The Design Space of Kirchhoff Rods
Cheat Sheet

CHRISTIAN HAFNER and BERND BICKEL, Institute of Science and Technology Austria (ISTA), Austria

ACM Reference Format:

Some of the symbols refer to quantities that vary across the length of a beam with arc-length parameter \(s \in (0, \ell) \). In the paper, we will often omit the parameter \(s \) for brevity, whenever we make an argument that is true at every parameter location. Sometimes, we will also write, e.g., \(I \in S^2_{+} \) instead of \(I : (0, \ell) \to S^2_{+} \), when it is clear from context that a choice \(I(s) \in S^2_{+} \) is made for every \(s \in (0, \ell) \).

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\cdot)')</td>
<td>((\cdot)' : \mathbb{C}^{d} \to \mathbb{C}^{d-1})</td>
<td>First derivative with respect to arc-length parameter (s)</td>
</tr>
<tr>
<td>([\cdot]_{\times})</td>
<td>([\cdot]_{\times} : \mathbb{R}^{3} \to \mathbb{R}^{3 \times 3})</td>
<td>Transforms a vector (v \in \mathbb{R}^{3}) into its "cross product matrix", the skew-symmetric matrix ([v]{\times}) such that ([v]{\times} x = v \times x) for all (x \in \mathbb{R}^{3})</td>
</tr>
<tr>
<td>(a)</td>
<td>(a \in \mathbb{R}_{>0})</td>
<td>Radius of an ellipse, associated with the first semi-axis ((\cos \varphi, \sin \varphi)^{t})</td>
</tr>
<tr>
<td>(b)</td>
<td>(b \in \mathbb{R}_{>0})</td>
<td>Radius of an ellipse, associated with the second semi-axis ((- \sin \varphi, \cos \varphi)^{t})</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\beta : (0, \ell) \to \mathbb{R})</td>
<td>Rotation of the normal plane, relating two frames (F) and (F_{\beta}) adapted to the same curve (y) via (F_{\beta, n} = F_{n} Q_{\beta}), with (Q_{\beta} = \begin{pmatrix} \cos \beta & - \sin \beta \ \sin \beta & \cos \beta \end{pmatrix})</td>
</tr>
<tr>
<td>((c, \bar{c}))</td>
<td>(c, \bar{c} \in \mathbb{R}^{3})</td>
<td>Homogeneous coordinates of the linear complex (C)</td>
</tr>
<tr>
<td>(C)</td>
<td>(C \subset \Lambda_{3d})</td>
<td>Set of all lines in (\mathbb{R}^{3}) whose Plücker coordinates ((l, \bar{l})) satisfy ((l, \bar{c}) + (\bar{l}, c) = 0)</td>
</tr>
<tr>
<td>(\mathcal{D})</td>
<td>(\mathcal{D}(s) \subset \mathbb{R}^{2})</td>
<td>Cross section of the Kirchhoff rod at a particular (s \in (0, \ell)); often assumed to be elliptical</td>
</tr>
<tr>
<td>(E)</td>
<td>(E \in \mathbb{R}_{>0})</td>
<td>Young’s modulus of the base material</td>
</tr>
<tr>
<td>(e_{i})</td>
<td>(e_{i} \in \mathbb{R}^{3})</td>
<td>Standard basis vectors (e_{1} = (1, 0, 0)^{t}, e_{2} = (0, 1, 0)^{t},) and (e_{3} = (0, 0, 1)^{t})</td>
</tr>
<tr>
<td>(F)</td>
<td>(F : (0, \ell) \to SO(3))</td>
<td>Moving frame adapted to (y); encodes the twist of the Kirchhoff rod deformation; the columns of (F) are given by (F(s) = (n_{1}(s), n_{2}(s), y'(s)))</td>
</tr>
<tr>
<td>(F_{n})</td>
<td>(F_{n} : (0, \ell) \to \mathbb{R}^{3 \times 2})</td>
<td>The matrix of material normals of (F), so (F_{n} = FS = (n_{1}, n_{2}))</td>
</tr>
<tr>
<td>(f_{i})</td>
<td>(f_{i} \in \mathbb{R}^{3}, i = 1, \ldots, n)</td>
<td>Concentrated point load (f_{i}) is applied to the centerline of a rod at (y(s_{i}))</td>
</tr>
<tr>
<td>(y)</td>
<td>(y : (0, \ell) \to \mathbb{R}^{3})</td>
<td>Arc-length parametrized curve that gives the centerline of a deformed Kirchhoff rod; assumed at least twice continuously differentiable</td>
</tr>
</tbody>
</table>
\[I \quad I : (0, \ell) \to \mathbb{S}^2_{++} \]
Area moment of inertia tensor of the cross section of the Kirchhoff rod, at a particular \(s \in (0, \ell) \), given by \(I(s) = \int_{\mathcal{D}(s)} \left(y^2 - x y \right) \, d(x, y) \)

\[J \quad J : (0, \ell) \to \mathbb{R}_{>0} \]
Torsional rigidity of the cross section of the Kirchhoff rod, at a particular \(s \in (0, \ell) \); computed as \(J(s) = 4 \int_{\mathcal{D}(s)} \|\nabla \chi\|^2 \), where \(\chi \) is the solution to \(\Delta \chi = -1 \) in \(\mathcal{D}(s) \), and \(\chi = 0 \) on \(\partial \mathcal{D}(s) \)

\[K \quad K : (0, \ell) \to \mathbb{R}^{3 \times 3} \]
Stiffness matrix of the Kirchhoff rod, at a particular \(s \in (0, \ell) \); the upper-left two-by-two block is given by \(E I \), and the lower-right entry by \(\mu J \); we often use \(K \) and the pair \((I, J)\) interchangeably, because \(E \) and \(\mu \) are assumed fixed

\[k \quad k : (0, \ell) \to \mathbb{R}^3 \]
Curvature vector of the framed curve \((\gamma, F)\), with components \(k = (k_1, k_2, \tau) \); related to \(F \) and \(\omega \) via \(\omega = F k \) and \([k]_{\chi} = F' \)

\[k_n \quad k_n : (0, \ell) \to \mathbb{R}^2 \]
Vector of material curvatures of \(F \), so \(k_n = S' k = (k_1, k_2)' \)

\[\mathcal{K} \quad \mathcal{K} \subset \mathbb{S}^2_{++} \times \mathbb{R} \]
Set of admissible stiffnesses \((I, J)\) that satisfy \(0 < J \leq 4 \psi'(I) \); by abuse of notation, we write \(K \in \mathcal{K} \) and \((I, J) \in \mathcal{K} \) interchangeably

\[\mathcal{K}^* \quad \mathcal{K}^* \subset \mathcal{K} \]
Set of stiffnesses induced by elliptical cross sections, i.e., \(J = 4 \psi(I) \)

\[\kappa_i \quad \kappa_i : (0, \ell) \to \mathbb{R} \]
Material curvatures \(k_1 \) and \(k_2 \) of \(F \); measure bending of the Kirchhoff rod around the material normals \(n_1 \) and \(n_2 \), respectively

\[\kappa \quad \kappa : (0, \ell) \to \mathbb{R}_{\geq 0} \]
Total (Frenet) curvature of \(\gamma \), given by \(\kappa = \|y''\| \); for any frame \(F \) adapted to \(\gamma \), it holds that \(\kappa = \sqrt{k_1^2 + k_2^2} \)

\[t \quad t \in \mathbb{R}_{>0} \]
Length of the Kirchhoff rod

\[\lambda \quad \lambda(l, \bar{l}) \subset \mathbb{R}^3 \]
Map from the Plücker coordinates \(l, \bar{l} \in \mathbb{R}^3 \) with \(\langle l, \bar{l} \rangle = 0 \) to the line in \(\mathbb{R}^3 \) incident to the point \(\frac{lx}{\|l\|^2} \) and with direction \(l \)

\[\Lambda_{kl} \quad \Lambda_{kl} \subset \mathbb{P}^5 \]
Klein quadric, the set of all points with homogeneous coordinates \((l, \bar{l}) \in \mathbb{R}^6 \) satisfying \(\langle l, \bar{l} \rangle = 0 \); we interpret these points as Plücker coordinates of a line in \(\mathbb{R}^3 \) with direction \(l \) and incident to a point \(x \), such that \((l, \bar{l}) = (a, x \times v)\)

\[M \quad M : (0, \ell) \to \mathbb{R}^3 \]
Accumulated moment on a deformed rod, given by \(M = \int_0^\ell r \times q \)

\[\mu \quad \mu \in \mathbb{R}_{>0} \]
Shear modulus of the base material

\[n_i \quad n_i : (0, \ell) \to \mathbb{R}^3 \]
Material normals of the moving frame \(F \), so \(n_i = Fe_i \) for \(i = 1, 2 \)

\[\nu \quad \nu \in (-1, 1/2) \]
Poisson’s ratio of the base material

\[\omega \quad \omega : (0, \ell) \to \mathbb{R}^3 \]
Darboux vector of the moving frame \(F \); related to \(F \) and \(k \) via \(\omega = F k \) and \(F' = [\omega]_{\chi} F \)

\[p \quad p : (0, \ell) \to \mathbb{R}^3 \]
Line load applied to the centerline of a rod, where \(p(s) \) gives the load density at \(y(s) \)

\[\varphi \quad \varphi \in \mathbb{R} \]
Orientation of ellipse with respect to reference frame; first and second semi-axes are given by \((\cos \varphi, \sin \varphi)^t\) and \((-\sin \varphi, \cos \varphi)^t\) respectively

\[\psi \quad \psi : \mathbb{S}^2_{++} \to \mathbb{R}_{>0} \]
The determinant-over-trace function \(\psi(X) := \frac{\det X}{\tr X} \)

\[Q \quad Q : (0, \ell) \to \mathbb{R}^3 \]
Accumulated load on a rod, given by \(Q(s) = \int_0^s q \)

\[q \quad q \in \mathcal{D}'((0, \ell); \mathbb{R}^3) \]
Load distribution applied to the centerline of a rod, consisting of a line load \(p \) and point loads \(f_i \)

\[S \quad S \in \mathbb{R}^{3 \times 2} \]
Selection matrix \(S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) that extracts the first two columns of a three-column matrix by multiplication from the right, i.e., \((x_1, x_2, x_3)S = (x_1, x_2)\)
$S_2^+ \subset \mathbb{R}^{2 \times 2}$
Set of all symmetric positive-definite 2-by-2 matrices

$SO(3) \subset \mathbb{R}^{3 \times 3}$
Set of all rotations of \mathbb{R}^3 about the origin

$s \in (0, \ell)$
Arc-length parameter of γ

$s_i \in (0, \ell), i = 1, \ldots, n$
Concentrated point load f_i is applied to the centerline of a rod at $\gamma(s_i)$

$\tau : (0, \ell) \rightarrow \mathbb{R}$
Twist of the moving frame F; measures rotation per arc-length unit around γ'