λ2η with there being
infinitely many pairs of (Λ, η) which will fit the reflection spectrum.
To discriminate between an over-coupled and an under-coupled mode (the two roots of
Eqn. 3.15), one can observe the phase of reflected light. This technique is used to characterize
the microwave mode where the coupling efficiency cannot be tuned in-situ. In case of optical
modes however, we can tune the coupling efficiency by changing the distance between the
coupling prism and the optical WGM resonator. The external coupling rate κex,o depends
strongly on the distance between the prism and the WGM resonator d,

κex,o = κmax
ex,o exp(−k0d) (3.17)

where, κmax
ex,o = κex,o(d = 0) is the maximum possible external coupling and k0 = ω0

√︂
n2

LN − 1/c
with ω0 being the optical mode resonance frequency and nLN the corresponding refractive
index of lithium niobate.
We sweep the external coupling rate κex,o by sweeping the distance between the prism and the
optical resonator. The prism is glued to a rod which is mounted on a piezo. By controlling
the voltage of on the piezo, we can sweep the κex,o. Here we make a few assumptions - Λ and
κin,o don’t change with the prism motion and the distance travelled by the piezo is linearly
proportional to the applied voltage. We sweep the prism piezo voltage and record the optical
reflected power as a function of frequency. Fig. 3.9 shows reflected optical spectra for various
κex,o values.
When the prism is retracted enough, the modes are undercoupled and κex,o < κin,o. As the
prism is brought closer, κex,o increases and the modes gets more and over coupled. The
contrast of the modes increases as shown in Fig. 3.9. However, we also see the baseline comes
down. The baseline lowers as the prism is brought closer to the disk because the disk perturbs
the reflection coating of the prism increasing the scattering losses. Moreover, the baseline

29



3. Cavity electro-optics with whispering gallery modes

 (MHz)

0-200 200 400 600 800 1000

0.3

0.2

0.1

0.0

|S
o
o
|2

∆ω

η = 0.13

η = 0.01

η = 0.41

η = 0.66(a
rb

. 
u

n
it

s)

Figure 3.9: Measured reflected optical power as a function of frequency. The different
colors represent the different amount of extrinsic coupling rate adjusted via the prism piezo
voltage. The prism piezo voltages plotted here are 0 V, 14 V, 23 V, and 29 V. The separation
in x-direction is for illustration purpose and does not represent the actual mode frequency
shift.

gets distorted as a lot of modes, which were previously too undercoupled to be seen and, thus,
hidden in the baseline, start to get coupled and effectively bring down the whole baseline.

When the total linewidth of the modes gets doubled, this is the point when modes are
critically coupled κex,o = κin,o. Because of the presence of the mode mismatch factor Λo,
the modes might not have full contrast at critical coupling. The mode contrast is defined
as normalized mode depth, (|Soo,off|2 − |Soo,on|2)/|Soo,off|2, where |Soo,on|2 and |Soo,off|2 are
on- and off-resonance reflection intensity. Another way to look at it is, even though coupling
efficiency ηo = 0.5, the ’effective’ coupling efficiency Λ2η0 < 0.5 still. The contrast keeps
increasing when the prism is pushed further increasing the κex,o until it hits the maximum
and decreases when the effective coupling Λ2η0 > 0.5. The red mode in Fig. 3.9 shows the
situation of an overcoupled mode with lower contrast.

By fitting a Lorentzian function to all the measured optical spectra, we can extract the total
linewidth of the modes. This is shown in Fig. 3.10a along with the exponential fit as instructed
in Eqn. 3.17. We find the intrinsic linewidth of the optical modes κin,o = 10.5 MHz. The
linewidth doubles at the prism voltage of 25 V marking the point of critical coupling.

We plot the contrast of the mode calculated from the Lorentzian fits in Fig. 3.10b. Ideally, the
contrast as a function of ηo is given as 4Λ2ηo(1−Λ2ηo) under the assumption that Λ remains
constant as we sweep κex,o. For Λ < 1, we would get the max contrast of 1.0 only when the
mode is overcoupled, however, as one can see in Fig. 3.10, the contrast already reaches a
value of 1 at η < 0.5 (marked by dashed lines). This points to the fact that maybe Λ does
not remain constant as we sweep κex,o.

Irrespective whether Λ remains constant, at critical coupling, we can use the contrast to
calculate the mode mismatch factor Λ = 0.87. This way, by sweeping the distance between
prism and resonator and recording the reflection spectra, we can fully characterize the optical
mode and determine all the required parameters ηo, κo,Λ.

In chapter 7, we will also characterize modes in the time domain and discuss the advantages
and drawbacks of characterizing modes in time domain.
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Figure 3.10: a Fitted total optical linewidth κo as a function of the prism piezo voltage. The
dark like is an exponential fit to the data as shown in eqn. 3.17. b Calculated contrast of the
optical modes as a function of the prism piezo voltage. The dark line is calculated from the
κo fit.

3.3 Microwave whispering gallery modes
It is not just the optical cavities which can confine optical fields through repeated reflections,
microwave cavities can also do the same. Using metals like aluminium, copper and gold,
electric fields can be almost perfectly confined. The high electron density in these metals sets
their plasma frequency, the frequency beyond which no propagation is allowed, on the order of
THz. This allows microwave frequencies (GHz) to reflect perfectly with skin depths less than
a micron.

However, microwave frequencies have large wavelengths ∼ cm and it hard to calculate an
analytical solution (like in the case of optics) for WGMs that are also of the similar size as
the microwave wavelengths. Consequently, one has to rely on numerical simulations such
as finite-element method (FEM) to determine allowed the mode shape and frequency in a
resonators. Nevertheless, FEM simulations are an easy and accurate way to determine the
modes in a WGM resonator.

3.3.1 3D whispering gallery mode resonator design
Before starting the fabrication of the resonator, we finalize the design using the FEM eigen-
frequency simulations in COMSOL. The basic structure of the microwave cavity (shown in
Fig. 3.11) is a hollow cylinder with only a few interruptions - two small openings to allow
coupling of optical light from the optical WGM resonator to optical waveguides, a notch that
contains the prism which helps couple in the optical light and an opening for a metallic pin
to couple in and out microwave power from a coaxial cable (microwave waveguide). The
hollow microwave cavity features two capacitor rings which hold the lithium niobate optical
resonator in between (marked in blue in Fig. 3.11). This not only ensures that the microwave
fields overlap perfectly with the optical fields for best coupling but also the dielectric between
the capacitor rings increase the effective capacitance of the microwave cavity and helps drop
the resonant frequency of microwave mode to around the optical FSR. The rings are cut at
diametrically opposite points along a plane which also contains the optical prism. The cut
fixes the angular position of electric field intensity minima and aligns the m = 1 microwave
mode (with two intensity minima) at these cut parts. The microwave coupling pin is, then,
placed at a 90◦ angle of the cut where a intensity maxima will be expected. A hole is drilled
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for the same purpose seen on the left side of the blue capacitor rings in the top cavity part
matching to a 50 Ω coaxial waveguide.

The resonance frequency of the cavity can be adjusted by adjusting the volume of the center
part of the cavity which slightly changes the capacitance of the cavity. For a given optical
resonator with defined radius (which fixes the FSR) and thickness, we can design a microwave
cavity with exact dimensions so as to match the frequency of the m = 1 microwave mode
close to optical FSR.

⌀ 5.25 mm

⌀ 4.75 mm

0.5 mm

1 mm

R4 mm

2
7
 m

m

30 mm

Figure 3.11: Final microwave cavity design.

In practice, the microwave resonance frequency can be quite different from the one in the
design process. The reason is an uncertain amount of air-gap between the capacitor rings of
the microwave cavity and the optical WGM resonator. Even a few µm change in the air-gap
can change the resonant frequency of the microwave cavity by 100s of MHz (see Table 3.1).
Despite the best attempt at controlling this gap, we cannot design the microwave cavity with
a resonance frequency accuracy of below 100 MHz. Moreover, during the cooldown of device
to cryogenic temperatures, the gaps can change unexpectedly shifting the resonance frequency
of the microwave mode. This is on top of the frequency shift which happens as the dielectric
constant of lithium niobate changes as it is cooled down to cryogenic temperatures but this
resonance shift is more predictable.

To combat the unexpected resonance shift of microwave frequency and allow it to be tuned
exactly equal to the optical FSR, a tuner is placed in the microwave cavity. The tuner is
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simply a piece of metallic rod which can be moved in-situ even when the device is in cryogenic
conditions. It is in the hollow cavity below the optical WGM resonator where it can be moved
up and down via a nanopositioner. Moving the tuner up and down changes the volume of the
microwave cavity, thus, changing its resonance frequency. During an experiment, the tuner
can be exactly placed with nanometer accuracy allowing the microwave resonance to be tuned
with a precision of <1 MHz.

During the design process, we change the geometry of the cavity to simultaneously allow for
as high tuning range as possible while still keeping the center frequency of the microwave
cavity at the optical FSR. This reduces the chances of having any mismatches in frequencies
after the device has been cooled down to cryogenic temperatures.

In its retracted position, the tuner is far away from the optical resonator increasing the cavity
volume and reducing the resonant microwave frequency. The shift in resonance frequency as
the tuner is retracted drops off exponentially with the distance of the tuner and the optical
resonator. On the other hand, the microwave frequency is very sensitive to the distance between
the tuner and the optical resonator when the tuner is the close to the optical resonator. In
practice, when tuning blindly (without being able to see the tuner position in realtime), we
cannot risk pushing the tuner too close to the fragile optical resonator possibly breaking the
optical resonator. To prevent this, we calibrate the tuner range at room temperature when we
can still observe the distance between the tuner and the optical resonator. As a result, we
accept the range in which the tuner can be tuned to be from 100 µm to 4 mm - 100 µm being
a cautionary distance and 4 mm being the distance after which the tuner ceases to have any
effect.

The final design of the microwave cavity is shown in Fig. 3.11 with the exact dimensions which
maximizes the range of microwave frequency tuning while keeping the center frequency of that
range to be around the optical FSR of 8.8 GHz. FEM simulations with the final microwave
cavity design are used to simulate the available range of microwave frequencies with the tuner
as a function of the gap between the capacitor rings and the optical resonator. The simulated
values are shown in table 3.1. The range of tuning actually remains constant as a function of
the gap, however, the whole range shifts up as the gap increases.

3.3.2 Finite element method (FEM) simulations
As described above, we used FEM simulations to design the microwave cavity. Specifically,
in the simulation we search for eigen frequencies of a given geometry with given boundary
conditions - in this case, all boundary conditions used are ’perfect conductor’, since the
microwave cavity is made of superconductor.

Allowed eigen frequencies for a cavity geometry can be searched both for room temperature case
and the low mK temperature case. The only difference between these cases is the permittivity
tensor for anisotropic lithium niobate for the temperatures at around 9 GHz frequency. The
permittivity tensor used for lithium niobate at room temperature is {42.5, 42.5, 26.0}, and at
low temperature it is {42.5, 42.5, 22.77} [MD85].

The simulation output is a number of frequencies which are allowed in the geometry along with
the mode distribution. Searching for the mode m = 1 (which looks like as shown in Fig. 3.12a),
we obtain the corresponding frequency. The simulations can also be used to understand the
m = 1 mode in more detail. Fig. 3.12b shows the radial profile of the single photon electric
field Ez in the center of the dielectric in z-direction with the azimuthal direction containing
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Gap (µm) Tuner retracted (4 mm) Tuner inserted (100 µm)
RT ωe/2π(GHz) Ez(mV/m) g0/2π(Hz) ωe/2π(GHz) Ez(mV/m) g0/2π(Hz)
0.0 7.02 12.0 40.8 9.01 13.7 46.6
0.5 7.63 11.4 38.8 9.79 13.1 44.6
1.0 8.18 11.0 37.4 10.5 12.6 42.9
1.5 8.66 10.5 35.7 11.1 12.0 40.8
2.0 9.08 10.1 34.4 11.6 11.4 38.8
LT ωe/2π(GHz) Ez(mV/m) g0/2π(Hz) ωe/2π(GHz) Ez(mV/m) g0/2π(Hz)
0.0 7.39 12.8 43.5 9.48 14.6 49.7
0.5 7.95 12.3 41.8 10.2 14.1 48.0
1.0 8.47 11.9 40.5 10.8 13.6 46.2
1.5 8.92 11.3 38.4 11.3 13.0 44.2
2.0 9.33 11.0 37.4 11.8 12.3 41.8

Table 3.1: Microwave frequency ωe change and corresponding drop in electric field Ez at the
location of the optical mode and corresponding vacuum coupling constant g0 as a function of
gap between the capacitor rings and the optical resonator for room temperature (RT) and low
millikelvin temperature (LT). The change is temperature is simulated via change in dielectric
constant of lithium niobate.
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Figure 3.12: Microwave cavity FEM simulation. a, 2D distribution of single photon Ez

field for m = 1 microwave mode at the plane which passes through the center of optical WGM
resonator. b, Radial distribution of Ez from the shown 2D data in a passing through the max
of azimuthal distribution. Dashed line represents the radius where optical mode is present. c,
Azimuthal distribution of Ez from the 2D data in a along the radius represented by dashed
line in b. Red line is a cosine function plotted on top. (Figure adapted from Ref. [HRS+20].)
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the highest field amplitude. The dashed line marks the spot where the optical modes would be
present (according to the diameter of the optical resonator). At this point (marked by dashed
line), we can also plot the Ez profile in azimuthal direction along the circumference which is
shown in Fig. 3.12c. The profile looks very similar to a cosine function which is plotted on top
in red. We will approximate the Ez distribution to prefect cosine shape in the next section to
estimate the g0 vaccum coupling constant.

The electric field in z-direction, which contributes towards coupling with optics, is probed at
the spot where the optical mode exists (dashed line in Fig. 3.12). This probed value from the
simulations is also recorded in the Table 3.1 as Ez. The value is used to finally calculate the
non-linear vacuum coupling constant g0 as discussed in section 3.4. Value of g0 sharply drops
as the air gaps between the capacitor rings and the optical resonator increase.

3.3.3 Fabrication of microwave 3D cavity
Material The first thing to consider before fabricating the cavity is to decide the material.
The two metals we have tried are aluminum and copper. In the past, we tried to make the
cavities with copper since copper provided not just excellent electrical conductivity but also
thermal conductivity at cryogenic temperatures [MLR+21]. Good thermal conductivity helps
thermalize the device to mixing chamber allowing it to cool down faster when heated by
any stray optical light. However, when enclosing a fragile lithium niobate resonator between
metallic copper rings, we found them easily breaking making the assembling process of the
device challenging.

As a result, we moved to using relatively softer pure aluminum metal. Pure aluminum becomes
superconducting below 1.2 K but is a bad thermal conductor at cryogenic temperatures. This
means that a microwave cavity made out of pure aluminum would not be able to quickly
dissipate the heat generated by the optical light inside. However, pure aluminum, being soft,
can even bend slightly around the LN crystal allowing the optical resonator to form a micro
dent in the aluminum capacitor rings making final assembly of device less challenging. We
also used a dummy LN disk (unpolished) to assemble the device as a first step. This made
sure that this micro dent has been created with low risk and the real optical resonator would
have even smaller chance of breaking.

Machining Since pure aluminum is soft, machining it is slightly challenging. The cavity is
fabricated at the machine shop facility in our institute. Great care needs to be put in the
dimensions such that the final cavity has the resonance frequency as designed. Most important
is the distance between the capacitor rings in the closed cavity. If this distance is too small,
it can crush the LN disk during the assembly process. If it is too large, large air-gaps would
drastically change the resonance frequency of the microwave cavity from the original design.

Consequently, the first step after receiving the cavity from the machine shop is to measure the
distance between capacitor rings for a closed cavity. This is done by measuring the distance
between the capacitor ring top surfaces and the top surface of the cavity pads which sit on
each other when the cavity is closed for both parts of the cavity. We made this measurement
with a digital microscope and measured several points over the pads to get an average distance
between rings and pads. This helped us identify if the pads or the rings were too uneven or
crooked at an early stage and whether the distance between the rings was as designed. Any
discrepancies found were adjusted in subsequent machining steps.
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After this the cavity was ready to house a LN disk and for room temperature microwave
resonance measurements.

3.3.4 Characterization of the microwave mode
The microwave mode is coupled via a single coaxial 50 Ω port, via a metallic pin which reaches
inside the cavity exciting the mode. We characterize the mode using the scattering parameter
See(ω) which is measured using a vector network analyzer (VNA) as a function of frequency.
The complex See(ω) contains the loss information in amplitude as well the the relative phase
difference. This information is enough to characterize the microwave cavity completely.

Room temperature characterization After assembling the finished cavity, we characterize
it at room temperature. The room temperature characterization is shown in Fig. 3.13. The
reflected power |See|2 is fit with a Lorentzian function revealing the fit mode frequency as
8.796 GHz with a total linewidth of κe/2π = 32 MHz.
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Figure 3.13: Room temperature characterization of microwave cavity.

The full model including phase dependence the phase of reflected signal and the phase due to
frequency detuning is given as,

See(ω) = exp(−iθω − iθ0)[1−
2κe

κ+ 2i(ω − ω0)
] (3.18)

where, ω0 is the resonance frequency and κ(κe) is the total (external) linewidth. The first
exponent accounts for any extra phase that might be picked up due to delay in the measurement
line. With this full model, we can fit the individual quadratures and, thus, fit the phase. Such
a phase fit plot is shown in Fig. 3.13b as a polar plot. The polar plot clearly shows that the
mode is very under-coupled as the knot made by the phase plot over the mode does not even
approach the origin. For an overcoupled mode, the knot will include the origin within it. The
coupling efficiency ηe was fit to be 0.078 - making the internal loss rate κe,in/2π = 29.5 MHz
and the external coupling rate κe,in/2π = 2.5 MHz.
We expect the mode to be undercoupled at room temperature since aluminum has a larger
electrical losses at room temperature drastically increasing the internal losses. When the sample
is cooled down to millikelvin temperatures, the aluminum would become superconducting
reducing the internal losses and overcoupling the cavity up to around critical coupling.
We also measured the range of tunability of microwave cavity at room temperature and found
it to be from 8.40 GHz to 9.22 GHz. Although, the upper limit of this range can be uncertain
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3.3. Microwave whispering gallery modes

since we cannot exactly push the tuner very close to the optical resonator (due to risk of
breaking the resonator), the lower limit is a reliable measurement. The lower limit of the
tunability range is used to determine the air gaps we have in the device between the capacitor
rings and the optical resonator. From Table 3.1, we predict a small air gap of about 1 µm
which is enough to account for this observed frequency mismatch.

Low temperature characterization A sample characterization of the microwave cavity at
millikelvin temperature is shown in Fig. 3.14. The fit parameters are - resonance at 8.799 GHz
with total linewidth of 11 MHz and coupling efficiency ηe = 0.42. At low temperature, the
internal losses have decreased to κe,in/2π =6.4 MHz but simultaneously the external coupling
rate increased to κe,in/2π = 4.6 MHz possibly due to metal contraction which changed the
length of the coupling pin inside the microwave cavity.
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Figure 3.14: Millikelvin temperature characterization of microwave cavity.

The tuning range of the microwave cavity increased from 8.40 GHz to 9.22 GHz at room
temperature to 8.7 GHz to 9.19 GHz. Again, the higher end of the tuning range is rather
arbitrary as explained above. However, the increase in the lower end of the tuning frequency
range is exactly as expected from Table 3.1.

Piezoelectric losses at low temperature The microwave mode, although close to critically
coupled at low temperature, still wasn’t overcoupled. The internal losses of the microwave
cavity changes with the use of the dielectric (which or if any) between the capacitor rings. This
has been experimentally studied in detail in appendix C of Ref. [RS18]. Without any dielectric,
high quality factors (∼ 1 × 105) can be obtained but when using lithium niobate in the
microwave cavity, the quality factors drop to ∼ 1× 103 even at millikelvin temperatures. We
believe that the reason behind this is not only the dielectric loss [ZWG+23] but also an extra
loss tangent for the microwave mode due to piezoelectric properties of lithium niobate [JZ02].
We speculate that the electric field between the capacitor rings of the microwave cavity excites
phonons in the optical disk resonator. Since the disk is clamped at the edges, the inelastic
oscillations due to clamping losses can create an extra loss tangent which increases the total
internal losses for the microwave cavity. These losses are studied in detail in Ref. [HSZ+20]. It is
shown that microwave internal losses drop periodically corresponding to the acoustic resonances
of lithium niobate crystal. To overcome these losses, we propose a new center-clamped design
which is discussed in detail in chapter 10.
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3. Cavity electro-optics with whispering gallery modes

3.4 Nonlinear vacuum coupling constant
In this section, we will calculate the nonlinear vacuum coupling constant for the WGM resonator
electro-optic device described in this chapter. Without any loss of generality, the coupling
constant is derived for only the process of up-conversion from the microwave mode to the
optical anti-Stokes mode. It is the same for the down-conversion process.

Starting from Eqn. 2.14, we can plug-in a few simplifications relevant to our system. For
ease of caluclation, firstly, we can assume the two optical frequencies are approximately equal
(ω1 ≈ ω2 = ωo) and similarly ϵ1 ≈ ϵ = ϵo and V1 ≈ V2 = Vo. Also, we replace subscript 3
with e, rendering,

g0 = 2ϵ0χ
(2) ωo

ϵoVo

√︄
ℏωe

8ϵeVe

∫︂
dV (ψeψ

†
2ψ1). (3.19)

The optical whispering gallery mode follows a profile as, ψ1(r, θ, ϕ) = Ψ1(r, θ)e−imϕ and
the anti-Stokes optical signal mode follows ψ2(r, θ, ϕ) = Ψ2(r, θ)e−i(m+1)ϕ. The m = 1
microwave mode similarly follows, ψe(r, θ, ϕ) = Ψe(r, θ)e−iϕ. Since, the optical modes are
tightly confined, we can assume that the microwave mode amplitude remains constant over
the whole optical mode in radial and axial direction and is equal to Ψe,0. ψe can then be
taken out of the integral, leaving the integral as ∫︁ dVΨ†

2Ψ1 = Vo, the total optical mode
volume. Finally, we can replace χ(2) = −(n4r)/2, where n is the refractive index and r is the
electro-optic coefficient (see appendix A of Ref. [RS18]),

g0 = n2rωo

√︄
ℏωe

8ϵeVe

Ψe,0 (3.20)

The single photon electric field of a travelling wave can be written as (see appendix A),

EΩ(x, t) =
√︄

ℏΩ
2ϵV Ψ

[︂
e−i(kxx−Ωt) + ei(kxx−Ωt)

]︂
= E+

Ω + E−
Ω (3.21)

In the above, we assumed the microwave mode is also travelling. We can replace the single
photon electric field in the formula for g0 as,

g0 = 1
2n

2rωo|E+
Ω | (3.22)

where, EΩ is the single photon electric field of the microwave mode. Note that, only one part
of the electric field contributes towards up-conversion.

However, in our microwave WGM resonator, the microwave mode is not travelling, rather it is
a stationary wave. A stationary wave comprises of two travelling waves travelling in opposite
directions - in case of WGM a clockwise and a counter-clockwise wave. Then, the stationary
wave electric field can be expanded as,

Est = E+
c + E−

c + E+
cc + E−

cc, (3.23)

out of which, only one of the components contributes towards the up-conversion process (say
E+

c ). From the COMSOL simulations, we probe the single photon electric field at the maxima
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3.5. Suppressing the optical sidebands with WGM resonators

Est for a stationary wave. Since only a quarter of this electric field contributes towards the
up-conversion process, the nonlinear coupling constant is finally given as,

g = 1
8n

2rωo|Est| (3.24)

where, Est is the single photon electric field amplitude of a standing wave as obtained from
COMSOL.

3.4.1 Room temperature characterization of g0

In this subsection, we describe the technique of using optical mode splitting due to applied
microwave power to determine the nonlinear coupling constant between the optics and the
microwave. Intuitively, this splitting occurs because applying a DC electric field changes the
refractive index of the crystal and moves the optical mode [RSC+16]. When an electric field,
which is changing fast, for example at 9 GHz, is applied, the mode responds and moves at the
same frequency. As a result, on average, we will detect a mode split pattern which looks like
in Fig. 3.15.
This process of splitting of optical mode due to intra-cavity microwave pump photons is studied
analytically and experimentally in Ref. [RSK+19]. The magnitude of this splitting is derived to
be S/(2π) = 4√neg0, where ne is the number of intracavity photons in the microwave cavity.
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Figure 3.15: Direct measurement of vacuum coupling constant g0. Splitting observed in the
optical mode on application of coherent microwave power. Figure adapted from Ref. [HRS+20].

The measurement shown in Fig. 3.15 corresponds to 9.3 dBm of microwave power applied on
resonance. After accounting for the attenuation, this corresponds to about 2.3× 1012 photons
in the cavity. The splitting we measured was S/(2π) = 220 MHz resulting in a measured
value of grt

0 /(2π) = 36.1 Hz at room temperature. We expect a gap of slightly more than
1 µm from section 3.3.4. For this gap, we can expect a g0/(2π) value of ∼ 35 Hz from Table
3.1 depending on the frequency of microwave cavity. This measurement was made at 8.8 GHz
(= optical FSR), as a result, the measured value grt

0 /(2π) = 36.1 Hz is close to expected value
from simulations.

3.5 Suppressing the optical sidebands with WGM
resonators

In the last chapter, we saw that the microwave mode can interact with both the Stokes and
the anti-Stokes optical sidebands. Interaction with different sidebands is responsible for a
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3. Cavity electro-optics with whispering gallery modes

different process - either beam-splitter like interaction or amplification like interaction. We also
discussed that usually, in practice, we only want to have one kind of interaction in our system.
Consequently, we try to suppress the interaction with one optical sideband by pumping on the
optical pump with an effective detuning and later adjusting the microwave frequency to the
effective FSR of the sideband we want to work with.
However, this way of suppressing the optical sideband is not very efficient. Pumping off-
resonance means that a lot of pump photons just get reflected without entering the optical
cavity. The number of photons inside the resonator scale as a function of detuning (∆ω) from
resonance as

np(∆ω) = P

ℏω0

4κex

κ2 + 4∆ω2 (3.25)

where, P is the applied pump power and ω0 is the frequency of the applied pump. This means
that to get the same number of photons in the resonator (or achieve the same cooperativity),
one needs more optical pump power by a factor of 1 + 4∆ω2/κ2. Higher required pump power
means more reflected power, which in turn, means more stray high-energy photons in the
dilution refrigerator which can heat it up or worse, break Cooper pairs in the superconducting
microwave cavity producing free quasi-particles. We will discuss the adverse impact of these
quasi-particles in future chapters. As a result, a technique to suppress the optical sidebands
without pumping off-resonance is enticing.
Luckily, another way to suppress the optical sideband is possible in case of WGM resonators
made out of lithium niobate. Lithium niobate, being an anisotropic crystal, has two different
refractive indices and supports two kind of mode families with slightly different FSRs. The
two mode families (TE and TM), although being of orthogonal polarization, are nevertheless
coupled to each other. This is because the optical resonator has a curved rim which means
both TE and TM modes have small components in the direction of each other’s polarization -
allowing for a small amount of mode overlap and hence, coupling.
Since the two mode families are coupled, whenever the modes from these families are degenerate,
an anti-crossing between the modes is seen [RSC+16]. By changing the electric field across
the lithium niobate crystal, the refractive index and, thus, the FSR of the optical modes can
be tuned. As a result, the splitting in an anti-crossing can be controlled using an external
constant electric field.
Mathematically, we can write the interaction Hamiltonian for the coupling as,

Hint = ℏJâsâsm + c.c, (3.26)
where, J is the coupling rate and âsm is the annihilation operator for the TM mode degenerate
with the Stokes optical mode âs.
Then, ignoring the quantum noise, the set of quantum Langevin equations are written as,

̇̂as = −κo

2 âs − i∆âs − iJâsm + i
√
κo,exFs, (3.27a)

̇̂asm = −κsm
2 âsm − i∆smâsm − iJâs, (3.27b)

where, Fs =
√︂
Ps/(ℏωs) is a coherent drive term, ∆ is the detuning of the coherent drive

from the âs mode resonance, ∆sm is the detuning of the âsm mode from the TE mode (âs)
resonance and κsm is the total loss rate of the âsm mode.
These equations can be solved in the frequency domain assuming steady state as,

as(∆) =
i
√
κo,exFs

(i∆ + κo/2) + J2

i∆sm+κsm/2
, (3.28)
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Finally, the output field of the TE mode is calculated as, as,out = √κo,ex − F . We use this
formalism to characterize the avoided crossing in the frequency domain.
A experimental sample characterization of such an avoided crossing is shown in Fig. 3.16. The
measurement of the anti-crossing was done by sweeping the laser (coherent drive) frequency
across the avoided crossing. The obtained data is fit using Eqn. 3.28. For this fit, we assume
that the mode characterization of TE mode is already done using the techniques discussed
in section 3.2.6. This leaves only fit parameters which are related to the TM mode. The fit
parameters obtained from Fig 3.16 are J/2π = 51.5 MHz, κsm/2π = 8.1 MHz and ∆sm/2π =
2.5 MHz.
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Figure 3.16: Characterization of an avoided crossing observed in an optical TE mode.

It is worth understanding intuitively the function of each fit parameter in the fit. For an
undercoupled TE mode, the linewidth of the TM mode κsm changes the contrast of the avoided
crossing. The smaller the κsm, the more contrast in the avoided crossing. The coupling rate
J determines the size or the distance between the two peaks of the avoided crossing. Finally,
the detuning ∆sm determines the symmetry between two peaks as changing this detuning
sweeps the TM mode over the TE mode.
The hybridisation of one optical sideband reduces the scattering rate of microwave photons
to that optical sideband. The reduced scattering rate suppresses the corresponding process-
either beam splitter interaction or amplification interaction, from the Hamiltonian. We express
the magnitude of degree of suppression with the ratio of scattering rates to the two optical
sidebands. This is discussed in more details in chapter 7.

Experimenting with mode hybridisation In our devices, we do not have the means to
apply a direct voltage across the lithium niobate crystal. As a result, we cannot control the
mode hybridisation at will. Rather we depend on searching for an avoided crossing that occurs
naturally at a random spot. The process is as following,

• Find a high quality critically coupled optical mode in the whole FSR. In one FSR, there
are a plethora of modes, most of which are either too broad or undercoupled.

• The chosen mode will repeat at each FSR. Scan multiple FSRs with the laser.

• Since there are also many TM modes in a given FSR, there is a chance of finding an
avoided crossing with the mode of interest.

• Once such a hybridised mode is found. Make sure that the same mode in the neighbouring
opposite FSR is not split (hybridised). This is to ensure that the wanted scattering rate
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3. Cavity electro-optics with whispering gallery modes

to the relevant optical sideband doesn’t get suppressed and the pump mode is critically
coupled1 to maximize the cooperativity for a given amount of optical pump power.

With this method, we can sometimes find modes with a perfect hybridisation as desired and
as shown in Fig. 3.16. However, often we find modes with imperfect hybridisation when the
TM mode is not exactly degenerate with the TM mode resulting in mode hybridisation with
asymmetric avoided crossing (shown in Fig. 3.17). In the following, we discuss how we can
also use the imperfect mode hybridisation to suppress the desired optical sideband.
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Figure 3.17: Partial hybridisation observed in an optical TE mode.

Working with asymmetric FSR Many times we find a TE mode coupled to a TM mode,
but is not completely degenerate with the TM mode. This results in either an extremely
asymmetric avoided crossing or if the modes are even further detuned then we don’t see any
avoided crossing at all, rather just the shift of the TE mode from the usual FSR. In such
cases, the coupling to the non-degenerate TM mode simply shift the TE mode. This results
in an asymmetric FSR with respect to a weakly hybridised mode. If we choose this mode as
the optical pump, the effective FSR between the pump and the two optical sidebands will
be different. Thus, we can use such an arrangement to obtain the same effective system
of suppression as discussed in chapter 8 (pumping off-resonance) but without the cons of
actually having to pump off-resonance. We can also use a weakly hybridised mode such the
one shown in Fig. 3.17 as the optical pump. Although this is an avoided crossing with a small
very asymmetric splitting, we can simply pump at the point of highest contrast. Since the
splitting is weak, the maximum contrast is only slightly reduced from an unhybridised mode.
Thus, the pump power required to achieve the same cooperativity is only slightly more.
Finding such asymmetric FSRs can be challenging. Modes with small satellites can be hard to
spot and modes with even weaker hybridisation are even more difficult to spot. However, as
we will discuss in the next chapter, we use two different optical paths for the optical signal
and the pump. This makes it easy to quickly get a rough idea of any asymmetric FSRs in
the neighbouring modes. If with rough measurements an asymmetric FSR is suspected, finer
measurements can be made to check the degree of asymmetry.

1The number of photons inside the resonator are maximum at critical coupling for a given amount of
input power.
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CHAPTER 4
Experimental setup

4.1 Introduction
In this chapter, we discuss the practical details of working with a WGM resonator based
electro-optic device. When cooling down the assembled device to millikelvin temperatures,
the optical couplings can change due to metal contraction. Therefore, the final assembly of
the device needs a set of piezos to control input-output optical coupling and a microwave
cavity frequency which need to be tunable in-situ. During the cooldown, we use the piezos to
maintain the mode couplings in place. Here, we discuss the algorithm that we use to achieve
the same. Finally, we discuss the structure of experimental setup built around the device to
carry out the final measurements with the device. The full experimental setup changes slightly
with different experiments each time so the detailed experimental setups are discussed in the
appendix C for each experiment presented in the thesis.

4.2 Low temperature experimental setup
Fig. 4.1 shows the electro-optic device in the top center with all the necessary equipment
surrounding it. The light from single mode fibers is coupled through gradient index lenses
(GRIN lens) which focus the light on the prism surface which is inside the aluminum microwave
cavity. The two GRIN lenses are mounted on an XYZ piezo-stack each. The more powerful
Z-piezo carries two other piezos which can move horizontally. The piezos we use are from
Attocube - ANPx101 for horizontal directions and ANPz101 for the vertical direction. All
the piezos are configured to work at millikelvin temperature and were bought with LT (low
temperature) option. The setup allows us to align the GRIN lenses with a nanometer accuracy.

The GRIN lenses and the single mode fibers are glued with a NOA61 glue which is cured using
ultraviolet light. Using a glue which is fluid before curing and which gets cured using the
application of light allows us to glue the optical components without disturbing the coupling.

The prism is mounted on a ANPx101 piezo shown in the middle of the picture. An aluminum
rod, to which the prism is glued to, is attached to the prism piezo. Adjustment of this piezo
with direct voltage is essential since it controls the external coupling rate κex,o by adjusting
the distance between the prism to the optical resonator. Fig. 3.10 shows how sensitive κex,o is
to applied voltage to the piezo.
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Another ANPz101 piezo carries the microwave frequency tuner rod which is mounted under
the device and cannot be seen in the picture.

Finally, the microwave is coupled via copper waveguide with an SMA connector pin attached
to the top of the device.

XYZ
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stack
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Figure 4.1: Final device assembly.

As can be seen in the picture, all the piezos and the electro-optic device are mounted on a
custom designed copper block that minimizes the coupling angle changes as the device is
cooled down. We couple the optics while the device is mounted on the copper block. Finally
when input and output coupling to GRIN lenses reaches a satisfactory level (in the past, we
have been able to achieve > 50% transmission with > 65% contrast for critically coupled
optical modes), the optical components are glued, the whole copper block is mounted on the
mixing chamber plate of a He3/He4 dilution refrigerator. Part of the mixing chamber plate can
be seen in the picture on the top left and right. The copper block facilitates the thermalization
of all the equipment to the mixing chamber plate’s millikelvin temperature upon cooldown.

Since the whole assembly is made out of metal and is cooled down from room temperature
∼ 300 K to ∼ 0 K, a lot of thermal contraction can be expected. Due to the complex geometry
of the device, it is hard to predict the distance and the direction in which optical couplers
will move as a result of this temperature change. As a result, we need to constantly move
the optical couplers via the XYZ piezo stack to maintain optical coupling through out the
cooldown process.

4.3 Maintaining optical coupling during cooldown
In the previous section, we discussed how the optical coupling can change as a result of
temperature change during cooldown and metal assembly. The optical coupling has to be
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maintained by moving the input-output coupler positions in-situ via the XYZ piezo stack. This
can be done manually. However, the cooldown from room temperature to 4 K can take about
30 hours and constantly adjusting the coupling for 30 hours is a rather daunting task.
The process of keeping the modes coupled can be partially automatized requiring much less
input from an experimenter. To write an automatic program which can maintain the optical
coupling, we need to understand the changes during the cooldown. In order of magnitude of
the rate of change (fastest to slowest), the following things change during the cooldown:

• Coupling efficiency of modes The optical mode coupling efficiency is extremely
sensitive to the distance between the prism and the optical resonator. This coupling
changes the fastest during the cooldown. One can expect to change the prism voltage
few times per minute during the steepest temperature gradients during the cooldown.
While cooling down, the prism tries to get closer and closer to the optical resonator, so
it is essential that we keep moving the prism back lest it rams into the optical resonator
possibly breaking the whole setup.

• Polarization of light The next fastest thing to adjust is the polarization of light. In
our setup, we use several meters of optical fiber inside the dilution refrigerator for future
expansion. As this fiber goes through a large temperature gradient, the polarization
of light passing through it changes quite drastically. As a result, polarization of light
has to be adjusted at least once an hour. Since, the polarization degree of freedom is
one-dimensional, it is easy to adjust and maximize the coupling using polarization before
doing something more complicated.

• Input-output coupling The coupling of the optical resonator to the input and output
coupling fibers changes the slowest. This coupling has to be changed systematically and
in pairs as we discuss next.

Algorithm to maintain coupling We now describe the procedure to maintain the optical
coupling during the cooldown. We start with the optical mode in the best possible achievable
coupling. Several modes are monitored at the same time by sweeping the laser frequency
wide enough to cover at least one FSR. The idea is, on the oscilloscope, one should see
high quality optical modes with enough separation between them such that the mean of the
full waveform approximately represents the reflected baseline. With this prepared setup, the
following detailed algorithm has been implemented to maintain optical coupling:

1. Calculate the mean, max, min and variance of the waveform which displays the reflected
optical mode spectra. Here, we assume that the mean is approximately the reflected
baseline. The difference between the max and the min is an indication of the contrast.
The variance reflects the two states of the baseline - when the modes are under-coupled
or critically-coupled, the reflected baseline is rather flat and when the prism gets too
close to the optical resonator, the modes get overcoupled and many more modes get
coupled (leaving the baseline not flat anymore) increasing the variance of the waveform
(We touched upon this topic in section 3.2.6.).

2. When the optical modes are coupled as desired, we must store the value of the mean,
max, min and variance as the ideal desired one. Also, some thresholds are set for the
mean, max−min and variance values such that when the measured values of these
parameters go below the threshold, some action is triggered.
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3. If the prism gets too close, the modes get overcoupled. This will mostly increase the
variance but it may also decrease the contrast (max-min). Moving the prism back with
the DC voltage1 will solve this. If the applied DC voltage is already at zero, one back
step with step voltage is needed but it will end up under-coupling the modes most
probably. Follow next step to solve this issue.

4. When the prism is too far from the resonator and the modes are undercoupled, the
variance will be low as desired but the contrast will also be low which is not wanted.
In this case, the prism needs to moved forward to rectify the issue and get all the
parameters within the threshold targets. Consequently, we can increase the DC voltage
applied to the prism piezo. If the applied DC voltage is too high (say 35 V), then a
forward step with step voltage is needed to fix the situation. Follow step 3 to fix the
overcoupling issue if it arises after step forward.

5. The above two steps work only if one of the two - contrast or variance are out of their
thresholds. If the variance is high while the contrast is low, it means that the prism is
too close and retracting it back is not going to increase the contrast. In this case, either
the polarization has drifted or the coupling to the GRIN lenses has drifted.

6. We choose to first adjust the simple one-dimensional parameter - polarization. If
adjusting the polarization via the polarization paddles gets the contrast back to normal,
then the problem is easily solved, otherwise we move to the next step.

7. Finally, the only thing that can be wrong is input-output coupling to GRIN lenses. In
theory, this is a 12 dimensional space with 3 spatial directions and 3 angles each for
input and output couplers. In our current design, we do not optimize the angles of GRIN
lenses. This leaves us with 6 dimensions corresponding to spatial directions to tweak. In
practice, one of these directions is movement along the grin lens which changes the size
of focus spot on the prism surface. The focus size changes rather slowly with length
travelled by grin lens in this direction, so the affect it has on the coupling efficiency
is minimal. During the cooldown, the couplers don’t drift enough to change the focal
spot drastically, we can simply ignore this direction for both input and output during
cooldown.

8. Ignoring these two dimensions (corresponding to both input and output couplers) reduces
the coupling problem to four dimensions. The rest of the four dimensions are coupled
to each other due to the geometry of the problem. For example, if the z-direction of
input coupler is moved in up-direction, the transmission will go down since the reflected
spot will also move up with respect to the output coupler. Hence, the output coupler
needs to be moved up as well. Similarly, the x-direction of input and output are inversely
coupled. If input-x is moved in one direction, the output-x needs to be moved in opposite
direction to maintain the transmission. Moving input and output couplers in tandem is
a usual optical coupling technique and known as ’beam walking’ in the community. By
moving both input and output couplers pair-wise, we are essentially moving the focused
spot on the prism surface and trying to find the spot on the surface where the mode
coupling with the optical resonator is the best.

1Piezo position can be finely adjusted by applying a DC voltage but with a limited range which is limited
by range of DC voltage (typically 0 V - 50 V). Better range is achieved by sending a sawtooth-like voltage
to piezo which causes a slip-stick motion to coarsely move the piezo farther. Here, we refer to this mode of
motion of piezo as stepping.
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9. In our case, however, there is one extra coupling between the Z and X direction. Since
the piezo stacks are not perfectly vertical, moving in vertical direction slightly changes
in horizontal direction as well. For this reason, we adjust the vertical direction first and
then adjust the horizontal direction.

10. Finally, the order in which the coupling is adjusted is Z-in up, then Z-out up to maintain
transmission. Then, check if it improved the contrast. If it did, keep moving them up
until it stops helping and go back to last best coupling point. If moving up never made
the contrast better, then move them down together and check the contrast and find the
best coupling point in vertical direction.

11. Repeat the same exercise in horizontal direction, except move the two piezos in opposite
direction to maintain contrast. If moving in one direction does not help, try the other
direction and optimise coupling in the horizontal direction as well.

12. One pass of optimization in both vertical and horizontal direction may not be enough.
So, if after one pass the contrast is not restored, more optimization passes can be made.
Beware that fiber coupling optimization can take long depending on the number of steps
made in one pass and number of passes needed. It is recommended to adjust the prism
piezo between each pass of fiber coupling adjustment.

Cooldown helper program The above described algorithm can be readily automated. We
wrote a cooldown helper program featuring a graphical user interface GUI which implements
the above algorithm. The program connects to the oscilloscope to monitor the optical modes
and the Attocube controller to control the piezo positioners. The program can also connect
to a RF source which controls the applied phase modulation to the input light. The phase
modulation would create sidebands with a known frequency separation. This is used as
calibration to measure the mode quality factors during the cooldown. Moreover, the program
can also connect to a variable optical attenuator to control the input optical power which is
sent to the device in the dilution refrigerator.

The program GUI is shown in Fig. 4.2. The top left part displays the optical mode spectra
from the oscilloscope. It can be requested via the ’Run once’ or ’Run continuously’ button.
To save data transfer bandwidth, it is not turned on by default. Below the plot are the various
parameters of the optics waveform as requested from the oscilloscope. They are continuously
updated and monitored to detect any change. The accepted thresholds for these parameters
can be changed in the mid left panel. If the value of the parameter falls below the accepted
range some action will be triggered.

In the middle panel, various other parameters can also be adjusted such as maximum prism
piezo DC voltage, step voltage magnitude and frequency and the keyboard shortcuts. The
keyboard shortcuts help easily control the piezos in an intuitive manner. They can also be
used to control the piezos remotely if needed. Added benefit of using the program to control
the coupling is that the program records the steps taken and, hence, we can use this data to
go back to approximately the previous coupling point, in case something goes wrong.

The program works by switching between various states. If the thresholds are not set, the
program is uninitialized. After accepting the good coupling scenario by clicking button ’This
is ideal ’, the program starts. If all the measured parameters are within the threshold, the
program displays the status ’Everything OK ’ in the right corner. If any parameter drifts outside
the accepted range, then program switches to the status ’Need optimization’.
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Figure 4.2: Cooldown helper program GUI.

At this point, we can choose to fix the problem manually or use one of the check boxes on the
left side to automate the coupling process. If the required boxes are checked, the program can
automatically correct for prism drifts and input-output fiber coupling. Different check boxes
allow the program to modify prism and input-output fiber coupling. The optical coupling can
also be manually triggered using the ’Manually trigger optimization’ button. A log of what
has been changed is displayed on the right panel at all times. The log are automatically saved
in a log folder and can be saved in a specific folder for further analysis via the ’Save logs to
file’ button.

In the current version of program, the polarization drifts were not automatically corrected.
However, automatic polarization drift correction in future can be implemented by using a
motorized polarization paddle such as MPC320 from Thorlabs and adjusting the polarization
before input-output coupling is modified.

4.4 Optical quality factor drop during the cooldown
One puzzling thing we observed during the cooldown was the steady drop in optical quality
factors. At room temperature, we measured the intrinsic optical quality factor of ∼ 108. After
the cooldown at millikelvin temperature, we measured the quality factor again and found that
it had dropped to ∼ 2× 107. The mode quality factors did not change after that for as long
as the resonator remained cold. However, about two and a half years later, we warmed up the
system and without making any changes to the transducer, we cooled it down again. After the
second cooldown, the quality factors dropped yet again by more than 3 times to ∼ 5× 106.

48



4.5. Room temperature measurement setup

Unfortunately, we did not take concrete data to verify the change in optical quality factor
after the first warm-up.

This drop in the optical quality factor proved to be one of the biggest limiting factors of
our device. To achieve the same cooperativity C = 4npg

2
0/(κoκe), the optical pump power

required is proportional to the square of the optical linewidth κo. This is because not only the
enhanced coupling rate √npg0 needs to match to a bigger loss rate, but also more optical
pump power is needed to achieve the same number of photons in the resonator np for a larger
linewidth mode.

Unfortunately, the cause of this drop in the optical quality factor is still not known. We
speculated that this might be due to adsorption of gases on the optical resonator surface
at millikelvin temperatures. However, adsorption does not explain why the quality factors
dropped even further on the subsequent cooldown.

Another speculation which might explain the drop in the quality factors is formation of
micro-cracks in the optical resonator which can form in the process of closing the microwave
cavity around the microwave resonator. The microwave cavity pushes even harder during
the cooldown because aluminium contracts more than lithium niobate2. As a result, there
is a good possibility of damaging the pristine dielectric material exactly where the optical
modes are expected. Upon cooldown, lithium niobate will shrink and the cracks will get larger
deteriorating the optical quality factor. It is also not hard to imagine this shrinking not being
fully reversible which will cause further loss in quality factor upon subsequent cooldowns.

This problem can be solved with a new design of transducer which includes a microwave cavity
which does not push on the optical resonator exactly where the optical modes are present.
We discuss this new design in chapter 10.

4.5 Room temperature measurement setup
The setup inside the dilution refrigerator needs to be complimented with an external signal
preparation and measurement setup. The exact details of the measurement setup change
with different experiments. For each following chapter, we used a slightly different setup as
needed. The setups are explained in full detail in appendix C. Here we give a gist of the core
components of the setup.

The measurement setup is divided in 4 parts - optics preparation and detection and microwave
preparation and detection. The preparation of optics has usually two parts - preparation of
the optical pump and the optical signal. We usually divide the 1550 nm laser into two parts
to make the optical pump and signal. Continuous wave optical pump is just the laser itself,
but when the optical pump is pulsed, we use an acousto-optic modulator to create optical
pulses with sharp rise and fall times of ∼ 10 ns.

The optical signal is produced with an optical single sideband (SSB) modulator. The optical
single sideband works as shown in Fig. 4.3. The light is first divided into two parts with a phase
modulator in between to control the phase in two arms (via an external bias voltage DC3).
Each of the two arms are themselves an intensity modulator, which is made by a Mach-Zehnder
interferometer modulated by an RF tone and biased with a DC voltage. The two arms are
then combined where they interfere with each other before the light exits. Overall, the device

2Thermal expansion coefficient of aluminium is about 2.3 × 10−5 K−1 while that of lithium niobate is
4.1× 10−6 K−1.
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needs two RF tones and 3 DC voltage biases. The RF tones are made from one RF source
which is split in two parts. One part is fed directly to the SSB modulator while the other
part is attenuated and phase corrected to match the requirements. By controlling the phase
between the RF tones and the DC biases, we can suppress any combination of the pump tone
and the two produced sidebands. Usually, we keep only one sideband while suppressing both
the pump and the other sideband to produce the optical signal at the desired offset from the
optical pump.

RF1 DC1DC3

RF2 DC2
P
ha
se

Figure 4.3: Optical dual parallel Mach-Zehnder interferometer used as single sideband modula-
tor.

The optics is detected either via an optical spectrum analyzer (OSA) or, if more sensitivity
is needed, via an optical balanced heterodyne setup. If heterodyne is used, we also need to
prepare the local oscillator (LO) from the original laser. In this case, the laser is divided in
three parts to produce the optical pump, signal and LO. The optical LO tone is produced by an
electro-optic phase modulator. For phase modulation, we use the RF power which maximizes
the power in first-order optical sideband which is used as LO frequency for heterodyne. In
this regime, however, the phase modulator also produces other higher-order sidebands. If the
optical LO is corrupted with extra frequency tones which do not beat with the optical signal
at the measured frequency, these extra tones beat with the shot noise and produce extra noise.
This reduces the efficiency of the optical heterodyne. As a result, to increase the heterodyne
efficiency, we also used an optical Fabry-Pérot cavity filter to clean the optical LO tone when
the heterodyne efficiency was of utmost importance.
The microwave preparation is done simply with RF sources. We use microwave switches
to switch between vector network analyser (VNA) measurement or spectrum analyzer (SA)
measurements. The SA has a maximum measurement bandwidth of 80 MHz. For higher
bandwidth measurement, we use manual downconversion of microwave signal via IQ modulators
using a microwave LO. The downconverted signal for both microwave and optics heterodyne
detection is digitized at 1 Gigasamples per second. Theoretically, it allows us to measure a
maximum of 500 MHz bandwidth according to Nyquist theorem [Sha49] but in our experiments
we only went up to 200 MHz.
Note that, in our experiments, we use a lot of RF modulation. The RF modulation is produced
via RF sources which are all synced to one 10 MHz Rubidium clock. The acousto-optic
modulators which use 200 MHz modulation are also synced to the same clock to preserve
phase coherence of the optical pump with the optical signal.

4.6 Conclusions
In this chapter, we have described the practical details of our experimental setup including
the electrooptic device assembly, the cooldown process and a summary and a few key points
about the room temperature setup outside the dilution refrigerator. We also discussed the
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cooldown helper application which can be used as a short manual to use the software. In the
next chapters, we will move on to the experimental results obtained with this electrooptic
device.
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CHAPTER 5
Transduction with a CW optical pump

5.1 Introduction
After cooling the electro-optics system down to millikelvin temperatures, the first experiment
we do is transduction between the optics and microwave frequencies using the beam splitter
interaction between the optical anti-Stokes sideband and the microwave mode. Here, we use a
continuous wave (CW) pump and coherent signal drives to measure the transduction efficiency.
Even though the experiment is purely classical, the motivation to cool the microwave system
down to its ground state is to study the thermal noise properties of the transduction process.
When working with quantum signals or interfacing with qubits, even a good transduction
efficiency between the modes is useless if a transducer adds a lot of thermal noise on top of
the transduced signal.

In this chapter, we describe how we measure the transduction efficiency of our system and the
calibrations which are needed to accurately measure the efficiency. We also study in detail
the thermal noise properties of our system as a function of applied pump power both in the
frequency and time domains which let us conclude that our system is a good candidate for a
pulsed-pump operation.

Acknowledgements This chapter is based on the work presented in Ref. [HRS+20]. Figure
credits have been individually given in the figure captions.

5.2 Theory
Most of the needed theory is already covered in section 2.4 of chapter 2. We assume only the
beam splitter like Hamiltonian between the optical anti-Stokes sideband and the microwave
mode,

Ĥint = ℏg0
√
np(â†

t âe + âtâ
†
e). (5.1)

Here, we have ignored the interaction of the microwave mode with the optical Stokes sideband.
The assumption is fair because not only we suppress the interaction of optical Stokes sideband
by hybridising the mode (as described in section 3.5) as shown in Fig. 5.1 but also because
we only work with low cooperativities (< 10−3) in this chapter. As we will see in chapter 7,
the cross interaction between the microwave mode and different optical sidebands becomes
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5. Transduction with a CW optical pump

relevant only at high cooperativities ∼ 1. Solving the interaction Hamiltonian (Eq. 5.1) in
steady state, the total transduction efficiency on resonance is obtained as,

ηtot = Λ2ηeηo
4C

(1 + C)2 (5.2)

where C is the cooperativity and ηi are the coupling efficiencies. The formula is exactly the
same as described in chapter 2 except we have now added the optical mode mismatch factor
Λ. The mode mismatch factor essentially only affects the external coupling rate for optics as
κo,ex → Λκo,ex. This results in an additional Λ2 factor in the formula for the total conversion
efficiency corresponding to the two times light has to coupled in from a single mode fiber to
optical WGM (for the optical pump) and vice versa on the output side (for the optical signal)1.

We also define the internal conversion efficiency ηint = ηtot/(Λ2ηeηo) excluding the losses
involved in coupling power from waveguides to cavities. In other words, ηint stands for the
conversion efficiency for the exchange of photons inside the cavities. At C = 1, the internal
conversion efficiency is 1. Beyond C = 1, it starts to drop due to energy oscillation between
modes. In this case, the conversion rate is not matched with the out-coupling rates. This
means that the total conversion efficiency is bounded by the coupling losses Λ2ηeηo at C = 1.

5.3 Experimental setup
The detailed experimental setup is described in appendix C. In summary, the electro-optic device
is mounted on the mixing chamber plate in the dilution refrigerator. A series of attenuators
attenuate the coherent microwave signal down to single photon levels (and corresponding
room temperature thermal noise to ≪1 quanta). After the signal reflects from the microwave
cavity, it is deflected to another output line via a circulator. The output line amplifies the small
microwave signal via a high-electron-mobility transistor (HEMT) amplifier. The microwave
modes are characterized by a vector network analyzer (VNA). The output microwave power is
measured by a spectrum analyzer (SA).

On the optics side, a 1550 nm laser is divided in two parts - optical pump and signal. The
optical signal is produced from the optical pump frequency via a single sideband modulator
(SSB). The sideband frequency can be adjusted by changing the input microwave frequency
to the SSB. The optical pump and the signal are combined via a 99:1 coupler before sending
the light to the dilution refrigerator. 10% of the reflected power is measured by an optical
photodetector to measure the optical spectra or to lock the optical pump to the optical WGM
resonator. 90% of the reflected light is detected by an optical SA either directly or after being
amplified through an Erbium-doped fiber amplifier (EDFA) in case the optical signal is too
small to measure.

Laser lock The only lock we used during the measurements with the CW optical pump was
the locking of the laser light to the optical WGM resonator. The laser is locked to the reflected
pump power from the optical cavity. The reflected power is the smallest at the resonance
and increases if the laser is detuned to either side of the resonance. Since the only available
information is the reflected power without any phase, the direction of the detuning of the laser
cannot be predicted. The mode we are locking to is relatively broad (∼ 10 MHz) compared to

1For optical to microwave conversion, both the optical pump and the optical signal need to be coupled in
resulting again in a Λ2 factor.
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the laser frequency drifts. As a result, we do not need a fast lock. A lock that works on the
order ∼ 100 ms would work.
We chose a digital implementation of the laser lock due to the ease of use and compatibility
with the measurement script. The laser frequency can be controlled via a built-in piezo
controller which is in turn controlled by sending commands to the laser via the telnet protocol.
To lock the laser to the pump frequency, we measure the reflected pump power and digitize
it to be read on a computer. Below, we describe a dynamic step algorithm to lock the laser
frequency to the optical pump mode.
The basic idea of the algorithm 5.1 is to move the laser frequency in one direction and then
another to find the point of minimum reflection. However, the algorithm depends heavily on
the step size used to move the laser frequency. If the step size is too small, the noise can
overwhelm the error signal and give wrong estimation of where the minimum is. Nevertheless,
even with small step size, the algorithm will stochastically find the true minimum of the mode
resonance but the process will be slow and uncertain. Choosing a bigger step size allows to
avoid these problems but then the laser is never truly parked at resonance and the algorithm
is constantly shifting the laser around trying to make sure that it is on resonance.
The best of both the worlds is achieved if we implement a dynamic step size approach. For
this, we need the extra information about the reflected power on- and off-resonance. Using this
information, we can predict how far away from resonance the laser is. We, then, interpolate
the step size linearly between a chosen minimum and maximum step value according to the
measured reflected power. With this approach, the algorithm takes larger steps when the laser
is further away from resonance but the step sizes decrease as the laser approaches resonance
and smallest steps are taken near resonance so as to not move the laser around too much
once near resonance.

5.4 Setup characterization
The optical mode reflection spectra are shown in Fig. 5.1 featuring an FSR = 8.818 GHz and
ωp = 193.5 THz. The full mode characterizations are done as described in chapter 3. The
final obtained parameters are stated in table 5.1.
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0.0
ωp -FSR ωp ωp+FSR

Figure 5.1: Reflected optical mode spectra for transduction results with a CW optical pump.

Optical heating of the microwave cavity We noticed that the microwave cavity properties
change as a function of the applied optical pump power. This is attributed to the local thermal
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5. Transduction with a CW optical pump

Algorithm 5.1: Dynamic step size digital laser lock.
Data: max← the max power reflected off-resonance,
min← the minimum power reflected on-resonance,
Smin ← the smallest step size for laser piezo (∼ κo/100),
Smax ← the biggest step size for laser piezo (∼ κo/10)

1 Function interpolate(R) : is
2 x← [−10, min, max, 10] ; /* Here, 10 and -10 are some

absolute min and max possible value of R. */
3 y ← [Smin, Smin, Smax, Smax];
4 xnew ← interpolate1D(R, x, y); /* Interpolate R on a 1D function

described by x and y arrays. */
5 return xnew;
6 end
7 MD ← 1; /* Represents the movement direction */
8 R← Measure reflected power of optical pump;
9 amp← Measure laser amplitude ; /* The piezo voltage on laser */

10 while (RunLock is True) do
11 while True do
12 R← Measure reflected power of optical pump;
13 step← interpolate(R); /* Dynamic step size */
14 setLaserPiezo(amp + step×MD); /* Change laser piezo

voltage */
15 amp← amp+ step×MD;
16 sleepProgram(0.05 s); /* For changes to take effect */
17 Rnew ← Measure new reflected power of optical pump;
18 if Rnew < R then
19 R = Rnew;
20 continue to Step 11;
21 else
22 if MD = 1 then
23 MD ← −1; /* Change direction */
24 R = Rnew;
25 continue to Step 11;
26 else
27 setLaserPiezo(amp− step×MD); /* Go back to last best

found position */
28 amp← amp− step×MD;
29 break ; /* Break the inner while loop */
30 end
31 end
32 end
33 end
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Parameter Value Unit Description
κo/2π 18.9 MHz Total optical linewidth
ηo 0.5 - Optical coupling efficiency
Λ 0.62 - Optical mode mismatch factor

κe/2π 10.4 MHz Total microwave linewidth
ηe 0.35 - Microwave coupling efficiency

FSR 8.818 GHz Optical free spectral range

Table 5.1: Mode characterization for CW pump transduction.

heating caused by the high energy optical photons. We characterize the microwave cavity for
the full range of optical pump powers we used in the experiment. The results are shown in the
Fig. 5.2.

0.001 0.01 0.1 1

(mW)

8.82 8.848.78 8.80 8.86

(MHz)

= 1.48 mW

(m
K

)
(M

H
z
)

(M
H

z
)

∆ω/(2π)

0.0

0.0

-0.5

-1.0

-1.5

-2.5

7

8

9

10

10

100

11

0.2

0.4

0.6

0.8

1.0

ba

dc

Pp

Pp

= 0.23 μWPp

T
f

0.001 0.01 0.1 1

(mW)Pp

0.001 0.01 0.1 1

(mW)Pp

(n
o
rm

a
liz

e
d
)

|S
ee
|2

(ω
e
−
ω
e,
0
)/
(2
π
)

κ
e,

/(
2π

)
in

Figure 5.2: Microwave cavity properties in the presence of laser light. a Normalized
reflected microwave spectra for the highest (lowest) applied pump power in red (blue). b (c)
Change in microwave frequency resonance ωe (intrinsic losses κe,in) as a function of applied
optical pump power Pp on resonance. d Mixing chamber temperature Tf as a function of Pp

with a power law fit Tf ∝ P 0.48
p (black line) of the intermediate power region. Figure adapted

from Ref. [HRS+20].

The reflected microwave spectra in Fig. 5.2a shows that the microwave cavity broadens (due
to increased internal losses κe,in) and red-shifts in response to optical power. The shift in
microwave resonance frequency ωe from its original (low power) position ωe,0 as a function
of Pp is plotted in Fig. 5.2b and the increase in κe,in is shown in Fig. 5.2c. The parameters
change slowly with Pp until a phase transition happens around Pp ∼ 700 mW when aluminium
loses its superconductivity. Thereafter, the parameters seem to stop changing. We note that
aluminium loses its superconductivity at a threshold temperature of 1.2 K and as shown in
Fig. 5.2d, the mixing chamber temperature is still well below this threshold when the loss in
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5. Transduction with a CW optical pump

superconductivity happens. This is a proof that the microwave cavity suffers from local heating
from the high power optics. Since aluminium is a bad conductor of heat in its superconducting
state, it is difficult to dissipate this heat to the mixing chamber.

5.5 4-port calibration
The best way to calibrate the device’s total transduction efficiency independent of the involved
signal losses/gains of the setup is through a 4-port calibration. For this, we treat the
device as a simple 4-port device - input optics, output optics, input microwave and output
microwave (see Fig. 5.3). Thereafter, we define the various loss/gain from the 4 device ports
to the 4 experimentally accessible ports via intruments such as VNA. β1 and β2 describe the
attenuation/gain in the optical input and output path respectively. β3 and β4 describe the
same for the microwave input and output port. ηeo and ηoe describe the total (i.e, including
the waveguide to resonator coupling losses) optics to microwave and microwave to optics
conversion efficiency of the device.

P
p

DEVICE

Figure 5.3: Four port calibration. Figure adapted from Ref. [HRS+20].

The 4 scattering parameters |Sij|2 = | âout,i
âin,j
|2, where â represents a propagating mode, can be

independently measured. |Soo|2 is the optical reflection spectrum and |Soo|2(∆ω) = β1β2 when
measured off-resonance, similarly |See|2(∆ω) = β3β4 is the microwave reflection off-resonance
and |Seo|2(ω0) = β1β4ηeo and |Soe|2(ω0) = β2β3ηoe is the measured conversion from optics to
microwave and from microwave to optics on-resonance respectively. Assuming, ηoe = ηeo, the
total conversion efficiency ηtot = √ηoeηeo is calculated as,

ηtot =

⌜⃓⃓⎷ |Soe|2(ω0) · |Seo|2(ω0)
|Soo|2(∆ω) · |See|2(∆ω) (5.3)

This calculation is independent of all the losses/gains of all the ports and thus provides a in-situ
calibrated device conversion efficiency. Note that it is necessary to calculate the reflected
power |Soo|2 and |See|2 off-resonance. This is because we need the total loss or gain of the
whole input and detection chain combined for the case of no cavity interaction.
After calculating the ηtot and with the knowledge of one of the βi parameter, all the other
parameters are possible to calculate from the 4 measurements made. For this experiment, we
independently measured the output microwave gain β4 by measuring the output noise from a
50 Ω load as a function of its temperature (see appendix B). Finally, we determined all the
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βi parameters - β1 = −4.81 dB, β2 = −5.5 dB (without EDFA), β2 = 30.8 dB (with EDFA),
β3 = −74.92 dB and β4 = 67.05 dB.

5.6 Transduction measurements
An optical pump is locked to ωp with power Pp and applied to the optical cavity. The different
scaterring parameters |Seo|2 and |Soe|2 are then measured by sending the corresponding
coherent signal and measuring the narrow-band, peak, coherent optical output power on the
optical SA (OSA) and the same for microwave on SA. Example measurements of the converted
power are shown in Fig. 5.4. The measured optical output shown in Fig. 5.4a shows that
both optical sidebands are present around the pump. However, the Stokes sideband power is
suppressed by a suppression ratio SR = 10.7 dB because of the hybridization of the optical
Stokes mode as shown in Fig. 5.1. The microwave transduction measurement is shown in
Fig. 5.4b. The optical to microwave conversion is shown with Pp = 2.35 µW and optical
signal power of only 161 nW referred to device ports. This corresponds to the generation of
ne = 1.2 intracavity microwave photons which is the center peak in the figure. The broadband
Lorentzian output is the added thermal noise corresponding to the output photon flux of 0.4
photons s−1Hz−1. Thermal noise output is discussed in more details later in this chapter.
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Figure 5.4: a (b) Microwave to optics (optics to microwave) transduction measurement in the
frequency domain measured using the SAs. Figure adapted from Ref. [HRS+20].

Measuring the transduction parameters, the calibrated transduction efficiency is calculated
as described in section 5.5. This calibrated transduction efficiency is shown in Fig. 5.5a as a
function of the optical pump power Pp. The blue points show the measured total conversion
efficiency ηtot and the orange points show ηint = ηtot/(ηeηo). The highest ηtot measured is
3.16× 10−4 for Pp = 1.48 mW. A black arrow at around Pp = 700 µW marks a sudden drop
in ηtot. This drop happens because of sudden loss in superconductivity of aluminium due to
excess optical heating as discussed in section 5.4. The loss of superconductivity results in
a sudden increase of the microwave linewidth which reduces the cooperativity and thus the
conversion efficiency for the same optical pump power Pp.
For the optical pump powers we applied, we expect C ≪ 1 and thus ηtot to be linearly
proportional to C. This is clearly observed in the Fig. 5.5a. We fit the curve with a linear
function2 (shown in grey dashed lines) and extract the cooperativities we measured in the
range from C = 3.24× 10−7 for the lowest pump power to C = 1.68× 10−3 for the highest.
The fit vacuum coupling constant g0/(2π) = 40 Hz. From the Table 3.1 at low temperature

2Cooperatively C is linearly proportional to the pump power Pp.
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Figure 5.5: a Calibrated total (internal) conversion efficiency in blue (orange) as a function of
optical pump power Pp. b Bandwidth of conversion measured by sweeping the optical signal
frequency and measuring the converted microwave signal. Figure adapted from Ref. [HRS+20].

for a similar gap of about 1 µm and around the frequency of optical FSR, we expect a
g0/(2π) >39 Hz, which is in excellent agreement with the measured value of 40 Hz.
Until now, we have reported the transduction efficiency at the mode resonances. However,
transduction happens also off-resonance albeit at a lower efficiency. To measure off-resonance
transduction, we applied the coherent signal to be transduced slightly off-resonance from the
signal mode resonance (the optical pump stays on resonance). The transduction efficiency
is, then, plotted as a function of the off-resonance detuning ∆ω as shown in Fig. 5.5b for
optics to microwave conversion. The solid curve is the theoretical expectation C ≪ 1 given
by [Tsa11],

|Sij(∆ω)|2
|Sij(∆ω = 0)|2 =

⎛⎝(︄1− 4(∆ω)2

κoκe

)︄2

+ 4(∆ω)2(κo + κe)2

κ2
oκ

2
e

⎞⎠−1

(5.4)

We fit the FWHM of bandwidth B/(2π) = 9.0 MHz for Pp = 18.7 µW. The bandwidth of
transduction depends on the linewidths of the microwave and optical cavities. In our case, the
linewidth of the microwave cavity κe increases with the optical pump power due to increased
internal microwave losses due to optical heating (as discussed in section 5.4). As a result, the
bandwidth increases from 8.51 MHz (corresponding to κe = 10.45 MHz) for the lowest pump
power to 10.68 MHz (corresponding to κe = 14.85 MHz) for the highest pump power.

5.7 Added noise
Transduction of a a quantum state from one frequency to another is not useful when it is
accompanied by a lot of noise. Thus, it is imperative to carefully study the noise characteristics
of the transducer device. There are two major sources of noise. Firstly, the optical pump heats
the dielectric due to absorption of photons, in turn, also thermally heating the microwave
cavity walls which are in contact. This is the direct thermal heating. Additionally, there is stray
light that can also break the cooper pairs in the superconducting microwave cavity producing
quasi-particles. Both thermal heating and quasi-particles are responsible for increased surface
resistance that increase the internal losses of the microwave cavity κe,in as we already saw in
section 5.4).
The microwave cavity is coupled to two thermal baths - the surrounding thermal bath at n̄b

which couples via κe,in and the thermal occupancy of waveguide n̄wg which couples via κe,ex.
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The thermal occupancy of the microwave mode is, then, calculated as,

n̄e = ηen̄wg + (1− ηe)n̄b (5.5)

The detected noise spectrum Ndet(ω) is a Lorentzian noise spectrum and a function of n̄b and
n̄wg,

Ndet(ω) = 4κe,inκe,ex

κ2
e + 4ω2 (n̄b − n̄wg) + n̄wg +Nsys (5.6)

where, Nsys = 12.74± 0.36 is the broadband noise added by the detection chain amplifiers
and losses (see appendix B). We calibrate the Nsys together with the microwave output gain
β4 by measuring the noise output from the microwave cavity when it is well thermalized to
millikelvin temperature (see appendix B). At this point, when n̄b = n̄wg = 0, the detected
noise Ndet = Nsys and thus, the detected power from the SA PESA as Ndet = PESA/(ℏωeβ4)
can be calibrated using known value of Nsys. Finally, Nout is defined as Nout = Ndet −Nsys.
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Figure 5.6: Measured output microwave noise spectra for Pp = 0.23 µW, Pp = 14.82 µW and
Pp = 1.48 mW shown left to right. Figure adapted from Ref. [HRS+20].

Output microwave noise spectra, normalised with the baseline when there is no optical pump
power Ndet = NsysPESA/PESA,Pp=0, is shown in Fig. 5.6. The Nsys is plotted with black
dashed lines and broad n̄wg with dashed red line. The solid blue line represents a fit to the
Eqn. 5.6. The left most spectra is plotted for Pp = 0.23 µW where extra noise from Nsys is
barely discernible. The middle output spectra shows Nout = 1.01± 0.07 for an intermediate
Pp = 14.82 µW. Finally, in the right most panel, a clear distinction between n̄wg = 0.13±0.04
and Nout = 5.51 ± 0.20 is seen. Note that for the right most panel, the mixing chamber
temperature Tf corresponds to only n̄f = 0.36 photons at the microwave cavity frequency
which is significantly cooler than the microwave cavity output showing the huge divide between
local microwave cavity temperature compared to the mixing chamber temperature.
The full dependence of Nout (blue), n̄wg (red), n̄b (yellow) and n̄e (green) as a function of
the optical pump power is shown in Fig. 5.7. Sub-photon microwave output noise as low as
Nout = 0.03+0.04

−0.03 and microwave mode occupancies as low as n̄e = 0.025± 0.005 are achieved
for a continuous wave pump power of Pp = 0.59 µW where the total conversion efficiency is
ηtot =2.3× 10−7.
All the noise metrics increase with the optical pump power. n̄b always stays more than n̄wg

since the heating is local and the microwave cable is better thermalized with the dilution
refrigerator. The noise metric increases smoothly and almost linearly in the beginning until
the point marked by a black arrow. Around this point, the superconductivity of the aluminium
breaks suddenly increasing the internal losses of the microwave cavity which reduces the Nout.
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Figure 5.7: Frequency domain microwave noise characterization Microwave noise
characteristics as a function of the optical pump power Pp. The black arrow marks the
superconducting phase transition. The dashed gray lines indicate fitted power laws, specifically
n̄wg ∝ P 0.55

p over the full range of powers, n̄b ∝ P 1.14
p up to Pp ≈ 2 µW (see inset), and

n̄b ∝ P 0.45
p at higher powers. The error bars represent the 2σ fit error to Eqn. 5.6. Figure

adapted from Ref. [HRS+20].

Also, at this point a slower temporary increase in n̄b is observed indicating that thermalization
of the microwave cavity to the mixing chamber has improved further confirming that the
aluminium microwave cavity has undergone a phase transition.
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Figure 5.8: Time domain microwave noise characterization Microwave output noise
measured at resonance with a 500 kHz resolution bandwidth where the optical pump tone
with Pp = 1.48 mW is turned on at t = 0 for 1 minute. The inset shows the fastest heating
rate of 1.1 photons s−1. Figure adapted from Ref. [HRS+20].

Finally, we also study the time dynamics of the noise output. We measure the noise output
from the microwave cavity at it’s resonance (500 kHz resolution bandwidth) as a function
of time as shown in Fig. 5.8. At t = 0, we turn on the optical pump with Pp = 1.48 mW
for 1 min (marked by vertical dashed lines). The output noise increases sharply as a result of
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optical heating. In the inset, we see the fastest rate is only about 1.1 photons s−1 which is
seen in the very beginning. About 30 s in, we see the point where the superconductivity breaks
(marked by black arrow) and noise output drops shortly before beginning to climb again. This
process is promptly reversed when the light is turned off at the second vertical dashed line
and the output noise increases sharply again (this is because as the superconductivity comes
back, the internal losses decrease, increasing the coupling efficiency of the cavity quickly and,
as a result, the output noise increases sharply as more thermal noise from the cavity couples
out). Thereafter, we see the slow cooling via thermalization of the microwave cavity with the
dilution refrigerator bath. Cooling back to ground state takes at least 1 hour.

5.8 Conclusions
With the experiments presented in this chapter, we prove that the electro-optic interaction
between the modes can be observed. We successfully measure bidirectional conversion between
the microwave and the anti-Stokes optical mode. We show this transduction process while the
microwave mode is deep in its quantum ground state n̄e = 0.025± 0.005 albeit with a small
transduction efficiency of ηtot ∼ 10−7. This is the main gripe with the results presented in this
chapter.
Conversion efficiencies can be increased by pumping the optical resonator with more optical
power but we already saw that this solution quickly heats up the system to n̄e ≫ 1. Also,
to reach anywhere close C = 1, we need ∼100 mW of optical pump power which is a rather
unrealistic amount of power to be sent to the dilution refrigerator. It may seem that the only
way out of this situation is to increase either coupling constant g0 or drastically increase the
mode quality factors of the microwave and optical cavities.
There is, however, a silver lining. Studying the output microwave noise as a function of time,
we see that the microwave cavity heating rate is quite slow owing to it macroscopic size. The
highest rate we saw was about 1.1 photons s−1. This can seem quite high at first glance but
given that our transducer has a bandwidth of ∼ 10 MHz, it can work with coherent signal
pulses of length ∼100 ns. Given the rate at which the system heats up, we can expect almost
negligible heating at such timescales and that any thermal heating would depend only on the
average amount of optical pump power which would be directly related to the duty cycle of
pulses being used. As a result, it seems by using an optical pump which is pulsed, we can
get good conversion efficiencies while keeping the microwave cavity close to its ground state.
These experiments with pulsed optics are discussed in the next chapters.
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CHAPTER 6
Low cooperativity pulsed transduction

6.1 Introduction
In the last chapter, it was concluded that using a pulsed optical pump approach could be
useful to control the microwave heating due to optics while maintaining the same cooperativity.
However, switching to a pulsed approach comes with a lot of associated challenges and new
concepts that need to be understood.

In this chapter, we discuss the new changes that come along with using pulses instead of
continuous wave sources. One of the most important of these changes is characterization
of the single port cavities in time domain. We will also discuss the new experimental setup
changes and related issues. Finally, we will study transduction with pulsed signals and ensure
that we can still maintain phase faithfulness during transduction in this pulsed regime.

Acknowledgements This chapter is based on the work presented in Ref. [SHR+22]. Figure
credits have been individually given in the figure captions.

6.2 Experimental setup
In this chapter, we do not yet pulse the optical pump rather we only pulse the coherent signals
sent to the signal optical and microwave modes. The digital TTL pulse signal is produced by
a digital delay generator (DDG). In this setup, we combine the optical pump with the optical
signal to maintain phase stability between the optical pump and signal. The optical signal
is still produced using the optical SSB which can be pulsed by pulsing the microwave source
generating the sideband. But, in this case, we do not suppress the central carrier tone of the
SSB which acts as the optical pump here. The local oscillator (LO) for optics is also produced
via the optical SSB by combining the RF tone for the optical LO and signal before sending it
to SSB. The final output from the optical SSB is amplified via the EDFA before sending to
the dilution refrigerator. The microwave signal is pulsed via the microwave signal source.

The optics after the dilution refrigerator is detected with a fast photodetector (400 MHz
bandwidth). The optical LO and signal are detuned by 200 MHz and the produced beating
signal is detected with a fast photodetector. The beating signal is amplified one more time via
an RF amplifier before digitization with a digitizer at 1 Giga-samples/s. The microwave LO is
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6. Low cooperativity pulsed transduction

also 200 MHz detuned from the microwave signal. Their beating signal is also digitized by the
same digitizer. The final downconversion from 200 MHz to DC is done digitally.
Laser lock is same as in chapter 5 since the optical pump is still CW. The full setup is discussed
in detail in appendix C.

6.3 Setup characterization
We start with characterizing the pulsing equipment. The TTL signal from the DDG rises
from 10% of the max value to 90% of the max value in ∼ 5 ns. The same rise time for the
optical signal from the optical SSB is measured to be ∼ 15 ns. The microwave pulsed signal
is produced directly from the microwave source (SGMA100A) and has a rise time of ∼ 5 ns.
Sending a pulsed signal to a single port cavity has a specific reflected shape which is completely
characterized by the cavity parameters such as linewidth and coupling efficiency. Consequently,
we can now independently characterize the optical and microwave modes both in the time and
frequency domain. Characterization of the modes in frequency domain is already described in
detail in chapter 3.
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Figure 6.1: Time domain system characterization for low cooperativity measurements.
a (b), Normalized pulse reflection of a square pulse from the optical (microwave) cavity on
and off resonance. The red curve is a theoretical fit obtained using time domain input-output
theory. Figure adapted from Ref. [SHR+22].

Supplementary Fig. 6.1 shows the time domain characterization of the optics and microwave
modes by sending a square pulse of a coherent tone to the cavity on and off resonance. The
off resonant pulse reflects without any modifications and, thus, is used as a measurement
of the input pulse shape (yellow dashed line). The shape of reflected pulse on resonance is
calculated by solving the following equations for the time dynamics,

̇̄ai = −κi

2 āi − i∆iāi +√κi,exF̄i (6.1a)

āi,out = √κi,exāi − F̄i (6.1b)

where i ∈ {o, e} stands for both optics and microwave modes and ∆i is the detuning between
pump F̄i and mode resonance. In case of optics, one must take care of mode mismatch factor
Λ by replacing √κo,ex → Λ√κo,ex. The time dependence of the variables is suppressed in the
equations. Nevertheless, the time dependent pump is inserted through F̄i(t) =

√︂
Pi(t)/(ℏωi).

The equations are solved numerically by using Euler’s method. Reflected power on resonance
is finally calculated as |āi,out|2.
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6.3. Setup characterization

The reflected pulse on-resonance (from Fig. 6.1) is fit with the calculated reflected power
where the off-resonance reflection is used as the pump shape. The fitted system parameters
are shown in Supplementary Tab. 6.1. The parameters fully agree with those determined by
frequency domain characterization except for the optical mode matching factor, Λ, which
was determined to be 0.806 from the frequency domain characterization and 0.838 from the
time domain characterization. We use the value obtained from time domain characterization
which we believe is more accurate and directly applicable to the time domain conversion
measurements.

Parameter Description Value
ωo/2π Optical signal frequency 193 THz
κo/2π Optical signal linewidth 15.55 MHz
ηo Optical coupling efficiency 0.55
Λ Optical mode mismatch factor 0.838

ωe/2π Microwave mode frequency 8.803 GHz
κe/2π Microwave signal linewidth 12.12 MHz
ηe Microwave coupling efficiency 0.369

g0/2π Electro-optic coupling rate 37 Hz

Table 6.1: System parameters for low cooperativity measurements.

The shape of reflected pulse on resonance in Supplementary Fig. 6.1 is interesting to understand
in more detail. The first peak occurs due to the rapid rise time of the input pulse which has
much higher bandwidth than the cavity. Thus, most of it gets reflected before the cavity has
the chance to accept any part of the input power. The initial peak is interrupted as the cavity
gets the time to accept the input light (time taken is on the order of total linewidth of the
cavity). It then starts re-emitting that light to cancel the input pulse reflection. This continues
until a steady state is reached.

At the end of the input pulse, the input power drops much faster than the cavity bandwidth.
As a result, the input power gets depleted while the cavity still full of intra-cavity photons.
In this time, photon emission from the cavity does not get time to change much. As the
input power drops, there is a moment when the cavity emission perfectly cancels out the
input reflection leading to a point of zero reflection (more clearly seen for shorter pulses, see
characterization in chapter 7). As the input power drops further, the emission from the cavity
takes over and the reflected power rises again. Finally, only the emission from the cavity is left
which slowly decays with a timescale corresponding to the cavity linewidth.

Note that this pulse shape, where the point of zero reflection happens towards the end,
is only true for cavities that are undercoupled. This means that in the beginning of the
pulse, the cavity emission was not able to overcome the input pulse reflection. This is the
expectation from undercoupled cavities in steady state. For critically coupled cavities, the
cavity emission matches the input power reflection, hence, the steady state would be the
point of zero reflection. For overcoupled cavities, the cavity emission is more than the input
power reflection in steady state and thus the point of zero reflection must already occur
towards the beginning of the pulse. With this knowledge, we can verify the coupling efficiency
(undercoupled or overcoupled) of the cavity with just power measurements. This remains
ambiguous in frequency domain measurements until phase of reflected pulse is measured.
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6. Low cooperativity pulsed transduction

Intuitively, this advantage of time-domain measurements over the frequency-domain measure-
ments can be understood as a pseudo-sweep of κex by using a pulse to characterize the cavity
rather than a continuous tone. For this pseudo-sweep to be most apparent, one must use an
input pulse which has the rise time on the same order as the linewidth of the cavity being
characterized and measure with a time resolution higher than these bandwidths.

In this chapter, we do not characterize the mode hybridization for the optics Stokes mode
since, for low cooperativities, the full interaction is approximately reduced to just the simple
3-mode beam-splitter like interaction where only the TM coupling is irrelevant.

6.4 Low cooperativity conversion
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Figure 6.2: Bidirectional conversion measurements for low cooperativity a (b), Optics-
to-microwave (microwave-to-optics) conversion for a continuous wave optical pump of Pp =
134µW. The measured input signal pulses are shown with dashed yellow lines and the
converted signals with blue dots (red line is theory). Phase coherence and stability of the signal
phase is shown in the insets. Rhombuses represent the phase imprinted on the input signal
and the blue points represent phase values extracted from subsequently measured converted
pulses. Figure adapted from Ref. [SHR+22].

Figure 6.2(a) and (b) shows the calibrated time dependent measurement of a converted signal
pulse in case of microwave-to-optics and optics-to-microwave conversion, respectively. These
pulses are measured with a bandwidth of 200 MHz and shown together with a fit to the
numerical model (red line) that takes the measured input pulses (yellow dashed lines) with a
rise time of 15 ns and 5 ns respectively as input data along with system characteristics from
Table 6.1. We find excellent agreement of all four time dependent scattering parameters using
only one fit parameter, the input optical loss. The 10% to 90% rise time of the converted
pulses in both directions of 85 ns is limited by the linewidths of the optical and microwave
modes in this case of comparably low cooperativity C = 3.4 × 10−4. In chapter 7, we will
see that this rise time will change in case of higher cooperativities when the conversion rate
becomes comparable to the loss rates of the cavities.

Moreover, we also explicitly verify the faithful phase control and stability over subsequent
pulses in both directions. For these measurements, we sweep the phase imprinted on the input
signal pulses that need to converted via the RF sources which produce the signal and measure
the phase of the transduced signals. The measured phase along with the sent phase is shown
in the insets of Fig. 6.2. The first measurement is set to zero phase and all the consequent
measurements are then at 45◦ difference. We see that the measured phase is in excellent
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6.5. Conclusions

agreement with the imprinted phase on input signal. This verifies that the transduction is
phase-faithful.
Note that for the low cooperativity measurements, we choose to keep the optical pump, signal
and LO in the same fiber from creation till detection. This ensures phase stability up to a
minute. Taking advantage of the phase stability, we average the amplitudes of the extracted
quadratures from digital downconversion rather than averaging the power. Averaging the
amplitude provides better signal to noise ratio (SNR) with fewer averages than averaging
the power (only while measuring coherent signals). Averaging the amplitudes is effectively
equivalent to measuring longer. In other words, the bandwidth of measurement becomes
smaller with the number of averages, equivalent to total time of amplitude averages (which
scales linearly with number of averages). For coherent signals with small bandwidth, this
improves the SNR as the bandwidth of the measurement gets smaller1.

6.5 Conclusions
In this chapter, we introduce the pulsed measurements and confirme that conversion time
scales are limited by loss rates of the cavities as expected. We also verify that the transduction
is faithful in time domain. More importantly, we see time-domain characterization of single-port
cavities which matches excellently with the frequency-domain characterizations. Equipped
with this knowledge, we are now ready to look into measurements with a pulsed optical pump
and higher cooperativities.

1For broadband signal on broadband noise, it is best to match the measurement bandwidth to the signal
bandwidth to get the best time resolution without losing a lot of SNR, as we will do in the noise measurements
of chapter 7.
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CHAPTER 7
High cooperativity pulsed transduction

7.1 Introduction
In this chapter, we use short ∼ 100 ns optical pump pulses produced via acousto-optical modu-
lators (AOMs) with high peak pulse power ∼ 100 mW. The major experimental breakthrough
which allowed us to achieve such high powers was using the EDFA with a pulsed input optical
power. This is discussed in detail in this chapter. The achieved higher optical powers allow for
cooperativities on the order of unity. In this regime, the conversion rate is on the order of the
loss rates of the cavities making the time dynamics between the modes very interesting. We
explore all the new effects and explain them in detail.

One of the more interesting parts of the chapter is, nevertheless, the noise output as a
function of cooperativity. We see a myriad of new effects when exploring the noise output in
frequency and time domain. On the microwave side, we observe the electro-optic cooling of
the microwave mode and amplification of vacuum noise. On the optics side, we measure finite
output noise which was transduced from the microwave domain.

With high cooperativity, the interaction of the microwave mode with the Stokes optical
mode, even though suppressed, becomes important. We see the effects of amplification and
divergence from the simple beam-splitter model. As a result, we use a more comprehensive
five-mode model which includes the optical Stokes mode along with the optical TM mode
which hybridises it.

Note that in this chapter, we refer to the optical anti-Stokes mode ât as the optical signal
mode âo. Hence, in this chapter, ât and âo are equivalent.

Acknowledgements This chapter is based on the work presented in Ref. [SHR+22]. I would
like to thank Liu Qiu for his contribution in writing the theory section which has been adapted
in this chapter. Figure credits have been individually given in the figure captions.

7.2 The five mode model
In this chapter, we need to consider the interaction of the microwave mode âe with both the
optical sidebands ât ≡ âo and âs. The Stokes sideband is suppressed with the TM mode âsm
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7. High cooperativity pulsed transduction

which is coupled to âs with a coupling rate J . Along with the optical pump mode âp, the full
interaction Hamiltonian for our system is given by five total modes interacting with each other,

Ĥint = ℏg0(âeâpâ
†
o + â†

eâpâ
†
s) + iJâ†

sâsm + h.c. (7.1)

All the mode interactions are shown in Fig. 7.1.
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Figure 7.1: The 5 participating modes and their interactions. Figure adapted from
Ref. [SHR+22].

7.2.1 Equations of motion
The time dynamics of these operators is derived using the Heisenberg equations of motion.
The resulting system of equations is the following:

̇̂ap = −i∆pâp − κo

2 âp − ig0(âsâe + â†
eâo) + Λ√κo,exF̄p +√κo,exδâp,e +√κo,inδâp,in,(7.2a)

̇̂ao = −i∆oâo − κo

2 âo − ig0âpâe + Λ√κo,exF̄o +√κo,exδâo,ex +√κo,inδâo,in, (7.2b)
̇̂as = −i∆sâs − κo

2 âs − ig0âpâ
†
e − iJâsm +√κo,eδâs,ex +√κo,inδâs,in, (7.2c)

̇̂ae = −i∆eâe − κe

2 âe − ig0âpâ
†
s − ig0â

†
pâo +√κe,exF̄e +√κe,exδâe,ex +√κe,inδâe,in,(7.2d)

̇̂asm = −i∆smâsm − κsm

2 âs − iJâs +√κsmδâsm,in. (7.2e)

Here, κj , κj,ex and κj,in are the total, extrinsic and intrinsic loss rates of respective modes, ∆j

are the detuning of the mode annihilation operators from their respective resonance frequencies,
F̄j are the coherent drive terms given by |F̄j| =

√︂
Pj/ℏωj and δâj,in and δâj,ex represent the

Langevin noise operators for bath and waveguide respectively. The noise operators follow the
following correlations

⟨δâj,k(t)δâj,k(t′)†⟩ = (n̄k + 1)δ(t− t′), (7.3a)
⟨δâj,k(t)†δâj,k(t′)⟩ = n̄kδ(t− t′), (7.3b)

where k ∈ (in, ex). For optics, both n̄in = 0 and n̄ex = 0, while for microwave, n̄in = n̄b and
n̄ex = n̄wg.
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7.2. The five mode model

7.2.2 Coherent time-domain dynamics
We first focus on the coherent time domain dynamics. By linearizing the intra-cavity field
for the modes âj = āj + δâj, with āj being the coherent field amplitude and δâj the field
fluctuations, we obtain the following coherent dynamics for the optical and microwave modes:

̇̄ap = −i∆pāp − κo

2 āp − ig0(āsāe + ā∗
eāo) + Λ√κo,exF̄p, (7.4a)

̇̄ao = −i∆oāo − κo

2 āo − ig0āpāe + Λ√κo,exF̄o, (7.4b)
̇̄as = −i∆sās − κo

2 ās − ig0āpā
∗
e − iJāsm, (7.4c)

̇̄ae = −i∆eāe − κe

2 āe − ig0āpā
∗
s − ig0ā

∗
pāo +√κe,exF̄e, (7.4d)

̇̄asm = −i∆rāsm − κsm

2 āsm − iJās. (7.4e)

The output fields are then calculated as āe,out = √κe,exāe − F̄e for the microwave mode and
āo,out = Λ√κo,exāo − F̄o for the upconverted optics mode. The above system of equations are
numerically solved in the time domain using Euler’s method. We use this method to model
the classical time-dynamics of the system with arbitrary coherent pump pulses. The results of
this numerical simulations will be used as theory in the next sections of this chapter.

7.2.3 Steady state model
The steady state for the time dynamics in eqns. 7.2 is solved similar to how it was done in
chapter 2. After linearizing the eqns. 7.2, valid for a strong classical pump tone, we rewrite
the noise part of the equation set in matrix form as

v̇(t) = Mv(t) + KA(t), (7.5)

where v(t) is [δâo, δâ
†
o, δâe, δâ

†
e, δâs, δâ

†
s, δâsm, δâ

†
sm]T ,

M =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i∆o − κo

2 0 −ig 0 0 0 0 0
0 i∆o − κo

2 0 ig∗ 0 0 0 0
−ig∗ 0 −i∆e − κe

2 0 0 −ig 0 0
0 ig 0 i∆e − κe

2 ig∗ 0 0 0
0 0 0 −ig −i∆s − κs

2 0 −iJ 0
0 0 ig∗ 0 0 i∆s − κs

2 0 iJ
0 0 0 0 −iJ 0 −i∆r − κr

2 0
0 0 0 0 0 iJ 0 i∆r − κr

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(7.6)

K =

⎡⎢⎢⎢⎣
√
κo,in

√
κo,ex 0 0 0 0 0

0 0 √
κe,in

√
κe,ex 0 0 0

0 0 0 0 √
κs,in

√
κs,ex 0

0 0 0 0 0 0 √
κsm

⎤⎥⎥⎥⎦⊗ 12, (7.7)

and A(t) = [δâo,in, δâ
†
o,in, δâo,ex, δâ

†
o,ex, δâe,in, δâ

†
e,in, δâe,ex, δâ

†
e,ex, δâs,in, δâ

†
s,in, δâs,ex, δâ

†
s,ex, δâsm,

δâ†
sm]. Here, g = g0

√
n̄p is the parametrically enhanced electro-optic coupling strength and n̄p

the intra-cavity optical pump photon number. Equation 7.5 is solved in the Fourier domain,
yielding

v(ω) = S(ω)A′(ω), (7.8)
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7. High cooperativity pulsed transduction

where S = [−M − iω1]−1 and A′(ω) = KA(ω). The output field can be obtained via the
input-output theorem [GC85, Tsa11],

δâj,out(ω) = −δâj,in +√κj,exδâj, (7.9)

with j=o,s. The total conversion efficiency on resonance is calculated from a single matrix
element as

ηtot = |Soe|2 = |Seo|2 = Λ2ηeηo

4C
(︂
1 + C−1

J

)︂2

(︂
1 + C + C−1

J

)︂2 , (7.10)

where ηj = κj,ex/κj is the mode coupling efficiency, C is the multi-photon cooperativity
defined as C = 4n̄pg

2
0/(κoκe) and CJ , similarly, is the cooperativity related to the coupling J

defined as CJ = 4J2/(κoκr). The factor Λ2 is introduced by rewriting the external optical
linewidth κo,ex → Λ2κo,ex.
The conversion efficiency in the eqn. 7.10 is higher for the same C than that given by the
simple two-mode beam splitter interaction η2-mode = 4Λ2ηeηoC/(1 + C)2. This is due to the
amplification provided by the interaction between the microwave and the optical Stokes mode.
The gain due to amplification depends on the suppression ratio,

S = ΓS/ΓAS = (1 + CJ)−1 (7.11)

where, ΓS (ΓAS) is the Stokes (anti-Stokes) scattering rate between the modes âe and âs (âo).
Note that S is related to the amplitude rather than the power. In this chapter, we report the
suppression as the ratio of the power scattered into the two sidebands which is S2.
For J →∞, i.e. perfect suppression S2 = 0, Eq. 7.10 reduces to the simple two-mode model
defining the (hypothetical) pure conversion efficiency without gain. This is because, for high
J (or high CJ), the avoided crossing in the lower FSR optical mode is fully split, resulting in
perfect suppression and no participation of the lower frequency sideband mode.Furthermore, for
C ≪ 1, we get back the linear dependence of conversion efficiency on C and no dependence
on the value of CJ .
The opposite limit is CJ = 0 which means there is no avoided crossing in lower FSR optical
mode and, thus, equal participation of both optical modes on either side of optical pump. In
this limit, we get the maximum possible gain and the conversion efficiency formula reduces to
ηJ=0 = 4Λ2ηeηoC. In contrast to the case of just two modes, here the conversion efficiency
does not saturate as C approaches 1.

7.2.4 Noise analysis
The noise spectrum of the output field can be obtained as,

Sjj,out(Ω) =
∫︂ +∞

−∞

⟨︂
δâ†

j,out(t)δâj,out(t′)
⟩︂
eiΩtdt (7.12)

via the Wiener-Khinchin theorem. The full expression of Sjj,out(Ω) is given below,

Soo,out(Ω) =Λκo,ex

D
[g4κo|χoχsχsm|2 + g4J2κsm|χoχsχsmχe|2

+ g2n̄bκe,in|(1 + J2χsχsm)χeχo|2 + n̄wgκe,ex|(1 + J2χsχsm)χeχo|2]
(7.13)
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where D = 1 + g2χoχe + χs[J2χsm(1 + g2χoχe)− g2χe], and,

See,out(Ω) =κe,ex

D
[g2κo|χsχsm|2 + g2J2κsm|χsχsmχe|2

+ n̄bκe,in|(1 + J2χsχsm)χe|2 + n̄wgκe,ex|(1 + J2χsχsm)χe|2]
(7.14)

where we have suppressed the dependence of Ω mode susceptibilities χi. The mode suscepti-
bilities are defined as, χi(Ω) = [κi − i(Ω−∆i)].
The noise output is so complicated due to the complex mode coupling scheme and because
the optical and microwave cavity linewidths being comparable in magnitude. The output
photon flux is obtained by integrating the output noise spectrum over the specific measurement
bandwidth

Nj,out =
∫︂ +∞

−∞
F(Ω)Sjj,out(Ω)dΩ, (7.15)

where F(Ω) is the measurement filter function. In the experiments discussed in later sections,
we use a Gaussian filter with full width half max (FWHM) of 10 MHz.
The equivalent input noise is calculated accordingly1

Nj,in = Nj,out/ηtot. (7.16)

The predicted output noise takes gain into account and we use the total conversion efficiency
ηtot that also includes finite gain and coupling losses in order to infer the equivalent added
noise referenced to the input port where the (quantum) signal is fed into the transducer.
In the absence of the optical pump (C=0), the output microwave noise spectrum is simply
given as a Lorentzian output (see chapter 5),

Ne,out,C=0(Ω) = 4κe,inκe,ex

κ2
e + 4Ω2 (n̄b − n̄wg) + n̄wg. (7.17)

We use the output noise in absence of the optical pump to infer the bath temperature and
subsequently calculate the equivalent mode occupancy of the microwave mode

n̄e = n̄bκe,in + n̄wgκe,ex

κe,in + κe,ex
. (7.18)

7.3 Experimental setup
Switching from the low cooperativity pulsed setup, many changes are made. The 1550 nm
laser is divided into 3 parts - 50% of the power is used to produced the optical pump, a quarter
of the other 50% is used to produce the optical signal at the optical anti-Stokes sideband
frequency and, finally, the rest of the light is used to produce the optical LO for the heterodyne
detection of the optical signal. The optical pump is pulsed by an AOM. The produced short
pulse is significantly amplified by the EDFA. The amplified pulse has amplified spontaneous
emission (ASE) noise from the EDFA which is filtered both in time by an AOM and in frequency
by a Fabry-pérot (FP) cavity acting as a frequency filter. It is important to filter the noise in
time as well because the continuous broadband ASE is significant (∼ mW) and, if sent to the
dilution refrigerator, would heat up the microwave cavity thermally. Additionally, the pump
is filtered in frequency domain because the broadband ASE added by the EDFA has a finite

1Note that physical meaning of Nin is explained in detail in chapter 1.
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7. High cooperativity pulsed transduction

contribution (few photons) at the optical signal frequency. Since we want the optical signal to
have no more than vacuum noise, we also filter the pump in frequency domain. The optical
signal is produced via the SSB modulator here as well. The optical LO is now produced via an
optical phase modulator.

The output optical signal from the electro-optics device comes along with the strong optical
pump pulse. The high power pulse can damage the detecting photo-diode. As a result, we
separate the optical signal from the pump via another FP cavity. The transmission from the
FP cavity is the optical signal which is sent directly to the balanced optical heterodyne setup
for detection. The reflection from the FP cavity is the optical pump which is also detected by
a fast (200 MHz) detector which is used to lock the laser to the optical WGM.

The microwave part of the setup remains unchanged from the previous experiments.

The full setup with all the details is explained in appendix C.3.

Locks for measurements For the measurements presented in this chapter, we needed to
run two locks simultaneously. The first is the laser locked to the optical pump mode similar
to previous chapters but now adapted to a pulsed optical pump. The second is the pump
cavity filter lock. The FP cavity which filters the optical pump pulse in frequency is tuned via
temperature. The body of the cavity is made of aluminum with a good thermal expansion
coefficient (2.4 × 10−5 m/(mK)) and a good thermal conductivity (247 W/(mK)) making
the cavity a good candidate for thermal frequency tuning. The temperature of the cavity is
controlled by a Peltier element under the cavity. We lock the transmitted power from the FP
cavity by tuning the current sent to the Peltier element.

The pulsed version of the laser lock is similar to the CW version. We still lock on resonance
with the reflected power as even in the pulsed mode we have no way of knowing if the laser
drifted to a specific direction of the resonance. We measure the pump pulse reflection which
looks like reflection curve shown in Fig.7.2a. We sample a point after the initial peak to
measure the steady state reflected power. In this case, making a dynamic step is easier since
we can predict the off-resonance reflected power (yellow dashed curve in Fig.7.2a) using the
overshoot in the first peak. As a result, we sample the maximum of the reflection curve and
use it as an anchor to decide the dynamic step size.

For the pump cavity filter lock, we measure the pump pulse by forking 1% of the pump power
(see appendix C.3). We try to maximize this transmission by tuning the current sent to Peltier
element. Since this is also a lock on the maximum with no linear error signal around the
lock point, we use the same algorithm as the laser lock to keep the pump filter locked laser
frequency.

The two locks are interdependent. If the pump filter drifts, it changes the transmitted power
and, consequently, the reflected power which would perturb the laser lock. On the other hand,
the laser lock changes the frequency which changes the FP filter cavity transmission. Although,
in the laser lock we use the first overshoot as an indicator of input power, it is still not
completely independent of input power fluctuations. A good way to deal with interdependent
locks is to run them on different timescales running the more important locks on a faster time
scale. In this case, we run the laser lock on a faster time scale (∼ 5 Hz) and FP temperature
lock on a slower timescale (∼ 0.1 Hz).
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Figure 7.2: Pulsed mode characterization a (b) Pulsed characterization of optical (mi-
crowave) signal mode. Figure adapted from Ref. [SHR+22].

7.4 System characterization
For the high cooperativity measurements, we only characterized the optical and microwave
mode in the time domain with the pulse reflection technique described in last chapter. Fig.7.2
shows the pulsed characterization along with the fit theory curve. The fit parameters obtained
from the characterization are shown in table 7.1.

As we saw already in the theory section, at higher cooperativities, the Stokes optical mode
participates even though it is suppressed. As a result, the full characterization of the avoided
crossing in the optical Stokes mode is needed. This is done in frequency domain as described
already in chapter 3. The measured avoided crossing is shown in Fig. 7.3 and the fit parameters
are reported in table 7.1. Note that the ω = 0 point in Fig. 7.3 represents the effective FSR
between the optical signal (anti-Stokes) mode and the optical pump.
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Figure 7.3: Characterization for Stokes mode avoided crossing for the high cooperativity pulsed
measurements. Figure adapted from Ref. [SHR+22].

7.4.1 4-port calibration
We have already talked about 4-port calibration to independently calibrate the total conversion
efficiency in the last chapters. We employ the same calibration again. However, now we use
the microwave gain β4 (between the device and the SA) as the known quantity, which was
already measured independently in the chapter 5 and calculate the loss/gain in the remaining
ports. We determine the following values: the optical input loss β1 = −6.33 dB, the output
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7. High cooperativity pulsed transduction

Parameter Description Value
ωo/2π Optical signal frequency 193 THz
κo/2π Optical signal linewidth 25.8 MHz
ηo Optical coupling efficiency 0.58
Λ Optical mode mismatch factor 0.78

ωe/2π Microwave mode frequency 8.795 GHz
κe/2π Microwave signal linewidth 13.706 MHz
ηe Microwave coupling efficiency 0.408

g0/2π Electro-optic coupling rate 37 Hz
J/2π TE-TM optical mode coupling rate 26.21 MHz
κsm/2π Optical TM mode linewidth 9.96 MHz
∆s/2π Optical TE mode detuning 15.5 MHz

∆sm/2π Optical TM mode detuning 19.5 MHz

Table 7.1: System parameters for high cooperativity pulsed measurements.

optical gain β2 = 18.63 dB, the microwave input loss β3 = −74.92 dB and the microwave
output gain β4 = 81.75 dB (between the device and the digitizer).

7.4.2 Optical heterodyne detection
On the optical side, we detect the optical output signal using a balanced heterodyne setup,
i.e. by beating the signal with a strong local oscillator with coherent optical field āLO at
frequency of ωo + ΩLO. This results in a balanced photocurrent δI(t) = i(−eiΩLOtā∗

LOδâo,out +
e−iΩLOtāLOδâ

†
o,out). We thus obtain the symmetrized power spectral density,

SI(Ω) = 1
2

∫︂ ∞

−∞
⟨{δI (t+ t′) , δI (t′)}⟩eiΩtdt (7.19)

The optical heterodyne efficiency or the equivalent noise floor level can be determined using
the output gain β2 and the absolute power measured in the baseline without any signal

Pbaseline = ℏωoβ2BWNo,add, (7.20)
where BW the measurement bandwidth and No,add the equivalent noise in the heterodyne
baseline.
Using the output optical gain β2, the equivalent noise floor in optics heterodyne No,add is
calculated to be 34.3 photons. The optical detection efficiency is low in our case for a number
of reasons. There is a ≈ 3 dB loss while coupling the light from the device output, i.e. from
the prism surface, to the optical fiber. An FP filter used to reject the strong optical pump for
the balanced heterodyne detection introduces another 4 dB of loss. We only use the first order
sideband generated from a phase modulator as the optical LO. Since the phase modulator
produces many other optical tones which do not increase the signal but still increase the
noise, it reduces the optical balanced heterodyne efficiency to about 17 %. These are technical
nonidealities of the setup, some of which we improve later to get better heterodyne efficiency.

7.5 High cooperativity pulsed conversion
We do high cooperativity pulsed conversion for two different possible cases - when the optical
pump is pulsed and the signal is continuous wave and when the signal is pulsed while the
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7.5. High cooperativity pulsed conversion

optical pump pulse is continuously on. In the first case, when the signal is continuous wave,
the resonator cavity is pre-loaded with the signal photons and is in a steady state according to
its internal and external losses. When the optical pump pulse arrives, the effective internal loss
of the cavity changes because a new loss/conversion channel opens up and a new steady state
has to be reached. Since the new loss channel is internal, it decrease the coupling efficiency
and the new steady state intra-cavity photon numbers are lower than before the pump pulse.
Meanwhile in the process of arriving to this steady state, temporarily, the conversion efficiency
increases beyond the steady state owing to the extra intra-cavity photons (than allowed by the
new steady state) as shown in Fig. 7.4(a). From another perspective, during this momentary
overshoot, the coupling losses of the pre-loaded cavity are circumvented and the effective
input signal coupling efficiency becomes 1 temporarily.
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Figure 7.4: Theory of pulsed conversion a (b) Theoretical microwave to optics conversion
with a pulsed optical pump and continuous signal (a pulsed optical signal and continuous
pump). The solid (dashed) lines represent the case with S2 = 0.22 (S2 = 0.0). Figure adapted
from Ref. [SHR+22].

For the case when the signal is pulsed while the optical pump is already on, the signal is never
pre-loaded into the resonator. Nevertheless, we still see an overshoot in Fig. 7.4(b) where the
signal is pulsed while the optical pump is continuous wave. The reason for this overshoot
is the onset of coherent oscillation between microwave and optics due to a high conversion
rate. The oscillations are clearly seen at higher cooperativities C ≳ 1 when the conversion
rate clearly surpasses the loss rates of the cavities and the power can oscillate between the
microwave and optical cavities before getting coupled out. Note that the first overshoot in
case of Fig. 7.4(a) is always larger than in Fig. 7.4(b) for the same cooperativity because of
the additional signal pre-loading effects because of the additional pre-loading of the cavity
effect.

Lastly, we identify the differences between the case with finite gain S2 = 0.22 (solid lines)
and the case with no gain/perfect suppression of the Stokes sideband S2 = 0.0 (dashed line).
For no additional gain in the transduction, the pure steady state efficiency saturates to unity
as expected at C = 1 and starts to drop after that. However, for a system with finite gain,
this saturation doesn’t happen and the internal steady state transduction coefficient keeps
increasing beyond unity.
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With this understanding, we move on to the experimental measurements. Fig. 7.5(a) and (c)
shows the calibrated conversion efficiency for microwave-to-optics and optics-to-microwave
conversion respectively for different cooperativities. The converted pulses are measured for
two cases with a 200 MHz bandwidth, i.e. a CW signal (solid lines) and a pulsed signal while
the pulsed optical pump pulse is on (dashed lines). The solid and dashed lines show the
theoretical prediction from the numerical 5-mode model with the input optical loss as the only
fit parameter. We generally find excellent agreement and assign the observed mismatch in
Fig. 7.5(a) for the case of pulsed signals to a small amount of uncorrected output filter drift.
We observe a similar behaviour as we predicted from theory. A larger overshoot in case the
optical pump is pulsed and a smaller overshoot in case the signal is pulsed while the optical
pump was already on.

For the measurement with C = 0.49, which corresponds to a parametrically enhanced coupling
strength of √n̄pg0/(2π) = 6.58 MHz with n̄p = 3.16× 1010 pump photons for a pulse pump
power of Pp ≈ 0.4 W, we explicitly show real-time complex quadrature control in Fig. 7.5(b)
and (d), as required for high-fidelity quantum communication protocols. A linear phase change
is imprinted on the input signal pulses while keeping the amplitude constant resulting in cos
and sin-like quadrature outputs. The measurements of the two converted quadratures match
the input modulation closely. The only exception is during the beginning and the end of the
optical pump pulse due to finite transducer bandwidth of 18 MHz for this C.

In Fig. 7.5(a) and (c), we do not go beyond C = 0.49. This is because beyond that cooperativity,
we observed an unstable amplification peak at the end of the pulse. On further investigation,
we realized that this amplification was a result of higher-order χ(3) Kerr non-linearity. The full
investigation and the related experiments are reported in section 7.7.

Nevertheless we realized we could go to higher cooperativities without entering this regime
of instability if we used shorter, i.e. 100 ns optical pump pulses as shown in Fig. 7.6. With
these higher cooperativities, we see now the highest microwave-to-optical conversion efficiency
momentarily reaches up to 30% for a CW signal tone. The observed deviations from theory
in Fig. 7.6(b) are caused by the slight broadening of the microwave mode linewidth due
to the increased average bath temperature, in agreement with CW pump experiments (see
section 5.4), an effect which the theory model does not take into account.

A summary of the measured transduction efficiencies as a function of the applied optical pulse
power Pp and corresponding cooperativity C is presented in Fig. 7.7. The red and blue colors
show measured peak and steady-state values respectively. Solid lines are predicted transduction
efficiencies for our experimental parameters corresponding to S2 = 0.22, while dashed lines
represent the case of perfect suppression S2 = 0. The blue shaded area thus represents the
gain due to the not fully suppressed Stokes process. For C ≳ 0.35, the achieved internal
transduction coefficient ηin, which we define operationally by dividing the measured ηtot by
the measured coupling losses, can exceed 1. This is due to signal pre-loading into the cavity
and coherent electro-optic oscillations in case of the extracted peak values (red symbols), as
well as due to gain.

The blue circles indicate the corresponding pure conversion efficiencies (without gain) for
itinerant photons up to C = 0.92, reaching ηin = 0.995 and ηtot = 0.144. Since pure
conversion efficiency estimates are based on a simplified theory calculation, we decided to
instead focus on the measured steady-state transduction values and take into account the
finite gain when calculating the corresponding added conversion noise, as explained below. The
measured higher peak efficiencies due to signal pre-loading on the other hand are relevant to
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Figure 7.5: High cooperativity bidirectional conversion. Top (bottom) row panels show
results for microwave-to-optics (optics-to-microwave) conversion. a (c), Converted signal
pulses (bright dots are calibrated measurements and lines are theory) for a 300 ns long optical
pump pulse measured with a 500 Hz repetition rate for a CW signal (solid lines) and a pulsed
signal (dashed lines). b (d), Measured IQ quadrature modulation of the converted signal pulse
(red lines) and the applied IQ quadrature modulation to the input signal (gray dashed lines)
for C = 0.49. Figure adapted from Ref. [SHR+22].
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Figure 7.7: Transduction efficiency summary. a (b) Summary of measured steady state for
microwave to optics (optics to microwave) conversion. Figure adapted from Ref. [SHR+22].

the future interfaces that can produce the signal photons inside the cavity and thus circumvent
the microwave coupling losses.

7.6 Thermal and quantum noise
Noise measurements We measure the output microwave noise via phase-insensitive am-
plification of the weak microwave signal using a cryogenic HEMT amplifier [CDG+10]. The
amplified microwave field is sent through subsequent amplifiers, and mixed with a microwave
LO at room temperature. We calibrate the microwave output noise using the total detected
system noise of 12.74 photons s−1Hz−1 which is the sum of the added noise due to microwave
detection chain of 12.24 photons s−1Hz−1 and vacuum noise, as shown in the appendix B.
Finally, Ne,out is calculated after subtracting this background noise to report only the added
noise due to the transducer. In all of the noise measurements in the main text we report the
measured added noise due to the transducer, i.e. with the constant added noise due to loss
and amplifiers subtracted.

Microwave noise measurements are made with two different bandwidths - 10 MHz for fast

82



7.6. Thermal and quantum noise

noise detection (∼ 100 ns time resolution) and 100 kHz for slower noise detection but with
better SNR. The fast 10 MHz measurements are triggered to capture the output noise response
during the pulse. On the other hand, the 100 kHz measurements are run continuously to
measure the average thermal response of the triggered optical pump pulses. Due to their lower
bandwidth and continuous measurement nature, they provide a superior SNR performance to
10 MHz measurements and, thus, are used to determine the thermal noise occupancy for much
lower average optical pump powers. The main source of error for the slow, low occupancy
measurements is the systematic absolute error due to long term drifts of the noise baseline
that is subtracted. We measure and average the noise baseline over multiple hours (like the
measurements) and multiple different days to determine the absolute standard error of ±0.02
photons s−1Hz−1. This error along with the statistical error of the actual noise measurement is
propagated to get the final error bars. In the case of fast measurements, which were averaged
only over a few tens of minutes, we take into account a larger observed variation of the noise
baseline on that timescale of ±0.1 to ±0.2 photons s−1Hz−1.

The slow 100 kHz measurements allow us to study noise dynamics of the system on a long
time scale. Fig. 7.8 shows the average microwave noise output as the optical pump pulses
corresponding to C ∼ 0.38 with different repetition rates are turned on (marked region between
vertical dashed lines). We observe that our system does not heat up immediately as soon as
the pulses are turned on, rather it slowly reaches the steady state in a few minutes after the
pulses are turned on. Moreover, the cooling time is even longer and it can take up to an hour
to come back to the equilibrium occupancy depending on the average optical pump power
applied. This matches the experiment already shown in section 5.7. The specific time scales
are expected to depend critically of the thermal contact and conductivity of the localized heat
source (the dielectric-superconducting sample) to the cold bath (the mixing chamber plate),
as well as on the cooling power of the dilution refrigerator [MLR+21].
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Figure 7.8: Microwave output noise as a function of average optical pump power.
Output microwave noise dynamics measured on long time scales as a function of pulse repetition
rate for optical pump pulses corresponding to C ∼ 0.38. The region between vertical dashed
lines marks the time interval during which the optical pump pulses are turned on. Figure
adapted from Ref. [SHR+22].

For the highest repetition rates, the output microwave noise reaches close to 2 quanta. This
corresponds to a local effective mode temperature on the order of 1 K. These temperatures
are quite hot compared to a much colder mixing chamber temperature (∼ 50 mK) of dilution
refrigerator where the device is thermalized because of finite thermal conductivity of the
dielectric resonator as well as the bulk superconducting aluminum cavity. We do, however, see
a marginal increase in the mixing chamber temperatures as we increase the average optical
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pump power sent to the device. For a fastest repetition rate of 500 Hz, the mixing chamber
temperature increased to at most 60 mK from its base temperature of 7 mK.

Equivalence of noise for CW and pulsed optical pump Since this bulk electro-optic
system has such long heating and cooling timescales, for short and fast repeating pulses, it is
only the average optical power that determines the added thermal noise due to optical heating.
Fig. 7.8 shows the equivalence between heating via optical pulses (red) and continuous optical
power (blue) during the time interval marked by the two vertical dashed lines. We observe
the same dynamics of the output microwave noise if the power level of average optical power
is matched. This experiment shows that thermal noise can be tuned by changing the pulse
repetition rates while keeping the same level of cooperativity. We use this feature of our device
to do the next sweep.
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Figure 7.9: Equivalence of added thermal microwave noise CW optical power and optical
pulses with same average optical power. Figure adapted from Ref. [SHR+22].

Noise dynamics Figure 7.10 captures the effect of the two relevant types of noise. The
first is thermal noise due to optical pump absorption heating, which depends on the time-
averaged optical power Pavg = Pptpfrep (as discussed earlier) with the pulse length tp and the
repetition rate frep. The second contribution is amplified vacuum noise due to finite transducer
gain, which depends on S and Pp. The shown output noise photon numbers are defined by
integrating the noise emission spectrum Sii,out over the Gaussian measurement filter function
as shown in eqn. 7.15.

Figure 7.10a shows the microwave noise output Ne,out in the time domain, measured with a
10 MHz filter bandwidth (100 ns time resolution) centered at the microwave resonance, when
300 ns long optical pump pulses with C = 0.38 are applied (shaded region) with different
repetition rates from 10 to 500 Hz. High repetition rates increase the measured average
thermal output noise, which stays approximately constant during the measurement time of
3 µs. During the pulse however, we observe either a classical or a quantum effect depending
on the average thermal occupancy of the microwave mode. For higher mode temperature (red
curve), parametric laser cooling of the microwave mode [Tsa10], due to up-conversion of noise
to optics is dominant and in agreement with theory (gray arrow). But as the thermal noise is
decreased for the same cooperativity, additional noise due to vacuum amplification overwhelms
the parametric cooling effect. For the lowest occupancy curve with a 10 Hz repetition rate,
the vacuum amplification is clearly observed during the pump pulse and in good agreement
with theory (gray arrow). This last curve is measured with a lower suppression S2 ≈ 0.82
(using a different set of optical modes with a different magnitude of avoided crossing) in order
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7.6. Thermal and quantum noise
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Figure 7.10: Output noise time dynamics and summary. a, Ne,out for a 300 ns long optical
pump pulse (C = 0.38) for different repetition rates frep (Pavg) measured with a 10 MHz
bandwidth centered at the microwave resonance. The blue shaded region shows the times span
when the optical pump is on. The gray arrows mark the noise change as predicted from theory.
b, No,out for the same optical pump pulses and various frep (Pavg) measured with a 10 MHz
bandwidth centered at the optical signal frequency. The noise pulses are separated in time
for better visibility. c, Compilation of all measured Nout for different time-averaged optical
pump powers Pavg. Red and blue points represent measured Ne,out with 10 MHz and 100 kHz
bandwidths respectively. Green points represent No,out measured with 10 MHz bandwidth.
The solid lines represent power law fits. The green dashed line shows the predicted No,out
using the measured Ne,out. All the points are taken with C =0.38 (ηtot = 11.4%) except for
the first three blue points which correspond to C =0.20 (ηtot = 8.0%), 0.24 (ηtot = 9.1%),
and 0.3 (ηtot = 10.3%) respectively. (Figure adapted from Ref. [SHR+22].)

to enhance the effect for a better signal to noise ratio. We assign slight mismatches between
the theoretical prediction and experiment to an expected small amount of thermal heating
during the pulse.

The observation of parametric laser cooling implies the presence of noise at the output of the
optical signal mode âo. No,out is measured with a 10 MHz bandwidth around the optical signal
frequency and shown in Fig. 7.10b. The optical pump pulses are the same as in Fig. 7.10a with
varying repetition rates. With higher Pavg, the thermal microwave mode occupancy increases,
thus, increasing the output optical noise.

We summarize these results in Fig. 7.10c as a function of Pavg. The Ni,out during the pulse
from Fig. 7.10a are shown as red points, and from Fig. 7.10b as green points, along with
corresponding power law fits (solid lines). The dashed green line represents the predicted
optical noise based on theory and the fitted microwave noise. In addition, we show the
continuous microwave noise measurements conducted with a 100 kHz bandwidth for better
signal to noise ratio at the lowest occupancies where the system is deep in its quantum ground
state (blue points).

Noise output as a function of cooperativity and thermal occupancy In Fig. 7.11
we show the theoretical prediction of the Ne,out and No,out respectively as a function of the
steady state microwave mode occupancy Ne and cooperativity C for the relevant experimental
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7. High cooperativity pulsed transduction

case S2 = 0.22. As a function of Ne, in Fig. 7.11a the contours change from left leaning to
right leaning as the transition from quantum amplification to classical cooling occurs. The
measurements from Fig. 7.11a are shown as circles where the inside color represents the
experimentally measured value in excellent agreement with the theoretical prediction. Similarly,
the predicted dependence of No,out is shown in Fig. 7.11b where we included the measurements
from Fig. 7.10b with good agreement with theory. Low bandwidth measurements (blue points
in Fig. 7.10c) do not contain time-domain information and are therefore not included. These
results provide strong evidence that Pavg fully determines the thermal noise limitations of this
device.
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Figure 7.11: a (b) Density plot of the calculated Ne,out (No,out) with 10 MHz bandwidth as a
function of C and n̄e for S2 = 0.22. The top 4 (first 3) measurements of Ne,out (No,out) for
the same S taken from Fig. 7.10a (b) are shown as circles with experimental values represented
by the inside color. Figure adapted from Ref. [SHR+22].

Quantum cooperativity Low occupancies and high cooperativity are the preconditions
for interesting cavity quantum electro-optics experiments in analogy to cavity optomechan-
ics [Tsa10] as well as for quantum limited conversion. Figure 7.12 shows the calculated quantum
cooperativity Cq = C/n̄e - a measure of the electro-optic state transfer rate compared to
the thermal decoherence rate of the microwave mode [AKM14] - for the measurements in
Fig. 7.10c, where n̄e is inferred from the measured Ne,out. The achieved large Cq ≫ 1 are a
result of the low mode occupancies and encourage further investigations in the direction of
two-mode squeezing of hybrid microwave and optical field states [RHBF19].
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Figure 7.12: Inferred quantum cooperativity for the measured output noise values shown in
Fig. 7.10(c). Figure adapted from Ref. [SHR+22].
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7.7. Kerr effect

Equivalent added noise referred to input The most relevant quantity that signifies
quantum enabled conversion is the resulting equivalent added noise photon number referenced
to the input of the converter where a non-classical input signal would be applied Sout(ω) =
ηtot(Sin(ω) + Nin). The two measured Ni,out include both thermal and quantum noise
contributions and we calculate the resulting equivalent added input noise photon number with
Nij,in = Ni,out/ηtot. Low values of Nij,in therefore require simultaneously high efficiency and
low output noise which are achieved.

Fig. 7.13a and b show Nij,in for optics-to-microwave (Neo,in) and microwave-to-optics (Noe,in)
conversion respectively as a function of Ne and C for S2 = 0.22. The lowest 5 blue points
from Fig. 7.10(c) are marked with crosses as the parameters we achieved experimentally. For
Neo,in, we reach 1.11+0.15

−0.07, and for Noe,in, we reach as low as 0.16+0.02
−0.01 equivalent added noise

photons. Here the confidence interval is taken from error propagation using the confidence
interval of the measured Ni,out. As discussed in chapter 1, this puts our device in the regime
(or close to) of quantum-enable transduction where probabilistic transduction schemes allow
interesting experiments in the quantum domain.
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Figure 7.13: a (b) Inferred optics-to-microwave Neo,in (microwave-to-optics Noe,in) equivalent
added input noise as a function of C and n̄e for S2 = 0.22. Crosses mark the lowest 5 blue
measurement points in Fig. 7.10(c). Figure adapted from Ref. [SHR+22].

7.7 Kerr effect
In Fig. 7.6 of the main text we show conversion up to a cooperativity of 0.92. This is because
after a certain threshold input power, which also depends on the optical pump pulse length,
we observe an extreme amplification at the end of the conversion pulse. Fig. 7.14 shows
this effect for both microwave-to-optics and optics-to-microwave conversion cases. Since
the amplification only happens at the end of the converted pulse, we are able to avoid it by
applying a shorter optical pump pulse, at which point, the optical pump power could be further
increased until the amplification appears again. The threshold power and hence the maximum
achievable electro-optic cooperativity (without this amplification) therefore depends on the
optical pump pulse length.

After a number of tests we came to the conclusion that this effect is most likely due to the
third-order χ(3) nonlinearity in lithium niobate, an effect that is commonly utilized in optical
parametric amplifiers [KSV04]. We verified that amplification in the optical signal is present
even when there is no coherent signal drive present and for cases when the microwave mode
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Figure 7.14: Observation of amplification due to Kerr effect. a (b) Time domain
conversion in the microwave to optics (optics to microwave) direction for 100 ns optical
pump pulses of different power and C. The points joined by light colored lines are measured
experimentally. The thin bright lines are theoretical only taking into account the χ(2) effect.
After C ≈ 1, we observe a delayed parametric amplification event. The measured transmission
reaches as high as 11.4 in case of microwave to optics conversion and 13.1 in case of microwave
to optics conversion (not visible). Figure adapted from Ref. [SHR+22].

is far detuned from the optical FSR. This proves that the effect is independent of the usual
χ(2) nonlinear interaction. However, when the microwave mode is matched with the optical
FSR, we see amplification in the microwave signal as well due to strong optical sideband
combined the χ(2) mediated beam splitter interaction (conversion of the amplified optical
signal). Note that the cooperativity threshold for amplification of C ≈ 1, as shown in Fig. 7.14,
is a coincidence and only valid for 100 ns optical pump pulses. For longer optical pump pulses,
the cooperativity threshold for amplification becomes smaller and well below unity.

This parameter regime of seeing effects of both χ(2) and χ(3) nonlinearities together is, to
best of our knowledge, novel. Producing coherent phase-locked microwave and optical drives
together requires a systematic investigation and may prove useful in future.

7.8 Conclusions
High cooperativity electro-optics achieved in this chapter opens up a regime where many
novel effects are seen. Finally, the rate of conversion is able to match the rate of loss of the
cavities. This allows for a rich time dynamics which we have studied in detail. We measure
high total conversion efficiencies - up to 15% in the steady state corresponding to almost unity
conversion efficiency. Moreover, these high conversion efficiencies are not achieved at the
cost of high added thermal noise. With the use of a pulsed optical pump, we keep the added
thermal noise to a minimum. We even manage to achieve equivalent added noise referred to
the input close to 1 for optics to microwave conversion direction and ≪ 1 for microwave to
optics conversion direction.

However, one of most exciting observed phenomena is observed in the measured output noise
dynamics. We see that with high cooperativities, the output microwave noise can be reduced
by applying an optical pump pulse - possibly the first instance of directly cooling a microwave
cavity using optical light. Cooling of a mechanical cavity via optical light is now a routine
in many optomechanics experiments [AKM14]. Following suite from these experiments, we
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can measure direct electro-optical backaction between microwave and optical light similar to
routinely measured backaction between mechanics and optics [KRC+05]. This is done in the
next chapter.
We also observe amplification of vacuum noise for low thermal occupancy of microwave modes.
In other words, this is the spontaneous downconversion between the microwave mode and the
optical Stokes mode. Since the amplified signal originates from vacuum, it has correlations
that go beyond the classical limit. This is termed as EPR correlations in the literature. In
chapter 9, we measure these non-classical correlations between output microwave and optics
noise and demonstrate entanglement between these for the first time.
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CHAPTER 8
Electrooptic dynamical backaction

8.1 Introduction
In the last chapter, we experimentally achieve electrooptic cooperativities which are on the
order of 1. In this regime, where the electrooptic coupling rate reaches the magnitude of loss
rates of the involved cavities, the effects of microwave-optics coupling can alter the optical
and microwave modes itself. This phenomenon is called backaction on a mode. It is routinely
observed in opto-mechanical systems where the mechanical motion of the mirror can couple
to the optical light in the optical cavity via the radiation pressure [KRC+05]. The discovery
of this effect, owing to achieved high opto-mechanical cooperativities, led to a cascade of
new experiments in the field of cavity opto-mechanics - such as laser cooling, squeezing,
entanglement and quantum non-demolition measurements of microwave modes.
Similar results can also be observed between microwave and optical modes coupled via
electrooptic interaction since the interaction Hamiltonian is the same as the one for opto-
mechanical interaction. The main hurdle preventing similar electrooptic experiments, as
mentioned above, was the difficulty in achieving high enough electrooptic cooperativity. The
small vacuum coupling constant meant a large amount of optical pump power are required to
achieve high cooperativities. However, higher optical powers in proximity to superconducting
microwave cavities meant cooper pair breaking leading to quasi-particle generation and resulting
shift and broadening of the microwave mode [FXL+21].
In our system, we use a bulk 3D microwave cavity which is cm-sized. The bulk of the microwave
cavity gives space to the quasi-particles produced on the surface to run inside preventing the
quasi-particle density at the superconductor surface from increasing sharply. As a result, we
see negligible effects of quasi-particles even when pumping the optics cavity with ∼ 100 mW
optical power. We discuss this in detail in the chapter as excess delayed back action since it
lingers even when the optical pump is long gone.
We also discuss the above mention back-action effects that we observe in our system such as
effective narrowing and broadening of the modes, induced transparency and induced absorption.
In the chapter, we discuss them under instantaneous back-action since they are observed
instantaneously as the optical pump pulse is applied.

Acknowledgements This chapter is based on the work presented in Ref. [QSH+22]. I would
like to thank Liu Qiu for doing the data analysis and producing the figures which have been
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8. Electrooptic dynamical backaction

adapted in this chapter. Finally, Liu Qiu also wrote the text of Ref. [QSH+22] which has been
partially adapted in this chapter. Figure credits have been individually given in the figure
captions.

8.2 Theory

We have already discussed the interaction Hamiltonian for our system with a 5-mode model in
the previous chapter. For this chapter, we consider 6-modes interacting with each other in
contrast to 5-mode model discussed in previous chapter, since here, we talk simultaneously
about microwave mode’s interaction with optical Stokes and anti-Stokes mode and suppressing
one interaction or the other. Consequently, now we use two TM optical modes âsm and âtm

which are degenerate with optical TE modes âs and ât respectively. The two TM optical
modes are used to hybridize the TE modes as usual and to suppress the participation of optical
TE modes in the interaction Hamiltonian.

The total interaction Hamiltonian of the multimode cavity electro-optical system is, thus,
given by ,

ĤI/ℏ = g0(â†
pâsâe + â†

pâtâ
†
e + h.c.) + Js(â†

sâsm + h.c.) + Jt(â†
t âtm + h.c.) (8.1)

Here, Js and Jt are the coupling rate between the TE and TM optical modes.

In an ideal case, the optical FSR matches the microwave frequency ωe. However in practice,
the Stokes and anti-Stokes mode can be detuned from the microwave frequency, due to FSR
and ωe mismatch or due to asymmetric FSR (see section 8.4). We take these mismatches
into account by δs and δt which are detuning of the Stokes and the anti-Stokes mode with the
effective FSR. In the case of symmetric FSR, we have δs = −δt. For simplicity, we assume the
TM mode is of the same frequency of the corresponding Stokes or anti-Stokes mode.

We again write the quantum Langevin equation in matrix form and solve it in steady state as
shown in Eqn. 7.5,

v(ω) = S ·K ·Ain(ω), (8.2)

where, the noise operators are defined in the vector form, with the mode operator and input
noise operator vectors being,

v(ω) =
[︂
âs, â

†
s, ât, â

†
t , âsm, â

†
sm, âtm, â

†
tm, âe, â

†
e

]︂T
,

Ain(ω) = [âs,in, â
†
s,in, âs,ex, â

†
s,ex, ât,in, â

†
t,in, ât,ex, â

†
t,ex,

âsm,vac, â
†
sm,vac, âtm,vac, â

†
tm,vac, âe,in, â

†
e,in, âe,ex, â

†
e,ex]T ,

(8.3)

with âj,in (âj,ex) and âe,in ( âe,ex) the intrinsic (input) noise operator for optical and microwave

92



8.2. Theory

modes, and âj,tm,vac the TM vacuum noise. S = [M − iω1]−1 with,

M =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δs − κo

2 0 0 0 −iJs 0 0 0 0 ig
0 δs − κo

2 0 0 0 iJs 0 0 −ig 0
0 0 −δt − κo

2 0 0 0 −iJt 0 ig 0
0 0 0 δt − κo

2 0 0 0 iJt 0 −ig
−iJs 0 0 0 −δs − κm

2 0 0 0 0 0
0 iJs 0 0 0 δs − κm

2 0 0 0 0
0 0 −iJt 0 0 0 −δt − κm

2 0 0 0
0 0 0 iJt 0 0 0 δt − κm

2 0 0
0 ig ig 0 0 0 0 0 −κe

2 0
−ig 0 0 −ig 0 0 0 0 0 −κe

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.4)

and,

K =

⎡⎢⎢⎢⎢⎢⎢⎣

√
κo,ex

√
κo,in 0 0 0 0 0 0

0 0 √
κo,ex

√
κo,in 0 0 0 0

0 0 0 0 √
κm 0 0 0

0 0 0 0 0 √
κm 0 0

0 0 0 0 0 0 √
κe,in

√
κo,ex

⎤⎥⎥⎥⎥⎥⎥⎦⊗ 12, (8.5)

where κj,in and κj,ex correspond to the intrinsic loss and external coupling rate of mode j.
Here, we also assume the optical linewidth across the FSR is the same, κo = κs = κt and
κm = κsm = κtm.

We define the susceptibility of microwave or optical mode as,

χj(ω) = 1
κj/2− iω

, (8.6)

Here also, we define χo = χs = χt and χm = χsm = χtm. We can obtain the effective
susceptibility of microwave and optical mode χj,eff(ω) from Eqn. 8.2. Note that it is easier
to solve the equations if matrix S is written in terms of susceptibilities χj(ω). The output
probing field can be obtained via input-output theorem, âj,out = âj,in −

√
κj,exâj. From the

output field, we can obtain the incoherent output noise spectral density via Wiener–Khinchin
theorem in different detection schemes.

Here, we focus on the coherent response of the multimode cavity electrooptic system, where
the amplitude reflection efficiency in the lab frame is given by,

Sjj(ω + ωj) = 1− ηjκjχj,eff(ω), (8.7)

with ηj = κj,ex/κj the external coupling efficient for mode j and ωj being the absolute mode
frequency of the mode j. In the experiment, it is easy to measure the relative change between
the off-pulse and on-pulse response. With this relative measurement, and along with the
measurement of the mode response with pulse off, we can calculate the mode response with
the pulse-on. Consequently, it is good to define the spectral normalized reflection which is the
ratio of the reflection efficiency between pulse on and off,

Rj(ω) = |Sjj(ω)/Sjj,off(ω)|2, (8.8)
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with Sjj,off(ω) = 1−κj,exχj(ω) . Before the pulse is switched on, the absent back-action leads
to Rj(ω) = 1. During the pulse, the coherent and excess back-action leads to modification of
Rj(ω). After the pulse, Rj(ω) restores to 1 if the measurement time is long enough.
Note that, in case of on-resonant microwave probing, the normalized reflection

Re(ωe) =
⃓⃓⃓⃓
⃓1− κe,ex/((κe + δκe)/2 + iδωe)

1− 2ηe

⃓⃓⃓⃓
⃓
2

, (8.9)

is more susceptible to the microwave frequency shift δωe compared to the linewidth change
δκe.

8.2.1 Symmetric mode configuration
Symmetric mode configuration stands for Js = Jt = 0 which means neither the Stokes nor
the anti-Stokes interaction is suppressed. If we also assume ideal detunings (δs = δas = 0),
microwave effective susceptibility remains the same,

χe,eff(ω) = χe(ω), (8.10)

due to evaded electro-optical dynamical back-action. This means scattering to the optical
Stokes mode balances with that to the optical anti-Stokes mode. In practice, however, there is
some excess back-action causing Re(ω) to deviate slightly from 1 because of other mechanisms
- possibly quasi-particle production (see section 8.6.2).
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Figure 8.1: Theoretical coherent optical response in the symmetric case at different C.
The left panel corresponds to the optical probing around the Stokes mode, while the right panel
corresponds to optical probing around the anti-Stokes mode. (Parameters: κo/2π = 30MHz,
ηo = 0.3, κe/2π = 10MHz) Figure adapted from Ref. [QSH+22].

Despite the absent dynamical back-action to the microwave mode, the optical susceptibility
around the Stokes and anti-Stokes modes are changed,

χs/t,eff(ω) = 1
χo(ω)−1 ∓ g2/(χe(ω)−1 ± g2χo(ω)) . (8.11)

In Fig. 8.1 , we show the theoretical curves of the optical coherent response in the symmetric
case (Js/t = 0) at different C. For low C, χs,eff(ω) and χt,eff(ω) show similar behavior to
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electro-optically induced absorption (EOIA) and transparency (EOIT), due to the constructive
and destructive interference between the probe field and the electro-optical interaction induced
field.
As C increases, both the Stokes and anti-Stokes mode probing response deviate from typical
EOIA and EOIT behavior. For example, the optical reflection coefficient can even exceed unitary
around resonance for anti-Stokes mode probing. Even in the symmetric case, the complex
optical response of the multimode CEO system can be utilized for dispersion engineering of the
probing field. At large C (e.g. C ≫ 2), the symmetric multimode CEO system can function
as a broadband electro-optical parametric amplifier for both Stokes and anti-Stokes signals.

8.2.2 Stokes mode configuration
In the Stokes case, i.e. Js = 0, and the effective microwave susceptibility is given by,

χe,s(ω) = 1
χ−1

e (ω) + g2
(︂

χo(ω+δt)
1+J2

t χo(ω+δt)χm(ω+δt) − χo(ω + δs)
)︂
.

(8.12)

The dynamical back-action results in microwave frequency shift (optical-spring effect) and
linewidth decrease,

δωe = − 4g2δs

κ2
o + 4δ2

s

+ 4δtg
2 (κ2

m − 4J2
t + 4δ2

t )
8J2

t (κoκm − 4δ2
t ) + (4δ2

t + κ2
o) (κ2

m + 4δ2
t ) + 16J4

t

δκe = − 4g2κo

κ2
o + 4δ2

s

+ 4g2 (κm (κoκm + 4J2
t ) + 4δ2

t κo)
8J2

t (κoκm − 4δ2
t ) + (4δ2

t + κ2
o) (κ2

m + 4δ2
t ) + 16J4

t

,

(8.13)

for the normal dissipation regime, i.e. κo ≫ κe.
In the case of ideal detuning, i.e. δs = δt = 0,

χe,s(ω) = 1
χ−1

e (ω)− g2χo(ω) (1− rt(ω))

χs,eff(ω) = 1
χ−1

o (ω)− g2χe(ω)/(1 + g2χe(ω)χo(ω)rt(ω))

, (8.14)

where rt(ω) = [1 + J2
t χo(ω)χm(ω)]−1 < 1 is the ratio of anti-Stokes to Stokes scattering rate.

In the case of complete suppression of the anti-Stokes scattering 4J2
t ≫ κoκm, we obtain,

χe,s(ω) = 1
χe(ω)−1 − g2χo(ω)

χs,eff(ω) = 1
χo(ω)−1 − g2χe(ω)

, (8.15)

which is symmetric under interchange of microwave and the optical Stokes mode.

As seen from the red curves in Fig. 8.2, the microwave response shows effective narrowing
in the normal dissipation regime (upper left), while EOIA in the reversed dissipation regime
(upper right). The optical response around the Stokes mode shows EOIA in the normal
dissipation regime (lower left), while effective narrowing in the reversed dissipation regime
(lower right). The asymmetric multimode CEO system can be adopted for "fast light" of
optical (microwave) probing field in the normal (reversed) dissipation regime, with reduced
group delay [Thé08, Boy09].
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Figure 8.2: Theoretical coherent multimode electro-optical dynamical back-action in
normal and reversed dissipation regime. The two left panels correspond to the normal
dissipation regime with κo ≫ κe. (Parameters: κo/2π = 30MHz, ηo = 0.3, κe/2π = 10MHz,
ηe = 0.3, and C = 0.5) The red and blue solid curves correspond to the Stokes and anti-Stokes
case with C = 0.5, while the dashed curves correspond to the original reflection coefficient
with C = 0. The two right panels correspond to the reversed dissipation regime with κo ≪ κe.
(Parameters: κo/2π = 1MHz, ηo = 0.3, κe/2π = 10MHz, ηe = 0.3, and C = 0.5). Figure
adapted from Ref. [QSH+22].

8.2.3 anti-Stokes mode configuration
In the anti-Stokes case, i.e. Jt = 0, the effective microwave susceptibility is given by,

χe,as(ω) = 1
χe (ω)−1 + g2

(︂
χo (ω + δt)− χo(ω+δs)

1+J2
s χo(ω+δs)χm(ω+δs)

)︂ (8.16)

In this case, the dynamical back-action results in optical-spring effect and effective microwave
linewidth increase,

δωe = 4g2δt

4δ2
t + κ2

o

− 4g2δs (κ2
m − 4J2

s + 4δ2
s)

8J2
s (κoκm − 4δ2

s) + (κ2
o + 4δ2

s) (κ2
m + 4δ2

s) + 16J4
s

δκe = 4g2κo

4δ2
t + κ2

o

− 4g2 (κm (κoκm + 4J2
s ) + 4κoδ

2
s)

8J2
s (κoκm − 4δ2

s) + (κ2
o + 4δ2

s) (κ2
m + 4δ2

s) + 16J4
s

,

(8.17)

for the normal dissipation regime, i.e. κo ≫ κe.
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8.2. Theory

In the case of ideal detuning, i.e. δs = δt = 0,

χe,eff(ω) = 1
χ−1

e (ω) + g2χo(ω) (1− rs(ω))

χt,eff(ω) = 1
χ−1

o (ω) + g2χe(ω)/(1− g2χe(ω)χo(ω)rs(ω))

, (8.18)

where rs(ω) = [1 + J2
sχo(ω)χm(ω)]−1 < 1 is the ratio of the Stokes to the anti-Stokes

scattering rate. When the anti-Stokes scattering is fully suppressed (4J2
s ≫ κoκm), we obtain,

χe,as(ω) = 1
χe(ω)−1 + g2χo(ω)

χt,eff(ω) = 1
χo(ω)−1 + g2χe(ω) ,

(8.19)

which is symmetric under interchange of microwave and the anti-Stokes mode.

As seen from the blue curves in Fig. 8.2, the microwave response shows effective broadening
in the normal dissipation regime (upper left), while EOIT in the reversed dissipation regime
(upper right). The optical response around the anti-Stokes mode shows EOIT in the normal
dissipation regime (lower left), while effective broadening in the reversed dissipation regime
(lower right). The asymmetric multimode CEO system can be adopted for "slow light" of
optical (microwave) probing field in the normal (reversed) dissipation regime, with increased
group delay [Thé08, Boy09]. For simplicity, we assume the same cavity coupling coefficient
0.3 for both microwave and optical modes in the theoretical calculations in Fig. 8.2.

8.2.4 An intuitive picture
The mode interferences presented in Fig. 8.2 can also be understood more intuitively using
loss rates involved with the optical and microwave modes and the electro-optic interaction
acting as an effective extra loss rate. First, we consider the case of Fig. 8.2a, where κe ≪ κo.
For the optical Stokes mode suppression case, the electro-optic interaction deviates power
from the microwave mode to the optical anti-Stokes mode. This effectively opens up an extra
internal loss channel for the microwave mode (it is internal because the diverted power does
not couple to the microwave waveguide). Since the electro-optic interaction effectively increase
the internal losses of the microwave mode, we should expect it to get more undercoupled and
broadened. This is exactly what we see in Fig. 8.2a. In case of anti-Stokes mode suppression,
the electro-optic interaction with the optical Stokes mode, amplifies the power in the microwave
mode coherently, effectively cancelling out the effect of the internal losses. As a result, in this
case, the microwave mode internal losses are effectively reduced and we should thus expect it
get more overcoupled and narrowed exactly as we see in Fig. 8.2a.

With the exact same reasoning, we can also understand the panel d of Fig. 8.2. In this
panel, we assume the opposite κo ≪ κe and since electro-optic interaction is symmetric, the
microwave and optical mode simply exchange roles keeping our inital intuitive reasoning intact.

For the remaining panels b and c of Fig. 8.2, the linewidth of the probed mode is larger than
the mode it is interacting with. We can still view the mode interaction as change in effective
internal loss rates of the probed modes but now since the interacting mode is narrower, the
effect on the probed mode is more local and appears more as two separate Lorentzian functions.
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8. Electrooptic dynamical backaction

8.3 Experimental setup
The measurements shown in this chapter were conducted with the measurements shown in
the chapter 9. Please refer to section 9.3 of the next chapter for all the details regarding the
experimental setup.

8.4 Mode characterization
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Figure 8.3: Optical modes. The optical TE mode family for dynamical backaction measure-
ments. The separation between the more contrasted lobe between each mode is stated in
table 8.1. We pump the mode 2 for symmetric scattering case, mode 3 for anti-Stokes mode
suppression and mode 5 for Stokes mode suppression. Figure adapted from Ref. [QSH+22].

Optical modes

To experiment with different mode configurations (symmetric, Stokes and anti-Stokes), we use
six optical TE modes of the same family (same p and q mode number) separated by one FSR.
Fig 8.3 shows the normalized mode reflection |Soo|2 for each of the six modes. One of the
mode is well hybridized by a degenerate TM mode (mode 4) and two are partially hybridised
(mode 5 and 6). The separation between the modes is given in table 8.1 as the frequency gap
between the main dips of each mode.

Modes 1 and 2 2 and 3 3 and 4 4 and 5 5 and 6
Separation 8.799GHz 8.799GHz 8.791GHz 8.817GHz 8.795GHz

Table 8.1: Calibrated frequency separation of the adjacent optical modes, shown as the distance
between the main dip of each optical modes.

The mode characterization is done in frequency domain as stated in section 3.2.6. The optical
TE mode 1, 2 and 3 shown in Fig 8.3 are fit with parameters - total linewidth κo/2π ∼ 26 MHz,
of which the external coupling rate is κo,ex/2π ∼ 10 MHz with the mode mismatch factor
Λ = 0.83. The split modes 4,5 and 6 are characterized as in section 3.5 and the fit parameters
are reported in table 8.2.

Microwave modes

For the different optical mode configurations, we pumped on different optical modes and
chose appropriate modes as the probe mode. The effective FSR in each case is given by the
separation between the pump mode and the probe mode and the microwave frequency has to
be matched to the effective FSR. For 3 out the 4 configurations we show, the effective FSR
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8.5. Measurement

Modes κo/2π κo,ex/2π δo/2π κo,tm/2π δo,tm/2π J/2π
4 34.6 8.9 -17.8 7.6 -18.5 26
5 24.7 9.8 5 17.4 28.3 13
6 24.3 9.2 -3.9 30 -18.7 10

Table 8.2: Fit parameters for the split modes. κo and κm correspond to the total loss
rate of the TE and corresponding TM mode. δo and δm correspond to the cavity detuning of
TE and corresponding TM mode to the main dip of the split mode, which is centered to zero
in Fig. 8.3.

is 8.799 GHz and the Stokes mode suppressed configuration, the effective FSR is 8.795 GHz
(see table 8.3).

As a result, we tune the microwave mode to the two required frequencies - 8.799 GHz and
8.795 GHz. The microwave mode is characterized with VNA reflection measurement (same as
section 3.3.4). We fit the total linewidth κe/2π = 11.6 MHz with ηe = 0.39.

Pump Config. Probing Mode Pump Mode Probe Mode MW Frequency
Sym. Stokes 2 1 8.799 GHz
Sym. anti-Stokes 2 3 8.799 GHz

Stokes Stokes 3 2 8.799 GHz
anti-Stokes anti-Stokes 5 6 8.795 GHz

Table 8.3: Measurement details for different mode and probing configurations. The
pump mode and probe mode indexes are given for each probing configurations. Microwave
frequency is adjusted accordingly to match the pump and probing mode separation.

8.5 Measurement
To measure the coherent response experiments in the pulsed regime, we send a short optical
pump pulse (τ ∼ 500 ns - 2 µs) to the device, while keeping the weak microwave or optical
probing field continuously on. The optical pump pulses are triggered at rate of 100Hz for
all the experiments, except for the Stokes case (2Hz). We sweep the frequency of the probe
signal around the probed mode to reconstruct the full microwave or optical response. For each
frequency, the pulses are repeated 2500 times. In addition, we sweep the pump pulse power to
investigate the power dependence of the dynamical back-action with peak power ∼ 500 mW.
The RF signal from the balanced heterodyne detection of the optical probing field and the
frequency down-converted microwave signal are recorded by a digitizer. In our experiments,
both optical and microwave LO are detuned by 40MHz from the probing signal frequency. All
the dynamical back-action data are taken from the time domain traces at 1GS/s sampling rate
for different mode and probing configurations, except for the delayed excess back-action data
shown in Fig. 8.10, which is taken by the SA in the zero-span mode1 at microwave resonance
frequency with 200 MHz bandwidth.

1Time domain measurement mode with no frequency sweep.
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8. Electrooptic dynamical backaction

8.5.1 Mode susceptibility reconstruction
Here, we discuss how the mode susceptibility was reconstructed for different cooperativities
and as a function of time. We have already defined the spectral normalized reflection for the
probing field,

Rj(ω) = |Sjj(ω)/Sjj,off(ω)|2, (8.20)
which we measure experimentally. We now argue that this measurement is enough to accu-
rately reconstruct the effective mode susceptibility irrespective of other frequency dependent
experimental parameters.
In the absence of the pump pulse, the output photon number of the probing field takes the
form

n̄out,off(ω) = n̄in(ω)|Sjj,off(ω)|2ηd(ω), (8.21)
where n̄in(ω) and ηd(ω) are the frequency dependent input photon number and the detection
efficiency. After the pump pulse arrives, the output photon number of the probing field is
modified to,

n̄out(ω) = n̄in(ω)|Sjj(ω)|2ηd(ω). (8.22)
For long enough measurement time as in our experiments, the coherent response of the
probing field restores to the state before the pulse starts. We thus approximate Sjj,off(ω)
to Sjj(ω)|t=0. The ratio of n̄out,off(ω) and n̄out(ω) is the same as Rj(ω). Any frequency
dependent imperfections simply cancel out and, thus, effective mode susceptibilities Sjj(ω)
can be reconstructed accurately with just Rj(ω) and Sjj,off(ω).
In this chapter, we only focus on the output power in the detection. We perform digital
down-conversion of the time-domain data at 40MHz for each probing frequency, where the
averaged voltages over the pulses are adopted to obtain the mean power. We track the
normalized reflection coefficient over time while scanning the probe field frequency,

Rj(ω + ωLO,j) = P̄out,j(ω)
P̄out,j(ω)|t=0

, (8.23)

with ωLO,j the LO frequency and P̄out,j the averaged power of the RF field from digital
down-conversion. Typical obtained on-resonant Rj(ω) in time domain are shown in Fig. 8.4.
Since any input power fluctuation or change in detection as a function of time or frequency
affects both on pulse and off pulse equally, by tracking them both in time and then taking the
ratio, we avoid the complicated system calibration and frequency dependence on the input
and detection sides, especially on the optical side due to the filter drifts (see section 9.3.1).

8.6 Results
8.6.1 Stationary Dynamical Back-action
We start with the temporal response on-resonance of the probed mode which is shown in
Fig. 8.4. Before t = 0, there is no electro-optic interaction and the probed mode remains
unchanged. When the optical pump pulse comes, the reflected power changes as dictated
by the electro-optic interaction. The change in reflection before t = 0 and in the middle
of the optical pump pulse (t ∼ 200 ns) indicates how the mode response changed due to
electro-optic interaction (at resonance in this case). We can similarly reconstruct the full
coherent stationary spectral response by sweeping the probe tone frequency around the probed
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Figure 8.4: Dynamics of reflected probe tone. Temporal on-resonant response R(ω)[cf.
Eq. 8.20] between pulse on and off (pump peak power ∼ 500 mW). Left panel shows the
symmetric case (ωp = ω2), with on-resonant microwave response (turquoise blue curve) in
the upper panel and optical Stokes (orange curve) and anti-Stokes (turquoise blue curve)
responses in the lower panel. Right panel shows the two asymmetric cases, i.e. the on-resonant
microwave and optical Stokes responses (red curves) in the Stokes case (ωp = ω3), and the
resonant microwave and optical anti-Stoke responses (blue curves) in the anti-Stokes case
(ωp = ω5). Figure adapted from Ref. [QSH+22].

mode resonance. Repeating these frequency sweeps for different pump pulse powers in each
configuration allows us to probe how the coherent stationary spectral response changes as a
function of cooperativity.

We plot the Re(ω) for the three different pump configurations in the upper panel of Fig. 8.5
using the same pump as in Fig. 8.4. Using the pulse-off response |See,off(ω)|2 (which is plotted
as dashed lines in the bottom panels of Fig. 8.5) and Re(ω), we can reconstruct the full
pulse-on mode response which are plotted as solid lines in bottom panels.

The solid lines in the upper panel of Fig. 8.5 and 8.7 come from a joint fit of the coherent
microwave Re(ω) and optical Ro(ω) response at the steady regime of the pulse for all the
powers, with microwave linewidth, microwave external coupling rate, optical linewidth, optical
external coupling rate as shared parameters.

For the symmetric case of balanced Stokes and anti-Stokes scattering, Re(ω) remains unchanged
as expected (center panel of Fig. 8.5). On the other hand, microwave mode response changes
dramatically around the mode resonance for the two asymmetric cases due to strong dynamical
back-action (left and right panels). The lower panels show the pulse-on (solid) and pulse-off
(dashed) responses together. Compared to the pulse-off response, we observe microwave
linewidth narrowing and a slight frequency increase in the Stokes case (ωp = ω3) and linewidth
broadening in the anti-Stokes case (ωp = ω5) with an increased resonant reflection.

From the joint fit of the coherent microwave Re(ω) and optical Ro(ω) response, we extract
the microwave frequency shift (δωe) and linewidth (δκe) change as a function of optical
pump power for each pump configuration. This is shown in Fig. 8.6. For the symmetric case
(ωp = ω2), no evident frequency or linewidth change is observed as expected due to the evaded
back-action. For the anti-Stokes case (ωp = ω5) the microwave linewidth increases linearly
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8.6. Results

with C, while it decreases linearly for the Stokes case (ωp = ω3). We also make theoretical
predictions (dashed lines), which are obtained from independent mode characterization and
using a full dynamical back-action model incorporating optical response fitting parameters
including imperfect frequency detunings [cf. Fig. 8.8]. The predictions match very well with
experimental results for both asymmetric cases. The observed deviation of the microwave
frequency change of ∼ 10−4ωe in the anti-Stokes case can be attributed to small detuning
uncertainties (sub-MHz) as discussed in the section 8.2.
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Figure 8.7: Stationary backaction in optical modes. Measurements with same pump
power as in Fig. 8.4, with the two left panels for Stokes mode probing and the two right panels
for anti-Stokes mode probing. The upper panel shows Ro(ω) with fitting curves (solid lines).
The lower panel shows reconstructed optical reflection |Soo(ω)|2 with pulse on (solid curve)
and off (dashed curve) in logarithmic scale, which demonstrates EOIA in the Stokes case and
EOIT in the anti-Stokes case. Figure adapted from Ref. [QSH+22].

The same measurements are repeated for the optics anti-Stokes and Stokes mode for the three
pump configurations. For the balances case, we probe both the Stokes and anti-Stokes optical
mode response but for the cases when one of the optical sideband was suppressed, we only
probe the other unsuppressed optical signal mode. These measurements are shown in Fig. 8.7.
Upper panels again show the normalized mode reflection Ro(ω) along with the joint fits (solid
lines) for each mode configuration. The bottom panels show the pulse-off (dashed lines) and
pulse-on (solid lines) mode responses for each case. The Stokes mode probing (left two panels)
reveals similar electrooptic induced absorption (EOIA) for the Stokes and symmetric cases
when the pump pulse is on, while the anti-Stokes mode probing (right two panels) indicates
similar electrooptic induced transparency (EOIT) for the symmetric and anti-Stokes cases.

In Fig. 8.8, we show the on-resonant reflection efficiency versus C for different probing
configurations with theoretical predictions shown in dotted lines. In the upper panel, |Soo(ωs)|2
at the Stokes mode resonance first approaches zero and then increases with C due to EOIA.
For C ≫ 1, the reflection efficiency eventually exceeds far above unity, which would enable
parametric amplification of the Stokes signal. In the lower panel, |Soo(ωas)|2 at the anti-Stokes
resonance increases slowly as C increases due to EOIT. We note that, the different on-resonant
|Soo|2 at low C is due to the slightly different external coupling efficiency of the optical modes.
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Figure 8.8: Optical reflection change due to backaction. The upper panel shows |Soo(ωs)|2
for the two Stokes mode probing cases, while the lower panel shows |Soo(ωas)|2 for the two
anti-Stokes mode probing cases. The corresponding theoretical curves are shown as dashed
lines. Error bars indicate two standard deviations. Figure adapted from Ref. [QSH+22].

The highest cooperativity C ∼ 0.5 in these measurements were limited due to parametric
amplification kicking in due to Kerr nonlinearity, which is discussed in detail in section 7.7.

8.6.2 Transient back-action in microwave
In the previous section, we saw the spectral mode response of the signal modes. However,
this spectral mode response is indicative of a steady-state which we assumed is established
about 200 ns after the optical pump pulse arrives. But since the original data was taken in
time-domain with a high enough bandwidth, we can also study the temporal back-action in
the modes.

The transient back-action in microwave mode is especially interesting. Not only we observe an
electro-optic dynamical backaction due to the χ(2) nonlinearity, but we also witness evidence
of some excess delayed backaction due to some other mechanism.

Dynamical back-action

Starting from the transient response from Fig. 8.4, we perform the joint fit of Ro(ω) and Re(ω)
incorporating the full DBA model and the cooperativity and detunings as the free parameters.
The fit cooperativity is, then, plotted as a function of time in the upper panels of Fig. 8.9
for all different pump configurations. The fitted C(t) increases smoothly in the beginning,
as the optical pump pulse arrives, reaches stationary value in the middle (steady-state), and
finally slowly decreases to zero after the optical pulse is gone. Similar to the Fig. 8.6, where
the microwave resonance shift and linewidth change is plotted as a function of cooperativity,
we now show the same parameters as a function of time in the bottom two panels of Fig. 8.9.
The theoretical predictions are plotted as dashed line.
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Figure 8.9: Transient backaction in microwave mode. Instantaneous coherent microwave
responses during the pump pulse obtained for the same pump power as in Fig. 8.4. In each
pump configuration, we perform a joint fit of Ro(ω) over the time of the pulse with the full
dynamical back-action model, and extract the time dependent C(t) (upper panel). Similarly,
we perform a joint fit of Re(ω) to obtain the frequency and linewidth changes (dots) over
time, with corresponding theoretical curves (dashed lines) using the above fitted parameters
from the optical coherent response. Error bars represent the 95% confidence interval of the fit.
Figure adapted from Ref. [QSH+22].

The small blue shift of the microwave mode in the two asymmetric mode configurations is due
to imperfect detunings (sub-MHz) as explained in SI 8.2. The linewidth change follows closely
the predicted coherent electro-optical dynamical back-action, i.e. narrowing in the Stokes case
and broadening in the anti-Stokes case. In the symmetric case, a very slight excess frequency
drift (∼ 10−5ωe) and linewidth change (∼ 10−2κe) indicate a finite amount of instantaneous
excess back-action to the microwave mode in the beginning and at the end of the pulse, due
to the loading and unloading of the optical pump field.

Delayed excess back-action

After the pump pulse, we observe a small amount of excess back-action that remains in the
microwave mode for a few µs, while it ceases immediately in the optical mode after the optical
pump pulse is gone. We make measurement for both cases - when the microwave frequency
matches the optical FSR (on-resonant case) and when it doesn’t (off-resonant case). For
both of these cases, we show the coherent microwave response Re(ωe) for the symmetric
case (Js/as = 0) over time using a similar pulse power as in Fig. 8.4 with different optical
pump pulse lengths in Fig. 8.10. The behaviour is very similar for both the cases which rules
out the electro-optical interaction as the main origin of the induced perturbation. The first
bounce comes with the start of the optical pulse at t = 0 and it starts to decay after the pulse
ends (marked with turquoise blue dot). However, after tex time, we observe a new maxima of
reflection marked by purple dot. It seems that tex depends on the optical pump pulse length
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Figure 8.10: Excess delayed backaction in microwave. Instantaneous coherent microwave
response in the symmetric case (Js/as = 0) with different pulse lengths. a (b) show The
on-resonant ωe = FSR (off-resonant ωe ̸= FSR) cases. The corresponding pulse end and
the bounce of the delayed back-action are indicated with turquoise blue and purple dots, where
the time difference is tex. The mean lifetime τex is fitted from exponential decay of Re(ωe)
after the bounce, shown as orange and blue curves in the left and right panels. Figure adapted
from Ref. [QSH+22].

used which indicates an integrated optical pulse energy dependent excess mechanism that
changes the microwave response. After the bounce, Re(ωe) continues to decrease exponentially
to unity with a time constant τex.

In Fig. 8.11, we show the extracted tex and τex from the fitted time dependence for different
pump pulse lengths from Fig. 8.10. In both the resonant and off-resonant cases, tex increases
versus pulse length τ and saturates at ∼ 6µs for long pulse lengths above ∼ 1µs, while
the on-resonant excess back-action arrives later than the off-resonant one most likely related
to electro-optical interaction. Interestingly, the fitted τex (∼ 1.6µs) is quite similar for
both detuning cases, indicating a general underlying mechanism, e.g. light induced quasi-
particles [MSKP20].

It is important to point out that the observed frequency shifts and linewidth changes are only
on the order of 100kHz, i.e. 10−5 of the microwave resonant frequency as shown in Fig. 8.12.
This is the stark difference we observe in our system compared to other systems where much
larger frequency shift (larger than the cavity linewidth) are observed as a result of optical
pump power [FXL+21]. This feature of our system lets us pump such huge amount of optical
powers without any grave consequences.
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Another important point is that our device revives completely in only tens of µs after the
optical pulse. Nevertheless, in all the presented experiments we adopt a trigger time of 10 ms
for all pump configurations (500 ms in the Stokes case) to avoid thermal heating due - likely -
to optical absorption.

8.7 Conclusions
In this chapter, we demonstrate electro-optical dynamical back-action with pulsed optical
pump and near-unitary cooperativity. We show both stationary mode response in frequency
domain and transient mode response when the optical pump arrives. All the presented results
agree well with the 6-mode model presented in this chapter. We also take a deeper look into
the excess delayed backaction to the microwave mode and find that it is surprisingly small for
the high optical pump powers we use.
Now that we understand the electro-optical response of the signal modes and any adverse
effects of pumping high optical powers into the system, we can measure the tiny changes
in quantum noise due to electro-optic interaction. We already saw a signature of vacuum
noise amplification in the chapter 7. In the next chapter, we measure this amplification in
the microwave and Stoke mode more systematically and check whether the produced joint
correlations can be pushed below the vacuum levels establishing entanglement between the
modes.
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CHAPTER 9
Entanglement between microwave and

optics

9.1 Introduction
In the chapter 7, we find that an optical pump pulse with high-enough cooperativity would
amplify (via the interaction with the Stokes optical mode) any noise present in microwave
mode - including the vacuum noise. This amplified noise in the two modes (optical and
microwave) is correlated owing to its origin from the same optical pump. If thermal or classical
noise is amplified, the correlations thus generated are also classical, meaning such correlations
can also be generated by classical means. However, if no classical signal or noise was present in
the signal modes, the vacuum noise is amplified. The phenomenon is then called spontaneous
parametric downconversion (SPDC). The amplified vacuum noise has correlations that go
beyond the classical limit. In our particular case, the correlations exist when the noise from
one mode is compared with the other. This is also known as two-mode squeezing because the
noise in the one joint quadrature is squeezed while in the other is anti-squeezed. If the noise
in the squeezed joint quadrature goes below the vacuum noise, for Gaussian bipartite states
(as is the case here), the states are entangled.
In this chapter, we measure two-mode squeezing between the microwave âe and optical Stokes
mode âs ≡ âo. Even though ideally we want no classical signal or noise in the signal modes, in
practice, we always have some thermal noise in the microwave mode. The idea then is to lower
the ratio of thermal noise to vacuum noise as much as possible. Consequently, here we work
with a optical pump pulse rate of only 2 Hz to keep the average optical pump power extremely
low. The other experimental challenges follow from this restriction. The optical pulses are
only few 100 ns long allowing us to collect < 1 µs worth of data per second. This meant that
to collect enough data for proper statistics, we needed to measure for a really long time - on
the order of days. Maintaining experimental stability for days was the biggest challenge. We
discuss these challenges and solutions in detail. We also discuss the measurements which did
not completely work but paved the way to the final entanglement measurement.

Acknowledgements This chapter is based on the work presented in Ref. [SQH+23]. I
would like to thank Liu Qiu and Yuri Minoguchi for writing the theory section which has been
adapted in this chapter and Liu Qiu and William Hease for his contribution in the data analysis
and measurements. Figure credits have been individually given in the figure captions.
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9. Entanglement between microwave and optics

9.2 Theory

9.2.1 Covariance Matrix from Input-Output Theory
Quantum Langevin Equations

In this chapter, we focus on amplification interaction between the microwave mode âe and
the optical Stokes mode âs ≡ âo. Now we suppress the interaction of the microwave mode
with the optical anti-Stokes mode ât by hybridising it with the optical TM mode âtm which is
degenerate with the ât mode. This results in a total interaction Hamiltonian,

ĤI/ℏ = g0(â†
pâeâo + â†

pâ
†
eât) + Jâtâ

†
tm + h.c., (9.1)

with g0 as the vacuum electro-optical coupling rate.

Assuming a strong coherent optical pump, we can write an effective interaction Hamiltonian
as,

ĤI,eff/ℏ = g(âeâo + âeâ
†
t) + Jâtâ

†
tm + h.c., (9.2)

with multiphoton coupling rate g = āpg0. This includes both the two-mode-squeezing
(TMS) interaction between the optical Stokes and microwave mode, and beam-splitter (BS)
interaction between the optical anti-Stokes mode and microwave mode. Microwave-optics
entanglement between the microwave and optical Stokes output field can be achieved via
spontaneous parametric down-conversion (SPDC) process due to TMS interaction, which is
further facilitated by the suppressed anti-Stokes scattering due to the strong coupling between
anti-Stokes and TM modes. The full dynamics of the intracavity fluctuation field in the
rotating frame of the scattered sidebands and microwave resonance, are now described by the
quantum Langevin equations (QLE),

̇̂ae = −κe

2 âe − igâ†
o − ig∗ât +√ηeκeδâe,in +

√︂
(1− ηe)κeδâe,0, (9.3)

̇̂ao =
(︃
iδo −

κo

2

)︃
âo − igâ†

e +√ηoκoδâo,in +
√︂

(1− ηo)κoδâo,0, (9.4)

̇̂at =
(︃
iδt −

κt

2

)︃
ât − ig∗âe − iJâtm +√κtδât,vac, (9.5)

̇̂atm =
(︃
iδtm −

κtm

2

)︃
âtm − iJât +√κtmδâtm,vac, (9.6)

with κj the total loss rate of the individual mode where j ∈ (e, o, t, tm), and ηk the external
coupling efficiency of the input field where k ∈ (e, o). δj corresponds to the frequency difference
between mode j and scattered sidebands, with δo = ωo,p−ωe−ωo and δt/tm = ωo,p+ωe−ωt/tm,
which are mostly given by FSR and ωe mismatch, with additional contributions from optical
mode dispersion and residual optical mode coupling. We note that, for resonant pumping, we
have δo = −δt in the case of absent optical mode dispersion and residual mode coupling. In our
experiments, we tune the microwave frequency to match the optical FSR, i.e. ωe = ωo,p − ωo.

We are interested in solving these equations in steady state since they can be analytically
solved in steady state and, in the experiments, we will only work with the steady state. Again,
we write the above equation in matrix form to solve it in steady state,

v̇(t) = M (t)v(t) + Kfin(t), (9.7)
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9.2. Theory

where,

v = (âe, â
†
e, âo, â

†
o, ât, â

†
t , âtm, â

†
tm)⊤,

fin = (δâe,0, δâ
†
e,0, δâe,in, δâ

†
e,in, δâo,0, δâ

†
o,0, δâo,in, δâ

†
o,in, δât,vac, δâ

†
t,vac, δâtm,vac, δâ

†
tm,vac)⊤,

(9.8)
and,

M (t) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κe

2 0 0 −ig(t) −ig∗(t) 0 0 0
0 −κe

2 +ig∗(t) 0 0 ig(t) 0 0
0 −ig(t)iδo − κo

2 0 0 0 0 0
ig∗(t) 0 0 −iδo − κo

2 0 0 0 0
−ig(t) 0 0 0 iδt − κt

2 0 −iJ 0
0 ig∗(t) 0 0 0 −iδt − κt

2 0 iJ
0 0 0 0 −iJ 0 iδtm − κtm

2 0
0 0 0 0 0 iJ 0 −iδtm − κtm

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(9.9)

K =

⎛⎜⎜⎜⎜⎜⎝

√︂
(1− ηe)κe

√
ηeκe 0 0 0 0

0 0
√︂

(1− ηo)κo
√
ηoκo 0 0

0 0 0 0 √
κt 0

0 0 0 0 0 √
κtm

⎞⎟⎟⎟⎟⎟⎠⊗ 12 (9.10)

Input-Output-Theory

The output fields of the CEO device are

fout(t) = (âe,out(t), â†
e,out(t), âo,out(t), â†

o,out(t))⊤, (9.11)

which consist of a contribution which was entangled via the electro-optic interactions v and a
contribution which has not interacted with the device fin. The output field fout is written
with the framework of input-output theory [GC85],

fout(t) = Lfin(t)−Nv(t), (9.12)

where we define the matrices

N = (NJ , 04), with NJ = Diag(√ηeκe,
√
ηeκe,

√
ηoκo,

√
ηoκo), (9.13)

and
L =

(︄
0 1 0 0 0 0
0 0 0 1 0 0

)︄
⊗ 12. (9.14)

In the steady state, the correlations in the output field may be obtained by going to Fourier
domain. Here we commit to following convention of the Fourier transformation

Â(ω) = 1√
2π

∫︂ ∞

−∞
dω eiωtÂ(t), (9.15)

with the hermitian conjugate
(Â(ω))† = A†(−ω). (9.16)

Note that in this convention e.g. [ae(ω), a†
e(ω′)] = δ(ω + ω′) are canonical pairs.
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9. Entanglement between microwave and optics

In our experiments, we concern ourselves with the correlations between the output propagating
spectral modes of frequencies ωe + ∆ωe and ωo −∆ωo respectively for microwave and optical
fields [Bv05, ZGV15]. Due to energy conservation in the SPDC process, the focus is only on
microwave and optical photon pairs around resonances with anti-correlated frequencies, i.e.
∆ωe = ∆ωo = ∆ω. For this reason, we choose the following vector of output fields in the
rotating frame,

fout(ω) = (âe,out(ω), â†
e,out(−ω), âo,out(−ω), â†

o,out(ω))⊤, (9.17)

in the Fourier domain. From Eqn. (9.7) we obtain

v(ω) = [iωO −M ]−1 ·K⏞ ⏟⏟ ⏞
=S(ω)

·fin(ω), (9.18)

with
O = Diag(1,−1, 1, 1)⊗ σz. (9.19)

Here we defined the vector of modes

v(ω) = (âe(ω), â†
e(−ω), âo(−ω), â†

o(ω), ât(ω), â†
t(−ω), âtm(ω), â†

tm(−ω))⊤, (9.20)

as well as the vector of input fields

fin(ω) = (δâe,0(ω), δâ†
e,0(−ω), δâe,in(ω), δâ†

e,in(−ω), δâo,0(−ω), δâ†
o,0(ω), δâo,in(−ω), δâ†

o,in(ω),
δât,vac(ω), δâ†

t,vac(−ω), δâtm,vac(ω), δâ†
tm,vac(−ω))⊤

(9.21)

in the Fourier domain.
The output fields (see Eqn. (9.12)) of the CEO device are straight forwardly obtained since in
the Fourier domain Eqn. (9.12) is algebraic,

fout(ω) = Lfin(ω) + Nv(ω) = (L + N · [iωO −M ]−1 ·K)fin(ω). (9.22)

The input noise operator correlations are given by,

⟨fin(ω)f †
in(ω′)⟩ = Dδ(ω + ω′), (9.23)

with

D = Diag(n̄e,int + 1, n̄e,int⏞ ⏟⏟ ⏞
bath:e

, n̄e,wg + 1, n̄e,wg⏞ ⏟⏟ ⏞
waveguide:e

, 1, 0⏞⏟⏟⏞
bath:o

, 1, 0⏞⏟⏟⏞
detector:o

, 1, 0⏞⏟⏟⏞
bath:t

, 1, 0⏞⏟⏟⏞
bath:tm

). (9.24)

The spectral correlations of different output fields can be simply obtained analytically from

⟨fout(ω)f †
out(ω′)⟩ = S(ω)DS†(−ω)⏞ ⏟⏟ ⏞

C̃
ff† (ω)

δ(ω + ω′). (9.25)

Here we implicitly define the 4 × 4 matrix of output mode correlations with a single entry
reading

⟨âout(ω)b̂out(ω′)⟩ = C̃ab(ω)δ(ω + ω′), (9.26)
where the operators âout(ω), b̂out(ω) were chosen from components of fout(ω) in Eqn. (9.15).
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9.2. Theory

Covariance Matrix of Filtered Output Fields

Practically, in the experiment, we can only measure the output signal for a finite time due to
the pulsed nature of the optical pump. This means that the measured output fields, although
in steady state, get inevitably filtered in time domain. We will now consider this situation
analytically by defining output field modes from a windowed Fourier transformation. Next we
will then show that these are indeed the experimentally observed signals.
We start by defining the (dimensionless) hermitian output field quadrature pair [ZGV15],

X̂α(ωn) = 1√
2T

∫︂ T/2

−T/2
dτ eiωnτ âα,out(τ) + h.c., (9.27)

P̂α(ωn) = 1√
2Ti

∫︂ T/2

−T/2
dτ eiωnτ âα,out(τ) + h.c., (9.28)

which meets the canonical commutation relation [X̂α(ωn), P̂β(ωm)] = iδnmδαβ where α = e, o.
Due to the finite window of the Fourier transformation, the frequencies ωn = 2π

T
n becomes

discrete. The quadrature modes at discrete frequencies ωn can now be rewritten in terms of
the (dimensionful) output fields fout(ω) from Eqn. (9.22), which are defined in the continuous
Fourier domain. Therefore the quadrature operators may be obtained by convolution with the
a filter function G(ω)

X̂α(ωn) = 1√
2

∫︂ ∞

−∞
dω G(ωn − ω)âα,out(ω) + h.c. (9.29)

P̂α(ωn) = 1√
2i

∫︂ ∞

−∞
dω G(ωn − ω)âα,out(ω) + h.c. (9.30)

Here the filter is

G(ω) = 1√
2π

∫︂ ∞

−∞
dτ eiωτ 1[0,T ](τ)√

T
=
√︄

2
πT

sin(ωT/2)
ω

, (9.31)

which is obtained from a Fourier transformation of the unit function 1[−T/2,T/2](t) = 1(0) for
|t| ≤ T/2 (|t| > T/2). A bipartite Gaussian state is characterized by the 4 × 4 covariance
matrix (CM),

VAB(ωn) = 1
2⟨{δÂ(ωn), δB̂(ωn)}⟩. (9.32)

Here we defined δÂ = Â− ⟨Â⟩ an operator with zero mean ⟨δÂ⟩ = 0 and the quadratures
from

Â(ωn), B̂(ωn) ∈ {X̂e(ωn), P̂e(ωn), X̂o(−ωn), P̂o(−ωn)} (9.33)
and we also introduced the anti-commutator {Â, B̂} = ÂB̂ + B̂Â. Note that the two-mode
squeezing interaction results in correlation between frequency reversed pairs on the microwave
ωn and the optical side −ωn. Since in our setting all first moments ⟨Â⟩ = 0, the evaluation
of the covariance matrix in Eqn. (9.32) boils down to computing spectral correlations which
are rewritten as

⟨Â(ωn)B̂(ωn)⟩ =
∫︂ ∞

−∞
dω
∫︂ ∞

−∞
dω′ G(ωn − ω)G(ωn − ω′)⟨Â(ω)B̂(ω′)⟩

=
∫︂ ∞

−∞
dω
∫︂ ∞

−∞
dω′ G(ωn − ω)G(−ωn − ω′)CAB(ω)δ(ω + ω′)

=
∫︂ ∞

−∞
dωF(ωn − ω)CAB(ω),

(9.34)
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9. Entanglement between microwave and optics

where we used the property G(−ω) = G(ω) and defined the effective filter F(ω) = G(ω)2.
Similar to Eqn. (9.25), we defined the quadrature correlations

CAB(ω) = (C(ω))AB = 1
2
(︂
UC̃ff†(ω)U † + (UC̃ff†(ω)U †)⊤

)︂
AB

. (9.35)

Here the unitary matrix U = u⊕ u, with

u = 1√
2

(︄
1 1
−i i

)︄
, (9.36)

corresponds to a rotation of the mode operators into quadrature operators (X̂α, P̂α)⊤ =
u · (âα,out, â

†
α,out)⊤. The covariance matrix of the quadrature modes at the discrete frequencies

ωn is then obtained exactly by

VAB(ωn) =
∫︂ ∞

−∞
dωF(ωn − ω)CAB(ω), (9.37)

where the quadrature correlations are convolved with an appropriate filter. This means
convolution with the filter function is enough to take into account the finite measurement
time in the experiment.

9.2.2 Heterodyne Detection, Added Noise and Filtering
Heterodyne Measurement

In this subsection, we discuss the quadrature extractions from the equivalent linear measurement,
e.g. balanced heterodyne detection, with excess added noise [dBWB10]. In the heterodyne
detection, the output field âoute

−iωjt (j ∈ e, o) is mixed with a strong coherent local oscillator
field âLO(t) = αLOe

−iωLOt at a 50:50 beam-splitter, where the output field from the two ports
are sent to a balanced photo-detector, which results in a photon current that is proportional to

Îout(t) = e−i∆LOtâout + â†
oute

i∆LOt, (9.38)

in the limit of strong LO (αLO ≫ 1) with ∆LO = ωLO − ωj. Here also, we consider finite
measurement interval of time T , on which we compute the windowed Fourier transformation
of Îout(t),

Îout(ωn) = 1√
T

∫︂ T

0
dτ eiωnτ Îout(τ) = 1√

T

∫︂ T

0
dτ eiωnτ (e−i∆LOτ âout(τ) + ei∆LOτ â†

out(τ))

= aout(ωn −∆LO) + a†
out(ωn + ∆LO),

(9.39)

where in a slight abuse of notation we define the dimensionless output fields aout(ωn). In our
experiments, we extract the quadratures of microwave and optical output field, by decomposing
the heterodyne current spectra, in their real and imaginary parts which yields

Îout(ωn) = 1√
2

(X̂(ωn −∆LO) + X̂(−ωn −∆LO)⏞ ⏟⏟ ⏞
ÎX,out(ωn)

+i [P̂ (ωn −∆LO)− P̂ (−ωn −∆LO)]⏞ ⏟⏟ ⏞
ÎP,out(ωn)

),

(9.40)
where we define the quadrature output fields âout(ωn) = (X̂(ωn) + iP̂ (ωn))/

√
2, in the same

way as in Eqn. (9.27-9.28).
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So far we have treated the photon current that results from a heterodyne measurement in terms
of a time dependent hermitian operator Îout(t). In an actual experiment the heterodyne current
is a real scalar I(t) quantity which fluctuates in time and between different experimental runs.
Taking the (fast) Fourier transform of this current and decomposing it in its real and imaginary
parts then yields I(ωn) = IX(ωn) + iIP (ωn). The theory of continuous measurements and
quantum trajectories [WM08, WM09] tells us how to connect the measured scalar currents
with the current operators from input-output theory [GC85]

IA(ωn)IB(ωm) = 1
2⟨{ÎA,out(ωn), ÎB,out(ωm)}⟩, (9.41)

where we define the statistical average · · · over many experimental runs.

Added Noise and Gain in Measurements

For the vacuum, the noise spectral density for both quadratures, are obtained by

SAA(ωn) = ⟨Â(ωn)Â(ωn)⟩vac = 1
2 , (9.42)

for the hermitian operator Â = X̂, P̂ . Note that due to the discreteness of the Fourier domain
we do not have a Dirac delta as opposed to Eqn. (9.26). The noise spectrum of the heterodyne
current is defined by SII(ω) ≡ I(ωn)I(ωn) = ⟨Îout(ωn)Îout(ωn)⟩, where

SII(ωn) = 1
2 (SXX (ωn −∆LO) + SP P (ωn −∆LO) + SXX (ωn + ∆LO) + SP P (ωn + ∆LO)) .

(9.43)
Focusing on the part of the spectrum located around ∆LO,

SII(ωn + ∆LO) = 1
2 (SXX (ωn) + SP P (ωn) + 1) , (9.44)

assuming ∆LO ≫ κe, κo. This indicates the simultaneous quadratures measurements and
added shot noise in the heterodyne measurements, even without experimental imperfections.
So far we have focused on the ideal theory of the measurement and disregarded additional
unknown sources of noise as well as the connection to the actually measured quantities.
In practice, the decomposed measured quadratures contain additional uncorrelated excess
noise, e.g. due to the added noise in the amplification or due to propagation losses [Cav82].
We model this by phenomenologically adding another uncorrelated noise process from an
independent thermal reservoir and then multiplying by a gain factor which converts the number
of measured photons to the actually monitored voltage. To illustrate this we consider a single
output port with the added noise current ÎX/P,add(ωn) and the frequency dependent calibration
gain Gdet(ωn), where

ÎX,det(ωn) =
√︂
Gdet(ωn)(ÎX,add(ωn) + ÎX,out(ωn)), (9.45)

ÎP,det(ωn) =
√︂
Gdet(ωn)(ÎP,add(ωn) + ÎP,out(ωn)). (9.46)

We thus obtain the detected heterodyne noise spectral density,

SII,det(ωn + ∆LO) =Gdet(ωn + ∆LO)[SXX (ωn) + SP P (ωn)
+ 1 + SIXIX ,add(ωn + ∆LO) + SIP IP ,add(ωn + ∆LO)⏞ ⏟⏟ ⏞

=2Nadd

], (9.47)
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9. Entanglement between microwave and optics

where we define the spectra of the added noise SIOIO,add(ωn) = ⟨ÎO,add(ωn)ÎO,add(ωn)⟩. The
added noise Nadd includes the excess vacuum noise from heterodyne measurement and the
additional uncorrelated noise. Note that here the factor 1

2 was absorbed in the detections
gains. The gain Gdet(ωn) can be simply obtained on both microwave and optical side, from
the cold measurements (optical pump off) with a known background. Eqn. (9.47) lays the
foundation of microwave and optical calibrations in our CEO device.
In the experiments, we place the LO on opposite sites around the mode resonances, i.e.,

∆LO,e = −ΩIF, ∆LO,o = ΩIF, (9.48)

where ΩIF > 0 is the intermediate frequency for down-mixing. The heterodyne output field
can be obtained similar to Eqn. (9.39),

Îout,e(ωn + ΩIF) = 1√
2

[(X̂e(−ωn) + X̂e(ωn + 2ΩIF) + i(−P̂e(−ωn) + P̂e(ωn + 2ΩIF))],

Îout,o(ωn + ΩIF) = 1√
2

[X̂o(−ωn − 2ΩIF) + X̂o(ωn) + i(−P̂o(−ωn − 2ΩIF) + P̂o(ωn))],
(9.49)

with noise spectrum given by,

SII,e(ωn + ΩIF) = 1
2(SXeXe (−ωn) + SPePe (−ωn)) +Ne,add,

SII,o(ωn + ΩIF) = 1
2(SXoXo (ωn) + SPoPo (ωn)) +No,add.

(9.50)

We note that, Eqn. (9.49) is adopted for field quadrature extraction (including the added noise)
from the heterodyne measurement, which reveals correlations in the quadrature histogram
[cf. Fig. 9.12]. Despite of the reversed sign in the expected field quadratures, microwave and
optical output photons appear at the same frequency in the noise spectrum, i.e. ωn + ΩIF [cf.
Fig. 9.9].

Covariance Matrix from Realistic Heterodyne Measurements

Here we briefly explain the procedure of the covariance matrix reconstruction from the
heterodyne measurements. The cross correlations of the detected heterodyne current spectra
can be obtained via,

DAB(ωn) = δIA,det(ωn + ΩIF)δIB,det(ωn + ΩIF), (9.51)

where we define the centered current δIO,det = IO,det − IO,det, with

IO,det(ωn) ∈ {IXe,det(ωn), IPe,det(ωn), IXo,det(ωn), IPo,det(ωn)}. (9.52)

Similar to Eqn. (9.41)), we can obtain

DAB(ωn) = 1
2⟨{δÎA,det(ωn + ΩIF), δÎB,det(ωn + ΩIF)}⟩

=
√︂
GA,det(ωn + ΩIF))GB,det(ωn + ΩIF))

[︄
1
2⟨{δÂ(ωn), δB̂(ωn)}⟩⏞ ⏟⏟ ⏞

=VAB(ωn)

+NAB,add

]︄
,

(9.53)
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where we define the diagonal added noise matrix NAB,add = (Nadd)AB = NA,addδAB with the
calibrated added noise Nadd and detection gain GA,det.

This equation establishes how the covariance matrix of the qudrature operators [cf. Eqn. (9.37)]
is reconstruced from heterodyne measurements, and how they can be compared with the
results from idealized standard input-output theory Eqn. (9.32). For simplicity, in the later
section 9.7, we define the total measured covariance matrix including the added noise as,

VAB,meas(ωn) = DAB(ωn)/
√︂
GA,det(ωn + ΩIF))GB,det(ωn + ΩIF)), (9.54)

with VAB,meas(ωn) = VAB(ωn) +NAB,add.

We note that, in principle the location of both LOs can be arbitrary. As evident in Eqn. 9.53,
our choice of the LO configuration, i.e. ∆LO,e = −∆LO,o = −ΩIF, offers a simple solution to
the quantification of the broadband quantum correlations, considering the limited detection
bandwidth, frequency dependent gain, or microwave cavity frequency shift, which may result
in the loss of quantum correlations during quadrature extractions in heterodyne measurements
due to imperfect frequency matching.

9.2.3 Entanglement Detection
Duan Criterion

We will now discuss the criterion for inseparable or entangled states. Our starting point is the
covariance matrix which we defined in Eqn. (9.32) and measured as outline in Eqn. (9.53).
The experimentally measured covariance matrix is of the form

V =
(︄
Ve Veo

Veo Vo

)︄
=

⎛⎜⎜⎜⎜⎝
V11 0 Ṽ13 Ṽ14
0 V11 Ṽ14 −Ṽ13
Ṽ13 Ṽ14 V33 0
Ṽ14 −Ṽ13 0 V33

⎞⎟⎟⎟⎟⎠ . (9.55)

Since there is no single mode squeezing, we have V22 = V11 and V44 = V33. For simplicity we
have omitted the frequency argument ωn of component. What we describe in the following will
have to be repeated for every frequency component. The off-diagonal part in the covariance
matrix which encodes the two-mode squeezing can be written as

Veo ≃ V13(sin(θ)σx + cos(θ)σz), (9.56)

where we define V13 = (Ṽ 2
14 + Ṽ 2

13)1/2 and the mixing angle tan(θ) = Ṽ14/Ṽ13. In our
experimental setting Ṽ14 maybe non zero e.g. due to small finite detunings δo. For the
detection of inseparability, we employ the criterion introduced by Duan, Gidke, Cirac and
Zoller [DGCZ00]. This criterion states that if one can find local operations ULOc = Ue ⊗ Uo

such that the joint amplitude variance of X̂+ = (X̂e + X̂o)/
√

2 break the inequality,

∆X2
+ = ⟨U †

LOcX̂
2
+ULOc⟩ < 1/2, (9.57)

then the state is inseparable and, thus it must be concluded that it is entangled.

In this setting, it is enough to choose the local operations ULOc = UeUo to be a passive phase
rotation on the optical mode only, with Ue = 1 and Uo = e−iφâ†

oâo , and phase rotation angle
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φ. In the space of covariance matrices, this corresponds to the (symplectic) transformation
Sφ = 12 ⊕Rφ, where we define the rotation matrix,

Rφ =
(︄

cos (φ) sin (φ)
− sin (φ) cos (φ)

)︄
. (9.58)

The local rotation of the phase V (φ) = SφV S
⊤
φ will act on the off diagonal part of the

covariance matrix as,
Vea(φ) = V13(cos(θ − φ)σz + sin(θ − φ)σx). (9.59)

With these local rotations the joint amplitude variance becomes
∆X2

+(φ) = ⟨(X̂e + X̂o cos(φ) + P̂o sin(φ))2⟩/2 = V11 + V33 + 2V13 cos(θ − φ). (9.60)
We can similarly define the joint quadrature P̂− = (P̂e − P̂o)/

√
2, where ∆P 2

−(φ) = ∆X2
+(φ).

The variance of the joint quadratures ∆X2
+(φ) and ∆P 2

−(φ) is minimized at the angle
φ− = θ − π

∆−
EPR = ∆X2

+(φ−) + ∆P 2
−(φ−) = 2(V11 + V33 − 2V13), (9.61)

which corresponds to the two-mode squeezing of microwave and optical output field, and the
microwave-optics entanglement. In addition, the joint quadrature variance is maximized at the
angle φ+ = θ and we obtain

∆+
EPR = ∆X2

+(φ+) + ∆P 2
−(φ+) = 2(V11 + V33 + 2V13), (9.62)

which corresponds to the anti-squeezing.

Logarithmic Negativity and Purity

A mixed entangled state can be quantified by the logarithmic negativity [Ple05],
EN = max [0,− log (2ζ−)] , (9.63)

where ζ− is the smaller symplectic eigenvalue of the partially time reverse covariance matrix
and can be obtained analytically

ζ2
− =

S −
√︂
S2 − 4det(V )

2 (9.64)

where we defined the Seralian invariant S = det(Ve) + detVo + 2det(Veo). Furthermore the
purity of a bipartite Gaussian state is given by

ρ = 1
4
√︂

det(V )
, (9.65)

with ρ = 1 for a pure state i. e. the vacuum state.

9.3 Experimental setup
We made two main changes to the experimental setup from the high cooperativity setup
from chapter 7. First, we switched the pump cavity filter lock to a analog PID lock. Second,
we improved the optical LO efficiency by amplifying the phase modulator output with an
EDFA and then filtering out only the relevant frequency component with a filter cavity. The
measurement to collect enough amount of downconverted signal were slow and long. As a
result, we made a lot of effort in stabilizing every aspect of the experiment. This resulted in
us working with a number of locks for different variables and drifts in the experiment. All of
the locks are described in the next subsection.
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9.3.1 Measurement locks
Optical pump locks

The generation of clean and stable optical pulsed pump required three different locks running
in parallel. Firstly, the pump filter cavity was locked to the laser tone. Secondly, the laser
was locked to the optical pump whispering gallery mode. And finally, the polarization of the
optical pump drifted slowly and needed to be stabilized on the longer time scales.

We have already talked about how any interdependent set of locks need to run on different
time-scales so that they don’t each other to instability in section 7.3. Since we were working
with a pulsed optical pump which was repeated only at 2 Hz, the laser lock to optical pump
mode which relied on the pump reflection could get reliable error signal only on the order of
seconds. As a result, we chose to prioritize the pump filter cavity lock as the faster lock. The
polarization lock was naturally the slowest since polarization drifts were slow - on the order of
10s of seconds.

Pump filter lock The pump filter lock which is tuned via the cavity temperature and is
locked to cavity transmission. We take 1% of the cavity transmission and measure it with a
photodetector. The output of the photodetector is pulsed (since the optical pump is pulsed).
It is redirected to an extremely low pass filter which converts the pulsed output to basically
an average DC voltage which is suitable as an error signal for a analog PID lock circuit (see
appendix D). The lock circuit is designed in house and has only proportional and integration
elements (no derivative). With this lock, we cannot lock at the maximum transmission anymore
because now we need an asymmetric error signal around the lock point. Consequently, we lock
at a flank near the maximum transmission. We were able to lock to 95% of the maximum of
the cavity transmission with the right P and I settings. The lock chosen to be fast (< 1 s)
using the P and I values.

Laser lock The laser lock to the pump mode is exactly the same as described in the 7.3.
The only change is that now it is slow owing to slow availability rate of the optical pump
reflection. It now works on the order of a second.

Polarization lock The polarization lock to the optical pump makes sure that the pump
polarization is always as close to TE as possible. If the polarization drifts, the mode contrast
will decrease as the TM component simply reflects without interacting with the cavity. If we
only have the optical reflection information at a single frequency, it is hard to predict whether
the increase in reflection is due to laser detuning from the resonance or due to polarization
drift. In other words, the error signal for the laser lock to optical mode and the polarization
lock look exactly the same.

With no way to differentiate, we rely on the fact that laser lock to make the polarization
lock work. First, we design it to be much slower than the laser lock since they are essentially
working with the exact same error signal. Secondly, we trigger the polarization lock only when
the laser lock cannot bring the reflected error signal below a certain level. This is a hint that
polarization may have drifted. Thereafter, the polarization is changed in gradual steps while
the laser lock is running and statistics are collected on the error signal. If the error signal shows
a downward trend, we continue moving in the same direction, otherwise we try a different
direction. The polarization lock is stopped as soon the error signal is again within the set
threshold.

119



9. Entanglement between microwave and optics

Optical detection locks

On the optical detection side, we need to two more locks. One locks the output filter which
rejects the optical pump to the optical output signal frequency. Second locks the optical LO
filter to the requires optical LO tone. The locks are slightly dependent on each other - the
optical LO lock can reduce the efficiency of the LO which reduces the measurement efficiency
of the optical signal detection. The same can also happen if the optical signal filter drifted
leaving no way to differentiate between them. In this case, we run the optical LO faster since
it has a faster and easier way of measuring the error signal.

Optical LO filter lock After the optical LO tone is filtered by a cavity, 1% of the power is
forked to measure the transmission through the cavity using a power meter. The power is
maximized at its peak using a digital lock (similar to one described in algorithm 5.1 albeit
without the dynamical step). The cavity is stabilized to within 1 mK temperature using a
analog PID lock. We can tune the cavity by changing the temperature set point digitally using
the lock script.

Optical signal filter lock The optical signal filter cavity which rejects the optical pump is
the same as the optical LO filter cavity. It is also stabilized to within 1 mK temperature using
a analog PID lock. However, it can drift slowly on the order of hours. For the experiment, we
need to send a coherent optical signal pulse to the detection along with a tiny downconverted
signal. The error signal for this lock is the power in the detected coherent optical signal.
The detected coherent signal power can reduce either because the signal filter has drifted
reducing the signal power or the optical LO filter has drifted reducing the heterodyne efficiency.
For this lock, we depend on the optical LO lock to work properly. We collect statistics of
the measured coherent signal power over tens of minutes and make small adjustments to
temperature set point of the PID which maintains the filter cavity temperature. The lock
script tries to maximize the detected signal power by moving this set temperature point in
small steps.

9.4 Measurement

9.4.1 Pulse scheme and phase stability
The premise of the measurement is to simply have a strong pulsed optical pump which amplifies
the vacuum and produces the spontaneous downconversion between the microwave and optical
signal mode. However, the measurement gets more complicated because of a few practical
challenges posed by the experiment. One of the biggest challenge is the stability of phase
in the detected signals. We attempt to measure two mode squeezing in continuous variable
space. To successfully measure any squeezing, the phase of the detected needs to aligned
during the entire measurement. This is a big challenge especially if the measurements run for
multiple days.

We use single mode fibers as optical waveguides to transport the light from optics generation
to the electro-optic device and finally to the optical detection. The phase picked up by the
optics inside the fiber is very sensitive to temperature of the fibers. Since the amount of fibers
we used is on the order of tens of meters the phase stability from device to detection is only
on the order of ∼ 100 µs. Fiber stretchers can be employed to stabilize the phase but since the
phase drift was rather fast in our system and the lock signal for the fiber stretcher would be
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occasional (depending on the pulsing frequency 2 Hz in this experiment), we took a different
direction to achieve phase stability.
We devise a two-pulse scheme as shown in Fig. 9.1. The first high power pulse 1 generates
the entanglement signal. Then, after waiting for 1 µs, we apply another weaker optical pump
(about 10 times lower power to minimize microwave thermal heating) but this time followed
by a coherent microwave signal tone. The coherent microwave signal tone stimulates the
downconversion of the optical pump. This results in production of coherent amplified signal
on the optics signal side. The sent microwave signal is reflected back too with a signature of
this back-action event (see chapter 8).
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Figure 9.1: Schematic pulse sequence of a single measurement for two-mode squeezing
measurements. Figure adapted from Ref. [SQH+23].

The produced optical signal is designed to have enough signal to noise such that the phase can
be measured from a single produced pulse. Similarly, on the microwave side, single shot phase
measurement can be made with the reflected microwave pulse. The idea behind the phase
measurements is that by measuring the phase of produced optical signal and the reflected
microwave signal, we can cancel out phase drifts originating anywhere in the experimental
setup.
The fast short term drifts in optics are taken care of by the optical coherent pulse phase.
Since the second optical pulse is also at the same frequency, we avoid any long term drifts
that can happen between different frequencies travelling in the same fiber due to temperature
dependent dispersion. The microwave phase remains stable for hours but can still drift slowly
for a multiple day measurement. By measuring the phase of microwave reflected pulse, we
can correct for slow drifts suffered in microwave signal generation and detection (production
of microwave LO).

9.4.2 Measurement script
As described in the previous section, the measurement consists of multiple interdependent locks
- most of which are digital. All the locks are managed by one measurement script which runs
parallel interacting threads which control different locks in the experiment. The measurement
script also launches a measurement thread which acquires the digitized data from the digitizer.
The digitizer digitizes the measured voltages in 8-bit signed integers corresponding to a certain
set voltage range. To save storage space, the script saves the digitized data as 8-bit integers
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without converting them to voltages with double (16-bit) variables. Even though, we could
have downconverted the data immediately after data acquisition and saved space by only
saving the down-converted quadratures, we chose to store the full data because it allowed us
to do a full frequency domain analysis as we will show in section 9.6.3.

9.5 System characterization

9.5.1 Optical modes
In this chapter, we show results from two different sets of optical modes shown in Fig. 9.2.
The main difference between these mode sets is the amount of suppression of the anti-Stokes
scattering rate compared to Stokes scattering rate given by scattering ratio S = ΓAS/ΓS, which
depends on the mode hybridisation of the anti-Stokes mode. The first set of optical mode
(Fig. 9.2a) has S = −10.3 dB on-resonance with an effective FSR = 8.799 GHz. The second
set of optical modes with a lower S = −3.1 dB have a different effective FSR = 8.791 GHz
(Fig. 9.2b). Despite it being the same optical resonator, the FSR for the second set of optical
modes is slightly different, because of partial hybridisation of the optical pump mode which
alters the working FSR between the optical pump and signal mode, see section 3.5.
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Figure 9.2: Normalized reflection intensity |Soo|2 spectra of optical modes âo, âp and ât in
red, green and blue respectively. a (b) shows the optical mode spectra of the first (second)
set of modes with the anti-Stokes and Stokes scattering ratio S = −10.3 dB (−3.1 dB). The
dashed line marks the effective FSR between the pump mode âp and the optical mode âo.
Figure adapted from Ref. [SQH+23].

9.5.2 Added noise in detection
On the microwave side, added noise and corresponding gain due to a series of amplifiers and
cable losses in the microwave detection chain is calibrated using a combination of a 50 Ω
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load. This has been discussed in detail in appendix B. For the two FSRs corresponding to
two set of modes, the added noise has been calibrated carefully around a 11 MHz bandwidth
(microwave linewidth). The added noise Ne,add for 8.799 GHz and 8.791 GHz is found to be
(13.09± 0.33) and (13.16± 0.34) respectively.

Optical added noise is calculated via 4-port calibration of the device. We use the calibrated
transduction efficiency and Ne,add in the microwave detection chain from to calculate the
optical added noise. Ne,add is firstly used to calculate the effective microwave detection gain.
The microwave gain, along with the (off-resonant) microwave reflection measurement, is used
to calculate the microwave input loss. Using this, we calculate the microwave signal power at
the device, which, along with transduction efficiency, allows us to calculate the output optical
power from the device. In conjunction with the measured output optical power at the end of
the detection chain, the losses in the optical detection path and hence, the effective added
noise with respect to the optical port of the device is calculated. The calculated optical added
noise is No,add = 5.54± 0.21(7.42± 0.22) for ωe = 8.799 GHz (8.791 GHz).

9.6 Data treatment
We conducted experiments with two different optical pump pulse length - 600 ns and 250 ns.
Initially we started with longer pulses to get better measurement bandwidth (2 MHz for 500 ns
of data per pulse). But after conducting multiple tests, we realized that the thermal heating
resulting from longer pulses prevented us from clearly squeezing below vacuum. As a result,
we later switched to shorter 250 ns optical pump pulses. This is explained in more details in
the results section 9.7 later.

In this section, we describe all the steps for the data treatment in detail for 250 ns optical pump
pulses (since they correspond to the final result), which includes the time domain analysis
(Sec. 9.6.1), the pulse post-selection due to setup drift (Sec. 9.6.2), the frequency domain
analysis (Sec. 9.6.3), and the quadrature correlations (Sec. 9.6.4).

9.6.1 Time-domain analysis
Both microwave and optical signals are detected via heterodyne detection by mixing with
a strong local oscillator that is ∼40 MHz detuned from respective mode resonance. The
output heterodyne signals are digitized using a digitizer at 1 GigaSamples/second. First, we
digitally downconvert the digitized data at ωIF = 40 MHz. This yields the two quadratures
IXe/o,det(t) and IPe/o,det(t) of the microwave or optical output signal record with 40 MHz
resolution bandwidth (using 25 ns time resolution). Fig. 9.3 shows the calibrated output power
(I2

Xe/o,out + I2
Pe/o,out) [cf. Eqn. 9.49] and the phase (arctan(IXe/o,out/IPe/o,out)) from a single

pulse sequence. This includes the stochastic SPDC signals from a strong pump pulse, and the
coherent stimulated downconverted signal from a weaker pump pulse together with a coherent
microwave signal for calibration purposes. The SPDC signal produced by the first strong
pulse is labeled by the shaded region for one single pulse, and the averaged output power
over 1 million pulses is shown in Fig. 9.4. The coherent microwave reflection and stimulated
parametric downconverted optical signal are adopted to obtain the phases during the pulse.
We record this measured phase in both signal outputs during the second optical pump pulse
for phase-drift correction in later post processing.
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Figure 9.3: Example single shot time-domain measurement. a (b) show the measured
microwave (optical) output signal downconverted at 40 MHz. The shaded part in each case
shows the region of the SPDC signal (the first optical pump pulse). For a single pulse, the
SNR of a SPDC signal is too small to be seen. However, during the second optical pump
pulse, a coherent response is seen in both signal outputs where the phase can be measured
with high SNR for each single shot. Figure adapted from Ref. [SQH+23].
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Phase correction accuracy In order to determine the accuracy of a phase correction for
the first pump pulse based on the phase measurement during the second pump pulse (see
Fig. 9.1), we send a continuous microwave signal during both pump pulses and recorded
the phase of the converted optical pulse during the first and the second optical pump pulse.
Fig. 9.5 shows the phase difference between the first and second optical pump pulse for 2500
trials along with a normal distribution fit. Since we correct the phase in the first pump pulse
based on the measured optical phase of the second optical pump pulse, the difference shows
the limitations of this method. The fit variance for the distribution is 0.17 rad. On a similar
set of model data, applying a random phase variation of 0.17 rad results in about 1.5-2.0%
loss of correlations [cf. Sec. 9.6.4], whereas, we observe about 6-8% loss of correlations in the
experiments. The imperfection in phase correction does not completely explain the decreased
quantum correlations, which might be due to other experimental instabilities, especially the
optical pump laser lock.
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Figure 9.5: Accuracy of phase correction scheme. The histogram shows the difference in
the measured phase between the first and second optical pump pulse. Figure adapted from
Ref. [SQH+23].

9.6.2 Pulse post-selection
In our experiments, we use three temperature-stabilized optical filters, which may drift slowly
in time. Two of them are used in the optical heterodyne detection (see section 9.3.1). The
slow filter drifts can be identified from the amplitude of the coherent optical signal produced
via stimulated parametric downconversion during the second optical pump pulse, which drops
due to either the decreased transmission (if the signal filter, which rejects the optical pump,
drifts) or the reduced LO power (if the optical LO filter drifts). This is evident in the histogram
of the converted optical power during the second optical pump pulse as shown in Fig. 9.6a.
The histogram is not symmetric and has a tail at the lower end.
To filter out the instances of drifted heterodyne detection, we select a threshold (in this case
marked by a dashed line in Fig 9.6) and remove all pulses below the selected threshold along
with 20 neighboring pulses (10 s in total time) before and after such instance. These threshold
is chosen according to the filter drift and the filter temperature lock time-scales. After such
filtering, usually about 10% of the data is removed and the histogram of the converted optical
power during the second optical pump pulse becomes symmetric as shown in Fig. 9.6b.

9.6.3 Frequency domain analysis
After the time-domain analysis, we select three different time-snippets to analyze the data in
the frequency domain - before-pulse, on-pulse and post-pulse defined with respect to the first
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Figure 9.6: Post-pulse selection. The measured coherent optical power during the second
optical pump pulse depends on the optical heterodyne gain and the received optical signal
power. a shows the normalized histogram of this measured optical power over all the collected
pulses. The same histogram after pulse post selection is shown in b. Figure adapted from
Ref. [SQH+23].

optical pump pulse (see Fig. 9.1). The main challenge in processing the data in frequency
domain is the proper normalization of the measured output spectrum [cf. Eqn. 9.47]. The
microwave reflection baseline is not flat because of slight impedance mismatches between
different components in the microwave detection chain. Similarly optical heterodyne shot noise
floor is also not flat due to the frequency dependent balanced detector gain. In addition, we
observe slight shift of a few millivolts each time in the digitizer measurements when a new
measurement is launched and the digitizer is reinitialized. Combined with the fact that the
amplifier gain in the microwave detection chain as well as the optical heterodyne gain (due to
optical LO power drift) may drift over a long time, an in-situ calibration of vacuum noise level
is needed.

In case of microwave, we need to first correct for the microwave reflection baseline distortion
from impedance mismatch and then correct for the signal level shift caused by the digitizer.
For the distorted baseline, we separately measure the microwave output spectrum when
the microwave cavity is in its ground state (thermalized to 7 mK at mixing chamber). This
measurement is shown in Fig 9.3a (gray) along with the measured before-pulse (cyan), on-pulse
(purple) and after-pulse microwave noise spectrum (orange). Dividing the measured spectra
with the cold cavity spectrum reveals a flat baseline Lorentzian noise spectra, however with
an offset due to the digitizer drift. To correct for this offset, we perform an in-situ vacuum
noise calibration using the off-resonance (waveguide) noise in the before-pulse microwave noise
spectrum. An independent measurement of the microwave waveguide noise as a function of
the average optical pump power (averaged over the full duty cycle) is shown in Fig. 9.8. The
error bars (2σ deviation) result from the microwave detection chain gain and the measurement
instrument drift. The power law fit reveals that the microwave waveguide noise grows almost
linearly with average optical pump power, and only deviates significantly from 0 for optical
pump power >3 µW. By fitting additional power dependent measurements, shown in the
Fig. 9.8, we verify that the observed noise floor corresponds to a waveguide bath occupancy of
only n̄e,wg = 0.001±0.0002 = 0.001±0.002 at the very low average pump power of ≈ 0.12 µW
used in this experiment with 250 ns long optical pump pulses. As a result, for the purpose of
data analysis, we assume the microwave waveguide noise to be zero. In summary, we use the
off-resonant waveguide noise for before-pulse microwave noise spectrum as an in-situ vacuum
noise calibration.
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In case of optics, the optical detection is shot-noise limited, and the excess LO noise at the
optical signal frequency is suppressed by more than 40 dB using the pump filter cavity. We use
the before-pulse optical noise spectrum as the vacuum noise level and normalize the optical
on-pulse spectrum directly with the before-pulse in-situ calibration. Fig 9.3b shows noise
spectrum (without normalization) of the optical off-pulse (cyan), on-pulse (green), and the
after-pulse (yellow). The signal during the optical pump pulse is clearly visible, and the noise
level is identical before and after the optical pulse.

The normalized noise spectra for both microwave and optics are shown in Fig. 9.9, where we
can obtain the normalization gain [cf. Eqn. 9.47]. The figure shows the resulting average
microwave noise spectra for all three time intervals with corresponding fit curves (dashed lines)
and theory (solid line). Before and after the pump pulse, the on-resonant microwave output
field takes on values above the vacuum level, with fitted intrinsic microwave bath occupancies
n̄e,int = 0.03 ± 0.01 and 0.09 ± 0.03, respectively. The measured noise floor therefore
corresponds to the shot noise equivalent level Ne,add + 0.5 (gray dashed lines). Fig. 9.9b
shows the obtained average optical noise spectra during and after the pump, referenced to the
measured shot noise level before the pulse. As expected, there is no visible increase of the
optical noise level after the pulse.
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During the pump pulse, an approximately Lorentzian shaped microwave and optical power
spectrum are generated via the SPDC process (purple and green curve in Fig. 9.9). We
perform a joint fit of the microwave and optical power spectral density during the pulse using
a 5-mode theoretical model that includes the effects of measurement bandwidth. In this
model, the in-pulse microwave bath occupancy n̄e,int = 0.07 ± 0.03 and the cooperativity
C = 0.18 ± 0.01 are the only free fit parameters. Here the narrowed microwave linewidth
κe,eff/2π = 9.8± 1.8 MHz (taken from a Lorentzian fit) agrees with coherent electro-optical
dynamical back-action (see section 8.2), where κe,eff = (1 − C)κe. This point to the fact
that this cavity electro-optical device is deep in the quantum back-action dominated regime, a
prerequisite for efficient microwave-optics entanglement generation.
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Figure 9.9: Output noise in frequency-domain. a Microwave output power spectral density
vs. ∆ωe = ω − ωe centered on resonance right during the three different time-snippets from
Fig. 9.1. Yellow and green dashed lines are fits to a Lorentzian function, which yields the
microwave bath occupancies before and after the entangling pulse. Error bars represent the
2σ statistical standard error and the shaded regions represent the 95% confidence interval of
the fit. b Optical output power spectral density vs. ∆ωo = ωo − ω during and after the first
optical pump pulse. The in-pulse noise spectra are fit jointly with theory. Figure adapted from
Ref. [SQH+23].

9.6.4 Joint-quadrature correlations
The detected output quadratures including excess added noise, i.e. ÎXe,out(∆ω), ÎPe,out(∆ω),
ÎXo,out(∆ω), ÎPo,out(∆ω), can be obtained from the real and imagrinary parts in the discrete
Fourier transform of the photocurrent by normalizing to the detection gain [cf. Eqn. 9.49].

Similar to Sec. 9.2.3, we can define the joint detected quadratures, by applying phase rotation
on the optical quadratures,

ÎX,+(∆ω, ϕ) =
ÎXe,out(∆ω) +

[︂
ÎXo,out(∆ω) cosϕ− ÎPo,out(∆ω) sinϕ

]︂
√

2
,

ÎP,−(∆ω, ϕ) =
ÎPe,out(∆ω)−

[︂
ÎXo,out(∆ω) sinϕ+ ÎPo,out(∆ω) cosϕ

]︂
√

2
.

(9.66)

To verify the non-classical correlation between the unitless quadrature variables for output
microwave and optics field, i.e. X̂e(∆ω) & X̂o(−∆ω) and P̂e(∆ω) & P̂o(−∆ω), we can
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9.6. Data treatment

calculate the phase dependent joint quadrature variance [cf. Eqn. 9.60],⟨︂
X̂2

+(∆ω, ϕ)
⟩︂

=
⟨︂
Î2

X,+(∆ω, ϕ)
⟩︂
− Ne,add +No,add

2 ,⟨︂
P̂ 2

−(∆ω, ϕ)
⟩︂

=
⟨︂
Î2

P,−(∆ω, ϕ)
⟩︂
− Ne,add +No,add

2 .

(9.67)
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Figure 9.10: Joint quadratures as a function of LO phase. a. Joint quadratures at
resonance X+(∆ω = 0) and P+(∆ω = 0) are plotted as a function of the local oscillator
phase ϕ. b. ∆EPR as a function of ϕ. The shaded region in both plots represents the 2σ
statistical error. Figure adapted from Ref. [SQH+23].

For ∆ω = 0, we plot the joint quadrature variance as a function of local oscillator phase in Fig.
9.10 (a). The shaded region represent the 2σ statistical error in the calculated joint quadrature
variances. The obtained resonant ∆EPR(0, ϕ) is shown in Fig. 9.10(b). The minimum and
maximum of ∆EPR(ϕ) over the local oscillator phase are defined as min[∆EPR] = ∆−

EPR and
max[∆EPR] = ∆+

EPR. ∆−
EPR < 1 indicates non-classical joint correlations and squeezing below

vacuum levels.
The broadband phase that minimizes ∆EPR(∆ω, ϕ), i.e. ϕmin(∆ω), reveals the difference in
arrival times (group delay) between the microwave and optical signal output (Fig. 9.11a).
After fixing the inferred time delay between the in-pulse arrival time of the microwave and
optical signal, ϕmin becomes independent of frequency detuning from the mode resonances.
Thus, by utilizing the broadband quantum correlations, we adjust for the differences in arrival
times by ensuring that the slope of ϕmin with respect to detuning ∆ω is minimized for all
datasets we analyze.

9.6.5 Quadrature histogram raw data
As a sanity check, we can calculate the difference in two-variable quadrature histogram from
the pulse-off (before-pulse) and pulse-on data. Structure in this difference histogram reveals
presence of signal (extra noise) during the pulse-on part and any correlations present. Fig. 9.12
shows the normalized difference of the two-variable quadrature histograms obtained during
and before the optical pump pulse based on the data shown in Figs. 9.9 and 9.15. These
unprocessed histograms directly show the phase insensitive amplification in each channel as
well as the correlations in (Xe,Xo) and (Pe,Po). Note however that - in contrast to the analysis
in the main text - taking this difference does not lead to a valid phase space representation
since also the vacuum noise of 0.5 together with the output noise of 0.026± 0.011 photons
(due to the residual microwave bath occupancy right before the pulse) are subtracted, hence
the negative values.
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Figure 9.11: Correcting the time delay between microwave and optical pulses. The
plots show the local oscillator phase ϕmin which minimizes ∆EPR(∆ω, ϕ) as a function of
detuning frequency ∆ω. a (b) shows the case when the time difference of arrival between
the microwave and optics signals was 25 ns (≈ 0 ns). The solid lines are the linear fit to the
experimental data. Figure adapted from Ref. [SQH+23].
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9.6.6 Error analysis
In the next section, we calculate the covariance matrix of the output field quadratures V (ω)
from the extracted microwave and optical quadratures from frequency domain analysis [cf.
Eqn. 9.53] The error in calculating the covariance matrix comes from two sources - the
statistical error due to finite number of pulses, and the systematic error in the vacuum noise
level calibration.

Statistical error

The error in the calculation of bivariate variances comes from the statistical uncertainties,
arising from finite number of observations of a random sample. This error is the major
component of our total error in diagonal covariance matrix elements. The error in calculating
the variance of a sample distribution sampled from a Gaussian variable follows the Chi-squared
distribution and is given as,

Var(σ2) = 2σ2

N − 1 , (9.68)

where, σ2 is the variance of sample distribution and N is its size.

In addition, the error in the covariance from a bivariate variable is given by the Wishart
distribution [Wis28]. For a general bivariate covariance matrix Σ given as,

Σ =
(︄

σ2
11 ρσ11σ22

ρσ11σ22 σ2
22

)︄
, (9.69)

the variance of the covariance matrix is given by,

Var(Σ) = 1
N − 1

(︄
2σ4

11 (1 + ρ2)σ2
11σ

2
22

(1 + ρ2)σ2
11σ

2
22 2σ4

22

)︄
. (9.70)

Systematic error

Although, the systematic error in our measurements are not as significant, they still are a
noticeable source of error. Here the error in calculating the covariance matrix results form the
error in the estimation of the vacuum noise levels. More specifically, the error in determining
the added noise due to the microwave and optical detection chain, as discussed in Sec. 9.5.2.
Propagating these systematic errors through the covariance matrix analysis is non-trivial, since
calculating the error in variance of erroneous quantities is challenging. Therefore, we use a
worst-case scenario approach to calculate the total error including the statistical error and the
systematic error. We repeat the full analysis, including the statistical errors, for the lower and
upper bound of the uncertainty range from the systematic errors for the microwave and optical
added noise levels. Repeating the analysis expands the error bars in the calculated quantities.
We take the extremum of all the error bars from all the repetitions of analysis to get the total
error bar. In the following section, we report both statistical error and the total error.

9.7 Results
From the frequency analysis of the previous section, we have access to the normalized
extracted quadrature variables for both microwave and optics output fields Xi(∆ω), Pi(∆ω)
as a function of frequency. For each frequency component the bipartite Gaussian state of
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9. Entanglement between microwave and optics

the propagating output fields can be fully characterized by the 4× 4 covariance matrix (CM)
Vij = ⟨δuiδuj + δujδui⟩ /2, where δui = ui−⟨ui⟩ and u ∈ {Xe, Pe, Xo, Po} (see section 9.2.3.
The diagonal elements in V correspond to the individual output field quadrature variances in
dimensionless units. These are obtained from the measured variances after subtracting the
measured detection noise offsets shown in Fig. 9.9, i.e. Vii(∆ω) = Vii,meas(∆ωi) − Ni,add.
The obtained CM from the data in Fig. 9.9 at ∆ω = 0 is shown in Fig. 9.13 in its standard
form. It corresponds to the quantum state of the propagating modes in the coaxial line and
the coupling prism attached to the device output, i.e. before setup losses or amplification
incur. The non-zero off-diagonal elements indicate strong correlations between microwave and
optical quadratures.
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Figure 9.13: Measured covariance matrix Vij in its standard form plotted for ∆ωj = 0 from
the data in Fig. 9.9. Figure adapted from Ref. [SQH+23].
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Figure 9.14: Wigner function marginals at resonance Wigner function marginals of
different output quadrature pairs in comparison to vacuum for ∆ωj = 0 from the data in
Fig. 9.14. The contours in blue (grey) represent the 1/e fall-off from the maximum for the
measured state (vacuum). Figure adapted from Ref. [SQH+23].

The two-mode squeezed quadratures are more intuitively visualized in terms of the quasi-
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probability Wigner function,

W (u) =
exp[−1

2uV −1uT ]
π2
√︂

det(V)
, (9.71)

where u = (Xe, Pe, Xo, Po). Different marginals of this Wigner function are shown in Fig. 9.14,
where the (Xe,Xo) and (Pe,Po) marginals show two-mode squeezing in the diagonal and
off-diagonal directions. Middle two cross-quadrature marginals show two-mode squeezing
below the vacuum level in the diagonal and off-diagonal directions. The two show a slightly
different amount of squeezing, which is due to the statistical uncertainty in the measured CM.
Figure 9.15 shows the amount of two-mode squeezing between microwave and optical photon
pairs. Correlations are observed at ∆ωj = ±(ω − ωj) around the resonances due to energy
conservation in the SPDC process. The averaged microwave quadrature variance (purple
dots) V̄11 = (V11 + V22)/2 and the averaged optics quadrature variance (green dots) V̄33 =
(V33 + V44)/2 are shown in the top panel along with the prediction from our five-mode theory
(solid line) and a simple fit to a Lorentzian function (dashed line), showing perfect agreement.
Measured microwave-optical correlations (yellow dots) V̄13 = (V13−V24)/2 and the Lorentzian
fit (dashed line) lie slightly below the theoretical prediction (solid line), which we assign to
remaining imperfections in the phase stability (see section 9.6.1).
The bottom two panels of Fig. 9.15 show the squeezed and anti-squeezed joint quadrature
variances ∆∓

EPR = V̄11 + V̄33 ∓ 2V̄13 (red and blue color respectively). We observe two-mode
squeezing below the vacuum level, i.e. ∆−

EPR < 1, with a bandwidth close to the effective
microwave linewidth. The maximal on-resonant two-mode squeezing is ∆−

EPR = 0.85+0.05
−0.06 (2σ,

95% confidence) for ∼1 million pulses with V̄11 = 0.93, V̄33 = 0.84 and V̄13 = 0.46. Hence,
this deterministically generated microwave-optical state violates the Duan-Simon separability
criterion by > 5σ. Note that this error also takes into account systematical error in the added
noise calibration used for scaling the raw data. These values correspond to a state purity of
ρ = 1/(4

√︂
det[V ]) = 0.44 [cf. Eqn. 9.65] and demonstrate microwave-optical entanglement

between output photons with a logarithmic negativity of EN = 0.17 [cf. Eqn. 9.63].

9.7.1 Earlier attempts at measuring two-mode squeezing
It is important to note the experimental steps and failures that led to the measurement shown
in Fig. 9.15. Before experimenting with 250 ns long optical pump pulses, we were using 600 ns
long optical pump pulses and a different set of optical modes with a worse suppression ratio of
S = −3.1 dB (see section 9.5.1). A sample measurement with a 600 ns is shown in Fig. 9.16
similar to Fig. 9.15. It can be observed that compared to Fig. 9.15, in this case, the ∆−

EPR
is not clearly below 1. Although a general trend of lower ∆−

EPR values is observed around
the resonance ∆ωj = 0, the trend is not clear enough to have confidence in the generated
two-mode squeezing beyond any doubt. It seemed that ∆−

EPR just hovers around the value of
1 and dips sometimes below 1.

Power sweep We made an optical pump power sweep with these optical modes to check
any dependence of two-mode squeezing with the optical pump power. The power sweep is
shown in Fig. 9.17 with each data point based on 170000-412500 individual measurements
each with a 2 Hz repetition rate. We show the in-pulse microwave thermal occupancy n̄e,int for
before-pulse, after-pulse and in-pulse regimes as a function of the peak optical pump power.
The in-pulse occupancy is obtained by the joint theory fit and approximated with a constant
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Figure 9.15: Squeezing with 250 ns optical pump pulse Data from Fig. 9.14. Top panel,
the measured average microwave output noise V̄11 = (V11 +V22)/2 (purple), the average optical
output noise V̄33 = (V33 + V44)/2 (green) and the average correlations V̄13 = (V11 − V24)/2
(yellow) as a function of the measurement detunings. The solid lines represent the joint
theory fit and the dashed lines are individual Lorentzian fits to serve as a guide to eye. The
middle (bottom) panel shows two-mode squeezing ∆−

EPR in red (anti-squeezing ∆+
EPR in blue)

calculated from the top panels. The darker color error bars represent the 2σ statistical error
and the outer (faint) 2σ error bars also include the systematic error in calibrating the added
noise of the measurement setup. Figure adapted from Ref. [SQH+23].
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Figure 9.16: Squeezing with 600 ns optical pump pulse Refer to figure caption of Fig. 9.15.

function (solid line). The microwave mode thermal bath occupancy n̄e,int changes little as a
function of the peak optical pump power at the device and is approximated with a constant
function (solid maroon line in the top panel). The middle panel shows the on-resonance mean
CM elements. They scale with cooperativity and are in excellent agreement with theory (solid
lines) based on the n̄e,int. The bottom two panels show the on-resonance squeezing ∆−

EPR
and anti-squeezing ∆+

EPR along with theory (solid lines). The theoretically predicted values
always falls behind the predicted squeezing and anti-squeezing due to imperfections of phase
corrections as we have already discussed. We see that all but one of the measured mean ∆−

EPR
are below the vacuum level and for three power settings we even see > 2σ significance for
entanglement. However, since all the CM elements increase at a similar rate with optical pump
power, ∆−

EPR changes little in the shown cooperativity range. The anti-squeezing ∆+
EPR scales

up with cooperativity as expected. With this power sweep, we concluded that changing the
optical pump power is not the way to finally getting a proper ∆−

EPR values which is well below
1.

After the power sweep, we looked for better set of optical modes and found a different set with
better suppression ratio of S = −10.3 dB (see section 9.5.1). We repeated the measurement
with 600 ns long optical pump pulses. One of the interesting attempt is shown in Fig. 9.18.
Compared to Fig. 9.16, the main difference lies in the fact that ∆−

EPR in the middle panel
exhibits a clear double-dip shape. This is because the correlations V̄13 have a wider bandwidth
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Figure 9.17: Power dependence of CM elements. The top panel shows the microwave
mode thermal bath occupancy n̄e,int for before-pulse, after-pulse and in-pulse regimes as a
function of the peak optical pump power at the device and the corresponding cooperativity.
The bottom two panels show the on-resonance squeezing ∆−

EPR and anti-squeezing ∆+
EPR

calculated from the middle panel along with theory (solid lines). The darker color error bars
represent the 2σ statistical error and the outer (faint) error bars also include systematic errors.
Figure adapted from Ref. [SQH+23].
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than the emitted noise spectra (V̄11 and V̄33), which get narrowed due to dynamical back-action
(see previous chapter 8). If these wider bandwidth correlations don’t clearly overwhelm the
emitted noise, interference between two Lorentzian functions of different widths (dashed line)
leads to the specific shape of ∆−

EPR. We can also confirm this using the 5-mode model theory
if we increase the internal thermal bath occupancy for microwave. The theory plot (solid red
line) in Fig. 9.18 does not exhibit the double-dip line-shape due to higher expected correlations
compared to the experimentally observed values.
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Figure 9.18: Squeezing with 600 ns optical pump pulse Refer to figure caption of Fig. 9.15.
Figure adapted from Ref. [SQH+23].

These results indicated that a 600 ns optical pump pulse heat the microwave mode to a degree
which is large enough to prevent a clear observation of squeezing over the full bandwidth below
the vacuum level (∆−

EPR < 1). This gave us an hint to switch to shorter 250 ns optical pump
pulses to prevent heating of microwave mode. However, the smaller pulses meant smaller
measurement time and larger bandwidth. Since the emission bandwidth of the SPDC signal is
∼ 10 MHz, only a 5 MHz measurement bandwidth possible with 250 ns (200 ns taken after
steady state) optical pump pulses meant a worse signal to noise ratio. To combat this, we
increase the number of statistics collected to 1 million which took about 6 days.
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9.8 Conclusions
In conclusion, we have clearly demonstrated deterministic quantum entanglement between
propagating microwave and optical photons,thus establishing a non-classical communication
channel between circuit quantum electrodynamics and quantum photonics. We find that
reducing the microwave thermal noise is the most crucial aspect to finally achieving this result.
We suspect that the phase stability in the experiment is still not adequate and can be made
better. It is hard to say if the phase stability on the shorter time scales need to be improved
or if there are some long term phase drifts crippling the system.
Currently, our device can readily be used for probabilistic heralding assisted protocols [DLCZ01,
ZWZ+20, KRH+21] to mitigate optical setup losses and extend the entanglement to room
temperature fiber optics. In the future, we would want to increase the pulse repetition rate
by orders of magnitude with improved thermalization, higher microwave and optical quality
factors, and electro-optic coupling enhancements which will reduce the required pump power
and the associated thermal load. Coupling efficiency improvements to the signal modes will
allow for higher levels of two-mode squeezing and facilitate also deterministic entanglement
distribution schemes [AMFR22], teleportation-based state transfer [RHBF19, WCFZ21] and
quantum-enhanced remote detection [BGW+15].
Since we show entanglement between itinerant photons, our device can readily be integrated
in any system. Being fully compatible with superconducting qubits in a millikelvin environment
such a device will facilitate the integration of remote superconducting quantum processors
into a single coherent optical quantum network. This is not only relevant for modularization
and scaling [BDG+22, ACC+22], but also for efficient cross-platform verification of classically
intractable quantum processor results [KMC22].

138



CHAPTER10
Outlook

10.1 Introduction
We started this thesis with a vision. The vision of a multinode quantum network with hybrid
systems all connected with optical photons as the quantum information carriers. With the
intention to fill a hole in this vision, we tried to bridge the gap between microwave and optical
frequencies via electrooptics in the quantum limit. With the use of a pulsed optical pump, we
were able to show a total device transduction efficiency of ∼ 10% between these frequencies
with added noise referred to the input either close to 1 or comfortably below 1 for the two
transduction directions. Since we could also achieve high electrooptic cooperativities, we
were able to show direct dynamical backaction effects between the optical and microwave
modes similar to those observed in optomechanics and atomic physics several years ago. A
combination of having high electrooptic cooperativity at the same time as having the microwave
mode close to its ground state allowed us to measure two-mode squeezing between microwave
and optical modes for the first time.
Although these are remarkable achievements, the prospect of connecting microwave-based
quantum computers via optical photons still remains challenging. Current transduction
efficiencies allow only for heralded quantum communication protocols while deterministic
communication protocols remain well beyond reach. Even though we showed entanglement
between itinerant microwave and optical photons, it was quite weak owing to coupling losses
to cavities and added thermal noise in the microwave mode. The entanglement is lost by the
time we detect the optical photon due to more transmission losses associated with filtering
out the optical pump photon and inefficient heterodyne detection.
Due to additional losses and added noise either due to amplification or thermal heating, we
have been limited by what we can do with our electrooptic device, even though we have
already achieved close to unity cooperativities. As a result, one of the next steps is to fix these
problems - reduce the need for high optical pump power by increasing the quality factor of
the cavities and reduce coupling losses by using overcoupled cavities. We propose to fix these
issues with a new transducer design. We discuss this new design in detail in this chapter.
However, the limitations of current transducer devices should not prevent us from attempting
some preliminary experiments. The obvious direction is to integrate the imperfect transducer
with superconducting circuit qubits - the most mature microwave qubit technology, as some
experiments have already done [DUM+22]. Currently, these experiments focus on reading out
the classical microwave signal which encodes the state of qubit after transducing it in the
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optical domain. The next step can be to read out the qubit with just the optical light and the
transducer, which is first used to produce the microwave signal that measures the qubit and
then subsequently transduces it back to optical domain for final detection.

Highly non-classical quantum states that are easy to generate using qubits [HSG+07, MSKP20]
can be transduced to the optical domain for further characterization and verification. After
ensuring we can convert quantum states from the microwave to the optical domain, we can move
on to the task of producing and verifying quantum entanglement between a superconducting
qubit and an optical photon. And finally, using such entanglement between two pairs of qubits
and optical photons, we can use entanglement swapping [PBWZ98] to entangle two qubits
via optical photons [RKK+22]. We also discuss these experiments briefly in this chapter.

10.2 New transducer design
In section 4.4, we discussed one of the biggest unexpected problems which limited the
performance of our device in a major way. The problem was a drop in optical quality factors
by about 10 times as the device was cooled down to millikelvin temperatures. We speculated
that this might be due to micro-cracks that form on the rim of optical WGM resonator when
the microwave cavity is closed around it. On the other hand, in Section 3.3.4, we discussed
how the microwave mode quality factors were also not as high as expected due to possible
piezoelectric coupling losses with the lithium niobate resonator.

Both of these problems can be solved, by making a few design changes to the transducer.
A new design as proposed by Rueda et al. [RHBF19] is shown in Fig. 10.1. The main idea
behind this re-design is to avoid clamping the fragile lithium niobate (LN) disk at the rims
exactly where the optical modes exist. Not only should this prevent any damage to rims when
closing the cavity, it can also reduce the piezoelectric losses of the microwave field and avoid
air gaps that reduce g0 and change ωe unpredictably. The theory is that by not clamping the
LN disk at the rims, we will remove the mechanical loss channel imporving the microwave
quality factors. Another big advantage of this design is that now the microwave capacitor
can come much closer to the optical mode (d in Fig. 10.1 which can now be independent of
optical resonator’s thickness) eliminating the need to make the optical resonator thinner to
increase the coupling between the microwave and optical mode.

d z

xy

Figure 10.1: Proposed new design of transducer. The new design was proposed by Rueda
et al. [RHBF19]. The main difference from the design in this thesis is that now the optical
resonator is clamped at the center and an evaporated film of superconducting material extends
up to the optical mode forming the capacitor rings. Optical fields are represented in green and
those for microwave in blue. Figure adapted from Ref. [RHBF19].
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However, the new design also poses some challenges. The fabrication is considerably harder
since now the polished surface of the optical resonator needs to be finished first and then
protected during the further metal deposition steps. Depositing metal as shown in the new
design is also not easy since a clean gap has to be left where the optical modes exist. Moreover,
the thin film of metal would not stick strongly to the LN crystal making the metal surface
easy to scratch and damage. These damages will increase the internal losses of the microwave
mode down the line.
We have already done some preliminary tests with a transducer sample with a design similar
to what is shown in Fig 10.1. The sample was fabricated with a 500 µm LN disk albeit with
metal deposition only on top and bottom and not on sides. Upon cooling down this center
clamped design, we found no measurable drop in optical quality factors. This is a good sign
and solves one of the biggest problem with our current transducer. The microwave quality
factor, on the other hand, remained the same. However, this can be due to damage to metal
deposition layer or imperfect contact of the bulk cavity to the deposition layer. We expect
that this can be fixed in future with better fabrication techniques as independent tests of
this cavity design without optics coupling (but still a dielectric in the microwave cavity) have
showed ∼ 3-5 times improvement in the internal quality factor.

10.3 Possible experiments with current imperfect
transducer

Even though deterministic quantum state conversion or high fidelity entanglement generation
is still out of reach with the current device (mostly due to coupling losses), there are several
novel experiments we can do with lower total conversion efficiencies and finite amount of
added noise. In this section, we list a few future experiments which are possible.

10.3.1 Masing
Masing comes from MASER which stands for microwave amplification through stimulated
emission of radiation - in other words, laser but for microwaves. Generation of low noise coherent
microwave signals is not just useful for applications in radar and internet communication but
lately it has also been useful in controlling microwave-based qubits for quantum computing
and communication.
Apart form using electronics, one of best ways to generate low noise microwave signals is to
use soliton combs [LLR+20]. The idea is use the optical Kerr effect to produce a resonant
comb in a high quality resonator with an FSR that matches the microwave frequency. The
produced optical comb can be detected by a high speed photodiode which will in turn produce
the required RF signal. High quality resonators lower the threshold required to start the
amplification of the comb sidebands. The FSR of the resonator determines the RF frequency
produced.
Although the experiment in Ref. [LLR+20] is ground-breaking, it still suffers from a few
problems. The method needs a photodiode for its operation. The noise is still limited by the
thermo-refractive effect which jitters the FSR and thus introduces noise in produced RF signal.
In section 7.7, we talk about the same phenomenon where the χ(3) Kerr effect produces an
amplification after a certain amount of energy is circulating in the optical resonator. However,
in our system, the microwave mode is also supported by its own resonant cavity. With the
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additional χ(2) property of lithium niobate, the microwave frequency is immediately generated
in the device and readily extracted with the microwave cavity. This eliminates the need of
a photodiode. Therefore, our setup can be used in a dilution refrigerator as a low-noise
microwave source producing a noise-free RF tone in situ without the need of attenuation to
suppress the thermal noise from room temperature.

Thermo-refractive noise results from temperature fluctuation of refractive index of the optical
resonator. These fluctuations are proportional to the square of the temperature of the optical
resonator [KG18]. When working at millikelvin temperatures, these temperature fluctuations
would be highly suppressed eliminating the main source of noise in the generated RF frequency.

Since we have already seen the evidence of Kerr effect masing in our system and the generated
microwave signal, only systematic studies which characterize the produced RF tone and measure
its phase noise need to be conducted.

10.3.2 All-optical qubit readout
With the current transduction efficiencies, we cannot do deterministic one-way conversion of
quantum states. However, certain tasks such as measuring the state of a superconducting
qubit which is coupled to a resonator can be done using classical signals [BHW+04]. Delaney
et. al. [DUM+22] have already demonstrated this measurement of a qubit in the optical
domain. Nevertheless, in both of these experiments, the input classical microwave tone which
initially probes the microwave resonator for the qubit state is generated from an RF source and
only the reflected microwave signal containing the phase information about the qubit state is
transduced to the optical domain for detection. Hence, these experiments only eliminate the
detection side of the microwave readout chain.

The optical detection of a superconducting qubit can be taken one-step further. Both
preparation and detection of microwave signals can be done optically. The biggest challenge for
this measurement is, now, the transducer is used two times - first to generate the microwave
signal using the optical signal and the optical pump and then after probing the microwave
signal with this newly generated signal, converting it back to the optical domain using the
transducer. Since now transduction is needed two times, the transduction efficiency will come
into the equation with a squared and lower transduction efficiencies will be even more penalised.
As a result, using a transducer with low transduction efficiency for an all-optical readout
experiment is quite difficult.

There is one other challenge involved if only one transducer is used for this task as shown in
Fig. 10.2. Since, the optical signal which generates the microwave signal would be at the same
frequency as the transduced optical signal originating from the reflected microwave signal
that carries the information about the qubit state, and since usually the optical path length
between the transducer and the qubit will only be a few nanoseconds, we can assume that
the transduced and initial optical signal will interfere with each other. And the information
about the state of the qubit will be hidden in this interference (either in amplitude or phase or
a combination of both). The visibility of this interference will depend on the square of the
transduction efficiency. The greater the transduction efficiency, the more power is reflected
back to optics and more contrasted is the interference. This is different from the usual
microwave readout scheme since, in case of microwaves, the input signal to the resonator
and the reflected signal from the resonator are separated from each other via a circulator.
A microwave circulator can still be used in case of all-optical readout but, in that case, two
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separate transducers will be needed - one to generate the microwave signal and another to
transduce it back to optical domain.
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Figure 10.2: All-optical qubit readout. A continuous probe tone at optical resonance is
sent the optical resonator. The optical resonator couples to the microwave cavity at ωe with
the parametrically enhanced coupling constant geo. The microwave cavity is connected to the
qubit cavity (at ωq) with a transmission line with transmission constant η. Depending on the
state of the qubit, ωe = ωq or |ωe − ωq| ≳ κq, the linewidth of qubit cavity. The change in
the reflected optical signal which indicates the state of the qubit depends on geo and η.

If the interference due to backaction from qubit is too small, we can use a clever way to detect
it. The strong initial optical signal which is mostly reflected due to low transduction efficiency
can act as a natural local oscillator for the transduced optical signal carrying the information
about the state of the qubit. After eliminating the optical pump through an optical filter, we
can simply separate the optical signal via a 50-50 beam splitter and do homodyne detection.

There is another way to artificially conjure a circulator even with one transducer. Since the
signals we work with are in any case classical, we do not need single sideband transduction.
We can work with a symmetric optical FSR and allow both beam-splitter interaction and
amplification interaction at the same time. With this as the starting point, we can use the
optical anti-Stokes sideband and the optical pump to initially generate the microwave signal.
Then, after probing the qubit, the reflected microwave signal will get transduced again to
optical anti-Stokes frequency and amplify the optical Stokes frequency. However, since the
optical Stokes frequency was initially empty, only the re-transduced microwave signal exists at
that frequency with no additional signals. Hence, with this trick, we can separate the initial
optical signal with the transduced optical signal without the need of a real circulator or two
transducers.

10.3.3 Single optical photons from superconducting qubits
Superconducting qubits [DWM04] are highly nonlinear systems which allow production and
shaping of the wavepacket of high-fidelity single photon states using superconducting qubits on
demand in frequency-tunable systems [HSG+07] or in non-tunable systems [LFM+09]. Using
a microwave-optic transducer, these photons can be upconverted to the optical domain to
produce single optical photons which are usually produced using optically-active quantum
dots [SSW17].

Generating and characterizing the fidelity of produced single optical photons would not only
be the proof that the transducer can be used in quantum application but also an interesting
way to verify the non-classicality of the states produced by superconducting qubits using
well-established methods from quantum optics.
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For example, we can verify the non-classicality of single photons using the intensity correlation
function g(2) [Gla63]. It is measured by correlating the output of two intensity or photon
number detectors measuring at the output ports of a 50-50 beam splitter as function of
difference in time of arrival or the distance between the two detectors and splitter. As a
function of difference in time of arrive τ , it is defined as ratio of intensity correlations,

g(2)(τ) = ⟨a
†(t)a†(t+ τ)a(t+ τ)a(t)⟩

⟨a†(t)a(t)⟩2 . (10.1)

For τ = 0, the g(2)(0) is simply the coincidence detection of photons at the two photo-detectors
normalised to the individual number of photons detected on each detector.
The g(2)(0) correlation is different for coherent light/vacuum (g(2)(0) = 1), thermal noise
(g(2)(0) = 2) or uncorrelated light and single photon fock states (g(2)(0) = 0). A value of
g(2)(0) < 1 would prove some amount of non-classicality in the measured state. An idea
for an interesting experiment with the transducer can be to upconvert single microwave
photons generated via a superconducting qubit and then characterize the g(2) correlations
in the upconverted optical signal. If g(2)(0) < 1 can be measured, it will be an important
benchmark experiment proving some quantum properties can be preserved after transduction
of quantum states.

10.3.4 Qubit-photon entanglement
The first entanglement between a superconducting qubit and an itinerant microwave photon
was shown by Eichler et. al. in 2012 [ELF+12]. In their experiment, they demonstrated
preparation of the state |ψ⟩ = (|0e⟩+ |1g⟩)/

√
2. The first index of the joint state represents

the number of microwave photons in the microwave resonator and the second index of the
state represents the qubit state. The full state |ψ⟩ represents a maximally entangled state
between the presence of microwave photon and the state of the qubit.
After preparing this state, the entangled microwave photon can simply be up-converted to
the optics domain. This will successfully produce entanglement between a superconducting
qubit and an optical photon. We can verify this entanglement in the Fock basis. However,
detection of above mentioned entangled state is extremely sensitive to the optical photon loss.
The reason is one can easily correlate the presence of a photon, measured with a click from a
single optical photon detector [MVS+13], with the qubit state verified to be in the ground
state. But correlating the presence of no photon with the excited qubit state is non-trivial. To
be sure about a state measurement with ’no photon’, we must have a really high detection
efficiency of the up-converted photon (any loss with detection efficiency will add to error in
state measurement). This is rather challenging since there are always unavoidable optical
losses between the transducer and the single photon detector - most of which come from
the optical filters which need to suppress a high power pump very close to the optical signal
frequency that need to be detected. Even in the case of single photon detection and qubit
in ground state, the measured can be corrupted from the dark counts of the detector. This
makes the practical verification of this entanglement rather difficult.
A solution to the above problem can be to produce the entanglement in a different basis
between the qubit and the microwave photon. In this case, both the states of the qubit are
entangled with the presence of a single photon, but the two states correspond to the microwave
photons arriving at different times, |ψ⟩ = (|Le⟩+ |Eg⟩)/

√
2, where the first index now stands

for an early or late photon [THH+19]. Upconverting this time-bin encoded microwave photon
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to the optical domain, we can again verify entanglement between the qubit and the optical
photon. However, in this case, verification of the entanglement is less sensitive to losses since
we can always herald the measurement of the qubit to the detetection of the optical photon on
the detector. All the cases when the photons were lost would simply be ignored. The penalty
for more optical losses will be paid in terms of longer measurement times instead of loss of
entanglement fidelity.

10.3.5 Remote qubit entanglement
After achieving the qubit-optical photon entanglement, we can consider the problem of remote
qubit entanglement connected via an optical channel. To achieve remote entanglement, we
need to start with two systems in two dilution refrigerators both of which will feature a pair of
entangled optical photon and qubit. Once these two entangled pairs are generated, we can
simply swap the entanglement [PBWZ98] from the pairs of optical photon and qubit to the
two qubits by performing a joint detection (Bell state measurement) of the two optical photons.
The final remaining entanglement between the qubits can be easily verified by measuring them
individually and then correlating the measurements.
Although, in principle, the steps leading up to remote qubit entanglement are not complicated,
there are still a few caveats that one must keep in mind. Currently, the bandwidths of the
transducers are not very high ∼ 10 MHz and it is rather difficult to control the optical FSR
(due to how the resonators are fabricated). As a result, we can expect the frequency of the
optical photons from different devices to not match perfectly. For Bell state measurement, we
want to erase the ’which photon’ information before they are detected. Hence, keeping them
as similar as possible is advantageous.
Some amount of frequency mismatch is allowed due to Heisenberg’s uncertainty principle,
∆ω∆t > 2π. Accordingly, if the two photons are completely detected within a time ∆t, we
can afford a frequency mismatch of ∆ω given by the uncertainty principle. The smaller the
∆t, the larger frequency mismatch can be afforded. The time of arrival between photons can
be easily matched within a nanosecond by adding more optical fiber for the early photon. As
a result, ∆t will be mostly limited by the spread of the optical photon which in turn would
be related to the bandwidth of the original microwave photon which was entangled with the
qubit. Of course, we can always chose to detect in a smaller time-bin as is easily allowed by
current single photon detectors [MVS+13], but artificially reducing the ∆t below the photon
pulse length would reduce the probability of detection making the measurements slower.
With the results presented in chapter 9, we can use the same method to entangle two microwave
photons in two different dilution refrigerators. All the same caveats will also apply in this
case except after the entanglement swap, we will end up with microwave photons which are
entangled in two different dilution refrigerators instead of direct qubit entanglement. Once
the entanglement between remote microwave photons is achieved, we can use them to drive
two separate remote qubits to entangle them.

10.4 Final conclusions
In this thesis, we have shown several experiments under the general domain of quantum
electrooptics experiments from quantum transduction between microwave and optics to
quantum entanglement between the same frequencies. The current status of the experiments
suffer from a few problems ranging from small (for deterministic transduction) transduction
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efficiencies to weak entanglement fidelities. However, with modest improvements in the system
such as improved design and better quality cavities, many of these problems can be solved
opening the door to many practical experiments such as the ones mentioned in the previous
section.
There is still a long road ahead before we can finally make microwave quantum technologies
compatible with optics and get one more step closer to a fully working quantum internet that
includes microwave technologies. In this thesis, we made a few steps towards this goal and
laid the foundation for many more benchmark experiments that are still remaining.
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APPENDIX A
Single photon electric field for a

travelling wave

For the purpose this thesis, here, we will derive the single photon electric field for a whispering
gallery mode traveling wave in a hollow-cylindrical volume with the radius a and thickness
R. The volume of the hollow-cylinder is given as V = 4πhar, where h is the height of the
cylinder. We assume the electric field of form,

E(r, z, ϕ, t) = E0Θ(|r −R| < a)cos(kϕ− ωt) (A.1)

where, Θ is the heaviside function, k is the wave-vector amplitude and other symbols have
their usual meaning.
The energy in the wave in a dielectric medium with electrical and magnetic permittivity as ϵ
and µ is given as,

W = 1
τ

∫︂ ∫︂ (︄
1
2ϵ|E0Θ(|r −R| < a)cos(kϕ− ωt)|2 + 1

2µ |B(r, z, ϕ, t)|2
)︄

dt dV (A.2)

where, τ is the time-period of the electro-magnetic(EM) wave. Since, the dt integral is over
one time time-period, and thus ∫︁ cos2(kϕ − ωt) dt = τ/2. Next, we use the fact that the
average energy between electric and magnetic fields is equal in an EM wave. Solving then,
W = ℏω for a single photon energy, we get,

ℏω = ϵE2
o

2

∫︂
|Θ(|r −R| < a)|2r dr dz dϕ (A.3)

The integral left is just the volume of the hollow cylinder. So, we can derive the single photon
electric field E0 as,

E0 =
√︄

2ℏω
ϵV

(A.4)

Substituting this in eq. A.1, we derive the electric-field for a single photon for a travelling
wave.
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APPENDIX B
Microwave transmission line calibration

The microwave output line needs to be carefully calibrated since it forms the basis of the
4-port measurements and directly affects the output noise photon calibration. The output
transmission line is comprised of a chain of amplifiers which are not quantum-limited, i.e, have
a finite noise temperature. The total added noise temperature Ta of the full chain of amplifiers
is given by Friis law,

Ta = T1 + T2

G1
+ T3

G1G2
+ ... (B.1)

where Ti (Gi) are the added noise temperature and gain of amplifiers from source to detection.
Since the gain values are usually quite high, the final noise temperature of the detection chain
depends mostly on T1 and all the subsequent terms adding to only diminishing values.
The noise temperature Ta is related to the added noise photon number na via Plank’s law as,

na = 1/[exp(ℏω/kBTa)− 1] (B.2)

For a high-electron-mobility-transistor (HEMT) amplifier, the noise temperature specified
for about 9 GHz is 4 K which corresponds to ∼5 added noise photons. The gain of HEMT
amplifiers around this frequency is about 44 dB. The full microwave output chain has more
amplifiers and there are also be losses before the HEMT, so expected added noise photons for
the full detection chain is ∼ 12 photons with a gain of about 66 dB.
This added noise and corresponding gain due to the amplifiers and including any cable losses in
the microwave detection chain is calibrated using a combination of a 50 Ω load, a thermometer
and a resistive heater that are thermally connected. The microwave detection chain is identical
for the signals from the 50 Ω load and the microwave cavity reflection, except for a small
difference in cable length which we adjust for.
To calibrate the detection chain, we heat the 50 Ω load with the resistive heater and record
the amplified noise spectrum P50Ω(ω) as a function of temperature of 50 Ω load T50Ω. The
output noise detected over a bandwidth B, P50Ω, as a function of T50Ω is given as,

P50Ω = ℏωeGB

[︄
1
2 coth

(︄
ℏωe

2kBT50Ω

)︄
+Ne,add

]︄
, (B.3)

with ωe the center microwave frequency, Ne,add (G) the added noise (gain) of the microwave
detection chain, and kB the Boltzmann constant.
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We record the noise output spectra P50Ω(ω) over∼1 GHz range for a range of load temperatures
T50Ω from base temperature of the mixing chamber ∼7 mK up to ∼2 K. Selecting a bandwidth
of B = 11 MHz (about the linewidth of the microwave cavity) around a specific frequency,
in this case ωe = 8.799 GHz, we can fit the detected microwave power P50Ω as a function
of T50Ω with eqn. B.3. In Fig. B.1, we show the detected noise Ne,det = P50Ω/(ℏωeGB) as a
function of T50Ω along with a fit using eqn. B.3, with two fitting parameters G and Ne,add.
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Figure B.1: Characterization of the added noise in the microwave detection chain.
Measured output noise from a 50 Ω calibration load as a function of its temperature Tf . The
measured noise is plotted in units of photons as N50Ω

det = P50Ω/(ℏωeGB). The dashed line at
the bottom represents the fitted vacuum noise level in addition to the added noise. The red
line and shaded region represents the fit and the 95% confidence interval around it. (Figure
adapted from Ref. [SQH+23].)

By fitting the same parameters for the full range of recorded frequencies, we show the
dependence of Ne,det and the gain G as a function of microwave frequency (along with 2σ error
as fill area) in Fig. B.2. The variation in the detected noise and gain is due to the impedance
mismatch and reflections between components in the microwave detection chain. Since the
optical FSR in our experiments is ∼8.8 GHz, the added noise for microwave chain around
these frequencies fall from 10.5 − 11.5. Although, the variation around the frequencies we
work with is not huge, it is good to calibrate the microwave transmission line for the relevant
frequency.
As shown in the experimental setups (appendix C), the 50Ω calibration load is on a different
port of the microwave switch. The microwave cable length between the switch and the 50Ω is
30.5 cm whereas that between the switch and the microwave cavity is 73 cm. This extra cable
length and its loss needs to be added to the T50Ω calibration to get the equivalent calibration
for the microwave cavity.
The cable loss between the microwave cavity and the switch is easily measured by reflecting
the microwave signal either directly from the switch (reset port) or from the microwave cavity
(off-resonance to prevent cavity losses). The difference in measured power gives the two-way
loss for the cable length (73 cm). The square root for this loss is the one way cable loss which
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Figure B.2: Microwave added noise and gain spectra. a (b) The measured added noise in
units of photons as N50Ω

det = P50Ω/(ℏωeGB) (gain) as a function of microwave frequency. The
shaded area represents the 2σ error in fit from eqn. B.3. (Figure adapted from Ref. [SQH+23].)

is about −0.88 dB. Assuming that the loss is linearly proportional to the cable length, we
calculate the loss due to the extra cable length between the 50Ω load and the microwave
cavity, 73−30.5 cm. Including the cable losses L (in absolute unit), the effective added noise
increases (Ne,add → Ne,add/L) while the gain decreases (G→ G× L).
Finally, we also need to consider an additional error due to the temperature sensor inaccuracy
of 2.5%. Although this does not change the final Ne,add and G, it increases the uncertainty
realized in these numbers.
For the CW optical pump measurements in chapter 5, the optical FSR was 8.8 GHz. For this
microwave frequency, we determined the added noise for the 50Ω load to be 10.66± 0.15 and
gain β4 = (67.65±0.05) dB. Adjusting for the cable loss and the temperature sensor uncertainty,
the final adjusted added noise was (12.74±0.36) and the adjusted gain β4 = (67.05±0.16) dB.
All the stated errors are 2σ. The same numbers were used for the pulsed optical pump
experiments in chapter 7.
However, for the two mode squeezing measurements in chapter 9, these numbers and the
associated errors were of utmost importance, and therefore, careful calibration even for the
closest of the relevant frequencies was done individually. All the numbers are reported in
table B.1.

Table B.1: The added noise and gain in microwave detection chain (1σ errors shown)

8.799 GHz 8.791 GHz
Detection Chain Ne,add G (dB) Ne,add G (dB)

50Ω load
(with fitting error) 11.74± 0.08 66.67± 0.02 11.76± 0.09 66.72± 0.03

MW cavity
(including cable loss) 13.09± 0.09 66.20± 0.02 13.16± 0.10 66.23± 0.03

MW cavity
(including temperature

sensor uncertainty)
13.09± 0.33 66.20± 0.12 13.16± 0.34 66.23± 0.12
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APPENDIX C
Experimental setups

C.1 Continuous wave optical pump setup
See Fig. C.1. A tunable laser is equally split (50/50) into two paths at the optical coupler OC1.
The upper path is used as the optical pump and it goes through a variable optical attenuator
VOA1 that allows to vary the optical pump power. The optical pump can then be either sent
directly to the cryostat fiber, or it can go first through an electro-optic modulator (EOM) in
order to create sidebands for spectroscopy calibration. The second path (horizontal) is used to
generate the optical signal. It goes also through a variable optical attenuator and it is then
frequency up-shifted by ωe (∼FSR) using a single sideband EO-modulator with suppressed
carrier (SSB-SC) driven by a microwave source with local oscillator frequency ωe (S1). A small
fraction (1%) of this signal is picked up and sent directly to an optical spectrum analyzer
(OSA) for sideband and carrier suppression ratio monitoring. The rest (99%) is recombined
with the pump at OC2, sent to the fridge input fiber and the total power is monitored with a
power meter (PM). The optical tones are focused on the prism with a GRIN-lens which then
feeds the WGM resonator via evanescent coupling. Polarization controllers PC2 and PC3 are
set to achieve maximum coupling to a TE polarized cavity mode. The reflected (or created)
optical sideband signal and the reflected pump are collected with the second GRIN-lens and
coupled to the cryostat output fiber. The optical signal is then split: 90% of the power goes
to the OSA and 10% is sent to a photodiode (PD), which is used for mode spectroscopy and
to lock on the optical mode resonance during the conversion measurement. The 90% arm
is either sent directly to the OSA, or goes through an EDFA for amplification, depending
on the microwave to optics converted signal power. On the microwave side, the signal is
sent from the microwave source S2 (or from the VNA for microwave mode spectroscopy) to
the fridge input line via the microwave combiner (MC1). The input line is attenuated with
attenuators distributed between 4 K and 10 mK with a total of 60 dB in order to suppress
room temperature microwave noise. Circulator C1 redirects the reflected tone from the cavity
to the amplified output line, while C2 redirects noise coming in from the output line to a
matched 50 Ω termination. The output line is amplified at 4 K by a HEMT-amplifier and then
at room temperature again with a low noise amplifier (LNA). The output line is connected
to switch MS1, to select between an ESA or a VNA measurement. Lastly, microwave switch
MS2 allows to swap the device under test (DUT) for a temperature T50Ω controllable load,
which serves as a broad band noise source in order to calibrate the output line’s total gain and
added noise (see Appendix B).
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Figure C.1: Continuous wave optical pump experimental setup. (Figure taken from
Ref. [HRS+20].)

C.2 Low cooperativity CW optical pump setup
See Fig. C.2. A tunable laser at frequency ωp is sent through a variable optical attenuator
(VOA1) to control the power output. Thereafter, the laser is sent to a single sideband (SSB)
modulator. The modulator operates in a mode where the central pump frequency is allowed
to pass through and only the lower sideband is suppressed. The SSB is connected to two
microwave sources. The arrangement allows us to independently control the optical signal tone
and the optical local oscillator (LO) tone, 200 MHz detuned, independently. The optical signal
source S2 is also connected to a digital delay generator (DDG) to make pulses at the right
time. The modulated output from the SSB is divided in two parts - 1% is used to monitor
the suppression ratio of the sidebands using an optical spectrum analyzer (OSA), 99% is sent
to an Erbium-doped fiber amplifier (EDFA) and amplified before being sent to the dilution
refrigerator (DR). In the DR, the setup remains the same as in Fig. C.1. Outside the DR,
the output light is separated in two parts - 1% is detected directly on a photo-diode (PD)
to lock the laser to the optical pump mode and 99% is sent to a high speed photo-diode
HSPD (400 MHz). The presence of the optical LO and signal in the same fiber means that
the optical signal can be easily detected at the set frequency via downconversion. The output
signal from HSPD is sent to an amplifier RTA3 before sent for digitization. On the microwave
side, the setup is essentially the same as in Fig. C.1. The only difference is that, now, the
output line is connected to switch MS1 and MS2, to select between an ESA, a VNA or a
digitizer measurement via manual downconversion using MW LO S4 (200 MHz detuned).

C.3 High cooperativity pulsed optical pump setup
See Fig. C.3. A tunable laser at frequency ωp is divided into two equal parts - one to serve as
the optical pump and the other to produce the optical signal and the optical local oscillator
(LO). The optical pump side (left) first passes through a variable optical attenuator (VOA1)
to control the power sent in this arm and is then sent to an acousto-optic modulator (AOM1).
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Figure C.2: Low cooperativity CW optical pump experimental setup. (Figure taken from
Ref. [SHR+22].)

The AOM is accurately pulsed using a digital delay generator (DDG). The produced optical
pulsed are sent to an Erbium-doped fiber amplifier (EDFA) where they are amplified. The
output of the EDFA is sent to another AOM2. The second AOM is also connected to DDG
and acts as a window filter in time to suppress the broad band spontaneous emission noise
from the EDFA. The optical pump pulse is further cleaned with a filter cavity F1 (50 MHz
linewidth with ∼15 GHz FSR), which is locked to the laser frequency (circulator C3 ensures
that reflected noise from cavity F1 is dissipated) before being combined with the signal arm
and sent to the dilution refrigerator (DR). The signal arm (right of the laser) is first divided
in two parts - the optical LO and the optical signal. 25% of the light in signal arm is used
to produce the optical signal. After passing through attenuator VOA2, the optical signal is
produced using a single sideband modulator (SSB). This time we suppress both the central
pump frequency and the lower sideband frequency keeping only the upper sideband as the
optical signal. The SSB is driven by a microwave source S1 which is also connected to the
DDG to accurately pulse the optical signal. The optical signal is divided in two parts - 1% is
reserved to monitor the sideband suppression ratio via an optical spectrum analyzer (OSA),
99% is sent to DR after combining with the optical pump. The 75% light on the right side of
the laser is used to produce the optical LO via a phase modulator (PM). The PM is operated
via a microwave source S2 with a power such that the central tone is suppressed. Finally,
the optical LO is sent directly to the optical heterodyne setup. The optics inside the DR
has been explained in Fig. C.1. The output light from the DR is sent to filter F2 (50 MHz
linewidth with ∼40 dB suppression) to reject the strong optical pump. The reflected optical
pump from cavity F2 is captured by photodiode PD1 via the circulator C4. The reflected
optical pump measurement is used to lock the laser to the optical pump mode. The cleaned
optical signal is sent to the heterodyne setup and measured with a balanced photo-detector
(BPD). The output signal is amplified via a room temperature amplifier RTA1 before being
sent to a digitizer. The microwave side of the setup is explained in Fig. C.2.
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Figure C.3: High cooperativity pulsed optical pump experimental setup. (Figure taken from
Ref. [SHR+22].)

C.4 Pulsed optical pump setup for two-mode squeezing
See Fig. C.4. The whole setup for this measurement was essentially the same as described
in section C.3. The only difference is that the optical LO, which is produced via a phase
modulator PM, is now detuned by ωIF/2π = 40 MHz. Since the PM produces many sidebands,
we improve the optical heterodyne efficiency by suppressing the undesired sidebands via filter
F3 (∼50 MHz linewidth with 15 GHz FSR), reflection is rejected by circulator C5. F3 is
temperature-stabilized and locked to the transmitted power similar to F1. The optical LO is
also amplified via EDFA2 before the optical balanced heterodyne.
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Figure C.4: Pulsed optical pump experimental setup for two-mode squeezing. (Figure taken
from Ref. [SQH+23].)

173





APPENDIX D
Optical pump PID lock

The optical pump is produced from the laser by amplification through EDFA (Erbium-doped
fiber amplifier). EDFA amplifies the optical power by pumping and creating population inversion
in a material to make it an optically active gain medium. Usually, the inverted population will
be relaxed through stimulation of an input optical signal which will, in turn, amplify the optical
signal. However, in absence of any signal, vacuum energy can also relax the inverted population
spontaneously resulting in something called broadband amplified spontaneous emissions (ASE)
noise.

The ASE noise is spread over multiple FSRs of the optical resonator and, therefore, is also
naturally present at the optical signal frequency (one FSR away from the optical pump). Since
we do not want any noise present at the optical signal frequency, we clean the optical pump
in frequency domain using an optical Fabry-Pérot filter. The filter has an FSR of ∼ 15 GHz
such that near the optical WGM FSR, the filter has maximum suppression. The filter also has
a linewidth of ∼ 50 MHz so that sharp pulses with ∼ 10 ns rise times can pass through the
filter.

a b
Current knob Current measure

Set-point knob Signal

measure

Set-point

measure

Lock switch

Figure D.1: The PID circuit used in optical pump lock. a 3D rendering of the designed
PID circuit. b Final completed circuit. Various measurement ports and used knobs and stitches
are labelled.

The Fabry-Pérot filter is custom made by gluing plano-concave mirrors on an aluminium cavity
structure. Since aluminium has high thermal expansion coefficient, we can control the length
of the optical cavity and thus its resonance frequency by tuning the temperature. Consequently,
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we place the optical filter on a Peltier element. By controlling the current through the Peltier
element, we can control the resonance frequency of the optical cavity.
For chapter 7, we controlled the current through the Peltier element through a digital algorithm.
But for chapter 8 and 9, we switched to a using a PID (Propotional Integral Derivative) lock
shown in Fig. D.1. We took 1% of the light transmitting through the filter and measured it
with a photodiode. After passing through an extremely low pass filter (to convert the pulsed
output from photodiode to basically DC signal), we feed it to the PID as an error signal.
The PID lock tries to keep the error signal close to a set-point which can be set via a knob
shown in Fig. D.1b. The error signal is changed by changing the current through the Peltier
element which is controlled by the PID as well. By increasing or decreasing the current through
the Peltier element, the optical cavity resonance is changed and thus the transmitted power.
We can choose a set-point which is close to maximum (about 90%) but not maximum such
that by moving the cavity resonance forward or backward, the transmitted power also behaves
linearly. This means error signal is proportional to the Peltier drive. In this state, the lock can
be started by flicking the switch shown in Fig. D.1b. Note that sometimes, the error signal
measured from photodiode is not fully linear over the full cavity resonance tuning. This can
happen for example if photodiode is saturating. In this case, adjusting the optical attenuation
before the photodiode may solve the issue.
The PID circuit shown in Fig. D.1 was home-designed and only has proportional and integral
elements. When the lock-switch is set to off, the current through the Peltier element can
be controlled by the ’Current knob’ and measured as the voltage between ’Current measure’
port and ground. Similarly, the set-point can be changed and measured through its ports and
knobs. Finally, the input error signal can be measured as voltage between the ’Signal measure’
and ground. It is usually around 200 mV. Full optical FSR of the optical filter cavity can be
explored by applying current corresponding between −2.5 V to 2.5 V. The full schematic of
the PID circuit is shown in Fig. D.2.
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Figure D.2: Circuit schematic for the PID lock used for optical pump lock. The PID controls
the current to a Peltier element which changes the temperature of an optical cavity, in turn
changing its frequency.
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