The Design Space of Kirchhoff Rods

Cheat Sheet

CHRISTIAN HAFNER and BERND BICKEL, Institute of Science and Technology Austria (ISTA), Austria

ACM Reference Format:

Christian Hafner and Bernd Bickel. 2023. The Design Space of Kirchhoff Rods Cheat Sheet. ACM Trans. Graph. 1, 1 (June 2023), 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Some of the symbols refer to quantities that vary across the length of a beam with arc-length parameter $s \in(0, \ell)$. In the paper, we will often omit the parameter s for brevity, whenever we make an argument that is true at every parameter location. Sometimes, we will also write, e.g., $I \in S_{++}^{2}$ instead of $I:(0, \ell) \rightarrow S_{++}^{2}$, when it is clear from context that a choice $I(s) \in S_{++}^{2}$ is made for every $s \in(0, \ell)$.

Sym.	Type
$(\cdot)^{\prime}$	$(\cdot)^{\prime}: C^{d} \rightarrow C^{d-1}$
$[\cdot]_{\times}$	$[\cdot]_{\times}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3 \times 3}$
a	$a \in \mathbb{R}_{>0}$
b	$b \in \mathbb{R}_{>0}$
β	$\beta:(0, \ell) \rightarrow \mathbb{R}$
(c, \bar{c})	$c, \bar{c} \in \mathbb{R}^{3}$
C	$C \subset \Lambda_{\mathrm{kl}}$
\mathcal{D}	$\mathcal{D}(s) \subset \mathbb{R}^{2}$
E	$E \in \mathbb{R}_{>0}$
e_{i}	$e_{i} \in \mathbb{R}^{3}$
F	$F:(0, \ell) \rightarrow S O(3)$
F_{n}	$F_{n}:(0, \ell) \rightarrow \mathbb{R}^{3 \times 2}$
f_{i}	$f_{i} \in \mathbb{R}^{3}, i=1, \ldots, n$
γ	$\gamma:(0, \ell) \rightarrow \mathbb{R}^{3}$

Description

First derivative with respect to arc-length parameter s
Transforms a vector $v \in \mathbb{R}^{3}$ into its "cross product matrix", the skew-symmetric matrix $[v]_{\times}$such that $[v]_{\times x}=v \times x$ for all $x \in \mathbb{R}^{3}$
Radius of an ellipse, associated with the first semi-axis $(\cos \varphi, \sin \varphi)^{t}$
Radius of an ellipse, associated with the second semi-axis $(-\sin \varphi, \cos \varphi)^{t}$
Rotation of the normal plane, relating two frames F and F_{β} adapted to the same curve γ via $F_{\beta, n}=F_{n} Q_{\beta}$, with $Q_{\beta}=\left(\begin{array}{cc}\cos \beta-\sin \beta \\ \sin \beta & \cos \beta\end{array}\right)$
$(c, \bar{c}) \quad c, \bar{c} \in \mathbb{R}^{3}$
Homogeneous coordinates of the linear complex C
Set of all lines in \mathbb{R}^{3} whose Plücker coordinates (l, \bar{l}) satisfy $\langle l, \bar{c}\rangle+\langle\bar{l}, c\rangle=0$
Cross section of the Kirchhoff rod at a particular $s \in(0, \ell)$; often assumed to be elliptical
$E \quad E \in \mathbb{R}_{>0} \quad$ Young's modulus of the base material
Standard basis vectors $e_{1}=(1,0,0)^{t}, e_{2}=(0,1,0)^{t}$, and $e_{3}=(0,0,1)^{t}$
Moving frame adapted to γ; encodes the twist of the Kirchhoff rod deformation; the columns of F are given by $F(s)=\left(n_{1}(s), n_{2}(s), \gamma^{\prime}(s)\right)$
$F_{n} \quad F_{n}:(0, \ell) \rightarrow \mathbb{R}^{3 \times 2} \quad$ The matrix of material normals of F, so $F_{n}=F S=\left(n_{1}, n_{2}\right)$
$f_{i} \quad f_{i} \in \mathbb{R}^{3}, i=1, \ldots, n \quad$ Concentrated point load f_{i} is applied to the centerline of a rod at $\gamma\left(s_{i}\right)$
$\gamma \quad \gamma:(0, \ell) \rightarrow \mathbb{R}^{3} \quad$ Arc-length parametrized curve that gives the centerline of a deformed Kirchhoff rod; assumed at least twice continuously differentiable

Authors' address: Christian Hafner, chafner@ist.ac.at; Bernd Bickel, bernd.bickel@ist.ac.at, Institute of Science and Technology Austria (ISTA), Austria.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

I	$I:(0, \ell) \rightarrow S_{++}^{2}$	Area moment of inertia tensor of the cross section of the Kirchhoff rod, at a particular $s \in(0, \ell)$, given by $I(s)=\int_{\mathcal{D}(s)}\left(\begin{array}{cc}y^{2} & -x y \\ -x y & x^{2}\end{array}\right) \mathrm{d}(x, y)$		
J	$J:(0, \ell) \rightarrow \mathbb{R}_{>0}$	Torsional rigidity of the cross section of the Kirchhoff rod, at a particular $s \in(0, \ell)$; computed as $J(s)=4 \int_{D(s)}\\|\nabla \chi\\|^{2}$, where χ is the solution to $\Delta \chi=-1$ in $\mathcal{D}(s)$, and $\chi=0$ on $\partial \mathcal{D}(s)$		
K	$K:(0, \ell) \rightarrow \mathbb{R}^{3 \times 3}$	Stiffness matrix of the Kirchhoff rod, at a particular $s \in(0, \ell)$; the upper-left two-by-two block is given by $E I$, and the lower-right entry by μJ; we often use K and the pair (I, J) interchangeably, because E and μ are assumed fixed		
k	$k:(0, \ell) \rightarrow \mathbb{R}^{3}$	Curvature vector of the framed curve ($\gamma, F)$, with components $k=\left(\kappa_{1}, \kappa_{2}, \tau\right)$; related to F and ω via $\omega=F k$ and $[k]_{\times}=F^{t} F^{\prime}$		
k_{n}	$k_{n}:(0, \ell) \rightarrow \mathbb{R}^{2}$	Vector of material curvatures of F, so $k_{n}=S^{t} k=\left(\kappa_{1}, \kappa_{2}\right)^{t}$		
\mathcal{K}	$\mathcal{K} \subset S_{++}^{2} \times \mathbb{R}$	Set of admissible stiffnesses (I, J) that satisfy $0<J \leq 4 \psi(I)$; by abuse of notation, we write $K \in \mathcal{K}$ and $(I, J) \in \mathcal{K}$ interchangeably		
\mathcal{K}^{*}	$\mathcal{K}^{*} \subset \mathcal{K}$	Set of stiffnesses induced by elliptical cross sections, i.e., $J=4 \psi(I)$		
κ_{i}	$\kappa_{i}:(0, \ell) \rightarrow \mathbb{R}$	Material curvatures κ_{1} and κ_{2} of F; measure bending of the Kirchhoff rod around the material normals n_{1} and n_{2}, respectively		
κ	$\kappa:(0, \ell) \rightarrow \mathbb{R}_{\geq 0}$	Total (Frenet) curvature of γ, given by $\kappa=\left\\|\gamma^{\prime \prime}\right\\|$; for any frame F adapted to γ, it holds that $\kappa=\sqrt{\kappa_{1}^{2}+\kappa_{2}^{2}}$		
ℓ	$\ell \in \mathbb{R}_{>0}$	Length of the Kirchhoff rod		
λ	$\lambda(l, \bar{l}) \subset \mathbb{R}^{3}$	Map from the Plücker coordinates $l, \bar{l} \in \mathbb{R}^{3}$ with $\langle l, \bar{l}\rangle=0$ to the line in \mathbb{R}^{3} incident to the point $\frac{l \times \bar{l}}{\langle l, l\rangle}$ and with direction l		
Λ_{kl}	$\Lambda_{\mathrm{kl}} \subset \mathbb{P}^{5}$	Klein quadric, the set of all points with homogeneous coordinates $(l, \bar{l}) \in \mathbb{R}^{6}$ satisfying $\langle l, \bar{l}\rangle=0$; we interpret these points as Plücker coordinates of a line in \mathbb{R}^{3} with direction v and incident to a point x, such that $(l, \bar{l})=(v, x \times v)$		
M	$M:(0, \ell) \rightarrow \mathbb{R}^{3}$	Accumulated moment on a deformed rod, given by $M=\int_{0}^{s} \gamma \times q$		
μ	$\mu \in \mathbb{R}_{>0}$	Shear modulus of the base material		
n_{i}	$n_{i}:(0, \ell) \rightarrow \mathbb{R}^{3}$	Material normals of the moving frame F, so $n_{i}=F e_{i}$ for $i=1,2$		
v	$v \in(-1,1 / 2)$	Poisson's ratio of the base material		
ω	$\omega:(0, \ell) \rightarrow \mathbb{R}^{3}$	Darboux vector of the moving frame F; related to F and k via $\omega=F k$ and $F^{\prime}=$ $[\omega] \times F$		
p	$p:(0, \ell) \rightarrow \mathbb{R}^{3}$	Line load applied to the centerline of a rod, where $p(s)$ gives the load density at $\gamma(s)$		
φ	$\varphi \in \mathbb{R}$	Orientation of ellipse with respect to reference frame; first and second semi-axes are given by $(\cos \varphi, \sin \varphi)^{t}$ and $(-\sin \varphi, \cos \varphi)^{t}$ respectively		
ψ	$\psi: S_{++}^{2} \rightarrow \mathbb{R}_{>0}$	The determinant-over-trace function $\psi(X):=\frac{\operatorname{det} X}{\operatorname{tr} X}$		
Q	$Q:(0, \ell) \rightarrow \mathbb{R}^{3}$	Accumulated load on a rod, given by $Q(s)=\int_{0}^{s} q$		
q	$q \in \mathscr{D}^{\prime}\left((0, \ell) ; \mathbb{R}^{3}\right)$	Load distribution applied to the centerline of a rod, consisting of a line load p and point loads f_{i}		
S	$S \in \mathbb{R}^{3 \times 2}$	Selection matrix $S=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ that extracts the first two columns of a three-column matrix by multiplication from the right, i.e., $\left(x_{1}, x_{2}, x_{3}\right) S=\left(x_{1}, x_{2}\right)$		

Manuscript submitted to ACM

The Design Space of Kirchhoff Rods
Cheat Sheet

S_{++}^{2}	$S_{++}^{2} \subset \mathbb{R}^{2 \times 2}$	Set of all symmetric positive-definite 2-by-2 matrices
$S O(3)$	$S O(3) \subset \mathbb{R}^{3 \times 3}$	Set of all rotations of \mathbb{R}^{3} about the origin
s	$s \in(0, \ell)$	Arc-length parameter of γ
s_{i}	$s_{i} \in(0, \ell), i=1, \ldots, n$	Concentrated point load f_{i} is applied to the centerline of a rod at $\gamma\left(s_{i}\right)$
τ	$\tau:(0, \ell) \rightarrow \mathbb{R}$	Twist of the moving frame $F ;$ measures rotation per arc-length unit around γ^{\prime}

